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Abstract

Examples of how to develop models using the physical balance
principles defined in the mixture theory, together with the use of the
second axiom of thermodynamics and proper constitutive relations.

A few remarks on heat transfer and phase
change problems

In this section, the classical heat conduction equation for a single tempera-
ture 0 of the mixture will be derived using a simplifled version of the energy
balance equation together with required constitutive relations. A more de-
tailed description of the problem, involving the concepts of the free energy
density tþo and the entropy qo f.or the constituents in a mixture, will also
given to show the difficulties involved in improving the assumptions.

In the so-called Stefan's problem, a modifled version of the linear classical
heat conduction equation is used to track the propagation of a freezing or
melting front of a pure material undergoing a phase change. Essentially, six
material parameters are used in this approach. However, the formation of
ice in a porous material with a wide range of pore sizes filled, or partly fllled,
with a pore solution and containing different chemical components does not
satisfy the basic assumptions introduced for solving the Stefan's problem.
The important difference between the Stefan's problem and the frãezing of
liquid water in a'porous medium will be discussed.
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The most important phase change problem in the area of durability of
porous building materials is probably the formation of ice in the pore system.
Ice may cause damage such as internal micro-cracks and scaling of material
surfaces. A problem of special interest, in this context, is the formation of ice
in combination with deicing salts. This damage differs from the one which
arises when a pore solution freezes without the presence of external salts.

To obtain the standard heat conduction equation, the internal energy e
must be constituted with the material constant C and the temperature 9, as

e:C0
where C represents the specific heat capacity of the material considered.

The heat flux q, in a one-dimensional case is constituted by a temperature
gradient assumption and the material constant À called the conductivity as

(2)

The body force of all constituents bo, the influence of the term includ-
ing the stress tensor and the velocity gradient for the mixture trTTL, and
the external heat supply for the mixture r are all assumed to be negligibly
small quantities compared to the others in the energy balance equation. The
simplified energy balance equation in one dimension becomes
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where p is the mass density of the mixture and á, is the mean velocity of the
mixture.

If the constitutive relations (1) and (2) are introduced into the simplifred
energy balance equation (3),

is obtained. If the mean velocity å, vanish, the equation (a) represents the
standard heat conduction problem, which must be supplemented with bound-
ary conditions in terms of temperature and/or a heat flux. Furthermore, the
initial conditions must be specified.

In the Stefan's problem, the mean velocity of the mixture å, vanish, and
the material parameters C and À are a,ssumed to be functions of the temper-
ature itself. Thus, the temperature fie1d in a domain where a phase change
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occurs can be solved, and assure energy balance, with a non-linear version
of (a). The governing equation in the stefan's problem can be obtained by
introducing the constitutive relation of a rate type for the internal energy as

(5)

The heat flux is constituted as

Furthermore, the divergence of the heat flux can be expressed by

It is assumed that

(s)

with (5), (6), (8), and (3), the non-linear version of the standard heat equa-
tion becomes

pc(Ð#: 
^@)#

(e)

if the velocity of the mixture á vanish.
\Mhenever the phase change temperature g¡ is reached, the material pa-

rameter C(0) will exhibit a discontinuous jump. This is due to the latent
heat effect L (J /kg), since the latent heat tr is adsorbed or emitted during
the phase change.

Integrating around the phase change temperature d¡ gives

which is a material constant for pure materials undergoing a certain phase
change. It is important that certain material parameters are known when
the Stefan's problem is applied to liquid water and ice. These are the specific
heat capacities of liquid water C¿ and,ice C¿"", and the ,specifrc'heat capacity
during the phase change C7. The C¡ vahrc represents the latent heat effect
calculated from the material constant .L together with an assumption of a
small temperature interval, during which the phase change is supposed to

è: c (0)þ

Q,: _ Àft)y
or (6)

*:-#(^ (qH):-À (')(#)'-^(q# s)

t : l,': c(o)do (10)
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Table 1: Material constants for water and ice used in the Stefan's problem.

Constant Value Remarks
1.762'103 (J/kg/K)
4.226. 103 (J/kg/K)
2.220 (J lslmlK)
0 556 (t lslmlK))
333.6 . 103 (J/ks)
273.75 (K)

Sp eci,fi c heat capacity,
C onduct'iuitg o J liquid
Conductiuity of ice
Latent heat of fusi,on
Tr an s'iti o n t emp er atur e

liqui,d water
1Ce.

