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. . . “There’s the King’s Messenger. He’s in prison now, being punished:
and the trial doesn’t even begin till next Wednesday: and of course the
crime comes last of all.”

“Suppose he never commits the crime?” said Alice.

Lewis Carroll

“Through the Looking Glass”, Chapter V

i



ii



Abstract

This dissertation deals with physical bounds on scattering and absorption of acous-
tic and electromagnetic waves. A general dispersion relation or sum rule for the
extinction cross section of such waves is derived from the holomorphic properties
of the scattering amplitude in the forward direction. The derivation is based on
the forward scattering theorem via certain Herglotz functions and their asymptotic
expansions in the low-frequency and high-frequency regimes. The result states that,
for a given interacting target, there is only a limited amount of scattering and ab-
sorption available in the entire frequency range. The forward dispersion relation
is shown to be valuable for a broad range of frequency domain problems involving
acoustic and electromagnetic interaction with matter on a macroscopic scale. In the
modeling of a metamaterial, i.e., an engineered composite material that gains its
properties by its structure rather than its composition, it is demonstrated that for a
narrow frequency band, such a material may possess extraordinary characteristics,
but that tradeoffs are necessary to increase its usefulness over a larger bandwidth.

The dispersion relation for electromagnetic waves is also applied to a large
class of causal and reciprocal antennas to establish a priori estimates on the input
impedance, partial realized gain, and bandwidth of electrically small and wideband
antennas. The results are compared to the classical antenna bounds based on eigen-
function expansions, and it is demonstrated that the estimates presented in this
dissertation offer sharper inequalities, and, more importantly, a new understanding
of antenna dynamics in terms of low-frequency considerations.

The dissertation consists of 11 scientific papers of which several have been pub-
lished in peer-reviewed international journals. Both experimental results and numer-
ical illustrations are included. The General Introduction addresses closely related
subjects in theoretical physics and classical dispersion theory, e.g., the origin of the
Kramers-Kronig relations, the mathematical foundations of Herglotz functions, the
extinction paradox for scattering of waves and particles, and non-forward dispersion
relations with application to the prediction of bistatic radar cross sections.
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Sammanfattning (in Swedish)

Avhandlingen behandlar fysikaliska begränsningar p̊a spridning och absorption av
akustiska och elektromagnetiska v̊agor. En allmän dispersionsrelation eller sum-
meringsregel för utsläckningstvärsnittet för s̊adana v̊agor härleds fr̊an analytiska
egenskaper p̊a spridningsamplituden i framåtriktningen. Härledningen baseras p̊a
framåtspridningsteoremet via klassen av Herglotz-funktioner och deras asympto-
tiska utvecklingar i l̊ag- och högfrekvensgränsen. Slutsatsen är att det för en given
växelverkande volym endast finns en begränsad mängd spridning och absorption att
tillg̊a i hela frekvensspektrum. Dispersionsrelationen visar sig vara ett värdefullt
verktyg för en bred samling problem i frekvensdomänen som behandlar växelverkan
av v̊agor med materia p̊a en makroskopisk skala. För ett metamaterial, det vill
säga ett material vars egenskaper erh̊alls fr̊an dess struktur istället för dess sam-
mansättning, medför teorin att ett s̊adant material mycket väl kan uppvisa en
överd̊adig karakteristik i ett smalt frekvensintervall, men att kompromisser är nöd-
vändiga för att öka dess användbarhet över en större bandbredd.

Dispersionsrelationen för elektromagnetiska v̊agor tillämpas ocks̊a p̊a en stor
klass av kausala och reciproka antenner för att fastställa a priori begränsningar p̊a
impedans, direktivitet och bandbredd för s̊aväl elektriskt små som bredbandiga an-
tenner. Resultaten i avhandlingen jämförs med de klassiska antennbegränsningarna
baserade p̊a egenfunktionsutvecklingar och slutsatsen är att de nya begränsningarna
ger upphov till s̊aväl skarpare olikheter som en ny fundamental först̊aelse för en an-
tenns dynamiska egenskaper uttryckt i dess l̊agfrekvensuppförande.

Avhandlingen best̊ar av 11 vetenskapliga artiklar av vilka flera är publicerade i
internationella tidskrifter med expertutl̊atande. S̊aväl experimentella resultat som
ett flertal numeriska exempel är inkluderade i avhandlingen. Den övergripande in-
troduktionen behandlar närliggande ämnen i teoretisk fysik och klassisk dispersions-
teori s̊asom Kramers-Kronigs relationer, den matematiska grundvalen för Herglotz-
funktioner, utsläckningsparadoxen för spridning av v̊agor och partiklar, samt disper-
sionsrelationer i godtyckliga riktningar med tillämpning mot prediktion av bistatiska
radartvärsnitt.

iv



List of included papers

This dissertation consists of a General Introduction and the following scientific pa-
pers which are referred to in the text by their roman numerals:1

I. C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broad-
band scattering by heterogeneous obstacles. Journal of Physics A: Mathemat-
ical and Theoretical, vol. 40, no. 36, pp. 11165–11182, September 2007.

II. C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on metama-
terials: Restrictions on scattering and absorption over a frequency interval.
Journal of Physics D: Applied Physics, vol. 40, no. 22, pp. 7146–7151, Novem-
ber 2007.

III. C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson. A scattering and
absorption identity for metamaterials: Experimental results and comparison
with theory. Journal of Applied Physics, vol. 103, no. 5, paper 054906, March
2008.

IV. G. Kristensson, C. Larsson, C. Sohl, and M. Gustafsson. Bounds on meta-
materials: Theoretical and experimental results. Book chapter to appear in
2008.

V. C. Sohl, M. Gustafsson, and A. Bernland. Some paradoxes associated with a
recent summation rule in scattering theory. Proceedings of the URSI General
Assembly, Chicago, U.S., August 7–16, 2008.2

VI. C. Sohl, M. Gustafsson, G. Kristensson, and S. Nordebo. A general approach
for deriving bounds in electromagnetic theory. Proceedings of the URSI Gen-
eral Assembly, Chicago, U.S., August 7–16, 2008.3

VII. M. Gustafsson, C. Sohl, A. Karlsson, and G. Kristensson. A time-domain
approach to the extinction paradox for scattering of electromagnetic waves.
Proceedings of the URSI General Assembly, Chicago, U.S., August 7–16, 2008.

VIII. C. Sohl, M. Gustafsson, and G. Kristensson. The integrated extinction for
broadband scattering of acoustic waves. Journal of the Acoustical Society of
America, vol. 122, no. 6, pp. 3206–3210, December 2007.

IX. M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas
of arbitrary shape. Proceedings of the Royal Society A: Mathematical, Physical
& Engineering Sciences, vol. 463, no. 2086, pp. 2589–2607, October 2007.

1The order of the authors names indicates their relative contributions to the publications.
2Appointed Commission B’s Best Student Paper Prize at the URSI General Assembly, Chicago,

U.S., August 7–16, 2008.
3Honored with a Young Scientist Award at the URSI General Assembly, Chicago, U.S., August

7–16, 2008.

v



X. C. Sohl and M. Gustafsson. A priori estimates on the partial realized gain of
ultra-wideband (UWB) antennas. Quarterly Journal of Mechanics & Applied
Mathematics, vol. 61, no. 3, pp. 415–430, August 2008.

XI. M. Gustafsson and C. Sohl. Summation rules for the antenna input impedance.
Proceedings of the IEEE International Symposium on Antennas and Propaga-
tion, San Diego, U.S., July 5–12, 2008.

The scientific contribution to this dissertation is derived from the above publications.

vi



Other publications by the author

The author of this dissertation is also the author or co-author of the following sci-
entific publications which are related to but not considered part of the dissertation:

XII. C. Sohl. Dispersion Relations for Extinction of Acoustic and Electromag-
netic Waves. Licentiate thesis, No. 69, ISSN 1402-8662. Department of
Electrical and Information Technology, Lund University, P.O. Box 118,
S-221 00 Lund, Sweden, 2007.

XIII. M. Gustafsson, C. Sohl, and G. Kristensson. A forward scattering ap-
proach to new bounds in antenna theory: Applications to finite cylindrical
regions. Book chapter to appear in L. Joffre and M. Martinez-Vasquez,
editors, Handbook of Small Antennas, 2009.

XIV. A. Derneryd, M. Gustafsson, G. Kristensson, and C. Sohl. Application of
gain-bandwidth bounds on loaded dipole antennas. Journal paper submit-
ted for publication in 2008.

XV. G. Kristensson, C. Sohl, and M. Gustafsson. Physical bounds on scattering
by metamaterials. Proceedings of the URSI General Assembly, Chicago,
U.S., August 7–16, 2008.

XVI. S. Nordebo, M. Gustafsson, C. Sohl, and G. Kristensson. On the optimal
limitations for scattering of spherical modes. Proceedings of the URSI
General Assembly, Chicago, U.S., August 7–16, 2008.

XVII. C. Sohl and M. Gustafsson. A priori estimates on the partial realized gain
of UWB-antennas. Proceedings of the URSI General Assembly, Chicago,
U.S., August 7–16, 2008.

XVIII. M. Gustafsson and C. Sohl. Physical bounds and sum rules in antenna
theory. Proceedings of the URSI General Assembly, Chicago, U.S., August
7–16, 2008.

XIX. C. Larsson, C. Sohl, G. Kristensson, and M. Gustafsson. Bounds on meta-
materials: Experimental results. Proceedings of the NATO Advanced Re-
search Workshop: Metamaterials for Secure Information and Communi-
cation Technologies, Marrakesh, Morocco, May 7–10, 2008.

XX. G. Kristensson, C. Sohl, C. Larsson, and M. Gustafsson. Bounds on meta-
materials: Theoretical results. Proceedings of the NATO Advanced Re-
search Workshop: Metamaterials for Secure Information and Communi-
cation Technologies, Marrakesh, Morocco, May 7–10, 2008.

XXI. C. Sohl and M. Gustafsson. Theoretical bounds on the directivity and
bandwidth of electrically small and wideband antennas. Proceedings of
the IEEE International Symposium on Antennas and Propagation, San
Diego, U.S., July 5–12, 2008.

vii



XXII. M. Gustafsson, C. Sohl, and S. Nordebo. Physical bounds on the antenna
scattering matrix. Proceedings of the IEEE International Symposium on
Antennas and Propagation, San Diego, U.S., July 5–12, 2008.

XXIII. C. Larsson, C. Sohl, M. Gustafsson, and G. Kristensson. Wideband ex-
tinction measurements for thin and planar samples. Proceedings of the
IEEE International Symposium on Antennas and Propagation, San Diego,
U.S., July 5–12, 2008.

XXIV. C. Sohl, M. Gustafsson, and G. Kristensson. Bounds on the direct scat-
tering problem of acoustic and electromagnetic waves. Proceedings of the
International Conference on Mathematical Modeling of Wave Phenomena,
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Summary of included papers

The main thread of this dissertation is a forward dispersion relation for the extinction
cross section of acoustic and electromagnetic waves. The included papers focus on
various aspects and generalizations of this sum rule applied to scattering and antenna
problems. A brief summary of each of the appended papers is presented below.

Paper I

This paper deals with physical limitations on scattering and absorption of electro-
magnetic waves over a frequency interval. The direct scattering problem addressed
is plane-wave scattering by a bounded target of arbitrary shape. The scatterer is
modeled by a general set of linear and passive constitutive relations which includes
heterogeneous and anisotropic material models. A forward dispersion relation for
the extinction cross section is derived in terms of the static polarizability dyadics.
Various bounds are presented for scattering and absorption over a finite frequency
interval, and the theoretical results are exemplified by several numerical simulations.

The author of this dissertation has carried out most of the analysis and the numerical
simulations.

Paper II

This paper is an application of the physical limitations on scattering and absorp-
tion introduced in Paper I. The paper focuses on temporally dispersive material
models which attain negative values of the real part of the permittivity and/or the
permeability, i.e., metamaterials. It is concluded that for a single frequency, meta-
materials may possess extraordinary characteristics, but with respect to a frequency
interval, such materials are no different from other naturally formed substances as
long as causality is obeyed. As a consequence, if metamaterials are used to lower
the resonance frequency, this is done at the expense of an increasing Q-value at the
resonance. The theory is illustrated by numerical simulations of a stratified sphere
and a prolate spheroid using the classical Lorentz and Drude dispersion models.

The author of this dissertation has carried out most of the analysis and is responsible
for the numerical simulations.

Paper III

This paper presents measurement results on the combined effect of scattering and
absorption of electromagnetic waves by a fabricated sample of metamaterial. The
engineered composite material, designed as a single-layer planar array of capaci-
tive resonators, is commonly referred to in the literature as a negative permittivity
metamaterial. The bounds on the extinction cross section discussed in Paper II are
reviewed and compared with the outcome of the measurements. It is concluded that
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the experimental results are in good agreement with the theory.

The author of this dissertation has carried out a major part of the analysis including
some experimental work.

Paper IV

This paper is an extension of the analysis in Papers II and III. The paper contains
several numerical examples with two temporally dispersive spheres modeled by the
classical Drude and Lorentz models. Furthermore, the paper contains an attempt to
experimentally verify the sum rule by measuring the monostatic radar cross section
of a fabricated sample of metamaterial. It is concluded that both numerical simu-
lations and experimental results in the microwave region are in agreement with the
theoretical findings.

The author of this dissertation has contributed to the theoretical work and is re-
sponsible for the numerical simulations of the polarizability properties.

Paper V

This paper reports on some peculiarities associated with the above-mentioned sum
rule. In particular, the paradoxical character of the conductivity model and the
perfectly electric conducting boundary condition in the low-frequency limit are in-
vestigated. The paradoxical character of the forward dispersion relation lies in the
fact that the extinction cross section integrated over all frequencies is independent
of the conductivity as long as it is non-zero. This puzzling result can be explained
partially by rejecting the conductivity model at low frequencies as suggested by
numerical simulations of a homogeneous and isotropic sphere. In addition, the low-
frequency behavior of diamagnetic materials is discussed on the basis of Herglotz
functions and certain arguments from the theory of special relativity.

The author of this dissertation has carried out most of the analysis and is responsible
for the numerical illustration.

Paper VI

This paper reports on a systematic procedure for deriving bounds in electromagnetic
theory. The approach is based on the holomorphic properties of certain Herglotz
functions and their asymptotic expansions in the low- and high-frequency regimes.
A family of integral identities or sum rules is obtained with values governed by the
coefficients in the low- and high-frequency expansions. In particular, sum rules for
plane-wave scattering by a homogeneous and isotropic sphere are derived and nu-
merically verified by computing the extinction cross section and the bistatic radar
cross section in the forward direction. It is concluded that the obtained sum rules
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show great potential for deriving new physical bounds in, e.g., scattering and an-
tenna problems.

The author of this dissertation has carried out most of the analysis and is responsible
for the numerical illustration.

Paper VII

The extinction paradox states that a perfectly electric conducting target that is
large compared to the wavelength removes from the incident radiation exactly twice
the amount of power it can intercept by its geometrical cross section area. In this
paper, the extinction paradox is generalized to include temporally dispersive mate-
rial parameters with finite values of the permittivity and the permeability. Using a
time-domain approach, it is shown that the high-frequency limit of the extinction
cross section depends on the material parameters of the target and that a limiting
value not necessarily exists. The theoretical findings are exemplified by numerical il-
lustrations with different values of the extinction cross section in the high-frequency
limit.

The author of this dissertation has contributed to the theoretical work and is re-
sponsible for one of the numerical simulations.

Paper VIII

This paper focuses on the corresponding sum rule for the extinction cross section of
acoustic waves. The derivation is similar to the electromagnetic case in Papers I and
II, but certain theoretical challenges are introduced when the ideas are applied to
acoustic waves. The effect of both permeable and impermeable boundary conditions
are discussed, and it is concluded that the forward dispersion relation is applicable
to both the Neumann problem and the transmission problem, whereas the analysis
fails for the Dirichlet and Robin boundary conditions. The theory is exemplified
by permeable and impermeable scatterers with homogeneous and isotropic material
parameters.

The author of this dissertation is responsible for a major part of the analysis.

Paper IX

This paper addresses physical limitations on bandwidth, realized gain, Q-value, and
directivity for antennas of arbitrary shape. Based on the forward dispersion relation
in Paper I, the product of bandwidth and realizable gain is shown to be bounded
from above by the eigenvalues of the high-contrast polarizability dyadic in the long-
wavelength limit. These dyadics are proportional to the antenna volume and they
are easily determined for geometries of arbitrary shape. Ellipsoidal antenna vol-
umes are analyzed in detail and numerical results for some generic antennas are
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presented. The theory is verified against the classical Chu limitations, and shown
to yield sharper bounds for the ratio of the directivity and the Q-value for non-
spherical geometries.

The author of this dissertation has contributed to both the analysis and the numer-
ical examples.

Paper X

This paper discusses physical bounds on ultra-wideband (UWB) antennas. A sum
rule valid for a large class of linear and reciprocal antennas is presented in terms of
the electric and magnetic polarizability dyadics. The identity is based on the holo-
morphic properties of the forward scattering dyadic and includes arbitrarily shaped
antennas modeled by linear and time-translational invariant constitutive relations.
In particular, a priori estimates on the partial realized gain are introduced, and lower
bounds on the onset frequency are derived for two important archetypes of UWB
antennas: those with a constant partial realized gain and those with a constant ef-
fective antenna aperture. The theoretical findings are illustrated by an equiangular
spiral antenna, and comparison with numerical simulations show great potential for
future applications in antenna design.

The author of this dissertation has carried out most of the analysis and is responsible
for the numerical simulation.

Paper XI

This paper deals with sum rules for the input impedance, admittance, and reflection
coefficient of a large class of linear and reciprocal antennas. The derivation is based
on Herglotz functions and the systematic approach introduced in Paper VI. The
derived sum rules are shown to be governed by the capacitance and the inductance
properties of the antenna in the low- and high-frequency regimes. In particular, the
results are applied to a first dominant resonance and it is shown to yield a useful
estimate of the Q-value in terms of the radiation resistance of the antenna and its
capacitance and inductance at low frequencies. The theoretical findings are com-
pared with numerical simulations of different dipole antennas.

The author of this dissertation has contributed to both the theoretical work and the
numerical examples.
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Preface

This dissertation for the degree of Doctor of Philosophy in Engineering summarizes
three and a half years of research I have carried out at the Department of Electrical
and Information Technology, formerly the Department of Electroscience, Lund Uni-
versity, Lund, Sweden. Although I started the doctoral studies in February 2005,
most of the results presented here were obtained during the fall 2006 and the spring
2007. The dissertation is based on the thesis work in Paper XII for the degree of
Licentiate in Engineering, publicly defended at Lund University, September 3, 2007.

The scientific questions addressed in this dissertation concern the implications
of causality and passivity on a large class of scattering and antenna problems. This
particular research field in the borderland between classical electrodynamics and
modern wave mechanics is motivated by its fundamental character and intrinsic
beauty, and it has turned out to be a true grain of gold offering several unexplored
and stimulating research problems. Some open questions that will be addressed in
the future are pointed out in the General Introduction and in the appended papers.

Sölvesborg, August 2008 Christian Sohl
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1 Background

S
ince the introduction of the Kramers-Kronig relations in Refs. 21 and 54
concerning the propagation of electromagnetic radiation in optical media,
dispersion relation techniques have been applied successfully in theoretical
physics to study particle collisions and wave interaction with matter.1

During the last five decades, such relations have shown to be valuable tools in
quantum field theory to model strongly interacting particles. Instead of specifying
the interaction between the elementary particles in terms of a Lagrangian density, a
minimum number of postulates are adapted from which it is hoped that the equations
of motions can be derived. For an introduction to dispersion relations in elementary
particle physics, see Refs. 31, 39, and 41. The foundation of the Lagrangian approach
in classical mechanics and classical electrodynamics is discussed in Refs. 32 and 45.

The underlying idea of dispersion relations is that certain physical amplitudes
are the boundary values of holomorphic functions of one or more complex variables.
The holomorphic properties of these amplitudes are closely connected with the fun-
damental principles of passivity and causality via the class of Herglotz functions.
In fact, there are at least two remarkable features of dispersion relations in theo-
retical physics: (i) they provide a consistency check of calculated quantities when
the underlying mathematical model a priori is known to satisfy causality, and (ii)
they may be used to verify whether a given mathematical model or an experimental
outcome behaves causally or not. In addition, dispersion relations can also be used
to establish far-reaching connections between quantities and concepts of different
physical meanings.

The objective of this General Introduction is to briefly discuss the implications
of passivity and causality on the propagation and scattering of acoustic and electro-
magnetic waves. In other words, the purpose of this General Introduction is not to
repeat the foundations of linear acoustics and classical electrodynamics. This has
been done in an excellent manner in several classical textbooks, e.g., Refs. 15, 45, 46,
61, 62, 67, 70, 77, and 82. The analysis of fields and waves in the low-frequency limit
is found in Refs. 8, 20, and 51 and references therein. Several applications to ma-
terial modeling and scattering problems are presented in this General Introduction.
Linear systems with passivity and causality conditions are also important in certain
disciplines of electrical engineering, e.g., network analysis and broadband circuit
design, see Refs. 17 and 26. Other classical references on linear systems are Refs. 9,
35, and 36. Dispersion relations based on a somewhat different causality condition,
often referred to as microcausality through local commutativity of field operators,
play a fundamental role in quantum field theory, see Refs. 65, 72, and 73. The
non-causal properties of gauge transformations and the advanced Green function
for the wave equation lay outside the scope of this General Introduction. The curi-
ous reader may find a comprehensive exposition on these matters in Ref. 45. Many

1Dispersion relations should not be confused with the connection between energy and momen-
tum, i.e., wave motion in time and space, which bears the same name in wave mechanics. Neither
should the term be confused with dispersion models which are used in material modeling to describe
temporally dispersive matter, e.g., the Lorentz model discussed in Sec. 2.10.



4 General Introduction

of the topics discussed in this General Introduction reflect the author’s interest in
the subject.

Forward scattering, i.e., scattering at 180◦ bistatic angle, plays a key role in this
dissertation. However, the implications of bistatic scattering with transmitting and
receiving sources located at different positions in space are less known compared to
the monostatic scattering scenario, see Ref. 52. The reason for this is that the ma-
jority of radar applications employ co-located transmitters and receivers. Although
it seems difficult to extend the analysis of the non-forward dispersion relations in
Sec. 3 to obtain useful information on the monostatic radar cross section, it remains
an important subject which will be analyzed in detail in a series of forthcoming
papers.

2 Causality and holomorphic properties

This section introduces some elementary properties of linear time-translational in-
variant systems obeying causality (se definition below). In particular, the damped
harmonic oscillator in classical mechanics is discussed, and the Kramers-Kronig rela-
tions for the propagation of electromagnetic radiation in isotropic and homogeneous
media are derived. The analysis of linear systems is summarized in Refs. 9, 18, 35,
36, 68, and 90. The exposition on the damped harmonic oscillator follows the outline
in Ref. 66 and Problem 3.39 in Ref. 72, whereas Refs. 44 and 45 have been valuable
for preparing the section on the Kramers-Kronig relations. Other important results
in classical dispersion theory are summarized in Refs. 39, 41, 56, 57, 64, 81, and 89.

2.1 Elementary considerations

Consider an arbitrary physical system subject to an external time-dependent action
or input f(t), to which the system responds by producing an effect or output x(t).
For simplicity, let f(t) and x(t) only be functions of the time variable t. The internal
properties of the system are unspecified except for the following general assumptions:

(i) the output x(t) is a linear functional of the input f(t), i.e.,

x(t) =

∫ ∞

−∞
g(t, t′)f(t′) dt′,

where g(t, t′) is the impulse response at time t when the system is subject to
an input at time t′;

(ii) the internal properties of the system do not depend on time, i.e., g(t, t′) =
g(t− t′), or equivalently, if the input f(t) is advanced or delayed by some time
interval, the same time shift occurs for the output x(t);

(iii) the system is subject to time-ordered events in the sense that the output x(t)
cannot precede the input f(t), i.e., g(τ) = 0 for τ = t− t′ < 0.
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The three conditions above refer to linearity or superposition, time-translational
invariance, and primitive causality (often referred to as one of the most sacred
tenets in natural science), respectively. Under these assumptions, the most general
form of the output x(t) is2

x(t) =

∫ t

−∞
g(t− t′)f(t′) dt′. (2.1)

The analysis of (2.1) forms the foundation of the linear system theory in Refs. 9,
18, 35, 36, 68, and 90.

In contrast to primitive causality, there is also a relativistic causality condition
known as macroscopic causality which states that no signal, or at least no infor-
mation, can propagate with a velocity greater than the speed of light in vacuum.
However, macroscopic causality is less general than primitive causality since the pre-
vious condition depends on the existence of a limiting velocity. For this reason, only
primitive causality is addressed in this General Introduction. Furthermore, non-
linear equations of motion are excluded from the exposition due to the difficulty of
finding general functionals to model such systems. Non-linear equations of motion
may also show complications such as self-excitation, sensitivity to initial conditions,
and onset of chaos, cf., the discussion in Ref. 39.

In the same manner as the macroscopic causality condition is postulated in spe-
cial relativity, primitive causality can be regarded as a general principle in natural
science, see Refs. 14 and 88. Linear time-translational invariant systems obeying
primitive causality are commonly used to model the behavior of the nature. For
example, when an external force is acting on a bar that supports small elastic defor-
mations, primitive causality states that no extension of the bar takes place until the
applied force is put into action. Another example of time-ordered events in natural
sciences is the voltage and current relation in an electrical network. On the other
hand, it is not hard to come up with a non-causal system. For example, consider
the linear system defined by the negative time delay t0 < 0, i.e., the input f(t) is
related to the output via x(t) = f(t− t0) with the impulse response g(τ) = δ(τ− t0),
where δ(τ) denotes the Dirac delta distribution. Such a non-causal system (recall
that g(τ) = δ(τ − t0) has a non-vanishing support for τ < 0) can be thought of as
a crystal ball with the ability to predict the future. Many ideal filters in network
theory are non-causal in the sense that they have impulse responses that satisfy
g(τ) 6= 0 for τ < 0, cf., the discussions in Refs. 17 and 68.

Although many physical models obey a causality condition, there are some fre-
quently used equations of motions in mathematical physics that support non-causal
solutions. An example is the heat equation (or more generally any parabolic par-
tial differential equation) which models the variation in temperature over time and
space. The heat equation supports information that propagates at infinite speed
in direct contradiction with the macroscopic causality condition. However, hyper-
bolic systems of equations, such as the equations governing linear acoustics or the

2Observe that no distinction in notation is made between the one and two variable functions
g(t, t′) and g(τ), where τ = t− t′.
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Maxwell equations, have solutions that propagate with finite velocities in agreement
with macroscopic causality.

The three assumptions (i), (ii), and (iii) stated above have far-reaching conse-
quences on the frequency response associated with g(τ), i.e., the Fourier integral

G(ω) =

∫ ∞

0

g(τ)eiωτ dτ, (2.2)

where ω denotes the angular frequency. Here, primitive causality has been used to
express (2.2) as an integral over positive τ only rather than the entire real axis. The
convergence of (2.2) is guaranteed if, e.g., g(τ) is absolutely integrable, i.e.,

‖g‖1 =

∫ ∞

0

|g(τ)| dτ < ∞. (2.3)

Under the assumption of (2.3), it follows from a majorant theorem for generalized
integrals that G(ω) is continuous for real-valued ω. Furthermore, G(ω) is bounded by
‖g‖1, and from the Riemann-Lebesgue lemma it is clear that G(ω) → 0 as ω →∞,
see Refs. 11, 68, and 80. The assumption that g(τ) is absolutely integrable can be
further relaxed by introducing the class of temperate distributions, see Refs. 41, 43,
and 66.

To this end, it is sufficient to assume that g(τ) satisfies (2.3). Then it follows from
the analysis of the Fourier integral in Refs. 68 and 80 that G(ω) can be extended to
a holomorphic function in the upper half part of the complex ω-plane. This is made
plausible by observing that the exponential function in (2.2) significantly improves
the convergence of the Fourier integral when its domain of definition is extended to
include complex-valued ω = ω′ + iω′′ with ω′′ > 0. The regular properties of G(ω),
or equivalently, the presence of no singularities in the upper half plane, is thus a
direct consequence of primitive causality.

In the lower half part of the complex ω-plane, (2.2) diverges everywhere unless
g(τ) decays faster than exponential on the real τ -axis. In general, G(ω) has singu-
larities in the lower half plane and may be defined there only as the holomorphic
continuation of (2.2) from the upper half plane. Another type of continuation is
based on the Schwarz reflection principle in Refs. 1 and 33. Schwarz reflection prin-
ciple states that if G(ω) is holomorphic in some region Ω of the complex ω-plane,
then G∗(ω∗) is holomorphic as a function of ω in Ω∗ obtained by a reflection of Ω in
the real axis, i.e., ω ∈ Ω∗ if and only if ω∗ ∈ Ω.

By complex conjugating (2.2) and invoking that g(τ) is real-valued, i.e., the
output x(t) is a real-valued function for any real-valued input f(t), implies

G(−ω∗) = G∗(ω), Im ω > 0. (2.4)

The cross symmetry (2.4) implies that the real part of G(ω) is even and the imag-
inary part of G(ω) is odd with respect to the imaginary axis. As a consequence,
G(ω) takes only real values on the imaginary axis.

As an example of (2.4), consider the purely monochromatic input given by the
real-valued expression

f(t) = Re(f0e
−iωt) =

1

2
(f0e

−iωt + f ∗0 eiωt), (2.5)
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where ω = ω′ + i0 is real-valued, and f0 is a complex-valued constant.3 Insertion
of (2.5) into (2.1) using the change of variables τ = t− t′ yields

x(t) =
1

2
f0e

−iωt

∫ ∞

0

g(τ)eiωτ dτ +
1

2
f ∗0 eiωt

∫ ∞

0

g(τ)e−iωτ dτ

=
1

2

(
f0e

−iωtG(ω) + f ∗0 eiωtG(−ω)
)
. (2.6)

The appropriate condition for (2.6) to be real-valued is just G(−ω) = G∗(ω) in
agreement with (2.4). Relation (2.6) then implies that x(t) = Re(f0e

−iωtG(ω)), i.e.,
f(t) generates a monochromatic output x(t) with the same angular frequency ω as
the input. The associated impulse response is g(τ) = δ(τ) and (2.2) implies that for
real-valued ω = ω′ + i0,

G(ω) =

∫ ∞

0

δ(τ)eiωτ dt′ = 1, (2.7)

as expected from the definition of a linear system.

2.2 Herglotz functions

Many physical systems are passive in the sense that they consume energy rather than
produce energy. Conditions on passivity can be formulated both in the time domain
and in the frequency domain, see Ref. 37. In the frequency domain, passivity often
takes the form of a restriction on a complex-valued function H that characterizes
the physical system. A general condition for a physical system to be passive in the
frequency domain is expressed as4

Im H(G(ω)) > 0, Im ω > 0. (2.8)

An example of (2.8) is the radiation resistance R(ω) = Re Z(ω) = Im(iZ(ω)) of a
general antenna which is non-negative due to passivity, see Paper XI.

Now consider the class of physical systems for which H is a holomorphic function
of ω = ω′ + iω′′ in the upper half plane. Since the composition of two holomorphic
functions is a new holomorphic function, it follows that H(G(ω)) is holomorphic in
the upper half part of the complex ω-plane whenever H(ω) and G(ω) are holomor-
phic in that region. A function with this property that also satisfies (2.8) is called
a Herglotz function.5 The Herglotz property is illustrated schematically in Fig. 1.
However, bear in mind that (2.8) must be consistent with (2.4) in the sense that
physical quantities are real-valued in the time domain.

3The notation ω = ω′ + i0 should be interpreted as ω = limω′′→0+ ω′ + iω′′, where ω′ and ω′′

are real-valued.
4Alternatively, one may use the real part convention and define passivity as ReH(G(ω)) > 0

for Im ω > 0 by applying (2.8) to iH(G(ω)) for Im ω > 0.
5The corresponding class of functions defined on the basis of the Laplace transform are termed

positive real functions, see Ref. 68. In addition, one requires that positive real functions are
real-valued on the real axis. Furthermore, Herglotz functions are closely related to the class of
Nevanlinna functions which are holomorphic in the upper half plane with a non-positive imaginary
part, see Ref. 3.
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Re!

Im!

H(G(!)) holomorphic

H(G(!)) ImH(G(!))

ReH(G(!))

Figure 1: The Herglotz function H(G(ω)) as a mapping from the upper half part
of the complex ω-plane into itself.

A general representation of Herglotz functions in terms of a Riemann-Stieltjes
integral6 is discussed in Ref. 74 in connection with the Hamburger moment problem.
The theorem states that necessary and sufficient conditions for H(G(ω)) to be a
Herglotz function is that a bounded and non-decreasing real-valued function µ(t)
exists such that

H(G(ω)) = Aω + B +

∫ ∞

−∞

1 + tω

t− ω
dµ(t), Im ω > 0, (2.9)

where A > 0 and B are real-valued constants (A governed by the asymptotic be-
havior H(G(ω)) = Aω + O(1) as |ω| → ∞.).7 Here, the equality sign in Im ω > 0
should be interpreted as the limit from the upper half plane when the imaginary
part of ω approaches zero. The interpretation of (2.9) is that any Herglotz function
can be represented by such a Riemann-Stieltjes integral. The converse statement is
also true: any function µ(t) and pair of constants A and B that satisfy the assump-
tions above generate a Herglotz function. Recall that (2.9) reduces to the classical
Riemann integral with dµ(t) = µ′(t) dt at all points where µ(t) is differentiable (a
prime denotes differentiation with respect to the argument and should not be con-
fused with the primes in ω′ and ω′′ which refer to the real and imaginary parts of
ω, respectively).

It is not hard to show that (2.9) satisfies (2.8). For this purpose, decompose ω
as ω = ω′+iω′′, where ω′ and ω′′ are real-valued. A straightforward calculation then
yields

Im

(
1 + tω

t− ω

)
= Im

(
1 + t(ω′ + iω′′)
t− (ω′ + iω′′)

)
=

ω′′(1 + t2)

(t− ω′)2 + ω′′2
, (2.10)

and since A > 0 and µ(t) is non-decreasing, it is concluded that for ω′′ > 0,

Im H(G(ω′ + iω′′)) = ω′′
(

A +

∫ ∞

−∞

1 + t2

(t− ω′)2 + ω′′2
dµ(t)

)
> 0. (2.11)

6For an introduction to the theory of the Riemann-Stieltjes integral, see Refs. 6 and 86.
7Here, the parameter t should not be confused with the time variable in Sec. 2.1 which is denoted

by the same letter. Furthermore, note that no restriction apply to the constant B in (2.9), i.e., it
can take both positive and negative values.
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Let us now consider the properties of (2.9) as ω = ω′ + i0. For this purpose,
introduce the following standard result in distribution theory which involves the
Dirac distribution on the real ω′-axis, see Refs. 28 and 43:8

1

ω′ ± i0
= P

(
1

ω′

)
∓ iπδ(ω′). (2.12)

Under the assumption that µ(t) is sufficiently regular, (2.12) inserted into (2.9)
implies

Im H(G(ω′ + i0)) = Im

∫ ∞

−∞

{
P

(
1

t− ω′

)
+ iπδ(t− ω′)

}
(1 + tω′)µ′(t) dt

= π

∫ ∞

−∞
δ(t− ω′)(1 + tω′)µ′(t) dt = π(1 + ω′2)µ′(ω′). (2.13)

Here, it has been assumed that µ(t) is a differentiable function of t, i.e., it obeys
dµ(t) = µ′(t) dt. Note that the assumption that µ(t) is non-decreasing implies
that (2.13) is consistent with (2.8). Inserting (2.13) into (2.9) finally yields

H(G(ω)) = Aω + B +
1

π

∫ ∞

−∞

1 + tω

t− ω

Im H(G(t + i0))

1 + t2
dt, Im ω > 0. (2.14)

Relation (2.14) defines the Herglotz function H(G(ω)) uniquely whenever the imag-
inary part of H(G(ω)) is known along the real ω′-axis. Of course, the real-valued
constants A and B in (2.14) must be specified. It is also possible to derive a closed-
form expression for µ(t) by integrating (2.13) from ω′ = t0 to ω′ = t, viz.,

µ(t) = µ(t0) +
1

π

∫ t

t0

Im H(G(ω′ + i0))

1 + ω′2
dω′. (2.15)

The general case when µ(t) is not differentiable is discussed in Ref. 66 and
references therein. The idea is to decompose µ(t) into a sum of a continuous
and non-decreasing function µcont(t) and a denumerable set of finite discontinuities
µn = µ(tn + 0) − µ(tn − 0) (recall that µn > 0 since µ(t) is non-decreasing) at the
points t = tn, i.e.,

µ(t) = µcont(t) +
∑

n

µnΘ(t− tn), (2.16)

where Θ(t) denotes the Heaviside step function. Differentiation in distributional
sense yields the differential

dµ(t) = dµcont(t) +
∑

n

µnδ(t− tn) dt. (2.17)

8Here, the principal value P(1/ω) is defined by the action (φ is a test function which belongs
to the class of infinitely differentiable functions of compact support)

〈P(1/ω), φ(ω)〉 =
∫ ∞

−∞
P

(
1
ω

)
φ(ω) dω = P

∫ ∞

−∞

φ(ω)
ω

dω

= lim
ε→0+

(∫ −ε

−∞

φ(ω)
ω

dω +
∫ ∞

ε

φ(ω)
ω

dω

)
.
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By inserting (2.17) into (2.9) it is concluded that a more general representation of
H(G(ω)) reads

H(G(ω)) = Aω + B +
∑

n

µn
1 + tnω

tn − ω
+

∫ ∞

−∞

1 + tω

t− ω
dµcont(t), (2.18)

where Im ω > 0. For further details on (2.9), see Refs. 2, 3, and 86.

2.3 Mĕıman’s theorem

The Mĕıman theorem discussed in Refs. 56 and 75 establishes some important prop-
erties of G(ω). Assume that Im G(ω′ + i0) > 0 for ω′ > 0 and that G(ω) has no
essential singularity at infinity. Then, the Mĕıman theorem states that G(ω) is non-
zero in the upper half part of the complex ω-plane, and does not take real values
at any finite point in that region except on the imaginary axis, where it decreases
monotonically from a positive value to zero at ω = i∞.9

The assumption of no essential singularity in G(ω) at infinity is related to the
Phragmén-Lindelöf theorem in Ref. 19 which states that if a function is bounded
in magnitude on the real axis and holomorphic in the upper half plane, it is either
bounded in magnitude also in the upper half plane or it has an essential singularity at
infinity, i.e., it contains a phase factor e−iδω for δ > 0 which increases exponentially
for complex-valued ω = ω′+iω′′ with ω′′ > 0. For details on the proof of the Mĕıman
theorem and some of its applications, see Refs. 56 and 75.

2.4 Vector-valued generalizations

Only systems with a single input and a single output have been addressed so far.
For multiple-input multiple-output systems, the terminal functions f(t) and x(t)
must be replaced by their vector-valued analogues f(t) and x(t), respectively. In
the same manner, the impulse response g(τ) is replaced by the matrix-valued kernel
g(τ). In Paper VIII, a single-input single-output system is considered for scattering
of acoustic waves, whereas the appropriate formulation for electromagnetic waves
in Papers I–III is based on the multiple-input multiple-output characterization. For
the sake of simplicity, both acoustic and electromagnetic waves are treated in this
General Introduction with a scalar notation. Once the scalar case has been mastered,
the introduction of vector-valued quantities causes no further problems.

2.5 The damped harmonic oscillator

The damped harmonic oscillator (one-dimensional pendulum with viscous damping)
is a passive system which satisfies the three conditions on p. 4. It provides a simple,

9The Mĕıman theorem can be extended to also include the case when ImG(ω′ + i0) = 0. But
since all physical systems are accompanied by some energy dissipation, it is not a severe restriction
to omit the equality sign in the condition Im G(ω′ + i0) > 0. The theorem resembles Levinson’s
theorem in Refs. 64 and 79 concerning the bound states of the Schrödinger equation as the roots
of the Jost function.
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yet accurate, model that is employed in many branches of physics involving wave
phenomena, cf., the Lorentz model in Papers I, II, and III for the interaction of
electromagnetic waves with temporally dispersive matter. The equation of motion
for the oscillator when subject to an external driving force f(t) per unit mass reads

ẍ(t) + 2γẋ(t) + ω2
0x(t) = f(t), (2.19)

where x(t) measures the displacement from the equilibrium as a function of time
t, and the dots are time derivatives.10 Furthermore, γ > 0 and ω0 > 0 are the
damping constant (1/γ measures the lifetime or characteristic time scale over which
the damping takes place) and the natural frequency of the oscillator, respectively.
The condition γ > 0 follows from the fact that the frictional force is directed opposite
to the velocity of the oscillator.

The energy balance for the oscillator is obtained by multiplying (2.19) with ẋ(t)
and integrating from t′ = −∞ to t′ = t, viz.,

E(t) + 2γ

∫ t

−∞
ẋ2(t′) dt′ =

∫ t

−∞
f(t′)ẋ(t′) dt′, (2.20)

where E(t) = ẋ2(t)/2 + ω2
0x

2(t)/2 defines the energy of the oscillator at time t.
Observe that (2.20) assumes the oscillator to be at rest at t = −∞. Since the
left-hand side of (2.20) is non-negative, it is concluded that

∫ t

−∞
f(t′)ẋ(t′) dt′ > 0 (2.21)

for all driving forces f(t). Relation (2.21) is a consequence of the passivity condition
γ > 0 for the oscillator, see Refs. 53 and 60.

The solution of (2.19) in the force-free case with f(t) = 0 is straightforward
(γ 6= ω0):

x0(t) = e−γt
(
a1e

−i(ω2
0−γ2)1/2t + a2e

i(ω2
0−γ2)1/2t

)
, (2.22)

where the constants a1 and a2 are determined from the initial conditions. Although
a1 and a2 in general are complex-valued they will always produce a real-valued
solution x0(t). For an overcritical damping, γ > ω0, the two terms inside the
parenthesis decrease exponentially, whereas the solution with γ < ω0 describes a
damped harmonic oscillation. For the critical damping γ = ω0, (2.22) should be
replaced by

x0(t) = e−γt(a1t + a2). (2.23)

In this case, the oscillator passes the equilibrium at most one time (set (2.23) equal
to zero and solve for t) and has at most one extreme value depending on the initial
conditions (use that ẋ0(t) = e−γt(−γa1t + a1 − γa2) and solve ẋ0(t) = 0 for t).

10For example, when a single particle of charge q is subject to a time-harmonic electric field
E(ω)e−iωt (angular frequency ω) directed along the x-axis, Lorentz force law implies that the
external driving force is f(t) = qE(ω)e−iωt per unit mass. The polarization of a homogeneous
matter composed of such particles is P (t) = Nqx(t), where N measures the number of charge
carriers per unit volume.
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Figure 2: Trajectories for the singularities ω1,2 as function of increasing γ.

From (2.22) it is clear that γ > 0 (no production of energy) is crucial to prevent a
displacement that increases exponentially with the time.

According to the principle of superposition for ordinary differential equations,
a general solution of (2.19) is the sum of the homogeneous solution (2.22) and a
corresponding inhomogeneous solution when the external driving force is present on
the right-hand side of (2.19). In order to determine this inhomogeneous solution,
assume that f(t) can be represented by, e.g., the Fourier integral (also the Laplace
transform is applicable by identifying s = −iω)

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωt dω. (2.24)

Apply the Fourier transform to (2.19) and use the convolution theorem in Ref. 68
(which is valid since f(t) and g(τ) are absolutely integrable) to obtain

x(t) =
1

2π

∫ ∞

−∞
G(ω)F (ω)e−iωt dω =

∫ ∞

−∞
g(t− t′)f(t′) dt′, (2.25)

where G(ω) = −1/(ω − ω1)(ω − ω2) is the frequency response of the oscillator, and
ω1,2 = −iγ ± (ω2

0 − γ2)1/2 are the roots of the characteristic polynomial ω2 + 2iγω−
ω2

0 = 0. If the damping is weak, i.e., γ ¿ ω0, the complex-valued roots can be
approximated by ω1,2 ≈ −iγ±ω0 from which it is clear that the frequency response
goes through sharp resonances located at ω ≈ ±ω0. The paths described by the
singularities ω1,2 in the complex ω-plane as the damping increases from γ = 0 to
γ = ∞ are illustrated in Fig. 2. Note that the singularities coincide for γ = ω0,
and that they separate in such a manner that one of them approaches ω = −i∞
as γ = ∞ while the other singularity tends to ω = 0. From the condition γ > 0
it is clear that these singularities always lie in the lower half part of the complex
ω-plane.

Since G(ω) is defined as the Fourier transform of g(τ), the problem (2.19) is thus
reduced to evaluate the Fourier integral

g(τ) =
1

2π

∫ ∞

−∞

−1

(ω − ω1)(ω − ω2)
e−iωτ dω. (2.26)
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This is conveniently done by means of residue calculus, see Refs. 1 and 33, for which
the criterion γ > 0 plays an important role. The integrand in (2.26) is singular at
ω = ±ω0 when γ = 0, and should be interpreted as a Cauchy principal value. In this
case, excluding the singularities on the real axis with small semicircles of vanishing
radii yields g(τ) = sin(ω0τ)/ω0 irrespectively of the sign of τ .

In the general case when γ > 0, (2.26) supports a closure in the upper half
plane if and only if τ < 0. A closure in the form of an infinite semicircle does not
contribute to the integral since G(ω) vanishes sufficiently rapid as the magnitude of
ω tends to infinity. Since γ > 0 implies that Im ω1,2 < 0, the singularities of G(ω)
are strictly located in the lower half plane, and the Cauchy integral theorem implies
that g(τ) = 0 for τ < 0. But this property is merely the primitive causality discussed
in Sec. 2.1. It is thus concluded that the damped harmonic oscillator with γ > 0
is a linear time-translational invariant system that satisfies passivity and primitive
causality. For τ > 0, the appropriate region for closure is the lower half plane. In
this case, the method of residues yields

1

2π

∮ −1

(ω − ω1)(ω − ω2)
e−iωτ dω = i

∑
i=1,2

Res
ω=ωi

1

(ω − ω1)(ω − ω2)
e−iωτ . (2.27)

The additional minus sign on the right-hand side of (2.27) is due to the negative
orientation of the contour integral.

A partial fraction decomposition of G(ω) = −1/(ω − ω1)(ω − ω2) reads

G(ω) =
−1

(ω − ω1)(ω − ω2)
=

−1

ω1 − ω2

(
1

ω − ω1

− 1

ω − ω2

)
. (2.28)

Recall that the residue of (2.28) at ω = ωi is the coefficient in front of 1/(ω − ωi)
in the Laurent series expansion (bear in mind that the singularities at ω = ωi are
simple). Thus, for ω1 6= ω2 (or equivalently γ 6= ω0), we have

Res
ω=ωi

1

(ω − ω1)(ω − ω2)
e−iωτ =

(−1)i+1

ω1 − ω2

e−iωiτ , i = 1, 2. (2.29)

For ω1 = ω2 (or equivalently γ = ω0), the residue (2.29) is equal to −iτe−γτ (if
f(ω) = g(ω)/(ω − ω̄)n for some integer n > 0, where g is holomorphic at ω = ω̄,
then Resω=ω̄ f(ω) = g(n−1)(ω̄)/(n − 1)!). Hence, (2.26) and (2.27) imply that the
motion of the oscillator due to the Dirac delta excitation f(t) = δ(t) is

g(τ) = e−γτ sin((ω2
0 − γ2)1/2τ)

(ω2
0 − γ2)1/2

Θ(τ), (2.30)

irrespectively of the sign of τ . This is the Green function of (2.19), see Ref. 76.
The impulse response (2.30) is also valid as γ = ω0 in which case the limiting

value of (2.30) yields g(τ) = τe−γτ for τ > 0. Observe that this expression coincides
with the corresponding expression when the residue −iτe−γτ is inserted into (2.27).
The frequency (ω2

0−γ2)1/2 in (2.30) and the characteristic time scale 1/γ are related
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to the real and imaginary parts of ω1,2, respectively, whereas the sum of the moduli
of the residua is the amplitude (ω2

0 − γ2)−1/2e−γτ of (2.30).
The inhomogeneous solution of (2.19) is finally obtained by inserting (2.30)

into (2.25), viz.,

x(t) =
1

(ω2
0 − γ2)1/2

∫ t

−∞
e−γ(t−t′) sin((ω2

0 − γ2)1/2(t− t′))f(t′) dt′. (2.31)

The full solution to the problem is given by the sum of (2.31) and either (2.22)
or (2.23) depending on whether γ 6= ω0 or γ = ω0. The upper limit of integration
in (2.31) clearly illustrates the idea that the displacement x(t) only depends on the
external driving force f(t′) for times t′ < t, cf., the causal relation (2.1). Recall that
g(τ) can be established using more general techniques for calculating the Green
function, see Refs. 76 and 78.

