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Abstract—In this paper, we study random puncturing of

protograph-based spatially coupled low-density parity-check (SC-

LDPC) code ensembles. We show that, with respect to iterative

decoding threshold, the strength and suitability of an LDPC

code ensemble for random puncturing over the binary erasure

channel (BEC) is completely determined by a single constant

✓ � 1 that depends only on the rate and iterative decoding

threshold of the mother code ensemble. We then use this analysis

to show that randomly punctured SC-LDPC code ensembles

display near capacity thresholds for a wide range of rates. We

also perform an asymptotic minimum distance analysis and show

that, like the SC-LDPC mother code ensemble, the punctured

SC-LDPC code ensembles are also asymptotically good. Finally,

we present some simulation results that confirm the excellent

decoding performance promised by the asymptotic results.

I. INTRODUCTION

It is often desirable in applications that experience changing
channel conditions to be able to employ a variety of code
rates. One method to achieve this is to puncture a low rate
mother code. In this scheme, the transmitter punctures coded
symbols, and, as a result of having fewer transmitted code
symbols, the code rate is increased. It is assumed that the
receiver knows the positions of the punctured symbols, so that
both the punctured and transmitted symbols can be estimated
during decoding. Coding schemes that use this technique are
known as rate-compatible punctured codes [1]. Since the
decoder for the mother code is used to decode the punctured
codes, a variety of code rates can be achieved using the
same decoding architecture by puncturing different numbers
of symbols. Punctured low-density parity-check (LDPC) codes
have been extensively studied in the literature (see, e.g., [2],
[3], [4], [5]).

Spatially coupled LDPC (SC-LDPC) codes are constructed
by coupling together a series of L disjoint, or uncoupled,
Tanner graphs into a single coupled chain, and they can
be viewed as a type of LDPC convolutional code (LDPC-
CC) [6], since spatial coupling is equivalent to introducing
memory into the encoding process. SC-LDPC codes have
been shown to combine excellent iterative decoding thresholds
[7], [8] and good asymptotic minimum distance properties
[9]. Moreover, it has been proven analytically for general
memoryless binary-input symmetric-output (MBS) channels
that the belief propagation (BP) decoding thresholds of a
class of (J, K)-regular SC-LDPC code ensembles achieve the
maximum a posteriori probability (MAP) decoding thresholds
of the underlying (J, K)-regular LDPC block code ensembles,
a phenomenon termed threshold saturation [8]. An algorithm

to select particular puncturing patterns to construct robust rate-
compatible LDPC-CCs was presented in [10].

In this paper, we consider random puncturing of protograph-
based SC-LDPC code ensembles. We begin by showing that,
with respect to the iterative decoding threshold, the strength
and suitability of an LDPC code ensemble for random punc-
turing over the binary erasure channel (BEC) is completely
determined by a single constant ✓ � 1 that depends only on the
rate and BEC threshold of the mother code ensemble. If ✓ = 1,
the punctured ensembles are capacity achieving for all higher
rates, and if ✓ is close to 1, the punctured ensemble thresholds
are close to capacity for all higher rates up to 1/✓. We then use
this analysis to show that a variety of randomly punctured SC-
LDPC code ensembles with large coupling length L display
near capacity thresholds for a wide range of rates. We also per-
form an asymptotic minimum distance analysis and show that,
like the SC-LDPC mother code ensemble, the punctured SC-
LDPC code ensembles are also asymptotically good. Finally,
we present some simulation results that demonstrate robust
decoding performance of punctured SC-LDPC codes over a
wide range of rates, confirming the excellent performance
promised by the asymptotic results.

II. RANDOMLY PUNCTURED SC-LDPC CODES

A. Protograph-based LDPC Codes

A protograph [11] with design rate R = 1�n
c

/n
v

is a small
bipartite graph that connects a set of n

v

variable nodes to a
set of n

c

check nodes by a set of edges. The protograph can
be represented by a parity-check or base biadjacency matrix
B, where B

x,y

is taken to be the number of edges connecting
variable node v

y

to check node c
x

. The parity-check matrix
H of a protograph-based LDPC block code can be created
by replacing each non-zero entry in B by a sum of B

x,y

non-
overlapping permutation matrices of size M⇥M and each zero
entry by the M ⇥M all-zero matrix. It is an important feature
of this construction that each derived code inherits the degree
distribution and graph neigborhood structure of the protograph.
The ensemble of protograph-based LDPC codes with block
length n = Mn

v

is defined by the set of matrices H that
can be derived from a given protograph using all possible
combinations of M ⇥ M permutation matrices. We denote
the (J, K)-regular LDPC block code ensemble defined by the
all-ones base matrix B of size J ⇥ K as B

J,K

.