À¿

Ài".
L
0r
L0 t - 0.01 - 0.0001 (K) Used to compute C ¡ from L

occur. Furthermore, two different constant values of the conductivity À are
adopted, that is, the conductivity of liquid water À¿ and ice À¿",. Compare
the data for water and ice in Table 1.

Within the assumed phase change temperature interval, the conductivity
À is often assumed to be linear between the values À¿ and À¿"". The change of
the mass density of the mixture p is, however, normally incorporated into the
C values. Besides, the pressure effects upon the forrnation of ice are ignored
in the Stefan's problem.

By solving the non-linear equation (9) with the above-mentioned material
parameters, a discontinuous freezing or melting front can be followed for all
kinds of variation of the boundary conditions, simply by checking at which
Iocations in the domain the temperature is below the specified temperature
0r. Numericai methods solving the equation (9) have been proposed, e.g.
compare (Steen Krenk, Lars Damkilde).

However, an inherent problem when studying porous materials with a
wide range of pore sizes is that not all of the liquid water present in the pore
system is transformed from water to ice when a certain freezing temperature
07 is reached, as assumed in the Stefan's problem. In order to use the en-
ergy balance concept to calculate the mass density of ice p¿""(x,ú) formed in
a porous material, modifications to the classical Stefan's problem must be
introduced.

It is believed that liquid water present in different pore sizes in a saturated
porolrs material will exhibit different freezing temperatures 0¡, i.e. a scatter
of different latent heat effects at different temperatures must be overcome.
The initial mass concentration of liquid water c¿, however, give no information
as to how this liquid water is distributed among the different pore sizes in
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Figure 1: Effect of holding temperature constl,nt after freezing starts i.n a
relatiuely dense paste, [Powers].

a representative material volume (R-EV). That is, some kind of geometrical
consideration in addition to the porosity n and the specific surface area o,

must be introduced, and some relation must give the distribution of liquid
water in this geometry.

By using for example the Kelvin equation together with quantitative mea-
surements or microscope studies the pore distribution curves can be evalu-
ated. The pore distribution curves indicate of which pore size radii ro the
total porosity consists. The most simple distribution function of liquid water
for such a geometry is the assumption that a given ma,ss concentration of
liquid water c¿ occupies the smallest pores completely. In other words, if half
of the porosity in a porous medium consists of pores smalier than a given
value rpss and the degree of saturation is 50%, all these pores are assumed to
be completely filled with liquid and all the remaining pores, larger or equal
to roso will be assumed to be completely dry. A simple way to improve this
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assumption is by distinguishing between adsorbed water molecules and liq-
uid water stuck to the pore walls due to capillary condensation. That is, the
adsorbed water can be assumed to be distributed among the different pore
sizes in relation to its corresponding envelope-specific surface areas,

Furthermore, a function relating the freeze temperaturc 0 ¡ to the different
pore size radii ro must be introduced in order to evaluate the function C(á)
for a specific material with a known pore size distribution. The latent heat L
is, however, not a constant even when the fusion of ice in a normal condition
is considered. Thus, supercooled or undercooled water will exhibit different
latent heat tr at different temperatures. At 2TZ.l5 (K), 263.15 (K), and
253.15 (K), the latent heat of fusion of ice is 333.6 (kJ/kg), 284.8 (kJ/kg),
and 247.4 (kJ/kg) respectively (Hobbs).

There are many other important effects which must not be overiooked.
One of them is that the liquid water (on a microscopic scale) present in the
largest pores (having a certain known d¡) will form ice when the ice forma-
tion is nucleated. This first ice formed is, however, believed to attract water
from neighboring pores with smaller radii than that contained in the ice in
its vapor and liquid phases. This phenomenon may significantly change the
assumed distribution function of liquid water during the freezing process.
The equation (9) together with assumptions of pore size distributions can
not be used alone to calculate the mass density of ice p¿..(x,ú). The effects
of water from neighboring pores or from the surroundings being drawn to-
wards ice islands created in the pore system is often referred to as cryogenic
suction or cryosuction, e.g. compare (Ozawa). Cryosuction is explained by
the difference in the free energ-y of ice at a certain temperature and unfrozen
water at the same temperature.