2.6 The Abraham-Lorentz equation of motion

A somewhat more complicated situation occurs when the phenomenological damping
term 2γẋ(t) in (2.19) is replaced by the radiation reaction of a charged particle, i.e.,
the recoil effect of the particle on itself due to radiation. The Abraham-Lorentz
model11 discussed in Refs. 45 and 71 is the simplest possible radiation reaction
consistent with energy conservation. It yields a term in (2.19) proportional to the
third time derivative of x(t), viz.,

−α
...
x (t) + ẍ(t) + ω2

0x(t) = f(t), (2.32)

where α > 0.12 The interpretation of the radiation reaction is that it quantifies the
recoil effect as momentum is carried away from the particle due to emitted radiation.

From the analysis of the damped harmonic oscillator in Sec 2.5, it is clear that
the frequency response associated with (2.32) is determined by the roots of the
characteristic polynomial −iαω3 − ω2 + ω2

0 = 0. From the fundamental theorem of
algebra, it follows that these roots satisfy ω1 + ω2 + ω3 = i/α. This means that
at least one of the roots is located in the upper half part of the complex ω-plane
(recall that α > 0). Thus, the frequency response of (2.32) is meromorphic rather
than holomorphic in the upper half plane. As a consequence, the solution of (2.32)
is either violating primitive causality or passivity. A solution to (2.32) which is
passive is necessarily non-causal and admits self-acceleration, i.e., the particle starts
to accelerate a time interval of order α before the external driving force is applied.
As a comfort, α is a very small number.

Another unpleasant consequence of (2.32) is the runaway solution for ω0 = 0
which implies that the free-particle acceleration ẍ(t) = ẍ(0)et/α, i.e., the solution

11Also termed the Abraham-Lorentz-Dirac model since it was generalized by P. A. M. Dirac in
Ref. 22 to account for the effects of special relativity.

12More explicitly, α = µ0q
2/6πmc0, where q is the charge and m is rest mass of the particle,

and µ0 and c0 are the vacuum permeability and velocity of light in free space, respectively. For
the electron, α = 6 · 10−24 s, which is the typical time it takes for light to travel across its spatial
extension (the classical electron radius is 2.818 · 10−15 m).
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t

f0
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T0

®

®charged particle

x(t)
..

Figure 3: Illustration of self-acceleration and violation of primitive causality for
a charged particle in the Abraham-Lorentz model.

of (2.32) with ω0 = 0 and f(t) = 0, increases exponentially with time. Many of
these intriguing difficulties also persist in the generalized Abraham-Lorentz-Dirac
model consistent with special relativity. For an introduction to the physical origin
of the radiation reaction, see also Ref. 34.

To illustrate the phenomenon of self-acceleration, consider a charged particle
subject to the following external force per unit mass: f(t) = f0 for 0 < t < T , and
zero otherwise.13 Then (2.32) with ω0 = 0 reads

−α
...
x (t) + ẍ(t) = f(t). (2.33)

In contrast to the uncharged particle with the acceleration ẍ(t) = f0 for 0 < t <
T and zero otherwise (set α = 0 in (2.33) to obtain ẍ(t) = f(t)), the solution
of (2.33) and its derivatives ẋ(t) and ẍ(t) must be continuous in time although f(t)
is discontinuous. To prove this, integrate (2.33) from t′ = t − ε to t′ = t + ε for
ε > 0. The physical interpretation of the statement is that the radiation reaction
suppresses any rapid change in ẍ(t). Imposing the continuity condition of ẍ(t) at
t = 0 and t = T implies that either the runaway solution for t > T or the self-
acceleration for t < 0 can be eliminated, but not both of them. By preventing an
exponentially increasing acceleration for t > T , the solution of (2.33) becomes

ẍ(t) =





f0

(
1− e−T/α

)
et/α, t < 0

f0

(
1− e(t−T )/α

)
, 0 < t < T

0, t > T

. (2.34)

This solution clearly violates primitive causality in the sense that the particle re-
spond a time interval of order α before f(t) is applied, see Fig. 3.

The motion of a charged particle due to a Dirac delta excitation f(t) = δ(t) may
also be analyzed. For this purpose, let ε > 0 and integrate (2.32) from t = −ε to

13The following discussion is merely the solution of Problems 11.19 and 11.28 in Ref. 34.
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t = ε to obtain

−α(ẍ(ε)− ẍ(−ε)) + ẋ(ε)− ẋ(−ε) =

∫ ε

−ε

δ(t) dt = 1. (2.35)

If ẋ(t) is continuous at the origin then (2.35) implies that ẍ(t) is discontinuous
with the jump condition ẍ(0+) − ẍ(0−) = −1/α. From this discontinuity it is
straightforward to determine the solution of (2.32):

ẍ(t) =

{
Aet/α, t < 0

(A− 1/α)et/α, t > 0
. (2.36)

In order to eliminate the runaway solution for t > 0, one must choose A = 1/α.
On the other hand, to prevent a self-acceleration for t < 0 it is required that A =
0. Obviously, both of these conditions cannot be satisfied simultaneously. If the
runaway solution is eliminated from (2.36) then ẍ(t) = et/α/α for t < 0 and zero
otherwise. Integrating this solution for t < 0 yields

ẋ(t) =

∫ t

−∞
ẍ(t′) dt′ =

1

α

∫ t

−∞
et/α dt = et/α, (2.37)

where it is assumed that the particle is at rest at t = −∞. The corresponding
calculation for t > 0 reads

ẋ(t) = ẋ(0) +

∫ t

0

ẍ(t′) dt′ = 1. (2.38)

It is therefore concluded that the runaway-free solutions of (2.33) are

ẋ(t) =

{
et/α, t < 0

1, t > 0
ẍ(t) =

{
et/α/α, t < 0

0, t > 0
(2.39)

These results should be be compared with the corresponding expressions for an
uncharged particle (α = 0 in (2.33)): ẍ(t) = δ(t) and ẋ(t) = Θ(t), where Θ(t)
denotes the Heaviside step function.

It is important to check that (2.33) is consistent with the conservation of energy.
First, the work done by the external force is calculated:

Wext =

∫ ∞

−∞
f(t) dx =

∫ ∞

−∞
f(t)ẋ(t) dt =

∫ ∞

−∞
δ(t)ẋ(t) dt = ẋ(0) = 1. (2.40)

The total energy radiated per unit mass is14

Wrad =

∫ ∞

−∞
Prad(t) dt =

µ0q
2

6πmc0

∫ ∞

−∞
(ẍ(t))2 dt =

µ0q
2

6πmc0

∫ 0

−∞
e2t/α dt =

1

2
, (2.41)

14For a non-relativistic particle of charge q and rest mass m, the total power radiated per unit
mass is given by the Larmor formula, see Refs. 45 and 71,

Prad(t) =
µ0q

2

6πmc0
(ẍ(t))2.
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where α = µ0q
2/6πmc0 has been used, see Footnote 12 on p. 14. Since the initial

kinetic energy is zero (the particle is assumed to be at rest at t = −∞), the final
kinetic energy per unit mass is Wkin = ẋ(0)/2 = 1/2. Thus it is concluded that (2.33)
is consistent with energy conservation since Wext = Wkin + Wrad.

Many of the intriguing implications of (2.33) are not entirely understood nearly a
century ago after the proposal of the Abraham-Lorentz equation of motion. Similar
non-causal effects appear in, e.g., Condon’s model of chiral materials in classical
electrodynamics, see Ref. 55.

2.7 The origin of dispersion relations

The holomorphic properties of the frequency response G(ω) are utilized in this sec-
tion to derive some important relations in classical dispersion theory. For this pur-
pose, consider the following Cauchy integral with ω = ω′ + iω′′ (as usual ω′ and
ω′′ are real-valued) located inside the arbitrary closed contour C in the upper half
plane:15

G(ω) =
1

2πi

∮

C

G(ω̄)

ω̄ − ω
dω̄. (2.42)

Let the contour C be defined by the real axis and an infinite semicircle, and assume
that G(ω′ + i0) vanishes sufficiently rapid at infinity along the real ω′-axis. Then,
for any ω = ω′ + iε with ε > 0,

G(ω′ + i0) = lim
ε→0+

1

2πi

∫ ∞

−∞

G(ω̄)

ω̄ − ω′ − iε
dω̄. (2.43)

The integral (2.43) can be evaluated using (2.12), i.e.,

lim
ε→0+

1

ω̄ − ω′ − iε
= P

(
1

ω̄ − ω′

)
+ iπδ(ω̄ − ω′). (2.44)

The origin of the Dirac distribution in (2.44) is the contribution from a small semi-
circle on the real axis enclosing the singularity at ω̄ = ω′ + i0, see Fig. 4. The
contour in Fig. 4 is similar to the integration paths in the appended papers with the
singularity located at ω̄ = 0.

Under the assumption that G(ω′ + i0) is sufficiently regular at the real axis to
interchange the Cauchy principal value P and the limit ε → 0+, (2.44) inserted
into (2.43) yields16

G(ω′ + i0) =
1

2πi
P

∫ ∞

−∞

G(ω̄)

ω̄ − ω′
dω̄ +

1

2
G(ω′ + i0), (2.45)

15Here, ω̄ should not be confused with the complex conjugate of ω which is denoted by ω∗.
16Recall from Footnote 8 on p. 9 that the integral in (2.45) is defined as

P
∫ ∞

−∞

G(ω̄)
ω̄ − ω′

dω̄ = lim
ε→0+

(∫ ω−ε

−∞
+

∫ ∞

ω+ε

)
G(ω̄)
ω̄ − ω′

dω̄.
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Im!

!X

{

Re !{

Figure 4: Integration contour in (2.42). The radii of the small and large semicircles
approach zero and infinity, respectively.

or equivalently,

G(ω′ + i0) =
1

πi
P

∫ ∞

−∞

G(ω̄)

ω̄ − ω′
dω̄. (2.46)

Relation (2.46) is recognized as the Hilbert transform of G(ω̄) along the real ω̄-axis,
see Ref. 80. It can be split into the first and second Plemelj formulae by applying
the real and imaginary parts to (2.46). By using the cross symmetry (2.4), i.e., the
fact that Re G(ω̄) and Im G(ω̄) are even and odd in ω̄, respectively, one obtains the
following transform pair:

Re G(ω′ + i0) =
2

π
P

∫ ∞

0

ω̄ Im G(ω̄)

ω̄2 − ω′2
dω̄ (2.47)

Im G(ω′ + i0) =
−2ω′

π
P

∫ ∞

0

Re G(ω̄)

ω̄2 − ω′2
dω̄ (2.48)

Recall that (2.47) and (2.48) are a direct consequence of primitive causality. Fur-
thermore, the structure of (2.47) and (2.48) is similar to (2.14).

The two Plemelj formulae (2.47) and (2.48) imply each other (at least if they are
expressed as integrals over the entire real axis rather than the positive semi axis),
so it is sufficient to keep only one of them. For our purpose, (2.47) is appropriate
for analyzing the extinction cross section of acoustic and electromagnetic waves in
the appended papers. In fact, relations (2.47) and (2.48) are the starting point
of the classical dispersion theory discussed in, e.g., Refs. 39, 41, 44, and 89. The
Plemelj formulae are also the foundations of the forward and non-forward dispersion
relations discussed in Sec. 3. Relations (2.47) and (2.48) can also be generalized to
include functionals of G(ω) that satisfy (2.4), since sums, products, and compositions
of holomorphic functions likewise are holomorphic, cf., the dispersion relation for
1/G(ω) in Sec. 2.10 (recall that G(ω) is nowhere zero in the upper half plane due
to Mĕıman’s theorem in Sec. 2.3). However, in order to preserve the upper half
plane as the appropriate domain where the composite function is holomorphic, the
Herglotz property (2.8) is required.
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From a direct integration it is straightforward to show that the frequency re-
sponse for the damped harmonic oscillator in Sec. 2.5 satisfies (2.46) and thereby
also (2.47) and (2.48). To show this, make a partial fraction decomposition of the
integrand in (2.46), i.e.,

G(ω̄)

ω̄ − ω′
=

1

(ω′ − ω1)(ω1 − ω2)

1

ω̄ − ω1

− 1

(ω′ − ω2)(ω1 − ω2)

1

ω̄ − ω2

− 1

(ω′ − ω1)(ω′ − ω2)

1

ω̄ − ω′
, (2.49)

where G(ω̄) = −1/(ω̄−ω1)(ω̄−ω2) has been used. The last term in (2.49) does not
contribute to (2.46) since P ∫∞

−∞ dω̄/(ω̄ − ω′) = 0.17 However, the first two terms
contribute according to (decompose the integrand into its real and imaginary parts)

P
∫ ∞

−∞

dω̄

ω̄ − ω1,2

=

∫ ∞

−∞

ω̄ ∓ (ω2
0 − γ2)1/2

(ω̄ ∓ (ω2
0 − γ2)1/2)2 + γ2

dω̄

− iγ

∫ ∞

−∞

dω̄

(ω̄ ∓ (ω2
0 − γ2)1/2)2 + γ2

, (2.50)

where the upper and lower signs refer to ω1,2 = −iγ ± (ω2
0 − γ2)1/2, respectively.

The first integral on the right-hand side of (2.50) has the primitive function ln((ω̄∓
(ω2

0 − γ2)1/2)2 + γ2)/2 which yields

∫ ∞

−∞

ω̄ ∓ (ω2
0 − γ2)1/2

(ω̄ ∓ (ω2
0 − γ2)1/2)2 + γ2

dω̄ =
1

2
lim

ω̄→∞
ln

(ω̄ ∓ (ω2
0 − γ2)1/2)2 + γ2

(ω̄ ± (ω2
0 − γ2)1/2)2 + γ2

= 0. (2.51)

The corresponding primitive function for the second integral on the right-hand side
is γ−1 arctan((ω̄ ∓ (ω2

0 − γ2)1/2)/γ). Thus, since γ > 0,

P
∫ ∞

−∞

dω̄

ω̄ − ω1,2

= −i lim
ω̄→∞

arctan

(
ω̄ ∓ (ω2

0 − γ2)1/2

γ

)
= −iπ. (2.52)

By combining (2.49), (2.51), and (2.52) it follows that

1

iπ
P

∫ ∞

−∞

G(ω̄)

ω̄ − ω′
dω̄ =

−1

ω1 − ω2

(
1

ω′ − ω1

− 1

ω′ − ω2

)
= G(ω′), (2.53)

where the last equality is given by (2.28). In other words, the frequency response
of the damped harmonic oscillator satisfies (2.46) and consequently also (2.47)
and (2.48).

17This statement follows from the fact that ω′ is real-valued and

P
∫ ∞

−∞

dω̄

ω̄ − ω′
= lim

ε→0+

(∫ ω′−ε

−∞
+

∫ ∞

ω′+ε

)
dω̄

ω̄ − ω′
= lim

ε→0+
ln

∣∣∣∣
ω′ − ε

ω′ + ε

∣∣∣∣ = 0.

This result also follows from the fact that the function h(ω̄) = 1/(ω̄ − ω′) for a fixed ω′ satisfies
h(2ω′ − ω̄) = −h(ω̄), i.e., h(ω̄) is odd with respect to ω̄ around the discontinuity point ω̄ = ω′.
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Various sum rules can be derived from the asymptotic behavior of the Plemelj
formulae. They are often based on the following hand waving arguments. Consider
the limiting values of (2.47) and (2.48) as the argument ω′ becomes infinitely large.18

Since 1/(ω̄2 − ω′2) = −1/ω′2 +O(1/ω′4) as ω′ →∞, it follows that

Re G(ω′ + i0) ∼ −2

πω′2

∫ ∞

0

ω̄ Im G(ω̄) dω̄ (2.54)

Im G(ω′ + i0) ∼ 2

πω′

∫ ∞

0

Re G(ω̄) dω̄ (2.55)

Relations (2.54) and (2.55) are referred to as superconvergent sum rules, see Refs. 4
and 5. Such sum rules are often established on the basis of the Kramers-Kronig
relations, see Sec. 2.10, and additional physical assumptions in the high-frequency
regime, e.g., the requirement that the electromagnetic response of the medium under
consideration is described by a Lorentz model (i.e., the damped harmonic oscillator
in Sec. 2.5) for frequencies far beyond any material resonances. However, (2.54)
and (2.55) can also be established using rigorous arguments on the asymptotic be-
havior of the Hilbert transform, see Ref. 80 and references therein.

Another interesting relation for real-valued ω = ω′+i0 is obtained by evaluating
the integral of ω̄G(ω̄)/(ω̄2 + ω′2) with respect to the contour defined by the real
axis and an infinite semicircle in the upper half part of the complex ω̄-plane, i.e.,
the same contour as in Fig. 4 except for the small semicircle centered at ω′ = ω.
Under the assumption that the contribution from the infinite semicircle vanishes,
the method of residues yields for ω′ > 0 that (recall that if f(ω̄) is holomorphic and
has a simple singularity at ω̄ = ω, then Resω̄=ω f(ω̄) = limω̄→ω(ω̄ − ω)f(ω̄))

∫ ∞

−∞

ω̄G(ω̄)

ω̄2 + ω′2
dω̄ = 2πi Res

ω̄=iω′

ω̄G(ω̄)

ω̄2 + ω′2
= 2πi lim

ω̄→iω′

ω̄G(ω̄)

ω̄ + iω′
= iπG(iω′). (2.56)

The real part of (2.56) vanishes since ω̄ Re G(ω̄)/(ω̄2 + ω′2) is an odd function of
ω̄ (the cross symmetry (2.4) states that Re G(ω̄) is even in ω̄). However, since
ω̄ Im G(ω̄)/(ω̄2 + ω′2) is even and G(iω′) is real-valued, the imaginary part of (2.56)
yields

G(iω′) =
2

π

∫ ∞

0

ω̄ Im G(ω̄)

ω̄2 + ω′2
dω̄. (2.57)

Integrating both sides in (2.57) from ω′ = 0 to ω′ = ∞ yields the identity

∫ ∞

0

G(iω′) dω′ =
2

π

∫ ∞

0

Im G(ω̄)

∫ ∞

0

ω̄

ω̄2 + ω′2
dω′ dω̄ =

∫ ∞

0

Im G(ω̄) dω̄, (2.58)

where it has been used that the inner integral is equal to limω′→∞ arctan(ω′/ω̄) =
π/2. Note that (2.58) only is valid when G(ω) is sufficiently regular to interchange
the order of integration in ω′ and ω̄. The relation (2.58) can also be derived by a di-
rect application of Cauchy’s integral theorem to a quarter-circle contour in the first
quadrant of the complex ω̄-plane. The interpretation of (2.58) is that it relates the

18This is merely Problem 7.3.4 in Ref. 7.
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values of G(ω) on the imaginary axis to those of Im G(ω′+i0) on the real axis. Pro-
vided that the integral on the left-hand side exists, (2.58) suggests that Im G(ω′+i0)
is integrable rather than square integrable as required by the Titchmarsh theorem,
see Sec. 2.8.

2.8 The Titchmarsh theorem

In some cases, it is more natural to establish conditions on the asymptotic behavior
of the frequency response G(ω′+i0) for real-valued ω = ω′+i0, instead of assuming
that G(ω̄)/(ω̄−ω′) becomes identically zero when integrated over a large semicircle
or any other contour in the upper half plane. The ideas in this section are therefore
restated in a form appropriate for G(ω′+i0) when it is square integrable on the real
axis. From the Parseval theorem (also termed the Plancherel theorem in Ref. 25) it
follows that ∫ ∞

−∞
|G(ω′ + i0)|2 dω′ = 2π

∫ ∞

0

|g(τ)|2 dτ < C, (2.59)

where C is a constant. Introduce ω = ω′ + iω′′ (as usual ω′ and ω′′ are real-valued)
and recall that G(ω′ + iω′′) is the Fourier transform of e−ω′′τg(τ) evaluated at the
point ω′. For ω′′ > 0, another application of the Parseval theorem yields

∫ ∞

−∞
|G(ω′ + iω′′)|2 dω′ = 2π

∫ ∞

0

e−2ω′′τ |g(τ)|2 dτ < 2π

∫ ∞

0

|g(τ)|2 dτ. (2.60)

The estimate (2.60) implies that G(ω) belongs to the Hardy class H2, see Refs. 24
and 29, i.e., ∫ ∞

−∞
|G(ω′ + iω′′)|2 dω′ < C (2.61)

uniformly for all ω′′ > 0. This is an important result illuminated in a set of theorems
in Ref. 80 collectively referred to as the Titchmarsh theorem.

The Titchmarsh theorem. If G(ω′) is square integrable on the real ω′-axis, the
following three conditions are equivalent:

i. the inverse Fourier transform of G(ω) vanishes for τ < 0, i.e.,

g(τ) =
1

2π

∫ ∞

−∞
G(ω′)e−iω′τ dω′ = 0, τ < 0;

ii. G(ω′) is, for almost all ω′, the limit as ω′′ → 0+ of G(ω′ + iω′′); the function
G(ω′ + iω′′) is holomorphic in the upper half part of the complex ω-plane and
there satisfies (2.61);

iii. the real and imaginary parts of G(ω) obey (2.47) and (2.48).

The equivalence in Titchmarsh’s theorem holds in the sense that each of the
above conditions are both necessary and sufficient for the others to be true. Loosely
speaking, the theorem states that for a frequency response that vanishes sufficiently
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rapid at infinity, the following statements express one single property in three differ-
ent ways: (i) having a Fourier transform that vanishes on the negative real axis, (ii)
being holomorphic in the upper half part of the complex ω-plane, and (iii) obeying
a dispersion relation.

2.9 Dispersion relations with one subtraction

The requirement of square integrability in the Titchmarsh theorem is often violated
in physical problems. Physical considerations suggest that for a passive system with
a square integrable (or finite energy) input f(t), there exists a constant C such that
the output x(t) satisfies

∫ ∞

−∞
|x(t)|2 dt 6 C

∫ ∞

−∞
|f(t)|2 dt. (2.62)

For many physical systems, conservation of energy implies that C is bounded from
above by unity. Irrespectively of the value of C, the Parseval theorem states that
along the real ω′-axis,

∫ ∞

−∞
|X(ω′)|2 dω′ =

∫ ∞

−∞
|G(ω′)|2|F (ω′)|2 dω′ 6 C

∫ ∞

−∞
|F (ω′)|2 dω′, (2.63)

where X(ω′) denotes the Fourier transform of x(t). The inequality (2.63) is satisfied
if |G(ω′)|2 6 C, i.e., G(ω′) is bounded pointwise in ω′ (belongs to the function
space L∞) rather than being square integrable. Although the Titchmarsh theorem
is not directly applicable to bounded functions, G(ω) = G(ω′ + iω′′) still defines a
holomorphic function in the upper half plane.

As pointed out in the previous paragraph, a common situation in physical prob-
lems occurs when G(ω′) is bounded rather than square integrable. Then, for an
arbitrary point ω̃ on the real axis, the Titchmarsh theorem can be applied to
(G(ω) − G(ω̃))/(ω − ω̃) which is square integrable on the real axis if G(ω′ + i0)
is differentiable at ω′ = ω̃, i.e., limω′→ω̃(G(ω′ + i0)−G(ω̃))/(ω′ − ω̃) exists. To see
this, decompose the integral according to

∫ ∞

−∞

∣∣∣∣
G(ω′ + i0)−G(ω̃)

ω′ − ω̃

∣∣∣∣
2

dω′ =
(∫ α

−∞
+

∫ β

α

+

∫ ∞

β

) ∣∣∣∣
G(ω′ + i0)−G(ω̃)

ω′ − ω̃

∣∣∣∣
2

dω′,

(2.64)
where ω̃ belongs to the open interval (α, β). Now use the triangle inequality |G(ω′+
i0)−G(ω̃)| 6 |G(ω′ + i0)|+ |G(ω̃)| and |G(ω′ + i0)|2 6 C to obtain

|G(ω′ + i0)−G(ω̃)|2 6 (
√

C +
√

C)2 = 4C. (2.65)

The first integral on the right-hand side of (2.64) is bounded since

∫ α

−∞

∣∣∣∣
G(ω′ + i0)−G(ω̃)

ω′ − ω̃

∣∣∣∣
2

dω′ 6 4C

∫ α

−∞

dω′

(ω′ − ω̃)2
=

4C

ω̃ − α
< ∞. (2.66)
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A similar estimate for the third integral in (2.64) yields 4C/(β − ω̃) which is finite
(just substitute α with β in (2.66) and compensate with a minus sign). Since the
integrand in (2.64) by assumption is differentiable at ω′ = ω̃ it is also continuous
at this point. But since any continuous function is locally integrable it follows that
also the second integral on the right-hand side of (2.64) is finite. Thus, (2.64) is
square integrable.

The dispersion relation with one subtraction constant is obtained by applying
(G(ω)−G(ω̃))/(ω − ω̃) to (2.46), i.e.,

G(ω′ + i0) = G(ω̃) +
ω′ − ω̃

iπ
P

∫ ∞

−∞

G(ω̄)−G(ω̃)

ω̄ − ω̃

dω̄

ω̄ − ω′
. (2.67)

At ω′ = ω̃ the right-hand side of (2.67) reduces to G(ω̃) as expected (recall that
the integral is bounded). Relation (2.67) is particularly useful when ω̃ = 0, i.e.,
the subtraction constant is obtained from static considerations, or ω̃ = ∞. Since
(ω′ − ω̃)/(ω̄ − ω̃) = 1 +O(1/ω̃) as ω̃ →∞, the latter case implies

G(ω′ + i0) = G∞ +
1

iπ
P

∫ ∞

−∞

G(ω̄)−G∞
ω̄ − ω′

dω̄ = G∞ +
1

iπ
P

∫ ∞

−∞

G(ω̄)

ω̄ − ω′
dω̄. (2.68)

Here, G∞ = limω̃→∞ G(ω̃) and P ∫∞
−∞ dω̄/(ω̄ − ω′) = 0 have been used, cf., Foot-

note 17 on p. 19. A repeated application of (2.67) yields dispersion relations with
n + 1 subtractions (n is a positive integer) suitable for the asymptotic behavior
G(ω′) = O(ω′n) as ω′ → ∞. Dispersion relations with more than one subtraction
are analyzed in great detail in Refs. 41 and 66.

2.10 The Kramers-Kronig relations

Also the Kramers-Kronig relations (named after the contemporary discoveries by
R. de L. Kronig and H. A. Kramers in Refs. 21 and 54), which model the prop-
agation of electromagnetic waves in homogeneous and isotropic media, originate
from (2.47) and (2.48). To illustrate this, introduce the complex-valued permittiv-
ity ε(ω′) relative to free space (as usual ω′ rather than ω = ω′ + iω′′ is the physical
frequency). Set G(ω) = ε(ω)− ε∞, where ε∞ = limω′→∞ ε(ω′) denotes the instanta-
neous response of the medium (the limit is taken along the real ω′-axis whereas ω is
the complex frequency confined to the upper half plane).19 Then G(ω) satisfies (2.4),
and, under the assumption of strict passivity, i.e., Im ε(ω′) > 0 for ω′ > 0, it follows
from Mĕıman’s theorem on p. 10 that ε(ω) is real-valued only on the imaginary
axis among all finite points in the upper half part of the complex ω-plane. On the
imaginary axis, ε(ω)− ε∞ decreases monotonically as ω → i∞.20

19The present analysis is restricted to isotropic media. However, the formulae presented in this
section also hold in the anisotropic case for the Rayleigh quotients or quadratic forms a∗ ·ε(ω)·a (a
is an arbitrary complex-valued vector with |a| = 1) of the permittivity dyadic ε(ω). It should also
be mentioned that ε(ω) can be replaced by the permeability µ(ω) in the subsequent expressions.

20This conclusion is merely the first part of Problem 7.24 in Ref. 45.



24 General Introduction

Physical reasons in Ref. 45 suggest that the frequency response G(ω′) = ε(ω′)−ε∞
satisfies Re G(ω′) = O(ω′−2) and Im G(ω′) = O(ω′−3) as ω′ →∞. However, the con-
ductivity model and the Debye model21 vanish slower at infinity, but still sufficiently
fast to be square integrable. For the conductivity model, one has Re G(ω′) = 0 and
Im G(ω′) = O(ω′−1) as ω′ →∞, while the Debye model satisfies Re G(ω′) = O(ω′−2)
and Im G(ω′) = O(ω′−1) as ω′ →∞. Thus, (2.47) and (2.48) imply, in the absence
of a conductivity term, the following constraints on the permittivity known as the
Kramers-Kronig relations:22

Re ε(ω′ + i0) = ε∞ +
2

π
P

∫ ∞

0

ω̄ Im ε(ω̄)

ω̄2 − ω′2
dω̄ (2.69)

Im ε(ω′ + i0) =
−2ω′

π
P

∫ ∞

0

Re ε(ω̄)

ω̄2 − ω′2
dω̄ (2.70)

Since the instantaneous response is non-unique from a modeling point of view, see
Ref. 38, (2.69) and (2.70) are often phrased with ε∞ = 1. The Kramers-Kronig
relations can also be formulated in the refractive index n(ω) = (ε(ω)µ(ω))1/2 by
applying (2.47) and (2.48) to G(ω) = n(ω) − n∞ with n∞ = limω′→∞ n(ω′), see
Refs. 44 and 66.

When a static conductivity ς > 0 is present in ε(ω′), (2.69) still remains valid
whereas the right-hand side of (2.70) must be modified with the additional term
ς/ω′ε0, see Ref. 57 and the discussion in Paper II, i.e.,

Im ε(ω′ + i0) =
ς

ω′ε0

− 2ω′

π
P

∫ ∞

0

Re ε(ω̄)

ω̄2 − ω′2
dω̄. (2.71)

The term ς/ω′ε0 refers to the contribution from a small semicircle that encloses the
singularity at ω′ = 0, cf., the contour in Fig. 4.

A number of important results can be derived from the Kramers-Kronig relations
when no conductivity term is present. For this purpose, assume that Im ε(ω′) is
sufficiently well-behaved at the origin to interchange the Cauchy principal value and
the limit ω′ → 0+. Under this assumption, the static limit of (2.69) yields the sum
rule

ε(0) = ε∞ +
2

π
P

∫ ∞

0

Im ε(ω̄)

ω̄
dω̄, (2.72)

21The conductivity model is defined by the additive term iς/ω′ε0, while the Debye model is
ε(ω′) = ε∞ + (εs − ε∞)/(1 − iω′τ), where εs = ε(0) denotes the static permittivity. Both the
conductivity ς > 0 and the relaxation time τ > 0 are assumed to be independent of ω′. For
an introduction to dispersion models for temporally dispersive matter, see Ref. 13 and references
therein.

22Note that the instantaneous response ε∞ disappears from the integral in (2.70) since

P
∫ ∞

0

dω̄

ω̄2 − ω′2
= lim

ε→0+

−1
2ω′

{
ln

(
ω̄ + ω′

ω̄ − ω′

)∣∣∣∣
ω′−ε

ω̄=−∞
+ ln

(
ω̄ + ω′

ω̄ − ω′

)∣∣∣∣
∞

ω̄=ω′+ε

}

= lim
ε→0+

1
2ω′

ln
(

ε + 2ω′

ε− 2ω′

)
= 0.

This is also clear from a partial fraction decomposition of 1/(ω̄2 − ω′2) and Footnote 17.
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where it has been used that (2.70) implies Im ε(0) = 0. From (2.72) and the passivity
condition Im ε(ω̄) > 0 for ω̄ > 0, it is clear that the static permittivity ε(0) is larger
than or equal to ε∞. This result is among other things important in the analysis of
temporally dispersive matter in Paper II. Finally, note that G(ω) = ε(ω)− ε∞ also
satisfies (2.58) provided it vanishes sufficiently fast at infinity, i.e.,

∫ ∞

0

ε(iω̄)− ε∞ dω̄ =

∫ ∞

0

Im ε(ω̄) dω̄. (2.73)

Recall that the right hand side of (2.73) is non-negative. However, (2.73) is not
directly applicable to the conductivity model since then both the left and right
hand sides of (2.73) diverge.

The Mĕıman theorem on p. 10, and the fact that ε∞ is real-valued, implies that
ε(ω) is nowhere zero in the upper half of the ω-plane. Hence, also the reciprocal
value of ε(ω) is holomorphic in that half-plane, and (2.47) and (2.48) hold for G(ω) =
1/ε(ω)− 1/ε∞, i.e.,

Re

{
1

ε(ω′ + i0)

}
=

1

ε∞
+

2

π
P

∫ ∞

0

ω̄

ω̄2 − ω′2
Im

{
1

ε(ω̄)

}
dω̄ (2.74)

Im

{
1

ε(ω′ + i0)

}
=

−2ω′

π
P

∫ ∞

0

1

ω̄2 − ω′2
Re

{
1

ε(ω̄)

}
dω̄ (2.75)

Note that (2.74) and (2.75) can be rewritten in terms of Re ε(ω′) and Im ε(ω′) by
observing that

Re

{
1

ε(ω′)

}
=

Re ε(ω′)
|ε(ω′)|2 , Im

{
1

ε(ω′)

}
=
− Im ε(ω′)
|ε(ω′)|2 . (2.76)

Both (2.69) and (2.70) as well as (2.74) and (2.75) can be used to derive supercon-
vergent sum rules, see Refs. 5 and 45. However, the reader should be careful to
consult Ref. 58 due to its many misprints and lack of physical clarity.

A Gedankenexperiment associated with the Kramers-Kronig relations is pre-
sented in Ref. 39. Consider a pair of spectacles with, say, green glasses subject to a
flashlight in a dark room. The light as a function of time is modeled as a δ-twinkle,
i.e., as the Dirac delta distribution

δ(t) =
1

2π

∫ ∞

−∞
eiωt dω. (2.77)

The interpretation of (2.77) is that the δ-twinkle contains all frequencies in such
a way that the waves interfere destructively at all times except at t = 0. Now,
consider a pair of ideal green glasses which transmits green light in some region of
the spectrum, but absorbs all other waves necessary for the mutual cancelation at
times t 6= 0. Suppose that there is no connection between the real and imaginary
parts of the refractive index, i.e., the refractive and absorptive properties of n(ω).
Why then is it not possible to see in the dark with the green glasses? A simple
explanation is given by the Kramers-Kronig relations which state that the refractive
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Figure 5: Geometry for non-forward scattering by a spherical symmetric target.

index must depend on ω in such a way that the transmitted waves in the green
region of the spectrum obtain the right phase shifts necessary for the destructive
interference at times t 6= 0. In fact, there is no green or any other colored glasses
which simply can absorb a part of the visible spectrum without possessing refraction.

An extension of Kramers-Kronig relations to heterogeneous media is presented
in Ref. 87 based on Herglotz functions similar to ω(ε(ω) − ε∞). Kramers-Kronig
relations can also be derived for acoustic waves; the homogeneous case is due to
V. L. Ginzberg in Ref. 30.

3 Dispersion relations in scattering theory

Dispersion relations for scattering of acoustic and electromagnetic waves are briefly
discussed in this section as an introduction to the appended papers.23 The ideas
in this section follow the expositions in Refs. 64 and 89. However, the dispersion
relations in Refs. 41, 64, and 66 for partial waves are excluded from this section
since new results on this topic will soon appear in a forthcoming paper. For an
introduction to the theory of scattering of acoustic and electromagnetic waves, see
Refs. 10, 12, 13, 16, 23, 27, 50, 59, 62, and 83.

3.1 Non-forward dispersion relations

Non-forward dispersion relations deal with physical constraints on scattering of
waves by a fixed obstacle. For simplicity, consider the spherical symmetric tar-
get of radius a in Fig. 5 subject to the following plane wave excitation of either
acoustic or electromagnetic origin:

f(τ) =
1

2π

∫ ∞

−∞
F (ω′)e−iω′τ/c dω′, (3.1)

23The results in this section expect to hold also for the larger class of hyperbolic systems including
elastic waves, see Refs. 25 and 85.
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ct ct

x x

2a sin µ=2

f(ct{x)s0 h(ct{x)s0

Figure 6: Light cones for the incident and scattered waves, f(τ) and h(τ), respec-
tively, where τ = ct− x.

where τ = ct − x. Here, c denotes the phase velocity of the surrounding medium
which is assumed to be lossless, isotropic, and homogeneous.24 For a fixed scattering
angle θ, the path difference between a wave deflected at the surface of the scatterer
and a reference wave in free space propagating through the origin is, according to
Fig. 5,

∆(α) = a(sin α− sin(α− θ)). (3.2)

The maximal path difference (3.2) occurs for α = θ/2 (solve d∆(α)/dα = 0 to get
α − θ = ±α + 2πk, where k is an integer, and invoke the constraint 0 < α < π/2)
with

max
0<α<π/2

∆(α) = 2a sin θ/2. (3.3)

Thus, the shortest path for the scattered wave to reach any radial distance exterior
to the target is 2a sin θ/2 shorter than the path through the origin of the scatterer.

Now assume that f(τ) = 0 for τ < 0 (implying that F (ω) is holomorphic in the
upper half part of the complex ω-plane) in the sense that the incident wave front
is governed by the equation τ = 0, or equivalently, ct − x = 0. As a consequence,
the scattered wave h(τ) at large distance does not reach the radial point x until
τ > −2a sin θ/2. The number −2a sin θ/2 is purely negative for θ 6= 0 and illustrates
the non-causal behavior of the scattered field. At any radial point x with a scattering
angle θ 6= 0, the scattered field h(τ) thus precedes the incident field f(τ). The time
difference between the two fields is 2a/c sin θ/2 which vanishes for θ = 0. This
observation is illustrated by the two light cone diagrams in Fig. 6.

Introduce H(ω) as the Fourier transform of h(τ) analogous to (3.1), i.e.,

H(ω) =

∫ ∞

−∞
h(τ)eiωτ dτ, (3.4)

24For both acoustic and electromagnetic waves, it is assumed that c exceeds the phase velocity
of the scatterer if the latter is permeable; otherwise, the present analysis should be modified with
the same technique as discussed for the Dirichlet boundary condition in Paper VIII. An important
difference in scattering of acoustic and electromagnetic waves is that in the former case, the phase
velocity of the scatterer often exceeds c, cf., a metal obstacle in a fluid such as water or air at
normal pressure, while in the latter case, the surrounding medium is often free space and the
opposite relation holds.
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where ω = ω′ + iω′′ is the complex-valued generalization of the angular frequency
ω′. Let S(ω, θ) = xe−iωx/cH(ω)/F (ω) denote the associated scattering amplitude.
Since F (ω) is arbitrary and holomorphic in the upper half part of the ω-plane, it
follows that also e2iωa/c sin θ/2S(ω, θ) is holomorphic in that region.25 However, the
function e2iωa/c sin θ/2S(ω, θ) does not vanish as the magnitude of ω becomes infinitely
large, since many boundary conditions in wave mechanics satisfy S(ω′, θ) = O(ω′)
as ω′ → ∞ along the real axis, see Ref. 16. Thus, S(ω, θ)/ω2 rather than S(ω, θ)
vanishes sufficiently rapid at infinity, and G(ω) = e2iωa/c sin θ/2S(ω, θ)/ω2 inserted
into (2.47) yields26

Re

{
e2iω′a/c sin θ/2S(ω′, θ)

ω′2

}
=

2

π
P

∫ ∞

0

ω̄

ω̄2 − ω′2
Im

{
e2iω̄a/c sin θ/2S(ω̄, θ)

ω̄2

}
dω̄.

(3.5)
The exponential factor e2iω′a/c sin θ/2 corresponds to a time delay of the light cone
on the right-hand side of Fig. 6. Equivalently, it corresponds to an essential singu-
larity in the scattering amplitude S(ω, θ) at infinite frequency. In particular, the
exponential factor reduces to e2iω′a/c for scattering in the backward direction (i.e.,
monostatic scattering) θ = π. Note that (3.5) can be formulated also as a dispersion
relation with two subtractions, cf., the discussion in Sec. 2.9.

A drawback of (3.5) for θ 6= 0 is that it depends on the choice of origin in Fig. 5,
and that the real and imaginary parts of S(ω′, θ) are mixed on both sides of (3.5)
due to the exponential factor

e2iω′a/c sin θ/2 = cos(2ω′a/c sin θ/2) + i sin(2ω′a/c sin θ/2). (3.6)

The signs of the real and imaginary parts of (3.6) are indefinite, i.e., both terms
in (3.6) take both positive and negative values as ω′ changes. There have been
attempts, however yet unsuccessful, to regard e2iωa/c sin θ/2S(ω, θ)/ω2 as a function
of the two variables ω and ζ = 2ω sin θ/2 for a fixed scattering angle θ 6= 0. The
exponential factor becomes constant for a fixed momentum transfer ζ, and one seeks
a holomorphic continuation of this new function. The difficulties involved in such
an extension are briefly discussed in Refs. 39, 64, and 89. For an overview of the
theory of complex-valued functions in several variables, see Ref. 42.

Jung’s theorem in Ref. 49 can be used to extend (3.5) to include scatterers of
arbitrary shape instead of just spherical symmetric targets. The theorem states
that the radius of the smallest sphere circumscribing a scatterer of diameter D is
less than or equal to

√
6D/4. Equality holds if and only if the scatterer contains the

vertices of a tetrahedron of edge lengths equal to D. Thus, (3.5) can be extended

25Note that the argument of the exponential factor e2iωa/c sin θ/2 is 2iωa
c sin θ

2 . This expression
corresponds to the phase shift obtained when the scattered field is time delayed 2a

c sin θ
2 relative

to the incident field. By invoking this time delay the scattering problem becomes causal since the
scattered field no longer precedes the incident field in the direction characterized by the scattering
angle θ.

26The asymptotic behavior S(ω′, θ) = O(ω′) as ω′ → ∞ is motivated by the forward direction
θ = 0. For non-forward scattering, (3.5) can also be formulated with other weight functions than
1/ω2 which vanish slower at infinity.
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to include scatterers of arbitrary shape if the radius a is replaced by a0 satisfying27

a0 >
√

6

4
D. (3.7)

In particular, (3.5) subject to the static limit ω′ → 0+ yields (recall that S(0, θ) =
limω→0+ S(ω, θ) is real-valued)

lim
ω′→0+

S(ω′, θ)
ω′2

=
2

π

∫ ∞

0

1

ω̄3
Im

{
e2iω̄a0/c sin θ/2S(ω̄, θ)

}
dω̄, (3.8)

where it has been assumed that S(ω′, θ) = O(ω′2) as ω′ → 0+, and that S(ω′, θ)
is sufficiently regular to interchange Cauchy’s principal value and the static limit.28

Thus, passivity and primitive causality implies that (3.8) holds for any a0 that
satisfies (3.7) although the left-hand side of (3.8) is independent of a0.

3.2 Forward dispersion relations

The dispersion relation (3.5) becomes particularly useful when it is applied to the
forward direction θ = 0. In this case, the exponential factor e2iωa/c sin θ/2 becomes
unity, and (3.5) reduces to

S(ω′, 0)

ω′2
=

2

π
P

∫ ∞

0

ω̄

ω̄2 − ω′2
Im S(ω̄, 0)

ω̄2
dω̄. (3.9)

The forward dispersion relation (3.9) is independent of the size of the target and the
choice of origin in Fig. 5. The relation is given experimental significance by invoking
the optical theorem

σext(ω) =
4πc

ω
Im S(ω, 0). (3.10)

The optical theorem states that the scattering amplitude in the forward direction
determines the extinction cross section σext(ω), i.e., the combined effect of absorption
and scattering in all directions. The extinction cross section is defined as the sum of
the scattered and absorbed power divided by the incident power flux. The optical
theorem is common to many disparate scattering phenomena such as acoustic waves,
electromagnetic waves, and elementary particles, see Refs. 64 and 66. A historical
survey of the optical theorem from a century ago to modern applications is given in
Ref. 63.

27Of course, a priori knowledge of the shape of the scatterer improves the bound on a0. For
example, for a sphere it is sufficient that a0 is greater than or equal to D/2, in contrast to (3.7)
which gives the lower bound 0.61D.

28For a non-spherical target, the appearance of sin θ/2 in the exponential factor e2iω′a/c sin θ/2

should be replaced by
√

(1− k̂ · x̂)/2, where k̂ denotes the direction of incidence and x̂ denotes
the direction of observation. The exponential factor then takes the more general form

exp



2i

ω′a0

c

√
1− k̂ · x̂

2



 .
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Figure 7: The extinction cross section in units of 2πa2 for scattering of electro-
magnetic waves by two spheres (solid curve) and a single sphere (dashed curve) in
the perfectly electric conducting limit.

Two numerical examples of the extinction cross section for scattering of elec-
tromagnetic waves in free space are presented below.29 The first geometry consists
of two spheres with radii a/2 and a separated by a distance of 7a/4. The extinc-
tion cross section for this geometry as a function of the scaled frequency variable
ωa/c is depicted in Fig. 7. The background medium is assumed to be free space
and the spheres are modeled by perfectly electric conducting material parameters.
The external excitation is a plane wave impinging along the symmetry axis of the
spheres and the curves in Fig. 7 are depicted in units of 2πa2, i.e., twice the pro-
jected cross section area in the forward direction. The solid curve is the extinction
cross section for the two spheres while the dotted curve represents a single sphere of
radius a. The second geometry consists of two parallel circular disks with radii a/2
and a separated by a distance of a/2. The circular disks are modeled by perfectly
electric conducting material parameters and subject to a plane wave incident along
the symmetry axis of the disks. The solid curve depicts the extinction cross section
for the two disks, while the dotted curve measures the corresponding quantity for a
single disk of radius a. From Figs. 7 and 8 it is plausible that the extinction cross
section approaches twice the projected cross section area in the forward direction,
as suggested by the extinction paradox, see the discussion below.

For many boundary conditions in wave mechanics, including the transmission
problems of acoustic and electromagnetic waves, S(ω′, 0) = O(ω′2) as ω′ → 0+.

29The examples in Figs. 7 and 8 are calculated using the method of moments as described in
Ref. 40.
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Figure 8: The extinction cross section in units of 2πa2 for scattering of electro-
magnetic waves by two parallel circular disks (solid curve) and a single circular disk
(dashed curve) in the perfectly electric conducting limit.

Under this assumption, (3.9) implies30

lim
ω′→0+

S(ω′, 0)

ω′2
=

1

2π2c

∫ ∞

0

σext(ω̄)

ω̄2
dω̄. (3.11)

The forward dispersion relation (3.11) is particularly useful since the sign of the
integrand is definite (recall that the extinction cross section is non-negative since it
is defined as the sum of the scattered and absorbed power divided by the incident
power flux). In addition, both the integrand and the left-hand side of (3.11) have
experimental significance, and the important variational results of D. S. Jones in
Refs. 47 and 48 can be applied to (3.11). Recall that (3.11) holds for arbitrary
targets since it does not contain reference to either the shape or the composition of
the scatterer. Applications of this relation to various problems in theoretical physics,
involving wave interaction with matter, are presented in the appended papers. In
particular, (3.11) is the starting point for the physical bounds on antennas discussed
in Papers IX and X.

Scattering of acoustic (Dirichlet & Neumann) and electromagnetic (PEC) waves
by an impermeable sphere of radius a is illustrated in Fig. 9. In the figure, the ex-
tinction cross section is depicted for both the perfectly electric conducting boundary
condition, and the Neumann and Dirichlet problems for acoustic waves. In addi-
tion, statistics on the acoustic and electromagnetic partial wave decompositions of
the integral in (3.11) are included on the right-hand side of the figure.31 From the

30The extension to other weight functions than 1/ω′2 for a given static limit of S(ω′, 0) is
addressed in Paper VI.