Ensemble Component base matrices

C3,4(L) B0 =

2

4
1 1 0 0
0 1 1 0
0 0 1 1

3

5 ,B1 =

2

4
0 0 1 1
1 0 0 1
1 1 0 0

3

5

C3,6(L) B0 = B1 = B2 =
⇥

1 1
⇤

C3,6,B(L) B0 =
⇥

1 1
⇤
,B1 =

⇥
2 2

⇤

C4,8(L) B0 = B1 = B2 = B3 =
⇥

1 1
⇤

C4,8,B(L) B0 = B1 =
⇥

1 1
⇤
,B2 =

⇥
2 2

⇤

C3,9(L) B0 = B1 = B2 =
⇥

1 1 1
⇤

C3,9,B(L) B0 =
⇥

1 1 1
⇤
,B1 =

⇥
2 2 2

⇤

TABLE I: SC-LDPC code ensemble component base matrices.

0 1 2 ... L-1    0 1 2 ...0

(c)

L-1

= variable node = check node

Fig. 1: Tanner graphs associated with (a) a (3, 6)-regular LDPC block code
protograph, (b) a chain of L uncoupled (3, 6)-regular LDPC block code
protographs, and (c) a chain of L spatially coupled (3, 6)-regular LDPC block
code protographs with coupling width w = 2.

B. Protograph-based SC-LDPC Codes

The base matrix of an SC-LDPC code ensemble with
coupling length L is

B[0,L�1] =

2

666666664

B0

B1 B0... B1
. . .

B
w

...
. . . B0

B
w

B1. . .
...

B
w

3

777777775

(L+w)bc⇥Lbv

, (1)

where w denotes the coupling width and the b
c

⇥b
v

component

base matrices B
i

, i = 0, 1, . . . , w, represent the edge connec-
tions from the b

v

variable nodes at time t to the b
c

check
nodes at time t+ i. An ensemble of SC-LDPC codes can then
be formed from B[0,L�1] using the protograph construction
method described above. The design rate of the ensemble of
SC-LDPC codes is

R
L

= 1 � (L + w)b
c

Lb
v

. (2)

The ensembles and their component base matrices that we
will refer to in this paper are given in Table I. Ensembles
with a subscript “B” are referred to as “type B” ensembles
where, by using entries larger than 1 in the component matrices
B

i

, w is reduced and the rate increased for a given L.
Fig. 1 illustrates the “edge-spreading” construction [9] of the
protograph representing the SC-LDPC code ensemble C3,6(L).

C. Puncturing Linear Codes

A linear code is punctured by removing a set of p columns
from its generator matrix, which has the effect of reducing
the codeword length from n to n � p. After puncturing a
linear code with puncturing fraction ↵ = p/n, the resulting
transmission rate will be equal to

BEC

BEC

Random

Puncturing

✏

v r

v r

✏0

↵

vpunc

npuncn

(a) 

(b) 

n

Fig. 2: (a) Block diagram illustrating random puncturing on the BEC, and (b)
an equivalent BEC for random puncturing.

R(↵) =

R

1 � ↵
, ↵ 2 [0, 1) , (3)

where R(0) = R is the rate of the mother (unpunctured)
code. A code can be punctured randomly or according to a
particular pattern. It is assumed that the receiver knows the
positions of the punctured bits, and the decoder estimates both
the punctured and transmitted symbols during decoding.

III. THRESHOLDS OF PUNCTURED LDPC
CODE ENSEMBLES ON THE BEC

In this section, we consider the transmission of randomly
punctured LDPC codes over the BEC. We begin by describing
the channel model, showing that the problem can be modeled
as two cascaded BECs or, equivalently, a single BEC with
a modified erasure rate. We then determine the iterative BP
decoding thresholds of punctured SC-LDPC code ensembles
on the BEC.

