
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Exploring regression testing and software product line testing - research and state of
practice

Engström, Emelie

2010

Link to publication

Citation for published version (APA):
Engström, E. (2010). Exploring regression testing and software product line testing - research and state of
practice.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/101b263e-f0ff-427f-89e0-e8f5680cb1a4

Exploring Regression Testing and

Software Product Line Testing -
Research and State of Practice

Emelie Engström

Licentiate Thesis, 2010

Department of Computer Science
Lund University

Faculty of Engineering

 i

ISSN 1652-4691
Licentiate Thesis 11, 2010

Department of Computer Science
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: emelie.engstrom@cs.lth.se

 ii

Abstract

In large software organisations with a product line development approach a
selective testing of product variants is necessary in order to keep pace with the
decreased development time for new products, enabled by the systematic reuse.
The close relationship between products in product line indicates an option to
reduce the testing effort due to redundancy. In many cases test selection is
performed manually, based on test leaders’ expertise. This makes the cost and
quality of the testing highly dependent on the skills and experience of the test
leaders. There is a need in industry for systematic approaches to test selection.

The goal of our research is to improve the control of the testing and reduce the
amount of redundant testing in the product line context by applying regression
test selection strategies. In this thesis, the state of art of regression testing and
software product line testing are explored. Two extensive systematic reviews are
conducted as well as an industrial survey of regression testing state of practice and
an industrial evaluation of a pragmatic regression test selection strategy.

Regression testing is not an isolated one-off activity, but rather an activity of
varying scope and preconditions, strongly dependent on the context in which it is
applied. Several techniques for regression test selection are proposed and
evaluated empirically but in many cases the context is too specific for a technique
to be easily applied directly by software developers. In order to improve the
possibility for generalising empirical results on regression test selection, guidelines
for reporting the testing context are discussed in this thesis.

Software product line testing is a relatively new research area. The understanding
about challenges is well established but when looking for solutions to these
challenges, we mostly find proposals, and empirical evaluations are sparse.
Regression test selection strategies proposed in literature are not easily applicable
in the product line context. Instead, control may be increased by increased
visibility of the effects of testing and proper measurements of software quality.
Focus of our future work will be on how to guide the planning and assessment of
regression testing activities in large, complex reuse based systems, by visualizing
the quality achieved in different parts of the system and evaluating the effects of
different selection strategies when applied in various regression testing situations.

 i

Acknowledgements

This work was financially supported by the Swedish Governmental Agency for Innovation
Systems under Grant 2005-02483 for the UPPREPA project.

First of all I would like to thank my supervisor Prof. Per Runeson for excellent
guidance. Thanks for encouraging and challenging me and also for good
cooperation. I would also like to thank my other colleagues at the department of
computer science and especially the software engineering research group for the
inspiring and developing work environment. I am grateful for all persons from
industry who have contributed to this work. Thanks to all who have participated
in focus group meeting and questionnaires and a special thanks to Dr. Greger
Wikstrand at KnowIT YAHM Sweden AB for your enthusiasm and your
commitment to our cooperation. Thanks also to other fellow researchers; co-
authors, participants in the EASE project and in the SWELL research school.
Finally, thanks to my family; to my parents for constant encouragement and for
making me believe that anything is possible. And last but not least I’m so grateful
for my children David, Miriam and Anton, you teach me what is important in life,
and my husband Jonas, thanks for your continuous support and for always
standing by my side.

 iii

 iv

Content
ABSTRACT...I
ACKNOWLEDGEMENTS... III
CONTENT... V
INTRODUCTION... 1

1 INTRODUCTION... 1
2 CONCEPTS .. 4
3 RESEARCH GOALS AND QUESTIONS .. 5
4 RELATED WORK ... 7
5 RESEARCH METHODS.. 9
6 CONTRIBUTIONS... 10
7 CONCLUSIONS AND FUTURE WORK... 12
REFERENCES ... 15

PAPER I: ... 19
A SYSTEMATIC REVIEW ON REGRESSION TEST SELECTION TECHNIQUES 19

1 INTRODUCTION... 20
2 RESEARCH METHOD... 21
3 RESULTS... 28
4 DISCUSSION.. 50
5 CONCLUSIONS AND FUTURE WORK... 52
6 ACKNOWLEDGEMENTS ... 53
REFERENCES ... 53

PAPER II:.. 61
TEST BENCHMARKS – WHAT IS THE QUESTION?.. 61

1 INTRODUCTION... 62
2 USES FOR TEST BENCHMARKS .. 62
3 REPRESENTATIVENESS ... 63
4 VARIATION FACTORS.. 64
5 PROPOSAL .. 65
REFERENCES ... 65

PAPER III: .. 67
A QUALITATIVE SURVEY OF REGRESSION TESTING PRACTICES ... 67

1 INTRODUCTION... 68
2 METHOD DESCRIPTION ... 69
3 ANALYSIS OF THE RESULTS .. 72
4 CONCLUSIONS .. 79
5 ACKNOWLEDGMENT... 80
REFERENCES ... 80

PAPER IV:... 83
AN EMPIRICAL EVALUATION OF REGRESSION TESTING BASED ON FIX-CACHE
RECOMMENDATIONS.. 83

1 INTRODUCTION... 84
2 BACKGROUND AND RELATED WORK... 84
3 EMPIRICAL EVALUATION .. 86
4 THREATS TO VALIDITY ... 90
5 DISCUSSION AND FUTURE WORK .. 91
REFERENCES ... 91

PAPER V: .. 93
SOFTWARE PRODUCT LINE TESTING - A SYSTEMATIC MAPPING STUDY 93

 v

 vi

1 INTRODUCTION ...94
2 RESEARCH METHOD ..95
3 CHALLENGES IN TESTING A SOFTWARE PRODUCT LINE ...98
4 PRIMARY STUDIES...100
5 CLASSIFICATION SCHEMES ...102
6 MAPPING ..103
7 DISCUSSION ..112
8 CONCLUSIONS...114
REFERENCES..114

Introduction

1 Introduction

Software product line engineering is a means for organizations to customize large
numbers of software products from a common base instead of developing one-off
solutions to each customer or end product. Efficient testing strategies are
important for any organization with a large share of their cost in software
development. In an organization using software product lines (SPL) it is even
more crucial since the share of testing costs increases as the development costs for
each product decreases.

Software product line testing is a complex and costly task due to the variability
preserved in the product platform and the large number of different products
derived from the same platform. The major challenge with SPL testing regards the
large number of required tests (Engström and Runeson in press). The close
relationship between the developed products and the fact that they are derived
from the same specifications indicates an option to reduce the number of tests,
due to redundancy. This work aims at developing and evaluating strategies for
selective testing of software product line applications in large scale software
development organisations in order to minimize the amount of redundant testing
in such a context.

This problem is closely related to the problem of regression testing of evolving
software in general. The goal of regression testing is to verify that previously
working software still works after a change (IEEE Std 1990). The test scope for

 1

regression testing is often set by selecting test cases from an existing test pool,
based on knowledge about changes between the system under test and previously
tested versions of the system (Engström and Runeson 2010). This could be
compared with the testing of a new product configuration in a software product
line where the previously tested product line is the older stable version of the
system. Our starting point has been the state of art of regression testing since this
activity is researched and practiced to a greater extent.

This work surveys existing research and state of practice on regression testing as
well as research on SPL testing. Regression testing is not an isolated one-off
activity, but rather an activity of varying scope and preconditions, strongly
dependent on the context in which it is applied (Engström and Runeson 2010).
Several techniques for regression test selection are proposed and evaluated
empirically but in many cases the study context is too specific for the technique to
be easily applied directly by software developers in another context. Few studies
are replicated, and thus the possibility to draw conclusions based on variations in
test context is limited (Engström et al. 2010a). In order for a practitioner to make
use of these results, the study context must be considered and compared to the
actual environment into which a technique is supposed to be applied. Guidelines
for reporting empirical results on regression test selection are discussed (Runeson
et al. 2008) and an evaluation of a pragmatic strategy for regression test selection is
provided (Engström et al. 2010b). Software product line testing is a relatively new
research area. The understanding about challenges is well established but when
looking for solutions to these challenges, we mostly find proposals, and empirical
evaluations are sparse (Engström and Runeson in press).

This thesis includes five papers and is organised as follows:

 Introduction. The introduction gives a background to the research and an
overview of the contributions of this thesis. Section 2 provides
clarifications on important concepts referred to in this thesis. In section 3
the overall goals and research questions are stated. Section 4 provides an
overview of related work on software product line engineering and
regression testing. Section 5 describes the research methods used and
section 6 overviews the results. Section 7 concludes and discusses directions
for our future work.

 Regression testing in the literature. This part includes two papers
regarding the evidence base on regression testing. Paper 1 reports on a
systematic review of techniques for regression test selection and paper 2 is a
position paper elaborating on test benchmarks and proposing
improvements regarding the analytical generalisation of research on testing.

 Regression testing in practise. This part includes two papers exploring
and evaluating regression testing practices in industry. Paper 3 reports on a
survey, including 46 practitioners from 38 companies, of regression testing
practices. Paper 4 reports on the results of an empirical evaluation of a
pragmatic approach to regression test selection in an industrial setting.

 2

 Software product line testing in the literature. The last part consists of
one paper (paper 5) and investigates the state of art of research on software
product line testing. It reports on a systematic mapping of relevant research
and provides a multidimensional classification of the research
contributions.

Included papers

1. A systematic review on regression test selection techniques
Emelie Engström1, Per Runeson and Mats Skoglund
Journal of Information and Software Technology 52(1):14-30, 2010

2. Test Benchmarks - what is the question?
Per Runeson, Mats Skoglund and Emelie Engström2
Proceedings of International Conference on Software Testing Verification and
Validation Workshop (ICSTW ’08), April 2008

3. A Qualitative Survey of Regression Testing Practices
Emelie Engström1 and Per Runeson
Accepted for publication in Proceedings of 11th International Conference on
Product Focused Software Development and Process Improvement (PROFES ‘10),
June 2010

4. An Empirical Evaluation of Regression Testing Based on Fix-cache
Recommendations
Emelie Engström3, Per Runeson and Greger Wikstrand
Proceedings of International Conference on Software Testing Verification and
Validation (ICST ’10), April 2010

5. Software Product Line Testing - A Systematic Mapping Study
Emelie Engström1 and Per Runeson
Conditionally accepted for publication in the journal of Information and
Software Technology

1 The author of this thesis is the main author and as such responsible for running the research,

dividing the work between coauthors and conducting most of the writing.
2 The main contribution of the author is indirect as the proposals are partly based on data

collection and analysis made by the author.
3 The author of this thesis is the main author and as such responsible for design, data collection

and analysis and division of work between coauthors.

 3

2 Concepts

In this section we provide background information on software product line
engineering, regression testing and some general testing concepts which are
frequently referred to in this thesis. Since some important concepts may be
interpreted differently in different contexts their interpretation within this thesis is
clarified as they are introduced here.

2.1 Software product line engineering

In software product line engineering (SPLE) mass customization is achieved
through systematic reuse of artefacts throughout the development process.
Commonality and variability are identified at an early stage and the software process
is divided into two separate processes: 1) domain (platform) engineering and 2)
application (product, product configuration or variant) engineering. Domain
engineering is focused on establishing the reusable platform while application
engineering is focused on deriving product line applications from the platform. A
large part of application engineering consists of reusing the platform and binding
the variability as required for the different applications. A variation point is a
representation of a variable item or property. (Pohl et al 2005)

2.2 Regression testing

Regression testing involves repetitive tests and aims to verify that previously
working software still works after changes to other parts. According to IEEE,
regression testing is Selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or components still complies with its
specified requirements (IEEE Std 1990). Focus can be either re-execution of test cases
or retest of functionality. As for testing in general (Burnstein 2003) the goal of the
regression testing may differ between different organizations or parts of an
organization. The goal may be either to reveal defects or to obtain a measure of
the quality of the system (paper 3). Regression testing is the most expensive test
activity and may consume as much as 80% of the testing budget. (Chittimalli and
Harrold 2009)

Traditionally regression testing is iteratively applied to the consecutive revisions of
the software, where revisions refer to the variation in time (Bendix 1995) of the
evolving system. In a software product line a counterpart to these revisions are the
product line variants referring to the variation in space (Bendix 1995) i.e. the
different product line configurations. The delta between two revisions or variants
refers to the difference between them. Although many reports on SPL testing

 4

have raised the possibility of using regression testing techniques for testing
variants in a software product line, there are few published reports on how this
should be done (paper 5). Of course there is also a need for regression testing in a
traditional sense even in the product line context, in order to test revisions of
product line variants and of the product line itself.

2.3 Levels of testing

Testing practices and goals differs depending on the levels of abstraction on which
it is carried out (Burnstein 2003). At a low level of abstraction, such as unit testing,
the goal may be to reveal structural and functional defects in a component and test
cases could be designed with both white box and black box techniques. At a
system level the behaviour of the system as a whole is tested with various black
box strategies, e.g. functional testing and stress testing, both high level functional
requirements and quality aspects, e.g. reliability, usability, and performance, may
be evaluated. Another common testing level is the integration testing level where
the interactions between the components or subsystems are tested. Regression
testing appears at all levels of testing.

Depending on the size of the project and the process model followed, the number
of abstraction levels on which testing is applied varies. Most commonly referred to
are unit testing, integration testing and system testing. These levels derive from the V-
model but are often mapped to other process models, e.g. iterative development
processes. In a software product line where the process is ideally divided into the
domain engineering process and the application engineering processes it is not
clear how such mapping should be done.

2.4 Test coverage

Test coverage is a measure of how well a system is covered by tests. The system may
be defined by different types of artefacts e.g. requirements, design or code. The
definition of test coverage could be based on any model of the system and be
measured at any level of abstraction. In the regression test selection context test
coverage relates to the execution of tests rather than the design.

3 Research goals and questions

The application of software product line development strategies enables mass
customization of complex software systems. A major challenge with SPL testing,
or any large, highly configurable software system, regards the large number of
required tests. In order to fully test a product line, all possible uses of each generic
component, and preferably even all possible product configurations, need to be

 5

tested. Such thorough testing is infeasible and a selective testing is necessary. As
products of a product line are closely related and derive from the same
specifications, it is likely that a large amount of testing, especially in the application
development process, can be removed due to redundancy. It is not clear, however,
how to make the test selection at different stages of the development process and
how to balance the test effort between different test activities. The overall goal of
this research is to:

Evaluate possible strategies for improved test selection, aiming at minimizing the amount of
redundant testing, in software product line development.

This goal, minimizing redundant testing, is the same as for regression test
selection. By focusing the testing on changes to the system and parts affected by
those changes regression testing aims at verifying that previously working software
still works after a change (IEEE Std 1990). With the assumption that changes in
an evolving system could be compared to the differences between applications in
a software product line and that strategies for regression test selection may be
applied for the purpose of planning the testing of applications derived from
software product lines our starting point is the state of art of regression testing.
Even though the application of regression test selection strategies for this purpose
is frequently suggested (McGregor 2001) (Tevanlinna et al. 2004), few concrete
proposals exist.

In this thesis the following five main questions are investigated:

RQ1 What do we know about regression test selection?
In order to identify relevant strategies we want to get an overview of the
research and aggregate existing empirical evidence on regression test
selection. No single solution to regression test selection could possibly fit
into all situations and no single study evaluates every aspect of the
regression test selection problem. Limited sets of regression test selection
techniques have been compared in previous reviews of regression test
selection with different foci (Rothermel and Harrold 1996), (Do et al.
2005) (Juristo et al. 2006) we want to get a more complete picture of the
state of art. A systematic review was launched for this purpose (paper 1)

RQ2 What do we mean by an effective test selection strategy?