31For an introduction to partial waves in scattering by impermeable spheres, see Ref. 84. Addi-
tional results on the interpretation of (3.11) in terms of partial waves, including a set of peculiar
integral relations for the spherical Bessel and Hankel functions, will be presented in a forthcom-
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Figure 9: Partial wave decomposition of (3.11) for scattering of acoustic and
electromagnetic waves by an impermeable sphere of radius a.

statistics, it is seen that the integral in (3.11) is dominated by the lowest order mul-
tipole term for both the PEC and Neumann boundary conditions. Note, however,
the absence of a monopole term, i.e., zeroth order rotationally symmetric multipole
term, in the electromagnetic case due to a result by Brouwer in algebraic topology,
that a continuous tangential vector field on the unit sphere must vanish somewhere.
Popularly speaking, the theorem suggests that it is impossible to smoothly comb a
hedgehog without leaving a bald spot or making a parting.

The static limit of the Dirichlet condition is the major reason why the upper
curve in Fig. 9 does not satisfy (3.11), see the discussion in Paper VIII. Furthermore,
integration by parts in (3.11) becomes useful when the curves in Fig. 9 a priori are
known to be monotonically increasing. Then a similar identity to (3.11) with a
definite sign in the integrand can be established for the derivative dσext(ω

′)/ dω′.
This technique is feasible for the Neumann problem, but obviously not for the PEC
boundary condition due to its oscillatory behavior.

The fact that the extinction cross sections in Figs. 7, 8, and 9 approach twice
the projected cross section area in the forward direction is known as the extinction
paradox. From geometrical optics, one naively expects, that at short wavelengths a
particle will remove as much energy as is incident upon it. However, in this limit,
geometrical optics is not applicable, since the particle always will have edges in the

ing paper. For example, any passive and causal function ε = ε(κ) satisfying the Kramers-Kronig
relations (2.69) and (2.70) also obeys the integral identity

Re
∫ ∞

0

∞∑

l=1

(2l + 1)
jl(κ)(κε1/2jl(κε1/2))′ − ε(κjl(κ))′jl(κε1/2)
hl(κ)(κε1/2jl(κε1/2))′ − ε(κhl(κ))′jl(κε1/2)

dκ

κ4
= π lim

κ→0+

ε− 1
ε + 2

, (3.12)

where jl and hl denote the spherical Bessel and Hankel functions of the first kind, respectively.
Here, (κfl(κ))′ = κf ′l(κ) + fl(κ) for complex-valued κ with f ′l(κ) = lfl(κ)/κ − fl+1(κ), where fl
denotes any of jl and hl. Similar integral identities can be derived for scattering of acoustic waves.



References 33

neighborhood of where geometrical optics fails to be valid. The paradoxical character
of the short wavelength limit is, e.g., relieved by recalling that the observation is
made at great distance far beyond where a shadow can be distinguished. For a
discussion of the extinction paradox in terms of physical optics, see Refs. 13 and 83.
A more general discussion using the partial wave expansion is given in Ref. 69.
The corresponding paradox in the scattering theory of the Schrödinger equation is
discussed in Ref. 91. Finally, a time-domain approach to the extinction paradox for
scattering of electromagnetic waves is presented in Paper VII.
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Abstract

In this paper, new physical limitations on the extinction cross section and
broadband scattering are investigated. A measure of broadband scattering
in terms of the integrated extinction is derived for a large class of scatterers
based on the holomorphic properties of the forward scattering dyadic. Closed-
form expressions of the integrated extinction are given for the homogeneous
ellipsoids and theoretical bounds are discussed for arbitrary heterogeneous
scatterers. Finally, the theoretical results are illustrated by numerical com-
putations for a series of generic scatterers.

1 Introduction

The relation between the extinction cross section and the forward scattering dyadic,
nowadays known as the optical theorem, dates back to the work of Rayleigh more
than a century ago [28]. Since then, the concept has fruitfully been extended to
high-energy physics where it today plays an essential role in analyzing particle col-
lisions [20]. This is one striking example of how results, with minor modifications,
can be used in both electromagnetic and quantum mechanic scattering theory. An-
other example of such an analogy is presented in this paper, and it is believed that
more analogies of this kind exist, see e.g., the excellent books by Taylor [29] and
Nussenzveig [22].

As far as the authors know, a broadband measure for scattering of electromag-
netic waves was first introduced by Purcell [24] in 1969 concerning absorption and
emission of radiation by interstellar dust. Purcell derived the integrated extinction
for a very narrow class of scatterers via the Kramers-Kronig relations [17, pp. 279–
283]. A slightly different derivation of the same result was done by Bohren and
Huffman [4, pp. 116–117]. In both references it was noticed that the integrated
extinction is proportional to the volume of the scatterer, with proportionality factor
depending only on the shape and the long wavelength limit response of the scatterer.
Based upon this observation, Bohren and Huffman conjecture [4, p. 117]:

Regardless of the shape of the particle, however, it is plausible on physical
grounds that integrated extinction should be proportional to the volume
of an arbitrary particle, where the proportionality factor depends on its
shape and static dielectric function.

Curiosity whether this supposition is true and the generalization of the results to a
wider class of scatterers have been the main driving forces of the present study.

Physical limitations on scattering of electromagnetic waves play an important
role in the understanding of wave interaction with matter. Specifically, numerous
papers addressing physical limitations in antenna theory are found in the literature.
Unfortunately, they are almost all restricted to the spherical geometry, deviating
only slightly from the pioneering work of Chu [5] in 1948. In contrast to antenna
theory, there are, however, few papers addressing physical limitations in scattering
by electromagnetic waves. An invaluable exception is given by the fundamental work
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Figure 1: Illustration of the scattering problem. The scatterer V is subject to a
plane wave incident in the k̂-direction.

of Nussenzveig [21] in which both scattering by waves and particles are analyzed in
terms of causality. Other exceptions of importance for the present paper are the
Rayleigh scattering bounds derived by Jones [10, 11].

The results of Purcell mentioned above are generalized in several ways in this
paper. The integrated extinction is proved to be valid for anisotropic heterogeneous
scatterers of arbitrary shape. Specifically, this quantity is analyzed in detail for
the ellipsoidal geometry. Several kinds of upper and lower bounds on broadband
scattering for isotropic material models are presented. These limitations give a
means of determining if an extinction cross section is realizable or not.

The paper is organized as follows: in Sec. 2, the integrated extinction is derived
for a large class of scatterers based on the holomorphic properties of the forward
scattering dyadic. Next, in Sec. 3, bounds on broadband scattering are discussed
for arbitrary isotropic heterogeneous scatterers. In the following section, Sec. 4,
some closed-form expressions of the integrated extinction are given. Moreover, in
Sec. 5, numerical results on the extinction cross section are presented and compared
with the theoretical bounds. Finally, some future work and possible applications
are discussed in Sec. 6.

Throughout this paper, vectors are denoted in italic bold face, and dyadics in
roman bold face. A hat (̂ ) on a vector denotes that the vector is of unit length.

2 Broadband scattering

The scattering problem considered in this paper is Fourier-synthesized plane wave
scattering by a bounded heterogeneous obstacle of arbitrary shape, see Fig. 1. The
scatterer is modeled by anisotropic constitutive relations [17, Ch. XI] and assumed
to be surrounded by free space. The analysis presented in this paper includes the
perfectly electric conducting material model, as well as general temporal dispersion
with or without a conductivity term.
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2.1 The forward scattering dyadic

The scattering properties of V are described by the far field amplitude, F , defined
in terms of the scattered field, Es, as [15, Sec. 2]

Es(t, x) =
F (c0t− x, x̂)

x
+O(x−2) as x →→∞, (2.1)

where c0 is the speed of light in vacuum, and x̂ = x/x with x = |x|. The far field
amplitude is related to the incident field, Ei(c0t− k̂ · x), which is impinging in the
k̂-direction, via the linear and time-translational invariant convolution

F (τ, x̂) =

∫ ∞

−∞
St(τ − τ ′, k̂, x̂) ·Ei(τ

′) dτ ′. (2.2)

The dimensionless temporal scattering dyadic St is assumed to be causal in the
forward direction, k̂, in the sense that the scattered field cannot precede the incident
field [21, pp. 15–16], i.e.,

St(τ, k̂, k̂) = 0 for τ < 0. (2.3)

The Fourier transform of (2.1) evaluated in the forward direction is

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞, (2.4)

where k is a complex variable in the upper half plane with Re k = ω/c0. Here, the
amplitude of the incident field is E0, and the forward scattering dyadic, S, is given
by the Fourier representation

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ. (2.5)

The imaginary part of k improves the convergence of (2.5) and extends the elements
of S to holomorphic functions in the upper half plane for a large class of dyadics St.
Recall that S(ik, k̂) is real-valued for real-valued k and S(ik, k̂) = S∗(−ik∗, k̂) [21,
Sec. 1.3–1.4].

The scattering cross section σs and absorption cross section σa are defined as the
ratio of the scattered and absorbed power, respectively, to the incident power flow
density in the forward direction. The sum of the scattering and absorption cross
sections is the extinction cross section,

σext = σs + σa. (2.6)

The three cross sections are by definition real-valued and non-negative. The ex-
tinction cross section is related to the forward scattering dyadic, S, via the optical
theorem [20, pp. 18–20]

σext(k) =
4π

k
Im

{
p̂∗e · S(k, k̂) · p̂e

}
. (2.7)
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Figure 2: Integration contour used in the Cauchy integral theorem in (2.8).

Here, k is real-valued, and p̂e = E0/|E0| is a complex-valued vector, independent
of k, that represents the electric polarization, and, moreover, satisfies p̂e · k̂ = 0.

The holomorphic properties of S can be used to determine an integral identity for
the extinction cross section. To simplify the notation, let %(k) = p̂∗e ·S(k, k̂) · p̂e/k

2.
The Cauchy integral theorem with respect to the contour in Fig. 2 then yields

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk, (2.8)

where k in the last integral on the right hand side is real-valued.
The left hand side of (2.8) and the integrand in the first integral on the right

hand side are well-defined in the limit ε → 0 and given by the long wavelength
limit [15, p. 18]

%(iε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) as ε →→ 0. (2.9)

Here, p̂m = k̂ × p̂e denotes the magnetic polarization and γe and γm are the elec-
tric and magnetic polarizability dyadics, respectively, see App. A for their explicit
definitions. These dyadics are real-valued and symmetric. This result also includes
the effect of a conductivity term [15, pp. 49–51].

The second term on the right hand side of (2.8) is assumed to approach zero and
does not contribute in the limit R →∞. This is physically reasonable since the short
wavelength response of a material is non-unique from a modeling point of view [8].
The assumption is also motivated by the extinction paradox [31, pp. 107–113], i.e.,

%(k) = −A(k̂)

2πik

(
1 +O(|k|−1)

)
as |k| → ∞, Im k > 0, (2.10)

where A denotes the projected area in the forward direction.
In the last term on the right hand side of (2.8) it is assumed that % is sufficiently

regular to extend the contour to the real axis. Under this assumption, the real part
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of (2.8) yields

%(0) =
1

π

∫ ∞

−∞

Im %(k)

k
dk =

1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (2.11)

where we have used the optical theorem, (2.7). In this expression λ = 2π/k is the
vacuum wavelength.

In fact, the assumptions on % can be relaxed, and the analysis can be generalized
to certain classes of distributions [21, pp. 33–43]. However, the integral in (2.11) is
classically well-defined for the examples considered in this paper. The relation (2.11)
can also be derived using the Hilbert transform [30, Ch. V].

2.2 The integrated extinction

We are now ready to utilize the main result in the previous section. Moreover, the
properties of the polarizability dyadics are exploited and different material models
are discussed.

Insertion of the long wavelength limit (2.9) into (2.11) yields the integrated
extinction ∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (2.12)

Note that (2.12) is independent of any temporal dispersion, depending only on the
long wavelength limit response of the scatterer in terms of γe and γm. Closed-form
expressions of γe and γm exist for the homogeneous ellipsoids, see Sec. 4. The
polarizability dyadics for more general obstacles are summarized in Kleinman &
Senior [15, p. 31].

For pure electric (γm = 0) and pure magnetic (γe = 0) scatterers, the integrated
extinction depends only on p̂e and p̂m, respectively, and hence not on k̂ = p̂e ×
p̂m. Moreover, the integrated extinction for a scatterer with isotropic polarizability
dyadics, i.e., γe = γeI and γm = γmI, is independent of p̂e and p̂m as well as k̂.

An important model in many applications is the perfectly conducting case (PEC),
which is formally obtained in the long wavelength limit by the limits [15, pp. 39–40]

χe(x) →∞ and χm(x) ↘ −1. (2.13)

Since the long wavelength limit lacks a natural length scale it follows that the
integrated extinction for any heterogeneous scatterer is proportional to the volume
|V | =

∫
V

dv, where dv is the volume measure with respect to x — a result conjec-
tured by Bohren and Huffman [4, p. 117] for spherical scatterers. A brief derivation
of this statement for anisotropic, heterogeneous material parameters is presented in
App. A.

Randomly oriented scatterers are valuable in many applications [24]. The broad-
band scattering properties of an ensemble of randomly oriented scatterers is quan-
tified by the averaged integrated extinction,

∫ ∞

0

σ̄ext(λ) dλ =
π2

3
tr(γe + γm). (2.14)
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An interesting variational result based on (2.14) states that among all isotropic,
homogeneous scatterers of equal volume and susceptibilities, the spherical scatterer
minimizes the averaged integrated extinction [10, Thm. 3].

3 Bounds on broadband scattering

The main result of Sec. 2.2 is now exploited. Firstly, upper and lower bounds on the
integrated extinction utilizing the eigenvalue properties of the polarizability dyadics
are established. These estimates are followed by two additional upper and lower
bounds based on the results of Jones [10, 11].

3.1 Bandwidth estimates

Since the extinction cross section is non-negative, it is clear that for any wavelength
interval Λ ⊂ [0,∞),

|Λ|min
λ∈Λ

σ(λ) 6
∫

Λ

σ(λ) dλ 6
∫ ∞

0

σext(λ) dλ, (3.1)

where |Λ| is the absolute bandwidth and σ denotes any of the extinction, scattering
and absorption cross sections σext, σs, and σa, respectively. This seemingly trivial
estimate gives a fundamental limitation on the product between the bandwidth and
the amplitude of the cross sections, see Fig. 7.

3.2 Increasing material parameters

An important variational result can be established for isotropic material param-
eters with the long wavelength limit response given by the electric and magnetic
susceptibilities, χe(x) and χm(x), respectively. The result states that the inte-
grated extinction increase monotonically with increasing χe(x) and χm(x) for each
x ∈ R3 [11, Thm. 1], i.e.,

χi1(x) 6 χi2(x), x ∈ R3 =⇒
∫ ∞

0

σext1(λ) dλ 6
∫ ∞

0

σext2(λ) dλ, (3.2)

where i = e, m. Recall that Kramers-Kronig relations [17, pp. 279–281] implies that
χe(x) and χm(x) pointwise are non-negative, provided the conductivity is zero. If the
conductivity of the scatterer is non-zero, the electric polarizability dyadic, γe, can be
determined by letting the electric susceptibility becoming infinitely large [15, pp. 49–
50]. As a consequence of (3.2), no heterogeneous scatterer has a larger integrated
extinction than the corresponding homogeneous one with maximal susceptibility.

3.3 Eigenvalue estimates

The static polarizability dyadics γe and γm are real-valued and symmetric, and
hence diagonalizable with real-valued eigenvalues γej and γmj with j = 1, 2, 3, re-
spectively, ordered as γe1 > γe2 > γe3 and γm1 > γm2 > γm3. Since the right hand
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side of (2.12) is the Rayleigh quotients of γe and γm, their largest and smallest
eigenvalues bound (2.12) according to standard matrix theory,1 viz.,

π2(γe3 + γm3) 6
∫ ∞

0

σext(λ) dλ 6 π2(γe1 + γm1), (3.3)

Equality on the left (right) hand side of (3.3) holds when p̂e is a unit eigenvector of
γe with eigenvalue γe3 (γe1) and p̂m simultaneously is a unit eigenvector of γm with
eigenvalue γm3 (γm1).

3.4 Scatterers of arbitrary shape

Broadband scattering in the sense of the integrated extinction is according to (3.3)
directly related to the eigenvalues of the static polarizability dyadics. Lemma 2 in
Jones [11] applied to (3.3) yields

π2

∫

V

χe(x)

χe(x) + 1
+

χm(x)

χm(x) + 1
dv 6

∫ ∞

0

σext(λ) dλ 6 π2

∫

V

χe(x)+χm(x) dv. (3.4)

The bounds in (3.4) are sharp in the sense that equality can be obtained as a limiting
process for certain homogeneous ellipsoids, see Sec. 4.

The right hand side of (3.4) is bounded from above by |V |‖χe + χm‖∞, where
‖f‖∞ = supx∈V |f(x)| denotes the supremum norm. As a consequence, the upper
bound on the integrated extinction for any heterogeneous scatterer is less than or
equal to the integrated extinction for the corresponding homogeneous scatterer with
susceptibilities ‖χe‖∞ and ‖χm‖∞. This observation leads to the conclusion that
there is no fundamental difference on the integrated extinction between scattering
by heterogeneous and homogeneous obstacles.

For weak scatterers in the sense of the Born-approximation, ‖χe + χm‖∞ ¿ 1,
and (3.4) implies

∫ ∞

0

σext(λ) dλ = π2

∫

V

χe(x) + χm(x) dv +O(‖χe + χm‖2
∞), (3.5)

where the Taylor series expansion 1/(1 + x) = 1 +O(x) for |x| < 1 have been used.
Note that (3.5) reduces to a particularly simple form for homogeneous scatterers.

3.5 Star-shaped scatterers

Due to (3.2), it is possible to derive upper bounds on the integrated extinction by
applying the bounds to the corresponding homogeneous scatterer with susceptibil-
ities ‖χe‖∞ and ‖χm‖∞. To this end, assume V is star-shaped in the sense that
KV 6= ∅, where KV is the set of x ∈ V such that for all y ∈ V and 0 6 s 6 1
the straight line x + (1− s)y is contained in V , i.e., if it has an interior point from
which its entire boundary can be seen. For a convex scatterer, KV = V .

1If the eigenvectors corresponding to the largest eigenvalues are the same for the electric and
the magnetic cases, the bounds in (3.3) can be sharpened.
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Figure 3: Geometry for the star-shape parametrization.

A refined upper bound on γe1 and γm1 [10, Thm. 5] applied to (3.3), also taking
into account the shape of V , yields the inequality

∫ ∞

0

σext(λ) dλ 6 π2|V |ψ
( ‖χe‖∞

ψ + ‖χe‖∞ +
‖χm‖∞

ψ + ‖χm‖∞

)
, (3.6)

where the geometrical factor ψ is defined by

ψ =
3

|V | max
j

∫

S

(êj · r)2

r · ν̂ dS 6 9

|V |
∫

S

r2

r · ν̂ dS. (3.7)

Here, êj denote mutually orthonormal vectors and dS is the surface measure of S
with respect to r (S is the bounding surface of V ). The denominator in (3.7) is the
distance from the tangent plane to the origin, see Fig. 3. The upper bound in (3.7)
is independent of the coordinate system orientation but depends on the location of
the origin.

Furthermore, the right hand side of (3.6) is bounded from above by either ‖χe‖∞
and ‖χm‖∞ or ψ. The first case yields (3.4) for a homogeneous scatterer (material
parameters ‖χe‖∞ and ‖χm‖∞), while the latter implies

∫ ∞

0

σext(λ) dλ 6 2π2|V |ψ, (3.8)

irrespectively of the material parameters of V . By comparing (3.4) with (3.8), it
is clear that (3.8) provides the sharpest bound when 2ψ < ‖χe + χm‖∞. Note
that (3.2) implies that it is possible to evaluate (3.7) for any surface circumscribing
the scatterer V .

The geometrical factor for the oblate spheroid is ψ = 3(4 + ξ−2)/5 and for the
prolate spheroid ψ = 3(3 + 2ξ−2)/5 (the origin at the center of the spheroid), where
ξ ∈ [0, 1] is the ratio of the minor to the major semi-axis. In particular, ψ = 3 for the
sphere. The bound in (3.6) is isoperimetric since equality holds for the homogeneous
sphere, see Sec. 4. The geometrical factor ψ for the circular cylinder of radius b and
length ` is2 ψ = max {3 + 3b2/`2, 3 + `2/2b2}.

2This expression deviates from the result of Jones [10].



4 Homogeneous ellipsoidal scatterers 49

3.6 Jung’s theorem

Jung’s theorem [13] gives an optimal upper bound on the radius of a bounded subset
V ⊂ R3 in terms of its diameter, diam V . The theorem states that V is contained
in the unique sphere of radius RV 6

√
6/4 diam V , with equality if and only if the

closure of V contains the vertices of a tetrahedron of edge lengths equal to diam V .
Since ψ = 3 for the sphere and |V | is bounded from above by the volume of the
sphere of radius RV , (3.6) yields

∫ ∞

0

σext(λ) dλ 6 π33
√

6

8
(diam V )3

( ‖χe‖∞
3 + ‖χe‖∞ +

‖χm‖∞
3 + ‖χm‖∞

)
. (3.9)

The right hand side of (3.9) can be estimated from above independently of the
material parameters. We get

∫ ∞

0

σext(λ) dλ 6 π33
√

6

4
(diam V )3, (3.10)

which is useful in cases where the right hand side of (3.8) diverges.
In this section, we have applied Jung’s theorem to a sphere circumscribing the

scatterer. There are, however, other choices of circumscribing surfaces that can be
utilized [9].

4 Homogeneous ellipsoidal scatterers

For homogeneous, anisotropic ellipsoidal scatterers with susceptibility dyadics χe

and χm, closed-form expressions of γe and γm exist [12], viz.,

γi = |V |χi · (I + L · χi)
−1, i = e, m (4.1)

where L and I are the depolarizing and unit dyadics in R3, respectively. In terms
of the semi-axes aj in the êj-direction, the volume |V | = 4πa1a2a3/3. The depo-
larizing dyadic has unit trace, and is real-valued and symmetric [32], and, hence,
diagonalizable with real-valued eigenvalues. Its eigenvalues are the depolarizing fac-
tors Lj [6, 23]

Lj =
a1a2a3

2

∫ ∞

0

ds

(s + a2
j)

√
(s + a2

1)(s + a2
2)(s + a2

3)
, j = 1, 2, 3. (4.2)

The depolarizing factors satisfy 0 6 Lj 6 1 and
∑

j Lj = 1.
Closed-form expressions of (4.2) exist in the special case of the ellipsoids of

revolution, i.e., the prolate and oblate spheroids. In terms of the eccentricity e =√
1− ξ2, where ξ ∈ [0, 1] is the ratio of the minor to the major semi-axis, the

depolarizing factors are (symmetry axis along the ê3-direction)

L1 = L2 =
1

4e3

(
2e− (1− e2) ln

1 + e

1− e

)
, L3 =

1− e2

2e3

(
ln

1 + e

1− e
− 2e

)
, (4.3)
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and

L1 = L2 =
1− e2

2e2

(
−1 +

arcsin e

e
√

1− e2

)
, L3 =

1

e2

(
1−

√
1− e2

e
arcsin e

)
, (4.4)

for the prolate and oblate spheroids, respectively. In particular, Lj = 1/3 for the
sphere.

The integrated extinction for anisotropic homogeneous ellipsoidal scatterers is
given by (4.1) inserted into (2.12). The result is

∫ ∞

0

σext(λ) dλ = π2|V |
∑

i=e,m

p̂∗i · χi · (I + L · χi)
−1 · p̂i. (4.5)

For isotropic material parameters, χe = χeI and χm = χmI, (4.5) reduces to

∫ ∞

0

σext(λ) dλ = π2|V |
3∑

j=1

(
κejχe

1 + χeLj

+
κmjχm

1 + χmLj

)
, (4.6)

where κej = |p̂e · êj|2 and κmj = |p̂m · êj|2 are the polarization vectors projected onto
the mutually orthonormal vectors êj. Note that

∑
j κej =

∑
j κmj = 1, and that the

averaged integrated extinction is characterized by κej = κmj = 1/3. For prolate and
oblate spheroids, which are axially symmetric with respect to the ê3-axis, a plane
wave incident at an angle θ to this axis, yields





κe1 + κe2 = 1

κe3 = 0

κm1 + κm2 = cos2 θ

κm3 = sin2 θ

(TE)





κm1 + κm2 = 1

κm3 = 0

κe1 + κe2 = cos2 θ

κe3 = sin2 θ

(TM) (4.7)

In the limit as the volume goes to zero, the integrated extinction vanishes for a
scatterer with finite susceptibilities. To obtain a non-zero integrated extinction, the
scatterer has either to be conducting or evaluated in the high-contrast limit, see e.g.,
the PEC disk below. In the long wavelength PEC limit, see (2.13), the integrated
extinction becomes

∫ ∞

0

σext(λ) dλ = π2|V |
3∑

j=1

(
κej

Lj

− κmj

1− Lj

)
. (4.8)

The right hand side of (4.6) is bounded from above by χi and from below by
χi/(1 + χi). The bounds in (3.4) are sharp in the sense that χi and χi/(1 + χi) are
obtained at arbitrary precision for the infinite needle and disk of constant volume |V |,
respectively. In fact, the upper bound holds for an infinite needle oriented along the
ê3-direction (L1 + L2 = 1) with parallel polarization (κi3 = 1). The corresponding
equality for the lower bound holds for the infinite disk with unit normal vector ê3

(L3 = 1) and parallel polarization (κi3 = 1).
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Figure 4: The integrated extinction (4.10) in units of a3 as function of the semi-
axis ratio ξ for the PEC elliptic disk. The notations TE(θ, φ) and TM(θ, φ) refer to
the TE- and TM-polarizations for θ, φ ∈ {0, π/4, π/2}.

A simple example of (4.6) is given by the homogeneous sphere for which the inte-
grated extinction is equal to 3π2|V |∑i χi/(χi+3) independent of κej and κmj, which
also is the result of Bohren and Huffman for the non-magnetic case [4, p. 117]. In
particular, the PEC limit (2.13) implies that the integrated extinction for the sphere
is equal to 3π2|V |/2. Similar results for stratified dielectric spheres are obtained us-
ing recursive compositions of Möbius transformations. For the case of two layers,
see Sec. 5.5.

The integrated extinction for the PEC elliptic disk is given by (4.8), and the inte-
grals in (4.2), as the semi-axis a3 approaches zero, are available in the literature [6, p.
507], [23]. The result is





L1/|V | = 3

4πa3e2
(K− E)

L2/|V | = 3

4πa3e2

(
E/(1− e2)−K

)

(L3 − 1)/|V | = − 3E

4πa3(1− e2)

(4.9)

where a is the major semi-axis, and E = E(e2) and K = K(e2) are the complete
elliptic integrals of first and second kind, respectively [1, p. 590]. We obtain

∫ ∞

0

σext(λ) dλ =
4π3a3

3





B cos2 φ + C sin2 φ− A sin2 θ (TE)

(
B sin2 φ + C cos2 φ

)
cos2 θ (TM)

(4.10)

where θ and φ are the spherical angles of the incident direction, k̂. The factors A,
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Figure 5: The integrated extinctions for the Platonic solids based on MoM-
calculations [25]. The Platonic solids are from left to right the tetrahedron, hexa-
hedron, octahedron, dodecahedron and icosahedron, with 4, 6, 8, 12 and 20 faces,
respectively.

B, and C are defined as

A =
1− e2

E
, B =

e2(1− e2)

E− (1− e2)K
, C =

e2

K− E
. (4.11)

Note that the TM-polarization vanishes for θ = π/2 independently of φ ∈ [0, 2π).
The integrated extinction (4.10) can also be derived from the long wavelength limit
of the T-matrix approach [3].

The integrated extinction in the right hand side of (4.10) as function of ξ is
depicted in Fig. 4. Note the degeneracy of the integrated extinction at the end
points ξ = 0 and ξ = 1, corresponding to the PEC needle of length 2a and the PEC
circular disk of radius a, respectively.

5 Numerical results

In this section, we illustrate the theoretical results obtained above by several nu-
merical examples. Specifically, we calculate the extinction cross sections and the
eigenvalues of the polarizability dyadics for a set of scatterers with isotropic mate-
rial parameters. These results are then compared to the theoretical results presented
in Secs. 2, 3, and 4.

5.1 Platonic solids

Since the homogeneous Platonic solids are invariant under a set of appropriate point
groups, their polarizability dyadics are isotropic. By (2.12) this implies that the
integrated extinctions are independent of both polarization and incident direction.
The five Platonic solids are depicted in Fig. 5, see also Tab. 1, together with the
integrated extinctions in the non-magnetic, high-contrast limit, i.e., χe →∞.

A common lower bound on the integrated extinctions in Fig. 5 is obtained by (4.6)
for the volume-equivalent sphere. This lower bound is motivated by Jones’ result [10,
Thm. 3], and the fact that the polarizability dyadics are isotropic. The result is
14.80|V |.
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Platonic solids γe/|V | γe/a
3 Int. ext. |V |/a3

Tetrahedron 5.03 0.593 49.6|V | √
2/12

Hexahedron 3.64 3.64 35.9|V | 1

Octahedron 3.55 1.67 35.0|V | √
2/3

Dodecahedron 3.18 24.4 31.4|V | (15 + 7
√

5)/4

Icosahedron 3.13 6.83 30.9|V | 5(3 +
√

5)/12

Table 1: The eigenvalues γe and the integrated extinction for the Platonic solids
in units of |V | in the high-contrast limit χe →∞. The last column gives the volume
of the Platonic solids expressed in the edge length a.

Upper bounds on the integrated extinctions are given by the smallest circum-
scribing high-contrast spheres, which based on solid geometry are found to be
241.60|V |, 80.54|V |, 61.98|V |, 44.62|V | and 48.96|V | for the tetrahedron, hexahe-
dron, octahedron, dodecahedron and icosahedron, respectively, see (3.2). The upper
and lower bounds are seen to be quite close to the numerical values presented in
Fig. 5, at least for the dodecahedron and icosahedron, which do not deviate much
from the volume-equivalent sphere. Since the Platonic solids are star-shaped with
respect to all interior points, a somewhat different set of upper bounds can be derived
from (3.6).

5.2 Dielectric spheroids

The averaged extinction cross section, σ̄ext, as function of the radius ka for a prolate
and oblate spheroid is illustrated in Fig. 6. The solid curve depicts the averaged ex-
tinction cross section (equal to the extinction cross section) for the volume-equivalent
sphere of radius a, and the dashed and dotted curves correspond to the prolate and
oblate spheroids, respectively, of semi-axis ratio ξ = 1/2. The scatterers are non-
magnetic with electric susceptibility χe = 1. Note that the largest variation of the
curves in Fig. 6 occurs for the sphere due to the fact that its extinction cross section
is independent of the polarization and the direction of incidence, which implies that
no resonances are averaged out in contrast to the case for the prolate and oblate
spheroids.

The numerically integrated averaged extinction cross sections for ka ∈ [0, 20]
agree within relative errors of 1.2% with the theoretical values 7.46|V | and 7.48|V |
based on (4.6) for the prolate and oblate spheroids, respectively. The corresponding
values for the sphere are 0.7% and 7.40|V |. The calculations are based on the T-
matrix approach [19].

According to Sec. 2, a lower bound on the averaged integrated extinctions for the
spheroids is 7.40|V | corresponding to the volume-equivalent sphere. Based on (3.4),
lower and upper bounds common to the three curves in Fig. 6 are 4.93|V | and
9.87|V |, respectively. Using the star-shaped bound (3.6), these upper bounds are
improved to 8.57|V | and 8.17|V | for the prolate and the oblate spheroids, respec-
tively. Both the lower and upper bounds are reasonable close to the theoretical



54 Paper I: Physical limitations on broadband scattering. . .

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ka

¾ext=¼a2{

Figure 6: The averaged extinction cross section, σ̄ext, in units of πa2 as function
of ka for a prolate (dashed) and oblate (dotted) non-magnetic spheroid with electric
susceptibility χe = 1 and semi-axis ratio ξ = 1/2. The extinction cross section for
the volume-equivalent sphere of radius a (solid) is included.

values.

5.3 Lorentz dispersive circular cylinder

The averaged extinction cross section, σ̄ext, as function of the frequency for a Lorentz
dispersive circular cylinder is depicted in Fig. 7. The ratio of the cylinder length `
to its radius b is `/b = 2. The cylinder is non-magnetic with electric susceptibility
given by the Lorentz model [4, Sec. 9.1]

χe(ω) =
ω2

p

ω2
0 − ω2 − iων

, (5.1)

where ωp is the plasma frequency, ν the collision frequency and ω0 the resonance
frequency. Explicit values of ωp, ω0 and ν are ωp = ω0 = 4π · 109 rad/s, ν =
0.7 · 109 rad/s, and ωp = ω0 = 20π · 109 rad/s, ν = 1010 rad/s, respectively. The
Lorentz parameters are chosen such that all three curves in the left figure have
the same long wavelength susceptibility χe = χe(0) = 1. The first two curves with
peaks at 2 GHz and 10 GHz depict the dispersive case, while the third for comparison
illustrates the results for the non-dispersive case. The three curves in the left figure
have the same integrated extinctions, since their long wavelength susceptibilities
coincide. The calculation is based on the T-matrix approach [19].

A numerical calculation of the eigenvalues of the polarizability dyadic for the
dielectric cylinder is performed by adopting the finite element method (FEM). The
results are 0.773|V |, 0.749|V |, and 0.749|V |. This result implies that the numerically
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Figure 7: The averaged extinction cross section, σ̄ext, in units of πa2 as function of
the frequency in GHz for a non-magnetic Lorentz dispersive circular cylinder with
volume-equivalent sphere of radius a = 1 cm. The three curves in the left figure
have the same long wavelength response χe = 1. The first two curves with peaks at
2 GHz and 10 GHz are Lorentz dispersive, while the third curve is non-dispersive.
The right figure is a close-up of the 2 GHz peak in the left figure.

computed averaged extinction cross section, σ̄ext, in (2.14) is 7.47|V |. The numer-
ically calculated integrated extinction in the interval f ∈ [0, 70] GHz is 7.43|V | for
the first, and 7.44|V | for the second curve in Fig. 7.

Common lower and upper bounds on the integrated extinctions based on (3.4) are
4.94|V | and 9.87|V |, respectively. A sharper lower bound is 7.40|V | corresponding
to the volume-equivalent sphere. An upper bound can for comparison be obtained
from (3.6). For `/b = 2 this implies ψ = 5 and the upper bound 8.23|V |, which is
sharper than the bound based on (3.4).

The figure on the right hand side of Fig. 7 is a close-up of the 2 GHz peak.
The boundary curve of the box corresponds to an artificial scatterer with averaged
extinction cross section supported at the peak, i.e., for an averaged extinction cross
section that vanishes everywhere outside the box. The integrated extinction for
the boundary curve of the box and the three curves in the left hand side of Fig. 7
coincide.

5.4 Debye dispersive non-spherical raindrop

The averaged extinction cross section, σ̄ext, as function of the frequency for a falling
raindrop is depicted in Fig. 8. The axially symmetric drop is parameterized by the
polar angle θ and the radial distance

r(θ) = r0

(
1 +

10∑

k=0

ck cos kθ

)
, (5.2)

where r0 is determined from the condition of the volume-equivalence with the sphere
of radius a, i.e., |V | = 2π

3

∫ π

0
r3(θ) sin θ dθ with |V | = 4πa3/3. The radius of the
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Figure 8: The averaged extinction cross section, σ̄ext, in units of πa2 as function
of the frequency in GHz for a raindrop of volume-equivalent radius a = 2 mm. The
smooth curve is for the Debye-model (5.3), while the oscillatory curve is for the
non-dispersive case. The two curves have the same long wavelength response and
therefore also the same integrated extinctions.

volume-equivalent sphere used in Fig. 8 is a = 2 mm with associated shape co-
efficients c0 = −0.0458, c1 = 0.0335, c2 = −0.1211, c3 = 0.0227, c4 = 0.0083,
c5 = −0.0089, c6 = 0.0012, c7 = 0.0021, c8 = −0.0013, c9 = −0.0001 and
c10 = 0.0008 [2]. The calculation is based on the T-matrix approach [19].

The smooth curve in Fig. 8 is for the non-magnetic Debye model [4, Sec. 9.5]

χe(ω) = χ∞ +
χs − χ∞
1− iωτ

, (5.3)

where τ is the relaxation time and χ∞ and χs are the short and long wavelength
susceptibilities, respectively. Pure water at 20◦C is considered with χs = 79.2,
χ∞ = 4.6 and τ = 9.36 ps [14, p. 43]. The curve with largest variation is for the
non-dispersive case with an susceptibility identical to the long wavelength limit, χs,
of (5.3).

Since the long wavelength susceptibilities coincide for the two curves in Fig. 8,
their integrated extinctions are equal according to (2.14). The eigenvalues of the
polarizability dyadics for the raindrop can be obtained by numerical computations.
A finite element method (FEM) computation gives the three eigenvalues: 2.43|V |,
3.21|V |, and 3.21|V |, respectively. This result implies that the numerically com-
puted averaged extinction cross section, σ̄ext, in (2.14) is 29.1|V |. If we numerically
integrate the average extinction cross section in Fig. 8 over f ∈ [0, 100] GHz, we get
26.4|V | for the dispersive and 25.6|V | for the non-dispersive curve, respectively. The
reason why the numerically integrated extinctions are about 10% below the FEM
values is due to the finite integration interval.
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Figure 9: The extinction cross section, σext, in units of 2πa2 as function of the
radius ka for a dielectric stratified sphere with two layers of equal volume. The
electric and magnetic susceptibilities are χe1 = 2 and χm1 = 1 for the core and
χe2 = 1 and χm2 = 2 for the outer layer.

Lower and upper bounds on the integrated extinctions, given by (3.4), are 9.75|V |
and 782|V |, respectively, which are rather crude. A more accurate lower bound
is given by the non-magnetic, volume-equivalent sphere with static susceptibilities
χe = χs, for which (4.6) yields 28.5|V |. The star-shaped bound in Sec. 3.5 is also
applicable. The result for the raindrop is 32.15|V |. We observe that both the lower
and upper bounds approximate the true value very well.

5.5 Dielectric stratified sphere

Due to spherical symmetry, the polarizability dyadics of a stratified sphere are
isotropic and easily computed by recursive applications of Möbius transformations.
In particular, the integrated extinction for two layers with electric and magnetic sus-
ceptibilities χe1 and χm1 in the core, and χe2 and χm2 in the outer layer, respectively,
is

∫ ∞

0

σext(λ) dλ = 3π2|V |
∑

i=e,m

χi2(χi1 + 2χi2 + 3) + ς3(2χi2 + 3)(χi1 − χi2)

(χi2 + 3)(χi1 + 2χi2 + 3) + 2ς3χi2(χi1 − χi2)
, (5.4)

where ς is the ratio of the inner to the outer radius. The special cases ς = 0 and ς = 1
correspond to homogeneous spheres with susceptibilities χi2 and χi1, respectively,
see Sec. 4. Moreover, both χi1 = χi2 and χi2 = 0 yield the homogeneous sphere of
susceptibility χi1, with the volume of the sphere being a fraction ς3 of the volume
|V | in the latter case.

The extinction cross section, σext, as function of the radius ka for the stratified
sphere with two layers of equal volume, ς = 1/ 3

√
2, is depicted in Fig. 9. The used
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susceptibilities are χe1 = 2 and χm1 = 1 in the core, and χe2 = 1 and χm2 = 2 in
the outer layer. The calculations are based on the Mie-series approach [18]. Note
that the curve in Fig. 9 approaches twice the geometrical cross section area in the
short wavelength limit. Compare this observation with the extinction paradox [31,
pp. 107–108].

The numerically integrated extinction is 19.1|V | for ka ∈ [0, 30] and 19.3|V | for
ka ∈ [0, 100], with relative errors of 1.7% and 0.5%, respectively, compared to the
theoretical value 19.4|V | given by (5.4).

Lower and upper bounds on the integrated extinction based on the inequal-
ity in (3.2) are 14.8|V | and 23.7|V |, respectively, corresponding to the volume-
equivalent homogeneous sphere with minimal and maximal susceptibilities, infx∈V χi

and supx∈V χi, respectively. Note that this upper bound coincides with the one ob-
tained from (3.6), but that both the lower and upper bounds based on (3.2) are
sharper than the ones given by (3.4).

5.6 PEC circular disk

The integrated extinction for the PEC circular disk of radius a is given by (4.10) in
the limit ξ → 1. The result is

∫ ∞

0

σext(λ) dλ =
8π2a3

3





1 + cos2 θ (TE)

2 cos2 θ (TM)

(5.5)

The right hand side of (5.5) can also be derived from the long wavelength limit of
the T-matrix approach [16].

The extinction cross section, σext, as function of the radius ka for the PEC
circular disk is depicted in Fig. 10. The notations TE(θ) and TM(θ) refer to the TE-
and TM-polarizations, respectively, and the stars denote the short wavelength limit
cos θ given by the extinction paradox [31, pp. 107–108]. Note the degeneracy of both
polarizations for normal incidence, and that the extinction cross section vanishes
identically for TM(π/2). The calculation is based on the T-matrix approach [16].

To find the numerically integrated extinctions, the integration interval ka ∈
[0, 15] does not suffice to get reasonable accuracy. However, by extending the in-
tegrand above ka = 15 by the expected short wavelength limit, we obtain relative
errors of 0.5% compared to the exact results of (5.5).

The bounds discussed in Sec. 3 are not directly applicable to the PEC circular
disk since the disk has zero volume. However, a crude upper bound is obtained by
the circumscribing PEC sphere. The result is 1.5π2, in units of the volume of the
circumscribing sphere. Compare this with the exact results of (5.5) in terms of the
volume of the circumscribing sphere — the factor 1.5 for the circumscribing sphere
is to be compared with 4/π ≈ 1.27 at θ = 0 incidence.
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Figure 10: The extinction cross section, σext, in units of 2πa2 as function of the
radius ka for the PEC circular disk. The solid and dashed lines are for the TE- and
TM-polarizations, respectively, and the stars denote the short wavelength limits
cos θ.

5.7 PEC needle

The integrated extinction for the PEC needle of length 2a oriented along the ê3-
direction is given by (4.3) and (4.8) in the limit ξ → 0. The result is

∫ ∞

0

σext(λ) dλ =
4π3a3

3





O(ξ2) (TE)

sin2 θ

ln 2/ξ − 1
+O(ξ2) (TM)

(5.6)

The right hand side of (5.6) can also be derived from the long wavelength limit of
the T-matrix [3].

The integrated extinction (5.6) is seen to vanish for both polarizations in the
limit ξ → 0. Since the extinction cross section is non-negative, this implies that
it vanishes almost everywhere except on a set of measure zero consisting of the
denumerable resonances for which an integer multiple of λ/2 coincides with the
length of the needle. This result is illustrated numerically in Fig. 11, which shows
the extinction cross section, σext, for the PEC needle for the TM-polarization at
normal incidence. Note that, due to symmetry, only resonances corresponding to ka
equal to an odd multiple of π/2 are excited at normal incidence. The numerically
integrated extinctions in Fig. 11 agree well with (5.6). The relative errors are less
than 0.5% with an integration interval ka ∈ [0, 12] for the three curves.
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Figure 11: The extinction cross section, σext, in units of 2πa2 as function of ka
for the PEC needle of length 2a. The needle is approximated by a prolate spheroid
with semi-axis ratio 10−3 for the outermost, 10−5 for the intervening, and 10−7 for
the innermost curve. The calculation is based on the T-matrix approach [3].

6 Concluding remarks

The integrated extinction is an example of what is referred to in modern physics as
a dispersion relation [21]. The basic idea for the dispersion relations is that certain
linear and causal physical quantities with known high-frequency (short wavelength)
asymptotic are boundary values of holomorphic functions of one or more complex
variables.

The major results of this paper are the proof and illustrations of the integrated
extinction for linear, passive, and anisotropic scatterers. It is shown that the inte-
grated extinction is monotonically increasing in the material properties. Moreover,
the electric and magnetic material properties contribute equally to the integrated ex-
tinction. It is also shown that the integrated extinction is useful in deriving physical
limitations on broadband scattering.

The integrated extinction is particularly important from an antenna point of
view, since it generalizes the physical limitations on the antenna performance de-
rived by Chu [5] for the smallest circumscribing sphere. These new limitations,
which can be shown to relate bandwidth and directivity of any antenna in terms
of volume and shape, are reported in [7]. The integrated extinction is also of great
interest in applications to broadband scattering by artificial material models such
as metamaterials. In this application, it provides physical limitations on scattering
by general material models [27]. Moreover, the bounds presented in Sec. 3 may be
of use to bound material parameters in inverse scattering problems. All these ap-
plications to material modeling and inverse scattering problems are currently under
investigation, and will be reported in forthcoming papers.
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Additional theoretical work on the integrated extinction also includes bi-aniso-
tropy and diamagnetics, which will be reported elsewhere. Finally, it should be
noted that the concept of the integrated extinction with minor changes also holds
in linear acoustics [26].
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Appendix A The polarizability dyadics

For an anisotropic scatterer modeled by the material dyadic τ (electric susceptibility
dyadic χe without a conductivity term, or magnetic susceptibility dyadic χm), the
total electric field E (similarly for the magnetic field H) satisfies

{
∇×E(x) = 0

∇ · ((τ (x) + I) ·E(x)) = 0
x ∈ R3 (A.1)

Here, τ is assumed to be a symmetric dyadic at all points x and sufficiently regular
to justify the operations below.

Decompose the total field E as Ej = E0êj +Esj, where j = 1, 2, 3. The pertinent
partial differential equation for the scattered field Esj is then

{
∇×Esj(x) = 0

∇ · ((τ (x) + I) ·Esj(x)) = −E0∇ · (τ (x) · êj)
x ∈ R3 (A.2)

together with the asymptotic condition Esj(x) → O(|x|−3) as |x| → ∞.
The first condition in (A.2) implies that there exists a potential Φj related to

the scattered field as Esj = −∇Φj satisfying

{
∇ · ((τ (x) + I) · ∇Φj(x)) = E0∇ · (τ (x) · êj)

Φj(x) → O(|x|−2) as |x| → ∞ x ∈ R3 (A.3)

This problem has a unique solution. The entries of the polarizability dyadic γ (γe or
γm depending on whether the problem is electric or magnetic) is then (i, j = 1, 2, 3)

êi · γ · êj =
1

E0

êi ·
∫

R3

τ (x) ·Ej(x) dv. (A.4)

Scale this solution by a factor α, i.e., let x −→ x′ = αx, with material dyadic
τ ′(x′) = τ (x), and denote the solution to the new problem by Φ′

j(x
′). The new

problem then satisfies
{
∇′ · ((τ ′(x′) + I) · ∇′Φ′

j(x
′)
)

= E0∇′ · (τ ′(x′) · êj)

Φ′
j(x

′) → 0 as |x′| → ∞ x′ ∈ R3 (A.5)
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or in the unscaled coordinates{
α−2∇ · ((τ (x) + I) · ∇Φ′

j(αx)
)

= E0α
−1∇ · (τ (x) · êj)

Φ′
j(αx) → 0 as |x| → ∞ x ∈ R3 (A.6)

Due to the unique solubility of the boundary value problem (A.3), Φ′
j(x

′) = αΦj(x),
and consequently E′

j(x
′) = Ej(x) = Ej(x

′/α). The polarizability dyadic for the
scaled problem then becomes

êi · γ ′ · êj = êi ·
∫

R3

τ ′(x′) ·E′
j(x

′) dv = α3êi ·
∫

R3

τ (x) ·Ej(x) dv, (A.7)

and we see that γ scales with the volume |V | ∼ α3.

A.1 Symmetry

The polarizability dyadic γ is symmetric, since τ is assumed symmetric at all points
x. In fact, from (A.4),

êi · γ · êj = êi ·
∫

R3

τ (x) · êj dv − 1

E0

êi ·
∫

R3

τ (x) · ∇Φj(x) dv. (A.8)

The last integral in (A.8) is rewritten as

êi ·
∫

R3

τ (x) · ∇Φj(x) dv

=

∫

R3

∇ · (êi · τ (x)Φj(x)) dv −
∫

R3

∇ · (êi · τ (x)) Φj(x) dv

= −
∫

R3

∇ · (τ (x) · êi) Φj(x) dv

= − 1

E0

∫

R3

∇ · ((τ (x) + I) · ∇Φi(x)) Φj(x) dv,

(A.9)

due to (A.3) provided τ is symmetric at all points x. Furthermore,

êi ·
∫

R3

τ (x) · ∇Φj(x) dv

= − 1

E0

∫

R3

∇ · {((τ (x) + I) · ∇Φi(x)) Φj(x)} dv

+
1

E0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dv

=
1

E0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dv.