A. Random Puncturing on the BEC

Consider puncturing a length n codeword v for transmission
over a BEC with erasure probability ✏. We assume that a frac-
tion ↵ = p/n of the code symbols are punctured, such that the
transmitted codewords vpunc have length npunc

= (1�↵) ·n.
After transmission over a channel with erasure probability ✏,
the received vector r will contain, on average, ✏ ·npunc erased
symbols and (1 � ✏) · npunc correct symbols. The receiver
knows the positions of the punctured and erased symbols and
proceeds to decode the overall code of length n.

Assuming that the positions of the punctured symbols are
chosen randomly according to a uniform distribution, we can
model the random puncturing as a BEC with erasure proba-
bility ↵. Combining the random puncturing channel together
with the actual transmission channel, as shown in Fig. 2(a), one
can model the transmission of randomly punctured codewords
over the BEC as two cascaded BECs. This model is equivalent
to a single BEC with crossover probability ✏0, as illustrated in
Fig. 2(b). Since the number of correctly received symbols is
equal for both models we obtain

(1 � ✏0
) · n = (1 � ✏) · npunc , (4)

which results in

✏0
= 1 � (1 � ✏)(1 � ↵) . (5)



B. Thresholds of Randomly Punctured LDPC Code Ensembles

Consider an arbitrary code ensemble of rate R with BEC
iterative BP decoding threshold ✏BP. We are interested in the
threshold ✏BP(↵) of the punctured code ensemble with rate
R(↵). In other words, we wish to know the channel parameter
✏ such that, after random puncturing with fraction ↵, we obtain
an equivalent channel with parameter ✏0

= ✏BP(0) = ✏BP.
Using (5), we obtain

✏BP(0) = 1 � (1 � ✏BP(↵))(1 � ↵), (6)

so that
✏BP(↵) = 1 � 1 � ✏BP(0)

1 � ↵
(7)

or, using (3),

✏BP(↵) = 1 � 1 � ✏BP(0)

R
· R(↵) . (8)

Note that (8) provides an explicit expression for the BP
threshold of the punctured LDPC code ensemble with punc-
turing fraction ↵ as a function of the target rate R(↵) � R,
i.e., for a given puncturing fraction ↵, the function ✏BP(↵)

depends only on the threshold and the rate of the mother code
ensemble. From (8), we define

✓ =

1 � ✏BP(0)

R
� 1, (9)

where we have equality if and only if the threshold of the
mother code ensemble ✏BP is equal to the Shannon limit. The
largest possible rate with puncturing is determined by the
smallest non-negative threshold ✏BP(↵), which yields

Rmax = R(↵ = ✏BP(0)) =

1

✓
. (10)

Thus, the maximum puncturing fraction ↵ with a non-
vanishing BP threshold is equal to the threshold ✏BP(0) = ✏BP
of the mother code. We refer to the range of rates R(0) 
R(↵)  Rmax where the punctured code ensembles have non-
negative thresholds as the achievable rate range.

Note the implications of (8) and (9): ✓ determines the gap

to capacity for all punctured code ensembles. A large value
of ✓ implies that the mother code ensemble has a threshold
relatively far from the Shannon limit and the gap to capacity
will grow quickly with increasing ↵; on the other hand, for a
value of ✓ close to 1, the mother code ensemble has a threshold
close to the Shannon limit and the gap to capacity will grow
slowly with increasing ↵. In the extreme case where ✓ = 1,
i.e., the threshold of the mother code ensemble is equal to
the Shannon limit, then capacity is achieved for all punctured
code ensembles with target rates R(↵) � R.

C. Numerical Threshold Results

Example 1 The C3,4(L = 50) SC-LDPC code ensemble has
BP threshold ✏BP(0) = 0.746 and design rate R(0) = 0.235,
which results in ✓ = 1.0809. Similarly, the C3,6,B(L = 50)

SC-LDPC code ensemble has ✏BP(0) = 0.4881 and R(0) =

0.49, which results in ✓ = 1.0447. The underlying LDPC
block code ensembles B3,4 and B3,6, with rates R(0) = 0.25

and R(0) = 0.5, have thresholds ✏BP(0) = 0.6474 and
✏BP(0) = 0.4294, resulting in ✓ = 1.4103 and ✓ = 1.1411,
respectively. 2
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Fig. 3: BEC BP thresholds for the randomly punctured SC-LDPC code
ensembles Cpunc

3,4 (L,↵), Cpunc
3,6,B(L,↵), and Cpunc

3,9,B(L,↵) for L = 10, 20,
and 50 and a variety of puncturing fractions ↵.