F\rrthermore, if the attraction of water-vapor towards the ice islands in
the pore system is signifi,cant, the amount of vapor to be converted to ice,
i.e. the sublimation, might be of importance. The latent heat of fusion is
approximately 12To of the latent heat of sublimation at 273.L5 (K) and at
atmospheric pressure.

It is noted that calorimeter measurements can not reveal the amount of
ice formed in the pore system directly without making assumptions of the
involved latent heat of fusion and sublimation at different temperatures and
at different mass concentrations of water in the pore system. One problem to
be considered is for example that the latent heat of fusion of capillary water
is different from the latent heat of fusion of adsorbed and capillary-condensed
water at a certain temperature, F\rrthermore, the latent heat of sublimation
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Figure 2: Effect of entra'ined air and, the spaci,ng factor, [powers].

and the fusion can not be distinguished, since the calorimeter mea,sures the
total response in terms of heat output or heat input.

Since the ice grov¡n from the vapor phase is very different in structure
than ice grown from bulk water, the sublimation phenomenon may have
important consequences in terms of micro-cracking of the solid material. Be-
sides, as the growth of ice becomes diffusion-controlled, the time scale of
vapor flow towards ice islands and the degree of external cooling rate be-
come important. If, for example, the external cooling rate is fairly rapid, the
diffusion-controlled sublimation is supposed to be small, and if the external
cooling rate is slow, the ice growth due to sublimation (or, rather, damages
caused by sublimation) might prevail, compare Figure 1,

Þ

¿1.,?00
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In a situation, where the diffusion-controlled ice growth, i.e. the sublima-
tion, is active, different ice crystals will be formed depending on the degree of
supercooling. The various ice crystals growing at different temperatures in a
diffusion cloud chamber are: (ø) hexagonal plates ftom 273.75 Lo 270 K, (ìi)
needles from 270 to 268 (K), (iii) prismatic columns from 268 to 265 K, (i,u)
hexagonal plates from 26b to 261(K), (r) dendrites from 261 to 257 1N¡, (,uz)
hexagonal plates ftorn 25T to 248 (K) (Hobbs). The saturation pressure of
the vapor involved in the sublimation has been shown not to affect the overall
formation pattern of these different crystals. Temperature, it seems, is the
main factor. Due to the different geometrical shape of these crystals, they
might cause different kinds of damage to the solid. Dendrites and needles
might be the most damaging products formed due to the needlelike shape
of these crystals.

The thermomechanical problem of ice growth in concrete is often studied
by measuring the length changes due to a temperature depression and due
to ice growth in the pore system) see Figures 1 and 2, (powers). In order to
evaluate such measurements, the concept of stress and strain in the porous
material must be introduced.

By combining the first and second axiom of thermodynamics, the thermo-
mechanical coupling can be studied. Here, the free specific energy potential
tþo and the entropy rla are used as constitutive dependent properties. Indeed
the thermodynamic properties tþo and rla caî be quite generally constituted,
and therefore a more general energy equation than (4) can be obtained. This
general equation is believed to be more adequate when phase change prob-
lems are studied, where factors other than temperature itself will affect the
thermodynamic state variables €a or {o and, r¡o. Similar approaches have
been proposed, e.g. compare (coussy). The Helmholz's free energy þ and
the entropy n are often introduced as well when studying thermomechanical
coupling, e.g. compare (Lemaitre).

For example, the mass concentration of dissolved chloride ions and pore
water present in different pore sizes will be factors affecting the freezing tem-
perature. Hence, the thermodynamic state variables eo, tþo and,4" will also be
affected. The derivation of a more general equation than (g) is not straight-
forward, since such formulations often include so-called internal variables.
F\rrthermore, problems associated with the fulfillment of the second axiom
of thermodynamics must also be dealt with. However, it will be shown that
it is possible to study freeze-thaw problems in porous materials using the
concept of mixture theory. Here, two different strategies to obtain an equa-
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tion dealing with heat conductivity and chemically reacting constituents will
be presented. It will be shown that different thermodynamic laws can be
defined due to the second axiom of thermodynamics. The deflnitions of the
thermodynamic laws do not follow directly from the second axiom of ther-
modynamics, but rather from the combination of this axiom and the choice
of constitutive relations.