(A.10)

The polarizability dyadic (A.8) therefore becomes

êi · γ · êj = êi ·
∫

R3

τ (x) · êj dv − 1

E2
0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dv,

(A.11)
which clearly is symmetric in the indices i and j if τ is symmetric at all points x.
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A.2 High-contrast limit

In the high-contrast limit, when the entries of the material dyadic become infinitely
large independent of x, the appropriate surface integral representation of the polar-
izability dyadic is [15, p. 22]

êi · γ · êj =
1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x)− xν̂(x) · ∇Φj(x)) dS, (A.12)

where Sn, n = 1, 2, . . . , N denote the bounding surfaces (outward-directed unit
normal ν̂) of the domain outside the material (we assume that τ is compactly
supported). Moreover, Ψj(x) = Φj(x)− E0xj, is the solution to (n = 1, 2, . . . , N)





∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇ Ψj(x)|+ dS = 0

Ψj(x) → −E0xj +O(|x|−2) as |x| → ∞
(A.13)

With similar arguments as above, we find that the eigenvalues of the high-contrast
polarizability dyadic also scale with the volume. For the relation with the capaci-
tance concept, we refer to [15].
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[18] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.
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Abstract

A limitation on the extinction cross section, valid for all scatterers satisfy-
ing some basic physical assumptions, is investigated. The physical bound is
obtained from the holomorphic properties of the forward scattering dyadic.
The analysis focuses on the consequences for engineered composite materi-
als with negative permittivity and permeability, i.e., metamaterials. From a
broadband point of view, the limitations imply that there is no fundamental
difference between metamaterials and ordinary materials with respect to scat-
tering and absorption. The analysis is illustrated by three numerical examples
of metamaterials modeled by temporal dispersion.

1 Introduction

Since the investigation of negative refractive index materials by V. G. Veselago in
Ref. 14, there has been an enormous theoretical and experimental interest in the
possibilities of such materials. These materials are often referred to as metamateri-
als, even though a metamaterial in general is a much broader concept of a structured
material, and not necessarily composed of materials with negative permittivity and
permeability values. Negative refractive index materials seem not to occur naturally,
and if they can be manufactured, they are often claimed to possess extraordinary
properties promising for various physical applications, see Refs. 9 and 11, and ref-
erences therein.

The scattering properties of obstacles consisting of metamaterials have been of
considerable scientific interest during the last decade. Mostly canonical geometries,
such as concentric spheres and cylinders, see e.g., Ref. 10, have been employed, and
designs of scatterers that both increase and decrease the scattering properties have
been reported in the literature.

The analysis presented in this paper shows that, from a broadband point of view,
the scattering and absorption properties of any material (not just metamaterials)
that satisfies certain basic physical assumptions, are limited by the static electric
and magnetic behavior of the composed materials. In particular, it is shown that,
when these bounds are applied to low-frequency resonances of metamaterials, large
scattering effects have to be traded for bandwidth. Specifically, the lower the reso-
nance frequency, the higher its Q-value. For a single frequency, metamaterials may
possess exceptional characteristics, but, since bandwidth is essential in many appli-
cations, it is important to study metamaterials over a frequency interval, and with
physically realistic dispersion models.

The results presented in this paper are independent of how the material that
constitutes the scatterer is constructed or produced. This broad range of material
models is a consequence of the fact that the analysis is solely based on the principles
of causality and power conservation applied to a set of linear, passive, and time-
translational invariant constitutive relations.

This paper is a direct application of the theory for broadband scattering intro-
duced in Ref. 12. In addition to material modeling, the theory has also been applied
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successfully to physical bounds on arbitrary antennas in Refs. 1 and 3. The under-
lying mathematical description for broadband scattering is motivated by the study
of causality and dispersion relations in the scattering theory of waves and particles
in Refs. 7 and 8.

2 Derivation of the integrated extinction

Consider a localized and bounded scatterer with support V ⊂ R3 of arbitrary shape.
The electromagnetic field in V is modeled by the Maxwell equations with general
heterogeneous and anisotropic constitutive relations. The constitutive relations are
expressed in terms of the electric and magnetic susceptibility dyadics, χe and χm,
respectively. Due to the heterogeneous character of χe and χm, V can be interpreted
both as a single scatterer and as a set of multiple scatterers. The present analysis
includes the perfectly electric conducting material model as well as general temporal
dispersion with or without a conductivity term. The analysis can also be extended
with minor changes to bi-anisotropic materials with the same conclusions drawn.

The direct scattering problem addressed in this paper is Fourier-synthesized
plane wave scattering by V (time dependence e−iωt, where ω ∈ [0,∞) denotes the
angular frequency). The incident wave is assumed to impinge in the k̂-direction
with an electric field Ei depending only on the difference τ = c0t − k̂ · x, where
x denotes the position vector in space. Introduce the far-field amplitude F via
Es = F (c0t− x; x̂)/x +O(x−2) as x →∞, where Es represents the scattered elec-
tric field. Under the assumption that the constitutive relations of V are linear and
time-translational invariant, F is given by the convolution

F (τ ; x̂) =

∫ ∞

−∞
St(τ − τ ′; k̂, x̂) ·Ei(τ

′) dτ ′. (2.1)

Here, St is assumed to be primitive causal in the forward direction, i.e., St(τ, k̂, k̂) =
0 for τ < 0, see Ref. 8. Furthermore, introduce the forward scattering dyadic S as
the Fourier transform of St evaluated in the forward direction, i.e.,

S(k; k̂) =

∫ ∞

0−
St(τ ; k̂, k̂)eikτ dτ, (2.2)

where k = ω/c0 is the wave number in free space. The Fourier transform (2.2)
corresponds to an ensemble of plane waves with time dependence e−iωt. The exten-
sion of (2.2) to complex-valued k with Im k > 0 improves the convergence of the
integral and implies that S is holomorphic in the upper half part of the complex
k-plane. Recall that the cross symmetry S(k; k̂) = S∗(−k∗; k̂) for Im k > 0 is a
direct consequence of such an extension.

Introduce E0 as the Fourier amplitude of the incident wave, and let ê = E0/|E0|
denote the associated electric polarization. Recall that E0 is subject to the con-
straint of transverse wave propagation, i.e., E0 · k̂ = 0. Under the assumption
that ê and k̂ are independent of k, it follows from the analysis above that also
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%(k) = ê∗ · S(k; k̂) · ê/k2 is holomorphic for Im k > 0. Cauchy’s integral theorem
applied to % then yields, see Ref. 12,

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk. (2.3)

Here, it is assumed that % is sufficiently regular to extend the integration contour
to the real axis in the last integral on the right-hand side of (2.3). Relation (2.3) is
subject to the limits ε → 0+ and R →∞.

The long-wavelength limit of % on the left-hand side of (2.3) and the integrand in
the first integral on the right-hand side can be derived from a power series expansion
of the Maxwell equations. The result is, see Ref. 4,

%(ε) =
1

4π

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
+O(ε) as ε → 0+, (2.4)

where γe and γm denote the electric and magnetic polarizability dyadics, respec-
tively. For the appropriate definitions of γe and γm, and some of their physical
properties, see Ref. 12 and references therein.

The second integral on the right-hand side of (2.3) vanishes in the limit as R →∞
according to the extinction paradox in Ref. 13. In terms of %, a generalization of
the extinction paradox states that %(k) = −A/(2πik) + O(|k|−2) as |k| → ∞. The
constant A is real-valued since S(ik; k̂) is real-valued for real-valued k. For a large
class of scatterers, A coincides with the geometrical cross section area in the forward
direction. The disappearance of the second integral on the right-hand side of (2.3)
is also supported by the fact that the high-frequency response of a material is non-
unique from a modeling point of view, see Ref. 2.

From the above details, it is clear that the real part of (2.3) when subject to the
limits ε → 0+ and R →∞, yields

%(0) =
1

2
%(0) +

1

8π2

∫ ∞

−∞

σext(k)

k2
dk, (2.5)

where the optical theorem σext(k) = 4πk Im %(k) has been utilized, see Ref. 12. Here,
the extinction cross section σext is defined as the sum of the scattered and absorbed
power divided by the power flux of the incident wave. Recall that the optical theorem
is a direct consequence of power conservation, see Ref. 7. Relation (2.4) inserted
into (2.5) using the wavelength variable λ = 2π/k finally yields

∫ ∞

0

σext(λ) dλ = π2
(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
. (2.6)

The left-hand side of (2.6) is referred to as the integrated extinction. For additional
details on the derivation of (2.6), see Ref. 12.

Relation (2.6) is slightly modified when an isotropic conductivity term iς/ωε0

is introduced in χe for some region of V , see Ref. 12. The scalar conductivity ς is
non-negative and assumed independent of ω. In the presence of a conductivity term,
the analysis in Ref. 4 shows that the right-hand side of (2.6) should be evaluated
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in the limit as the eigenvalues of χe approach infinity independently of χm. The
perfectly electric conducting case is obtained as the eigenvalues of χm in addition
approach −1.

Electric and magnetic material properties are seen to be treated on equal foot-
ing in (2.6), both in terms of polarization and material description. Furthermore,
the right-hand side of (2.6) depends solely on the long-wavelength limit or static
response of V , while the left-hand side is a dynamic quantity which unites the scat-
tering and absorption properties of V . Recall that γe and γm only are functions of
the geometry of V and the long-wavelength susceptibilities χe(0) = limω→0 χe(ω)
and χm(0) = limω→0 χm(ω). Here, χe(0) and χm(0) are real-valued in the case of
vanishing conductivity. For heterogeneous structures, the long-wavelength suscepti-
bilities χe(0) and χm(0) also depend on the position vector x.

In many applications, the scatterer is randomly oriented with respect to an
ensemble of incident waves. For this purpose, the averaged extinction cross section
σ̄ext is conveniently introduced by averaging (2.6) over the unit sphere in R3, i.e.,

∫ ∞

0

σ̄ext(λ) dλ =
π2

3
trace(γe + γm). (2.7)

For non-spherical particles, (2.7) provides a neat verification of (2.6) without spec-
ifying the orientation of V with respect to the incident wave, see Sec. 4.1.

3 Bounds on scattering and absorption

For applications to exotic material models such as metamaterials, it is beneficial
to introduce the high-contrast polarizability dyadic γ∞ as the limit of either γe or
γm when the eigenvalues of χe(0) or χm(0) simultaneously become infinitely large.
From the variational results of γe and γm discussed in Ref. 12 and references therein,
it follows that both γe and γm are bounded from above by γ∞, i.e.,

∫ ∞

0

σext(λ) dλ 6 π2
(
ê∗ · γ∞ · ê + (k̂ × ê∗) · γ∞ · (k̂ × ê)

)
. (3.1)

The right-hand side of (3.1) is independent of any material parameters, depending
only on the geometry and the orientation of V with respect to the incident wave.
The right-hand side can, independent of ê and k̂, further be estimated from above
by the eigenvalues of γ∞, see Ref. 12.

The integrated extinction can be used to derive various bounds and variational
results for broadband scattering. Since the extinction cross section σext by definition
is non-negative, the left-hand side of (2.6) can be estimated as

|Λ| inf
λ∈Λ

σ(λ) 6
∫

Λ

σ(λ) dλ 6
∫ ∞

0

σext(λ) dλ, (3.2)

where Λ ⊂ [0,∞) denotes an arbitrary wavelength interval with absolute band-
width |Λ|. Here, σ represents any of the scattering, absorption and extinction cross
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sections, see Ref. 12 for their appropriate definitions. The quantity |Λ| infλ∈Λ σ(λ)
in (3.2) is particularly useful for box-shaped bounds, viz.,

|Λ| inf
λ∈Λ

σ(λ) 6 π2
(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
. (3.3)

From (3.2) and (3.3) it is clear that the long-wavelength limit response of V also
provides upper bounds on scattering and absorption within any finite wavelength
interval Λ. Analogous to (3.1), the right-hand side of (3.3) can also be estimated
from above by γ∞ and its associated eigenvalues. An important consequence of the
fact that (2.6) and (3.3) only depend on the long-wavelength limit response of V is
that they are independent of any temporal dispersion.

The fact that (2.6) and (3.3) are independent of any temporal dispersion implies
that there is no fundamental difference in scattering and absorption (in a broadband
sense) between metamaterials and ordinary materials, as long as the static properties
of the materials are identical. In fact, it is well known that passive materials must
be temporally dispersive since the Kramers-Kronig relations imply that χe(0) and
χm(0) elementwise are non-negative in the absence of a conductivity term, see Ref. 5.
Recall that the Kramers-Kronig relations are a direct consequence of causality and
passivity, see Ref. 8.

When an isotropic conductivity term iς/ωε0 is present in χe, the Kramers-Kronig
relations must be modified due to the singular behavior of χe. As mentioned above,
the analysis in Ref. 4 shows that the introduction of such a term in χe implies that
γe should be substituted for γ∞ on the right-hand side of (2.6) and (3.3).

Two popular models for temporal dispersion for metamaterials are the Drude
and Lorentz models, see (4.3) and Ref. 8, respectively. The Drude model is often
preferred over the Lorentz model since it provides a wider bandwidth over which
the eigenvalues of χe and χm attain values with a real part less than −1. However,
based on the above arguments, it is uninteresting from the point of view of (2.6)
and (3.3) which dispersion model is used to characterize metamaterials as long as
the model is passive and it satisfies causality.

In summary, the physical bounds on scattering and absorption discussed in
Ref. 12 also hold for any passive and causal metamaterial. For a single frequency,
metamaterials may possess extraordinary physical properties, but over a frequency
interval they are with respect to scattering and absorption not different from mate-
rials with non-negative real parts of the eigenvalues of χe and χm.

4 Numerical synthesis of metamaterials

In the following, numerical results for three temporally dispersive scatterers are dis-
cussed in terms of the physical bounds in Sec. 3. The examples provide a numerical
synthesis of three different fictitious metamaterials. For convenience, the examples
are restricted to isotropic material parameters, i.e., χe = χeI3 and χm = χmI3,
where I3 denotes the unit dyadic in R3. A similar example for a Lorentz dispersive
finite cylinder is given in Ref. 12.
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Figure 1: The averaged extinction cross section σ̄ext as a function of the frequency
in GHz for a prolate spheroid with semi-axis ratio ξ = 1/2. Note the normalization
with πa2, where a = 1 cm denotes the radius of the volume-equivalent sphere. The
right figure is an expansion of the left figure for low frequencies.

4.1 The Lorentz dispersive prolate spheroid

The averaged extinction cross section σ̄ext for a homogeneous and non-magnetic
(χm = 0) prolate spheroid with semi-axis ratio ξ = 1/2 is depicted in Fig. 1. The
prolate spheroid is temporally dispersive with electric susceptibility given by the
Lorentz model, see Ref. 8,

χe(ω) =
ω2

p

ω2
0 − ω2 − iων

, (4.1)

where (ω − ω0) Re χe(ω) 6 0 and Im χe(ω) > 0 for ω ∈ [0,∞). Explicit values of
ωp, ω0, and ν for the two curves with peaks at 2 GHz and 10 GHz are ωp = ω0 =
4π · 109 rad/s, ν = 7 · 108 rad/s, and ωp = ω0 = 20π · 109 rad/s, ν = 1010 rad/s,
respectively. The third curve in the left figure represents the non-dispersive case
with χe = 1, independent of ω. Since the three curves in the left figure have the
same values of χe in the long-wavelength limit, i.e., χe(0) = 1, it follows from (2.6)
that their integrated extinctions are identical.

Closed-form expressions of the averaged integrated extinction (2.7) exist for the
prolate and oblate spheroids, see Ref. 12. For a non-magnetic spheroid with semi-
axis ratio ξ, ∫ ∞

0

σ̄ext(λ) dλ =
4π3a3

9

3∑
j=1

1

1 + Lj(ξ)
, (4.2)

where Lj(ξ) denote the associated depolarizing factors, and a is the radius of the
volume-equivalent sphere. For a prolate spheroid with semi-axis ratio ξ = 1/2, the
depolarizing factors are approximately given by L1(1/2) = L2(1/2) = 0.4132 and
L3(1/2) = 0.1736, see Ref. 12. For the prolate spheroid in Fig. 1, a = 1 cm, and the
right-hand side of (4.2) is equal to 31.24 cm3. The integrated extinction 31.24 cm3

is numerically confirmed with arbitrary precision for the three curves in Fig. 1.
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Figure 2: The extinction cross section σext as a function of the frequency in GHz for
a stratified sphere which attains simultaneously negative values of the permittivity
and the permeability. Note the normalization with the geometrical cross section
area πa2, where a = 1 cm denotes the outer radius of the sphere. The right figure is
an expansion of the left figure for low frequencies.

The right figure in Fig. 1 is a close-up of the 2 GHz peak in the left figure. The
shaded box represents an artificial scatterer with the averaged integrated extinction
31.24 cm3 centered around the peak. The integrated extinction for the boundary
curve of the box and the three curves in the left figure are identical. Note that
the width of the box is approximately equal to the bandwidth of the peak when
evaluated at half amplitude. The calculation in Fig. 1 is based on the null-field
method in Ref. 6. For a similar example given by the Lorentz dispersive cylinder,
see Ref. 12.

4.2 The Drude dispersive stratified sphere

The extinction cross section σext for a stratified sphere with two layers of equal
volume is depicted in Fig. 2. The stratified sphere is temporally dispersive with
identical electric (` = e) and magnetic (` = m) material parameters given by the
Drude model

χ`(ω) =
iς

ε0ω(1− iωτ)
, ` = e, m, (4.3)

where ς > 0 and τ > 0. The real and imaginary parts of (4.3) read

χ`(ω) =
−ςτ

ε0(1 + ω2τ 2)
+ i

ς

ε0ω(1 + ω2τ 2)
, ` = e, m. (4.4)

Since Re χ`(ω) < −1 for low frequencies, the stratified sphere in Fig. 2 attains
simultaneously negative values of the permittivity and the permeability at these
frequencies. The calculation in Fig. 2 is based on a Möbius transformation applied
to the classical Mie series expansion in Refs. 7 and 8.

The two curves in the left figure with peaks at 0.97 GHz (dotted line) and 3.0 GHz
(dashed line) correspond to a homogeneous sphere with identical material properties
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in the inner and outer layers. These two curves are characterized by the relaxation
times τ = 10−8 s and τ = 10−9 s, respectively, and with conductivity ς = 10 S/m in
both cases. For the third curve (solid line) with peaks at 0.67 GHz and 1.6 GHz, the
material parameters of the outer layer are τ = 8 · 10−9 s and ς = 10 S/m, while the
inner layer is non-dispersive with χe1 = 10 and χm1 = 0 independent of ω ∈ [0,∞).
The right figure provides a close-up of the peaks at 0.67 GHz and 0.97 GHz.

Closed-form expressions of the electric and the magnetic polarizability dyadics
exist for the stratified sphere, see Ref. 12. For a stratified sphere of two layers, the
integrated extinction can be expressed as

∫ ∞

0

σext(λ) dλ = 4π3a3
∑

`=e,m

χ`2(χ`1 + 2χ`2 + 3) + ζ3(2χ`2 + 3)(χ`1 − χ`2)

(χ`2 + 3)(χ`1 + 2χ`2 + 3) + 2ζ3χ`2(χ`1 − χ`2)
, (4.5)

where a denotes the outer radius, and χ`1 and χ`2 represent the long-wavelength
susceptibilities of the inner and the outer layers, respectively. Furthermore, ζ ∈ [0, 1]
denotes the quotient between the inner and the outer radii.

Since (4.3) is characterized by a conductivity term which is singular at ω = 0,
the above discussion implies that the right-hand side of (4.5) is subject to the limits
χe2 → ∞ and χm2 → ∞. Based on this observation, it is concluded that the
integrated extinction for the three curves in Fig. 2 are identical and equal to 8π3a3

or 248.0 cm3, where a = 1 cm has been used. In contrast to the limits χe1 →
∞ and χm1 → ∞, this result is independent of ζ as well as χe1 and χm1. Note
that (2.4) and (2.6) yield that the integrated extinction 8π3a3 is equivalent to the
long-wavelength limit %(0) = 2a3. The integrated extinction 248.0 cm3 is numerically
confirmed with arbitrary precision for the three curves in Fig. 2.

The physical bound (3.3) is depicted by the shaded boxes in Fig. 2 (close-up
at low frequencies on the right-hand side of Fig. 2). These boxes correspond to
artificial scatterers with extinction cross sections supported at the peaks 0.67 GHz,
0.97 GHz, and 3.0 GHz. The integrated extinction of each box is equal to 248.0 cm3

and coincides with the integrated extinction for any other curve in the figure. From
Fig. 2 it is seen how the width of the boxes increase as the peaks are suppressed
in magnitude and shifted towards higher frequencies. Note that the tiny peaks
at 0.36 GHz (solid line) and 1.2 GHz (dashed line) constitute a large part of the
integrated extinction, thus implying that the peaks at 0.67 GHz and 3.0 GHz do not
fit the boxes that well in comparison with the box centered at 0.97 GHz. Recall that
the area of the boxes in Fig. 2 only depends on the properties of V in the long-
wavelength limit, and is hence independent of any temporal dispersion for positive
frequencies.

The extinction cross section for a non-magnetic stratified sphere with two layers
of equal volume is depicted in Fig. 3. The stratified sphere is temporally dispersive
with electric susceptibility χe given by the Drude model (4.3). The two curves
in the left figure with peaks at 0.96 GHz (dotted line) and 2.7 GHz (dashed line)
correspond to the homogeneous case with identical material parameters in both
layers: τ = 10−8 s and τ = 10−9 s, respectively, with ς = 10 S/m in both cases. For
the third curve with a peak at 1.4 GHz (solid line), the material parameters of the
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Figure 3: The extinction cross section σext as function of the frequency in GHz for
a non-magnetic stratified sphere which attain negative values of the permittivity.
Note the normalization with the geometrical cross section πa2, where a = 1 cm
denotes the outer radius of the sphere.

outer layer is ς = 10 S/m and τ = 10−8 s, while the inner layer is non-dispersive
with χe1 = 10 independent of ω ∈ [0,∞). The left figure in Fig. 3 is a close-up of
the peaks at 0.96 GHz and 1.4 GHz with the associated box-shaped bounds marked
in the figure.

Since the stratified sphere in Fig. 3 has the same electric long-wavelength re-
sponse as the scatterer in Fig. 2, but in addition is non-magnetic, it follows from (4.5)
that the integrated extinction of the scatterer in Fig. 3 is half the integrated extinc-
tion of the scatterer in Fig. 2, i.e., 4π3a3 or 124.0 cm3. This observation is a direct
consequence of the symmetry in (4.5) with respect to electric (` = e) and magnetic
(` = m) material parameters. The result is also supported by the fact that the
amplitude of, say, the peak at 0.97 GHz in Fig. 2 is approximately twice as large as
the corresponding peak at 0.96 GHz in Fig. 3.

5 Conclusions

The conclusions of this paper are clear: independent of how the materials in the scat-
terer are defined and modeled by temporal dispersion (i.e., irrespective of the sign
of the real parts of the permittivity and permeability for positive frequencies), the
holomorphic properties of the forward scattering dyadic imply that, from a broad-
band point of view, there is no fundamental difference in scattering and absorption
between metamaterials and ordinary materials. For a single frequency, metamateri-
als may possess extraordinary properties, but with respect to any bandwidth, such
materials are not different from any other naturally formed substances as long as
causality and passivity are obeyed. As a consequence, if metamaterials are used
to lower the resonance frequency, this is done at the cost of an increasing Q-value
of the resonance. The present analysis includes materials modeled by anisotropy
and heterogeneity, and can be extended to general bi-anisotropic materials as well.
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For example, the introduction of chirality does not contribute to the integrated
extinction since all chiral effects vanish in the long-wavelength limit.

It is believed that there are more physical quantities that apply to the theory
of broadband scattering in Ref. 12. Thus far, the theoretical findings have been
applied successfully to arbitrary antennas in Refs. 1 and 3 to yield physical bounds
on antenna performance and information capacity. Similar broadband bounds on
cloaking and invisibility using metamaterials and other exotic material models are
currently under investigation.
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uous Media. Pergamon Press, Oxford, second edition, 1984.

[6] M. I. Mishchenko and L. D. Travis. Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60(3),
309–324, 1998.

[7] R. G. Newton. Scattering Theory of Waves and Particles. Springer-Verlag,
New York, 1982.

[8] H. M. Nussenzveig. Causality and Dispersion Relations. Academic Press, Lon-
don, 1972.



References 79

[9] S. A. Ramakrishna. Physics of negative refractive index materials. Reports on
Progress in Physics, 68(2), 449–521, 2005.

[10] R. Ruppin. Extinction properties of a sphere with negative permittivity and
permeability. Solid State Commun., 116, 411–415, 2000.

[11] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire. Metamaterials and negative
refractive index. Science, 305(5685), 788–792, 2004.

[12] C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broad-
band scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40(36),
11165–11182, 2007.

[13] H. van de Hulst. Light Scattering by Small Particles. John Wiley & Sons, Inc.,
New York, 1957.

[14] V. G. Veselago. The electrodynamics of substances with simultaneously nega-
tive values of ε and µ. Sov. Phys. Usp., 10(4), 509–514, 1968.





Paper III

A scattering and absorption
identity for metamaterials:
Experimental results and
comparison with theory

Christian Sohl, Christer Larsson, Mats Gustafsson, and Gerhard
Kristensson

Based on: C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson. A scattering
and absorption identity for metamaterials: Experimental results and comparison
with theory. Journal of Applied Physics, vol. 103, no. 5, paper 054906, March 2008.





1 Introduction 83

Abstract

A dispersion relation for the combined effect of scattering and absorption
of electromagnetic waves is presented for a large class of linear and passive
material models. By invoking the optical theorem, the result states that the
extinction cross section integrated over all frequencies is equal to the static
limit of the extinction volume. The present paper focuses on an attempt
to experimentally verify this sum rule by measuring the monostatic radar
cross section of a fabricated sample of metamaterial. In particular, the paper
utilizes the idea that, for a specific class of targets, the scattered fields in
the forward and backward directions are identical. It is concluded that the
theoretical findings are in good agreement with measurements performed in
the frequency range [3.2, 19.5]GHz.

1 Introduction

Since the contemporary discoveries of the Kramers-Kronig relations [3, 6] in 1926–
1927, dispersion relation techniques have been applied successfully to disparate wave
phenomena to model the structural properties of wave interaction with matter.
There are at least two main advantages of dispersion relations for the analysis of
electromagnetic waves: (i) they provide a consistency check of calculated quanti-
ties when the underlying mathematical model is known to satisfy causality, and (ii)
they may be used to verify whether a given mathematical model or an experimental
outcome behaves causally or not. In addition, based on the field theory in Ref. 9,
dispersion relations can also be used to establish far-reaching connections between
concepts of different physical meanings. A comprehensive review of dispersion rela-
tions in material modeling and scattering theory is presented in Ref. 16.

The optical theorem or forward scattering theorem relates the extinction cross
section, or the combined effective area of absorption and scattering, to the forward
scattering dyadic [8]. As a consequence, the magnitude and phase of the scattered
field in a single direction solely determine the total power extinguished from an
applied external field. In a series of papers, see Refs. 13, 14 and 15, the use of
a forward dispersion relation for the combined effect of scattering and absorption
is exploited by invoking the optical theorem. In particular, it is established that
the extinction cross section integrated over all frequencies is related to the static
or long-wavelength polarizability dyadics. This result is rather intriguing, and one
of its many consequences shows great potential for future applications in antenna
theory [4, 12].

Although, the theory of broadband extinction of acoustic and electromagnetic
waves is by now well established [13, 14], and numerical simulations show excellent
agreement with the theory, its experimental verification is of scientific importance.
Thus, the purpose of the present paper is to verify a certain aspect of these the-
oretical findings by measuring the monostatic radar cross section of a fabricated
sample of metamaterial. The choice of considering a metamaterial is due to the fact
that such materials do not occur naturally, and if they can be manufactured, they
are often claimed to possess extraordinary properties that are promising for various
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engineering applications. In addition, experimental challenges associated with the
extinction measurements are discussed in the paper. For example, to circumvent
the weak signal strength of the forward scattered field in comparison with the inci-
dent field, the present paper utilizes the idea that, for a specific class of targets, the
scattered fields in the forward and backward directions are identical.

The main theoretical results used in this paper are summarized in Sec. 2, and
the experimental results are developed and explained in Sec. 3. Finally, the paper
is ended with some conclusions.

2 A scattering and absorption identity

Consider the direct scattering problem of a plane electromagnetic wave eikk̂·xê (time
dependence e−i2πft) of unit amplitude impinging in the k̂-direction on a target em-
bedded in free space with phase velocity c0. The material of the scatterer is modeled
by a set of linear and passive constitutive relations that are assumed to be time in-
variant [16]. Let k̂ and ê be independent of the wave number k = 2πf/c0 ∈ [0,∞),
and introduce the differential cross section [5, 10]

dσ

dΩ
(k; k̂ y x̂, ê) = |S(k; k̂ y x̂) · ê|2 (2.1)

as a measure of the disturbance of the applied field due to the presence of the target.
Here, the notation k̂ y x̂ refers to the scattering of a plane wave evaluated at the
origin into an outgoing spherical wave in the x̂-direction. The scattering dyadic S
is independent of ê, and it is defined in terms of the scattered electric field Es as [9]

S(k; k̂ y x̂) · ê = lim
x→∞

xe−ikxEs(k; x), (2.2)

where x = |x| denotes the magnitude of the position vector, and x̂ = x/x. In
particular, 4π times the differential cross section in the backward direction, x̂ = −k̂,
yields the monostatic radar cross section [5, 10]

σRCS(k; k̂, ê) = 4π|S(k; k̂ y −k̂) · ê|2. (2.3)

A target’s overall scattering properties are commonly quantified by the scattering
cross section σs, defined as the total power scattered in all directions divided by the
incident power flux. It is obtained by integrating (2.1) over the unit sphere with
respect to the x̂-direction, i.e.,

σs(k; k̂, ê) =

∫

Ω

dσ

dΩ
(k; k̂ y x̂, ê) dS, (2.4)

where the surface measure dS = sin θ dθ dφ depends on the zenith and azimuthal
variables θ ∈ [0, π] and φ ∈ [0, 2π), respectively. Based on (2.4), the extinction
cross section σext = σs + σa is defined as the sum of the scattering and absorption
cross sections, where the latter is a measure of the absorbed power in the target [1].
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The extinction cross section is also determined from the knowledge of the scattering
dyadic in the forward direction, x̂ = k̂, viz.,

σext(k; k̂, ê) =
4π

k
Im

{
ê∗ · S(k; k̂ y k̂) · ê

}
, (2.5)

where an asterisk denotes the complex conjugate. Relation (2.5) is known as the
optical theorem, and it is applicable to many different wave motions such as acoustic
waves, electromagnetic waves, and elementary particles [8, 16].

From the integral representations in Ref. 17, or the discussion on p. 11 in Ref. 10,
it follows that, for a planar and infinitely thin target, the forward and backward
scattering dyadics are equal, i.e.,

S(k; k̂ y k̂) · ê = S(k; k̂ y −k̂) · ê. (2.6)

For this specific class of targets, (2.6) enables extinction measurements to be carried
out by simply detecting the scattered field in the backward direction. Of course,
both the magnitude and phase of the scattered field have to be identified. In partic-
ular, (2.6) implies that the differential cross sections in the forward and backward
directions are identical, i.e.,

dσ

dΩ
(k; k̂ y k̂, ê) =

dσ

dΩ
(k; k̂ y −k̂, ê). (2.7)

Note that more general methods must be introduced to experimentally determine
the forward scattered field when the above-stated assumptions are violated; see
pp. 320–323 in Ref. 1.

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is derived in Ref. 14 from the holomorphic properties of the
forward scattering dyadic. The result is a sum rule for the extinction cross section
valid for a large class of linear and passive targets:

∫ ∞

0

σext(k; k̂, ê)

k2
dk = 2π2%(0; k̂, ê), (2.8)

where the static limit on the right-hand side of (2.8) is non-negative [14]. Here, the
extinction volume %(k; k̂, ê) is defined by the complex-valued quantity

%(k; k̂, ê) =
ê∗ · S(k; k̂ y k̂) · ê

k2
. (2.9)

In particular, the extinction cross section is related to the imaginary part of the
extinction volume via the optical theorem σext(k; k̂, ê) = 4πk Im %(k; k̂, ê). The
extinction volume satisfies the Hilbert transform, i.e., the improper integral [18]

%(k; k̂, ê) =
1

iπ
P

∫ ∞

−∞

%(k′; k̂, ê)

k′ − k
dk′, (2.10)
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Figure 1: A section of the fabricated sample (left) and a close-up of the square
unit cell (right). The linewidth of the printed circuits is 0.1 mm.

where P denotes the Cauchy principal value. The fact that the extinction cross
section is non-negative implies that the left-hand side of (2.8) can be estimated
from below by the corresponding integral over the finite interval [k1, k2], viz.,

∫ k2

k1

σ(k; k̂, ê)

k2
dk 6

∫ ∞

0

σext(k; k̂, ê)

k2
dk = 2π2%(0; k̂, ê), (2.11)

where σ denotes any of σext, σs, and σa. The interpretation of (2.11) is that there
is only a limited amount of scattering and absorption available in the range [k1, k2],
and that this amount is bounded from above by the static limit of the extinction
volume [14, 15].

3 Experimental results

In this section, measurements of the extinction cross section are presented for a
fabricated sample of metamaterial. The sample design and the experimental setup
are described, and the outcome of the measurements is compared with the theoretical
results in Sec. 2.

3.1 Sample design and experimental setup

The fabricated sample is designed as a single-layer planar array of capacitive res-
onators tuned to be resonant at 8.5 GHz. It consists of 29× 29 unit cells supported
by a square FR4 substrate of edge length a = 140 mm and thickness 0.3 mm, see
Fig. 1. The relative dielectric constant of the substrate varies between 4.4 and 4.2
in the frequency range f ∈ [3.2, 19.5] GHz, with an overall loss tangent less than
5 · 10−3. In the literature, the sample design in Fig. 1 is commonly referred to as a
negative permittivity metamaterial [11].

Monostatic radar cross section measurements are performed in the anechoic
chamber at Saab Bofors Dynamics, Linköping, Sweden. The sample is mounted
on an expanded polystyrene sample holder and placed on a pylon. Dual polarized
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Figure 2: The experimental setup in the anechoic chamber (left) and the fabricated
sample with 29× 29 unit cells supported by a square FR4 substrate of edge length
140 mm (right).

ridged circular waveguide horns are positioned at a distance of 3.5 m from the sam-
ple, see Fig. 2, and an Agilent Performance Network Analyzer (PNA) is used for
transmitting a continuous wave without online hardware or software gating. The
polarizations of the transmitted and received fields are parallel to the capacitors in
the printed circuit, i.e., vertically in Fig. 1. The original frequency range [2, 20] GHz
is reduced to [3.2, 19.5] GHz due to a range domain filtering of the data. The lat-
ter frequency interval is sampled with 7246 equidistant points corresponding to an
unambiguous spatial range of 66.7 m, which is sufficient to avoid influence of room
reverberations.

Calibration including both amplitude and phase is performed using a metal plate
with the same outer dimensions as the sample in Fig. 2. A physical optics approxima-
tion for a perfectly electric conducting plate is adopted as the calibration reference,
see p. 523 in Ref. 10. In order to validate the calibration, a method of moments
calculation is also performed. It is concluded that the method of moments solution
does not deviate significantly from the physical optics approximation. In addition to
being a calibration reference, the metal plate is also used to align the experimental
setup using the specular reflection of the plate.

The data from the measurements are processed by a coherent subtraction of
the background followed by a calibration. The frequency domain data are then
transformed to the range domain, where the response from the sample is selected
from the range profile using a 1.1 m spatial gate. Finally, the selected data are
transformed back to the frequency domain.

3.2 Measurement results and comparison with theory

The monostatic radar cross section of the sample is depicted by the solid line on
the left-hand side of Fig. 3. In the figure, the first resonance at f0 ≈ 8.5 GHz is
observed as well as an increase in the monostatic radar cross section with frequency,
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Figure 3: The monostatic radar cross section (left) and the extinction cross section
(right) in units of the projected area a2. The solid lines correspond to measured data
whereas the dashed lines are given by (3.1).

consistent with the specular reflection of the sample. As the sample is sufficiently
thin compared with the considered wavelengths, the forward scattering dyadic is
approximated by the scattering dyadic in the backward direction. In particular,
this approximation is used to calculate the extinction cross section via the optical
theorem (2.5). The result is depicted on the right-hand side of Fig. 3. From the
figure, it is seen that the extinction cross section is non-negative, confirming the
validity of (2.6) since phase deviations in the scattering dyadic introduce significant
errors in the extinction cross section.

The forward scattering dyadic is also used to determine the extinction volume,
and the result is depicted on the left-hand side of Fig. 4. From the figure it is
observed that the real part of the extinction volume vanishes at the resonance fre-
quency f0 ≈ 8.5 GHz, whereas at the same frequency, the corresponding imaginary
part attains its maximum value. This observation can be understood by approximat-
ing the resonance on the left-hand side of Fig. 4 with a modified Lorentz resonance
model, see pp. 228–232 in Ref. 1. Also, note in Fig. 4 that the frequency scaling
in (2.9) amplifies the noise in the measurements for low frequencies.

The function ζ(k; k̂, ê) = 4π Im %(k; k̂, ê)/k, corresponding to the integrand
in (2.8), is depicted on the right-hand side of Fig. 4. Compared with the left figure,
additional noise amplification for low frequencies is observed. The shaded area on
the right-hand side is estimated by numerical integration to 7.1 cm3 and indicated
by a dot in the left figure. Since ζ is non-negative, the value 7.1 cm3 is, accord-
ing to (2.11), a priori a lower bound on the static limit of the extinction volume.
Obviously, this static limit is underestimated by the integral since ζ cannot vanish
identically outside the considered frequency range.

The extinction volume is also used to verify that the experimental outcome
behaves causally in the sense that the extinction volume satisfies (2.10). In Fig. 5, it
is observed that the Hilbert transform resembles the overall frequency dependence
of the real and imaginary parts of the extinction volume. However, it is clear from
the figure that the finite frequency interval of the measured data limits its usefulness
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Figure 4: The extinction volume (left) and ζ(k; k̂, ê) = 4π Im %(k; k̂, ê)/k (right).
The solid lines correspond to measured data whereas the dashed lines are given
by (3.1). The shaded area in the right figure is marked by a dot in the left figure.

as a method of reconstructing an unknown component of a holomorphic function.
The offsets in Fig. 5 can be adjusted for since the mean values of the solid curves
are non-zero, cf., the properties of the Hilbert transform in Ref. 18.

A feasible technique to approximate the extinction volume is to use meromorphic
functions with roots and zeros in the lower half of the complex f -plane. Numerical
tests using the algorithm in Ref. 7 indicate that it is sufficient to consider rational
functions with numerator and denominator of second and fourth degree, respectively.
Such functions can be represented by the sum of two modified Lorentz resonance
models via

%appr(f ; k̂, ê) =
2∑

n=1

%n
f 2

n − ifνn

f 2
n − 2iffn/Qn − f 2

. (3.1)

The approximation (3.1) is depicted by the dotted line on the left-hand side of
Fig. 4. Here, f1 = 9.3 GHz, Q1 = 7.8, %1 = 1.3 cm3, and ν1 = −27 GHz for the
first term, and f2 = 20 GHz, Q2 = 1.6, %2 = 10 cm3, and ν2 = 3.6 GHz for the
second term. In particular, the static limit of (3.1) is given by %1 + %2 ≈ 11 cm3.
The associated meromorphic approximations of the monostatic radar cross section
and the extinction cross section follow from (3.1) and the definitions in Sec. 2.
These approximations are represented by the dotted lines in Figs. 3 and 4, and it
is concluded that the approximations are in good agreement with the experimental
results.

The approximation (3.1) is also used to establish a sharper bound on the static
limit of the extinction volume. In fact, the shaded area 7.1 cm3 on the right-hand
side of Fig. 4 should be compared with the corresponding area 9.8 cm3 obtained by
integrating the dotted line over the frequency range [0, 22] GHz. The lower bound
9.8 cm3 is quite close to the static limit 11 cm3, which would be the true value
of %(0; k̂, ê) if the extinction volume on the left-hand side of Fig. 4 is completely
determined by this approximation. The fact that the dotted line on the right-hand
side of Fig. 4 is non-zero in the static limit is also supported by the analysis of the
lossy transmission problem on pp. 191–192 in Ref. 2.
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Figure 5: The real and imaginary parts of the extinction volume (solid lines) and
the corresponding reconstructed quantities using the Hilbert transform H (dashed
lines).

4 Conclusions

This paper reports on measurements of the extinction cross section and the extinc-
tion volume for a fabricated sample of a negative permittivity metamaterial. It is ex-
perimentally verified that the extinction cross section integrated over the frequency
interval [3.2, 19.5] GHz yields a lower bound on the static limit of the extinction
volume. Also, by using the Hilbert transform and the meromorphic approxima-
tion (3.1), it is made plausible that the extinction volume indeed is a holomorphic
function in the upper half part of the complex k-plane and satisfies the asymp-
totic behavior discussed in Ref. 14. Among other things, the experimental results
in this paper are important for the support of the far-reaching conclusion made in
Ref. 15: there is no fundamental difference between metamaterials and naturally
formed substances with respect to the absorption and scattering over a frequency
interval.

Similar measurements on split ring resonators (SRR) will be presented in a forth-
coming paper. Forward scattering measurements on extended targets introduce fur-
ther experimental challenges that also will be addressed in the future.
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Abstract

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is employed. By invoking the optical theorem, the re-
sult states that the extinction cross section integrated over all frequencies is
related to the static polarizability dyadics. In particular, it is established that
the integrated extinction is the same for all materials having identical static
properties, irrespectively whether the permittivity or the permeability have
negative real parts at non-zero frequencies or not. The theory is illustrated
numerically, and, moreover, it is verified experimentally on a sample consist-
ing of a single-layer planar array of capacitive resonators claimed to form a
negative permittivity metamaterial. It is concluded that the theory is in good
agreement with measurements in the microwave region.

1 Background

In a series of papers [15–17], the holomorphic properties of the forward scattering
amplitude have been exploited and experimentally verified. As a result, a sum
rule for the extinction cross section is established. This outcome hinges on the
physical principles of causality and energy conservations — both well established
and tested — and relates the (weighted) integrated extinction to the static material
properties of the obstacle. A rather intriguing consequence of this sum rule is that
the static properties measure the broadband scattering and absorption strengths of
the obstacle. This fact implies a renaissance for polarizability analyzes of obstacles,
but also an appreciation of the large efforts made in the past, and that now prove
helpful, see e.g., [3, 18]. This attribute has also been used in antenna applications
to give new bounds on the product of gain and bandwidth of antennas of arbitrary
shape [2, 14].

The direct measurement of the forward radar cross section (RCS) in free space
is experimentally difficult since the largest part of the detected field at the receiving
antenna consists of a direct illumination by the transmitting antenna. The direct
illumination contributes with a dominating background that has to be removed
from the detected field, either using coherent background subtraction or other signal
processing methods. Monostatic RCS measurements are therefore to be preferred,
compared to forward RCS measurements, if they can be used for the purpose at
hand. This paper describes a method to determine the extinction cross section for
a thin and non-magnetic planar object over a large bandwidth in the microwave
region. The method is based on a conventional measurement of the monostatic RCS
and the fact that the RCS amplitude in the forward and backward directions are
equal if the illuminated object is planar and non-magnetic [12, 17]. The monostatic
method is compared to and validated with a more general measurement technique
based on the RCS in the forward direction.
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2 A sum rule for the extinction cross section

This section sets the notation of the problem and states the main theoretical results
used in this paper, but no proofs are given. For proofs we refer to the pertinent
published papers [15, 16].

Consider the scattering problem of a plane electromagnetic wave E exp{ikk̂ ·x}
(time dependence exp{−iωt}) impinging in the k̂-direction on a target embedded in
free space. The wave number in free space is denoted by k = ω/c0. The target can
be a single scatterer or it may consist of several non-connected parts. The material
of the scatterer is modeled by a set of linear and passive constitutive relations which
are assumed to be invariant under time translations (i.e., stationary constitutive
relations). The scattering dyadic S is independent of E, and it is defined in terms
of the scattered electric field Es as [1, 7]

S(k; k̂ y x̂) ·E = lim
x→∞

x e−ikxEs(k; x) (2.1)

where x = |x| denotes the magnitude of the position vector, and x̂ = x/x. A target’s
overall scattering properties are commonly quantified by the scattering cross section
σs, defined as the total power scattered in all directions divided by the incident
power flux. The extinction cross section σext = σs + σa is defined as the sum of
the scattering and absorption cross sections, where the latter is a measure of the
absorbed power in the target [1]. The extinction cross section is also determined
from the knowledge of the scattering dyadic in the forward direction, x̂ = k̂, viz.,

σext(k; k̂, ê) =
4π

k
Im

{
ê∗ · S(k; k̂ y k̂) · ê

}
(2.2)

An asterisk denotes the complex conjugate, and the electric polarization ê = E/|E|.
Relation (2.2) is known as the optical theorem or forward scattering theorem [1, 7].

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is derived in Ref. 15 from the holomorphic properties of the
forward scattering dyadic. One of the underlying assumptions of the result is that
the forward scattering is causal, i.e., the scattered field must not proceed the incident
field in the forward direction. The result is a sum rule for the extinction cross section
valid for a large class of linear and passive targets:1

∫ ∞

0

σext(k; k̂, ê)

k2
dk =

π

2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
(2.3)

where γe and γm denote the electric and magnetic polarizability dyadics, respec-
tively [3, 18]. This identity holds for all scatterers satisfying the assumption above,
and it constitutes the main theoretical result used in this paper. This rather in-
triguing result has far-reaching consequences on how much an obstacle scatters and
absorbs, and it also quantifies the interaction between parts with different materials.

1A similar, but less developed, sum rule has been reported in the literature, see e.g., [9, p. 423].
The first employment of the sum rule in electromagnetics seems to go back to Purcell, who presented
the sum rule for dielectric spheroidal scatterers [11].
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The electric (or magnetic) polarizability dyadic is accessible as an analytic ex-
pression for a limited set of canonical bodies, e.g., a homogenous, isotropic dielectric
sphere of radius a with static permittivity ε(0) has the polarizability dyadic γe [3, 18]

γe = 3
ε(0)− 1

ε(0) + 2

4πa3

3
I (2.4)

where I denotes the unit dyadic. Fortunately, for other more complex geometries,
the polarizability dyadic is easy to compute using e.g., a finite element (FEM) solver.

The integrand on the left-hand side of (2.3) is non-negative. Therefore, for any
finite frequency interval K = k0[1 − B/2, 1 + B/2] with center frequency k0 and
relative bandwidth B, the identity implies for some κ ∈ K

Bσ(κ)

k0(1−B2/4)
=

∫

K

σ(k)

k2
dk 6 π

2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
(2.5)

where σ denotes any of the cross sections σext, σs, and σa. For all scatterers with
the same static polarizability dyadics, this inequality shows that large scattering in
a frequency interval is traded for smaller bandwidth, since the left-hand side of the
inequality is bounded from above by the right-hand side.

The extinction cross section σext measures the total interaction of the incident
plane wave with the obstacle, and the integral on the left-hand side of (2.3) provides
a measure of the overall scattering and the absorption properties of the obstacle.
As a consequence of (2.3), large scattering or absorption effects, i.e., a large left-
hand side of (2.3), call for large electric and/or magnetic polarizability dyadics. In
other applications, like cloaking, the extinction effects must be small (at least in a
finite frequency interval) and the electric and magnetic polarizability dyadics have
to be as small as possible for a given volume. In both cases, the static properties
act as a measure of the dynamic effects. We also immediately conclude that all
scatterers having the same right-hand side, i.e., polarizability properties, have the
same integrated extinction.

The effects of (2.3) are exploited in this paper, and in a few numerical examples,
see Sect. 4, we illustrate that two materials with the same static properties have
identical integrated extinctions. Several of these examples show metamaterial char-
acteristics, i.e., the material has temporally dispersive material parameters where
both the real parts of the permittivity and the permeability are negative in the
same frequency interval. In all cases it is the static properties of the obstacle that
determine the integrated scattering properties. The experimental verification of the
sum rule is presented in Sect. 5.