Fig. 3 shows the calculated BEC BP thresholds for the
randomly punctured SC-LDPC code ensembles Cpunc

3,4 (L, ↵),
Cpunc
3,6,B(L, ↵), and Cpunc

3,9,B(L, ↵) for L = 10, 20, and 50 and a
variety of puncturing fractions ↵ (dots, squares, and crosses)
and also the thresholds predicted using (8) (solid lines). We
observe that the predictions match the calculated thresholds.
From ✏BP(↵) = 1� ✓ ·R(↵), we see that ✓ can be interpreted
graphically as the slope of the parametrically defined line
determining the position of the punctured thresholds ✏BP(↵)

for all ↵. Since the mother code ensembles for these examples
have thresholds close to capacity for large L, the correspond-
ing values of ✓ are close to 1. Consequently, the thresholds of
the punctured SC-LDPC code ensembles are close to capacity
for all achievable rates R(↵)  Rmax.

For the C3,4(L) mother code ensembles, we obtain ✓ =

2.1710, 1.1954, and 1.0809 for coupling lengths L = 10, 20,
and 50, respectively. Consequently, for any common achiev-
able rate, the Cpunc

3,4 (50, ↵) code ensemble must have the best
threshold. This can be observed in Fig. 3, where we see that
the Cpunc

3,4 (50, 0) threshold is closer to capacity than those of
the Cpunc

3,4 (20, 0) and Cpunc
3,4 (10, 0) code ensembles, and the

lines formed by the thresholds of the higher rate punctured
ensembles are steeper in the negative direction as L increases.
Similar conclusions are drawn when comparing the C3,6,B(L)

code ensembles and the C3,9,B(L) code ensembles. Out of
all the ensembles, we find that the C3,9,B(50) mother code
ensemble has the best ✓ and, consequently, for any common
achievable rate, the punctured Cpunc

3,9,B(50, ↵) ensemble must
have the best BP threshold. For example, rate R = 0.75 is
highlighted in Fig. 3. From right to left, for appropriate values
of ↵ such that R(↵) = 0.75, the ordering of the ensembles
is Cpunc

3,9,B(50, ↵), Cpunc
3,6,B(50, ↵), Cpunc

3,9,B(20, ↵), Cpunc
3,4 (50, ↵),

Cpunc
3,9,B(10, ↵), Cpunc

3,6,B(20, ↵), and Cpunc
3,6,B(10, ↵), precisely the

ordering of increasing ✓ values of the mother code ensem-
bles. (Note that the Cpunc

3,4 (10, ↵) and Cpunc
3,4 (20, ↵) ensembles

cannot achieve R(↵) = 0.75.)



✓
Ensemble L = 20 L = 50 L = 1 Ensemble ✓
C3,4(L) 1.1954 1.0810 1.0161 B3,4 1.4103
C3,6(L) 1.1372 1.0664 1.0237 B3,6 1.1411
C3,6,B(L) 1.0776 1.0447 1.0237
C4,8(L) 1.1817 1.0687 1.0046 B4,8 1.2331
C4,8,B(L) 1.1162 1.0465 1.0046
C3,9(L) 1.0741 1.0414 1.0205 B3,9 1.0757
C3,9,B(L) 1.0467 1.0309 1.0205

TABLE II: Calculated values of ✓ for various mother SC-LDPC and LDPC
block code ensembles.