Consider the second axiom of thermodynamics (compare, the chapter
Theory of Mixtures), as expressed in terms of the Helmholz's free energy þ,
and the entropy rlo, i.e.

æns?
o < - l, p"rÞ| - Ð p"rl,o + t trTroLo

a:7 o:1 a-_I
æ

- f (q" * Po7qoto) 'grad (o) l0

(1 1)

A:7
ææ

- D,r" . Ê" - I a" (rtt" + ;"71
a:7 a:7

Two examples will be studied, both based on the assumption that the
Helmholz's free energy depends only on the temperature and the mass den-
sity, that is

tþo : ,þo(0, p,) (12)
At first, the partial hydrostatic pressures zro wili be defined with the help of
the Helmholz's free energ.y ry'o described through (12). In order to define the
pressure, consider the derivative of (12), i.e.

It should further be noted that divx/, : tr (gradx,o) :trlo, which allows the
mass balance to be written

p'o : - potrLo*ôo

po1þ'o: o"kt'+ p"*p"

po1þ'o: ,"kt' - ozfttrU+p"*ô"

( 13)

(14)

(compare, the chapter Theory of Mixtures). If (13) and (14) are combined

(15)

is yielded.
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Only the terms in the second axiom of thermodynamics containing the
term Lo will be considered at this stage. It is concluded that the first term
and the third term in (11) together with (15) result in a validation of the
following restriction:

Ð"Qrkr+rï) L.)o (16)

Since Lo is arbitrary, it follows that the parenthesis in equation (16) must
be equal to zero in order to satisfy the part of the inequality containing the
velocity gradient term. This makes it possible to define the thermodynamic
law for the stress tensor as

To: -o\fti (17)

The stress tensor is described with the hydrostatic pressure only, i.e.

To : -1f oI (18)

Following the thermodynamic law (17) as well as (18), the expression for the
hydrostatic pressure can be written as

Ta: "0'þ'o:,Ë (1e)

This means for example that the choice ,þ"(0,po): Rglnp" gives the ex-
pression ro: R0po which is the ideal gas 1aw.

The following discussion will concern two constituents denoted I and 2.
For simplicity, the following restrictions will be assumed:

*1 (*,Ú) : O 
.

xL(*,ú) :0 ' (20)

This means that also the velocity of the mixture x and the diffusion velocities
ua are restricted to be zero. That is, a problem with heat conduction and
chemical reactions will be studied, in which the constituents have zero veloc-
ities and where the hydrostatic pressures for the constituents are defined by
q: p!ðtþrlôp, and 12: pz7rþ2lApz, i.e.by the equation (19).

The fifteen unknown properties in both the test problems for the heat
conducting and reacting constituents 1 and 2 are:

prl*,r) , 0(x +\. \(*,¿) , qr(x,t) ,þt(*,t) . er (x,t) . ()t)pz(x,t)' u\ntu)' 
êz(*,ú) , nz(x,t), tþr(*,t), ez(x,ú) ' \z
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where the independent variables are the mass densities p, atd, p" and the
temperature 0. The rest of the properties listed in (21) are the constitutive
variables. It should be noted that the heat fluxes q1 and q2 involves three
unknown properties each.

Due to the assumptions in (20), the inequality (11) is simplified to

222
-l o,rÞ" - prtï - D qo . grad (0) l0 - Dô"rþ,, 0 (22)

o:1 a:I a:l

where ,þ'o: rþo and h: er * q2 due to the restriction of zero velocities for
the two considered constituents.

It is further assumed that the Helmholz's free energy for the constituents
1 and 2 are given as functions of the temperature and the mass densities p,
and pr, i.e.

1þt : 1þt (0, pr)
,þr: rþ)fe, rrl (23)

The entropies for the constituents 1 and 2 are assumed to depend on the
same quantities, i.e.

Tlt : rlt (0, pr)

4z : Tz (0, pr)

The chemical reaction rate ô1 is constituted as a function of the temperature
0 and the mass density of the constituents.