3 Material modeling

At a single frequency, when causality has no meaning, the material modeling of
the scatterer is less critical. However, dealing with the broadband properties of
a scatterer, it becomes important to use physically suitable dispersion models. In
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particular, the models have to be consistent with the passivity and causality as-
sumptions made above. As a consequence, the material models have to satisfy the
Kramers-Kronig relations [1, 5]. This is a consequence of the fact that f(ω) = ωε(ω)
is a Herglotz function [8] in the variable ω. Basically, a Herglotz function is analytic
in the upper half complex plane, and it maps the upper complex plane into itself.

In this paper we use the Lorentz model, which models the resonance behavior of
many solid materials. The relative permittivity of the Lorentz model is:

ε(ω) = ε∞ −
ω2

p

ω2 − ω2
0 + iων

= ε∞ − (ωpa/c0)
2

(ka)2 − (ω0a/c0)2 + ika(νa/c0)
(3.1)

The positive constant ε∞ is the optical response of the permittivity, and the constant
ωp is the plasma frequency that models the strength of the dispersion. The resonance
frequency of the model is determined by the angular frequency, ω0, and the collision
frequency ν > 0. With appropriate choice of the material parameters, the real
part of the permittivity becomes negative. The explicit value of the permittivity
in the static limit (ω = 0) is ε(0) = ε∞ + ω2

p/ω
2
0. A similar model is also used

for the relative permeability µ. The Lorentz model employed in this paper has the
parameters ε∞ = 1, ωpa/c0 = 3, ω0a/c0 = 2, and νa/c0 = 0.6.

The Drude model is a special case of the Lorentz model for which ω0 = 0, i.e.,

ε(ω) =
((ka)2 + (νa/c0)

2)ε∞ − (ωpa/c0)
2

(ka)2 + (νa/c0)2
+ i

(ωpa/c0)
2(νa/c0)

ka((ka)2 + (νa/c0)2)
(3.2)

This choice implies that the real part of the permittivity is negative over a large
frequency interval, i.e., ω2 6 ω2

p/ε∞ − ν2. This model is used to describe the
dispersive behavior of metamaterials, and at low frequencies it shows strong affinity
with the conductivity model ε(ω) = ε∞ + iς/(ε0ω). In fact, the conductivity ς =
ε0ω

2
p/ν can be identified from Drude’s model.

4 Numerical illustrations — sphere-doublets

In this section, we illustrate the theoretical results presented in Sect. 2 in two nu-
merical examples using the material models described in Sect. 3. The scattering
geometry consists of two spheres, radii a and b, respectively, as illustrated in Fig. 1.
In all examples, the plane wave impinges along the symmetry axis of the scatterer
with an electric polarization ê in the xy-plane, which can be either a real- or a
complex-valued unit vector. All frequencies are measured in the dimensionless pa-
rameter κ = ka, and all cross sections are scaled with 2πa2. The identity in (2.3),
then reads

∫ ∞

0

σext(κ; k̂, ê)

κ2
dκ =

π

3

1

4πa3/3

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
(4.1)

The numerical computations in this paper utilize the null-field approach, which is
an efficient method to evaluate scattering by non-connected objects [10].
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Incident plane wave

k̂

d        

z

b

a

Figure 1: The geometry of the two spheres. The sphere with radius a is located
at dẑ/2 and the sphere with radius b is located at −dẑ/2. The direction of the
incident wave in all examples is k̂ = ẑ.

In the first example the extinction cross section of two identical touching Drude
spheres (radii a = b and d = 2a) is computed for two material settings. In the first
setting ε = µ at all frequencies, i.e., a material that shows metamaterial character-
istics at low frequencies, and in the second setting both spheres are non-magnetic,
µ = 1. The result is shown to the left in Fig. 2. Explicit values of the permittivities
are given in Sect. 3.

The contribution to both the electric and the magnetic polarizability dyadics in
the case ε = µ is [19]

ê∗ · γe · ê = (k̂ × ê∗) · γm · (k̂ × ê) =
9

2
ζ(3)

4πa3

3
(4.2)

where ζ(z) is the Riemann zeta-function. The non-magnetic spheres have no mag-
netic contribution, but only an electric contribution. The right-hand side of (4.1)
for the two curves in Fig. 2 therefore assumes the values 3πζ(3) = 11.33 and
3πζ(3)/2 = 5.66, respectively. These figures are retrieved using numerical integra-
tion over the frequency interval in Fig. 2 with 3 digits (11.3 and 5.66, respectively).
It is intriguing to conclude that these numbers are independent of all the material
parameters of the Drude spheres, i.e., independent of ε∞, ωp, and ν.

A further verification of the integrated extinction in (4.1) is presented to the
right in Fig. 2. This figure shows the analytically computed polarizability, γ, of two
identical Drude spheres [19] as a function of the separating distance d. The values
obtained by numerical integration according to (4.1) are shown with circles.

The second example illustrates the computation of the extinction cross sections
for two different sets of material parameters with identical static values. Two touch-
ing, d = 3a, non-magnetic Lorentz spheres, radii a and b = 2a, respectively, are used.
The result is displayed in Fig. 3. The solid curve shows the extinction cross sec-
tion when the two spheres have materials as given in Sect. 3. The broken curve
shows the extinction cross section for two Lorentz spheres both having parameters
ε∞ = 1, ωpa/c0 = 4.5, ω0a/c0 = 3, and νa/c0 = 0.6. These two sets of materi-
als have a static permittivity ε(0) = 13/4, and therefore the same right-hand side
of (4.1). The boxes shown in Fig. 3 also have the same integrated extinction, and
they indicate the bandwidth of the scattering at the first resonance frequency.
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Figure 2: Left figure: The extinction cross section of two equal, touching (d = 2a)
Drude spheres (radii a = b) as a function of ka. The solid curve shows the extinction
cross section for ε = µ, and the broken curve when both spheres are non-magnetic,
µ = 1. All cross sections are normalized with 2πa2. Right figure: The electric
(or magnetic) polarizability, normalized with 4πa3/3, for the same geometry as a
function of the separation distance d. The circles illustrate the numerical values.

The polarizability dyadic contributions from the two Lorentz spheres are the
same, i.e.,

ê∗ · γe · ê = 11.29
4πa3

3
(4.3)

The right-hand side of (4.1) then becomes 11.82 in both cases. The integrated
extinction is computed using numerical integration over the frequency interval in
Fig. 3. The results are 11.8 and 11.7, respectively, for the two curves.

5 Experimental verification

The bistatic RCS, σRCS, is defined as

σRCS(k; x̂, ês) = |A(k; x̂, ês)|2 (5.1)

where A(k; x̂, ês) = 2
√

πê∗s ·S(k; k̂ y x̂) · ê, and where ês denotes the polarization of
the scattered field in the x̂ direction. Evaluated in the backward direction, x̂ = −k̂,
produces the familiar expression for the monostatic RCS [4, 12]. Using this notation,
the sum rule for the extinction cross section in (2.3) then reads

1

π3/2

∫ ∞

0

σext(k; k̂, ê)

k2
dk = lim

k→0

A(k; k̂, ê)

k2
(5.2)

From the integral representations of the scattered field or the discussion in
Ref. 12, it follows that for a planar and infinitely thin scatterer subject to a wave
impinging at normal incidence, the RCS amplitudes in the forward and backward
directions, x̂ = k̂ and x̂ = −k̂, respectively, are identical, i.e.,

A(k; k̂, ê) = A(k;−k̂, ê) (5.3)
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Figure 3: The extinction cross section of two touching Lorentz spheres as a
function of ka. Both spheres have identical material parameters and they are non-
magnetic, µ = 1, with radii a and b = 2a. The data of the scatterers are given in
the text. The boxes have the same integrated extinction as both curves. All cross
sections are normalized with 2πa2.

Combining this relation with the optical theorem makes it possible to determine σext

and verify (5.2) from a conventional measurement of the monostatic RCS amplitude.
The sample design shown in Fig. 4 was used for the experiments. The fabricated

single-layer planar array of capacitive resonators is referred to in the literature as
a negative permittivity metamaterial [13]. The sample is tuned to be resonant at
8.5 GHz. It consists of 29 × 29 unit cells supported by a 0.3 mm thick 140 mm ×
140 mm square FR4 substrate, see Fig. 4. The relative dielectric constant of the
substrate varies between 4.4 and 4.2 in the frequency range [2, 20] GHz with an
overall loss tangent less than 5 · 10−3.

5.1 Quasi-monostatic and forward RCS measurements

Monostatic RCS measurements are performed in an anechoic chamber with two dual-
polarized ridged circular waveguide horns positioned at a distance of 3.5 m from the
sample, see the left hand side of Fig. 5. The polarizations of the transmitted and re-
ceived waves are vertical with respect to the pattern in Fig. 4 — only the co-polarized
contribution enters in the optical theorem. The frequency interval [3.2, 19.5] GHz
is sampled with 7246 equidistant points corresponding to an unambiguous range of
66.7 m (445 ns). This is sufficient to avoid influence of room reverberations.

Calibration including both amplitude and phase is performed using a metal plate
with the same outer dimensions as the sample. The measured data are processed by
a coherent subtraction of the background. The frequency domain data is then trans-
formed to the range domain, where the response from the sample is selected from



102 Paper IV: Bounds on metamaterials. . .
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Figure 4: A section of the array of capacitive resonators (left figure) and one unit
cell of the array (right figure).

the range profile using a 1.1 m spatial gate. Finally, the selected data is transformed
back to the frequency domain.

The background subtraction combined with the time gating gives a background
level of better than −50 dBsm for the frequency range above 5 GHz and −40 dBsm
to −30 dBsm for the lowest part of the frequency range. The high background level
at the lower frequencies is a consequence of the wideband horn illumination of the
walls at these frequencies. This background level can be maintained for hours by
using a single background measurement.

Forward RCS measurements are performed using a different setup with ridged
waveguide horns in an ordinary laboratory area. The antennas are positioned facing
each other at a distance of 6.0 m with the sample at the midpoint between the
antennas, see the right-hand side of Fig. 5. The frequency interval [2.5, 16] GHz
is sampled with 5086 equidistant points corresponding to an unambiguous time
range of 378 ns. The unambiguous time range is sufficient to avoid influence of
room reverberations such as delayed scattering from the floor and the walls in the
laboratory area.

Calibration including both amplitude and phase is performed using a high preci-
sion sphere with radius 6.00 cm. The raw data from the calibration is then processed
by a coherent subtraction of the background. The fabricated sample is then mea-
sured. A new measurement of the background is coherently subtracted from the
sample measurement. The repeated background measurements are important in
order to increase the efficiency of the background subtraction and to obtain the
background levels. We perform the background measurements within less than 2
minutes after each sample (calibration) measurement.

The calibrated frequency domain data is transformed to the time domain, where
the response from the sample is selected from the time profile using a 1.7 ns time gate.
The size of the gate is chosen to minimize the influence from the background. Finally,
the selected data is transformed back to the frequency domain. The background
subtraction combined with the time gating gives a background level of less than
−40 dBsm.
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Figure 5: The experimental setups for quasi monostatic (left figure) and forward
RCS (right figure) measurements.

5.2 Validation of the monostatic method and experimental
verification of the sum rule

The left graph in Fig. 6 shows a comparison between measurements of the monostatic
RCS and the forward RCS. The agreement is better than 0.5 dB except for the
minimum at 10.7 GHz where the discrepancy is 2.5 dB. The measured differences are
well within experimental error limits. It is therefore validated that the monostatic
RCS and the forward RCS are equal within good accuracy for this thin and non-
magnetic sample.

However, the phase of the RCS amplitude is also important since the extinction
cross section is determined from the imaginary part of the RCS amplitude, cf., the
optical theorem (2.2). The right part2 of Fig. 6 shows the extinction cross section
determined from the optical theorem using both the monostatic and forward RCS
amplitudes. The phase of the forward RCS amplitude is shifted according to the
procedure described below in order to compare the two curves. The maximum
discrepancy between the curves is 35 cm2 at 15 GHz after an adjustment of the
phase.

The real and imaginary parts of A(f ; k̂, ê)/f 2 are shown in Fig. 7. The phase
of A(f ; k̂, ê)/f 2 obtained from the forward scattering experiment is adjusted using
a time delay of 3.1 ps. We believe that the largest contribution to this phase shift
is the time delay of the wave as it passes the 0.3 mm FR4 substrate and the 48 mm
expanded polystyrene (EPS) sample support. Small alignment differences between
the calibration plate and the sample in the monostatic case can also account for the
observed phase difference. The difference between the two measurement methods is
small which means that it is validated that conventional monostatic RCS measure-
ments can be used to determine the extinction cross section for this class of thin
and non-magnetic samples.

Different methods are used to experimentally verify (5.2). First the extinction

2For convenience, we use the frequency f instead of the wavenumber k = 2πf/c0 in the discus-
sion of the experimental verification.
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Figure 6: The forward and monostatic RCS (left figure) and the extinction cross
section (right figure) determined from the RCS amplitude in the forward and back-
ward directions.

cross section is integrated to obtain a lower bound of limf→0 A(f ; k̂, ê)/f 2. By
integrating the measured data in the graph on the right-hand side of Fig. 6 a lower
bound of 1.1 cm/GHz2 is obtained using either the forward or the monostatic data.

A method to approximate A(k; k̂, ê)/k2 is to use a meromorphic function with
roots and zeros in the lower half of the complex k-plane. Numerical tests using the
algorithm in Ref. 6 indicate that it is sufficient to consider a rational function with a
numerator and a denominator of second and fourth degree polynomials, respectively.
This function can be represented by a sum of two Lorentz resonance models, viz.,

A(appr)(k, k̂, ê)

k2
=

2∑
n=1

an
k2

n − ikνn

k2
n − 2ikkn/Qn − k2

(5.4)

The optical theorem, (2.2), can be used to determine an approximation to the ex-

tinction cross section, σ
(appr)
ext (k), from A(appr)(k, k̂, ê),

σ
(appr)
ext (k) =

2
√

π

k
Im A(appr)(k, k̂, ê) (5.5)

The approximations (5.4) and (5.5) are depicted by the dotted lines in Fig. 7. It
is concluded that the approximations are in good agreement with the experimental
results.

A more accurate value for the quantity limk→0 A(k; k̂, ê)/k2 on the right-hand
side of (5.2) is determined from (5.4). In fact, the lower bound 1.1 cm/GHz2 should
be compared with the corresponding value 1.5 cm/GHz2 obtained by integrating

σ
(appr)
ext (k) over the range [0, 22] GHz. The lower bound 1.5 cm/GHz2 is quite close to

the static limit 1.8 cm/GHz2, which is predicted by the parameters in the Lorentz
resonance model (5.4).
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Figure 7: The imaginary part (left figure) and the real part (right figure) of A/f 2

determined from the RCS amplitude in the forward and backward directions. The
dot for zero frequency indicates a lower bound of limf→0 A(f ; k̂, ê)/f 2 obtained by
integrating the extinction cross section. The dotted lines are given by the approxi-
mation (5.4).

6 Conclusions

This paper exploits a sum rule for the extinction cross section to find bounds on
scattering of electromagnetic waves by an object. The theory is both numerically
and experimentally verified. The integrated extinction, which exclusively is deter-
mined by the static properties of the object, limits the total scattering properties
of the object. Specifically, it is found that large scattering effects always have to be
compensated by a loss of bandwidth. This loss of bandwidth can be quantified.

Moreover, we show that monostatic RCS amplitude measurements can be used to
determine the extinction cross section for thin and non-magnetic samples by validat-
ing the experimental method with a forward RCS measurement. The experimental
results show that the sum rule (5.2) is in good agreement with the measurements.
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Abstract

This paper reports on some peculiarities associated with a recently published
sum rule for scattering of electromagnetic waves. The sum rule states that the
extinction cross section integrated over all frequencies is governed by the low-
frequency response of the target. Although the sum rule is intriguing by itself,
it becomes even more paradoxical when the conductivity model or the per-
fectly electric conducting boundary condition is introduced. The paradoxical
character lies in the fact that the extinction cross section integrated over all
frequencies is independent of the conductivity as long as it is non-zero. This
puzzling result can be explained partially by rejecting the conductivity model
at low frequencies as suggested by numerical simulations of a homogeneous
and isotropic sphere. In addition, the low-frequency behavior of diamagnetic
materials is investigated using Herglotz functions and arguments from the
theory of special relativity.

1 Introduction

Under the assumption of linearity, passivity, and time-translational invariance, a
sum rule for scattering of electromagnetic waves is derived in Refs. 7 and 8 from
the holomorphic properties of the forward scattering dyadic. The result states that
the extinction cross section, i.e., the sum of the scattering and absorption cross
sections, integrated over all frequencies is equal to the static polarizability dyadics.
As a consequence, for a given target, there is only a limited amount of scattering
and absorption available in any frequency interval. This far-reaching observation
is applicable to a broad range of problems in theoretical physics involving wave
interaction with matter on a macroscopic scale. In Ref. 3, the sum rule also holds
with minor changes to a large class of causal and reciprocal antennas. Compared
to the classical antenna bounds, the theoretical findings in Ref. 3 yield sharper
inequalities, and, more importantly, a new fundamental understanding of antennas
solely based on its low-frequency properties.

Consider a homogeneous and isotropic sphere of radius a, and let κ = ka, where
k denotes the angular wave number in free space. Introduce the extinction efficiency
Qext(κ) = σext(κ)/πa2 as the extinction cross section normalized with the geometri-
cal cross section area πa2. Let ε = ε(κ) and µ = µ(κ) measure the permittivity and
permeability of the target relative to free space, and assume ε and µ are continuous
at κ = 0. The sum rule in Ref. 7 then reduces to

∫ ∞

0

Qext(κ)

κ2
dκ = 2π

(
ε(0)− 1

ε(0) + 2
+

µ(0)− 1

µ(0) + 2

)
. (1.1)

Although the integral in (1.1) has a simple closed-form expression, this is generally
not true for the integrand Qext(κ)/κ2 for a fixed κ ∈ [0,∞). In particular, note that
the right-hand side of (1.1) is independent of any temporal dispersion (although the
integrand is not), depending only on the low-frequency response of the target. As
expected, the right-hand side of (1.1) vanishes as ε(0) = µ(0) = 1 (i.e., as the target
reduces to free space), cf., the Kramers-Kronig relations in Ref. 9. More generally,
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if the equality in (1.1) is replaced by a less than or equal to sign, the new inequality
holds also for any isotropic and homogeneous scatterer circumscribed by a sphere of
radius a, see Ref. 7.

Under the assumption that ε and µ are continuous in the low-frequency limit,
it follows from the Kramers-Kronig relations that ε(0) and µ(0) are bounded from
below by the optical responses ε∞ = limκ→∞ ε(κ) > 1 and µ∞ = limκ→∞ µ(κ) > 1,
respectively. Since ε∞ and µ∞ are non-unique from a modeling point of view, see
Ref. 4, it is sufficient to set ε∞ = µ∞ = 1. Thus, ε(0) and µ(0) are bounded from
below by unity, and it follows that the right-hand side of (1.1) is non-negative. This
observation is consistent with the fact that the integrand in (1.1) by definition is
non-negative, see Refs. 7 and 9.

However, the sum rule (1.1) is not valid if either ε or µ are discontinuous at
κ = 0, which is the case for the conductivity model discussed on pp. 14–19 in
Ref. 2. Numerical results in Ref. 8 with temporally dispersive material parameters
in the form of a Drude model, i.e., a difference between a conductivity term and
a Debey model, suggest that (1.1) is independent of the conductivity as long as it
is non-zero. Furthermore, diamagnetic materials with a low-frequency permeability
less than unity seem to contradict (1.1) since the second term on the right-hand
side then becomes negative. The purpose of this paper is to clarify the effects
of the conductivity model (including the perfectly electric conducting limit) and
diamagnetic material parameters in the context of (1.1) and the theoretical findings
in Refs. 7 and 8.

2 The effects of conductivity at low frequencies

Introduce the dimensionless quantity ς = σcaη0 > 0, where σc measures the conduc-
tivity, and η0 is the wave impedance in free space. Let ε′ = ε′(κ) be an arbitrary
complex-valued permittivity that is continuous at κ = 0. Consider the target in
Sec. 1 with the following permittivity model which is singular at κ = 0:

ε(κ) = ε′(κ) + i
ς

κ
. (2.1)

Without loss of generality, let the target be non-magnetic in the sense that µ(κ) = 1
independent of κ ∈ [0,∞).1 Then, it follows that the transition matrix in the null-
field method is diagonal with electric 2`-pole (dipole, quadrupole, hexadecapole, . . . )
contributions given by, see Ref. 10,

t2`(κ) = − j`(κ)(κ
√

ε(κ)j`(κ
√

ε(κ)))′ − ε(κ)(κj`(κ))′j`(κ
√

ε(κ))

h
(1)
` (κ)(κ

√
ε(κ)j`(κ

√
ε(κ)))′ − ε(κ)(κh

(1)
` (κ))′j`(κ

√
ε(κ))

, (2.2)

1This assumption is justified by the fact that electromagnetic fields decouple in the low-
frequency limit, cf., the right-hand side of (1.1).
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where ` = 1, 2, 3, . . ., and a prime denotes differentiation with respect to either
κ
√

ε(κ) or κ depending on the arguments of j` and h
(1)
` .2 Here, j` and h

(1)
` denote

the spherical Bessel and Hankel functions of first kind, respectively, see Ref. 1. The
extinction efficiency is related to the transition matrix via Qext(κ) = −2 Re

∑
`(2`+

1)(t1`(κ) + t2`(κ))/κ2, cf., the classical Mie series solution.
For the homogeneous and isotropic sphere, the right-hand side of (1.1) is equal to

γ∞/2, where γ∞ denotes the degenerate eigenvalue of the high-contrast polarizability
dyadic in Refs. 7 and 8. This quantity is defined by the following limiting value for
the lowest order (` = 1) transition matrix element:

γ∞ = −6πi lim
κ→0+

t21(κ)

κ3
. (2.4)

For a permittivity model which is continuous at κ = 0, it is straightforward to
prove that the right-hand side of (1.1) is equal to γ∞/2. The corresponding limit
for the permittivity model (2.1) is somewhat more complicated as the asymptotic
expansion

√
ε(κ) = eiπ/4

√
ς/κ + O(

√
κ) for κ → 0+ must be inserted into (2.2).

Together with the asymptotics j`(κ) = 2``!κ`/(2` + 1)! + O(κ`+2) and h
(1)
` (κ) =

−i(2`)!/2``!κ`+1 +O(κ−`+1) as κ → 0+, see p. 437 in Ref. 1, it is not hard to show
that γ∞ = 4π for the permittivity model (2.1). Thus, it is concluded that

∫ ∞

0

Qext(κ)

κ2
dκ = 2π (2.5)

in the presence of a conductivity term. So, as long as an arbitrarily small conductiv-
ity is present in the materials of the target, the integral on the left-hand side of (1.1)
is equal to 2π independent of the values of ε′(0) and ς. Here, the paradoxical char-
acter lies in the fact that the integral on the left-hand side of (1.1) is discontinuous
in the limit as ς → 0+. This is a severe restriction in the sense that there is no
longer a freedom to model an electrical insulator as a low-conductivity material or
as a material with a conductivity which is identically zero.

The null-field method is also used to verify (2.5) by numerically computing the
extinction efficiency. The result is depicted on the left-hand side of Fig. 1 (the
right figure is a close-up at low frequencies) for ε′(κ) = 1 and ς ∈ {0.1, 1, 10, 104}
independent of κ ∈ [0,∞). A numerical integration shows that the integral in (2.5)
indeed is equal to 2π (within relative errors less than 1% for the domain of definition
κ ∈ [0, 34]) for the four curves in Fig. 1. The fifth curve labeled PEC is discussed in
Sec. 3, and it can be shown that this curve has an integral equal to π rather than
2π when it is weighted with 1/κ2. At a first glance, one does not expect that the
four curves in Fig. 1 have the same value of the integral. However, the left figure
in Fig. 1 suggests that the curves with low conductivities are shifted towards lower

2The corresponding magnetic elements are given by, see Ref. 10,

t1`(κ) = − j`(κ)(κ
√

ε(κ)j`(κ
√

ε(κ)))′ − (κj`(κ))′j`(κ
√

ε(κ))

h(1)
` (κ)(κ

√
ε(κ)j`(κ

√
ε(κ)))′ − (κh(1)

` (κ))′j`(κ
√

ε(κ))
. (2.3)
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Figure 1: The extinction cross section in units of πa2 for a homogeneous and
isotropic sphere with ε′ = 1. The right figure is a close-up of the left figure for low
frequencies, and as a consequence of (2.5), all curves (except for the one labeled
PEC) have the same integrated value when they are weighted with 1/κ2.

frequencies in such a manner that the integrals are preserved. This behavior can
further be understood by examining the zeros of the denominator in (2.2) in the
vicinity of the negative imaginary axis in the complex κ-plane.

The puzzling identity (2.5) can partially be explained by rejecting the conduc-
tivity model at low frequencies. For example, this may be done by introducing a
frequency dependent conductivity ς = ς(κ) for sufficiently low frequencies, or, equiv-
alently, through a regularization (i.e., replacing iς/κ by iς/(κ+iε) for some ε > 0) of
the conductivity model. This is analogous to the requirement of an infinitely large
relaxation time in the Debey model. Alternatively, one may transform (2.5) into an
inequality by removing a tiny portion of the integral in the neighborhood of κ = 0.
In the latter case, ∫ ∞

ε

Qext(κ)

κ2
dκ 6 2π, (2.6)

for any ε > 0. The left-hand side of (2.6) now depends on both ε and ς, and in
general it is no longer true that the integral is equal to 2π.

3 A comparison with the PEC material model

The transmission boundary conditions in (2.2) state that the tangential components
of the electric and magnetic fields are continuous on the boundary surface of the
target. This should be compared with the perfectly electric conducting (PEC) limit
which requires that the tangential component of the electric field vanishes on the
target. For a fixed κ > 0, (2.2) approaches the corresponding matrix elements for
the perfectly electric conducting boundary condition as the magnitude of ε tends to
infinity (e.g., by letting ς → ∞ in the presence of a conductivity term). However,
this is not true in the low-frequency limit as it is reasonable to expect that the index
of refraction n(κ) =

√
ε(κ)µ(κ) must be bounded as κ → 0+. Instead, the perfectly

electric conducting limit at low frequencies is obtained by simultaneously letting
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ε(0) → ∞ and µ(0) → 0+ as suggested by the discussion in Ref. 7 and references
therein.

4 Diamagnetism in the low-frequency limit

At a first glance, diamagnetic materials with µ(0) less than unity seem to con-
tradict (1.1) since the second term on the right-hand side then becomes negative,
cf., p. 283 in Ref. 6. However, the negative value of µ(0) is compensated by a
positive value of ε(0) as seen below. Use the fact that κε(κ) and κµ(κ) are Her-
glotz functions, i.e., holomorphic functions in the upper half part of the complex
κ-plane, with the properties that Im κε(κ) > 0 and Im κµ(κ) > 0, see Ref. 9. Then,
κ(n(κ)−n∞) defines a new Herglotz function, where n∞ = limκ→∞ n(κ) denotes the
high-frequency index of refraction. Hence, n(0) is bounded from below by n∞, and
from the inequality between the geometric and arithmetic mean values in Ref. 5,
one has

ε(0) + µ(0)

2
>

√
ε(0)µ(0) > n∞. (4.1)

Equality on the left-hand side of (4.1) holds if and only if ε(0) = µ(0). Now,
since the causality postulate in the special theory of relativity states that no signal
can propagate with a phase velocity greater than the phase velocity in free space,
it is concluded that n∞ is bounded from below by unity (alternatively, one may
use the Kramers-Kronig relations), and (4.1) yields that ε(0) + µ(0) > 2. Under
the assumption that ε(0) is positive (or more generally, not less than µ(0)), the
parenthesis on the right-hand side of (1.1) can be estimated from below by (ε(0) +
µ(0) − 2)/(ε(0) + 2) which indeed is non-negative. It is thus concluded that the
right-hand side of (1.1) remains positive in the presence of diamagnetic materials,
and that there is no contradiction with the definition of the extinction efficiency.

5 Conclusions

It is concluded that the extinction cross section integrated over all frequencies is
independent of the conductivity ς as long as it is non-zero. The perfectly electric
conducting boundary condition is obtained in the low-frequency limit by letting
not only the magnitude of ε(0) approach infinity, but simultaneously sending µ(0)
to zero such that n(0) =

√
ε(0)µ(0) remains bounded and well-defined. Further-

more, diamagnetic material parameters in the low-frequency limit cause no problems
in (1.1) since a static permeability less than unity is compensated by a corresponding
positive permittivity such that the right-hand side of (1.1) becomes non-negative.
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Abstract

This paper reports on a systematic procedure for deriving bounds in electro-
magnetic theory. The approach is based on the holomorphic properties of
certain Herglotz functions and their asymptotic expansions in the low- and
high-frequency regimes. A family of integral identities or sum rules is ob-
tained with values governed by the coefficients in the low- and high-frequency
expansions. In particular, sum rules for plane-wave scattering by a homoge-
neous and isotropic sphere are derived and numerically verified by computing
the extinction cross section and the bistatic radar cross section in the forward
direction. It is concluded that the obtained sum rules show great potential
for deriving new physical bounds in, e.g., scattering and antenna problems.

1 Introduction

Sum rules, or more generally, dispersion relations, are promising techniques in the-
oretical physics for analyzing particle collisions and scattering of acoustic, electro-
magnetic, and elastic waves, see Ref. 6. There are at least three main advantages
of sum rules in the modeling of macroscopic wave interaction with matter: (i) they
provide consistency checks of calculated quantities when the underlying mathemat-
ical model a priori is known to be causal, (ii) they may be used to verify whether a
given mathematical model or an experimental outcome behaves causally or not, and
(iii) they yield bounds and estimates on quantities with experimental significance.
In addition, sum rules are valuable as benchmark results for comparing different
numerical methods. Techniques based on sum rules have successfully been applied
in Refs. 1, 4, and 5 to a large class of scattering and antenna problems to establish
bounds on the amount of electromagnetic interaction available in a given frequency
interval. This paper, however, takes a more general approach and presents a sys-
tematic way of deriving new sum rules in electromagnetic theory.

2 Sum rules for Herglotz functions

Consider an arbitrary Herglotz function h = h(κ) defined as a mapping from the
upper half part of the complex κ-plane into itself, i.e., let h(κ) be a holomorphic
function with the property that Im h(κ) > 0 for Im κ > 0, see Ref. 3. Assume that
h(κ) has the following low-frequency expansion in the vicinity of the origin:

h(κ) = a−1κ
−1 + a1κ + . . . + a2N−1κ

2N−1 +O(κ2N) as κ → 0, (2.1)

where a−n = 0 for n = 2, 3, . . .. The corresponding asymptotic series at infinity with
bm = 0 for m = 2, 3, . . . reads

h(κ) = b1κ + b−1κ
−1 + . . . + b1−2Mκ1−2M +O(κ−2M) as κ →∞, (2.2)

where it has been used that h(κ)/κ and κh(κ) are bounded as κ → ∞ and κ →
0, respectively. The latter statement follows from the previous by observing that
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R{R "{"
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Figure 1: Trajectory γ in the complex κ-plane for the contour integral (2.3).

−1/h(κ) defines a new Herglotz function whenever h(κ) is a Herglotz function. The
non-negative integers N and M are chosen such that they correspond to the first
even monomials in (2.1) and (2.2), respectively.

Assume h(κ) satisfies the cross symmetry h(κ) = −h∗(−κ∗) for complex-valued
κ, implying that a2n−1 and b1−2m are real-valued for n,m = 0, 1, . . . (in addition, it
is known that −a−1 and b1 are non-negative), and consider the integral of h(κ)/κ`

with respect to the contour in Fig. 1. Then, for any integer ` and 0 < ε < R one
has
∫

ε<|κ|<R

h(κ)

κ`
dκ = iε1−`

∫ π

0

h(εeiφ)ei(1−`)φ dφ− iR1−`

∫ π

0

h(Reiφ)ei(1−`)φ dφ, (2.3)

where κ is real-valued in the first integral on the left-hand side of (2.3). Here,
the small and large semicircles in Fig. 1 are parameterized by κ(φ) = εei(π−φ) and
κ(φ) = Reiφ, respectively, where φ ∈ [0, π]. In order to evaluate the right-hand side
of (2.3), introduce the auxiliary integral

I` =

∫ π

0

ei`φ dφ = i
1− eiπ`

`
= i

2α`

`
, ` 6= 0, (2.4)

with I0 = π. Here, α` = (1 − (−1)`)/2, so α` = 1 for odd `-values, and α` = 0 for
even `-values. When (2.1) is inserted into (2.3) for a fixed ε > 0, the first integral
on the right-hand side of (2.3) becomes

iε1−`

∫ π

0

h(εeiφ)ei(1−`)φ dφ = i
(
a−1ε

−`I−` + . . . + a2N−1ε
2N−`I2N−` +O(ε2N+1−`)

)

= f(ε) +O(ε2N+1−`) + iπα`−1a`−1, (2.5)

where f is a real-valued function not necessarily continuous at ε = 0. Analogous
to (2.5), for a fixed R > 0, the second integral on the right-hand side of (2.3) yields

− iR1−`

∫ π

0

h(Reiφ)ei(1−`)φ dφ = −i
(
b1R

2−`I2−` + . . . + b1−2MR2−2M−`I2−2M−`

+O(R1−2M−`)
)

= f ′(R) +O(R1−2M−`)− iπα`−1b`−1, (2.6)
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where f ′ is a new real-valued function not necessarily continuous at infinity. Note
that the rest terms O(ε2N+1−`) and O(R1−2M−`) in general are complex-valued.

Now, from the cross symmetry h(κ) = −h∗(−κ∗), it follows that Re h(κ) =
−Re h(−κ) and Im h(κ) = Im h(−κ) for real-valued κ, and sending ε → 0 and
R →∞ in (2.3) therefore yields

lim
ε→0

lim
R→∞

∫

ε<|κ|<R

h(κ)

κ`
dκ = 2α`

∫ ∞

0

Re h(κ)

κ`
dκ + 2iα`−1

∫ ∞

0

Im h(κ)

κ`
dκ. (2.7)

When ε → 0 and R →∞, the rest terms in (2.5) and (2.6) vanish for ` = . . . , 2N −
1, 2N and ` = 2− 2M, 3− 2M, . . ., respectively. Thus, the left-hand side of (2.3) is
well-defined if and only if ` = 2− 2M, 3− 2M, . . . , 2N . Thus, taking the imaginary
part of (2.3) finally yields the following family of sum rules (p = `/2):

∫ ∞

0

Im h(κ)

κ2p
dκ =

π

2
(a2p−1 − b2p−1), p = 1−M, 2−M, . . . , N, (2.8)

where it has been used that odd `-values vanish due to (2.7). Since Im h(κ) is non-
negative, (2.8) can further be estimated from below by integrating over any finite
interval K ⊂ [0,∞) with center frequency κ = κ0, i.e.,

Bκ1−2p
0 min

κ∈K
Im h(κ) +O(B3) 6

∫

K

Im h(κ)

κ2p
dκ 6 π

2
(a2p−1 − b2p−1), (2.9)

where p = 1−M, 2−M, . . . , N , and B =
∫

K
dκ/κ0 denotes the relative bandwidth

of K. Note that the left-hand side of (2.9) is evaluated in the narrow bandwidth
approximation as B ¿ 1, and that a more complicated expression holds when B is
close to unity.

3 Plane-wave scattering by a sphere

In order to exemplify the theoretical results in Sec. 2, consider the direct scattering
problem of a plane wave êeiκk̂·x of unit amplitude impinging in the k̂-direction on a
homogeneous and isotropic sphere of radius a. Here, x measures the position vector
in units of a, and κ = ka, where k denotes the wave number in free space. The
target is assumed to be non-magnetic with lossless material parameters modeled by
the permittivity ε = ε(κ) relative to free space. The scattered electric field in the
far-field region then reads, see Ref. 2,

Es(κ; x) =
eiκx

x
S(κ; x̂) · ê +O(x−2) as x →∞, (3.1)

where x = |x|, and the scattering dyadic S represents the mapping from an incoming
plane wave (evaluated at the origin) into the amplitude of an outgoing spherical wave
in the x̂-direction. This scattering problem is causal in the forward direction x̂ = k̂
since the forward scattered field cannot precede the incident field. As a consequence,
the arguments in Refs. 4 and 5 suggest that h(κ) = 4ê∗ ·S(κ; k̂)·ê/κ can be extended
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to a Herglotz function for a fixed electric polarization ê. This Herglotz function has
the property that h(κ) = −h∗(−κ∗) for Im κ > 0, see Ref. 2.

Now, introduce the extinction efficiency Qext(κ) = Im h(κ) as the extinction
cross section (i.e., the sum of the scattering and absorption cross sections) in units
of the geometrical cross section area πa2, cf., the optical theorem in Ref. 2. From
the null-field method in Ref. 7, the low-frequency expansion of h(κ) is calculated to
be

h(κ) = 4
εs − 1

εs + 2
κ +

4

15

ε4
s + 25ε3

s − 15ε2
s − 49εs + 38

(εs + 2)2(2εs + 3)
κ3 +O(κ4) as κ → 0, (3.2)

where εs = ε(0) denotes the static response of the target. The corresponding high-
frequency expansion is assumed to satisfy h(κ) = O(1) as κ →∞, cf., the extinction
paradox in Ref. 4. Thus, inserting N = 2 and M = 0 into (2.8), it is concluded that
the following two sum rules hold for the lossless dielectric sphere:1

∫ ∞

0

Qext(κ)

κ2
dκ = 2π

εs − 1

εs + 2
,

∫ ∞

0

Qext(κ)

κ4
dκ =

2π

15

ε4
s + 25ε3

s − 15ε2
s − 49εs + 38

(εs + 2)2(2εs + 3)
.

(3.3)
Here, the first integral is proportional to the diagonal elements of the electric po-
larizability dyadic. As expected, both integrals vanish in the limit as εs → 1. Also,
note that the second integral is unbounded whereas the first integral approaches 2π
in the high-contrast limit as εs → ∞. Furthermore, since −1/h(κ) defines a new
Herglotz function, one has

− 1

h(κ)
= −1

4

εs + 2

εs − 1
κ−1 +

1

60

ε2
s + 27εs + 38

2εs + 3
κ +O(κ2) as κ → 0. (3.4)

A straightforward calculation using the fact that Im(−1/h(κ)) = Im h(κ)/|h(κ)|2
and |h(κ)|2 = 4σrcs(κ)/κ2 yields the following sum rule for N = 1 and M = 0:

∫ ∞

0

Qext(κ)

σrcs(κ)
dκ =

π

30

ε2
s + 27εs + 38

2εs + 3
, (3.5)

where σrcs(κ) measures the bistatic radar cross in the forward direction in units of
πa2. Note that the right-hand side of (3.5) is unbounded as εs →∞. Furthermore,
the limiting value of (3.5) as εs → 1 is 11π/25, which is intriguing since one ex-
pects the integrand to vanish when the material parameters in the scatterer become
identical to free space. The extinction efficiency and the bistatic radar cross section
in the forward direction are depicted in Fig. 2 for the lossless and non-dispersive
permittivities ε = 2 and ε = 4. A numerical integration of the two curves in Fig. 2
(except for the curve labeled PEC) verifies that (3.3) and (3.5) hold within a relative
error that can be made arbitrary small.

The corresponding low-frequency expansions of h(κ) and −1/h(κ) in the per-
fectly electric conducting (PEC) limit read

h(κ) = 2κ +
113

45
κ3 +O(κ4), − 1

h(κ)
= −1

2
κ−1 +

113

180
κ +O(κ2) (3.6)

1The first integral in (3.3) with weighting factor 1/κ2 also holds in the lossy case as discussed
in Refs. 4 and 5.
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Figure 2: The extinction efficiency (left) and the forward bistatic radar cross
section (right) for a homogeneous and isotropic sphere of radius a. Note that both
Qext(κ) and σrcs(κ) are dimensionless quantities measured in units of the geometrical
cross section area πa2.

as κ → 0. Thus, the three sum rules corresponding to (3.3) and (3.5) for the perfectly
electric conducting sphere read

∫ ∞

0

Qext(κ)

κ2
dκ = π,

∫ ∞

0

Qext(κ)

κ4
dκ =

113π

90
,

∫ ∞

0

Qext(κ)

σrcs(κ)
dκ =

113π

90
.

(3.7)
The extinction efficiency and the bistatic radar cross section in the forward direction
for the perfectly electric conducting sphere are also depicted in Fig. 2. A numerical
integration of the two curves labeled PEC shows that the sum rules in (3.7) hold
to arbitrary precision. Due to the non-negative character of the integrands in (3.3)
to (3.7), these sum rules can also be formulated as physical bounds with respect to
any finite κ-interval as suggested by (2.9).

4 Conclusions

It is concluded that (2.8) and (2.9) show great potential for deriving new physical
bounds in electromagnetic theory. The results in this paper can also be generalized
to include functions which are bounded in magnitude by unity, e.g., transmission
and reflection coefficients, by mapping the unit disk into the upper half part of the
κ-plane using a linear fractional transformation. A variety of new sum rules can also
be established by observing that the composition of two Herglotz functions defines
a new Herglotz function.
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Abstract

The extinction paradox states that a perfectly electric conducting target that
is large compared to the wavelength removes from the incident radiation ex-
actly twice the amount of power it can intercept by its geometrical cross
section area. In this paper, the extinction paradox is generalized to include
temporally dispersive material parameters with finite values of the permittiv-
ity and the permeability. Using a time-domain approach, it is shown that the
high-frequency limit of the extinction cross section depends on the material
parameters of the target and that a limiting value not necessarily exists. The
theoretical findings are exemplified by numerical illustrations with different
values of the extinction cross section in the high-frequency limit.

1 Introduction

The extinction paradox states that, in the high-frequency regime, a perfectly electric
conducting (PEC) target removes exactly twice the amount of energy it can intercept
by its geometrical cross section area [1, 4, 6]. Here, the paradoxical character lies in
the fact that the effective cross section area becomes twice as large as one would
expect from the geometrical optics approximation. For a PEC sphere of radius a,
this means that the extinction cross section (i.e., the sum of the scattering and ab-
sorption cross sections) approaches 2πa2 as the wavelength of the incident radiation
becomes much smaller than a, cf., the limiting value of the Mie series in Ref. 4.
A common explanation for the high-frequency contribution to the extinction cross
section, besides the geometrical cross section area due to a direct removal of energy
from the incident radiation, is that the additional effect originates from diffraction
phenomena or small-angle scattering. This explanation is presented in Refs. 6 and 2
as a result of Babinet’s principle and scalar diffraction theory. However, the use
of Babinet’s principle is unsatisfactory in many ways, e.g., numerical illustrations
in this paper indicate that the high-frequency limit of the extinction cross section
may very well be oscillatory and thus not well-defined. Another common approach
to the extinction paradox of convex targets is based on the physical optics approx-
imation which correctly reproduces twice the geometrical cross section area in the
high-frequency limit.

The analysis of the extinction paradox in Refs. 6 and 1 is also restrictive since it
does not apply to penetrable targets with finite values of the permittivity and the
permeability. In contrast to the many frequency domain approaches found in the
literature, this paper investigates the extinction paradox using time-domain ideas
discussed in Ref. 3. In particular, this paper shows that for a large class of targets
with temporally dispersive material parameters, the extinction cross section does not
approach twice the geometrical cross section area in the high-frequency limit. In-
stead, the results suggest that the extinction paradox depends on the high-frequency
behavior of the chosen material models. The study of the extinction paradox is mo-
tivated by a new theory for broadband scattering of electromagnetic waves set forth
in Ref. 5. Numerical results also support the conclusion by L. Brillouin in Ref. 2
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that the extinction paradox “. . . is of such general character that it must certainly
apply to a variety of similar problems in acoustics and wave mechanics”.

2 Energy conservation

Consider a bounded target in an otherwise empty space with vacuum. An incident
plane pulse propagating in the k̂-direction is given by Ei(x, t) =

√
ε0êf(t− k̂ ·x/c0),

where f(τ ′) = 0 for τ ′ < 0, and τ ′ > τ and η0 and c0 denote the wave impedance
and phase velocity of free space, respectively. Let a circular cylinder of finite length
with the k̂-axis as symmetry axis and surface ∂V with outward-directed normal unit
vector n̂ circumscribe the target such that the object does not touch the cylinder.
The projection of the target on the bottom surface of the cylinder is denoted by A
and has the area A, see Fig. 1. Decomposed the total electric field into an incident
and a scattered field according to E(x, t) = Ei(x, t) + Es(x, t).

The extinguished energy is the sum of the absorbed and scattered energies at a
sufficiently large time (t = ∞)

−
∫

R

∫

∂V

(
E(x, t)×H(x, t)−Es(x, t)×Hs(x, t)

) · n̂(x) dS dt

= −
∫

R

∫

∂V

(
Ei(x, t)×Hs(x, t) + Es(x, t)×H i(x, t)

) · n̂(x) dS dt (2.1)

Causality ensures that when the pulse width goes to zero, τ → 0, the support
of the incident and scattered fields can only overlap at the planar surface A with
outward-directed unit normal vector n̂ = k̂. This simplifies (2.1) to

Wext = −c0 lim
τ→0

∫

R

∫

A
µ0H i(x, t) ·Hs(x, t) + ε0Es(x, t) ·Ei(x, t) dS dt. (2.2)

Define the short pulse extinction cross section as the quotient between the extin-
guished energy and the incident energy flux, i.e.,

Σext =
Wext

c0

∫
R |f(τ ′)|2 dτ ′

= 2A−

lim
τ→0

∫
R

∫
A ε0E(x, t) ·Ei(x, t) + µ0H i(x, t) ·H(x, t) dS dt∫

R |f(τ ′)|2 dτ ′
. (2.3)

The short pulse extinction cross section depends on the geometry of the target
and its material parameters. Here, an isotropic non-magnetic material is considered
with a the time-domain constitutive relation given by D = ε0(ε∞E + χ ∗E), where
χ(t) denotes the susceptibility kernel and ∗ denotes temporal convolution. The
corresponding frequency domain relations are quantified by the permittivity ε(ω),
where ω denotes the angular frequency. The following four important special cases
as illustrated in Fig 1:

1. The target is perfectly electric conducting (PEC). In this case E ·Ei = 0 and
H ·H i = 0 when x ∈ A and hence Σext = 2A.
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Figure 1: a) The temporal and spatial support of the scattered and incident fields
for an object with a phase velocity c∞ < c0. b) Illustrations of the shadow regions
for various scattering targets.

2. The target is a dielectric material with an optical response ε∞ > 1. The wave
front travels with the phase velocity c∞ = c0/

√
ε∞ in the target implying that

E ·Ei = 0 and H ·H i = 0 when x ∈ A. Hence Σext = 2A.

3. The object is a dispersive medium with phase velocity c∞ = c0 and χ(0) > 0,
or equivalently ε(ω) = 1 − iς/ω + O(ω−2) as ω → ∞, where ς = 1/χ(0), cf.,
the Debye and conductivity models. The wave front travels with the speed c0

but is attenuated. One can show that the shape of the wave front is unaffected
by the object but that attenuated by a factor of exp(−χ(0)∆`/2c0) when it
travels a distance ∆` in the medium. Thus 0 < Ei · E < |Ei|2 when x ∈ A
and hence 0 < Σext < 2A.

4. The object is a dispersive medium with phase velocity c∞ = c0 and χ(0) = 0,
or equivalently ε(ω) = 1 +O(ω−2) as ω →∞, cf., the Lorentz model. In this
case the wave front is not affected by the medium and hence Σext = 0.

The first two cases are the time domain (or short pulse) analogy of the extinction
paradox, i.e., the energy an object absorbs and scatters is twice the amount that it
intercepts by its geometrical cross section area. It is illustrative to relate the time-
domain extinction paradox to the corresponding high-frequency version. Fourier
synthesis of the short pulse extinction cross section is

Σext(k̂, ê) = lim
τ→0

∫∞
0

σext(ω; k̂, ê)|g(ω)|2 dω∫∞
0
|g(ω)|2 dω

, (2.4)

where σext denotes the extinction cross section and g(ω) is the Fourier transform of
f(t). Although, the derivation is based on a finite pulse width, it can be generalized,
giving

Σext(k̂, ê) = lim
ω→∞

1

ω

∫ ω

0

σext(ω
′; k̂, ê) dω′, (2.5)

where it is seen that the running average of the extinction cross section approaches
Σext in the high frequency limit. The extinction paradox then reads: in the high
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Figure 2: The extinction cross section and running averages extinction cross
section in units of the geometrical cross section area A = πa2 for the PEC geometry
depicted on the right hand side.

frequency limit, on average the absorbed and scattered power of an object is less then
or equal to twice the power that it can intercept by its geometrical cross section area,
where equality holds for objects with phase velocity c∞ < c0.