In order to compare strategies for regression test selection and select the
one most appropriate for our purpose a number of questions need to be
answered: Do we have a common understanding of what an effective
regression test selection technique is; should it be safe or cheap? How do
we know which technique is the most appropriate for a specific situation?
Given a technique evaluated in a specific context what does the result
mean in another context? Which techniques are relevant to compare and
with respect to what? This question is partly evaluated by the systematic

 6

review (paper1) and the industrial survey (paper 3). It is also in focus of
our benchmark proposal (paper 2).

RQ3 How is regression testing applied in industry?

Regression testing is a frequent and time consuming test activity in most
industrial software projects (Chittimalli and Harrold 2009). It is applied in
many different contexts, not based on research but based on experience.
We want to survey regression testing practices in industry (paper 3) in
order to extend the overview from the literature review with experiences
from industry. What are the challenges and best practices in industry what
is needed to over bridge the gap between research and practice?

RQ4 Can an automatically derived regression test suite be more effective than a manual

experience based selection in a large scale industrial context?
Regression test selection is to a great extent performed manually in
industry with more or less transparent strategies. Non-systematic manual
strategies are heavily dependant on the skills of the test engineers and their
experience of the test area. Such strategies are vulnerable to the mobility
of people and to time pressure of the projects as it is easier to select the
same tests every time than to redo the analysis. They may also be
unnecessary expensive since people tend to add some extra test cases just
to gain confidence in the testing. Reports on systematic approaches
applied and evaluated in a large scale industrial context is however sparse
(paper 1). It is a complex task and many proposed strategies are not
feasible to scale up to large complex systems We want to apply systematic
approaches to regression test selection in industrial contexts and evaluate
them against the strategies already in use. One such evaluation is made
through launching a post-hoc case study comparing the fix-cache selection
strategy with the current strategy at the case company (paper 4).

RQ5 What do we know about software product line testing?

In order to position our research, we also want to get an overview of the
current status of the research on software product line testing. What are
the challenges? Which topics for testing product lines have been
investigated and to what extent? For this purpose a systematic mapping
study was launched. (paper 5)

4 Related work

This section contains a brief overview of the related work on software product
line testing and regression test selection. Extensive literature reviews of the
research in these areas are provided in papers 1 and 5, respectively. More details
on how each research question relates to previous research can be found in the

 7

respective papers included in this thesis. Positioning of future work can be found
in section 7, conclusions and future work, of this introduction

4.1 Software product line testing

Research on SPLE started in the 90ies and has gained growing interest the last 10
years. Two conference series started with product lines or product families in
focus. The main conference series; Software Product Line Conference (SPLC) and
Product Family Engineering (PFE) conference started 2000 and 2001 respectively
and merged 2005. Main benefits of applying SPLE reported are reduced time to
market, reduced cost and improved quality (Khurum and Gorschek 2009)

Testing is still a bottleneck though. Software product line testing has shown to be
a complex task introducing many new challenges (paper 5). A thorough report on
techniques and activities for meeting those challenges is a technical report by
McGregor (McGregor 2001). This work is the starting point for many researchers
within the field. The field of software product line testing is immature though and
there is a lack of empirical evidence in literature as well as of good practices in
industry.

Even though new testing challenges arise within the product line context most
traditional testing practices are still valid. Practices for testing object oriented
systems could for example be applied to the testing of a software product line as
well (Tevanlinna et al. 2004). Some traditional testing strategies may be particularly
advantageous in, and adapted to, the software product line context such as
regression test selection (Tevanlinna et al. 2004) and model based testing
(Olimpiew and Gomaa 2005)(Reis et al. 2007). An overview of challenges and
existing research is given in (paper 5)

4.2 Regression test selection

Research on regression testing has been going on for a while; empirical studies are
reported on since 1980 and the field is one of the more mature in software
engineering. The main focus has been how to select tests based on information
about changes in the system since the latest tested version (Hartmann and Robson
1990), (Agrawal et al. 1993), (Chen et al. 1994), (Gupta et al. 1996), (Rothermel
and Harrold 1997). Also the prioritization of test cases in a regression test suite
has been in focus (Elbaum et al. 2002)(Kim and Porter 2002). Other researched
aspects of regression testing are for example; how to evaluate selection techniques
(Rothermel and Harrold 1996), how to regression test GUI:s (Memon 2004), and
how to regression test databases (Haftmann et al. 2007).

 8

An overview of research on regression test selection is given in (paper 1). Most of
the research is conducted as experiments or small scale case studies and one of the
challenges is to scale up solutions and apply them in different industrial contexts.
Experiments have been undertaken to study the implications of systems of
different sizes on regression testing techniques (Bible et al. 2001), (Graves et al.
2001) and (Orso et al. 2004) and a few large scale case studies have been
undertaken (White and Robinson 2004) and (Skoglund and Runeson 2005).
Another challenge, which is common for all research in software engineering, is
how to generalize results and benchmark solutions (paper 2). Rothermel and
Harrold (1996) proposed a framework for evaluating regression test techniques
which have been used in some proceeding studies, e.g. (Bible et al. 2001) and
(Briand 2002).

5 Research methods

5.1 Exploratory research

Initially the research has mainly been exploratory (Easterbrook 2008). In order to
address the first and the fifth research questions, two different kinds of systematic
literature reviews (SLR:s) have been conducted: a systematic review on regression
test selection (paper 1) and a systematic mapping on software product line testing
(paper 5). The use of systematic reviews in the software engineering domain has
been subject to a growing interest in the last years. In 2004, Kitchenham proposed
a guideline adapted to the specific characteristics of software engineering research.
This guideline has been followed and evaluated (Brereton et al 2007),
(Kitchenham et al 2007), (Staples and Niazi 2007) and updated accordingly
(Kitchenham 2007). Kitchenham et al. (2009) recently published a review of 20
systematic reviews in software engineering during 2004–2007.

A mapping study is an alternative to systematic reviews and could be used if the
amount of empirical evidence is too little, which was the case for the software
product line testing, or if the topic is too broad for a systematic review to be
feasible. Both methods are systematic in that a well defined protocol for study
selection and analysis is followed but the goal and use differs. A mapping study is
performed at a higher granularity level than a systematic review, aiming at
identifying research gaps and clusters of evidence in order to direct future
research. The goal of a systematic review is to analyse and aggregate the base of
empirical evidence. Petersen et al. (2008) describe how to conduct a systematic
mapping study. Guidelines for performing SLR:s can be found in (Kitchenham
2007). The second question is elaborated on through reasoning about
observations in the first systematic review.

 9

In order to address the third research question, a qualitative survey has been
conducted (paper 3) by means of focus group discussions and a questionnaire to
validate the results. Survey research is traditionally used to identify the
characteristics of a broad population of individuals and the most common use of
survey research is when questions are quantitative e.g. to what extent do
developers use this tool and how satisfied are they? (Easterbrook 2008) One
defining characteristic of survey research is that a representative selection should
be done from a well-defined population. In this case it was not possible or
necessary, since our conclusions are qualitative rather than quantitative, Instead
the sample is selected by availability and interest. In total 38 software
organizations were represented by 46 testers in the survey.

5.2 Evaluation research

In addition to the exploratory studies an evaluative study in the form of a case
study has been conducted (paper 4), which partly answers question four. We have
evaluated a pragmatic strategy; Fix-cache based regression testing, for improving
efficiency of regression testing in a large industrial setting. This case study was
applied post hoc. Two different selection strategies were applied to a large scale
industrial project and data collection and analysis was made afterwards.

Table 1 shows the relations between papers included in this thesis, the research
method used and the research questions addressed.

Table 1. Relations between papers, research methods and research questions

Paper Type of research Research method Research Question
P1 Exploratory Systematic Review RQ1, RQ2
P2 Exploratory Proposal RQ2
P3 Exploratory Survey RQ2, RQ3
P4 Evaluative Case Study RQ4
P5 Exploratory Systematic Mapping RQ5

6 Contributions

This section summarizes the main contributions of this thesis. Detailed
conclusions of each paper can be found at the end of respective paper.

6.1 Regression test selection in the literature

Main contributions of the systematic literature review on regression test selection
(paper 1) are:

 10

1. A classification scheme for regression test selection techniques intended to
make research results more accessible to practitioners within the field

2. Overview and classification of regression test selection techniques evaluated in
literature

3. Overview and qualitative analysis of reported evidence on regression test
selection techniques

4. Overview of metrics and strategies used for evaluation of regression test
selection strategies.

Several important observations were made when analysing the data of the
systematic review. Most of the proposed regression test selection techniques are
not feasible to scale up to testing of large complex real time systems. Further most
of the techniques are not evaluated sufficiently for a practitioner to make decisions
based on research alone. In many studies, only one aspect of the problem is
evaluated (e.g. only test suite reduction and not fault detection ability or analysis
cost) and the study context is too specific to be easily generalised and applied
directly by software developers. Standards for conducting empirical studies, and
which measures to evaluate, differ greatly across the studies. Few studies are
replicated, and thus the possibility to draw conclusions based on variations in test
context is limited.

In order for a practitioner to make use of results of a single study, the study
context must be considered and compared to the actual environment into which a
technique is supposed to be applied. This is discussed further in (paper 2) which
includes proposals for test technique benchmarks e.g.:

1. Define categories for benchmarked methods to avoid comparing “apples
with oranges”.

2. Define a characterization scheme to capture the relevant degrees of
freedom that characterize a test environment.

3. Combine experimental benchmarking results with case studies to analyze
both a controlled environment and a real world environment where the
interactions between the test technique and its environment can be studied
as well.

6.2 Regression testing in practice

In the second part of this work we have focused on industry practice of regression
testing which is often based on experience, rather than systematic approaches.
Through the means of a survey we wanted to identify challenges and good
practices in industry (paper 3). Regression testing needs and practices vary greatly
between and within organizations and at different stages of a project. The
importance and challenges of automation is clear from the survey. Most of the

 11

findings are general testing issues and are not specific to regression testing.
Challenges and good practices relate to test automation and testability issues.

We have also applied and evaluated a pragmatic strategy, Fix-cache-based
regression testing, aimed at improving efficiency of regression testing in a large
industrial setting (paper 4). The new method is significantly more efficient, it
detects more faults per test case, than the traditional regression test strategy in the
current case. The evaluation needs however to be replicated in different settings in
order to draw more general conclusions. It should also be evaluated with respect
to other aspects of regression test effectiveness such as inclusiveness and
precision.

6.3 Software product line testing in the literature

Main contributions of the systematic mapping of research on software product
line testing are:

1. A classification scheme for research on software product line testing based
on a classification scheme for research on product line variability (Petersen
2008)

2. Overview and classification of research on software product line testing.
3. Overview and quantitative analysis regarding type of research, type of

contribution and focus of research.

Most research effort is spent on system testing and the most frequent goal is
systematic design of test suites, where generic test cases are derived from a model
of the system in domain testing and configured test cases generated from the
generic test cases in application testing. Most solutions put requirements on the
whole development process which make them hard to introduce in a large
organisations. No proposed solution is based on traditional regression test
selection techniques. Research contributions are mainly of proposal types and the
most frequent types of contributions proposed are methods. There is a lack of
empirical evidence supporting the proposals as well as a lack of tools to support
the use of them.

7 Conclusions and future work

Even though many strategies are proposed for regression testing as well as for
product line testing, there is not much guidance in when to use what strategy and
how a strategy should be applied in a specific context. Our previous results (see
papers 1, 3 and 5), indicate a need for guidance in selecting strategies suitable in
different situations. In this work we have explored and aggregated previous
research in order to make results more accessible to practitioners as well as

 12

surveyed and described some important aspects of the real world context aiming
at directing future research. The diversity of test situations and its significance to
the cost effectiveness of a regression test selection technique are highlighted in
(paper 1, 2 and 3). Despite several years of research on regression testing, the gap
between research and practice is large and the evidence base is too inconsistent for
a meaningful comparison of selection techniques. The mapping between research
and the real world context is important and our research will continue to
emphasize that.

7.1 Guidance in regression test selection decisions

The main goal is to provide guidance in regression test selection decisions and our
continuing work will focus on visualisation of test coverage at different stages of
the software development and evaluation of systematic selection strategies in
different industrial settings. Decision guidelines should describe the important
factors to consider when selecting tests for a particular test situation and show the
relations between testing contexts, strategies and its effects on system quality.

7.2 Focus on improvements in product line contexts

The perspective of both regression testing and product line testing will be kept. It
is still relevant to compare the product line test selection with regression test
selection. The major difference between the two situations is the amount of
control. In the case of traditional evolution of software systems, changes may not
be well specified and may vary widely in type, size, importance and why and where
in the development process they are introduced. The delta between products in
the product line, however, is the result of a planned and systematically carried out
product strategy. Even though our main focus is on improvements in the product
line context, we strive to find solutions applicable in less idealistic product line
environments, where traceability links may be broken and variability models not
perfectly aligned with the structure of the artefacts throughout the process. Case
studies and action research will be conducted along with a company that develops
large-scale complex software systems using a product line strategy.

7.3 Visualisation of test coverage

With the current practices as the starting point we want to develop methods for
visualizing the test coverage of the different parts of the system and evaluate the
relation between the test coverage, different degrees of redundancy, and the
quality of those parts of the system. By visualizing the increasing test coverage of
the common software base, as an effect of the testing activities at different levels

 13

in both domain and application testing processes, prioritisation and selection of
tests are supported. In addition to the achieved test coverage of the common base
the delta between the sufficiently tested system and the system under test also
need to be visualized. This is a long term goal and solutions need to be iteratively
applied and evaluated, thus an action research approach is considered. Sub goals
include: evaluate the effects of different granularity of coverage, evaluate the effect
of different ways of tracing test cases to the system, evaluate the amount and
effects of redundant testing and evaluate the relation between test coverage and
the quality of a system.

Granularity and tracing strategy - Most of the suggested coverage measures evaluated
in the literature used for regression test selection are code based and not feasible
to apply in large scale, real time systems. Test coverage could however refer to
coverage at any level such as requirements coverage or variability coverage. An
important factor affecting the possibility to identify a proper connection between
the test cases and the executed system is how well the structure of the
development artefacts is aligned throughout the development process. Selecting
an appropriate granularity level of expressing test coverage is a cost benefit trade
off which need to be surveyed. A first step is to evaluate the effects of different
levels of granularity of coverage in an experimental setting and also evaluate the
effects of different ways of tracing test cases to parts of the system in a real life
setting.

Quality and redundancy - A measurement of test coverage is useless unless we have
some confidence in its correlation with system quality. The relation between
software quality and test coverage and the amount and effect of redundant testing
is planned to be explored by means of a document study, surveying artefacts from
completed industrial product line projects. Variation factors are for example the
different ways of defining the system, different levels of granularity and the
amount of redundancy.

7.4 Evaluation of pragmatic regression testing strategies

Most of the regression test selection strategies evaluated in literature are based on
the assumption that test cases not covering changes in the system are not likely to
detect new faults (paper 1). This is of course a logic assumption but the task to
keep track of the relation between test cases and changes in the system is not
simple in our testing context and it would be interesting to continue evaluating
pragmatic solutions not dependent on dataflow analysis or intact traceability links
between test cases and code or specifications. In (paper 4) we have previously
reported on an empirical evaluation of a pragmatic approach for regression test
selection where test cases are connected to the files in the system based on
information about fixed faults reported in the error reporting system. We plan for
continued evaluation of the fix-cache regression test selection method in terms of

 14

case studies in other companies and in various settings, including variation of
parameters defining the method (e.g. the size of the file cache) as well as analysing
additional measures such as inclusiveness and precision. Another pragmatic
approach is to prioritize test cases based on their execution history (Fazlalizadeh et
al. 2009). This strategy is currently being evaluated by means of a post hoc case
study similar to the one presented in (paper 4).