(24)

ôt: h(0, pr, pr)
ôz : Íz (0, pr, pr)

At last, the heat fluxes is constituted as

er : fr (grad d)
qz: rzig.uaa) Q6)

The differentiation of tþ, and, {r, given from (23), yields

(25)

tþt: effa*#r,

,þz: ffe*#ø
(27)

(28)



T2

The entropy 4 for the whole mixture is the definition

m

pn : D, p"no (2e)

rr Q7), (28), and (29) are introduced into the simplified inequality (22),ri'e
result is

å r" (ffia * ku")-f ,"r"i,-É n" *,ad (0) tt_Ðôo,þ" )0 (30)

The mass balance for constituents 1 and 2, is broken down to

h : ô'1 (31)

þz : ô2 (32)

since ôp,f 0t : þo when x'" and * is equal to zero, e.g. compare the chapter
Theory of Mixtures. The constraint on the mass balance equation is

,

:u": o (33)

If the mass balance equations (31), (32), and the constraint (33) are intro-
duced into (30),

-2r"(# *r")è-i(r"k*r") þ,-f,qo srad (0) t0> 0 (34)

is yielded. Since d is ao arbitrary quantity, it seems natura.l to define the
thermodynamic laws

orþt

ao : -Ti (35)

otþz

aí : -Tz, (36)

which a^ssure that the first terms in (3a) fulfill the reduced inequality.
A so-calied dissipation inequality is introduced. for the second term in (33)

by replacing þ, with ô1 and also þ2 with ô2. In other words, the equations (31)
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and (32) are inserted into the second term in (34). This yields the dissipation
inequality

echern: -É (r"*,*r")ôo ) o (37)

This inequality is valid only when the velocity of both constituents is zero, i.e.
when the relation þo : ôo holds for the constituents 1 and 2, The property
gchen . will be referred to as the chemical dissipation.

It can be established that the dissipation inequality (37) is positive by
making a proper constitutive assumption for the rate of the chemical reaction,
ôo, involving rather than introducing thermodynamic deflnitions or laws.

To obtain a constitutive relation, which describes the reaction kinetics,
(33) must be considered, which yields

ôt: -ôz (3S)

The chemical dissipation g"h. . for the constituents 1 and 2 then becomes

echem: - i (r"* * r") ôo -- - (r,# r tþr - e,# - r,) u, (Be)
a:1 \

This makes the constitutive relation describing the chemical reaction rale ôu
restricted. The following natural choice appears attractive:

where G12 is a positive scalar quantity denoting a rnaterial property, which
describes the reaction kinetics. From (40) and (37) it is concluded that the
chemical dissipation is always positive in this case, since gchem. is a quadratic
assumption. It is noted that the chemical reaction rate ô1 is a function of the
mass densities p1 and p2 and the temperature g, compare (2b). This is due
to the fact that tþ, and r/, depend on the same quantities, compare (23).

It is worth noting that (40) expresses an a.ssumed chemical reaction rate
which is proportional to the chemical potential difference between the phases
1 and 2. This can be verified by considering the definition of the chemical
potential tensor Ko, i.e.

Ko : ,þJ - tl lp"

ôt: þt_ -Gtz(rr#*út- e,Wr-,þr) (40)

(41)



74

The stress tensor was assumed to be constituted with the thermodynamic
pressure zro only, i.e.

By comparing (41) añ @2) and also noting that K" : þoI when having
no mechanical pressures involved, this gives the expression for the chemical
potential p,dj aß

That is (43) shows that

To: -7ToI: -O?.ft1

, ðrþ"
llo:1Po-P" ôn

er#r r tþr - er# - 1þz: þt - tiz

_o
L1.,:rA,4th",^.: -=ft-.gradá ) 0

rtt: -ffie-ffiu,
rÌz: -ffie-ffir,

(42)

(43)

(45)

(46)

(47)

(44)

which was the result to be shown.
The so-called thermal dissipation is the last term in the reduced inequality

(34), i.e.

If an isotropic heat flux is assumed, the thermal dissipation can be assured
to be a non-negative quantity by introducing the constitutive relations

Qr : -Ã1 grad d

Az: -\2grad1
which means that the dissipation is quadratic in gradá. Both material
constants .lr and Ã2 are restricted to be positive scalars. When study-
ing anisotropic heat flux problems, i.e. using an a,ssumption of the type
Ç[o : -C1.r¡ogradd, the thermal dissipation inequality, i.e. gu,.,,". 2 0,
imposes the restriction that the conductivity tensor C1.r¡o must be positive
definite.