We also see that, as we increase L, the gap to capacity
for the SC-LDPC code ensembles considered is monotonically
decreasing in such a way that ✓ is monotonically decreasing
(improving). Table II displays calculated values of ✓ for
various mother SC-LDPC and LDPC block code ensembles.
We find that the type B ensembles, with smaller coupling width
and thus less rate loss for finite L, have better values of ✓, but
this advantage disappears as L ! 1. Comparing the (3, K)

ensembles, we find that, for large L, the C3,4(L) ensemble has
the smallest value of ✓ and consequently randomly puncturing
this ensemble will result in the best thresholds - even for high
rates. (In Fig. 3, we considered a maximum value of L = 50,
where the C3,9,B(50) ensemble had the smallest value of ✓
but, for a sufficiently large L, the Cpunc

3,4 (L, ↵) ensembles will
outperform the Cpunc

3,9,B(L, ↵) ensembles.) We should note, how-
ever, that the value of ✓ depends closely on the particular “edge
spreading” used to construct the protograph. This gives rise to
the interesting question of what is the best edge spreading
and (J, K) pair that minimizes ✓ for a fixed J? Increasing the
graph density is known to result in SC-LDPC mother code
ensembles with thresholds approaching capacity for large L,
and we observe that the (4, 8) ensembles correspondingly have
✓ values close to 1 for large L. Finally, we note that the LDPC
block code ensembles B

J,K

have large ✓ values that grow with
increasing density (recall that ✓ determines the additive gap to
capacity ✏Sh � ✏BP = (✓ � 1) · R and that ✏BP worsens as the
density increases for fixed R).

D. Remarks

• The results detailed in this section are not specific to
SC-LDPC code ensembles. More generally, if one can
find a capacity approaching or capacity achieving code
ensemble then it will have a ✓ value close to, or equal
to, 1 and it will be well suited to random puncturing
as discussed above. In fact, similar statements regarding
capacity achieving LDPC code ensembles on the BEC
with puncturing have been made before (see e.g., [4],
[12]). However, the threshold saturation of SC-LDPC
code ensembles results in simple (J, K)-regular code
ensembles with thresholds close to capacity and small
✓ values. Without spatial coupling, one would have to
design an optimized capacity approaching block code
ensemble to obtain a good value of ✓, or accept a bad
✓ with a (J, K)-regular LDPC block code ensemble.

• Designing optimized irregular mother LDPC block code
ensembles to obtain a good ✓ for a given R is likely to
result in an ensemble with poor minimum distance prop-
erties. In addition to having thresholds close to capacity

and correspondingly good ✓ values, (J, K)-regular SC-
LDPC mother code ensembles are known to have linear
minimum distance growth [9]. In Section IV, we show
that this property carries over to randomly punctured SC-
LDPC code ensembles.

• We saw that the derivation of the thresholds of randomly
punctured LDPC code ensembles is independent of the
decoding algorithm or the structure of the mother code.
To determine thresholds for all punctured ensembles of
rate R  R(↵)  Rmax, we only require the threshold and
the rate of the mother code. A similar argument can be
made for the threshold of the MAP decoder, for example.
In this case, everything follows through and simply leads
to a different ✓.

IV. MINIMUM DISTANCE GROWTH RATES OF PUNCTURED
SC-LDPC CODE ENSEMBLES

In [9], it was shown that ensembles of C
J,K

(L) SC-LDPC
codes are asymptotically good, in the sense that the minimum
distance typical of most members of the ensemble is at least
as large as �min · n, where �min > 0 is the minimum distance

growth rate of the ensemble. In this section, we investigate
the distance properties of randomly punctured SC-LDPC code
ensembles.1

We define the asymptotic spectral shape of a linear code
ensemble as

r(�) = lim sup

n!1

1

n
ln(Ab�nc), (11)

where � = d/n is the normalized Hamming distance d, n 2 N
is the block length, and A

d

is the ensemble weight enumerator.
The spectral shape function can be used to test if an ensemble
is asymptotically good. A technique to calculate the asymptotic
spectral shape r(�) for protograph-based block LDPC code
ensembles was presented in [13]. Given the spectral shape
function r(�) of an asymptotically good code ensemble, the
expected spectral shape of the randomly punctured code en-
semble can be obtained as [14]

rpunc
(�) =

1

1 � ↵

✓
max

0�1

⇢
�H

✓
(1 � ↵)�

�

◆
+

(1 � �)H

✓
↵ + (1 � ↵)� � �

1 � �

◆
+ r(�)

�
� H(↵)