3 Numerical examples

Numerical results for a truncated cone with a displaced top, dielectric sphere, and
temporal dispersive layered sphere are used to illustrate the high-frequency limit of
the extinction cross section, running average extinction cross section, and the short
pulse extinction cross section.

The truncated cone with a displaced top is illuminated by a plane wave incident
along the symmetry axis, as depicted in Fig. 2. The object is PEC and has a
geometrical cross section area A = πa2 for k̂ = −ẑ. The extinction cross section is
determined with a MoM code for 1 6 ka 6 250. A simple geometrical optics analysis
suggests that it is only the rays that are reflected between the conical surfaces that
can contribute to the forward scattering. These rays are phase shifted causing a
constructive and destructive interference pattern in the forward scattering, and,
hence, an oscillatory extinction cross section. Note that the oscillation frequency
ka ≈ 14 ≈ 2π/0.45 is consistent with the geometrical optics approximation. It is
observed that high frequency limit of the extinction cross section does not exist.
Moreover, σext does not simple oscillate symmetrically around 2A. However, the
running average (2.5) of the extinction cross section approaches 2A.

The extinction cross section of a dielectric sphere with a constant permittivity
ε = 2 is depicted to the left in Fig. 3. It is observed that σext oscillates around 2A and
that the amplitude of the oscillations decreases with ka. The corresponding running
averages extinction cross section (2.5) is given by the smooth curve that slowly
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Figure 3: The extinction cross section in units of the geometrical cross section
area A = πa2 for a sphere of radius a. The left figure represents a homogeneous
sphere with a constant permittivity ε = 2 while the right figure is for a stratified
sphere with a Lorentz dispersive media in the outermost layer. The corresponding
running average extinction cross sections are illustrated by the smoothly varying
curves.

approaches 2A. A stratified sphere with a PEC core (with radius a/2) surrounded
by a Lorentz dispersive media is illustrating the effect of temporal dispersion on
the short pulse extinction cross section. The Lorentz model is given by ε(κ) =
1− κ2

p/(κ
2 − κ2

0 + iκν), where κ = ka, κ0 = κp = 10, and ν = 0.1κ0. It is observed
that σext approaches A/2 as ka → ∞ in the right hand side of Fig. 3. This agrees
with the general result as the wave front is unaffected by the Lorentz medium giving
a shadow region defined by the projection of the PEC core. The convergence of the
running average extinction cross section is seen to converge slower.

4 Conclusions

The time domain approach offers new insights into the underlying physics of the
extinction paradox. In contrast to the classical frequency domain explanations, the
new approach is solely based on energy conservation and causality and does not
utilize either scattering theory nor high-frequency approximations. A short pulse
extinction cross section is defined and shown to be bounded by twice the geometrical
cross section area of the object. Moreover, it is shown that the running average of
the high-frequency extinction cross section approaches the short pulse extinction
cross section in the high frequency limit.
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Abstract

In this paper, physical bounds on scattering of acoustic waves over a frequency
interval are discussed based on the holomorphic properties of the scattering
amplitude in the forward direction. The result is a dispersion relation for
the extinction cross section which yields an upper bound on the product of
the extinction cross section and the associated bandwidth of any frequency
interval. The upper bound is shown to depend only on the geometry and
the material properties of the scatterer in the static or low-frequency limit.
The results are exemplified by permeable and impermeable scatterers with
homogeneous and isotropic material parameters.

1 Introduction

Linear acoustics with propagation and scattering of waves in air and water has been
a subject of considerable interest for more than a century. Major contributions
to the scattering theory of both acoustic and electromagnetic waves from bounded
obstacles was provided by Lord Rayleigh in a sequence of papers. From a theoretical
point of view, scattering of acoustic waves shares many features with electromagnetic
and elastodynamic wave interaction. For a comprehensive introduction to linear
acoustics, see, e.g., Refs. 5 and 13.

The objective of this paper is to derive physical bounds on broadband scattering
of acoustic waves. In more detail, the scattering problem discussed here involves
how a scatterer of arbitrary shape perturbs a known incident field over a frequency
interval. The analysis is based on a forward dispersion relation for the extinction
cross section applied to a set of linear and passive constitutive relations. This for-
ward dispersion relation, known as the integrated extinction, is a direct consequence
of causality and power conservation via the holomorphic properties of the scatter-
ing amplitude in the forward direction. As far as the authors know, the integrated
extinction was first introduced in Ref. 7 concerning absorption and emission of elec-
tromagnetic waves by interstellar dust. The analysis in Ref. 7, however, is restricted
to homogeneous and isotropic spheroids. This narrow class of scatterers was gen-
eralized in Ref. 8 to include bi-anisotropic and heterogeneous obstacles of arbitrary
shape.

The present paper is a direct application to linear acoustics of the physical bounds
for scattering of electromagnetic waves introduced in Refs. 8 and 9. The broad use-
fulness of the integrated extinction is illustrated by its diversity of applications, see,
e.g., Ref. 9 for upper bounds on the bandwidth of the interaction of electromagnetic
waves with metamaterials. The integrated extinction has also fruitfully been applied
to antennas of arbitrary shape in Ref. 2 to establish bounds on the directivity and
the bandwidth of any antenna. The theory for broadband scattering of acoustic
waves is motivated by the sum rules in Ref. 10 and the analogy with causality in
the scattering theory for particles in Ref. 6.

In Sec. 2, the integrated extinction is derived based on the holomorphic properties
of the scattering amplitude in the forward direction. The derivation utilizes only the
properties of the fields in the exterior region, and the results are hence independent
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V

k̂

x̂ui

us

Figure 1: Illustration of the direct scattering problem: the scatterer V is subject to
a plane wave ui = eikk̂·x impinging in the k̂-direction. The incident field is perturbed
by V and a scattered field us is detected in the x̂-direction.

of the boundary conditions imposed on the scatterer as long as the material is linear
and passive. The effects of various boundary conditions are examined in Sec. 3, and
there applied to the results in Sec. 2. In the final section, Sec. 4, the main results
of the paper are summarized and possible applications of the integrated extinction
are discussed.

2 The integrated extinction

Consider a time-harmonic plane wave ui = eikk̂·x (complex excess pressure field)
with time dependence e−iωt incident on a bounded, but not necessary simply con-
nected, scatterer with support V ⊂ R3 of arbitrary shape, see Fig. 1. The plane
wave is impinging in the k̂-direction, and x denotes the position vector with re-
spect to some origin. The scatterer V is assumed to be linear and time-translational
invariant with passive material properties modeled by general anisotropic and het-
erogeneous constitutive relations. The analysis includes the impermeable case as
well as transmission problems with or without losses. The scatterer V is embedded
in the exterior region R3 \ V , which is assumed to be a compressible homogeneous
and isotropic fluid characterized by the wave number k = ω/c. The material in
R3 \ V is assumed to be lossless and independent of time.

Let u = ui+us denote the total field in R3\V , where the time-dependent physical
excess pressure p is related to u as p = Re{ue−iωt}. The scattered field us represents
the disturbance of the incoming field in the presence of V . It satisfies the Helmholtz
wave equation in the exterior of V , see Ref. 13, i.e.,

∇2us + k2us = 0, x ∈ R3 \ V . (2.1)

The boundary condition imposed on us at large distances x = |x| is the Sommerfeld
radiation condition

lim
x→∞

x

(
∂us

∂x
− ikus

)
= 0, (2.2)

which is assumed to hold uniformly in all directions x̂ = x/x. The condition (2.2)
establishes the outgoing character of us, and provides a condition for a well-posed
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exterior boundary-value problem. For a discussion of various boundary conditions
imposed on V , see Sec. 3.

From the integral representations in Ref. 11, it is clear that every solution to (2.1)
satisfying (2.2) has an asymptotic behavior of an outgoing spherical wave, i.e.,

us =
eikx

x
S(k, x̂) +O(x−2) as x →∞. (2.3)

The scattering amplitude S is independent of x, and it describes the interaction of
V with the incident field. From a time-domain description of the problem, it follows
that S is the Fourier transform of some temporal scattering amplitude St. Assume
that St is causal in the forward direction in the sense that St(τ, k̂, k̂) = 0 for τ < 0,
where τ = ct − k̂ · x. Based on this condition, the Fourier transform of St reduces
to a one-sided integral over τ > 0, i.e.,

S(k; k̂) =

∫ ∞

0

St(τ, k̂, k̂)eikτ dτ. (2.4)

The convergence of (2.4) is improved by extending its domain of definition to
complex-valued k with Im k > 0. Such an extension defines a holomorphic func-
tion S in the upper half plane Im k > 0, see Ref. 6. Note that S in general is
not a holomorphic function at infinity for Im k > 0 in the absence of the causality
condition.

The description of broadband scattering is simplified by introducing a weighted
function % of the forward scattering amplitude. For this purpose, let % denote

%(k; k̂) = S(k; k̂)/k2, Im k > 0. (2.5)

Since St is real-valued, it follows from (2.4) that % is real-valued on the imaginary
axis, and that it satisfies the cross symmetry %(−k∗; k̂) = %∗(k; k̂) (a star denotes
the complex conjugate) for complex-valued k with Im k > 0. Assume that % vanishes
uniformly as |k| → ∞ for Im k > 0.

An important measure of the total power that V extracts from the incident field
in the form of radiation and absorption is given by the extinction cross section σext.
The extinction cross section is related to % via the optical theorem, see Ref. 6,

σext = 4πk Im %, (2.6)

where k ∈ [0,∞). The optical theorem is a direct consequence of power conserva-
tion (or conservation of probability in the theory of the Schrödinger equation) and
states that the total power removed from the incident field is solely determined by
Im %. The extinction cross section is commonly decomposed into the scattering cross
section σs and the absorption cross section σa, i.e.,

σext = σs + σa. (2.7)

Here, σs and σa are defined as the scattered and absorbed power divided by the
incident power flux. The scattering and absorption cross sections are related to us

and u on the boundary ∂V via, see Ref. 1,

σs =
4π

k
Im

∫

∂V

u∗s
∂us

∂n
dS, σa =

4π

k
Im

∫

∂V

u
∂u∗

∂n
dS, (2.8)
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where the normal derivative ∂/∂n is evaluated with respect to the outward-directed
unit normal vector. In the case of lossy material parameters, the absorption cross
section represents the total power absorbed by V . For a lossless scatterer, σa = 0.

Assume that % vanishes uniformly as |k| → ∞ for Im k > 0. This assumption
is justified by the argument that the high-frequency response of a material is non-
unique from a modeling point of view. The assumption is also supported by the
extinction paradox, which states that σext approaches at most twice the geometrical
cross section area in the high-frequency regime, i.e., Im %(k; k̂) = O(k−1) as k →∞
for real-valued k. For a discussion of the extinction paradox for electromagnetic
waves, see Ref. 12. Under this assumption, it follows from the analysis in Refs. 6
and 10 that % satisfies the Hilbert transform or the Plemelj formula

Re %(k′; k̂) =
1

π
P

∫ ∞

−∞

Im %(k; k̂)

k − k′
dk, (2.9)

where k′ is real-valued and P denotes Cauchy’s principal value. It is particularly
interesting to evaluate (2.9) in the static limit as k′ → 0. For this purpose, assume
that Re %(k′; k̂) = O(1) and Im %(k′; k̂) = O(k′) as k′ → 0, and that % is sufficiently
regular to interchange the principal value and the static limit. Based on these
assumptions, (2.6) yields

lim
k→0

Re %(k; k̂) =
2

π

∫ ∞

0

Im %(k; k̂)

k
dk, (2.10)

where it has been used that Im %(k; k̂) = − Im %(−k; k̂) for real-valued k. The
optical theorem (2.6) inserted into (2.10) finally yields

∫ ∞

0

σext(k; k̂)

k2
dk = 2π2 lim

k→0
Re %(k; k̂). (2.11)

The left-hand side of (2.11) is referred to as the integrated extinction. The identity
provides a forward dispersion relation for the extinction cross section as a direct
consequence of causality and power conservation. Due to the lack of any length scale
in the static or low-frequency limit, the right-hand side of (2.11) is proportional
to the volume of V since % has the dimension of volume, cf., the discussion in
Ref. 8. Furthermore, the right-hand side of (2.11) depends only on the static material
properties of V , and it is presented in Sec. 3 for a large class of homogeneous and
isotropic scatterers.

The weak assumptions imposed on % in the derivation above are summarized as
follows: %(k; k̂) → 0 uniformly as |k| → ∞ for Im k > 0, and Re %(k; k̂) = O(1)
and Im %(k; k̂) = O(k) as k → 0 for real-valued k. In general, (2.11) is not valid if
any of these assumptions are violated as illustrated in Sec. 3.3. In fact, the above-
noted requirements can be relaxed by the introduction of the Plemelj formula for
generalized functions. The integrated extinction can also be derived using Cauchy’s
integral theorem, see Ref. 8.

The integrated extinction (2.11) may be used to establish physical bounds on
broadband scattering of acoustic waves. Since σext is defined as the sum of the
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scattered and absorbed power divided by the incident power flux, it is by definition
non-negative. Hence, the left-hand side of (2.11) is estimated from below by

|K|min
k∈K

σ(k)

k2
6

∫

K

σ(k)

k2
dk 6

∫ ∞

0

σext(k; k̂)

k2
dk, (2.12)

where |K| denotes the absolute bandwidth of any frequency interval K ⊂ [0,∞),
and σ represents either σext, σs, or σa. By combining the left-hand side of (2.12)
with the right-hand side of (2.11), one obtains the fundamental inequality

|K|min
k∈K

σ(k)

k2
6 2π2 lim

k→0
Re %(k; k̂). (2.13)

The interpretation of (2.13) is that it yields an upper bound on the absolute band-
width |K| for a given scattering and/or absorption cross section mink∈K σ(k)/k2.
From (2.13), it is seen that the static limit of Re % bounds the total amount of
power extracted by V within the frequency interval K. The electromagnetic anal-
ogy to (2.13) is, i.a., central for establishing upper bounds on the performance of
antennas of arbitrary shape, see Ref. 2.

3 The effect of various boundary conditions

In the following, the static limit of Re % is examined for various boundary conditions
and applied to the integrated extinction (2.11). For this purpose, V is assumed to
be homogeneous and isotropic with sufficiently smooth boundary ∂V to guarantee
the existence of boundary values in the classical sense.

3.1 The acoustically hard problem

The Neumann problem or acoustically hard problem corresponds to an impermeable
scatterer with boundary condition ∂u/∂n = 0 for x ∈ ∂V . The physical interpreta-
tion of the Neumann boundary condition is that the velocity field on ∂V is zero since
no local displacements are admitted. From the fact that us only exists in R3 \ V ,
it follows that the corresponding scattered field in the time-domain cannot precede
the incident field in the forward direction, i.e., the causality condition imposed on
St in Sec. 2 is valid for the homogeneous Neumann problem. The static limit of S
is derived in Refs. 1 and 3 from a power series expansion of ui and us. The result in
terms of Re % reads

lim
k→0

Re %(k; k̂) =
1

4π
(k̂ · γm · k̂ − |V |), (3.1)

where |V | denotes the volume of V . Here, γm models the scattering of acoustic
waves in the low-frequency limit. In analogy with the corresponding theory for elec-
tromagnetic waves in Ref. 8, γm is termed the magnetic polarizability dyadic. The
magnetic polarizability dyadic is proportional to |V |, and closed-form expressions of
γm exist for the homogeneous and isotropic ellipsoids.
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An expression of the integrated extinction for the Neumann problem is obtained
by inserting (3.1) into (2.11), viz.,

∫ ∞

0

σext(k; k̂)

k2
dk =

π

2
(k̂ · γm · k̂ − |V |). (3.2)

Note that (3.2) is independent of k̂ when γm is isotropic, i.e., γm = γmI3, where I3

denotes the unit dyadic in R3, corresponding to a scatterer which is invariant under
certain point groups, see Ref. 8 and references therein. The product k̂ · γm · k̂ on
the right-hand side of (3.2) can be estimated from above by the largest eigenvalue
of γm, and associated upper bounds on these eigenvalues are extensively discussed
in Ref. 8. The static limit of Re % in (3.1) can also be inserted into the right-hand
side of (2.13) to yield an upper bound on the scattering and absorption properties
of V within any finite interval K.

The integrated extinction (3.2) takes a particularly simple form for the sphere.
In this case, γm is isotropic with γm = 3|V |/2, see Refs. 3 and 8, and the right-hand
side of (3.2) is reduced to π|V |/4. This result has numerically been verified using
the classical Mie-series expansion in Ref. 5.

3.2 The acoustically permeable problem

In addition to the exterior boundary-value problem (2.1), the transmission problem
or acoustically permeable problem is defined by the interior requirement that ∇2us+
k2

?us = 0 for x ∈ V , with the induced boundary conditions u+ = u− and ρδ∂u+/∂n =
∂u−/∂n. Here, k? = ω/c? denotes the wave number in V , and u+ and u− represent
the limits of u from R3 \ V and V , respectively. The quantity ρδ is related to
the relative mass density ρrel = ρ?/ρ via ρδ = ρrel/(1 − iωδ?κ?), where κ? and ρ?

denote the compressibility (the relative volume reduction per unit increase in surface
pressure) and the mass density of V , respectively. The conversion of mechanical
energy into thermal energy due to losses in V are modeled by the compressional
viscosity δ? > 0, which represents the rate of change of mass per unit length. In the
lossless case, i.e., δ? = 0, the phase velocity is c? = 1/

√
κ?ρ? and ρδ = ρrel.

The causality condition introduced in Sec. 2 is valid for the transmission problem
provided Re c? 6 c, i.e., when the incident field precedes the scattered field in
the forward direction. If V does not fulfill this requirement, % is not holomorphic
for Im k > 0, and the analysis in Sec. 2 does not hold. Hence, the integrated
extinction (2.11) is not valid if Re c? > c. This defect can partially be justified by
replacing the definition of % by % = e2ikaS(k; k̂)/k2, where a > 0 is sufficiently large
to guarantee the existence of causality in the forward direction. The compensating
factor e2ika corresponds to a time-delay in the scattered field, and for homogeneous
and isotropic scatterers, a sufficient condition for a is that 2a > diam V , where
diam V denotes the diameter of V . A drawback of the introduction of the factor
e2ika in the definition of % is that the optical theorem no longer can be identity in
the derivation. Instead, the integrated extinction reduces to an integral identities
for %. Unfortunately, in this case the integrand does not have a definite sign and
therefore the estimate (2.13) is not valid.
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The static limit of the scattering amplitude S for the transmission problem is
derived in Refs. 1 and 3. The result in terms of Re % reads

lim
k→0

Re %(k; k̂) =
1

4π
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂), (3.3)

where κrel = κ?/κ denotes the relative compressibility of V , and γ represents the
general polarizability dyadic. In the derivation of (3.3), it has been used that pos-
sible losses δ? > 0 in V do not contribute in the static limit of Re %, which supports
that the argument in γ is ρrel rather than ρδ. Analogous to γm, the general polar-
izability dyadic is proportional to |V |, and closed-form expressions for γ exist for
the ellipsoids, see Refs. 1, 3, and 8. From the properties of γ and γm in Refs. 1,
3, and 8, it follows that γ(ρ−1

rel ) → −γm as ρrel → ∞, and hence the static limit
of Re % reduces to (3.1) for the Neumann problem as κrel → 0+ and ρrel → ∞.
Another interesting limit corresponding to vanishing mass density in V is given by
γ(ρ−1

rel ) → γe as ρrel → 0+, where γe is termed the electric polarizability dyadic in
analogy with the low-frequency scattering of electromagnetic waves, see Refs. 1, 3,
and 8.

The integrated extinction for the transmission problem is given by (3.3) inserted
into (2.11). The result is

∫ ∞

0

σext(k; k̂)

k2
dk =

π

2
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂). (3.4)

Note that (3.4) is independent of any losses δ? > 0, and that the directional charac-
ter of the integrated extinction only depends on the relative mass density ρrel. For
ρrel → 1, i.e., identical mass densities in V and R3 \ V , the integrated extinction is
independent of the incident direction k̂, depending only on the relative compressibil-
ity κrel. Furthermore, the integrated extinction (3.2) vanishes in the limit as κrel → 1
and ρrel → 1, corresponding to identical material properties in V and R3 \ V . Due
to the non-negative character of the extinction cross section, this limit implies that
σext = 0 independent of the frequency, as expected. Analogous to the Neumann
problem, (3.4) is also independent of the incident direction k̂ for scatterers with
γ = γI3 for some real-valued γ. The product k̂ ·γ · k̂ on the right-hand side of (3.4)
is bounded from above by the largest eigenvalue of γ, and associated upper bounds
on these eigenvalues are discussed in Ref. 8. The static limit of Re % in (3.1) can
also be inserted into the right-hand side of (2.13) to yield an upper bound on the
scattering and absorption properties of V over any finite frequency interval K.

For the simple case of an isotropic and homogeneous sphere, γ = 3|V |(1 −
ρrel)/(2ρrel + 1), and the right-hand side of (3.3) is independent of the incident
direction as required by symmetry. Also this result for the sphere has been verified
numerically to arbitrary precision using the classical Mie-series expansion.

3.3 Boundary conditions with contradictions

The integrated extinction (2.11) and the analysis in Sec. 2 are not applicable to
the Dirichlet or acoustically soft problem with u = 0 for x ∈ ∂V . The physical
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interpretation of the Dirichlet boundary condition is that the scatterer offers no
resistance to pressure. The Dirichlet problem defines an impermeable scatterer for
which us only exist in R3 \ V . Hence, the causality condition introduced in Sec. 2
is valid. However, the assumption that Re %(k; k̂) = O(1) as k → 0 for real-valued
k is not valid in this case. Instead, Refs. 1 and 3 suggest that

Re %(k; k̂) = O(k−2) as k → 0 (3.5)

for real-valued k. The conclusion is therefore that the integrated extinction (2.11)
is not valid for the Dirichlet problem.

The same conclusion also holds for the Robin problem with impedance boundary
condition ∂u/∂n + ikνu = 0. The Robin problem models an intermediate behavior
between the Dirichlet and Neumann problems, see Ref. 1. The real-valued parameter
ν is related to the exterior acoustic impedance η (defined by the ratio of the excess
pressure and the normal velocity on the boundary) via ην =

√
ρ/κ, where κ and ρ

denote the compressibility and mass density of R3 \ V , respectively. In the limits
ν → 0+ and ν → ∞, the Robin problem reduces to the Neumann and Dirichlet
problems, respectively. For the Robin problem, the static limit of Re % for ν 6= 0
reads, see Refs. 1 and 3,

Re %(k; k̂) = O(k−1) as k → 0 (3.6)

for real-valued k. Hence, the assumption in Sec. 2 that Re %(k; k̂) = O(1) as k → 0
is not valid for the Robin problem either. The question whether a similar identity
to the integrated extinction exists for the Dirichlet and Robin problems with other
weight functions than 1/k2 is addressed in a forthcoming paper.

4 Conclusions

The static limits of Re % in Sec. 3 can be used in (2.13) to establish physical bounds
on the amount of power a scatterer can extract from a known incident field in any
frequency interval K ⊂ [0,∞). Both absorbed and radiated power are taken into
account. From the analysis of homogeneous and isotropic scatterers in Sec. 3, it
is clear that the integrated extinction holds for both Neumann and transmission
problems. However, the present formulation of the integrated extinction fails for the
Dirichlet and Robin problems since the assumption in Sec. 2 that Re %(k; k̂) = O(1)
as k → 0 for real-valued k is violated for these boundary conditions.

The eigenvalues of the polarizability dyadics γ, γe, and γm are easily calculated
using either the finite element method or the boundary element method. Some
numerical results of these eigenvalues are presented in Refs. 8 and 9 together with
comprehensive illustrations of the integrated extinction for scattering and absorption
of electromagnetic waves.

The integrated extinction (2.11) can also be used to establish additional infor-
mation on the inverse scattering problem of linear acoustics. One advantage of the
integrated extinction is that it only requires measurements of the scattering ampli-
tude in the forward direction. The theoretical findings may also be used to obtain
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additional insights into the possibilities and limitations of engineered composite ma-
terials such as acoustic metamaterials in Ref. 4. However, the main importance of
the integrated extinction (2.11) is that it provides a fundamental knowledge of the
physical processes involved in wave interaction with matter in any frequency inter-
val. It is also crucial for the understanding of the physical effects imposed on a
system by the first principles of causality and power conservation.
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Abstract

In this paper, physical bounds on bandwidth, realized gain, Q-value, and
directivity are derived for antennas of arbitrary shape. The product of band-
width and realizable gain is shown to be bounded from above by the eigenval-
ues of the long-wavelength polarizability dyadics in the high-contrast limit.
These dyadics are proportional to the antenna volume and are easily deter-
mined for an arbitrary geometry. Ellipsoidal antenna volumes are analyzed
in detail, and numerical results for some generic geometries are presented.
The theoretical approach is verified against the classical bounds for spherical
geometries and shown to yield sharper bounds for the ratio of the directivity
and the Q-value for non-spherical geometries.

1 Introduction

The concept of physical bounds for electrically small antennas was first introduced
more than half a century ago in Refs. 4 and 24, respectively. Since then, much atten-
tion has been drawn to the subject and numerous papers have been published, see
Ref. 13 and references therein. Unfortunately, almost all these papers are restricted
to the sphere via the spherical vector wave expansions, deviating only slightly from
the pioneering ideas introduced in Ref. 4.

The objective of this paper is to derive physical bounds on bandwidth, realized
gain, Q-value, and directivity for antennas of arbitrary shape. The bounds presented
here generalize in many aspects the classical results by Chu. The most important
advantage of the new bounds is that they no longer are restricted to the sphere
but instead hold for arbitrary antenna volumes. In fact, the smallest circumscribing
sphere is far from optimal for many antennas, cf., the dipole and loop antennas in
Sec. 8. Furthermore, the new bounds successfully separate the electric and magnetic
material properties of the antennas and quantify them in terms of their polarizability
dyadics.

The new bounds introduced here are also important from a radio system point
of view. Specifically, they are based on the bandwidth and realizable gain as well
as the Q-value and the directivity. The interpretation of the Q-value in terms of
the bandwidth is still subject to some research, see Ref. 25. Moreover, the new
bounds permit the study of polarization effects and their influence on the antenna
performance. An example of such an effect is polarization diversity for applications
in MIMO communication systems.

The present paper is a direct application of the physical bounds for broadband
scattering introduced in Refs. 19 and 20, where the integrated extinction is related
to the long wavelength polarizability dyadics. The underlying mathematical de-
scription is strongly influenced by the consequences of causality and the summation
rules and dispersion relations in the scattering theory for the Schrödinger equation,
see Refs. 16, 17 and 22.
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Figure 1: Illustration of a hypothetic antenna subject to an incident plane-wave
in the k̂-direction.

2 Scattering and absorption of antennas

The present theory is inspired by the general scattering formalism of particles and
waves in Refs. 16 and 22. In fact, based on the assumptions of linearity, time-
translational invariance and causality there is no fundamental difference between
antennas and properly modeled scatterers. This kind of fruitful equivalence be-
tween antenna and scattering theory has already been encountered in the literature,
cf., the bounds on the absorption efficiency in Ref. 2 and its relation to minimum
scattering antennas. Without loss of generality, the integrated extinction and the
theory introduced in Ref. 19 can therefore be argued to also hold for antennas of
arbitrary shape. In contrast to Ref. 19, the present paper focuses on the absorption
cross section rather than scattering properties.

For this purpose, consider an antenna of arbitrary shape surrounded by free
space and subject to a plane-wave excitation impinging in the k̂-direction, see Fig. 1.
The antenna is assumed to be lossless with respect to ohmic losses and satisfy the
fundamental principles of linearity, time-translational invariance and causality. The
dynamics of the antenna is modeled by the Maxwell equations with general reciprocal
anisotropic constitutive relations. The constitutive relations are expressed in terms
of the electric and magnetic susceptibility dyadics, χe and χm, respectively, which
are functions of the material properties of the antenna.

The assumption of a lossless antenna is not severe since the analysis can be
modified to include ohmic losses, see the discussion in Sec. 9. In fact, ohmic losses
are important for small antennas, and taking such effects into account, suggest that
the lossless antenna is more advantageous than the corresponding antenna with
ohmic losses. Recall that χe and χm also depend on the angular frequency ω of the
incident plane-wave in the presence of losses.

The bounding volume V of the antenna is of arbitrary shape with the restriction
that the complete absorption of the incident wave is contained within V . The
bounding volume is naturally delimited by a reference plane or a port at which a
unique voltage and current relation can be defined, see Fig. 1. The present definition
of the antenna structure includes the matching network and is of the same kind as
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the descriptions in Refs. 4 and 25. The reflection coefficient Γ at the port is due
to the unavoidable impedance mismatch of the antenna over a given wavelength
interval, see Ref. 6. The present analysis is restricted to single port antennas with a
scalar (single) reflection coefficient. The extension to multiple ports is commented
briefly in Sec. 9.

For any antenna, the scattered electric field Es in the forward direction k̂ can
be expressed in terms of the forward scattering dyadic S as, see App. A,

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞. (2.1)

Here, E0 denotes the Fourier amplitude of the incident field Ei(c0t−k̂ ·x), and k is a
complex variable with Re k = ω/c0 and Im k > 0. For a large class of antennas, the
elements of S are holomorphic in k and Cauchy’s integral theorem can be applied
to

%(k) =
1

k2
p̂∗e · S(k, k̂) · p̂e, k ∈ C. (2.2)

Here, p̂e = E0/|E0| denotes the electric polarization, which is assumed to be inde-
pendent of k.1 The complex-valued function (2.2) is referred to as the extinction
volume and it provides a holomorphic extension of the extinction cross section to
Im k > 0, see App. A.

A dispersion relation or summation rule for the extinction cross section can be
derived in terms of the electric and magnetic polarizability dyadics γe and γm,
respectively. The derivation is based on energy conservation via the optical theorem
in Refs. 16 and 22. The optical theorem σext = 4πk Im % and the asymptotic behavior
of the extinction volume % in the long wavelength limit, |k| → 0, are the key building
blocks in the derivation. The result is the integrated extinction

∫ ∞

0

σext(λ) dλ = π2(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m), (2.3)

where the magnetic (or cross) polarization p̂m = k̂ × p̂e has been introduced. The
functional dependence on k̂ and p̂e is for simplicity suppressed from the argument
on the left hand side of (2.3). Note that (2.3) also can be formulated in k = 2π/λ via
the transformation σext(λ) → 2πσext(2π/k)/k2. For details on the derivation of (2.3)
and definition of the extinction cross section σext and the polarizability dyadics γe

and γm, see App. A and B. The integrated extinction applied to scattering problems
is exploited in Ref. 19.

It is already at this point important to notice that the right hand side of (2.3)
only depends on the long wavelength limit or static response of the antenna, while
the left hand side is a dynamic quantity which includes the absorption and scattering
properties of the antenna. Furthermore, electric and magnetic properties are seen
to be treated on equal footing in (2.3), both in terms of material properties and
polarization description.

1Observe that the assumption that p̂e is independent of k does not imply that the polarization
of the antenna in Fig. 1 is frequency independent.
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Figure 2: Illustration of the two types of physical bounds considered in this
paper: GΛB represented by the shaded box (left figure) and D/Q related to the
dotted resonance model (right figure).

The antenna parameters of importance in this paper are the partial gain G
and the partial directivity D, see App. E and Ref. 3. In general, both G and D
depend on the incident direction k̂ and the electric polarization p̂e as well as the
wave number k. In addition, the partial realized gain, (1 − |Γ |2)G, depends on
the reflection coefficient Γ . In the forthcoming analysis, the relative bandwidth B,
the Q-value, and the associated center wavelength λ0 are naturally introduced as
intrinsic parameters in the sense that neither of them depend on k̂ or p̂e for a given
single port antenna.

Two different types of bounds on the first resonance of an antenna are addressed
in this paper, see Fig. 2. The bounds relate the integral (2.3) of two generic in-
tegrands to the polarizability dyadics. The bound on the partial realized gain,
(1− |Γ |2)G, in the left figure takes the form of a box, i.e., it estimates the integral
with the bandwidth times the partial realized gain. The bound in the right figure
utilizes the classical resonance shape of the integrand giving a bound expressed in
terms of the partial directivity and the associated Q-value.

3 Bounds on bandwidth and gain

From the definition of the extinction cross section σext it is clear that it is non-
negative and bounded from below by the absorption cross section σa. For an
unmatched antenna, σa is reduced by the reflection loss 1 − |Γ |2 according to
σa = (1 − |Γ |2)σa0, where σa0 denotes the absorption cross section or partial ef-
fective area for the corresponding perfectly matched antenna, see Refs. 18 and 3.
The absorption cross section σa0 is by reciprocity related to the partial antenna
directivity D as D = 4πσa0/λ

2, see Ref. 18. Thus, for any wavelength λ ∈ [0,∞),

σext > σa = (1− |Γ |2)σa0 =
1

4π
(1− |Γ |2)λ2D. (3.1)
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Recall that D depends on the electric polarization p̂e as well as the incident direction
k̂. In the present case of no ohmic losses, the partial gain G coincides with the partial
directivity D.

Introduce the wavelength interval Λ = [λ1, λ2] with center wavelength λ0 =
(λ2 + λ1)/2 and associated relative bandwidth

B = 2
λ2 − λ1

λ2 + λ1

= 2
k1 − k2

k2 + k1

, (3.2)

where 0 < B 6 2 and k = 2π/λ ∈ K denotes the angular wave number in K =
[k2, k1]. Thus, for any wavelength interval Λ, the estimate σext > σa in (3.1) yields

∫ ∞

0

σext(λ) dλ >
∫

Λ

σa(λ) dλ =
1

4π

∫

Λ

(1− |Γ |2)λ2G(λ) dλ, (3.3)

where D = G is used.2

In order to simplify the notation, introduce GΛ = infλ∈Λ(1− |Γ |2)G as the min-
imum partial realized gain over the wavelength interval Λ. Following this notation,
the integral on the right hand side of (3.3) can be estimated from below as

∫

Λ

(1− |Γ |2)λ2G(λ) dλ > GΛ

∫

Λ

λ2 dλ = λ3
0GΛB

(
1 +

B2

12

)
. (3.4)

Without loss of generality, the factor 1 + B2/12 can be estimated from below by
unity. This estimate is also supported by the fact that B ¿ 2 in many applications.
Based upon this observation, (2.3), (3.3) and (3.4) can be summarized to yield the
following bound on the product GΛB valid for any antenna satisfying the general
assumptions stated in Sec. 2:

GΛB 6 4π3

λ3
0

(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m). (3.5)

Relation (3.5) is one of the main results of this paper. Note that the factor 4π3/λ3
0

neatly can be expressed as k3
0/2 in terms of the angular wave number k0 = 2π/λ0.

The estimate 1+B2/12 > 1 in (3.4) is motivated by the simple form of (3.5). In
broadband applications, B is in general not small compared to unity, and the higher
order term in B should be included on the left hand side of (3.5).

The right hand side of (3.5) depends on both p̂e and k̂ = p̂e× p̂m, as well as the
long wavelength limit (static limit with respect to k = 2π/λ) material properties
and shape of the antenna. It is indeed surprising that it is just the long wavelength
limit properties of the antenna that bound the product GΛB in (3.5). Since γe and
γm are proportional to the volume V of the antenna, see Ref. 19, it follows from (3.5)
that the upper bound on the product GΛB is directly proportional to V/λ3

0 or k3
0a

3,
where a denotes the radius of the volume-equivalent sphere.

2The equality sign on the left hand side in (3.3) is motivated by the broadband absorption
efficiency introduced in (3.8).
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In many antenna applications it is desirable to bound the product GΛB inde-
pendently of the material properties. For this purpose, introduce the high-contrast
polarizability dyadic γ∞ as the limit of either γe or γm when the elements of χe

or χm in the long wavelength limit simultaneously approach infinity.3 Note that
this definition implies that γ∞ is independent of any material properties, depending
only on the geometry of the antenna. From the variational properties of γe and
γm discussed in Ref. 19 and references therein, it follows that both γe and γm are
bounded from above by γ∞. Hence, (3.5) yields

GΛB 6 4π3

λ3
0

(p̂∗e · γ∞ · p̂e + p̂∗m · γ∞ · p̂m). (3.6)

The introduction of the high-contrast polarizability dyadic γ∞ in (3.6) is the starting
point of the analysis below.

The high-contrast polarizability dyadic γ∞ is real-valued and symmetric, and
consequently diagonalizable with real-valued eigenvalues. Let γ1 > γ2 > γ3 denote
the three eigenvalues. Based on the constraint p̂e · p̂m = 0, which is a consequence of
the free space plane-wave excitation, the right hand side of (3.6) can be estimated
from above as

sup
p̂e·p̂m=0

GΛB 6 4π3

λ3
0

(γ1 + γ2). (3.7)

The interpretation of the operator supp̂e·p̂m=0 is polarization matching, i.e., the
polarization of the antenna coincides with the polarization of the incident wave.
In the case of non-magnetic antennas, γm = 0, the second eigenvalue γ2 in (3.7)
vanishes. Hence, the right hand side of (3.7) can be improved by at most a factor of
two by utilizing magnetic materials. Note that the upper bounds in (3.6) and (3.7)
coincide when γ∞ is isotropic.

Since γ1 and γ2 only depend on the long wavelength properties of the antenna,
they can easily be calculated for arbitrary geometries using either the finite element
method (FEM) or the method of moments (MoM). Numerical results of γ1 and γ2

for the Platonic solids, the rectangular parallelepiped and some classical antennas
are presented in Secs. 7 and 8. Important variational properties of γj are discussed
in Ref. 19 and references therein. The influence of supporting ground planes and
the validity of the method of images for high-contrast polarizability calculations are
presented in App. C.

The estimate in (3.3) can be improved based on a priori knowledge of the scat-
tering properties of the antenna. In fact, σext > σa in (3.1) may be replaced by
σext = σa/η, where 0 < η 6 1 denotes the absorption efficiency of the antenna, see
Ref. 2. For most antennas at the resonance frequency, η 6 1/2, but exceptions from
this rule of thumb exist. In particular, minimum scattering antennas (MSA) defined
by η = 1/2 yield an additional factor of two on the right hand side of (3.1). The
inequality in (3.3) can be replaced by the equality∫

Λ

σext(λ) dλ = η̃−1

∫

Λ

σa(λ) dλ. (3.8)

3Recall that χe and χm are real-valued in the long wavelength limit. In the case of finite or
infinite conductivity, see App. B.
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The constant η̃ is bounded from above by the absorption efficiency via η̃ 6 supλ∈Λ η,
and provides a broadband generalization of the absorption efficiency. If η̃ is invoked
in (3.3), the right hand side of the inequalities (3.5), (3.6), and (3.7) are sharpened
by the multiplicative factor η̃.

4 Bounds on Q-value and directivity

Under the assumption of N non-interfering resonances characterized by the real-
valued angular wave numbers kn, a multiple resonance model for the absorption
cross section is

σa(k) = 2π
N∑

n=1

%n
Qnkn

1 + Q2
n(k/kn − kn/k)2/4

, (4.1)

where k is assumed real-valued and %n are positive weight functions satisfying∑
n %n = %(0). Here, the Q-value of the resonance at kn is denoted by Qn, and

for Qn À 1, the associated relative half-power bandwidth is Bn ∼ 2/Qn, see Fig. 3.
Recall that Qn > 1 is consistent with 0 < Bn 6 2. For the resonance model (4.1),
one can argue that Qn in fact coincides with the corresponding antenna Q-value in
App. F when the relative bandwidth 2/Qn is based on the half-power threshold, see
also Refs. 7 and 25. In the case of strongly interfering resonances, the model (4.1)
either has to be modified or the estimates in Sec. 3 have to be used.

The absorption cross section is the imaginary part, σa = 4πk Im %a, of the func-
tion

%a(k) =
N∑

n=1

%n
iQnkn/(2k)

1− iQn (k/kn − kn/k) /2
, (4.2)

for real-valued k. The function %a(k) is holomorphic for Im k > 0 and has a symmet-
rically distributed pair of poles for Im k < 0, see Fig. 3. The integrated absorption
cross section is

1

4π2

∫ ∞

−∞

σa(k)

k2
dk = %a(0) = η̃%(0) 6 %(0), (4.3)

where %(0) is given by the long wavelength limit (A.6).
For antennas with a dominant first resonance at k = k1, it follows from (3.1)

and (4.1) that the partial realized gain G satisfies

(1− |Γ |2)G =
k2σa

π
6 %(0)

2k2Qk1

1 + Q2(k/k1 − k1/k)2/4
, (4.4)

where %1 6 %(0) has been used. The right hand side of (4.4) reaches its maximum
value %(0)2k3

1Q/(1−Q−2) at k0 = k1(1−2Q−2)−1/2 or k0 = k1 +O(Q−2) as Q →∞.
Hence, k0 is a good approximation to k1 if Q À 1. For a lossless antenna which is
perfectly matched at k = k0, the partial realized gain (1−|Γ |2)G coincides with the
partial directivity D. Under this assumption, (4.4) yields D/Q 6 %(0)2k3

1/(1−Q−2)
which further can be estimated from above as

D

Q
6 k3

0

2π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) , (4.5)
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Figure 3: The symmetrically distributed pair of poles (×) of the extinction volume
% in the complex k-plane (left figure) and the corresponding single resonance model
of Im % when Qn À 1 (right figure).

where (A.6) have been used. Relation (4.5) together with (3.6) constitute the main
results of this paper.

Analogous to (3.6) and (3.7), it is clear that (4.5) can be estimated from above
by the high-contrast polarizability dyadic γ∞ and the associated eigenvalues γ1 and
γ2, viz.,

sup
p̂e·p̂m=0

D

Q
6 k3

0

2π
(γ1 + γ2). (4.6)

Here, (4.6) is subject to polarization matching and therefore independent of the
electric and magnetic polarizations, p̂e and p̂m, respectively. Note that the upper
bounds in (4.5) and (4.6) only differ from the corresponding results in (3.6) and (3.7)
by a factor of π, i.e., GΛB 6 πC and D/Q 6 C. Hence, it is sufficient to consider
either the GΛB bound or the D/Q bound for a specific antenna. The estimates (4.5)
and (4.6) can be improved by the multiplicative factor η̃ if a priori knowledge of the
scattering properties of the antenna (3.8) is invoked in (4.4).

The resonance model for the absorption cross section in (4.1) is also directly
applicable to the theory of broadband scattering in Ref. 19. In that reference, (4.1)
can be used to model absorption and scattering properties and yield new bounds on
broadband scattering.

5 Comparison with Chu and Chu-Fano

In this section, the bounds on GΛB and D/Q subject to matched polarizations, i.e.,
inequalities (3.7) and (4.6), are compared with the corresponding results by Chu
and Fano in Refs. 4 and 6, respectively.
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5.1 Bounds on Q-value and directivity

The classical bounds derived by Chu in Ref. 4 relate the Q-value and the directivity
D to the quantity k0a of the smallest circumscribing sphere. Using the notation
of Secs. 3 and 4, the classical result by Chu for an omni-directional antenna (for
example in the azimuth plane) reads

sup
p̂e·p̂m=0

D

Q
6 3

2

k3
0a

3

k2
0a

2 + 1
=

3

2
k3

0a
3 +O(k5

0a
5) as k0a → 0. (5.1)

In the general case of both TE- and TM-modes, (5.1) must be modified, see Ref. 13,
viz.,

sup
p̂e·p̂m=0

D

Q
6 6k3

0a
3

2k2
0a

2 + 1
= 6k3

0a
3 +O(k5

0a
5) as k0a → 0. (5.2)

Note that (5.2) differs from (5.1) by approximately a factor of four when k0a ¿ 1.
The bounds in (5.1) and (5.2) should be compared with the corresponding result

in Sec. 4 for the sphere. For a sphere of radius a, the eigenvalues γ1 and γ2 are
degenerated and equal to 4πa3, see Sec. 6. Insertion of γ1 = γ2 = 4πa3 into (4.6)
yields supp̂e·p̂m=0 D/Q 6 C, where the constant C is given by

C = 4k3
0a

3, C = 2k3
0a

3, C = k3
0a

3. (5.3)

The three different cases in (5.3) correspond to both electric and magnetic material
properties (C = 4k3

0a
3), pure electric material properties (C = 2k3

0a
3), and pure

electric material properties with a priori knowledge of minimum scattering charac-
teristics (C = k3

0a
3 with η̃ = 1/2), respectively. Note that the third case in (5.3)

more generally can be expressed as C = 2k3
0a

3η̃ for any broadband absorption ef-
ficiency 0 < η̃ 6 1. The bounds in (5.2) and (5.3) are comparable although the
new bounds (5.3) are sharper. In the omni-directional case, (5.1) provides a sharper
bound than (5.3), except for the pure electric case with absorption efficiency η̃ < 3/4.

5.2 Bounds on bandwidth and gain

The bound (3.7) should also be compared with the result of Chu when the Fano
theory of broadband matching is used. The Fano theory includes the impedance
variation over the frequency interval to yield bounds on the bandwidth, see Ref. 6.
For a resonance circuit model, the Fano theory yields that the relation between B
and Q is, see Ref. 7,

B 6 π

Q ln 1/|Γ | . (5.4)

The reflection coefficient Γ is due to mismatch of the antenna. It is related to the
standing wave ratio SWR as |Γ | = (SWR− 1)/(1 + SWR).

Introduce Qs as the Q-value of the smallest circumscribing sphere with 1/Qs =
k3

0a
3 +O(k5

0a
5) as k0a → 0 for omni-directional antennas. Under this assumption, it



156 Paper IX: Physical limitations on antennas. . .

follows from (5.1) that supp̂e·p̂m=0 D 6 3Q/2Qs. Insertion of this inequality into (5.4)
then yields

sup
p̂e·p̂m=0

GΛB 6 3π

2

1− |Γ |2
ln 1/|Γ | k

3
0a

3. (5.5)

For a given k0a, the right hand side of (5.5) is monotone in |Γ | and bounded from
above by 3πk3

0a
3. However, note that the Chu-Fano bound (5.5) is restricted to

omni-directional antennas with k0a ¿ 1.
Inequality (5.5) should be compared with the corresponding result in Sec. 3 for

the smallest circumscribing sphere. Since the upper bounds (3.7) and (4.6) only
differ by a factor of π, i.e., supp̂e·p̂m=0 GΛB 6 C ′ and supp̂e·p̂m=0 D/Q 6 C where
C ′ = πC, it follows from (5.3) that

C ′ = 4πk3
0a

3, C ′ = 2πk3
0a

3, C ′ = πk3
0a

3. (5.6)

The three cases in (5.3) correspond to both electric and magnetic material properties
(C ′ = 4πk3

0a
3), pure electric material properties (C ′ = 2πk3

0a
3), and pure electric

material properties with a priori knowledge of minimum scattering characteristics
(C ′ = πk3

0a
3), respectively.

The bounds on GΛB based on (5.6) are comparable with (5.5) for most reflections
coefficients |Γ |. For |Γ | < 0.65 the Chu-Fano bound (5.5) provides a slightly sharper
bound on GΛB than (5.6) for pure electric materials. However, recall that the
spherical geometry gives an unfavorable comparison with the present theory, since
for many antennas the eigenvalues γ1 and γ2 are reduced considerably compared
with the smallest circumscribing sphere, cf., the dipole in Sec. 8.1 and the loop
antenna in Sec. 8.2.

6 Ellipsoidal geometries

Closed-form expressions of γe and γm exist for the ellipsoidal geometries, see Ref. 19,
viz.,

γe = V χe · (I + L · χe)
−1, γm = V χm · (I + L · χm)−1. (6.1)

Here, I denotes the unit dyadic and V = 4πa1a2a3/3 is the volume of ellipsoid in
terms of the semi-axes aj. The depolarizability dyadic L is real-valued and symmet-
ric, and hence diagonalizable with real-valued eigenvalues. The eigenvalues of L are
the depolarizing factors Lj, given by

Lj =
a1a2a3

2

∫ ∞

0

ds

(s + a2
j)

√
(s + a2

1)(s + a2
2)(s + a2

3)
, j = 1, 2, 3. (6.2)

The depolarizing factors Lj satisfy 0 6 Lj 6 1 and
∑

j Lj = 1. The semi-axes aj are
assumed to be ordered such that L1 6 L2 6 L3. Closed-form expressions of (6.2)
in terms of the semi-axis ratio ξ = (minj aj)/(maxj aj) exist for the ellipsoids of
revolution, i.e., the prolate spheroids (L2 = L3) and the oblate spheroids (L1 = L2),
see App. G.



