
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Performance Modeling and Analysis of a Database Server with Write-Heavy Workload

Dellkrantz, Manfred; Kihl, Maria; Robertsson, Anders

Published in:
[Host publication title missing]

2012

Link to publication

Citation for published version (APA):
Dellkrantz, M., Kihl, M., & Robertsson, A. (2012). Performance Modeling and Analysis of a Database Server with
Write-Heavy Workload. In [Host publication title missing] Springer.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 08. Oct. 2022

https://portal.research.lu.se/en/publications/33da43dc-61e0-4701-8ca9-1c852d1173ed


Performance Modeling and Analysis of a

Database Server with Write-Heavy Workload

Manfred Dellkrantz1, Maria Kihl2, and Anders Robertsson1

1 Department of Automatic Control, Lund University
2 Department of Electrical and Information Technology, Lund University

Box 118, 221 00 Lund, Sweden
{manfred,maria.kihl}@eit.lth.se,

andersro@control.lth.se

http://www.eit.lth.se/

Abstract. Resource-optimization of the infrastructure for service ori-
ented applications require accurate performance models. In this paper
we investigate the performance dynamics of a MySQL/InnoDB database
server with write-heavy workload. The main objective of our investiga-
tion was to understand the system dynamics due to the buffering of disk
operations that occurs in database servers with write-heavy workload. In
the paper, we characterize the traffic and its periodic anomalies caused
by flushing of the buffer. Further, we present a performance model for the
response time of the requests and show how this model can be configured
to fit with actual database measurements.

Keywords: performance modeling, service-oriented analysis, database
server, admission control.

1 Introduction

The processing and control of service-oriented applications, as web applications,
mobile service management systems, media distribution applications, etc., are
usually deployed on an infrastructure of server clusters. The rate at which the
requests arrive can vary heavily both during a single day and during longer
periods, due to user behavior patterns. Scaling for the worst traffic peaks can
be expensive though and will result in most of the capacity being unused most
of the time. Capacity planning and resource optimization is therefore needed,
which require the design of accurate performance models that capture the system
dynamics in high loads.

Previous work on control systems for service-oriented applications and sys-
tems has mainly focused on applications with CPU-intensive workload, for ex-
ample web server systems and databases with read-only requests. For CPU-
intensive workloads previous work has shown that the performance dynamics
are accurately captured by a single server queue model, see for example, [1] and
[4]. However, for applications including large databases (too large to store in
main memory), hard drive dynamics will influence the performance dynamics

F. De Paoli, E. Pimentel, and G. Zavattaro (Eds.): ESOCC 2012, LNCS 7592, pp. 184–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.eit.lth.se/


Database Server with Write-Heavy Workload 185

in high loads. Typically the application will need to read data from disk on
every database read. Write operations are however often buffered in the server
to make them more efficient. For example, in [7] the authors examine different
buffering/caching techniques for use with NFS (Network File System).

Writing to persistent media is often a slow process which should be avoided if
possible. Further, writing performance is also affected by certain rules of locality.
For example, writing sequential data to a hard drive can be many times faster
than writing to random sectors. By buffering writes and completing them in
sequential order, the writes are executed more efficiently. However, when the
buffered writes are actually flushed to disk, the response times of the normal flow
of traffic are heavily influenced. The server becomes occupied by work other than
that of the normal flow of requests. Therefore, the system dynamics of server
systems with write-heavy workload cannot be captured with the single server
queueing models proposed for CPU-intensive workload.

In this paper we examine write-heavy workload on a MySQL database server
using the engine InnoDB. The database is stored on a magnetic hard drive which
results in the database server having to employ heavy buffering to speed up the
writes. In the paper, the characteristics of write-heavy workload is examined.
We develop a model and configure the model parameters using experiments in
our testbed. We show in experiments that the model accurately captures the
periodic anomalies that occur when the system needs to empty the buffer.

In Section 2 we present the lab environment used for the database measure-
ments. In Section 3 we characterize the database traffic. In Section 4 we present
the model developed for the traffic and discuss how to configure it. We also
validate the model with lab measurements.