◆
, (12)

where ↵ = p/n is the fraction of punctured bits, and H(�) =

�(1 � �) ln(1 � �) � � ln(�) is the binary entropy function.
Fig. 4 shows the asymptotic spectral shape functions for the

Cpunc
3,6 (L = 8, ↵) ensembles for several puncturing fractions

↵. The spectral shape of the mother code corresponding to
↵ = 0 is highlighted as a bold red curve. Also shown are the
asymptotic spectral shape functions for random codes with the
corresponding rate R(↵) calculated using (see [15])

r(�) = H(�) � (1 � R(↵)) ln(2). (13)

We observe that the Cpunc
3,6 (8, ↵) code ensembles are asymp-

totically good and have large minimum distance growth rates
�min(↵). (Minimum distance growth rates for selected values
of ↵ are shown in Table III.) The mother code ensemble

1We restrict our discussion to Cpunc
3,6 (L,↵) ensembles in this section;

however, similar behavior is observed for other J and K values.



↵ R(↵) �min(↵)
0 0.375 0.0324

0.01 0.378 0.0323
0.1 0.416 0.0314
0.25 0.5 0.0293
0.3 0.535 0.0283
0.4 0.625 0.0249

TABLE III: Minimum distance growth rates of randomly punctured SC-LDPC
code ensembles Cpunc

3,6 (L = 8,↵).
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Fig. 4: Spectral shape functions of randomly punctured SC-LDPC code
ensembles Cpunc

3,6 (L = 8,↵) and random codes of the corresponding rate
R(↵) = 0.375/(1� ↵).

Cpunc
3,6 (8, 0) has rate R(0) = 0.375 and minimum distance

growth rate �min(0) = 0.0324. As ↵ increases, the design
rate R(↵) = 0.375/(1 � ↵) increases and the minimum
distance growth rates decrease.2 We observe moderate losses
in minimum distance growth rate for the selected range of ↵
(both the rate increase and distance growth rate decrease are
superlinear). For example, puncturing 1% of the variable nodes
results in a minimum distance growth rate decrease of 0.3%

and puncturing 25% of the nodes results in a decrease of 9.5%,
while the rates increase by 0.8% and 33.3%, respectively.
Regarding the latter point, we note that the resulting design
rate is R(0.25) = 0.5 and the minimum distance growth rate
is larger than that of the (equal rate) underlying (3, 6)-regular
LDPC block code ensemble �min = 0.023.

Fig. 5 shows the minimum distance growth rates for mother
SC-LDPC code ensembles C3,6(L) and punctured SC-LDPC
code ensembles Cpunc

3,6 (L, ↵) for L = 3, 4, 5, 6, 7, 8, 10, 12, 14

and a variety of puncturing fractions ↵. For a given L,
each family of punctured ensemble Cpunc

3,6 (L, ↵) displays the
same behavior described above for L = 8: the design rate
increases and the minimum distance growth rates decrease
with puncturing fraction ↵. We remark that SC-LDPC code
ensembles provide a significant amount of flexibility for the

2If the puncturing fraction ↵ is increased beyond a certain critical value,
the asymptotic spectral shape function is no longer smooth. This observation
is consistent with the emergence of “hook-like loops” in the spectral shapes
of randomly punctured Gallager LDPC code ensembles for large ↵ [14].
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Fig. 5: Minimum distance growth rates for SC-LDPC code ensembles
C3,6(L) and punctured SC-LDPC code ensembles Cpunc

3,6 (L,↵) for L =
3, 4, 5, 6, 7, 8, 10, 12, 14 and a variety of puncturing fractions ↵. Also shown
for comparison are the minimum distance growth rates for (J,K)-regular
LDPC-BC ensembles BJ,K and the Gilbert-Varshamov bound.

code designer. By varying L and ↵, for a single code design,
a large variety of rates is achievable with varying minimum
distance growth rates and thresholds. Also note that the trade-
offs observed for the mother SC-LDPC code ensembles in
[9] are also evident for randomly punctured ensembles: ✓
improves with increasing L (indicating better thresholds for
all achievable rates), whereas the minimum distance growth
rates decrease for any ↵ with increasing L.