8 References

H. Agrawal, J.R. Horgan, E.W. Krauser and S.A. London. Incremental regression
testing. In Proceedings of the Conference on Software Maintenance. IEEE, 1993, pp.
348–357.

L. Bendix. Fundamental Tasks in Software Development Environments.
Informatica - An International Journal of Computing and Informatics 19, 3(1995).

J. Bible, G. Rothermel and D.S. Rosenblum. A comparative study of coarse- and
finegrained safe regression test-selection techniques. ACM Transactions on
Software Engineering and Methodology 10, 2(2001) 149–183.

P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner and M. Khalil, Lessons
from applying the systematic literature review process within the software
engineering domain, Journal of Systems and Software 80, 4(2007) 571–583.

L.C. Briand, Y. Labiche and G. Soccar. Automating impact analysis and regression
test selection based on UML designs. Technical Report SCE-02-04, Carleton
University, <http://www.sce.carleton.ca/Squall>. 2002

I. Burnstein. Practical Software Testing, Springer, 2003
Y.-F. Chen, D.S. Rosenblum and K.-P. Vo,. Test tube: a system for selective

regression testing. In Proceedings of the International Conference on Software Engineering,
(Los Alamitos, CA, USA), IEEE, 1994, pp. 211–220.

P. K. Chittimalli and M. J. Harrold. Recomputing coverage information to assist
regression testing. IEEE Transactions on Software Engineering, 35 4 (2009), 452-
469.

H. Do, S. Elbaum and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering 10, 4 (Oct. 2005), 405-435.

S. Easterbrook, J. Singer, M-A. Storey and D. Damian. Selecting empirical
methods for software engineering research. Chapter 11 in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
Springer, 2007, 285-311.

S. Elbaum, A.G. Malishevsky, and G. Rothermel. Test Case Prioritization: A
Family of Empirical Studies. IEEE Transactions on Software Engineering 28, 2 (Feb.
2002), 159-182.

 15

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=5651&_issn=01641212&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.sce.carleton.ca%252FSquall

E. Engström and P. Runeson. A qualitative survey of regression testing practices.
In Proceedings of 11th International Conference on Product Focused Software Development
and Process Improvement (Limerick, Ireland , June 21-23), 2010, in press.

E. Engström and P. Runeson. Software product line testing - a systematic
mapping study. Information and Software Technology, in press.

E. Engström, P. Runeson and M. Skoglund. 2010a .A systematic review on
regression test selection techniques. Information and Software Technology, 52, 1(Jan
2010), 14-30.

E. Engström, P. Runeson and G. Wikstrand. 2010b. An empirical evaluation of
regression testing based on fix-cache recommendations. In Proceedings of the hird
International Conference on Software Testing, Verification and Validation (Paris April 7-
9). IEEE, 2010, pp. 75-78.

Y. Fazlalizadeh, A. Khalilian, M. Abdollahi Azgomi and S. Parsa. Prioritizing test
cases for resource constraint environments using historical test case
performance data. In Proceedings of Computer Science and Information Technology,
2009, pp. 190-195.

T.L. Graves, M.J. Harrold, J.M. Kim, A. Porter and G. Rothermel. An empirical
study of regression test selection techniques. ACM Transactions on Software
Engineering and Methodology 10, 2 (2001), 184–208

R. Gupta, M.J. Harrold and M.L. Soffa. Program slicing-based regression testing
techniques. Software Testing, Verification and Reliability 6, 2 (1996), 83–111.

F. Haftmann, D. Kossmann and E. Lo, A framework for efficient regression tests
on database applications, VLDB Journal 16, 1 (2007), 145–164.

J. Hartmann and D.J. Robson. Techniques for selective revalidation. IEEE
Software 7, 1, (1990), 31–36.

"IEEE Standard Glossary of Software Engineering Terminology," IEEE Std
610.12-1990 .

N. Juristo, AM. Moreno, S. Vegas and M. Solari. In search of what we
experimentally know about unit testing. IEEE Software 23, 6(2006), 72-80.

B.A. Kitchenham. Guidelines for performing Systematic Literature reviews in
Software Engineering Version 2.3. Technical Report S.o.C.S.a.M. Software
Engineering Group, Keele University and Department of Computer Science
University of Durham, 2007.

B.A. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey and S.
Linkman. Systematic literature reviews in software engineering - A systematic
literature review. Information and Software Technology, 51, 1, Special Section - Most
Cited Articles in 2002 and Regular Research Papers, (Jan. 2009), 7-15.

B.A. Kitchenham, E. Mendes and G.H. Travassos. Cross versus within-company
cost estimation studies: a systematic review. IEEE Transactions on Software
Engineering 33, 5 (2007) 316–329.

 16

M. Khurum and T. Gorschek. A systematic review of domain analysis solutions
for product lines, Journal of Systems and Software, 82, 12 (Dec. 2009), 1982-2003.

J. D. McGregor, Testing a Software Product Line. Technical Report, CMU/SEI-
2001-TR-022, ESC-TR-2001-022. 2001

A.M. Memon, Using tasks to automate regression testing of GUIs. In Proceeding
of IASTED International Conference on Artificial Intelligence and Applications, ACTA
Press, 2004, pp. 477–482.

E. M. Olimpiew and H. Gomaa. 2005. Model-based testing for applications
derived from software product lines. In Proceedings of the 1st international Workshop
on Advances in Model-Based Testing (St. Louis, Missouri, May 15 - 21). ACM, New
York, 2005, pp. 1-7.

A. Orso, S. Nanjuan and M.J. Harrold. Scaling regression testing to large software
systems. Softw. Eng. Notes , ACM, (2004), 241–251.

K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson . Systematic Mapping Studies in
Software Engineering. In Proceedings of 12th International Conference on Evaluation
and Assessment in Software Engineering (Bari, Italy, June 26 – 27), 2008, pp 71–80.

K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles,and Techniques, Springer, Heidelberg, August 2005.

S. Reis and A. Metzger and K. Pohl. Integration Testing in Software Product Line
Engineering: A Model-Based Technique. In FASE Lecture Notes in Computer
Science 4422, MB. Dwyer and A. Lopes, Eds. Springer, 2007, 321-335.

G. Rothermel and M.J. Harrold, A safe, efficient regression test selection
technique. ACM Transactions on Software Engineering and Methodology 6, 2 (1997),
173–210.

G. Rothermel and M.J. Harrold, Analyzing regression test selection techniques,
IEEE Transactions on Software Engineering 22, 8 (1996), 529–551.

P. Runeson, M. Skoglund and E. Engström. Test Benchmarks -- what is the
question?. In Proceedings of International Conference on Software Testing Verification
and Validation Workshop. IEEE, 2008, pp. 369-371.

M. Skoglund and P. Runeson. A case study of the class firewall regression test
selection technique on a large scale distributed software system. In Proceedings
of the International Symposium on Empirical Software Engineering. 2005, pp. 74-83.

M. Staples and M. Niazi. Experiences using systematic review guidelines. The
Journal of Systems and Software 80, 9 (2007), 1425–1437.

A. Tevanlinna, J. Taina and R. Kauppinen. Product family testing: a survey.
SIGSOFT Softw. Eng. Notes 29, 2 (Mar. 2004).

L. White and B. Robinson. Industrial real-time regression testing and analysis
using firewalls. In Proceedings of the 20th IEEE International Conference on
Software Maintenance, 2004, pp. 18–27.

 17

 18

Paper I:

A Systematic Review on Regression
Test Selection Techniques

Emelie Engström, Per Runeson and Mats Skoglund

Published in Journal of Information and Software Technology 52(1):14-30, 2010

Abstract

Regression testing is verifying that previously functioning software remains after a
change. With the goal of finding a basis for further research in a joint industry-
academia research project, we conducted a systematic review of empirical
evaluations of regression test selection techniques. We identified 27 papers
reporting 36 empirical studies, 21 experiments and 15 case studies. In total 28
techniques for regression test selection are evaluated. We present a qualitative
analysis of the findings, an overview of techniques for regression test selection and
related empirical evidence. No technique was found clearly superior since the
results depend on many varying factors. We identified a need for empirical studies
where concepts are evaluated rather than small variations in technical
implementations.

 19

1 Introduction

Efficient regression testing is important, even crucial, for organizations with a
large share of their cost in software development. It includes, among other tasks,
determining which test cases need to be re-executed, i.e. regression test selection,
in order to verify the behavior of modified software. Regression test selection
involves a trade-off between the cost for re-executing test cases, and the risk for
missing faults introduced through side effects of changes to the software. Iterative
development strategies and reuse are common means of saving time and effort for
the development. However they both require frequent retesting of previously
tested functions due to changes in related code. The need for efficient regression
testing strategies is thus becoming more and more important.

A great deal of research effort has been spent on finding cost-efficient methods
for different aspects of regression testing. Examples include test case selection
based on code changes [1][6][13][17][20][22][43][49][62][64][67] and specification
changes [38][40][54][68], evaluation of selection techniques [48], change impact
analysis [44], regression tests for different applications e.g. database applications
[18], regression testing of GUIs and test automation [39], and test process
enhancement[31]. To bring structure to the topics, researchers have typically
divided the field of regression testing into i) test selection, ii) modification
identification, iii) test execution, and iv) test suite maintenance. This review is
focused on test selection techniques for regression testing.

Although techniques for regression test selection have been evaluated in previous
work[3][15][36][65], no general solution has been put forward since no technique
could possibly respond adequately to the complexity of the problem and the great
diversity in requirements and preconditions in software systems and development
organizations. Neither does any single study evaluate every aspect of the problem;
e.g. Kim et al. [27] evaluate the effects of regression test application frequency,
Elbaum et al. [11] investigate the impact that different modifications have on
regression test selection techniques, several studies examine the ability to reduce
regression testing effort [3][11][15][27][36][65][66] and to reveal faults
[11][15][27][49].

In order to map the existing knowledge in the field, we launched a systematic
review to collect and compare existing empirical evidence on regression test
selection. The use of systematic reviews in the software engineering domain has
been subject to a growing interest in the last years. In 2004 Kitchenham proposed
a guideline adapted to the specific characteristics of software engineering research.
This guideline has been followed and evaluated [5][30][57] and updated
accordingly in 2007 [29]. Kitchenham et al. recently published a review of 20
systematic reviews in software engineering 2004-2007[28].

 20

Ideally, several empirical studies identified in a systematic review evaluate the same
set of techniques under similar conditions on different subject programs. Then
there would be a possibility to perform an aggregation of findings or even meta-
analysis and thus enable drawing general conclusions. However, as the field of
empirical software engineering is quite immature, systematic reviews have not
given very clear pictures of the results. In this review we found that the existing
studies were diverse, thus hindering proper quantitative aggregation. Instead we
present a qualitative analysis of the findings, an overview of existing techniques
for regression test selection and of the amount and quality of empirical evidence.
There are surveys and reviews of software testing research published before, but
none of these has the broad scope and the extensive approach of a systematic
review. In 2004 Do et al. presented a survey of empirical studies in software testing
in general [8] including regression testing. Their study covered two journals and
four conferences over ten years (1994-2003). Other reviews of regression test
selection are not exhaustive but compare a limited number of chosen regression
test selection techniques. Rothermel and Harrold presented a framework for
evaluating regression test techniques already in 1996 [48] and evaluated the, by
that time, existing techniques. Juristo et al. aggregated results from unit testing
experiments [25] of which some evaluate regression testing techniques, although
with a more narrow scope. Binkley et al. reviewed research on the application of
program slicing to the problem of regression testing [4]. Hartman et al. reports a
survey and critical assessment of regression testing tools [21]. However, as far as
we know, no systematic review on regression test selection research has been
carried through since the one in 1996 [48]. An early report of this study was
published in 2008 [12], which here is further advanced especially with respect to
the detailed description of the techniques (Section 3.4), their development history
and the analysis of the primary studies (Section 3.5).4

This paper is organized as follows. In section 2 the research method used for our
study is described. Section 3 reports the empirical studies and our analyses.
Section 4 discusses the results and section 5 concludes the work.

2 Research Method

2.1 Research Questions

This systematic review aims at summarizing the current state of the art in
regression test selection research by proposing answers to a set of questions

4 In this extended analysis, some techniques that originally were considered different ones, were

considered the same technique. Hence, the number of techniques differ from [10]. Further, the
quality of two empirical studies was found insufficient in the advanced analysis, why two
studies were removed.

 21

below. The research questions stem from a joint industry-academia research
project, which aims at finding efficient procedures for regression testing in
practice. We searched for candidate regression test selection techniques that were
empirically evaluated, and in case of lack of such techniques, to identify needs for
future research. Further, as the focus is on industrial use, issues of scale-up to real-
size projects and products are important in our review. The questions are:

 RQ1) Which techniques for regression test selection in the literature have
been evaluated empirically?

 RQ2) Can these techniques be classified, and if so, how?
 RQ3) Are there significant differences between these techniques that can be

established using empirical evidence?
 RQ4) Can technique A be shown to be superior to technique B, based on

empirical evidence?

Answers to these research questions are searched in the published literature using
the procedures of systematic literature reviews as proposed by Kitchenham [29].

2.2 Sources of information

In order to gain a broad perspective, as recommended in Kitchenham’s guidelines
[29], we searched widely in electronic sources. The advantage of searching
databases rather than a limited set of journals and conference proceedings, is also
empirically motivated by Dieste et al [7]. The following seven databases were
covered:
− Inspec (<www.theiet.org/publishing/inspec/>)
− Compendex (<www.engineeringvillage2.org>)
− ACM Digital Library (<portal.acm.org>)
− IEEE eXplore (<ieeexplore.ieee.org>)
− ScienceDirect (<www.sciencedirect.com>)
− Springer LNCS (<www.springer.com/lncs>)
− Web of Science(<www.isiknowledge.com>)

These databases cover the most relevant journals and conference and workshop
proceedings within software engineering, as confirmed by Dybå et al. [8]. Grey
literature (technical reports, some workshop reports, work in progress) was
excluded from the analysis for two reasons: the quality of the grey literature is more
difficult to assess and the volume of studies included in the first searches would
have grown unreasonably. The searches in the sources selected resulted in overlap
among the papers, where the duplicates were excluded primarily by manual
filtering.

 22

2.3 Search criteria

The initial search criteria were broad in order to include articles with different uses
of terminology. The key words used were <regression> and (<test> or <testing>)
and <software>, and the database fields of title and abstract were searched. The
start year was set to 1969 to ensure that all relevant research within the field would
be included, and the last date for inclusion is publications within 2006. The earliest
primary study actually included was published in 1997. Kitchenham recommends
that exclusion based on languages should be avoided [29]. However, only papers
written in English are included. The initial search located 2 923 potentially relevant
papers.

Exclusion
based on
abstracts

Exclusion
based on
full text

#73

#450
Exclusion
based on
titles

#2923

Stage 1 Stage 3 Stage 2

#27

Figure 1. Study selection procedure

2.4 Study Selection

In order to obtain independent assessments, four researchers were involved in a
three-stage selection process, as depicted in Figure 1. In the first stage duplicates
and irrelevant papers were excluded manually based on titles. In our case, the share
of irrelevant papers was extremely large since papers on software for statistical
regression testing or other regression testing could not be distinguished from
papers on software regression testing in the database search. The term software did
not distinguish between the two areas, since researchers on statistical regression

 23

testing often develop some software for their regression test procedures. After the
first stage 450 papers remained.