2 System Description

In this paper, we investigate the dynamics of database servers with write-heavy
workload. The models and methods proposed in the paper are based on the
results from experiments in our testbed. In this section, we first give an intro-
duction to dirty page caching, which is used in many operative systems and
database systems to improve the latencies when writing to disk. Further, we
describe our testbed.

2.1 Page Cache

One common way to implement write-buffering is using a page cache. The storage
is divided into fixed size pages. When data is written, the page being written
to is first read from storage and then changed in memory and marked as dirty.
Dirty pages are then kept in memory for some time before it is written back to
disk and marked clean.

MySQL has several different storage engines, among them MyISAM and Inn-
oDB. MyISAM has no built in cache for data. Instead it relies on the page
caching features of the operating system. In this paper, we have used the stor-
age engine InnoDB, which has its own system of pages which are buffered in the



186 M. Dellkrantz, M. Kihl, and A. Robertsson

so called buffer pool. Pages are written to and read from disk directly using one
of several methods for directly accessing the block storage device, bypassing the
operating system page cache. The InnoDB engine tries to estimate the speed of
the block device and the rate at which new pages are made dirty and from that
it calculates how often and how many dirty pages need to be written to disk.

2.2 Testbed

We have used an experimental testbed. The testbed consists of one computer act-
ing as traffic generator, and one database server. The computers were connected
with a standard Ethernet switch.

The traffic generator was executed on an AMD Phenom II X6 1055T at 2.8
GHz with 4 GB main memory. The operating system was 64-bit Ubuntu 10.04.4
LTS. The traffic generator was implemented in Java, using the JDBC MySQL
connector. The traffic generator used 200 working threads and generated MySQL
queries according to a Poisson process with average rate λ queries per second.
The behavior of the traffic generator was validated in order to guarantee that it
was not a bottleneck in the experiments.

The database server had a 2.0 GHz Celeron processor and 256 MB main
memory. The database files are on the system disk which is a standard 3.5" hard
drive. It runs the 32-bit version of Ubuntu 10.04.4 LTS (Linux 2.6) and MySQL
Server 5.1.41. The InnoDB engine was configured with 16 MB of buffer pool.

The structure of the relations in the database comes from the scalable Wis-
consin Benchmark [6] and it has n = 107 tuples. The structure of the queries
used all follow the following pattern:

UPDATE <relation> SET unique3=? WHERE unique1=?;

The question marks are replaced with uniformly distributed pseudo-random in-
tegers in the interval [0, n[. This query changes the value of one of the integer
attributes of a random tuple.

3 Performance Characterization

In order to investigate the dynamics of a database server with write-heavy work-
load, we performed a series of experiments in our testbed presented in Section 2.
In all the experiments, all requests included a MySQL UPDATE query, caus-
ing the system to write one database element to disk. Figure 1 illustrates the
system behavior during an experiment where the average arrival rate, λ, was
25 requests per second. The figure shows that the system periodically have to
pause the normal work and instead focus on the buffered dirty pages for some
time. While the normal response times are below 0.2 seconds, response times of
up to one second occur, because of these pauses. The number of requests that
have these high response times are affected by the fact that requests are sent
and queued up, even when the server is busy with the dirty pages.



Database Server with Write-Heavy Workload 187

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (s)

R
es

po
ns

e 
tim

e 
(s

)

 

 

pause flushing period

Fig. 1. Response time graph of the InnoDB system, UPDATEs only, with constant
Poisson-traffic, 25/s

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
hr

ou
gh

pu
t (

/s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
)

Fig. 2. N/P graph (left) and N/T graph (right) of the InnoDB system, UPDATEs
only. Every point was run for 900 seconds.

The average response time as a function of the number of concurrent jobs is
from now on referred to as the N/T graph. The throughput as a function of the
number of concurrent jobs inside the server at all times is from now on referred
to as the N/P graph. The N/T and N/P graphs for our system are shown in
Figure 2.

It can be seen in the N/P graph that for a very small number of concurrent
requests (up to 10), the throughput is much lower than for a higher number of
concurrent requests. This is likely (to some extent, at least) because of network
delays and buffering in lower protocol layers.