From the introduced thermodynamic laws (35) and (36), the expression
for the rate of change of the entropies i¡o for the constituents 1 and 2 takes
the form

(48)

(4e)
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where it is assumed that 41 and 4, depend on the same quantities as r/, and
,þ, do, compare (24).

In addition, the energy balance equation written in the form

pon-rdivhf f ,r,.Þ,+ fe"|u?"-p, (bo)
o,:7 a:7

$¿n
- D, þ"rþ'" + ¿"1þ 

") - pn7 + tr ! TTl,"
a:7 a:l

should be considered, compare chapter: Theory of Mixtures. With the con-
straints in (20), the simplified version of the energy equation (50) is

phn rdi" i q, + É p"1þ,+f u"f "-t pr¡Þ :0 (b1)
a:l a:l a,:7

It follows from (29) that

n : +L o,r" (b2)
P a:t

By the differentiation of the quantity ? as

12Tt:;)-(þ"n"+ p.n) (53)

where it should be observed that p : consú. due to the simplifled mass
balance equations (31) and (32) and due to (33), i.e.

2

\e":þtIþz:þ:o (54)
a:l

where also the mass balance for the mixture and the assumption x : 0 are
used.

If the assumed expiessions are introduced ror i¡o and, tþo, the energy equa-
iion (50) can be written as

o - 'Ð(,"(#)*,"(-Wu-ffiu")) (bb)

o*Éo"*É ,"(þe**,u")
a:I o,:l

*f u",þ"+ É p"(-9!'\ þ
a:7 a:t \ A0 )'
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where (53), (48), and (a9) together with the thermodynamic laws (3b) and
(36) are used, If this expression is rearranged and ô1 and, ô.2 are replaced by
pt and pr, through the use of the mass balance equations, i.e. (31) and (32),
the result is

o - '*(,"(rk)*,"(-oþe-ffi,")) (b6)

22a1b-Z
+div I q. + t 4# þ" + D, þ".,þ"

¿:1 a:l u Po, a:l

This expression can be referred to as a generalization of the standard heat
conduction equation, e.g. compare (9).

If the Helmholz's free energies tþt and tþ, are specifled in more detail by
introducing constitutive relations containing the material constants Ct, Cz,
Kt, Kz,,L1 and Lz aß

where C1 cal be referred to as the heat capacity for the constituent denoted
L, Kt represents a factor describing the dependency of the free energy on
the composition of the mixture, i.e. the relation between the mass densities
pr and p2 during the chemical reaction or, equally, during the phase change.
The material constant Ltz : Lt - Lz represents the latent heat effect of the
reaction studied.

The needed derivatives in the energ-y equation (56) can now be written
down explicitly as

,þr(0,pr) : Cr? (I- ln0) * Kfif pr* L1

,þ, (0, pr) : c2o (7 - In o) -t K2o f p2 -t L2

# :-c' tn o + Kllp,

#:-ctro

-Kr7lp?

(57)

(58)

(5e)

(61)

which is the expression for the entropy with an opposite sign of the con-
stituent denoted 1. The second derivative of the Helmholz's free energy with
respect to the temperature is

(60)

F\rrthermore
orþt :
0p,
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is obtained, and flnally

ffi:-K,rp? (62)

This term can be referred to as the thermochemical coupling. That is, the
constitutive relations (57) and (b8) explicitry result in a predicted coupling
term, which will affect the temperature distribution in the mixture.

Insertion of these assumptions into the expression (56) yields

o - f,u.(""r,,, - +\ o *iØ"c")à
a:t \ p"/ a.:7

.Ð(*r")trdiv fr" (63)

. Z(*r") t . 
þ_i," (c"e(l - rn ø + fe * r,)

Following (a6) and (47), the total heat fl* q becomes

2

q:Ie¿:-(Ir+lz) gradd7-: \

If (64) is inserted into (63) and it is noted that some of the terms are canceled
out, the result is

22
Y,pocoi) -div (^,*Ã2) gradá+I þ"(c.0*L"):g (65)
a:l a:I

Furthermore, the total heat flux is assumed to be weighted with the mass
densities p, and p, and with a material constant rn as

Àtot :Ã, + Ã, : (î^, * l^r)''^

(64)

(66)

where-1 <m1I.
It should be noted again that p, - p- pt, p: const., and that þz: -þt.The heat equation (65) can then be written as

(pCz+ h(Q-Cù)9-div (À¿,¿) grad g+(CL-Cz)þr0tLnh:0 (62)
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where Ln : Lt - Lz, and where it should be observed that þ, must be
given from a constitutive relation of the type suggested in (40). This re-
striction is imposed on the constitutive behavior due to the second axiom
of thermodynamics. If the given relations for the Helmholz free energy for
the constituents are inserted into (40), the result is the expression for the
assumed reaction kinetics.