6 Ellipsoidal geometries 157

Prolate: 

Oblate: 

Prolate: 

Oblate: 

Prolate MSA: 

Oblate MSA: 

° 1 + ° 2 
° 1 + ° 2 

° 1 

° 1 

° 1 
° 1 

0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

2 

2.5 

3 

» 

° = V s j 

Prolate:  ° 2 = ° 3 
 

Oblate:  ° 1 = ° 2 

 Prolate:  ° 1 
 

 

Oblate:  ° 3 
 

D/Q/(k 0 a 
3 ) 

0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

Chu (TM)

(TE+TM) 

» 

Figure 4: The eigenvalues γ1 > γ2 > γ3 (left figure) and the quotient D/Q (right
figure) for the prolate and oblate spheroids as function of the semi-axis ratio ξ.
Note the normalization with the volume Vs = 4πa3/3 of the smallest circumscribing
sphere.

The high-contrast polarizability dyadic γ∞ is given by (6.1) as the elements of
χe or χm simultaneously approach infinity. From (6.1) it is clear that the eigen-
values of γ∞ are given by γj = V/Lj. For the prolate and oblate spheroids, V is
neatly expressed in terms of the volume Vs = 4πa3/3 of the smallest circumscribing
sphere. The results are V = ξ2Vs and V = ξVs for the prolate and oblate spheroids,
respectively. The eigenvalues γ1 and γ2 for the prolate and oblate spheroids are
depicted in the left figure in Fig. 4. Note that the curves for the oblate spheroid
approach 4/π in the limit as ξ → 0, see App. G. The corresponding limiting value
for the curves as ξ → 1 is 3.

The general bound on GΛB for arbitrary ellipsoidal geometries is obtained by
inserting (6.1) into (3.5), i.e.,

GΛB 6 4π3V

λ3
0

(
p̂∗e · χe · (I + L · χe)

−1 · p̂e + p̂∗m · χm · (I + L · χm)−1 · p̂m

)
. (6.3)

Independent of both material properties and polarization effects, the right hand side
of (6.3) can be estimated from above in analogy with (3.7). The result is

sup
p̂e·p̂m=0

GΛB 6 4π3V

λ3
0

(
1

L1

+
1

L2

)
. (6.4)

In the non-magnetic case, the second term on the right hand side of (6.3) and (6.4)
vanishes. For the prolate and oblate spheroids, the closed-form expressions of Lj in
App. G can be introduced to yield explicit upper bounds on GΛB.

The corresponding results for the quotient D/Q are obtained from the observa-
tion that GΛB 6 πC is equivalent to D/Q 6 C, see Sec. 4. For the general case
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Figure 5: Geometry of the circular disk and needle.

including polarization and material properties, (6.3) yields

D

Q
6 k3

0V

2π

(
p̂∗e · χe · (I + L · χe)

−1 · p̂e + p̂∗m · χm · (I + L · χm)−1 · p̂m

)
. (6.5)

Analogous to (6.4), the restriction to matched polarizations for the quotient D/Q
reads

sup
p̂e·p̂m=0

D

Q
6 k3

0V

2π

(
1

L1

+
1

L2

)
. (6.6)

The upper bound in (6.6) is depicted in the right figure in Fig. 4 for the prolate and
oblate spheroids. The solid curves correspond to combined electric and magnetic
material properties, while the dashed curves represent the pure electric case. The
non-magnetic minimum scattering case (η̃ = 1/2) is given by the dotted curves.
Note that the three curves in the right figure vanish for the prolate spheroid as
ξ → 0. The corresponding limiting values for the oblate spheroid are 16/3π, 8/3π
and 4/3π, see App. G.

The curves depicted in the right figure in Fig. 4 should be compared with the
classical results for the sphere in (5.1) and (5.2). The omni-directional bound (5.1)
and its generalization (5.2) are marked in Fig. 4 by Chu (TE) and (TE+TM), re-
spectively. From the figure, it is clear that (6.6) provides a sharper bound than (5.2).
For omni-directional antennas, (5.1) is slightly sharper than (6.6) for the sphere, but
when a priori knowledge of minimum scattering characteristics (η̃ = 1/2) is used, the
reversed conclusion holds. Recall that the classical results in Sec. 5.1 are restricted
to the sphere, in contrast to the theory introduced in this paper.

Based on the results in App. G, it is interesting to evaluate (6.4) in the limit as
ξ → 0. This limit corresponds to the axially symmetric needle and circular disk in
Fig. 5. For a needle of length 2a with semi-axis ξ ¿ 1, (G.3) inserted into (6.4)
yields

GΛB 6 16π4a3

3λ3
0

f(θ)

ln 2/ξ − 1
+O(ξ2) as ξ → 0. (6.7)

Here, f(θ) = sin2 θ for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(θ) = 0 for the TE-
and f(θ) = sin2 θ for the TM-polarization. Note that the sin2 θ term in (6.7) and
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Figure 6: The eigenvalues γ (upper row) for the five Platonic solids and the sphere.
The number in parenthesis are γ in units of 4πa3, where a denotes the radius of the
smallest circumscribing sphere.

the logarithmic singularity in the denominator agree with the radiation pattern and
the impedance of the dipole antenna in Sec. 8.1, see Ref. 5.

The corresponding result for the circular disk of radius a is non-vanishing in the
limit as ξ → 0, viz.,

GΛB 6 64π3a3

3λ3
0

f(θ). (6.8)

Here, f(θ) = 1+cos2 θ for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(θ) = 1 for the TE-
and and f(θ) = cos2 θ for the TM-polarization. Note the direct application of (6.8)
for planar spiral antennas.

7 The high-contrast polarizability dyadic

In this section, some numerical results of γ∞ are presented and analyzed in terms
of the physical bounds discussed in Sec. 3.

7.1 The Platonic solids

Since the Platonic solids are invariant under appropriate point groups, see Ref. 12,
their corresponding high-contrast polarizability dyadics γ∞ are isotropic, i.e., γ∞ =
γ∞I, where I denotes the unit dyadic in R3. Let γ = γj represent the eigenvalues of
γ∞ for j = 1, 2, 3. The Platonic solids are depicted in Fig. 6 together with the eigen-
values γ in terms of the volume V of the solids. The five Platonic solids are from left
to right the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron,
with 4, 6, 8, 12 and 20 facets, respectively. Included in the figure are also γ in units
of 4πa3, where a denotes the radius of the smallest circumscribing sphere. This
comparison with the smallest circumscribing sphere is based on straightforward cal-
culations which is further discussed in Sec. 7.2. The numerical values of γ in Fig. 6
are based on Method of Moments (MoM) calculations, see Ref. 19 and references
therein.

Since the upper bound in (3.7) is linear in γ, it follows that among the Platonic
solids, the tetrahedron provides the largest upper bound on GΛB for a given volume
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Figure 7: The eigenvalue γ1 in units of 4πa3, where a denotes the radius of
the smallest circumscribing sphere. The prolate spheroid, the circular ring and the
circular cylinder correspond to the generalized semi-axis ratio ξ = 10−3.

V . The eigenvalues γ in Fig. 6 are seen to approach 3V as the number of facets
increases. This observation is confirmed by the variational principle discussed in
Ref. 19, which states that for a given volume the sphere minimizes the trace of γ∞
among all isotropic high-contrast polarizability dyadics. Hence, a lower bound on γ
is given by the sphere for which γ = 3V .

For matched polarizations, the eigenvalues in Fig. 6 can directly be applied
to (3.7) to yield an upper bound on the performance of any antenna circumscribed
by a given Platonic solid. For example, the non-magnetic tetrahedron yields GΛB 6
624V/λ3

0 or GΛB 6 0.19 for V = 1 cm3 and center frequency c0/λ0 = 2 GHz. The
corresponding bound on the quotient D/Q differ only by a factor of π, i.e., D/Q 6
0.059.

It is interesting to note that the pertinent point group symmetries of the Platonic
solids are preserved if their geometries are altered appropriately. Such symmetric
changes yield a large class of geometries for which γ∞ is isotropic and the upper
bound on GΛB is independent of the polarization. This observation together with
the fact that the variational principle discussed above also can be applied to arbi-
trary isotropic high-contrast polarizability dyadics, are particularly interesting from
a MIMO-perspective, see Ref. 10 and references therein.

7.2 Comparison with the sphere

From the discussion of the polarizability dyadics in Ref. 19, it is clear that both γ1

and γ2 are directly proportional to the volume of the antenna with a purely geometry
dependent proportionality factor. For the circular disk, it follows from App. G that
even though the volume of the disk vanishes, the eigenvalues γ1 and γ2 are non-zero.
This result is due to the fact that the geometry dependent proportionality factors
1/L1 and 1/L2 approach infinity in the limit as the semi-axis ratio approaches zero.
In other words, it is not sufficient to only consider the volume part of γ1 and γ2

to draw conclusions of the potential in antenna performance for a given volume.
In addition, also the shape dependent proportionality factor must be taken into
account.

Motivated by the discussion above, it is interesting to compare γ1 and γ2 for the
different geometries discussed in Secs. 7 and 8, and in Ref. 8. The comparison refers
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to the smallest circumscribing sphere with radius a, for which γ1 and γ2 are equal
to 4πa3, see Ref. 8. For this purpose, introduce γ1/4πa3, which, in the case of pure
electric material properties, yields a direct measure of the antenna performance in
terms of (3.7) and (4.6). The main question addressed in this section is therefore:
how much antenna performance can be gained for a given geometry by instead
utilizing the full volume of the smallest circumscribing sphere?

In Fig. 7, the goodness number γ1/4πa3 are presented for the sphere, circular
disk, toroidal ring, and prolate and cylindrical needles, respectively. The generalized
semi-axis ratio4 for the toroidal ring and the prolate and cylindrical needles are
ξ = 10−3. The values for the prolate needle and the toroidal ring are given by (G.3)
and (H.9), respectively, while the cylindrical needle is based on FEM simulation for
the dipole antenna in Sec. 8.1. The value for the circular disk is 4/3π ≈ 0.42 given
by (G.4).

The results in Fig. 7 should be compared with the corresponding values in Fig. 6
for the Platonic solids. For example, it is seen that the potential of utilizing the
tetrahedron is about 20.5% compared to the smallest circumscribing sphere. Since
the high-contrast polarizability dyadics γ∞ are isotropic for the Platonic solids and
the sphere, it follows that the results in Fig. 6 also hold for the second and third
eigenvalues, γ2 and γ3, respectively. This is however not the case for the geometries
depicted in Fig. 7 since the circular disk, toroidal ring, and the prolate and cylindrical
needles have no isotropic high-contrast polarizability dyadics. For the circular disk
and the toroidal ring, γ1 and γ2 are equal, and therefore yield the same results as in
Fig. 7 for combined electric and magnetic material properties.

In Fig. 7, it is seen that the physical bounds on GΛB and D/Q for any two-
dimensional antenna confined to the circular disk corresponds to about 42% of the
potential to utilize the full sphere. This result is rather surprising since, in contrast
to the sphere, the circular disk has zero volume. In other words, there is only a
factor of 1/0.42 ≈ 2.4 to gain in antenna performance by utilizing three-dimensions
compared to two for a given maximum dimension a of the antenna. Since the prolate
and cylindrical needles vanish in the limit as the semi-axis ratio approaches zero,
the performance of any one-dimensional antenna restricted to the line is negligible
as compared to the performance of an antenna in the sphere.

Since γ1 and γ2 in the right hand side of (3.7) and (4.6) are determined from
separate electric and magnetic problems in the long wavelength limit, see App. B,
it is clear that electric and magnetic material properties, and hence also γ1 and γ2,
can be combined separately. For example, any antenna with magnetic properties
confined to the circular disk and electric properties confined to the toroidal ring has
a potential which is 100(0.42+0.24) = 66% of the sphere with no magnetic material
properties present.

4The generalized semi-axis ratio for the cylindrical needle and the toroidal ring are defined by
ξ = b/a, where a and b are given in Figs. 9 and 11, respectively.
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1/6 of the sphere of radius a1/2.

7.3 The rectangular parallelepiped

The rectangular parallelepiped is a generic geometry that can be used to model, e.g.,
mobile phones, laptops, and PDAs. The eigenvalues γ1, γ2 and γ3 for a rectangular
parallelepiped with edge lengths a1, a2 and a3 are shown in Fig. 8 as a function of the
ratio a2/a1. The solid and dotted curves correspond to a1/a3 = 5 and a1/a3 = 10,
respectively. The eigenvalues are ordered γ1 > γ2 > γ3 and the principal axes of
the eigenvalues γi correspond to the directions parallel to ai if a1 > a2 > a3. The
eigenvalues degenerate if the lengths of the corresponding edges coincide.

The performance of any non-magnetic antenna inscribed in the parallelepiped is
limited as shown by (3.6) with γm = 0. Specifically, the bounds on antennas polar-
ized in the ai direction are given by the eigenvalue, γi. Obviously, it is advantageous
to utilize the longest dimension of the parallelepiped for the polarization of single
port antennas. The bound (3.6) also quantifies the degradation in using the other
directions for the polarization. This is useful for the understanding of fundamental
bounds and synthesis of MIMO antennas.

For example, a typical mobile phone is approximately 10 cm high, 5 cm wide,
and 1 cm to 2 cm thick. The corresponding eigenvalues γ1, γ2 and γ3 for a1 =
10 cm are seen in Fig. 8 for a3 = 2 cm (solid lines) and a3 = 1 cm (broken lines).
The distribution of the eigenvalues γ1, γ2 and γ3 quantifies the trade off between
pattern and polarization diversity for multiple antennas systems in the mobile phone.
Pattern diversity utilizes the largest eigenvalue but requires an increased directivity
at the cost of bandwidth (3.6). Similarly, polarization diversity utilizes at least two
eigenvalues. It is observed that it is advantageous to use polarization and pattern
diversity for a2 ≈ a1 and a2 ¿ a1, respectively. For a mobile phone where a2 ≈ a1/2,
either pattern diversity or a combined pattern and polarization diversity as linear
combinations of the a1 and a2 directions can be used. Moreover, note that magnetic
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Figure 9: The extinction and absorption cross sections (left figure) and the realized
gain (right figure) for a cylindrical dipole antenna with axial ratio b/a = 10−3. The
different curves correspond to Hallén’s integral equation (solid curves), directivity
and Q-value bound (4.6) (dashed curves), and gain and bandwidth bound (3.7)
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materials, increase the bound (3.6) and offer additional possibilities.

8 Analysis of some classical antennas

In this section, numerical simulations of some classical antennas are presented and
analyzed in terms of the physical bounds discussed in Sec. 3.

8.1 The dipole antenna

The cylindrical dipole antenna is one of the simplest and most well known antennas.
Here, the MoM solution of the Hallén’s integral equation in Ref. 11 together with a
gap feed model is used to determine the cross sections and impedance for a cylindrical
dipole antenna with axial ratio b/a = 10−3. The extinction and absorption cross
sections and the realized gain are depicted in Fig. 9. The antenna is resonant at
2a ≈ 0.48λ with directivity D = 1.64 and radiation resistance 73 Ω. The half-power
bandwidth is B = 25% and the corresponding Q-value is estimated to Q = 8.3 by
numerical differentiation of the impedance, see Ref. 25. The absorption efficiency η
is depicted in Fig. 10. It is observed that η ≈ 0.5 at the resonance frequency and
η̃ = 0.52 for 0 6 4a/λ 6 3.

The MoM solution is also used to determine the forward scattering properties of
the antenna. The forward scattering is represented by the extinction volume % in
Fig. 10. Recall that %(0) and Im % directly are related to the polarizability dyadics
and the extinction cross section, see Sec. 3.

Moreover, since Re % ≈ 0 at the resonance frequency, it follows that the real-
valued part of the forward scattering is negligible at this frequency. This observation
is important in the understanding of the absorption efficiency of antennas, see Ref. 2.
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Figure 10: The extinction volume % (left figure) and the absorption efficiency η
(right figure) as function of 4a/λ for the dipole antenna.

FEM simulations are used to determine the polarizability dyadic and the eigen-
values of the cylindrical region in Fig. 9. The eigenvalue γ1, corresponding to a
polarization along the dipole, is γ1 = 0.71a3 and the other eigenvalues γ2 = γ3

are negligible. The result agrees with the integrated extinction (2.3) of the MoM
solution within 2% for 0 6 4a/λ 6 3.

The eigenvalues γ1 = 0.71a3 and γ2 = 0 inserted into (4.6) give physical bounds
on the quotient D/Q of any resonant antenna confined to the cylindrical region, i.e.,

sup
p̂e·p̂m=0

D

Q
6 η̃

k3
0γ1

2π
≈ 0.39η̃. (8.1)

The corresponding bound on the Q-value is Q > 8.1, if D = 1.64 and η̃ = 0.52
are used. In Fig. 9, it is observed that the single resonance model (dashed curves)
with Q = 8.5 is a good approximation of the cross sections and realized gain. The
corresponding half-power bandwidth is 24%. The eigenvalue γ1 also gives a bound
on the product GΛB in (3.7) as illustrated with the rectangular region in the right
figure for an arbitrary minimum scattering antenna (η̃ = 0.5). The realized gain
GΛ = 1.64 gives the relative bandwidth B = 38%.

It is also illustrative to compare the physical bounds with the MoM simulation for
a short dipole. The resonance frequency of the dipole is reduced to 2a ≈ 0.2λ with an
inductive loading of 5 µH connected in series with the dipole. The MoM impedance
computations of the short dipole give the half-power bandwidth B = 1.4% and the
radiation resistance 8 Ω. The D/Q bound (4.6) gives Q > 110 for the directivity
D = 1.52 and an absorption efficiency η̃ = 1/2 corresponding to the half-power
bandwidth B 6 1.8%.

Obviously, the simple structure of the dipole and the absence of broadband
matching networks make the resonance model favorable. The bound (4.6) is in
excellent agreement with the performance of the dipole antenna for the absorption
efficiency η̃ = 0.52, i.e., Q > 8.1 from (4.6) compared to Q = 8.3 from the MoM
solution. The GΛB bound overestimates the bandwidth, but a broadband matching
network can be used to enhance the bandwidth of the dipole, see Ref. 6.
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Observe that the dipole antenna has a circumscribing sphere with ka ≈ 1.5 and
is not considered electrically small according to the Chu bounds in Ref. 4. The
corresponding limit for the 2a ≈ 0.2λ0 dipole (ka ≈ 0.63 and D = 1.52) is Q > 5.6
and the half-power bandwidth of 36% À 1.4%. In conclusion, the dipole utilizes the
cylindrical region very efficiently but obviously not the spherical region.

8.2 The loop antenna

The magnetic counterpart to the dipole antenna in Sec. 8.1 is the loop antenna. The
geometry of the loop antenna is conveniently described in toroidal coordinates, see
Sec. H. Laplace’s equation separates in the toroidal coordinate system and hence
permits an explicit calculation of the high-contrast polarizability dyadic γ∞. In this
section the attention is restricted to the loop antenna of vanishing thickness and
non-magnetic material properties. Under the assumptions of vanishing thickness,
the analysis in Sec. H yields closed-form expressions of the eigenvalues γ1, γ2 and
γ3. Recall that the loop antenna coincides with the magnetic dipole in the long
wavelength limit a/λ ¿ 1.

In order to quantify the vanishing thickness limit, introduce the semi-axis ratio
ξ = b/a, where a and b denote the axial and cross section radii, respectively, see
Fig. 11. The three eigenvalues γ1 = γ2 and γ3 are seen to vanish in the limit ξ → 0.
However, γ1 and γ2 vanish slower than γ3, see Sec. H. The eigenvalues in the limit
ξ → 0 inserted into (4.5) yields

D

Q
6 πk3

0a
3 f(θ)

ln 2/ξ − 1
+O(ξ2) as ξ → 0, (8.2)

where f(θ) = 1 for the TE- and f(θ) = cos2 θ for the TM-polarization. Here,
θ ∈ [0, π] is the polar angle measured from the z-axis of symmetry in Fig. 11. Note
that the logarithmic singularity in (8.2) is the same as for the dipole antenna, see
Sec. H. Since the axial radius a is the only length scale that is present in the loop
antenna in the limit ξ → 0, it is natural that γ1, γ2, and γ3 are proportional to a3,
see App. B.

By comparing the discussion above with the results in Ref. 8 and Sec. 8.1, it
is concluded that there is a strong equivalence between the electric and magnetic
dipoles. For the most advantageous polarization the upper bound on GΛB is a factor
of 3π/2 larger for the loop antenna compared to the electric dipole.

The results are exemplified for a self-resonant loop with k0a = 1.1 and a ca-
pacitively loaded loop, C = 10 pF, with k0a = 0.33, both with ξ = 0.01. The
corresponding bounds (4.6) are D/Q 6 0.95η̄ and D/Q 6 0.025η̄, respectively. The
MoM is used to determine the impedance and realized gain of the loop antenna with
a gap feed at φ = 0, see Fig. 11. The Q-value of the self-resonant antenna is esti-
mated to Q = 5 from numerical differentiation of the impedance, see Ref. 25. The
corresponding main beam is in the ẑ-direction with a directivity D = 2.36 giving
D/Q = 0.47. Similarly, the tuned loop has Q ≈ 164 and D = 1.43 in θ = 90◦ and
φ = 90◦ giving D/Q ≈ 0.0086.
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Figure 11: The realized partial gain of two loop antennas for θ = 0◦, 90◦. One
self resonant (ka ≈ 1) and one capacitively tuned to ka ≈ 1/3.

It is observed that the physical bounds (4.6) of the loops agree well with the MoM
results. This difference can be reduced by introducing the appropriate absorption
efficiency in the physical bound. The corresponding results for the Chu bound are
D/Q 6 2.3 for k0a = 1.1 and D/Q 6 0.18 for k0a = 0.33, where the combined
TE- and TM-case have been used as the loops are not omnidirectional, see Refs. 4
and 13.

8.3 Conical antennas

The bandwidth of a dipole antenna increases with the thickness of the antenna. The
bandwidth can also be increased with conical dipoles, i.e., the biconical antenna.
The corresponding conical monopole and discone antennas are obtained by replacing
one of the cones with a ground plane, see Ref. 21.

In Fig. 12, the eigenvalues γx = γy and γz, corresponding to horizontal and
vertical polarizations, respectively, are shown as a function of the ground plane
radius, b, for the conical monopoles with angles θ = 10◦ and 30◦. The eigenvalues
are normalized with a3, where a is the height of the cone. It is observed that the
eigenvalues increase with the radius, b, of the ground plane and the cone angle θ.
This is a general result as the polarizability dyadic is non-decreasing with increasing
susceptibilities, see Ref. 19.

The horizontal eigenvalues γx = γy are dominated by the ground plane and
increase approximately as b3 according to the polarizability of the circular disk, see
App. C. The vertical eigenvalue γz approaches γbz/2 as b → ∞, where γbz denotes
the vertical eigenvalue of the corresponding biconical antenna.

It is interesting to compare the D/Q estimate (4.6) for the biconical antenna and
conical monopole antenna with a large but finite ground plane. The vertical eigen-
value γz of the conical monopole antenna is approximately half of the corresponding
eigenvalue of the biconiocal antenna and the Q-values of the two antennas are sim-
ilar. The physical bound on the directivity in the θ = 90◦ direction of the conical
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Figure 12: The vertical and horizontal eigenvalues γz and γx as function of the
radius b for a biconical antenna of half vertex angle 10◦ and 30◦, respectively.

monopole is hence half of the directivity of the corresponding biconical antenna.
This might appear contradictory as it is well known that the maximal directivity
of a monopole is approximately twice the directivity of the corresponding dipole.
However, the θ = 90◦ direction is on the border between the illuminated and the
shadow regions. The integral representation of the far field shows that the induced
ground-plane currents do not contribute to the far field in this direction, implying
that the directivity is reduced a factor of four as suggested by the physical bounds,
see App. D.

The rapid increase in γx = γy with the radius of the ground plane suggests that
it is advantageous to utilize the polarization in the theses directions. This is done by
the discone antenna that has an omnidirectional pattern with a maximal directivity
above θ = 90◦.

9 Conclusion and future work

In this paper, physical bounds on reciprocal antennas of arbitrary shape are derived
based on the holomorphic properties of the forward scattering dyadic. The results
are very general in the sense that the underlying analysis solely depends on energy
conservation and the fundamental principles of linearity, time-translational invari-
ance, and causality. Several deficiencies and drawbacks of the classical bounds of
Chu and Wheeler in Refs. 4 and 24 are overcomed with this new formulation. The
main advantages of the new bounds are at least fivefold: 1) they hold for arbitrary
antenna geometries; 2) they are formulated in the gain and bandwidth as well as
the directivity and the Q-value; 3) they permit study of polarization effects such
as diversity in applications for MIMO communication systems; 4) they successfully
separate electric and magnetic antenna properties in terms of the intrinsic material
parameters; 5) they are isoperimetric from a practical point of view in the sense
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that for some geometries, physical antennas can be realized which yield equality in
the bounds.

The main results of the present theory are the bounds on the partial realized
gain and partial directivity in (3.5) and (4.5), respectively. Since the upper bounds
in (3.5) and (4.5) are proportional to k3

0a
3, where a denotes the radius of, say, the

volume equivalent sphere, it is clear that no broadband electrically small anten-
nas exist unless gain or directivity is sacrificed for bandwidth or Q-value. This is
also the main conclusion in Ref. 13, but there presented on more vague grounds.
Furthermore, the present theory suggests that, in addition to electric material prop-
erties, also magnetic materials could be invoked in the antenna design to increase
the performance, cf., the ferrite loaded loop antenna in Ref. 5.

In contrast to the classical results by Chu and Wheeler in Refs. 4 and 24, these
new bounds are believed to be isoperimetric in the sense that the bounds hold for
some physical antenna. A striking example of the intrinsic accuracy of the theory
is illustrated by the dipole antenna in Sec. 8.1. In fact, many wire antennas are
believed to be close to the upper bounds since these antennas make effective use of
their volumes.

It is important to remember that a priori knowledge of the absorption efficiency
η = σa/σext can sharpen the bounds in (3.5) and (4.5), cf., the half-wave dipole
antenna in Sec. 8.1 for which η̃ ≈ 1/2 is used. Similarly, a priori knowledge of the
radiation efficiency, ηr, can be used to improve the estimate in (3.3) using G = ηrD.

The performance of an arbitrary antenna can be compared with the upper bounds
in Secs. 3 and 4 using either the method of moments (MoM) or the finite difference
time domain method (FDTD). For such a comparison, it is beneficial to deter-
mine the integrated extinction and compare the result using (2.3) rather than (3.5)
and (4.5). The reason for this is that the full absorption and scattering proper-
ties are contained within (2.3) in contrast to (3.5) and (4.5). In fact, (2.3) is the
fundamental physical relation and should be the starting point of much analysis.

In addition to the broadband absorption efficiency η̃, several implications of the
present theory remains to investigate. Future work include the effect of non-simple
connected geometries (array antennas) and its relation to capacitive coupling, and
additional analysis of classical antennas. From a wireless communication point of
view it is also interesting to investigate the connection between the present theory
and the concept of correlation and capacity in MIMO communication systems. Some
of the problems mentioned here will be addressed in forthcoming papers.
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Appendix A Details on the derivation of (2.3)

Consider a plane-wave excitation Ei(c0t − k̂ · x) incident in the k̂-direction, see
Fig. 1. In the far field region, the scattered electric field Es is described by the far
field amplitude F as

Es(t, x) =
F (c0t− x, x̂)

x
+O(x−2) as x →∞, (A.1)

where c0 denotes the speed of light in vacuum, and x̂ = x/x with x = |x|. The far
field amplitude F in the forward direction k̂ is assumed to be causal and related to
the incident field Ei via the linear and time-translational invariant convolution

F (τ, k̂) =

∫ τ

−∞
St(τ − τ ′, k̂, k̂) ·Ei(τ

′) dτ ′. (A.2)

Here, τ = c0t− x and St is the appropriate dimensionless temporal dyadic.
Introduce the forward scattering dyadic S as the Fourier transform of St evalu-

ated in the forward direction, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (A.3)

where k is complex-valued with Re k = ω/c0. Recall that S(ik, k̂) is real-valued
for real-valued k and that the crossing symmetry S(k, k̂) = S∗(−k∗, k̂) holds for
complex-valued k. For a large class of temporal dyadics St, the elements of S are
holomorphic in the upper half plane Im k > 0.

From the analysis above, it follows that the Fourier transform of (A.1) in the
forward direction reads

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞, (A.4)

where E0 is the Fourier amplitude of the incident field. Introduce the extinction
volume %(k) = p̂∗e · S(k, k̂) · p̂e/k

2, where p̂e = E0/|E0| and p̂m = k̂ × p̂e denote
the electric and magnetic polarizations, respectively. Since the elements of S are
holomorphic in k for Im k > 0, it follows that also the extinction volume % is a
holomorphic function in the upper half plane. The Cauchy integral theorem with
respect to the contour in Fig. 13 then yields

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk. (A.5)

Here, it is assumed that the extinction volume % is sufficiently regular to extend
the contour to the real-axis in the last integral on the right hand side of (A.5).
Relation (A.5) is subject to the limits as ε → 0 and R →∞.

The left hand side of (A.5) and the integrand in the first integral on the right
hand side are well-defined in the limit as ε → 0. For a sufficiently regular % in the
vicinity of the origin, the analysis in Ref. 14 yield

%(iε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) as ε → 0. (A.6)
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Figure 13: Integration contour in the complex k-plane used in (A.5).

Here, γe and γm denote the electric and magnetic polarizability dyadics in App. B.
Since the short wavelength response of a material is non-unique from a modeling
point of view, see Ref. 9, the second term on the right hand side of (A.5) is assumed
to approach zero in the limit R →∞. In fact, for a large class of temporal dyadics
St, the integrand %(iε + Reiφ)/2π is proportional to the projected area A in the
forward direction, viz.,

%(k) = −A(k̂)

2πik
+O(|k|−2) as |k| → ∞, Im k > 0. (A.7)

The asymptotic behavior (A.7) is known as the extinction paradox, see Ref. 23. The
constant A is real-valued since S(ik, k̂) is real-valued for real-valued k.

In order to proceed, the scattering, absorption and extinction cross sections
are introduced. The scattering cross section σs and absorption cross section σa

are defined as the ratio of the scattered and absorbed power, respectively, to the
incident power flow density in the forward direction. The sum of the scattering and
absorption cross sections is the extinction cross section σext = σs + σa. The three
cross sections σs, σa and σext are by definition real-valued and non-negative. The
principle of energy conservation takes the form as a relation between the extinction
volume % and the extinction cross section. The relation is known as the optical
theorem, see Refs. 16 and 22,

σext(k) = 4πk Im %(k), (A.8)

where k is real-valued.
In summary, the real part of (A.5) subject to the limits ε → 0 and R → ∞

yields

%(0) =
1

π

∫ ∞

−∞

Im %(k)

k
dk. (A.9)

The optical theorem (A.8) applied to (A.9) then implies

%(0) =
1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (A.10)
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where the wavelength λ = 2π/k has been introduced. Hence, invoking (A.6) finally
yields the integrated extinction

∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (A.11)

In fact, the already weak assumptions on the extinction volume % in the analysis
above can be relaxed via the introduction of certain classes of distributions, see
Ref. 17.

Appendix B The polarizability dyadics

Let τ denote a finite material dyadic (χe without a conductivity term, or χm) with
compact support. The entries of the polarizability dyadic γ (γe or γm depending
on whether the problem is electric or magnetic) are defined as the volume integral

êi · γ · êj =
1

E0

êi ·
∫

R3

τ (x) ·Ej(x) dv, i, j = 1, 2, 3. (B.1)

Here, the total field E has been decomposed as Ej = E0êj +Esj with respect to the
mutually orthonormal vectors êj. In the electric and magnetic cases, E represents
the electric and magnetic field, respectively.

In the high-contrast limit, when the entries of τ simultaneously approach infinity
uniformly in x, the pertinent definition of the high-contrast polarizability dyadic γ∞
is, see Ref. 14,

êi · γ∞ · êj =
1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x)− xν̂(x) · ∇Φj(x)) dS. (B.2)

The surface integral representation (B.2) holds for N disjunct bounding surfaces Sn

with outward-directed unit normal vectors ν̂. The potential Ψj(x) = Φj(x)−E0xj

is for each n = 1, 2, . . . , N the solution to the boundary value problem




∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇Ψj(x) |+ dS = 0

Ψj(x) → −E0xj +O(|x|−2) as |x| → ∞
(B.3)

The presence of a finite or infinite conductivity term in χe is discussed in Ref. 14.
The conclusion is that the electric polarizability dyadic γe should be replaced by
γ∞ independently of the real-part of χe when a conductivity term is present. This
may at first seem contradictory, since there is no continuity in the limit as the
conductivity vanishes.

In Ref. 19, the polarizability dyadic γ is proved to be symmetric provided τ is
symmetric at all points x. The dyadic γ is real-valued, and hence diagonalizable
with real-valued eigenvalues. The corresponding set of orthogonal eigenvectors are
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Figure 14: Illustration of an arbitrary antenna volume supported by a ground
plane (left figure) and its corresponding mirror object (right figure).

the principal axes of the obstacle under consideration. The principal axes are partic-
ularly easy to determine for obstacles with continuous or discrete symmetries, e.g.,
the ellipsoids and the Platonic solids in Sec. 7.1.

An important property of γ which is proved in Ref. 19, is that it is proportional
to the volume of the support of τ . This is a direct consequence of the absence of
any length scales in the long wavelength limit.

Appendix C Supporting ground planes

Supporting ground planes are central structures in many antenna applications. Con-
sider an arbitrary volume, modeling the antenna, situated above a supporting ground
plane of finite or infinite extent, see Fig. 14. To simplify the terminology, use
monopole to denote object with a ground plane and dipole to denote the object
together with its mirror object. The ground plane is assumed to be a circular disk
of radius b with vanishing thickness. Since γ∞ is independent of any coordinate
representation, let the ground plane be given by z = 0.

For a polarization parallel with the ground plane, i.e., spanned by êx and êy, it
is clear from the results in App. B of the circular disk that the contribution to γ∞
from the ground plane is large. Indeed, a circular ground plane of radius b yields
γx = γy = 16b3/3, where γx and γy denote the eigenvalues of γ∞ corresponding to
the êx and êy directions, respectively (G.4).

The polarizability of the monopole for an electric polarization parallel with the
êz-direction has one contribution from the charge distribution on the object z >
0 and one part from the charge distribution on the ground plane z = 0. The
contribution from the ground plane vanishes in (B.2) since z = 0. For a ground
plane of infinite extent the method of images is applicable to determine the charge
distribution for z > 0. In this method, the ground plane is replaced with a copy of
the object placed in the mirror position of the object, i.e., the dipole. The charge
distribution is odd in z and the charge distribution for z > 0 is identical in the
monopole and dipole cases. The polarizability of the dipole is hence exactly twice
the polarizability of the corresponding monopole.
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The difference between the finite and infinite ground planes is negligible as long
as the charge distribution on the monopole can be approximated by the charge
distribution in the corresponding dipole case.

Appendix D Directivity along ground planes

The integral representation of the far-field can be used to analyze the directivity of
antennas in directions along the supporting ground plane. The pertinent integral
representation reads

F (r̂) =
ikZ0

4π

∫

S

r̂ × (J(x)× r̂)e−ikr̂·x dS, (D.1)

where J and Z0 denote the induced current and the free space impedance, respec-
tively.

Consider a monopole, i.e., an object on a large but finite ground plane, at z = 0
with êz as a symmetry axis, see Fig. 14. The far-field of the monopole (D.1) can
be written as a sum of one integral over the ground plane and one integral over
the object. Let S+ and S0 denote the corresponding surfaces of the object and
the ground plane, respectively. Assume that the ground plane is sufficiently large
such that the currents on the monopole can be approximated with the currents
on the corresponding dipole case for z > 0. Moreover, assume that the current is
rotationally symmetric and that the current in the φ-direction is negligible giving
an omni-directional radiation pattern. Hence, it is sufficient to consider the far-field
pattern in the r̂ = êx-direction.

The induced currents on the ground plane are in the radial direction giving the
term êx × (J(x) × êx) = êyJρ(ρ) sin φ in (D.1). It is seen that the currents on the
ground plane does not contribute to the far field as

F (êx) = êy
ikη

4π

∫

S0

e−ikρ cos φJρ(ρ) sin φρ dφ dρ = 0. (D.2)

The contribution from the currents on the object can be analyzed with the method
of images. From (D.2), it is seen the it is only the currents in the êz-direction that
contributes to the far field, i.e.,

F (êx) = êz
ikη

4π

∫

S+

e−ikρ cos φJz(ρ, z) dS, (D.3)

where Jzêz = êx × (J × êx). The method of images shows that Jz is even in z so
the z-directed currents above and below the ground plane give equal contributions
to the far field. The directivity of the monopole antenna is hence a quarter of the
directivity of the corresponding dipole antenna in the êx-direction.

Appendix E Definition of some antenna terms

The following definitions of antenna terms are based on the IEEE standard 145-1993
in Ref. 3. The definitions refer to the electric polarization p̂e (co-polarization) rather
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than the magnetic polarization p̂m = k̂× p̂e (cross-polarization). The antennas are
assumed to reciprocal, i.e., they have similar properties as transmitting and receiving
devices.

Absolute gain G(k̂). The absolute gain is the ratio of the radiation intensity in
a given direction to the intensity that would be obtained if the power accepted by
the antenna was radiated isotropically.

Partial gain G(k̂, p̂e). The partial gain in a given direction is the ratio of the
part of the radiation intensity corresponding to a given polarization to the radiation
intensity that would be obtained if the power accepted by the antenna was radiated
isotropically. The absolute gain is equal to the sum of the partial gains for two
orthogonal polarizations, i.e., G(k̂) = G(k̂, p̂e) + G(k̂, p̂m).

Realized gain G(k̂, Γ ). The realized gain is the absolute gain of an antenna
reduced by the losses due to impedance mismatch of the antenna, i.e., G(k̂, Γ ) =
(1− |Γ |2)G(k̂).

Partial realized gain G(k̂, p̂e, Γ ). The partial realized gain is the partial gain
for a given polarization reduced by the losses due to impedance mismatch of the
antenna, i.e., G(k̂, p̂e, Γ ) = (1− |Γ |2)G(k̂, p̂e).

Absolute directivity D(k̂). The absolute directivity is the ratio of the radiation
intensity in a given direction to the radiation intensity averaged over all directions.
The averaged radiation intensity is equal to the total power radiated divided by 4π.

Partial directivity D(k̂, p̂e). The partial directivity in a given direction is the
ratio of that part of the radiation intensity corresponding to a given polarization to
the radiation intensity averaged over all directions. The averaged radiation intensity
is equal to the total power radiated divided by 4π.

Absorption cross section σa(k̂, p̂e, Γ ). The absorption cross section for a given
polarization and incident direction is the ratio of the absorbed power in the antenna
to the incident power flow density when subject to a plane-wave excitation. For a
perfectly matched antenna, the absorption cross section coincides with the partial
effective area.

Scattering cross section σs(k̂, p̂e, Γ ). The scattering cross section for a given
polarization and incident direction is the ratio of the scattered power by the antenna
to the incident power flow density when subject to a plane-wave excitation.

Extinction cross section σext(k̂, p̂e, Γ ). The extinction cross section for a given
polarization and incident direction is the sum of the absorbed and scattered power
of the antenna to the incident power flow density when subject to a plane-wave
excitation, i.e., σext(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ ) + σs(k̂, p̂e, Γ ).
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Figure 15: The RCL circuits corresponding to the plus (left figure) and minus
(right figure) signs in (F.1).

Absorption efficiency5 η(k̂, p̂, Γ ). The absorption efficiency of an antenna for a
given polarization and incident direction is the ratio of the absorbed power to the
total absorbed and scattered power when subject to a plane-wave excitation, i.e.,
η(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ )/σext(k̂, p̂e, Γ ).

Quality value Q. The quality factor of a resonant antenna is the ratio of 2π
times the energy stored in the fields excited by the antenna to the energy radiated
and dissipated per cycle. For electrically small antennas, it is equal to one-half the
magnitude of the ratio of the incremental change in impedance to the corresponding
incremental change in frequency at resonance, divided by the ratio of the antenna
resistance to the resonant frequency.

Appendix F Q-value and bandwidth

The quality factor, or Q-factor, is often used to estimate the bandwidth of an an-
tenna. It is defined as the ratio of the energy stored in the reactive field to the
radiated energy, i.e., Q = 2ω max(Wm,We)/P , see App. E and Refs. 7 and 25. Here,
We and Wm denote the stored electric and magnetic energies, respectively, P is the
dissipated power, and ω = kc0 the angular frequency. At the resonance, k = k0,
there are equal amounts of stored electric and magnetic energy, i.e., We = Wm.

For many applications it is sufficient to model the antenna as a simple RCL
resonance circuit around the resonance frequency. The reflection coefficient Γ of the
antenna is then given by

Γ =
Z(k)−R

Z(k) + R
= ± 1− (k/k0)

2

1− (k/k0)2 − 2ik/(k0Q)
(F.1)

where Z denotes the frequency dependent part of the impedance, and the plus
and minus signs in (F.1) correspond to the series and parallel circuits in Fig. 15,
respectively. The reflection coefficient Γ is holomorphic in the upper half plane
Im ω > 0 and characterized by the poles

k = ±k0

√
1−Q−2 − ik0/Q, (F.2)

5This term is not defined in Ref. 3; the present definition is instead based on Ref. 2.
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which are symmetrically distributed with respect to the imaginary axis.
The bandwidth of the resonances in (F.2) depends on the threshold level of the

reflection coefficient. The relative bandwidths of half-power, |Γ |2 6 0.5, is given by
B ≈ 2/Q. The corresponding losses due to the antenna mismatch are calculated
from

1− |Γ |2 =
1

1 + Q2(k/k0 − k0/k)2/4
. (F.3)

The definition of the Q-factor in terms of the quotient between stored and radi-
ated energies is however not adequate for the present analysis. This is because the
decomposition of the total energy into the stored and dissipated parts is a funda-
mentally difficult task. As noted in Refs. 7 and 25, the Q-factor at the resonance
frequency k = k0 can instead be determined by differentiating the reflection coeffi-
cient or impedance, i.e., ∣∣∣∣

∂Γ

∂k

∣∣∣∣ =
1

2R

∣∣∣∣
∂Z

∂k

∣∣∣∣ =
Q

k0

, (F.4)

where the derivatives in (F.4) are evaluated at k = k0. Relation (F.4) is exact for
the single resonance circuit and is also a good approximation for multiple resonance
models if Q is sufficiently large. In Sec. 4, a multiple resonance model is considered
for the extinction volume % introduced in App. A. The multiple resonance model is
obtained by superposition of single resonance terms with poles of the type (F.2).

Appendix G The depolarizing factors

For the ellipsoids of revolution, i.e., the prolate and oblate spheroids, closed-form
expressions of (6.2) exist in terms of the semi-axis ratio ξ ∈ [0, 1]. The result for
the prolate spheroid is (a2 = a3)





L1(ξ) =
ξ2

2(1− ξ2)3/2

(
ln

1 +
√

1− ξ2

1−
√

1− ξ2
− 2

√
1− ξ2

)

L2(ξ) = L3(ξ) =
1

4(1− ξ2)3/2

(
2
√

1− ξ2 − ξ2 ln
1 +

√
1− ξ2

1−
√

1− ξ2

) (G.1)

while for the oblate spheroid (a1 = a2)





L1(ξ) = L2(ξ) =
ξ2

2(1− ξ2)

(
−1 +

arcsin
√

1− ξ2

ξ
√

1− ξ2

)

L3(ξ) =
1

1− ξ2

(
1− ξ arcsin

√
1− ξ2

√
1− ξ2

) (G.2)

The depolarizing factors (G.1) and (G.2) are depicted in Fig. 16. Note that (G.1)
and (G.2) differ in indices from the depolarizing factors in Ref. 19 due to the order
relation L1 6 L2 6 L3 assumed in Sec. 6 in this paper.
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Figure 16: The depolarizing factors for the prolate (solid) and oblate (dashed)
spheroids as function of the semi-axis ratio ξ. Note the degeneracy for the sphere.

Introduce the eigenvalues γj(ξ) = V (ξ)/Lj(ξ) of the high-contrast polarizability
dyadic. In terms of the radius a of the smallest circumscribing sphere, the spheroidal
volume V (ξ) is given by ξ24πa3/3 and ξ4πa3/3 for the prolate and oblate spheroids,
respectively. For the analysis in Sec. 6, the limit of γj(ξ) as ξ → 0 is particular
interesting, corresponding to the circular needle for the prolate spheroid and the
circular disk for the oblate spheroid. The result for the circular needle reads





γ1(ξ) =
4πa3

3

1

ln 2/ξ − 1
+O(ξ2)

γ2(ξ) = γ3(ξ) = O(ξ2)

as ξ → 0 (G.3)

while for the circular disk,





γ1(ξ) = γ2(ξ) =
16a3

3
+O(ξ)

γ3(ξ) = O(ξ)

as ξ → 0 (G.4)

Closed-form expressions of (6.2) can also be evaluated for the elliptic needle and disk
in terms of the complete elliptic integrals of the first and second kind, see Ref. 19.
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2b
a

x1

x2

x3

Figure 17: The toroidal ring and the Cartesian coordinate system (x1, x2, x3).

Appendix H The toroidal ring

The general solution to Laplace’s equation for the electrostatic potential ψ in toroidal
coordinates6 is, see Ref. 15,

ψ(u, v, φ) =
√

cosh v − cos u

∞∑
n,m=0

(am cos mφ + bm sin mφ) ·

(cm cos nu + dm sin nu)
(
AmnPm

n− 1
2
(cosh v) + BmnQm

n− 1
2
(cosh v)

)
,

(H.2)
where Pm

n−1/2 and Qm
n−1/2 are the ring functions of the first and second kinds, respec-

tively, see Ref. 1. The toroidal ring of axial radius a and cross section radius b is
given by the surface v = v0, see Fig. 17. Introduce the semi-axis ratio ξ ∈ [0, 1] as
the quotient ξ = b/a = 1 cosh v0.

In this appendix, the eigenvalues of the high-contrast polarizability dyadic are
derived for the loop antenna in Sec. 8.2 of vanishing thickness. Due to rotational
symmetry in the x1x2-plane, the analysis is reduced to two exterior boundary value
problems defined by the region v ∈ [0, v0] and u, φ ∈ [0, 2π). Due to the singular
behavior of Qm

n−1/2(cosh v) as v → 0 it is required that Bmn = 0. In addition, the

electrostatic potential must vanish at infinity, i.e., ψ(u, v, φ) → 0 when u, v → 0
simultaneously. On the surface of the toroidal ring the two different boundary
conditions of interest are, ψ(u, v0, φ) = x1 and ψ(u, v0, φ) = x3, see App. B. The
following representations of the Cartesian coordinates in terms of Qm

n−1/2 are proved

6The toroidal coordinate system (u, v, φ) is defined in terms of the Cartesian coordinates
(x1, x2, x3) as

x1 =
ζ sinh v cos φ

cosh v − cos u
, x2 =

ζ sinh v sin φ

cosh v − cos u
, x2 =

ζ sin u

cosh v − cos u
, (H.1)

where u, φ ∈ [0, 2π) and v ∈ [0,∞). The toroidal ring of axial radius a and cross section radius b
is described by the surface v = v0, where a = ζ coth v0 and b = ζ/ sinh v0. Note that the present
notation (u, v, φ) differs from (η, µ, φ) in Ref. 15.
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to be useful:




x1 = −ζ
√

8 cos φ

π

√
cosh v0 − cos u

∞∑
n=0

εnQ1
n− 1

2
(cosh v0) cos nu

x3 =
ζ
√

8

π

√
cosh v0 − cos u

∞∑
n=1

nQn− 1
2
(cosh v0) sin nu

(H.3)

Two different boundary value problems are associated with the loop antenna in
Sec. 8.2 depending on whether the magnetic polarization p̂m is parallel or orthogonal
to the x3-axis. The solution of these boundary value problems are then closely
related to the components of the electric polarizability dyadic. Only the case when
the thickness of the toroidal ring vanishes, i.e., when ξ → 0 or equivalently v0 →∞,
is treated here.