During high loads, the dirty page cache will be written to disk periodically.
The period between two occurrences of disk writing, called the flushing period,
depends on the arrival rate. As can be seen in Figure 1, an arrival rate of 25
requests per second results in a flushing period of approximately 5 seconds. Fig-
ure 3 shows the response times during an experiment with an average arrival rate
of 12.5 requests per second, which results in a flushing period of approximately
10 seconds and an experiment with an average arrival rate of 18.75 requests per



188 M. Dellkrantz, M. Kihl, and A. Robertsson

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time (s)

R
es

po
ns

e 
tim

e 
(s

)

 

 

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time (s)

 

 

Fig. 3. Response time graph of the InnoDB system, UPDATEs only, with constant
Poisson-traffic, 12.5/s (left), 18.75/s (right)

second, which results in a flushing period of approximately 7 seconds. These
experiments show that the period between flushes of the buffer is inversely pro-
portional to the arrival rate, since

25 · 5 ≈ 12.5 · 10 ≈ 18.75 · 7 (1)

4 Performance Model

In this section, we describe our proposed performance model, which captures the
dynamics of our system.

4.1 Model Description

We propose a queuing network model shown in Figure 4. The model consists of
three parts, a Network delay (ND), a Job queue (JQ), and a Dirty page buffer
(DPB). The ND is used to model the reduced throughput at very low numbers of
concurrent requests. After passing the ND, requests enter the JQ. As requests are
processed by the server, the user is acknowledged and one dirty page equivalent
is placed in the DPB. The DPB has a fixed maximum size and when that is
reached the server stops processing requests in the JQ and starts to process
dirty pages from the DPB instead until the DPB is empty. When the DPB is
empty, the server switches back and continues to work on the JQ.

As a request enters the server it is assigned a processing time. Our experiments
have shown that the processing time for a request in the JQ and the processing

JQ

DPB

ND

Fig. 4. The Model



Database Server with Write-Heavy Workload 189

time for one dirty page equivalent (Tproc and Tdp, respectively) can be modeled
by an exponential distribution. Further, the time each request spends in the ND
(Tnd) can be modeled as a sum of a constant and an exponentially distributed
random number.

Further, the maximum size of the DPB is denoted DPBmax and it is a con-
stant integer number. The maximum length of the DPB and one dirty page
equivalent per request determine the inverse proportionality between flush pe-
riod time and arrival rate shown in Equation (1).

4.2 Parameter Configuration

The model has the following parameters which must be configured:

Tnd distribution,E [Tproc] ,E [Tdp] , DPBmax

The maximum capacity of the DPB can be determined by measuring the period
of flushes, p, for some high traffic with throughput P . Since p determines how
often the DPB needs to be flushed and P determines how fast new dirty pages
are put into the DPB, the max length of the DPB is DPBmax = P · p.

By examining some experiment with high number of concurrent requests, a
lower limit on the duration of the pause in processing (min(Tpause)) can be
determined. By measuring the time between request departures and filtering out
those that are > min(Tpause), an average on the pause duration (Tpause) can
be estimated. From these results, the mean of the dirty page processing time is
given by E [Tdp] = Tpause ·DPBmax

−1.
With the knowledge of Tdp and the throughput (P ) when keeping high number

of concurrent requests, the average processing time Tproc can be determined. By
assuming that the server is always busy, the throughput can be assumed to be
inversely proportional to the total processing time spent on every request. Since
the server spends a total of Tproc + Tdp time on every request, the average for
the processing time is given by E [Tproc] = P−1 − E [Tdp] .

The distributions used for the network delay (Tnd) are determined by perform-
ing an experiment keeping one concurrent request in the system. The response
times T are measured. Since the total response time of one single request is the
sum of the network delay, the processing time plus that it has a probability of
DPBmax

−1 to get DPBmax · Tdp added, the average network delay is given by
E [Tnd] = E [T ]− E [Tproc]− E [Tdp] .

4.3 Model Validation

In order to validate the proposed model, we developed a discrete-event simula-
tion program, written in Java. By using the configuration method described in
Section 4.2, we can conclude that the values in Table 1 make a good fit for our
database server described in Section 2.