The fifteen unknown properties in (21) can now be solved by using (40)
and (67). That is, the temperature field g(x,ú) and the two mass concen-
tration fields pr(x,ú) and pz(x,f) can be calculated. Note that the used
equations are the two mass balance equations (31) and (32), the energy bal-
ance equation (31), the two thermodynamic laws for the constituents relating
the Helmholz free energ-y to its corresponding entropies (3b) and (36), the
constitutive relation for the reaction kinetics (40) together with the restric-
tion (33), the two constitutive relations for the heat flux vectors (46) and

@7) (in all six equations are thus involved to describe the heat fluxes for the
two constituents), and finally the two constitutive relations for the Hetmholz
free energy (57) and (58). That is, the number of unknown properties equals
the number of equations introduced.

In order to illustrate that alternative constitutive equations yield difier-
ent thermodynamic definitions and hence governing equations, yet another
method will be examined. The same restrictions and unknown properties
will be studied as in the previous example, i.e.

',:l::i, 0 @,t)' 2:[r; :ì i:l:',i]' !,:l:',i1, ï [î;i] (68)

There is one main difference compared to the first example, namely the con-
stitutive relation for the reaction kinetics. The following rate type of as-
sumption will be introduced:

(6e)

(70)

which can be compared with the constitutive relations used in the first ex-
ample, see (21). The Helmholz free energy) the entropy and the heat flux are
assumed to be dependent on the same quantities as in the first exampìe, i.e.
compare (23), (24) and (26).

The equations for ô1 and ôz will be constituted as

ôt : Rt9
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and

(71)

where A1 and R2 are the rate constants for the chemical reaction. From (33)
it follows that these constants must be related as

Rt I Rz:0 (72)

where (33) is used. consider, furthermore, the reduced second axiom of
thermodynamics (34) together with the equations (70) and (71), i.e.

-i r.(* * n.i R"k * *r") ê - iqo grad (0) /0 >-0 (23)

where the relatio\ þo: ôo is used.
The thermal dissipation grn"r*., compare (4b), is proven to be a positive

quantity due to the relations (46) and (a7).
In this example, the assumed reaction kinetics, i.e. (20) and (71), makes

it possible to introduce the following thermodynamic definitions relating the
Helmholtz free energy and the entropy for the constituents since á is arbi-
trary:

Rz0C2:

and

where equation (72) is used. The equations (24) and (Zb) are sufficient to
ascertain that (73) is true. It should be noted, however, that a more general
condition can be obtained if the thermodynamic deflnitions for the entropies
for the two constituents are not separated.

A differentiation of Qa) yields

0rþ, - ðrþ, R
ffi + Rr# * =0,,úr: -Ttt

0rþz ^ ðrþ, Rt ,

õ0 - nt 
Ap, - EVr: -rtz

n,: -ffie-ffiu,- R,ffi¿)

o õ'rþ, , , R, ^,. Rt ôtþt h ôút
-,"r Ap? 

pt+ 
¿!tt- p, Aí - ,, Ar,

(74)

(75)

(76)
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and a differentiation of (75) yields

rz: -ffia-ffir,+R,mo (77)

, o ô'rþ, .^ R, ,. h õtþz , h õúz-rn *,pz_¿ez* * aí* 
"A,Slightly different assumptions are introduced for þ1@, pr) and þ2@, pr)

compared to the previous example, using

,þ, (0, p) : Cfi (r - ln d) r Ktpt * Ln
,þ, (0, pr) : c2o (r - ln á) I Kzpz

where Ct,, Cz, Kt, Kz, and Lp are material constants. The derivatives of
interest in the reduced energy equation (b6) are

(78)