In the second stage, information in abstracts was analyzed and the papers were
classified along two dimensions: research approach and regression testing
approach. Research approaches were experiment, case study, survey, review, theory
and simulation. The two latter types were excluded, as they are not presenting an
empirical research approach, and the survey and review papers were not considered
as being primary studies but rather related work to the systematic review. At this
stage we did not judge the quality of the empirical data. Regression testing
approaches were selection, reduction, prioritization, generation, execution and
other. Only papers focusing on regression test selection were included.

In the third stage a full text analysis was performed on the 73 papers and the
empirical quality of the studies was further assessed. The following questions were
asked in order to form quality criteria for which studies to exclude before the final
data extraction:

 Is the study focused on a specific regression test selection method? E.g. a
paper could be excluded that presents a method that potentially could be
used for regression testing, but is evaluated from another point of view.

 Are the metrics collected and the results relevant for a comparison of
methods? E.g. a paper could be excluded which only reports on the ability
to predict fault prone parts of the code, but not on the fault detection
effectiveness or the cost of the regression test selection strategy.

 Is data collected and analyzed in a sufficiently rigorous manner? E.g. a paper
could be excluded if a subset of components was analyzed and conclusions
were drawn based on those, without any motivation for the selection.

These questions are derived from a list of questions, used for a similar purpose,
published by Dybå et al. [8]. However in our review context, quality requirements
for inclusion had to be weaker than suggested by Dybå et al. in order to obtain a
useful set of studies to compare. The selection strategy was in general more
inclusive than exclusive. Only papers with very poorly reported or poorly
conducted studies were excluded, as well as papers where the comparisons made
were considered irrelevant to the original goals of this study.

Abstract analysis and full text analysis were performed in a slightly iterative fashion.
Firstly, the articles were independently assessed by two of the researchers. In case
of disagreement, the third researcher acted as a checker. In many cases,
disagreement was due to insufficient specification of the criteria. Hence, the criteria
were refined and the analysis was continued.

In order to get a measure of agreement in the study selection procedure, the Kappa
coefficient was calculated for the second stage, which comprised most judgments
in the selection. In the second stage 450 abstracts were assessed by two researchers
independently. In 41 cases conflicting assessments were made which corresponds

 24

to the Kappa coefficient K = 0.78. According to Landis and Koch [33] this
translates to a substantial strength of agreement.

2.5 Data extraction and synthesis

Using the procedure, described in the previous section, 27 articles were finally
selected that reported on 36 unique empirical studies, evaluating 28 different
techniques. The definition of what constitutes a single empirical study, and what
constitutes a unique technique is not always clear cut. The following definitions
have been used in our study:

 Study: an empirical study applying a technique to one or more programs.
Decisions on whether to split studies with multiple artifacts into different
studies were based on the authors’ own classification of the primary studies.
Mostly, papers including studies on both small and large programs are
presented as two different studies.

 Technique: An empirically evaluated method for regression test selection. If
the only difference between two methods is an adaption to a specific
programming language (e.g. from c++ to java) they are considered being the
same technique.

Studies were classified according to type and size, see Section 3.1. Two types of
studies are included in our review, experiments and case studies. We use the
following definitions:

 Experiment: A study in which an intervention is deliberately introduced to
observe its effects [55].

 Case study: An empirical inquiry that investigates a contemporary
phenomenon within its real-life context, especially when the boundaries
between the phenomenon and context are not clearly evident [69].

Surveys and literature reviews were also considered in the systematic review, e.g.
[48] and [25], but rather as reference point for inclusion of primary studies than as
primary studies as such.

Regarding size, the studies are classified as small, medium or large (S, M, L)

depending on the study artifact sizes. A small study artifact has less than 2,000 lines
of code (LOC), a large study artifact has more than 100,000 LOC, and a medium
sized study artifact is in between. The class limits are somewhat arbitrarily defined.
In most of the articles the lines of code metric is clearly reported and thus this is
our main measurement of size. But in some articles sizes are reported in terms of
number of methods or modules, reported as the authors’ own statement about the
size or not reported at all.

The classification of the techniques is part of answering RQ2 and is further
elaborated in Section 3.4.

 25

2.6 Qualitative assessment of empirical results

The results from the different studies were qualitatively analyzed in categories of
four key metrics: reduction of cost for test execution, cost for test case selection,
total cost, and fault detection effectiveness, see Section 3.5. The “weight” of an
empirical study was classified according to the scheme in Table 1. A study with
more “weight” is considered contributing more to the overall conclusions. A unit
of analysis in an experiment is mostly a version of a piece of code, while in a case
study; it is mostly a version of a whole system or sub-system.

Table 1. “Weight” of empirical study.

Type and size of study Light empirical study
“weight”

Medium empirical study
“weight”

Experiment (small)
Case study (small-medium)

Analysis units < 10 Analysis units >= 10

Experiment (medium)
Case study (large)

Analysis units < 4 Analysis units >= 4

The results from the different studies were then divided into six different
categories according to the classification scheme in Table 2. The classification is
based on the study “weight” and the size of the difference in a comparative
empirical study. As the effect sizes were rarely reported in the studies, the sizes of
the differences are also qualitatively assessed. The categorization of results was
made by two researchers in parallel and uncertainties were resolved in discussions.
Results are presented in Figures 5 – 8 in Section 3.5.

Table 2. Classification scheme for qualitative assessment of the weight of empirical
results.

 No difference Difference of small
size

Difference of large
size

Medium empirical
study “weight”

Strong indication of
equivalence between
the two compared
techniques

Weak indication that
one technique is
superior to the other

Strong indication that
one technique is
superior to the other

Light empirical study
“weight”

Weak indication of
equivalence between
the two compared
techniques

No indication of
differences or
similarities

Weak indication that
one technique is
superior to the other

2.7 Threats to validity

Threats to the validity of the systematic review are analyzed according to the
following taxonomy; construct validity, reliability, internal validity and external
validity.

 26

Construct validity reflects to what extent the phenomenon under study really
represents what the researchers have in mind and what is investigated according to
the research questions. The main threat here is related to terminology. Since the
systematic review is based on a hierarchical structure of terms – regression
test/testing consists of the activities modification identification, test selection, test
execution and test suite maintenance – we might miss other relevant studies on test
selection that are not specifically aimed for regression testing. However, this is a
consciously decided limitation, which has to be taken into account in the use of the
results. Another aspect of the construct validity is assurance that we actually find all
papers on the selected topic. We analyzed the list of publication fora and the list of
authors of the primary studies to validate that no major forum or author was
missed.

Reliability focuses on whether the data is collected and the analysis is conducted in
a way that it can be repeated by other researchers with the same results. We
defined a study protocol setting up the overall research questions, the overall
structure of the study as well as initial definitions of criteria for
inclusions/exclusion, classification and quality. The criteria were refined during the
study based on the identification of ambiguity that could mislead the researchers.

In a systematic review, the decision process for inclusion and exclusion of primary
studies is the major focus when it comes to reliability, especially in this case where
another domain (statistics) also uses the term regression testing. Our
countermeasures taken to reduce the reliability threat were to set up criteria and to
use two researchers to classify papers in stages 2 and 3. In cases of disagreement, a
third opinion is used. However, the Kappa analysis indicates strong agreements.
One of the primary researchers was changed between stages 2 and 3. Still, the
uncertainties in the classifications are prevalent and a major threat to reliability,
especially since the quality standards for empirical studies in software engineering
are not high enough. Research databases is another threat to reliability [8]. The
threat is reduced by using multiple databases; still the non-determinism of some
database searches is a major threat to the reliability of any systematic review.

Internal validity is concerned with the analysis of the data. Since no statistical
analysis was possible due to the inconsistencies between studies, the analysis is
mostly qualitative. Hence we link the conclusions as clearly as possible to the
studies, which underpin our discussions.

External validity is about generalizations of the findings derived from the primary
studies. Most studies are conducted on small programs and hence generalizing
them to a full industry context is not possible. In the few cases were experiments
are conducted in the small as well as case studies in the large, the external validity is
reasonable, although there is room for substantial improvements.

 27

3 Results

3.1 Primary studies

The goal of this study was to find regression test selection techniques that are
empirically evaluated. The papers were initially obtained in a broad search in seven
databases covering relevant journals, conference and workshop proceedings within
software engineering. Then an extensive systematic selection process was carried
out to identify papers describing empirical evaluations of regression test selection
techniques. The results presented here thus give a good picture of the existing
evidence base.

Out of 2 923 titles initially screened, 27 papers (P1-P27) on empirical evaluations
of techniques for regression test selection remained until the final stage. These 27
papers report on 36 unique studies (S1-S36), see Table 3, and compare in total 28
different techniques for regression test selection for evaluation (T1-T28), see listing
in Table 8 below, which constitutes the primary studies of this systematic review.
Five reference techniques are also identified (REF1-REF5), e.g. re-test all (all test
cases are selected) and random(25) (25% of the test cases are randomly selected). In
case the studies are reported partially or fully in different papers, we generally refer
to the most recent one as this contains the most updated study. When referring to
the techniques, we do on the contrary refer to the oldest, considering it being the
original presentation of the technique.

Table 3. Primary studies, S1-S36, published in papers P1-P27, evaluation techniques
T1-T28.

Study
ID

Publica-
tion ID

Reference Techniques Artifacts Type
of
study

Size
of
study

S1 P1 Baradhi and
Mansour
(1997) [2]

T4, T5, T6,
T11, T12
REF1

Own unspecified Exp S

S2 P2 Bible et al.
(2001) [3]

T7, T8
REF1

7x Siemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites

Exp S

S3 P2 Bible et al.
(2001)[3]

T7, T8
REF1

Space, Real application, real
faults, constructed test
cases

Exp S

S4 P2 Bible et al.
(2001) [3]

T7, T8
REF1

Player, One module of a
large software system
constructed realistic test
suites

Exp M

S5 P3 Elbaum et
al. (2003)

 T2, T4, T18
REF1

Bash, Grep, Flex and Gzip,
Real, non-trivial C

CS
(Mult)

M

 28

Reference Techniques Artifacts Study Publica- Type Size
ID tion ID of of

study study

[11] program, constructed test
suites

S6 P4 Frankl et al.
(2003) [14]

T7, T10
REF1

7xSiemens, Small
constructed programs,
constructed, realistic,
non-coverage based test
suites

Exp S

S7 P5 Graves et al.
(2001) [15]

T1, T2, T7
REF1,
REF2,
REF3, REF4

7xSiemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites; space, Real
application, real faults,
constructed test cases;
player, One module of a
large software system
constructed realistic test
suites

Exp S M

S8 P6 Harrold et
al. (2001)
[19]

T15
REF1

Siena, Jedit, JMeter, RegExp,
Real programs,
constructed faults

Exp S

S9 P7 Kim et al.
(2005)[27]

T2, T7, T8
REF1,
REF2,
REF3, REF4

7xSiemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites; Space, Real
application, real faults,
constructed test cases

Exp S

S10 P8 Koju et al.
(2003) [32]

T15
REF1

Classes in .net framework,
Open source, real test
cases

Exp S

S11 P9 Mansour et
al. (2001)
[36]

T4, T5, T6,
T12

20 small sized Modules Exp S

S12 P10 Mao and Lu
(2005) [38]

T16, T17,
T24
REF1

Triangle, eBookShop,
ShipDemo, Small
Constructed programs

CS S

S13 P11 Orso et al.
(2004) [41]

T9, T15,
T19
REF1

Jaba, Daikon, JBoss, Real-
life programs, original test
suites

Exp M L

S14 P12 Pasala and
Bhowmick
(2005) [42]

T20
REF1

Internet Explorer (client), IIS
(web server), application
(app. Server), An existing
browser based system,
real test cases

CS NR

S15 P13 Rothermel T7 7xSiemens, Small Exp S

 29

Reference Techniques Artifacts Study Publica- Type Size
ID tion ID of of

study study

and Harrold
(1997) [49]

REF1 constructed programs,
constructed, realistic
non-coverage based test
suites

S16 P13 Rothermel
and Harrold
(1997) [49]

T7
REF1

Player, One module of a
large software system
constructed realistic test
suites

Exp M

S17 P14 Rothermel
and Harrold
(1998) [50]

T7
REF1

7xSiemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites

Exp S

S18 P14 Rothermel
and Harrold
(1998) [50]

T7
REF1

7xSiemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites

Exp S

S19 P14 Rothermel
and Harrold
(1998) [50]

T7
REF1

7xSiemens, Small
constructed programs,
constructed, realistic
non-coverage based test
suites;

Exp S

S20 P14 Rothermel
and Harrold
(1998) [50]

T7
REF1

Player, One module of a
large software system
constructed realistic test
suites

Exp M

S21 P14 Rothermel
and Harrold
(1998) [50]

T7
REF1

Commerercial, Real
application, real test suite

Exp S

S22 P15 Rothermel et
al. (2002)[45]

T8, T18
REF1

Emp-server, Open-source,
server component,
constructed test cases;
Bash Open-source, real and
constructed test cases

Exp M

S23 P16 Rothermel et
al.
(2004)[46]

T2, T8, T18
REF1

Bash, Open-source, real
and constructed test cases

Exp M

S24 P16 Rothermel et
al. (2004)
[46]

T2, T8, T18
REF1

Emp-server, Open-source,
server component,
constructed test cases

Exp M

S25 P17 Skoglund
and
Runeson
(2005) [56]

T9, T21
REF1

Swedbank, Real, large scale,
distributed, component-
based, J2EE system,
constructed, scenario-
based test cases

CS L

 30

Reference Techniques Artifacts Study Publica- Type Size
ID tion ID of of

study study

S26 P18 Vokolos and
Frankl
(1998) [65]

T10
REF1

ORACOLO2, Real
industrial subsystems, real
modifications, constructed
test cases

CS M

S27 P19 White and
Robinson
(2004) [61]

T3
REF5

14 real ABB projects,
Industrial, Real-time
system

CS L

S28 P19 White and
Robinson
(2004) [61]

T9
REF5

2 real ABB projects,
Industrial, Real-time
system

CS L

S29 P20 White et al.
(2005) [60]

T3, T9, T25 OO-telecommunication
software system

CS S

S30 P20 White et al.
(2005) [60]

T3, T9, T25 OO – real-time software
system

CS L

S31 P21 Willmor and
Embury
(2005)[63]

T7, T22, T23
REF1

Compiere, James, Mp3cd
browser, Open source
systems, real modifications

CS NR

S32 P22 Wong et al.
(1997)[66]

T13
REF1

Space, Real application, real
faults, constructed test
cases

CS S

S33 P23 Wu et al.
(1999) [67]

T14
REF1

ATM-simulator, small
constructed program

CS S

S34 P23 Wu et al.
(1999) [67]

T14
REF1

Subsystem of a fully
networked supervisory
control and data analysis
system

CS M

S35 P24,
P25, P26

Zheng et al.
(2005) [71],
Zheng et al.
(2006) [72]
Zheng
(2005) [70]

 T26, T28
REF1

ABB-internal, Real C/C++
application

CS M

S36 P27, P25 Zheng et al.
(2006) [74],
Zheng et al.
(2006) [72]

T27, T28
REF1

ABB-internal, Real C/C++
application

CS M

In most of the studies, the analyses are based on descriptive statistics. Tabulated
data or bar charts are used as a basis for the conclusions. In two studies (S23 and
S24), published in the same paper (P16) [46] statistical analysis is conducted, using
ANOVA.