H.1 Magnetic polarization perpendicular to the x3-axis

A magnetic polarization p̂m perpendicular to the x3-axis is via the plane-wave condi-
tion k̂ = p̂e× p̂m equivalent to the electric polarization p̂e parallel with the x3-axis.
A straightforward calculation to this problem can be proved to yield

ψ(u, v, φ) =
ζ
√

8

π

√
cosh v − cos u

∞∑
n=1

n
Qn− 1

2
(cosh v0)

Pn− 1
2
(cosh v0)

Pn− 1
2
(cosh v) sin nu. (H.4)

In terms of the normal derivative ∂ψ/∂ν evaluated at v = v0, the third eigenvalue
of γ∞ is given by

γ3 = 2π

∫ 2π

0

x3
∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cos u)2 du (H.5)

By insertion of (H.3) into (H.5), the asymptotic behavior of γ3 in the limit ξ → 0,
or equivalently v0 →∞, can be proved to be (ζ → a as v0 →∞)

γ3 = O(ξ2) as ξ → 0. (H.6)

Hence, the third eigenvalue γ3 of the high-contrast polarizability dyadic vanishes as
the thickness of the toroidal ring approaches zero.

H.2 Magnetic polarization parallel with the x3-axis

The solution to the boundary value problem with the magnetic polarization p̂m

parallel with the x3-axis, i.e., p̂e perpendicular to the x1-axis, is

ψ(u, v, φ) = −ζ
√

8 cos φ

π

√
cosh v − cos u

∞∑
n=0

εn

Q1
n− 1

2

(cosh v0)

P1
n− 1

2

(cosh v0)
P1

n− 1
2
(cosh v) cos nu,

(H.7)
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where εn = 2− δn0 is the Neumann factor. In terms of the normal derivative ∂ψ/∂ν
evaluated at v = v0, the first and second eigenvalues of γ∞ are

γ1 = γ2 =

∫ 2π

0

∫ 2π

0

x1
∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cos u)2 dφ du, (H.8)

where x1 as function of u and φ is given by (H.3). The asymptotic behavior of (H.8)
as ξ → 0, or equivalently v0 →∞, can be proved to be (ζ → a as v0 →∞)

γ1 = γ2 =
2π2a3

ln 2/ξ − 1
+O(ξ2) as ξ → 0. (H.9)

Note that (H.9) vanishes slower than (H.6) as ξ → 0 due to the logarithmic singu-
larity.
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Abstract

A sum rule valid for a large class of linear and reciprocal antennas is presented
in terms of the electric and magnetic polarizability dyadics. The identity is
based on the holomorphic properties of the forward scattering dyadic and in-
cludes arbitrarily shaped antennas modeled by linear and time-translational
invariant constitutive relations. In particular, a priori estimates on the partial
realized gain are introduced, and lower bounds on the onset frequency are de-
rived for two important archetypes of UWB antennas: those with a constant
partial realized gain and those with a constant effective antenna aperture.
The theoretical findings are illustrated by an equiangular spiral antenna, and
comparison with numerical simulations show great potential for future appli-
cations in antenna design.

1 Introduction

Since the pioneering ideas introduced by Chu [3] and Wheeler [23] more than half a
century ago, a priori bounds on the directivity and the Q-factor of electrically small
antennas have attracted great attention in the scientific community. Unfortunately,
the results by Chu and Wheeler, and many of the subsequent papers discussed in [9],
not only overestimate the true antenna performance but also show severe restrictions
with respect to its material parameters and polarization dependence. To overcome
these imperfections, a new set of isoperimetric bounds that apply to a large class
of linear and reciprocal antennas was introduced in [6, 8]. These new bounds are
based on the first principles of causality and power conservation rather than the
traditional approach of using the spherical vector waves. Another drawback of the
classical formulation is due to the difficulty of extending the spherical vector waves to
accurately model the electromagnetic field inside the smallest circumscribing sphere.

The above-mentioned classical bounds also show severe restrictions with respect
to the electrical size of the investigated antenna. In fact, the classical bounds are
only meaningful for electrically small and resonant antennas due to their underly-
ing assumption of a dominant lowest order spherical vector mode. As far as the
authors know, no similar bounds to Chu and Wheeler exist in the literature for non-
resonant antennas with a broadband partial realized gain. An exception is given
by [10] and [22] which address limitations on the bandwidth using Fano’s theory
of broadband matching. Since non-resonant antennas show great potential in fu-
ture communication technologies such as ultra-wideband (UWB), it is of scientific
interest to develop physical bounds on such antennas.

The underlying idea of UWB systems is the spreading of the transmitted data
over an absolute bandwidth exceeding the lesser of 500 MHz or 20% of the center
frequency [15].1 UWB systems use a low-power spectral density for short-range
communication, implying that frequency bands already assigned to other services
can be reused in a cooperative manner without introducing significant interference.

1For example, in North America, [3.1, 10.6] GHz is authorized by the Federal Communications
Commission as the appropriate frequency band for UWB communication.
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Among other things, UWB antennas show great potential for applications in stealth
technology, radar imaging and precision positioning. In these applications, an un-
desired feature of many UWB antennas is temporal dispersion, i.e., the stretching
of a time-domain signal into a more distorted waveform in the sense that the phase
center or effective origin of the radiated field varies with frequency. This variation
is due to the fact that small-scale portions of the antenna radiate or receive high-
frequency components, while large-scale portions radiate or receive low-frequency
components. The present paper does not further address the problem of temporal
dispersion and its effect on the UWB system performance. Neither does it discuss
how to minimize dispersion effects associated with a radiation pattern that varies
with frequency.

The physical bounds presented in this paper follow [7] by regarding the antenna
from a scattering point of view using the theory in [2, 14]. Specifically, the holomor-
phic properties of the forward scattering dyadic are employed in [17–19] to derive
a sum rule for the extinction cross section. This identity is extended in [6] from
the scattering scenario to a large class of antennas via reciprocity and the effective
antenna aperture. Here, the variational results in [11, 12] play an essential role for
the far-reaching conclusions that are obtained from this new approach. However,
the main importance of the theoretical findings is that they can be invoked directly
in antenna design to establish upper bounds on the partial realized gain and the
bandwidth of any antenna circumscribed by an arbitrarily shaped geometry. The
results are also crucial for the understanding of the fundamental antenna restrictions
imposed by the first principles of causality and power conservation.

2 The integrated partial realized gain

Consider a linear, lossless and reciprocal antenna in free space as depicted in Fig. 1.
The assumption of a reciprocal material in the antenna means that either the trans-
mission case or the reception case may be examined. From a scattering point of
view, the antenna is assumed to be causal, i.e., the scattered field in the forward
direction cannot precede the incident field when the antenna is subject to a plane-
wave excitation. Let k̂ denote a fixed direction in R3 and consider a radiated field
with an electric polarization ê satisfying k̂ · ê = 0 in the far-field region. Introduce
the partial realized gain g as a measure of the antenna’s ability to direct power.
This quantity is defined as the partial gain G in the k̂-direction with respect to
the ê-polarization, weighted with the reflection loss 1 − |Γ |2 due to the antenna
mismatch (Γ denotes the reflection coefficient at the feeding port), i.e.,

g(k; k̂, ê) = (1− |Γ (k)|2)G(k; k̂, ê), (2.1)

where k ∈ [0,∞) denotes the angular wave number in free space.2 This definition
includes both the transverse electric (TE) polarization and the transverse magnetic

2According to the Institute of Electrical and Electronic Engineers (IEEE) standard [1], the
partial gain G in a given direction is defined as “that part of the radiation intensity corresponding
to a given polarization divided by the radiation intensity that would be obtained if the power
accepted by the antenna were radiated isotropically”. Thus, the partial realized gain contains more



2 The integrated partial realized gain 187

schematic
antenna

matching
network

¡(k)

radiation pattern

k̂

k,^

ê
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Figure 1: The radiation pattern of a schematic antenna and its partial realized
gain in the k̂-direction with respect to the ê-polarization.

(TM) polarizations or any combination thereof.
Based on the above-stated assumptions, a sum rule known as the integrated par-

tial realized gain is derived in [6] in terms of the electric and magnetic polarizability
dyadics, γe and γm, respectively. The result is

∫ ∞

0

g(k; k̂, ê)

k4
dk =

η(−k̂, ê∗)
2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
, (2.2)

where an asterisk denotes the complex conjugate and the generalized absorption
efficiency η ∈ [0, 1) is defined in Sec. 3. Relation (2.2) also holds for non-reciprocal
antennas if g is restricted to the partial realized gain in receiving mode.

The identity (2.2) is valid for perfectly electric conducting material parameters
as often employed in numerical simulations of antennas. However, (2.2) is also valid
for the larger class of bi-anisotropic and lossless heterogeneous materials. Lossy
material parameters (temporal dispersion with or without a conductivity term) is
also covered by the identity if the equality sign in (2.2) is changed to a less than
or equal to sign. The material parameters of the antenna are quantified by the
real-valued and symmetric dyadics γe and γm, defined in Sec. 4 by certain electro-
static and magnetostatic boundary-value problems. These dyadics depend on the
antenna geometry and its static material parameters, but they are independent of
any matching network. On the other hand, the generalized absorption efficiency η
depends on the dynamical properties of the antenna (including the matching net-
work) through the ratio of the integrated absorption to the integrated extinction.
The generalized absorption efficiency is a real-valued number in the unit interval
quantifying the overall scattering and absorption properties of the antenna.

information than, e.g., the maximum gain Gmax(k) = maxk̂·ê=0 G(k; k̂, ê) which is maximized with
respect to both the k̂- and ê-directions.
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Figure 2: The resulting scattering pattern when the antenna in Fig. 1 is illumi-
nated by the plane wave e−ikk̂·xê∗ of unit amplitude.

3 Scattering and absorption of antennas

Now, consider the schematic antenna in Fig. 2 subject to the plane wave e−ikk̂·xê∗

(time dependence e−ikt/c0 where c0 denotes the speed of light in free space) of unit
amplitude. A common measure of an antenna’s scattering properties is the scattering
cross section σs, defined as the scattered power divided by the incident power flux
in the forward direction [13]. A corresponding measure for the absorbed power in
the antenna is the effective antenna aperture or absorption cross section σa. The
latter is determined by integrating the scattering dyadic S over the unit sphere Ω
with respect to x̂ = x/x:

σs(k;−k̂, ê∗) =

∫

Ω

|S(k;−k̂ y x̂) · ê∗|2 dS, (3.1)

where the notation −k̂ y x̂ refers to the mapping of an incoming plane wave in
the negative k̂-direction into the amplitude of an outgoing spherical wave in the
x̂-direction. The scattering dyadic S is related to the scattered electric field Es in
the far-field region via

S(k;−k̂ y x̂) · ê∗ = lim
x→∞

xe−ikxEs(k, x;−k̂, ê∗), (3.2)

where x = |x| denotes the magnitude of the position vector. It is assumed that the
antenna is causal in the forward direction, x̂ = −k̂, in the sense that the inverse
Fourier transform of ê · S(k;−k̂ y −k̂) · ê∗ vanishes almost everywhere on the
negative real axis [17].

The effective antenna aperture measures an antenna’s ability to intercept an
incident wave. In terms of the optical theorem, the effective antenna aperture is
given by [14]

σa(k;−k̂, ê∗) =
4π

k
Im

{
ê · S(k,−k̂ y −k̂) · ê∗

}
− σs(k;−k̂, ê∗). (3.3)
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Reciprocity implies that the effective antenna aperture is related to the partial re-
alized gain g through [16]

σa(k;−k̂, ê∗) =
πg(k; k̂, ê)

k2
. (3.4)

The interpretation of (3.3) and (3.4) is that the power accepted by the antenna

when it is subject to the plane-wave excitation e−ikk̂·xê∗ simply is the product of
the effective antenna aperture and the incident power flux 1/2η0 (η0 =

√
µ0/ε0

denotes the wave impedance in free space).
The generalized absorption efficiency η is defined as the ratio of the integrated

absorption to the integrated extinction, i.e.,

η(−k̂, ê∗) =

∫ ∞

0

σa(k;−k̂, ê∗)
k2

dk

/∫ ∞

0

σext(k;−k̂, ê∗)
k2

dk, (3.5)

where σext = σa+σs denotes the extinction cross section. For a large class of matched
antennas, η is close to 1/2 if k̂ and ê coincide with the antenna’s main beam and
dominant electric polarization, respectively. The integrated absorption depends on
the presence of any matching network, and it is determined by loading the feeding
port with the appropriate radiation resistance and calculating the absorbed power
when the antenna is subject to the plane-wave excitation e−ikk̂·xê∗.

The denominator in (3.5) is further related to the electric and magnetic polariz-
ability dyadics, γe and γm, respectively, via the integrated extinction [17]

∫ ∞

0

σext(k;−k̂, ê∗)
k2

dk =
π

2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
. (3.6)

The identity (3.6) is based on the causal properties of the forward scattering dyadic
S(k;−k̂ y −k̂) when considered as a holomorphic function in the upper half part of
the complex k-plane. In particular, since the polarizability dyadics are real valued
and symmetric, it is observed that the right-hand side of (3.6) is invariant when ê
is replaced with ê∗, implying that the integrated extinction is independent whether
the chirality of the ê-polarization is left or right handed.

Following the ideas set forth in [6, 17], it is convenient to introduce the extinction
volume % as a complex-valued extension of the extinction cross section:

%(k;−k̂, ê∗) =
ê · S(k;−k̂ y −k̂) · ê∗

k2
. (3.7)

This quantity defines a holomorphic function for Im k > 0, and it satisfies

%(k;−k̂, ê∗) = %(k;−k̂, ê) (3.8)

so that also % is invariant when the electric polarization is complex conjugated. For
real-valued k, the extinction cross section is related to the imaginary part of the
extinction volume via the optical theorem [17]

σext(k;−k̂, ê∗) = 4πk Im %(k;−k̂, ê∗). (3.9)
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Analogous to the Kramers-Kronig relations in material modeling, the real and imag-
inary parts of % are connected by the Hilbert transform [20]. In particular, it follows
that % is real-valued in the static limit and there satisfies the integral identity

%(0;−k̂, ê∗) =
2

π

∫ ∞

0

Im %(k;−k̂, ê∗)
k

dk. (3.10)

Relation (3.10) is useful as a consistency check when % is either measured or numer-
ically determined by a simulation.

4 The three polarizability dyadics γe, γm and γ∞
Depending on the nature of the problem, let χ` denote either the electric (` = e) or
the magnetic (` = m) susceptibility dyadic in the static limit.3 Assume that χ` is
compactly supported and symmetric for all x ∈ R3. In the absence of a conductivity
term, the electric and magnetic polarizability dyadics are defined by [17]

γ` =
3∑

i,j=1

(
âi ·

∫

R3

χ`(x) · (âj −∇ψj(x)) dv

)
âiâj, (4.1)

where â1, â2 and â3 form an arbitrary set of linearly independent unit vectors. Here,
the scalar potential ψj is the unique solution to the static boundary-value problem

{
∇ · ((χ`(x) + I3) · ∇ψj(x)) = ∇ · (χ`(x) · âj)

ψj(x) = O(x−2) as x →∞ x ∈ R3, (4.2)

where I3 denotes the unit dyadic in R3. From (4.1) and (4.2), it is observed that
γ` merely is defined as the induced dipole moment when the antenna is subject to
a static excitation of unit amplitude. As a consequence, γ` is independent of the
k̂-direction and the electric and magnetic polarizations, ê and k̂ × ê, respectively.
Furthermore, from (4.1) and (4.2) it follows that γ` is real-valued and symmetric
since χ` is assumed to be symmetric for all x ∈ R3. Due to the absence of any length
scale in the static limit, γ` scales with the volume V of the antenna support [17]

Λ = {x ∈ R3 : χe(x) 6= 0 or χm(x) 6= 0}. (4.3)

Closed-form expressions of γ` for various homogeneous and isotropic geometries are
presented in [4, 13] and references therein. Further discussions on the physical nature
of γ` are found in [2, 21].

From a modeling point of view, it is also interesting to include a static conduc-
tivity in the susceptibility dyadic. For this purpose, assume that χ` is isotropic, i.e.,
χ` = χ`I3, and introduce the conductivity ς > 0 and free space wave impedance
η0 =

√
µ0/ε0. In the presence of an isotropic conductivity term iη0ς/k in χ`, the

3Here, χe = ε − I3 and χm = µ − I3, where ε and µ denote the static permittivity and
permeability dyadics relative to free space, respectively.
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pertinent definition of γ` must be altered due to the singularity of iη0ς/k in the
static limit. Under this assumption, it follows from [4, 13] that γ` should be evalu-
ated in the high-contrast limit as χ` approaches infinity. For this purpose, introduce
the high-contrast polarizability dyadic γ∞ via the limiting process (i, j = 1, 2, 3)

âi · γ∞ · âj = lim
χ`(x)→∞

âi · γ` · âj (4.4)

for all x ∈ Λ, where the dependence on χ` has been omitted on the right-hand side
of (4.4). Equivalently, the high-contrast polarizability dyadic is defined by [17]

γ∞ =
3∑

i,j=1

(
V + âi ·

∫

∂Λ

ψj(x)ν̂(x)− xν̂(x) · (âj +∇ψj(x)) dS

)
âiâj, (4.5)

where the surface integral is evaluated over the antenna boundary ∂Λ with outward-
directed unit normal vector ν̂. Here, ψj is the unique solution to the exterior problem

{
∇2ψj(x) = 0

ψj(x) = −âj · x +O(x−2) as x →∞ x ∈ R3 \ Λ, (4.6)

with the boundary condition that ψj is constant on ∂Λ. The constant value of ψj is
specified by the requirement that the total charge Qj =

∫
ν̂(x) · ∇ψj(x) dS should

vanish on each non-simply connected subset of ∂Λ.

5 Bounds on the integrated partial realized gain

A drawback of (2.2) is the presence of η on the right-hand side of the identity. In
contrast to the polarizability dyadics in Sec. 4, the generalized absorption efficiency
is not the solution of a pure electrostatic or magnetostatic problem. It is there-
fore important to realize that the following estimate can be invoked directly in the
subsequent analysis:

0 6 η(−k̂, ê∗) < 1. (5.1)

By introducing (5.1), the equality sign in (2.2) is turned into an inequality with an
upper bound which only depends on the solution of a purely static boundary-value
problem.

In many cases, it is desirable to bound the left-hand side of (2.2) from above
independently of the materials in the antenna. This is achieved by introducing the
variational results in [11, 12] which are valid for general isotropic and heterogeneous
material parameters. The results in [11, 12] state that the eigenvalues of γ` increase
monotonically as χ` increases for any x ∈ R3. Hence, it follows from (4.4) that both
γe and γm are bounded from above by γ∞, viz.,

∫ ∞

0

g(k; k̂, ê)

k4
dk 6 η(−k̂, ê∗)

2

(
ê∗ · γ∞ · ê + (k̂ × ê∗) · γ∞ · (k̂ × ê)

)
. (5.2)

As a consequence, the large pair of parenthesis on the right-hand side of (5.2) also
hold for any extended support Λ+ in the sense that γ∞ can be estimated from above
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by the corresponding solution of (4.5) and (4.6) when Λ is replaced by Λ+. This
procedure becomes particularly useful for estimating the integrated partial realized
gain of an antenna with a complicated geometry. In this case, the large pair of
parenthesis on the right-hand side of (5.2) is bounded from above by, for example,
solving (4.5) and (4.6) for the smallest circumscribing cylinder with isotropic and
homogeneous material parameters in the high-contrast limit.

The large pair of parenthesis on the right-hand side of (5.2) is recognized as the
Rayleigh quotients of γ∞, implying that the integrated partial realized gain further
is bounded from above by the eigenvalues of γ∞ (recall that γ∞ is real-valued and
symmetric and hence diagonalizable). When subject to the constraint k̂ · ê = 0 of
transverse wave propagation in the far-field region, (5.2) yields

∫ ∞

0

g(k; k̂, ê)

k4
dk 6 η(−k̂, ê∗)

2
(γ1 + γ2), (5.3)

where γ1 and γ2 denote the largest and second largest eigenvalues of γ∞, respectively.
However, note that (k̂ × ê∗) · γ∞ · (k̂ × ê) and γ2 vanish from the right-hand side
of (5.2) and (5.3) for non-magnetic materials. For a discussion on the isoperimetric
nature of (5.2) and (5.3), see [6, 17].

6 A priori estimates on UWB antennas

In this section, a priori estimates are presented for two archetypes of UWB anten-
nas, viz., antennas characterized by a constant partial realized gain and antennas
characterized by a constant effective antenna aperture. A generalization of these
models to include a more complex frequency characteristic is also discussed.

6.1 Constant partial realized gain gp(k̂, ê)

Due to the non-negative character of the partial realized gain, the left-hand side
of (2.2) can be estimated from below by integrating over K = [kp,∞) rather than
the entire positive real axis. Thus, a straightforward calculation using the threshold
gp(k̂, ê) = mink∈K g(k; k̂, ê) yields

∫ ∞

0

g(k; k̂, ê)

k4
dk > gp(k̂, ê)

∫

K

dk

k4
=

gp(k̂, ê)

3k3
p

. (6.1)

Combining this estimate with (2.2) implies that

gp(k̂, ê)

3k3
p

6 η(−k̂, ê∗)
2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
, (6.2)

with equality if and only if g(k; k̂, ê) = gp(k̂, ê), for k ∈ [kp,∞), and zero elsewhere.
The interpretation of (6.2) is that it yields a lower bound on the antenna onset
frequency kp (the first frequency for which the antenna is sufficiently well matched),
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or, equivalently, an upper bound on the threshold gp(k̂, ê), in terms of the antenna
geometry and its static material parameters. An antenna with a constant partial
realized gain is characterized by receiving less power as frequency increases since the
effective antenna aperture then varies inversely with the square of the frequency.
Nearly self-complementary structures such as the planar and conical equiangular
spiral antennas are often modeled by a constant partial realized gain.

6.2 Constant effective antenna aperture πga(k̂, ê)/k2
a

A constant effective antenna aperture implies that the partial realized gain varies
with the square of the frequency. For this purpose, introduce the constant ef-
fective antenna aperture πga(k̂, ê)/k2

a corresponding to the threshold ga(k̂, ê) =
k2

a mink∈K g(k; k̂, ê)/k2, where K = [ka,∞). Then,

∫ ∞

0

g(k; k̂, ê)

k4
dk > ga(k̂, ê)

k2
a

∫

K

dk

k2
=

ga(k̂, ê)

k3
a

. (6.3)

Analogous to (6.2), it is concluded that

ga(k̂, ê)

k3
a

6 η(−k̂, ê∗)
2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
, (6.4)

with equality if and only if g(k; k̂, ê) = ga(k̂, ê)k2/k2
a, for k ∈ [ka,∞), and zero else-

where. Various waveguide horns and reflectors such as Hertz’s classical cylindrical
antenna are examples of antennas with an approximately constant effective antenna
aperture.

For a given right-hand side of (2.2), a comparison between (6.2) and (6.4) shows
that the antenna onset frequencies kp and ka satisfy

kp

ka

=

(
gp(k̂, ê)

3ga(k̂, ê)

)1/3

, (6.5)

implying that kp > ka, for gp(k̂, ê) > 3ga(k̂, ê), and kp < ka, for gp(k̂, ê) < 3ga(k̂, ê).
This comparison is illustrated in Fig. 3 using the following models with identical
values of the integrated partial realized gain: g(k; k̂, ê) = gp(k̂, ê), for k ∈ [kp,∞),

and g(k; k̂, ê) = ga(k̂, ê)k2/k2
a, for k ∈ [ka,∞), and zero elsewhere. In particular,

the two cases gp(k̂, ê) < 3ga(k̂, ê) and gp(k̂, ê) > 3ga(k̂, ê) examined in Fig. 3 refer
to the antenna onset frequencies kp < ka and kp > ka, respectively. Of course, it is
unphysical to include an infinitely high frequency in the above-mentioned models.
However, it is not a severe restriction since the damping factor 1/k4 in (2.2) implies
that the integrated partial realized gain mainly is dominated by the antenna’s low-
and intermediate-frequency behavior.

6.3 More general models of UWB antennas

Although many UWB antennas may be characterized as having a constant partial
realized gain or a constant effective antenna aperture, there are also antennas that
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Figure 3: A comparison between a priori estimates for a constant partial realized
gain gp(k̂, ê) and a constant effective antenna aperture πga(k̂, ê)/k2

a.

do not fall into this classification. In fact, the UWB antenna is only one part of a
broadband communication system designed to meet an overall specification. It is
therefore motivated to briefly discuss more general models of UWB antennas based
on the lossy transmission problem in [4, 13]. From the analysis in [4, 13], it is clear
that the low-frequency behavior of the effective antenna aperture is governed by
σa(k; k̂, ê) = O(k2) as k → 0, or equivalently,

g(k; k̂, ê) = O(k4) as k → 0, (6.6)

where (3.4) has been used. Relation (6.6) is a natural asymptotic behavior to guar-
antee the existence of (2.2) in the classical sense. Instead of choosing a constant
partial realized gain or a constant effective antenna aperture which obviously lacks
any continuity properties at k = kp and k = ka, each antenna engineer may create
his or her own model to fulfill the overall system requirements. Then, based on this
model, the antenna onset frequency is determined by numerically solving the static
boundary-value problems discussed in Sec. 4.

6.4 A numerical example for the circular disk

As an example of how the estimates in Secs. 5 and 6 can be utilized in modern
antenna design, consider a planar perfectly electric conducting antenna Λ circum-
scribed by a circular disk Λ+ of radius a. Let ν̂ denote an arbitrary outward-directed
unit normal vector of the disk and let k̂ = ν̂ and ê = ρ̂, where ρ̂ is a radial unit
vector in polar coordinates. This choice of k̂ and ê corresponds to a direction of
observation and an electric polarization which are perpendicular and parallel to the
disk, respectively. Introduce the UWB frequency band [3.1, 10.6] GHz, or equiva-
lently [0.65, 2.22] cm−1, as briefly discussed in Sec. 1. Assume that Λ is specified to
have a partial realized gain

g(k; ν̂, ρ̂) >





glevel(ν̂, ρ̂)k4/k4
1 k ∈ [0, k1]

glevel(ν̂, ρ̂) k ∈ [k1, k2]

0 otherwise

(6.7)
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where k1 = 0.65 cm−1 and k2 = 2.22 cm−1. Then, for a given threshold glevel(ν̂, ρ̂), it
is desirable to determine the smallest radius a such that it is feasible for Λ to have
a partial realized gain which satisfies (6.7).

Based on the requirement in (6.7), the left-hand side of (2.2) is estimated from
below by

∫ ∞

0

g(k; ν̂, ρ̂)

k4
dk > glevel(ν̂, ρ̂)

(
1

k3
1

+

∫ k2

k1

dk

k4

)
=

glevel(ν̂, ρ̂)

3

4k3
2 − k3

1

k3
1k

3
2

. (6.8)

From the analysis of the elliptical disk in [17], it follows that the electric and magnetic
polarizability dyadics of the circular disk in the perfectly electric conducting limit
are γe = 16a3I⊥/3 and γm = 0, where I⊥ = I3 − ν̂ν̂ denotes the projection dyadic
in R3. Hence, by inserting (6.8) into (2.2), one obtains

glevel(ν̂, ρ̂)

a3
6 0.55η(−ν̂, ρ̂), (6.9)

where a now measures the radius of the disk in units of centimeters. For example,
by invoking (5.1), it is concluded that the minimum radius of the disk is 1.8 cm
for glevel(ν̂, ρ̂) = 3 and 1.9 cm for glevel(ν̂, ρ̂) = 4. For a well-matched antenna, η
is close to 1/2 and a more realistic bound on a is therefore 2.2 cm and 2.4 cm for
glevel(ν̂, ρ̂) = 3 and glevel(ν̂, ρ̂) = 4, respectively. Finally, note that (6.9) is of such
general character that it can be compared to any planar antenna to establish how
effectively the antenna makes use of its surface area.

7 Dyson’s equiangular spiral antenna

In this section, numerical results for Dyson’s equiangular spiral antenna are pre-
sented and compared with the estimates introduced in Secs. 5 and 6.

7.1 General properties

Dyson’s equiangular planar spiral antenna in Fig. 4 is an example of a nearly self-
complementary antenna often modeled by a constant partial realized gain [5]. It
is parameterized by the azimuthal angle φ; in terms of ϑ = 5/4 and the radius
a of the smallest circumscribing disk, the parametrization of the two spiral arms
reads r1(φ) = aϑφ−4π and r2(φ) = aϑφ−9π/2, for φ ∈ [0, 4π], and r3(φ) = aϑφ−5π

and r4(φ) = aϑφ−11π/2, for φ ∈ [π, 5π]. Introduce the coordinate system (û, v̂, ẑ)
with the ẑ-axis being outward directed from the plane of the antenna, see Fig. 4.
Then, according to the IEEE standard [1], the transmitted waves from the antenna
result in right-circularly polarized (RCP or êR-polarized) radiation in the positive
ẑ-direction and thus left-circularly polarized (LCP or êL-polarized) radiation in the
negative ẑ-direction. Here, the electric polarizations êR and êL are defined by

{
êR = 1√

2
(û + iv̂) (RCP)

êL = 1√
2
(û− iv̂) (LCP)

,

{
êR = 1√

2
(û− iv̂) (RCP)

êL = 1√
2
(û + iv̂) (LCP)

, (7.1)

for radiation in the positive and negative ẑ-directions, respectively.
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Figure 4: Left: maximum gain maxk̂·ê=0 G(k; k̂, ê) (red dashed line), partial gain
G(k; ẑ, ·) (blue dashed-dotted line) and partial realized gain g(k; ẑ, ·) (black solid
line), for both the êR- and êL-polarizations. Right: a priori estimates on the partial
realized gain g(k; ẑ, êR) derived from the antenna’s electrostatic properties using
η(−ẑ, ê∗R) = 0.62.

7.2 Numerical results

A numerical solution of the Maxwell equations using the Efield commercial method
of moments solver is employed to illustrate the estimates in Secs. 5 and 6. For this
purpose, the antenna is modeled by perfectly electric conducting material parameters
and matched to the input impedance 250 Ω. It is simulated using a delta-gap feed
model and the resulting reflection coefficient Γ is depicted in Fig. 5. Based on the
threshold of a voltage standing wave ratio less than two, or equivalently |Γ | 6 1/3,
the bandwidth is calculated to be 171% relative to the center frequency k0a = 10.5.
The maximum gain Gmax(k) = maxk̂·ê=0 G(k; k̂, ê), the partial gain G(k; ẑ, ·) in
the positive ẑ-direction and the partial realized gain g(k; ẑ, ·) in the positive ẑ-
direction are depicted on the left-hand side of Fig. 4. It is observed that g(k; ẑ, êR)
is approximately constant over a large frequency interval with a main beam in the
ẑ-direction. For comparison, the corresponding results for the LCP radiation are
included in Fig. 4 with an overall partial realized gain g(k; ẑ, êL) less than unity.

The antenna is also simulated in plane-wave scattering when it is loaded with
250 Ω in series with the feeding port. The resulting extinction cross section, scat-
tering cross section and effective antenna aperture are depicted on the right-hand
side of Fig. 5.4 It is observed that the scattering effects are dominant when the
incident field is e−ikẑ·xêR, while the absorption properties are more noticeable for
the e−ikẑ·xêL excitation. The high-frequency limit A(−ẑ) = 0.36 of the extinction
cross section is marked by a star in Fig. 5, cf., the “extinction paradox” which states
that A is twice the projected area in the ẑ-direction in units of 2πa2 [17, 20]. The
corresponding curves for the pointwise absorption efficiency σa/σext and the extinc-

4The notations (RCP) and (LCP) in Figs. 5 and 6 refer to the polarization of the antenna rather
than the polarization of the incident wave, i.e., the labels (RCP) and (LCP) should be interpreted
as the incident plane wave being LCP and RCP, respectively.
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Figure 5: Left: the magnitude of the reflection coefficient Γ when the antenna
is matched to the input impedance 250 Ω. Right: the extinction cross section,
scattering cross section and effective antenna aperture, σext, σs, and σa, respectively,
in units of 2πa2.

tion volume % are illustrated in Fig. 6 (recall that % is identical for both the êR-
and êL-polarizations). The star on the right-hand side of Fig. 6 indicates the value
of the right-hand side of (3.10), and it is concluded that (3.10) holds for Dyson’s
equiangular spiral antenna.

The generalized absorption efficiency is calculated from the ratio of the integrated
absorption to the integrated extinction. The result is ηR = 0.62 and ηL = 0.40,
where ηR = η(−ẑ, ê∗R) and ηL = η(−ẑ, ê∗L). This result implies that the quotients
ηR/(ηR +ηL) = 0.61 and ηL/(ηR +ηL) = 0.39 may be interpreted as efficiency factors
for the antenna’s overall ability to intercept any of the êL- and êR-polarizations.

7.3 Analysis of the associated polarizability dyadics

The electric polarizability dyadic is determined by numerically solving (4.2) in the
perfectly electric conducting limit. In terms of the (û, v̂, ẑ) basis, the result is the
following symmetric matrix:

[γe] =




2.82 −0.63 0
−0.63 1.98 0

0 0 0


 a3. (7.2)

The corresponding magnetic counterpart vanishes since no magnetic dipole moment
is supported by the antenna geometry. In particular, note that the elements in (7.2)
in the third row and third column are identically zero, reflecting the vanishing thick-
ness of the antenna. The largest eigenvalue to (7.2) is γ1 = 3.16a3 which should be
compared with the corresponding number 16a3/3 for the smallest circumscribing
disk in the high-contrast limit. Based on the variational results in Sec. 5, the num-
ber 16a3/3, or approximately 5.33a3, is a priori known to be an upper bound on γ1.
Although the equiangular spiral antenna only occupies 36% of the smallest circum-
scribing disk (recall that A(−ẑ) = 0.36), it is concluded that the antenna in fact
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makes effectively use of its surface area since γ1/(πa2A(−ẑ)) = 2.79a is larger than
the corresponding number 1.70a if the entire disk is utilized as an antenna.

The first Rayleigh quotient on the right-hand side of (2.2) is obtained from (7.2)
by a straightforward matrix multiplication:

ê∗ · [γe] · ê =
1

2




1
±i
0



† 


2.82 −0.63 0
−0.63 1.98 0

0 0 0







1
±i
0


 a3 = 2.40a3, (7.3)

where a dagger denotes the complex conjugate transpose and the upper and lower
signs in (7.3) refer to the electric polarizations ê = êR and ê = êL, respectively.
The result in (7.3) should also be compared with the corresponding number 5.33a3

for the smallest circumscribing disk. Both 3.16a3 and 5.33a3 yield upper bounds on
the integrated partial realized gain when inserted into the right-hand side of (5.3).
However, recall that γ2 vanishes from the right-hand side of (5.3) since no magnetic
dipole moment is supported by the antenna geometry.

7.4 A priori estimates on the partial realized gain

Without loss of generality, throughout this section consider only RCP radiation in
the positive ẑ-direction, i.e., let ê = êR, k̂ = ẑ and η = ηR. Furthermore, introduce
the scaled partial realized gain f(κ) = g(k; ẑ, êR), where κ = ka. A simple change
of variables in (2.2) then yields
∫ ∞

0

g(k; ẑ, êR)

k4
dk = a3

∫ ∞

0

f(κ)

κ4
dκ =

ηR

2

(
ê∗R · γe · êR + (ẑ × ê∗R) · γm · (ẑ × êR)

)
.

(7.4)
Equivalently, by invoking (7.3) and ηR = 0.62, one obtains the following identity
which is independent of the radius a of the smallest circumscribing disk:

∫ ∞

0

f(κ)

κ4
dκ = 0.74. (7.5)
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As a consequence, any non-negative function f satisfying (7.5) with the correct low-
frequency behavior f(κ) = O(κ4) as κ → 0 is a possible candidate for the partial
realized gain of the antenna in Fig. 4. Additional knowledge or specification of the
frequency characteristic of the antenna must now be invoked to further establish
estimates on the partial realized gain. For example, let f(κ) = 3.3, for κ ∈ [κp,∞),
and zero elsewhere. This model is illustrated by the uppermost dashed line on the
right-hand side of Fig. 4. The associated onset frequency κp = kpa is given by (6.2),
viz.,

κp >
(

3.3

3 · 0.74

)1/3

= 1.14. (7.6)

However, a more realistic model of the partial realized gain is f(κ) = 3.3κ4/(α+κ4),
where the constant α satisfies

∫ ∞

0

f(κ)

κ4
dκ = glevel

∫ ∞

0

dκ

α + κ4
=

2.40 · 0.62

2
= 0.74. (7.7)

A numerical solution of (7.7) yields α = 8.40, implying that f(κ) = 3.3κ4/(8.40+κ4)
is a potential candidate for the partial realized gain. This estimate is illustrated by
the intervening dashed line in Fig. 4. Finally, a slightly different bound is obtained
using f(κ) = 3.3κ4/(β + κ8/3)3/2, where the constant β = 3.58 is the solution of

∫ ∞

0

f(κ)

κ4
dκ = 3.3

∫ ∞

0

dκ

(β + κ8/3)3/2
=

2.40 · 0.62

2
= 0.74. (7.8)

This estimate is illustrated by the lowermost dashed line. From Fig. 4, it is concluded
that the three models discussed above estimate the overall partial realized gain of
the antenna remarkably well.

8 Conclusions

This paper investigates a sum rule valid for a large class of linear and reciprocal
antennas. A priori estimates on the partial realized gain and onset frequency are
derived for two important archetypes of UWB antennas: those with a constant
partial realized gain and those with a constant effective antenna aperture. These
estimates are numerically exemplified in Secs. 6 and 7 by the smallest circumscribing
disk and Dyson’s equiangular spiral antenna, respectively.

Although the electric and magnetic polarizability dyadics are restricted to the
static limit, the above-mentioned examples suggest that the polarizability dyadics
in fact are crucial for the understanding of an antenna’s ability to direct power over
a frequency interval. For example, from (4.5) and (4.6) it is clear that the high-
contrast polarizability dyadic merely is defined as the first moment of the induced
charge density. As a consequence, the further the accumulated charges are separated,
the larger are the corresponding elements of the polarizability dyadics. Another
striking consequence of (4.5) and (4.6) is that the interior of an antenna has less
influence on the elements of the polarizability dyadics compared with its boundary
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surface. Removing interior parts of the antenna will only slightly reduce the left-
hand side of (2.2), but mainly redistribute the integrand along the frequency axis.
It is thus concluded that the high-contrast polarizability dyadic reproduces and
quantifies the well-known rule of thumb that the boundary is the critical parameter
in antenna design, far more so than the surface area or interior geometry of the
antenna. However, from a practical point of view, the detailed structure of an
antenna’s feeding port and matching network is also of considerable importance for
the overall antenna performance.

The estimates introduced in this paper are also valuable for comparing existing
antennas with various circumscribing geometries. Such a comparison suggests that
it is beneficial to classify an antenna in terms of its surface or volume efficiency, cf.,
the discussion in Sec. 6.4. Of course, the polarizability dyadics cannot completely
quantify the performance of an antenna. For example, these dyadics are ignorant of
whether it is advantageous to model a given structure as a resonant antenna or as
an antenna having a broadband frequency characteristic.
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Abstract

This paper deals with sum rules for the input impedance, admittance, and
reflection coefficient of a large class of linear and reciprocal antennas. The
derivation is based on certain Herglotz functions and their appropriate Cauchy
integrals. The derived sum rules are shown to be governed by the capacitance
and the inductance properties of the antenna in the low- and high-frequency
regimes. In particular, the results are applied to a first dominant resonance
and it is shown to yield a useful estimate of the Q-value in terms of the
radiation resistance of the antenna and its capacitance and inductance at low
frequencies. The theoretical findings are compared with numerical simulations
of different dipole antennas.

1 Introduction

The Kramers-Kronig relations are probably the most well known dispersion rela-
tions, see Ref. 6. These dispersion relations relate the real and imaginary parts of
the constitutive relations. Sum rules are closely related to dispersion relations, and
they are important for consistency checks as well as deriving various bounds and
estimates in theoretical physics. In Refs. 4, 8, 9, and 10, a sum rule that relates the
absorption and scattering cross sections to the polarizability dyadics is analyzed,
and, e.g., used to derive physical bounds on antennas of arbitrary shape. Similar
relations are of great importance in quantum mechanics, circuit theory with early
contributions by Fano in Ref. 2, and planar radar absorbers in Ref. 7.

Herglotz (or positive real) functions are considered as the mathematical back-
ground to dispersion relations and sum rules. They are defined as holomorphic
mappings from the upper (or right) complex half-plane into itself, cf., Hardy spaces
and bounded analytical functions in Ref. 6. One can argue that causality implies
analyticity, and passivity (or stability) implies the definite sign of the imaginary (or
real) part that characterizes these functions. The choice of the upper or right half-
plane depends on the time convention used in the Fourier (or Laplace) transform,
and it is recognized that the upper and right half-planes are most commonly used
in theoretical physics and circuit theory, respectively.

2 Antenna impedance as a Herglotz function

A general lossless, single-port antenna including a matching network and a trans-
mission line is considered, see Ref. 4. The reflection coefficient Γ is defined in a
reference plane in the transmission line. Causality, i.e., the fact that the reflected
wave and the incident wave are time-ordered, implies that Γ can be extended to a
holomorphic function in a complex half-plane. Moreover, passivity implies |Γ | 6 1.
The antenna input impedance Z is then given by a Cayley transform of the reflection
coefficient, and is hence a Herglotz function, see Ref. 6.

It is assumed that Z is well defined for all finite frequencies, and that it can be
expanded in an asymptotic series at ω = 0 and ω = ∞, where ω denotes the angular
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frequency. Specifically, the low-frequency expansion is assumed to have the form

Z(ω) =
1

iωC
+ iωL +O(ω2) as ω → 0, (2.1)

where C > 0 and L > 0, and the high-frequency asymptote is assumed to be
Z(ω) = iωL∞ + O(1) as ω → ∞, where L∞ 6 L. Note that the low-frequency
expansion is consistent with the ladder network representations in Ref. 1 for the
impedance of the spherical vector waves. The antenna is termed electric if 1/C > 0.
The corresponding magnetic antenna with 1/C = 0 is analyzed with an analogous
low-frequency expansion for the admittance Y = 1/Z.

Now, integrate Z(ω)/ω2 over a half circle in the appropriate half-plane to get
the following sum rule for the radiation resistance R = Re Z:∫ ∞

0

R(ω)

ω2
dω =

π

2
(L− L∞). (2.2)

There are two additional sum rules for the corresponding admittance. The admit-
tance Y = 1/Z = G + iB has the asymptotic expansions Y (ω) = iωC + iω3LC2 +
O(ω4) as ω → 0 and Y (ω) = ωB∞ +O(1) as ω →∞. Note that B∞ = 0 if L∞ > 0.
Integrate Y (ω)/ω2 and Y (ω)/ω4 over a half circle to obtain the identities

∫ ∞

0

G(ω)

ω2
dω =

π

2
(C −B∞),

∫ ∞

0

G(ω)

ω4
dω =

π

2
LC2. (2.3)

Although, these identities are interesting by themselves, it is easier to interpret the
related sum rules for the reflection coefficient. The reflection coefficient is bounded
in magnitude by unity, and thus ln Γ is holomorphic in an appropriate half-plane.
However, as Γ in general has zeros in the considered half-plane it is necessary to re-
move these by extracting the associated Blaschke product, see Ref. 6. The logarithm
of Γ has the low-frequency expansion

− ln Γ (ω) = − ln
Z(ω)−R0

Z(ω) + R0

= 2CR0iω − 2CR0(C
2R2

0/3− CL)iω3 +O(ω4) (2.4)

as ω → 0, where R0 denotes the characteristic impedance of the transmission line.
The Herglotz function identities then give the following sum rules:∫ ∞

0

1

ω2
ln

1

|Γ (ω)| dω = πCR0 + π
∑

n

Im
1

ωn

(2.5)

and ∫ ∞

0

1

ω4
ln

1

|Γ (ω)| dω = πCR0(CL− C2R2
0/3) +

π

3

∑
n

Im
1

ω3
n

, (2.6)

where ln |Γ (ω)|−1 > 0 and ωn denote the complex valued zeros of Γ .
The integral identities (2.5) and (2.6) can be used to derive various bounds on

the reflection coefficient and the bandwidth, cf., the Fano theory in Refs. 2 and 3.
The narrow-band result for ω ∈ [ω1, ω2] is

B 6 πC2LR0

ln Γ−1
0

ω3
0, (2.7)

where Γ0 = maxω16ω6ω2 |Γ |, ω0 = (ω1 + ω2)/2, and B = (ω2 − ω1)/ω0.
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3 Resonance models and Q-values

Many antennas have a multi-resonance characteristic where it is common to utilize
the first dominant resonance. It is also observed that the weighting functions ω2 and
ω4 in (2.2) to (2.3) and (2.5) to (2.6) emphasize the behavior of the antenna around
the first resonance. For these types of antennas, it is interesting to compare the
results with a single resonance model. Consider an antenna that is resonant at ω0

and perfectly matched to the characteristic impedance R0 with the input impedance
having the low-frequency asymptotic (2.1). The simple resonance model

Z(ω) =
1

iωC
+

iωL

1 + νiω/ω1 − ω2/ω2
1

, (3.1)

cf., the Lorentz model for temporally dispersive media, can be used to model this
impedance up to ω0. Note that the integral identities derived above are valid for
this model as it satisfies all mathematical requirements. The parameters ω1 and ν
are given by ω1 = ω0/

√
1− β and ν = ω1CR0β, respectively, where β = ω2

0LC/(1 +
ω2

0C
2R2

0). The Q-value at ω = ω0 is easily estimated as

Q ≈ ω0|Z ′(ω0)|
2R0

≈ 1

C2LR0ω3
0

, (3.2)

where the similarities with (2.7) is observed, i.e., BQ 6 π/ ln Γ−1
0 as for the case

with an RCL resonance circuit [3].

4 A comparison with partial waves

The partial (or spherical vector) wave expansion is often used to derive physical
bounds on antennas [1, 3, 5]. The lowest order TM (or electrical dipole) modes have
the input impedance [1] Z(ω) = 1/iωC + iωL/(1 + iωL/R), where CR = a/c0,
L/R = a/c0, and a denotes the radius of the circumscribing sphere and c0 is the
phase velocity of light in free space. Apply the bounds (2.7) and (3.2) to get

Q ≈ c3
0

ω3
0a

3
+O(ω−1

0 ) and B 6 πω3
0a

3

c3
0 ln Γ−1

0

. (4.1)

These bounds are consistent with the Chu and Chu-Fano theory [1, 3, 5].

5 Numerical bounds for dipole antennas

The dipole is probably the simplest electrical antenna. Here, cylindrical dipoles
with semi-axis ratios `/d = {1000, 500, 100} and capacitively loaded dipoles with a
length to top diameter ratio `/d = {10, 1} are considered, see Tab. 1. The antennas
are center fed with a simple gap model in the MoM simulations and the input
impedances are determined from low frequencies up to the first resonance. The low
frequency result is used to estimate C and L in (2.1), see the table, where the radius
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a =
√

`2 + d2/2 and the free space permittivity, permeability, and impedance ε0, µ0,
η0, respectively, are used. The MoM results are also used to estimate the resonance
frequency, ω0 = k0c0, and the corresponding radiation resistance from which the Q-
value is calculated by numerical differentiation (3.2). To compare the results with
the single resonance model, L, C, R0, and k0a are used to estimate the Q-value,
where Qr denote the Q-value in (3.2).

# `/d C/(ε0a) L/(µ0a) R0/η0 k0a Q Q/Qr

1 1000 0.54 0.64 0.19 1.51 8.2 0.98
2 500 0.62 0.56 0.19 1.51 7.3 0.97
3 100 0.92 0.37 0.19 1.48 5.3 0.95
4 10 1.36 0.40 0.17 1.17 5.1 0.95
5 1 3.06 0.72 0.04 0.63 14 0.99

`

d

d

Table 1: Numerical results of various dipole antennas.
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