Due to the computational complexity of evaluating the
asymptotic spectral shape function of SC-LDPC code en-
semble protographs with large L, we have only presented
numerical results for small L. However, we expect the trend
in behavior observed for the values of L considered above to
continue for large L: as the puncturing fraction ↵ increases
from 0, the minimum distance growth rates �min(↵) decrease
from �min(0) and the ensemble design rates R(↵) increase
from R(0). Note that, for large values of L, such as those
considered in Section III, the gap to capacity of the mother
code is decreasing and ✓ is improving. We expect that for
a given large L in Fig. 5, the minimum distance growth
rates �min(↵) of Cpunc

3,6 (L, ↵) can be approximated by a line
originating from �min(0), with decreasing (steeper and nega-
tive) slope as L increases (where, for a given R(↵), �min(↵)

decreases as L increases). Consequently, as L increases, we
observe a continuing trade-off of improving iterative decoding
thresholds with decreasing minimum distance growth rates for
all randomly punctured SC-LDPC code ensembles

V. SIMULATION RESULTS

The bit erasure rate (BER) performance of randomly punc-
tured SC-LDPC codes transmitted over the BEC was also
investigated via computer simulations. A mother code with
code length n = 50, 000 was drawn from the ensemble
C3,6,B(L = 50) with protograph lifting factor M = 500. This
code has a rate of R50 = 0.49. The code rate was increased
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Fig. 6: BEC decoding error performance of randomly punctured SC-LDPC
codes drawn from Cpunc

3,6,B(50,↵) with protograph lifting factor M = 500.
Also shown for comparison are the BP thresholds for the punctured SC-LDPC
code ensembles Cpunc

3,6,B(50,↵).

by randomly puncturing 5, 50, 130, and 175 out of every 500

variable nodes (↵ = 0.01, 0.1, 0.26, and 0.35, respectively),
yielding code rates of R(0.01) = 0.495, R(0.1) = 0.544,
R(0.26) = 0.662, and R(0.35) = 0.754, respectively. The
error performance of these codes was obtained using a sliding
window decoder [7] with window size W = 8 and performing
a maximum of I = 10 iterations in each window position. The
results for these codes are presented in Fig. 6.

We observe excellent decoding performance from the punc-
tured SC-LDPC codes of varying rates, with each code dis-
playing a gap from its respective iterative decoding threshold
of approximately 0.05 to 0.06 at a BER of 10

�5, for only
a moderate lifting factor M = 500 and a resulting decoding
latency of 2WM = 8000 bits. We expect this gap to decrease
as the lifting factor M is increased. Moreover, recall from
Fig. 3 that, since ✓ = 1.0447, the gap to capacity for the
punctured thresholds is small and increases slowly as ↵, and
correspondingly the rate R(↵), increases. We note that it
appears that the gap between the simulated decoding perfor-
mance and the corresponding threshold increases slightly as ↵
increases, which should be expected for a finite length code;
however, the increase is small, demonstrating robust decoding
performance for punctured SC-LDPC codes over a large range
of rates. Finally, we note that we do not see any indication of
an error-floor down to a BER of 10

�7 for codes drawn from
these asymptotically good code ensembles.

VI. CONCLUDING REMARKS

In this paper, we have studied random puncturing of
protograph-based SC-LDPC code ensembles. We showed that,
over the BEC, transmission of a randomly punctured code
ensemble can be modeled as two cascaded BECs or, equiv-
alently, a single BEC with a modified erasure rate. We also
showed that, with respect to iterative decoding threshold, the
strength and suitability of an LDPC code ensemble for random
puncturing over the BEC is completely determined by a single

constant ✓ � 1 that depends only on the rate and the BP
threshold of the mother code ensemble. If ✓ = 1, the punctured
ensembles are capacity achieving for all higher rates, and if ✓
is close to 1, the punctured ensemble thresholds are close to
capacity for all higher rates up to 1/✓. We then used this
analysis to show that randomly punctured SC-LDPC code
ensembles with large coupling length L display near capacity
thresholds over a wide range of rates. We also performed an
asymptotic minimum distance analysis and showed that, like
the SC-LDPC mother code ensemble, the punctured SC-LDPC
code ensembles are also asymptotically good. Finally, we
presented some simulation results that confirm the excellent
decoding performance promised by the asymptotic results.
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