 31

3.2 Analyses of the primary studies

In order to explore the progress of the research field, and to validate that the
selected primary studies reasonably cover our general expectations of which fora
and which authors should be represented, we analyze, as an extension to RQ1,
aspects of the primary studies as such: where they are published, who published
them, and when. As defined in Section 2.5, a paper may report on multiple studies,
and in some cases the same study is reported in more than one paper. Different
researchers have different criteria for what constitutes a study. We have tried to
apply a consistent definition of what constitutes a study. This distribution of
studies over papers is shown in Table 4. Most papers (18 out of 27) report a single
study, while few papers report more than one. Two papers report new analyses of
earlier published studies. Note that many of the techniques are originally presented
in papers without empirical evaluation, hence these papers are not included as
primary studies in the systematic review, but referenced in Section 3.3 as sources of
information about the techniques as such (Table 8).

Table 4. Distribution of number of papers after the number of studies each paper
reports

reported studies in each paper # papers # studies

0 (re-analysis of another study) 2 0

1 18 18

2 5 10

3 1 3

5 1 5

Total 27 36

The number of identified techniques in the primary studies is relatively high
compared to the number of studies, 28 techniques were evaluated in 36 studies. In
Table 5, the distribution of techniques over different studies is presented. One
technique was present in 14 different studies, another technique in 8 studies etc. 14
techniques only appear in one study, which is not satisfactory when trying to
aggregate information from empirical evaluations of the techniques.

Table 6 lists the different publication fora in which the articles have been
published. It is worth noting regarding the publication fora, that the empirical
regression testing papers are published in a wide variety of journals and conference
proceedings. Limiting the search to fewer journals and proceedings would have
missed many papers, see Table 6.

 32

Table 5. Distribution of techniques after occurrences in number of studies

Represented in number of studies Number of techniques

14 1
8 1
5 2
4 1
3 2
2 7
1 14
Total 28

The major software engineering journals and conferences are represented among
the fora. It is not surprising that a conference on software maintenance is on the
top, but we found, during the validity analysis, that the International Symposium
on Software Testing and Analysis is not on the list at all. We checked the
proceedings specifically and have also noticed that, for testing in general, empirical
studies have been published there, as reported by Do et al. [8], but apparently not
on regression test selection during the studied time period.

Table 6. Number of papers in different publication fora

Publication Fora Type # %

International Conference on Software Maintenance Conference 5 18.5
ACM Transactions of Software Engineering and Methodology Journal 3 11.1
International Symposium on Software Reliability Engineering Conference 3 11.1
International Conference on Software Engineering Conference 3 11.1
Asia-Pacific Software Engineering Conference Conference 2 7.4

International Symposium on Empirical Software Engineering Conference 2 7.4
IEEE Transactions of Software Engineering Journal 1 3.7
Journal of Systems and Software Journal 1 3.7
Software Testing Verification and Reliability Journal 1 3.7
Journal of Software Maintenance and Evolution Journal 1 3.7

ACM SIGSOFT Symposium on Foundations of SE Conference 1 3.7

Automated Software Engineering Conference 1 3.7
Australian SE Conference Conference 1 3.7
International Conf on COTS-based Software Systems Conference 1 3.7

Int. Conference on Object-Oriented Programming, Systems,
Languages, and Applications

Conference 1 3.7

Total 27 100

 33

Table 7 lists authors with more than one publication. In addition to these 17
authors, five researchers have authored or co-authored one paper each. In the top
of the author’s list, we find the names of the most prolific researchers in the field
of regression test selection (Rothermel and Harrold). It is interesting to notice from
the point of view of conducting empirical software engineering research, that there
are two authors on the top list with industry affiliation (Robinson and Smiley).

Table 7. Researchers and number of publications

Name # Name #

Rothermel G. 9 Baradhi G. 2

Harrold M. J. 5 Frankl P. G. 2

Robinson B. 5 Kim J. M. 2

Zheng J. 4 Mansour N. 2

Elbaum S. G. 3 Orso A. 2

Kallakuri P. 3 Porter A. 2

Malishevsky A. 3 White L. 2

Smiley K. 3 Vokolos F. 2

Williams L. 3

The regression test selection techniques have been published from 1988 to 2006, as
shown in Fig 2 and Table 8. The first empirical evaluations were published in 1997
(one case study and three experiments), hence the empirical evaluations have
entered the scene relatively late. 12 out of the 28 techniques have been originally
presented and evaluated in the same paper: T12-S11 and T13-S32 (1997); T14-S33-
S34 (1999); T18-S5 (2003); T19-S13 (2004),; T20-S14; T21-S25; T23-S31; T25-S29-
S30 and T26-S35 (2005); T27-S33 and T28-S35 (2006).

Fig 2. Accumulated number of published techniques, case studies and experiments.

 34

We conclude from this analysis that there are only a few studies comparing many
techniques in the same study, making it hard to find empirical data for a
comprehensive comparison. However, some small and medium-sized artifacts have
appeared as a de-facto benchmark in the field [8], enabling comparison to some
extent of some techniques.

Most of the expected publication fora are represented, and one that is not
represented, but was expected, was specifically double checked. Similarly, well
known researchers in the field were among the authors, hence we consider the
selected primary studies as being a valid set. It is clear from the publication analysis
that the techniques published during the later years are published with empirical
evaluations to a higher degree than during the earlier years, which is a positive
trend in searching for empirically evaluated techniques as defined in RQ1.

3.3 Empirically evaluated techniques (RQ1)

3.3.1 Overview

Table 8 lists the 28 different regression test selection techniques (T1-T28), in
chronological order according to date of first publication. In case the studies are
reported partially or fully in different papers, we generally refer to the original one.
In case a later publication has added details that are needed for exact specification
of the technique, both references are used.

This list is specifically the answer to the first research question: which techniques
for regression test selection existing in the literature have been evaluated
empirically (RQ1). In this review, the techniques, their origin and description, are
identified in accordance to what is stated in each of the selected papers, although
adapted according to our definition of what constitutes a unique technique in
Section 2.5.

Table 8. Techniques for regression test selection

Technique Origin Description Evaluated in
study

T1 Harrold and Soffa (1988)
[20]

Dataflow-coverage-based S7

T2 Fischer et al. (1981) [13]
Hartman and Robson (1988)
[22]

Modification-focused,
minimization, branch and
bound algorithm

S5, S7, S9, S23,
S24

T3 Leung and White (1990) [35] Procedural-design firewall S27, S29, S30

T4 Gupta et al. (1992) [16] Coverage-focused, slicing S1, S5, S11

T5 White and Leung (1992) [62] Firewall S1, S11

T6 Agraval et al. (1993)[1] Incremental S1, S11

 35

Technique Origin Description Evaluated in
study

T7 Rothermel and Harrold
(1993)[47]

Viewing statements, DejaVu S2 -S4, S6, S7,
S9, S15 – S21,
S31

T8 Chen and Rosenblum (1994)
[6]

Modified entity - TestTube S2 - S4, S9, S22 -
24

T9 Pei et al. (1997) [43] White
and Abdullah (1997) [59]

High level – identifies changes
at the class and interface level

S13, S25, S28 -
S30

T10 Vokolos and Frankl (1997)
[64]

Textual Differing - Pythia S6, S26

T11 Mansour and Fakih (1997)
[37]

Genetic algorithm S1

T12 Mansour and Fakih (1997)
[37]

Simulated annealing S1, S11

T13 Wong et al. (1997) [66] Hybrid: modification,
minimization and
prioritization- based selection

S32

T14 Wu et al. (1999) [67] Analysis of program structure
and function-calling sequences

S33, S34

T15 Rothermel et al. (2000) [51]
Harrold et al. (2001) [19]
Koju et al. (2003) [32]

Edge level - identifies changes
at the edge level

S8, S10, S13

T16 Orso et al. (2001) [40] Use of metadata to represent
links between changes and
Test Cases

S12

T17 Sajeev et al. (2003) [54] Use of UML (OCL) to
describe information changes

S12

T18 Elbaum et al. (2003) [11] Modified-non-core Same as T8
but ignoring core functions

S5, S22

T19 Orso et al. (2004) [41] Partitioning and selection
Two Phases

S13

T20 Pasala and Bhowmick
(2005) [42]

Runtime dependencies
captured and modeled into a
graph (CIG)

S14

T21 Skoglund and Runeson
(2005) [56]

Change based selection S25

T22 Willmor and Embury
(2005)[63]

Test selection for DB-driven
applications (extension of T7)
combined safety

S31

T23 Willmor and Embury (2005)
[63]

Database safety S31

T24 Mao and Lu (2005) [38] Enhanced representation of
change information

S12

T25 White et al. (2005) [60] Extended firewall additional
data-paths

S29, S30

 36

Technique Origin Description Evaluated in
study

T26 Zheng (2005)[71] I-BACCI v.1 S35

T27 Zheng et al. (2006)[74] I-BACCI v.2 (firewall +
BACCI)

S36

T28 Zheng et al. (2006) [74] I-BACCI v.3 S35, S36

REF1 Leung and White (1989) [34] Retest-all S1 - S10, S12 –
S24, S26, S31 -
S36

REF2 Random (25) S7, S9

REF3 Random (50) S7, S9

REF4 Random (75) S7, S9

REF5 Intuitive, experience based
selection

S27, S28

3.3.2 Development history

The historical development chain gives some advice on which techniques are
related and how they are developed, see Fig 3. There are three major paths,
beginning with T3, T7 and T8 respectively.

1988

1990

1990

1992

1986

1994

1996

1998

2000

2002

2004

2006 T28 T27 T26
T25

T9

T5

T3

T19

T7

T21
T22 T23

T15

T4 T6

T2

T1

T8

T18

T12 T11 T10

T16

T17

T14

T24 T20

T13

DejaVu
Based

Firewall
Based

Dependency
Based

Specification
Based

Other

Fig 3. Evolution of techniques

One group of techniques is the firewall techniques where dependencies to modified
software parts are isolated inside a firewall. Test cases covering the parts within the
firewall are selected for re-execution. The first firewall technique (T3) for
procedural languages was presented by Leung and White in 1990 [35]. An empirical
evaluation used a changed version (T5). The technique was adapted to object-
oriented languages T9 in two similar ways [43][59] and further enhanced and

 37

extended in the I-BACCI technique (T25-T28). It has also been adapted to Java
(T21).

Another group of techniques is based on a technique invented by Rothermel and
Harrold for procedural languages in 1993 [47] (T7), sometimes referred to as
DejaVu. This technique has later been adopted to object-oriented languages T15
(for C++ [51], and for Java[19][32]) and also further extended for MSIL code [32].
Through technique T19 it has also been combined with techniques from the group
of firewall techniques. Extended techniques that cope with database state have also
been created T22 and T23 [63].

The firewall techniques are based on relationships to changed software parts.
Different granularities of parts have been used, such as dependencies between
modules, functions or classes. There exist techniques that are not stated in their
presentations to be based on the firewall technique but still make use of
dependencies between software parts. T8, T14 and T18 all utilize the relations
between functions and T20 use dependencies between components (DLL:s).

In addition to the three major groups, there are other techniques which share some
similarities with either group, although not being directly derived from one of
them.

Using the dependency principle between larger parts, such as functions or classes,
lead to that all test cases using the changed part are re-executed even though the
actual modified code may not be executed. Using a smaller granularity gives better
precision but are usually more costly since more analysis is needed. The smallest
granularity is the program statements, segments, or blocks. The relationships
between these smallest parts may be represented by creating control flow graphs
where the control flow from one block to another may be seen as a relationship
between the two blocks. This principle is for example used in the group of
techniques based on Rothermel and Harrold’s technique T7, see above, but is also
used in the firewall technique T5. T10 also use program blocks for its test selection.
An extension of this principle where the variables are also taken into account is
used in the techniques T2, T4, T6, T11-T13, in various ways.

Another group of techniques are those using specifications or metadata of the
software instead of the source code or executable code. T17 use UML
specifications, and T16 and T24 use metadata in XML format for their test case
selection.

3.3.3 Uniqueness of the techniques

There is a great variance regarding the uniqueness of the techniques identified in
the studied papers. Some techniques may be regarded as novel at the time of their
first presentation, while others may be regarded as only variants of already existing
techniques. For example in [3] a regression test selection techniques is evaluated,

 38

T8, and the technique used is based on modified entities in the subject programs.
In another evaluation, reported on in [11] it is stated that the same technique is
used as in [3] but adapted to use a different scope of what parts of the subjects
programs that is included in the analysis, T18. In [3] the complete subject programs
are included in the analysis; while in [11] core functions of the subject programs are
ignored. This difference of scope probably has an effect on the test cases selected
using the two different approaches. The approach in which core functions is
ignored is likely to select fewer test cases compared to the approach where all parts
of the programs are included. It is not obvious whether the two approaches should
be regarded as two different techniques or if they should be regarded as two very
similar variants of the same technique. We chose the latter option.

Some techniques evaluated in the reviewed papers are specified to be used for a
specific type of software, e.g. Java, T15 and T19 [19][41], component based
software, T17, T20, T24 and T28 [38][42][72][74], or database-driven applications,
T22, [63]. It is not clear whether they should be considered one technique applied
to two types of software, or two distinctly different techniques. For example, a
technique specified for Java, T15, is presented and evaluated in [19]. In [58] the
same technique is used on MSIL (MicroSoft Intermediate Language) code,
however adapted to cope with programming language constructs not present in
Java. Thus, it can be argued that the results of the two studies cannot be
synthesized in order to draw conclusions regarding the performance of neither the
technique presented in [19], nor the adapted version, used in [32]. However, we
chose to classify them as the same technique.

There are also techniques specified in a somewhat abstract manner, e.g. techniques
that handle object-oriented programs in general, e.g. T14 [67]. However, when
evaluating a technique, the abstract specification of a technique must be
concretized to handle the specific type of subjects selected for the evaluation. The
concretization may look different depending on the programming language used
for the subject programs. T14 is based on dependencies between functions in
object-oriented programs in general. The technique is evaluated by first tailoring
the abstract specification of the technique to C++ programs and then performing
the evaluation on subject programs in C++. However, it is not clear how the
tailoring of the specification should be performed to evaluate the technique using
other object-oriented programming languages, e.g. C# or Java. Thus, due to
differences between programming languages, a tailoring made for one specific
programming language may have different general performance than a tailoring
made for another programming language.

3.4 Classification of Techniques (RQ2)

In response to our second research question (RQ2), we are looking for some kind
of classification of the regression test selection techniques. Since the techniques are
sensitive to subtle changes in their implementation or use, we could compare
classes of techniques, instead of comparing individual techniques. As indicated in

 39

Figure 3, there exist many variants of techniques, gradually evolved over time.
Some suggested classifications of regression test techniques exist. Rothermel and
Harrold present a framework for analyzing regression test selection techniques
[48], including evaluation criteria for the techniques: inclusiveness, precision,
efficiency and generality. Graves et al. [15] present a classification scheme where
techniques are classified as Minimization, Safe, Dataflow-Coverage-based, Ad-
hoc/Random or Retest-All techniques. Orso et al. [41] separate between
techniques that operate at a higher granularity e.g. method or class (called high-
level) and techniques that operate at a finer granularity, e.g. statements (called low-
level). In this review we searched for classifications in the papers themselves with
the goal of finding common properties in order to be able to reason about groups
of regression testing techniques.