In Figure 5, the cumulative distribution function of the response times from
an experiment with arrivals following the Poisson process with an average rate of



190 M. Dellkrantz, M. Kihl, and A. Robertsson

Table 1. Fitted model parameters

Tproc Exp(0.0269)

Tnd 0.0025 + Exp(0.00049)

DPBmax 111

Tdp Exp(0.00433)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Response time (s)

P
ro

ba
bi

lit
y

 

 
Real database
Simulation

Fig. 5. Cumulative distribution function of response times from InnoDB database sys-
tem, and the proposed model. Traffic is generated with a Poisson process with average
28 requests per second.

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
hr

ou
gh

pu
t (

/s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
)

Fig. 6. N/T (top) and N/P (bottom) graph from the simulation of the model. Every
number of parallel jobs was run for 900 seconds.

28 requests per second, are shown. One graph shows the results from a testbed
experiment and one graph shows the results from the discrete-event simulation
of the model. As can be seen in the graphs, the distribution of response times
in the model fits accurately with the database experiment.

Further, the N/T and N/P graphs for the simulation is shown in Figure 6.
These graphs can be compared with the graphs of the corresponding experiments,
shown in Figure 2. The graphs show that the proposed model fits well with the
real system.

5 Conclusions

Many service-oriented applications use database servers for storing data. When
the applications have a workload that writes to a database stored on hard drives,



Database Server with Write-Heavy Workload 191

disk writing optimizations introduce performance dynamics that may be difficult
to monitor and control. Traditional queuing system models do not suffice when
the response times show these periodic anomalies. In this paper, we have devel-
oped a performance model based on queueing systems for database servers with
write-heavy workload. We validate our model using experiments in a testbed.

Acknowledgment. This work has been partly funded by the Lund Center for
Control of Complex Engineering Systems (LCCC) and the Swedish Research
Council grant VR 2010-5864.

References

1. Cao, J., Andersson, M., Nyberg, C., Kihl, M.: Web Server Performance Modeling
using an M/G/1/K*PS Queue. In: Proceedings of the 10th IEEE International Con-
ference on Telecommunications (2003)

2. Liu, X., Heo, J., Sha, L., Zhu, X.: Adaptive Control of Multi-Tiered Web Application
Using Queueing Predictor. In: Proceedings of: 10th IEEE/IFIP Network Operations
and Management Symposium, NOMS 2006 (2006)

3. Kihl, M., Robertsson, A., Andersson, M., Wittenmark, B.: Control-theoretic Anal-
ysis of Admission Control Mechanisms for Web Server Systems. World Wide Web
Journal 11, 93–116 (2008)

4. Kihl, M., Cedersjö, G., Robertsson, A., Aspernäs, B.: Performance measurements
and modeling of database servers. In: Sixth International Workshop on Feedback
Control Implementation and Design in Computing Systems and Networks, June 14
(2011)

5. Kamra, A., Misra, V., Nahum, E.M.: Yaksha: A Self-Tuning Controller for Managing
the Performance of 3-Tiered Web sites. In: Twelfth IEEE International Workshop
on Quality of Service (June 2004)

6. DeWitt, D.J.: TheWisconsin Benchmark: Past, Present, and Future. In: Proceedings
of: 9th International Conference on Very Large Data Bases, pp. 8–19. Citeseer (1991)

7. Rago, S., Bohra, A., Ungureanu, C.: Using Eager Strategies to Improve NFS I/O
Performance. In: Sixth IEEE International Conference on Networking, Architecture,
and Storage (2011)

8. Hsu, W.W., Smith, A.J., Young, H.C.: I/O Reference Behavior of Production
Database Workloads and the TPC Benchmarks — An Analysis at the Logical Level.
ACM Transactions on Database Systems 26(1), 96–143 (2001)

9. Kleinrock, L.: Queueing Systems: Theory, vol. I. Wiley Interscience, New York
(1975)


	Performance Modeling and Analysis of a Database Server with Write-Heavy Workload
	Introduction
	System Description
	Page Cache
	Testbed

	Performance Characterization
	Performance Model
	Model Description
	Parameter Configuration
	Model Validation

	Conclusions
	References