(7e)

and

For i¡2,

and finally
alt : Kt (82)
0pt

The thermochemical coupling õ'rþrl @00p) is ignored in this example, due
to the structure of the constitutive relations for tþ, (0 , pr) ar.d tþ, (0, pr). The
sarne type of derivatives are obtained for the constituent denoted 2. The
rest of the derivatives for the constituents are equal to zero following the
assumptions (7s) and (79). Hence, the explicit expressions for 4, become

nt: ?U*ftf",t(1 -rn o)+K1p,¡Lrz)

+RtCt InL _ ot *,
hPt

rtz : ffe - frcrt(l - rn o) + K2pr)

_RtCz In 0 + O, *,

(80)

(81)

(83)

(84)
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is obtained. The rate of change of the Helmholz free energy is

tþt: -þclno t Kyþ, (Bb)

and

tþz: -i)czlno + K2þ2 (g6)

where (27), (80), and (82) is used.
To show that the problem is complex even though the constitutive as-

sumptions are quite simple in structure, the terms needed in the energy
equation will be written down. The reduced energy equation (b1) together
with (53) may be written as

o - ,Lþ"r"*pË(p"q,) rdivË* (82)
a:7 a:7 a:l

ææn
+ D p"tþ.+Dô.,,þ"+ àD, p"n"

a:l a:I a:7

The first term in (S7) is the expression

ef Þ"n": oþ,(-#-R#-*r,) (s8)
o,:l \ -t

*'þ,(-W * o,#.*r,)
i.e.

0)+

(8e)

+I{

2

o\Þ"n" : oþr(ct
a:\

t?h ln

*0þz

r0 þz 0)

The second term is

ef þ,n) : ,,o. (9a+ + @re 0- hd) +, \
a:t 

:'ot\eo+A(CreQ-hd) rKth+Ln)l
/
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*ro,(+rng_ 

'.,) 
(eo)

*ro,(?e - #e2o 
(r- rnd) * *,r))

+ep, (-R'c' tng * &.rl-\ Pz Pz /
The third term is given by the constitutive assumptions (a6) and (47). The
fourth term in (87) is

q

\, p,rþ" : o, (-bcrln 0 * Ntþr) + p, (-itcrln É * tcrþr) (91)
¿:1

The fifth term is
2n

Ðe"rþ, : D. þ,rþ": h(Cú (1 - tn 0) * K1p, ¡ Ln) (92)
a:t a:L 

+þ2(c2o(1 - lnd) + Kzpz)

and the last term is

þfr,r": êr,(-#-R#-#r,) (eB)
A:l

*a*(-#* *,W*lr,)
i.e.

,
oln"n, : opr(crrno - I'aKt)
a:l

*þ0,(-*Q,o (r- rno) + KtPt* r,,)) (e4)

+ëp2(Czlnd * I'r'Kz)

*t,,(*Qzo (L - tng) * *'uù)

Some of the terms in (89)-(94) arc eanceled out, but the matter is still
complicated. Indeed, the equation system closed, since the eleven unknown
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properties are given by the foliowing introduced equations: (31) and (32)
(mass balance), (31) (energy balance), (24) and (7b) (thermodynamic raws),
(70) (constitutive relation for the reaction kinetics) together with (33) (re-
striction), (46) and (47) (constitutive relations for the heat flux), and (7s)
and (79) (constitutive relations for the Helmholz free energy).

The two discussed models include the following material constants: C1,
Cz, Kt, Kz, Ltz, and R1 (or G12). This can be compared to the number of
material constants ìntroduced in the Stefan's problern which does not include
any constants related to the reaction kinetics.

The strategy discussed in this Section as a possible way to obtain equa-
tions describing the temperature field and the mass concentration fi.eld for
the constituents at different times, can be extencled-, and cases where more
than two constituents are considered can be studied. One example is the
case of freezing pore water containing chlorides. In order to obtain equa-
tions for the temperature field and the mass concentration field of ice, iiquid
water and chlorides, a more detailed study of the reaction kinetics and the
description of the Helmholz free energy for the individual constituents, must
be done. Another important thermodynamic problem to be solved is cases,
where phase changes occur and where the constituents are also allowed to
have a motion, i.e. when x'" (*, t) + o. In the presentation given in this
Section, the motion was assumed to be restricted (i.e. xl(x,ú) :0). The
(global) motion of liquid water during the freezing of porã water may, how-
ever, play an important rule when, for example, the damages of concrete at
low temperatures are studied.