One property found regards the type of input required by the techniques. The
most common type of required input is source code text, e.g. T1-8, T10-12 and
T18. Other types of code analyzed by techniques are intermediate code for virtual
machines, e.g. T9, T13-15 and T21, or machine code, e.g. T24 and T26. Some
techniques require input of a certain format, e.g. T16 (meta data) and T17 (OCL).
Techniques may also be classified according to the type of code used in the analysis
(Java, C++…). A third type of classification that could be extracted from the
papers regards the programming language paradigm. Some techniques are specified
for use with procedural code, e.g. T1, T2, T7, T8, and T18, while other techniques
are specified for the object-oriented paradigm, e.g. T9, T13-17, and T21-T23 some
techniques are independent of programming language, e.g. T3, T19, and T26-28.

The most found property assigned to regression test selection techniques is
whether they are safe or unsafe. With a safe technique the defects found with the full
test suite are also found with the test cases picked by the regression test selection
technique. This property may be used to classify all regression test selection
techniques into either safe or unsafe techniques. Re-test all is an example of a safe
technique since it selects all test cases, hence, it is guaranteed that all test cases that
reveal defects are selected. Random selection of test cases is an example of an
unsafe technique since there is a risk of test cases revealing defects being missed. In
our study seven techniques were stated by the authors to be safe, T7, T8, T10, T15,
and T21-24. However, the safety characteristic is hard to achieve in practice, as it
e.g. assumes determinism in program and test execution.

A major problem, in addition to finding a classification scheme is applying the
scheme to the techniques. The information regarding the different properties is
usually not available in the publications. Hence, we may only give examples of
techniques having the properties above based on what the authors state in their
publications. The properties reported for each technique is presented in Table 9.

 40

Table 9. Overview of properties for each technique.

 Applicability Method Properties

Tech-
nique

Type
of
Lan-
guage

Type
of
Soft-
ware

Input Approach Granularity Detect
ion
Ability

Cost
Reduc-
tion

 Pr
oc

=
 P

ro
ce

du
ra

l l
an

gu
ag

e
In

d
 =

 In
de

pe
nd

en
t

O
O

 =
 O

bj
ec

t o
rie

nt
ed

Co
m

p
=

 C
om

po
ne

nt
 b

as
ed

D

B
=

 D
at

ab
as

e
dr

iv
en

 SC

 =
 S

ou
rc

e
co

de

IM
 =

 In
te

rm
ed

iat
e

co
de

 fo
r v

irt
ua

l m
ac

hi
ne

s
BI

N
 =

 M
ac

hi
ne

 c
od

e
Sp

ec
 =

 In
pu

t o
f a

 c
er

ta
in

 fo
rm

at

CF
 =

 C
on

tro
l f

lo
w

FW

 =
 F

ire
 w

all

Sl
ici

ng

D
ep

 =
 D

ep
en

de
nc

y
ba

se
d

G
en

et
ic

Si
m

A
n=

 S
im

ul
at

ed
 a

nn
ea

lin
g

St
m

 =
 st

at
em

en
t

Fu
nc

 =
 F

un
ct

io
n

Cl
as

s
M

od
ul

e
Co

m
po

ne
nt

Sa
fe

 M

in
 =

 M
in

im
iz

at
io

n

T1 Ind IM CF Stm
T2 Proc SC CF Stm Min
T3 Proc SC FW Module
T4 Proc SC Slicing Stm Min
T5 Proc SC FW
T6 Proc SC Slicing Stm
T7 Proc SC CF Stm Safe
T8 Proc SC Dep Func Safe
T9 OO IM FW Class
T10 Proc SC Stm Safe
T11 Proc SC Genetic Stm
T12 Proc SC SimAn Stm
T13 Proc SC Stm Min
T14 OO SC Dep Func
T15 OO IM CF Stm Safe
T16 OO Comp Spec CF Stm
T17 OO Comp Spec
T18 Proc SC Dep Func
T19 OO IM FW+CF Class+Stm
T20 Ind Comp BIN Dep Comp
T21 OO IM FW Class
T22 OO DB SC CF Stm Safe

 41

 Applicability Method Properties

Input Approach Granularity Tech- Type Type Detect Cost
nique of of ion Reduc-

Ability tion Lan- Soft-
guage ware

 Pr
oc

=
 P

ro
ce

du
ra

l l
an

gu
ag

e
In

d
 =

 In
de

pe
nd

en
t

O
O

 =
 O

bj
ec

t o
rie

nt
ed

Co
m

p
=

 C
om

po
ne

nt
 b

as
ed

D

B
=

 D
at

ab
as

e
dr

iv
en

 SC

 =
 S

ou
rc

e
co

de

IM
 =

 In
te

rm
ed

iat
e

co
de

 fo
r v

irt
ua

l m
ac

hi
ne

s
BI

N
 =

 M
ac

hi
ne

 c
od

e
Sp

ec
 =

 In
pu

t o
f a

 c
er

ta
in

 fo
rm

at

CF
 =

 C
on

tro
l f

lo
w

FW

 =
 F

ire
 w

all

Sl
ici

ng

D
ep

 =
 D

ep
en

de
nc

y
ba

se
d

G
en

et
ic

Si
m

A
n=

 S
im

ul
at

ed
 a

nn
ea

lin
g

St
m

 =
 st

at
em

en
t

Fu
nc

 =
 F

un
ct

io
n

Cl
as

s
M

od
ul

e
Co

m
po

ne
nt

Sa
fe

 M

in
 =

 M
in

im
iz

at
io

n

T23 OO DB SC CF Stm Safe5
T24 OO Comp BIN

+Spec
Dep Stm Safe

T25 OO SC? FW Class
T26 Ind Comp BIN FW Func
T27 Ind Comp BIN+SC FW Func
T28 Ind Comp BIN+SC FW Func

3.5 Analysis of the Empirical Evidence (RQ3)

Once we have defined which empirical studies exist and a list of the techniques
they evaluate, we continue with the third research question on whether there are
significant differences between the techniques (RQ3). We give an overview of the
primary studies as such in Subsection 3.5.1. Then we focus on the metrics and
evaluation criteria used in different studies (Section 3.5.2).

3.5.1 Types of empirical evidence

Table 10 overviews the primary studies by research method, and the size of the
system used as subject. We identified 21 unique controlled experiments and 15
unique case studies. Half of the experiments are conducted on the same set of
small programs [23], often referred to as the Siemens programs, which are made
available through the software infrastructure repository6 presented by Do et al. [8].

5 Safe only in DB-state
6 http://sir.unl.edu

 42

http://sir.unl.edu/

The number of large scale real life evaluations is sparse. In this systematic review
we found four (S25, S27, S28, S30). Both types of studies have benefits and
encounter problems, and it would be of interest to study the link between them, i.e.
does a technique which is shown to have great advantages in a small controlled
experiment show the same advantages in a large scale case study. Unfortunately no
complete link was found in this review. However, the move from small toy
programs to medium sized components, which is observed among the studies, is a
substantial step in the right direction towards real-world relevance and applicability.

Table 10. Primary studies of different type and size

Type of
studies

Size of
subjects
under
study

Number
of studies

%

Experiment Large 1 3

Experiment Medium 7 19

Experiment Small 13 36

Case study Large 4 11

Case study Medium 5 14

Case study Small 4 11

Case study Not
reported

2 6

 Total 36 100

The empirical quality of the studies varies a lot. In order to obtain a sufficiently
large amount of papers, our inclusion criteria regarding quality had to be weak.
Included in our analysis was any empirical evaluation of regression test selection
techniques if relevant metrics were used and a sufficiently rigorous data collection
and analysis could be followed in the report, see section 2.4 for more details. This
was independently assessed by two researchers.

An overview of the empirically studied relations between techniques and studies
are shown in Figure 4. Circles represent techniques and connective lines between
the techniques represent comparative studies. CS on the lines refers to the number
of case studies conducted in which the techniques are compared, and Exp denotes
the number of experimental comparisons. Some techniques have not been
compared to any of the other techniques in the diagram: T13, T14 and T20. These
techniques are still empirically evaluated in at least one study, typically a large scale
case study. If no comparison between proposed techniques is made, the techniques
are compared to a reference technique instead, e.g. the retest of all test cases, and in
some cases a random selection of a certain percentage of test cases is used as a
reference as well. The reference techniques are not shown Figure 4 for visibility
reasons.

 43

Researchers are more apt to evaluate new techniques or variants of techniques than
to replicate studies, which is clearly indicated by that we identified 28 different
techniques in 27 papers. This gives rise to clusters of similar techniques compared
among them selves and techniques only compared to a reference method such as
re-test all.

T9

T7

T1
T2

T10

T8

T22

T23

T18

T4

T5

T13

T20

T15

T19 T21

T3

T25

T6

T12

T11

T14

2Exp
2Exp

2Exp

1Exp

1Exp

1Exp

1Exp

1CS
1Exp

1Exp

2Exp

4Exp

3Exp

2Exp
1CS

3Exp

1Exp

1CS

1CS

1Exp

1Exp 1CS

2CS

T24

T17 T16 1CS

1CS 1CS

T28

T26

T27

1CS
1CS

1CS

2Exp

1CS

2CS

C3

2Exp2Exp

C2

C1

Fig 4. Techniques related to each other through empirical comparisons

Three clusters of techniques have been evaluated sufficiently to allow for
meaningful comparison, see Fig 4; C1: T2, T7, T8 and T18, C2: T4, T5, T6 and
T12, and C3: T3, T9 and T25. Each of these pair of techniques has been compared
in at least two empirical studies. However, not all studies are conducted according

 44

to the same evaluation criteria, nor is the quality of the empirical evidence equally
high. Therefore we classified the results with respect to empirical quality, as
described in Section 2.6, and with respect to evaluation criteria, as desribed below.

3.5.2 Evaluation criteria

Do and Rothermel proposed a cost model for regression testing evaluation [9].
However, this model requires several data which is not published in the primary
studies. Instead, we evaluated the results with respect to each evaluation criterion
separately. We identified two main categories of metrics: cost reduction and fault
detection effectiveness. Five different aspects of cost reduction and two of fault
detection effectiveness have been evaluated in the primary studies. Table 11 gives
an overview of the extent to which the different metrics are used in the studies.
Size of test suite reduction is the most frequent, evaluated in 76% of the studies.
Despite this, it may not be the most important metric. If the cost for performing
the selection is too large in relation to this reduction, no savings are achieved. In
42% of the studies the total time (test selection and execution) is evaluated instead
or as well. The effectiveness measures are either related 1) to test cases, i.e. the
percentage of fault-revealing test cases selected out of all fault-revealing test cases,
or 2) to faults, i.e. the percentage of faults out of all known ones, detected by the
selected test cases.

Table 11. Use of evaluation metrics in the studies

 Evaluated Metrics Number % Rothermel
framework [48]

Test suite reduction 29 76 Efficiency

Test execution time 7 18 Efficiency

Test selection time 5 13 Efficiency

Total time 16 42 Efficiency

Cost Reduction

Precision (omission of non-
fault revealing tests)

1 3 Precision

Test case-related detection
effectiveness

5 13 Inclusiveness Fault Detection
Effectiveness

Fault-related detection
effectiveness

8 21

Several of the studies concerning reduction of number of test cases are only
compared to retest all (S8, S10, S14-S21, S26, S32-S34) [19], [32], [42], [49], [50],
[65], [66], [67] with the only conclusion that a reduction of test cases can be
achieved, but nothing on the size of the effect in practice. This is a problem
identified in experimental studies in general [26]. Many of the studies evaluating
time reduction are conducted on small programs, and the size of the differences is
measured in milliseconds, although there is a positive trend, over time, towards
using medium-sized programs. Only 30% of the studies consider both fault
detection and cost reduction. Rothermel proposed a framework for evaluation of
regression test selection techniques [48] which have been used in some evaluations.

 45

This framework defines four key metrics, inclusiveness, precision, efficiency, and generality.
Inclusiveness and precision corresponds to test case-related fault detection
effectiveness and precision, respectively, in Table 11. Efficiency is related to space
and time requirements and varies with test suite reduction as well as with test
execution time and test selection time. Generality is more of a theoretical
reasoning, which is not mirrored in the primary studies.

3.6 Comparison of techniques (RQ4)

In response to our fourth research question (RQ4) we are analyzing the empirically
evaluated relations between the techniques by visualizing the results of the studies.
Due to the diversity in evaluation criteria and in empirical quality this visualization
cannot give a complete picture. However, it may provide answers to specific
questions: e.g. Is there any technique applicable in my context proven to reduce
testing costs more than the one I use today?

Our taxonomy for analyzing the evidence follows the definitions in Table 2. Grey
arrows indicate light weight empirical result and black arrows indicate medium weight
result. A connection without arrows in the figures means that the studies have
similar effect, while where there is a difference, the arrow points to the technique
that is better with respect to the chosen criterion. A connection with thicker line
represents more studies. In section 3.6.1, we report our findings regarding test suite
reduction and in section 3.6.2 regarding fault detection. Note that the numbers on
the arrows indicate number of collected metrics, which may be more than one per
study.

3.6.1 Cost reduction

Fig 5 reports the empirically evaluated relations between the techniques regarding
the cost reduction, including evaluations of execution time as well as of test suite
reduction and precision.

The strongest evidence can be found in cluster C1, where T2 provides most
reduction of execution costs. T7, T8 and T18 reduce the test suites less than T2,
and T8 among those reduces execution cost less than T18. All techniques however,
reduce test execution cost compared to REF1 (re-test all), which is a natural
criterion for a regression test selection technique.

In cluster C2, there is strong evidence that T6 and T12 have similar cost for test
execution. On the other hand, there is a study with weaker empirical evidence,
indicating that T12 reduces execution cost more than T6.

The rest of the studies show rather weak empirical evidence, showing that the
evaluated techniques reduce test execution cost better than re-test all.

 46

One component of the cost for regression test selection is the analysis time needed
to select which test cases to re-execute. The selection time is reported separately
for a small subset of the studies, as shown in Fig 6.

The left group primarily tells that T19 has less selection time than T15, and in C1,
T8 has less analysis time than T7.

T9

T7

T1

T2

T10

T8

T22

T23

T18

T4

T5

T19 T21

T3

Ad-
hoc

T6

T12

T11

x2

x2

x2

x2

T24

T17 T16

T28

T26

T27

C3

x3

C2

C1

75%

50%

25%

x3

x2

x3
x2

x2

x3

x2
x3

x3

x2

x6

Fig 5. Empirical results for Cost Reduction, including Test Execution Time, Test
Suite Reduction and Precision.

 47

T7

T8

T4

T5
T15

T19

T6

T12

T11

C2

C1

x2

x2

x2

Fig 6. Empirical results for Test Selection Time

T9

T7

T10

T8

T22

T23

T18

T15

T19

T3

T25

C3

C1

Re-test
All

Ad-
hoc

Re-test
All

x3
x2

x2
x3 x2

x2

Fig 7. Empirical results for Total Time

 48

The results from cluster C2 shows mixed messages. T4 has in most cases the
shortest selection time, although it in one study is more time consuming than T6.
The selection time is hence dependent on the subject programs, test cases and
types of changes done.

In Fig 7, the total time for analysis and execution together is shown for those
studies where it is reported. It is worth noting that some regression test selection
techniques actually can be more time consuming than re-test all (T7, T8, T10).
Again, this is case dependent, but it is interesting to observe that this situation
actually arises under certain conditions.

Other relations are a natural consequence of the expansion of certain techniques.
T9 (Object oriented firewall) is less time consuming than T25 (extended OO
firewall with data paths). Here an additional analysis is conducted in the regression
test selection.

T9

T7

T1
T2

T8

T18

T4

T5

T25

T6

T12

T11

T14

C3

C2

C1

Random
25%

Random
75%

Random
50%

Re-test
All

Re-test
All

Re-test
All

x2

x4
x2

x7 x5

x3

x2

x2

x2 x2

x2

x2 x2
x3

x2

x2

Fig 8. Empirical results for Fault Detection Effectiveness

 49

3.6.2 Fault detection effectiveness

In addition to saving costs, regression test selection techniques should detect as
many as possible of the faults found by the original test suite. Evaluations of test
case-related as well as fault-related detection effectiveness are presented in Fig 8.

Some techniques are proven to be safe, i.e. guarantees that the fault detection
effectiveness is 100% compared to the original test suite (see Section 3.4). This
property is stated to hold for seven techniques: T7, T8, T10, T15, T22, T23 and
T24.

T7 and T8 within C2 are also those that can be found superior or equal from Fig 8,
which is in line with the safe property. T4 in C2 tends also to be better or equal to
all its reference techniques. However, for the rest, the picture is not clear.

4 Discussion

4.1 The reviewed studies

The overall goal with the study was to identify regression test selection techniques
and systematically assess the empirical evidence collected about those techniques.
As the selection of a specific technique is dependent on many factors, the
outcomes of empirical studies also depend on those factors. However only few
factors are specifically addressed in the empirical studies and hence it is not
possible to draw very precise conclusions. Nor is it possible to draw general
conclusions. Instead we have conducted mostly qualitative assessments of the
empirical studies. From those we try to aggregate recommendations of which
regression test selection techniques to use.

A comparison of the techniques in cluster C1 indicates that the minimization
technique, T2, is the most efficient in reducing time and/or number of test cases to
run. However this is an unsafe technique (see Section 3.4) and all but one of six
studies report on significant losses in fault detection. When it comes to safe
techniques, T7 is shown to be the most efficient in reducing test cases. However
analysis time for T7 is shown to be too long (it exceeds the time for rerunning all
test cases) in early experiments, while in later experiments, it is shown to be good.
Hence, there is a trade-off between cost reduction and defect detection ability. This
is the case in all test selection, and none of the evaluated technique seems to have
done any major breakthrough in solving this trade-off.

It is interesting to notice that the technique T7 is not changed between the studies
that show different results on selection time, but the subject programs on which
the experiments are conducted are changed. This is one factor that heavily impacts
on the performance of some techniques. This emphasizes the importance of the
regression testing context in empirical studies, and may also imply that specific

 50

studies have to be conducted when selecting a technique for a specific
environment.

As mentioned before, many techniques are incremental improvements of existing
techniques, which are demonstrated to perform better. For example, T25 is an
extension of T9, with better fault detection at the cost of total time. This is a
pattern shown in many of the studies: improvements may be reached, but always at
a price for something else.

4.2 Implications for future studies

The standards for conducting empirical studies, and which measures to evaluate,
differ greatly across the studies. Rothermel and Harrold proposed a framework to
constitute the basis for comparison [48], but it is not used to any significant level in
later research. Hence, it is not possible to conduct very strict aggregation of
research results, e.g. through meta analysis. It is however not necessarily the
ultimate goal to compare specific techniques. More general concepts would be
more relevant to analyze, rather than detailed implementation issues.

Examples of such concepts to evaluate are indicated in the headings of Table 9.
Applicability: are different techniques better suited for different languages or
programming concepts, or for certain types of software? Method: are some
selection approaches better suited to find faults, independently of details in their
implementation? Which level of granularity for the analysis is effective – statement,
class, component, or even specification level? Other concepts are related to
process, product and resources factors [53]. Process: How frequent should the
regression testing cycles be? At which testing level is the regression testing most
efficient: unit, function, system? Product: Is regression testing different for different
types and sizes of products? Resources: Is the regression testing different with
different skills and knowledge among the testers?

In the reviewed studies, some of these aspects are addressed: e.g. the size aspect,
scaling up from small programs to medium-sized [50], the level of granularity of
tests [3], as well as testing frequency [27] and the effect of changes [11]. However,
this has to be conducted more systematically by the research community.

Since the outcomes of the studies depend on many different factors, replication of
studies with an attempt to keep as many factors stable as possible is a means to
achieve a better empirical foundation for evaluation of concepts and techniques.
The use of benchmarking software and test suites is one way of keeping factors
stable between studies [8] However, in general, the strive for novelty in each
research contribution tends to lead to a lack of replications and thus a lack of
deeper understanding of earlier proposed techniques.

 51

A major issue in this review is to find the relevant information to compare
techniques. Hence, for the future, a more standardized documentation scheme
would be helpful, as proposed by e.g. Jedlitschka and Pfahl [24]for experiments
and Runeson and Höst [52] for case studies. To allow enough detail despite page
restrictions, complementary technical reports could be published on the empirical
studies.

5 Conclusions and future work

In this paper we present results from a systematic review of empirical evaluations
of regression test selection techniques. Related to our research questions we have
identified that:

 RQ1, there are 28 empirically evaluated techniques on regression test
selection published,

 RQ2. these techniques might be classified according to: applicability on type
of software and type of language; details regarding the method such as
which input is required, which approach is taken and on which level of
granularity is changes considered; and properties such as classification in
safe/unsafe or minimizing/not minimizing.

 RQ3. the empirical evidence for differences between the techniques is not
very strong, and sometimes contradictory, and

 RQ4. hence there is no basis for selecting one superior technique. Instead
techniques have to be tailored to specific situations, e.g. initially based on the
classification of techniques.

We have identified some basic problems in the regression testing field which
hinders a systematic review of the studies. Firstly, there is a great variance in the
uniqueness of the techniques identified. Some techniques may be presented as
novel at the time of their publications and others may be regarded as variants of
already existing techniques. Combined with a tendency to consider replications as
second class research, the case for cooperative learning on regression testing
techniques is not good. In addition to this, some techniques are presented in a
rather general manner, e.g. claimed to handle object-oriented programs, which
gives much space for different interpretations on how they may be implemented
due to e.g. different programming language constructs existing in different
programming languages. This may lead to different (but similar) implementations
of a specific technique in different studies depending on e.g. the programming
languages used in the studies.

As mentioned in Section 1, to be able to select a strategy for regression testing,
relevant empirical comparisons between different methods are required. Where
such empirical comparisons exist, the quality of the evaluations must be
considered. One goal of this study was to determine whether the literature on
regression test selection techniques provides such uniform and rigorous base of
empirical evidence on the topic that makes it possible to use it as a base for
selecting a regression test selection method for a given software system.

 52

Our study shows that most of the presented techniques are not evaluated
sufficiently for a practitioner to make decisions based on research alone. In many
studies, only one aspect of the problem is evaluated and the context is too specific
to be easily applied directly by software developers. Few studies are replicated, and
thus the possibility to draw conclusions based on variations in test context is
limited. Of course even a limited evidence base could be used as guidance. In order
for a practitioner to make use of these results, the study context must be
considered and compared to the actual environment into which a technique is
supposed to be applied.

Future work for the research community is 1) focus more on general regression
testing concepts rather than on variants of specific techniques; 2) encourage
systematic replications of studies in different context, preferably with a focus on
gradually scaling up to more complex environments; 3) define how empirical
evaluations of regression test selection techniques should be reported, which
variation factors in the study context are important.

6 Acknowledgements

The authors acknowledge Dr. Carina Andersson for her contribution to the first
two stages of the study. The authors are thankful to librarian Maria Johnsson for
excellent support in the search procedures. We appreciate review comments from
Prof. Sebastian Elbaum and the anonymous reviewers, which substantially have
improved the paper. The work is partly funded by the Swedish Governmental
Agency for Innovation Systems under grant 2005-02483 for the UPPREPA
project, and partly funded by the Swedish Research Council under grant 622-2004-
552 for a senior researcher position in software engineering.

7 References

[1] Agrawal, H., Horgan, J.R., Krauser, E.W., and London, S.A. 1993.
Incremental regression testing. In Proceedings. Conference on Software
Maintenance 1993. CSM-93 (Cat. No.93CH3360-5). IEEE Comput. Soc.
Press, 348-57.

[2] Baradhi, G. and Mansour, N. 1997. A comparative study of five regression
testing algorithms. Software Engineering Conference, 1997. Proceedings. 1997
Australian. 174-182.

[3] Bible, J., Rothermel, G., and Rosenblum, D.S. 2001. A comparative study of
coarse- and fine-grained safe regression test-selection techniques. ACM
Transactions on Software Engineering and Methodology. 10(2), 149-183.

[4] Binkley, D. 1998. The application of program slicing to regression testing.
Information and Software Technology. 40(11-12), 583-94.

 53

[5] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., and Khalil, M. 2007.
Lessons from applying the systematic literature review process within the
software engineering domain. Journal of Systems and Software. 80(4), 571-83.

[6] Chen, Y.-F., Rosenblum, D.S., and Vo, K.-P. 1994. Test tube: A system for
selective regression testing. In Proceedings - International Conference on
Software Engineering. IEEE, Los Alamitos, CA, USA, 211-220.

[7] Dieste, O., Grimán, A., and Juristo, N. 2008. Developing search strategies for
detecting relevant experiments. Empirical Software Engineering.

[8] Do, H. Elbaum, S. and Rothermel, G. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact, Empirical
Software Engineering, An International Journal, V. 10, No. 4, October 2005

[9] Do, H. and Rothermel, G., An empirical study of regression testing
techniques incorporating context and lifecycle factors and improved cost-
benefit models, Proceedings of the ACM SIGSOFT Symposium on
Foundations of Software Engineering, November 2006, pages 141-151.

[10] Dybå, T., Dingsöyr, T., and Hanssen, G.K. 2007. Applying Systematic
Reviews to Diverse Study Types: An Experience Report. In First International
Symposium on Empirical Software Engineering and Measurement, 2007,
ESEM 2007. 225-234.

[11] Elbaum, S., Kallakuri, P., Malishevsky, A., Rothermel, G., and Kanduri, S.
2003. Understanding the effects of changes on the cost-effectiveness of
regression testing techniques. Software Testing, Verification and Reliability.
13(2), 65-83.

[12] Engström, E., Skoglund, Mats, Runeson, Per. 2008. Empirical Evaluations of
Regression Test Selection Techniques: A Systematic Review. ESEM 08

[13] Fischer, K., Raji, F., and Chruscicki, A. 1981. A methodology for retesting
modified software. In NTC '81. IEEE 1981 National Telecommunications
Conference. Innovative Telecommunications - Key to the Future. IEEE, 6-3.

[14] Frankl, P.G., Rothermel, G., Sayre, K., and Vokolos, F.I. 2003. An empirical
comparison of two safe regression test selection techniques. Empirical
Software Engineering, 2003. ISESE 2003. Proceedings. 2003 International
Symposium on. 195-204.

[15] Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., and Rothermel, G. 2001.
An empirical study of regression test selection techniques. ACM Transactions
on Software Engineering and Methodology. 10(2), 184-208.

[16] Gupta, R., Harrold, M.J., and Soffa, M.L. 1992. An approach to regression
testing using slicing. In Conference on Software Maintenance 1992
(Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 299-308.

[17] Gupta, R., Harrold, M.J., and Soffa, M.L. 1996. Program slicing-based
regression testing techniques. Software Testing, Verification and Reliability.
6(2), 83-111.

 54

[18] Haftmann, F., Kossmann, D., and Lo, E. 2007. A framework for efficient
regression tests on database applications. VLDB Journal. 16(1), 145-64.

[19] Harrold, M.J., Jones, J.A., Tongyu, L., Donglin, L., Orso, A., Pennings, M.,
Sinha, S., Spoon, S.A., and Gujarathi, A. 2001. Regression test selection for
Java software. In SIGPLAN Not. (USA). ACM, 312-26.

[20] Harrold, M.J. and Souffa, M.L. 1988. An incremental approach to unit testing
during maintenance. In Proceedings of the Conference on Software
Maintenance - 1988 (IEEE Cat. No.88CH2615-3). IEEE Comput. Soc. Press,
362-7.

[21] Hartmann, J. and Robson, D.J. 1988. Approaches to regression testing. In
Proceedings of the Conference on Software Maintenance - 1988 (IEEE Cat.
No.88CH2615-3). IEEE Comput. Soc. Press, 368-72.

[22] Hartmann, J. and Robson, D.J. 1990. Techniques for selective revalidation.
IEEE Software. 7(1), 31-6.

[23] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. 1994. Experiments on
the effectiveness of dataflow- and control-flow-based test adequacy criteria. In
ICSE-16. 16th International Conference on Software Engineering (Cat.
No.94CH3409-0). IEEE Comput. Soc. Press, 191-200.

[24] Jedlitschka, A.and Pfahl, D. 2005. Reporting Guidelines for Controlled
Experiments in Software Engineering, In Proceedings of ACM/ IEEE
International Symposium on Empirical Software Engineering, pp 95-104

[25] Juristo, N., Moreno, A.M., Vegas, S., and Solari, M. 2006. In search of what
we experimentally know about unit testing [software testing]. IEEE Software.
23(6), 72-80.

[26] Kampenes Vigdis, B., Dybå, T., Hannay Jo, E., and Sjöberg Dag, I.K. 2007. A
systematic review of effect size in software engineering experiments.
Information and Software Technology. 49(11-12), 1073-1073.

[27] Kim, J.-M., Porter, A., and Rothermel, G. 2005. An empirical study of
regression test application frequency. Software Testing, Verification and
Reliability. 15(4), 257-279.

[28] Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., and
Linkman, S. 2009. Systematic literature reviews in software engineering - A
systematic literature review. Information and Software Technology. Volume
51(Issue 1), Pages 7-15.

[29] Kitchenham, B.A. 2007. Guidelines for performing Systematic Literature
reviews in Software Engineering Version 2.3. Technical Report S.o.C.S.a.M.
Software Engineering Group, Keele University and Department of Computer
Science University of Durham.

[30] Kitchenham, B.A., Mendes, E., and Travassos, G.H. 2007. Cross versus
within-company cost estimation studies: a systematic review. IEEE
Transactions on Software Engineering. 33(5), 316-29.

 55

[31] Klosch, R.R., Glaser, P.W., and Truschnegg, R.J. 2002. A testing approach for
large system portfolios in industrial environments. Journal of Systems and
Software. 62(1), 11-20.

[32] Koju, T., Takada, S., and Doi, N. 2003. Regression Test Selection based on
Intermediate Code for Virtual Machines. In Conference on Software
Maintenance. Institute of Electrical and Electronics Engineers Inc., 420-429.

[33] Landis, J.R. and Gary, G.K. 1977. The Measurement of Observer Agreement
for Categorical Data. Biometrics. 33(1), 159-174.

[34] Leung, H.K.N. and White, L. 1990. Insights into testing and regression testing
global variables. Journal of Software Maintenance: Research and Practice. 2(4),
209-22.

[35] Leung, H.K.N. and White, L. 1990. A study of integration testing and
software regression at the integration level. In Proceedings. Conference on
Software Maintenance 1990 (Cat. No.90CH2921-5). IEEE Comput. Soc.
Press, 290-301.

[36] Mansour, N., Bahsoon, R., and Baradhi, G. 2001. Empirical comparison of
regression test selection algorithms. The Journal of Systems and Software.
57(1), 79-90.

[37] Mansour, N. and El-Fakih, K. 1997. Natural optimization algorithms for
optimal regression testing. In Proceedings - IEEE Computer Society's
International Computer Software & Applications Conference. IEEE, Los
Alamitos, CA, USA, 511-514.

[38] Mao, C. and Lu, Y. 2005. Regression testing for component-based software
systems by enhancing change information. In Proceedings. 12th Asia-Pacific
Software Engineering Conference. IEEE Computer Society, 8 pp.

[39] Memon, A.M. 2004. Using tasks to automate regression testing of GUIs. In
IASTED International Conference on Artificial Intelligence and Applications
- AIA 2004. ACTA Press, 477-82.

[40] Orso, A., Harrold, M.J., Rosenblum, D., Rothermel, G., Soffa, M.L., and Do,
H. 2001. Using component metacontent to support the regression testing of
component-based software. In Proceedings IEEE International Conference
on Software Maintenance. ICSM 2001. IEEE Comput. Soc, 716-25.

[41] Orso, A., Nanjuan, S., and Harrold, M.J. 2004. Scaling regression testing to
large software systems. In Softw. Eng. Notes (USA). ACM, 241-51.

[42] Pasala, A. and Bhowmick, A. 2005. An approach for test suite selection to
validate applications on deployment of COTS upgrades. In Proceedings -
Asia-Pacific Software Engineering Conference, APSEC. IEEE Computer
Society, Los Alamitos, CA 90720-1314, United States, 401-407.

[43] Pei, H., Xiaolin, L., Kung, D.C., Chih-Tung, H., Liang, L., Toyoshima, Y., and
Chen, C. 1997. A technique for the selective revalidation of OO software.
Journal of Software Maintenance: Research and Practice. 9(4), 217-33.

 56

[44] Ren, X., Shah, F., Tip, F., Ryder, B.G., and Chesley, O. 2004. Chianti: A tool
for change impact analysis of java programs. In 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA'04. Association for Computing Machinery, New
York, NY 10036-5701, United States, 432-448.

[45] Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., and Davia, B. 2002.
The impact of test suite granularity on the cost-effectiveness of regression
testing. In Proceedings - International Conference on Software Engineering.
Institute of Electrical and Electronics Engineers Computer Society, 130-140.

[46] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P., and Xuemei, Q.
2004. On test suite composition and cost-effective regression testing. ACM
Transactions on Software Engineering and Methodology. 13(3), 227-331.

[47] Rothermel, G. and Harrold, M.J. 1993. A safe, efficient algorithm for
regression test selection. Software Maintenance ,1993. CSM-93, Proceedings.,
Conference on. 358-367.

[48] Rothermel, G. and Harrold, M.J. 1996. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering. 22(8), 529-51.

[49] Rothermel, G. and Harrold, M.J. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and
Methodology. 6(2), 173-210.

[50] Rothermel, G. and Harrold, M.J. 1998. Empirical studies of a safe regression
test selection technique. IEEE Transactions on Software Engineering. 24(6),
401-19.

[51] Rothermel, G., Harrold, M.J., and Dedhia, J. 2000. Regression test selection
for C++ software. Journal of Software Testing Verification and Reliability.
10(2), 77-109.

[52] Runeson, P. and Höst, M. Guidelines for conducting and reporting case study
research in software engineering, Empirical Software Engineering, 14(2):131-
164, 2009.

[53] Runeson, P., Skoglund, M. and Engström, E. Test Benchmarks – what is the
question?, TestBench Workshop at International Conference on Software
Testing, Verification and Validation, Lillehammer, Norway, April 2008.

[54] Sajeev, A.S.M. and Wibowo, B. 2003. Regression test selection based on
version changes of components. In Tenth Asia-Pacific Software Engineering
Conference. IEEE Comput. Soc, 78-85.

[55] Shadish, T., Cook, T., and Campbell, D. 2002. Experimental and Quasi-
Experimental Designs - for Generalized Causal Inference. 2 ed, Boston:
Houghton Mifflin Company. 623.

[56] Skoglund, M. and Runeson, P. 2005. A case study of the class firewall
regression test selection technique on a large scale distributed software system.
In 2005 International Symposium on Empirical Software Engineering (IEEE
Cat. No. 05EX1213). IEEE, 10 pp.

 57

[57] Staples, M. and Niazi, M. 2007. Experiences using systematic review
guidelines. The Journal of Systems & Software. 80(9), 1425-37.

[58] Toshihiko, K., Shingo, T., and Norihisa, D. 2003. Regression test selection
based on intermediate code for virtual machines. In Proceedings International
Conference on Software Maintenance ICSM 2003. IEEE Comput. Soc, 420-9.

[59] White, L. and Abdullah, K. 1997. A firewall approach for the regression
testing of object-oriented software. Software Quality Week

[60] White, L., Jaber, K., and Robinson, B. 2005. Utilization of extended firewall
for object-oriented regression testing. In IEEE International Conference on
Software Maintenance, ICSM. IEEE Computer Society, Los Alamitos, CA
90720-1314, United States, 695-698.

[61] White, L. and Robinson, B. 2004. Industrial real-time regression testing and
analysis using firewalls. Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. 18-27.

[62] White, L.J. and Leung, H.K.N. 1992. A firewall concept for both control-flow
and data-flow in regression integration testing. In Conference on Software
Maintenance 1992 (Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 262-71.

[63] Willmor, D. and Embury, S.M. 2005. A safe regression test selection
technique for database-driven applications. In Proceedings of the 21st IEEE
International Conference on Software Maintenance. IEEE Comput. Soc, 421-
30.

[64] Vokolos, F.I. and Frankl, P.G. 1997. Pythia: a regression test selection tool
based on textual differencing. In Reliability, Quality and Safety of Software-
Intensive Systems. IFIP TC5 WG5.4 3rd International Conference. Chapman
& Hall, 3-21.

[65] Vokolos, F.I. and Frankl, P.G. 1998. Empirical evaluation of the textual
differencing regression testing technique. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE Comput.
Soc, 44-53.

[66] Wong, W.E., Horgan, J.R., London, S., and Agrawal, H. 1997. A study of
effective regression testing in practice. In Proceedings. The Eighth
International Symposium on Software Reliability Engineering (Cat.
No.97TB100170). IEEE Comput. Soc, 264-74.

[67] Wu, Y., Chen, M.-H., and Kao, H.M. 1999. Regression testing on object-
oriented programs. In Proceedings 10th International Symposium on
Software Reliability Engineering (Cat. No.PR00443). IEEE Comput. Soc,
270-9.

[68] Yanping, C., Robert, L.P., and Sims, D.P. 2002. Specification-based regression
test selection with risk analysis. Proceedings of the 2002 conference of the
Centre for Advanced Studies on Collaborative research. IBM Press.

 58

[69] Yin, R.K. 2003. Case Study Research - Design and Methods Applied Social
Research Methods Series, ed. D.J.R. Leonard Bickman. Vol. 5, London: Sage
Publications.

[70] Zheng, J. 2005. In regression testing selection when source code is not
available. Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering. ACM.

[71] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2005. An initial study of
a lightweight process for change identification and regression test selection
when source code is not available. In Proceedings - International Symposium
on Software Reliability Engineering, ISSRE. IEEE Computer Society, 225-
234.

[72] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. Applying
regression test selection for COTS-based applications. In Proceedings -
International Conference on Software Engineering. Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United
States, 512-521.

[73] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. An initial study of
a lightweight process for change identification and regression test selection
when source code is not available. In Proceedings. 16th IEEE International
Symposium on Software Reliability Engineering. IEEE Computer Society, 10
pp.

[74] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. A lightweight
process for change identification and regression test selection in using COTS
components. In Proceedings - Fifth International Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems. Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United
States, 137-143.

 59

 60

Paper II:

Test Benchmarks – what is the
question?

Per Runeson, Mats Skoglund and Emelie Engström

Published in Proceedings of International Conference on Software Testing Verification and
Validation Workshop (ICSTW ’08), April 2008

 61

1 Introduction

“I am taller than you”. “My dad is stronger than yours”. Kids do not grow very old
until they begin benchmarking. They benchmark to impress on their mates and to
give themselves a position in the group. But what does the benchmark mean when
the child wants to reach the cookies on the top shelf of the larder? Although being
the tallest, he might not be tall enough to reach it anyhow, and his father might not
be there to lift him up. And if he was, he would not allow his kids to take those
cookies anyhow.

In the automotive press, there are lots of benchmarks. Acceleration from 0 to 100
km/h or 0 to 60 mph is a frequently used benchmark. But how often do you
accelerate as fast as possible from 0 to 100km/h? Similarly is the power and the
torque of the engine benchmarked, but rarely it is noticed whether the power is
delivered at revs which are useful in my daily driving or at top revs. And I rarely
use more than some 25 kW to run my car, although I have access to hundreds.
Furthermore, the EuroNCAP7 and NTSB8 do benchmarks on crash resistance and
rate car models according to their resistance to the benchmark tests.

When software test researchers benchmark, they use some well specified sets of
programs and apply and evaluate their test techniques. The programs are mostly
selected based on availability, and sometimes also made available for others; see
e.g. the Software artifact Infrastructure Repository9, although this particular
example does not have the ambition of constituting benchmarks [2]. However,
before judging whether the benchmarks are useful or not, we should consider what
it should be used for. What is the question we want to answer with a benchmark?

2 Uses for test benchmarks

From a practitioner’s point of view, the benchmark must focus on the feasibility
for the use of the benchmarked techniques and tools in a specific context. “Is this
test technique more efficient than the other for my software system?” This is
however not a question that can be answered by a single benchmark.

From a researchers’ point of view, we have learned that empirical evaluation is
good research while blunt assertion is not [1]. Hence, we must have some context
in which we may evaluate our techniques and tools. And there is always an issue of
relevance; can this be used and useful in software industry?

7 The European New Car Assessment Programme http://www.euroncap.com
8 The National Transportation Safety Board http://www.ntsb.gov
9 http://sir.unl.edu

 62

The benchmarking question involves many degrees of freedom that may impact on
the outcome. It is not only the program under test, but its test cases, the defects, its
development environment, its development process etc. Hence, the issue of
benchmarking is very complex and we find it too ambitious to search benchmarks
that mirror all this variation, rather some specific aspects may be studied at a time.

In the automotive domain, where benchmarking takes frequently place, the specific
benchmarks may not be of highest relevance, but they are indicators that represent
some attributes of the car that a customer may give priority or not. I would choose
a car making 0-100 km/h in 5 seconds if I like fast driving (and I can afford it)
while for a family car, 0-100 km/h in 10 seconds is sufficient to keep up the daily
traffic pace. For crash resistance, I may prefer a five star Euro NCAP rated car
before a three star, even though I do not intend to crash it from 64 km/h (40 mph)
into a concrete barrier. Instead, the benchmarking procedures have forced car
manufacturers to make more crash resistant cars in general in order to fulfill the
customer’s demands.

In the testing context, benchmarking may be used to indicate specific
characteristics (like the acceleration) or be a driving force in a general improvement
trend (like crash tests). One of the key issues in finding benchmarks is the
representativeness of the benchmark as such. What does it mean in practice that
one technique is better than another for a given benchmark?

3 Representativeness

In order to generalize a result from a small set of subjects to a wider population,
sampling is applied. For example in national polls or other surveys, a subset from
the population are sampled, interviewed about their opinions and conclusions are
drawn for the whole population [3]. The sample represents the whole population in
a statistical generalization. The underlying principles are that the random variation
among the subjects is captured in the sample within an acceptable error margin.
This is the underlying principle for controlled experimentation.

In qualitative design research, like case studies, the selection is different. The case
to be studied is selected to represent e.g. the typical or the special case [4]. The case
cannot be generalized to a wider population through statistical analyses. Still one
may learn from a specific case and apply the knowledge to another specific case. In
case studies you apply analytical generalization. In analytical generalization, the case is
characterized and compared to other cases to identify patterns which may indicate
some general understanding drawn from the specific case.

The search for testing benchmarks may take either way: the statistical or the analytical
approach. The former means defining a population of software programs,
sampling from that population and selecting a representative subset which the test
techniques may be applied to for evaluation. The statistical approach is desirable
but impractical and must hence be excluded. The analytical approach is closer to

 63

 64

what is already done, i.e. using a set of programs, and then generalize the results
from the studies analytically.

The analytical approach may be supported by categorization scheme that helps the
analytical generalization. Depending on the scope of the evaluated item,
benchmarking may be very different, which is elaborated in the next chapter.

Refer to the car crash tests again. Sampling from all possible crashes and repeating
a subset in the laboratory would enable calculating a risk factor for a certain car
with a specified statistical significance, i.e. statistical generalization. The approach
actually used is that some typical situations with frontal and side impact are
repeated in the laboratory, i.e. analytical generalization.

4 Variation factors

In the effort for finding typical or special cases or subject programs to be used for
benchmarking purposes, many variation factors must be considered. Variation
factors may be regarding the program under test, its specifications, the test
technique or tool, or the test process or the defects. Factors may be related to the
product under test, the test process or the test resources. Below we list some, based
on our experience from test research:

Process factors:

 Does the technique require specification documents, e.g. UML diagrams?
 Programming language(s) – is the technique applicable to the programming

languages used? What if the there are different languages? If source code is
not accessible?

 How many and which type of changes are made between successive
releases?

 What is the purpose of the test technique/tool? Test case selection? Test
case prioritization?

 Is the technique deterministic, i.e. selects the same test cases independently
of who applies it?

 Which types of test are within the scope? Unit test? System test? GUI tests?

Product factors:

 Size and complexity – is the program large and complex enough to be
relevant for the real world problem?

 Which type of system is it? Real-time systems vs. batch?
 How is it dependent on code libraries and their changes?
 What size are the test cases, and do they depend on each other?
 Test data – are they complex enough to be relevant for real world problems?
 Defects – are the numbers, types and distribution of defects relevant?

Resource factors:

 Which skills and knowledge do the testers and test designers have?

These variation factors must be taken into account when defining test benchmark
programs and processes.

5 Proposal

Based on the considerations above, we propose the following for test benchmarks:
1. Define categories for benchmarked methods to avoid comparing “apples

with oranges”, e.g. comparing safe test selection methods with unsafe.
2. Look upon benchmarks as selected cases, not representative samples, and

interpret benchmarking results accordingly.
3. Define a characterization scheme to capture the relevant degrees of freedom

that characterize a test environment.
4. Define not only a set of benchmarking programs, but also the

corresponding test cases, defects, execution environment and test processes
used.

5. Combine benchmarking results with case studies to analyze both a
controlled environment and a real world environment where the interactions
between the test technique and its environment can be studied as well.

In summary, the answer is not only a benchmark, but a benchmark in its context.
Benchmarking is not aimed at statistical generalization, but analytical. The focus is
on the typical or the special situation, not on the “average” situation.

6 References

[1] Shaw M What makes good research in software engineering? International
Journal on Software Tools for Technology Transfer Springer 4(1):1-7, 2002

[2] Do H, Elbaum S, Rothermel G, Supporting Controlled Experimentation with
Testing Techniques: An Infrastructure and its Potential Impact, Empirical
Software Engineering, 10, 405–435, 2005

[3] Wohlin C, Höst M, Ohlsson MC, Regnell B, Runeson P, Wesslén A
Experimentation in Software Engineering - An Introduction, Kluwer 2000

[4] Yin R K Case Study Research. Design and Methods (3rd edition) London: Sage,
2003

 65

 66

Paper III:

A Qualitative Survey of Regression
Testing Practices

Emelie Engström and Per Runeson

Accepted for publication in 11th International Conference on Product Focused Software
Development and Process Improvement (PROFES ‘10), June 2010

Abstract

Aim: Regression testing practices in industry have to be better understood, both for
the industry itself and for the research community. Method: We conducted a
qualitative industry survey by i) running a focus group meeting with 15 industry
participants and ii) validating the outcome in an on line questionnaire with 32
respondents. Results: Regression testing needs and practices vary greatly between
and within organizations and at different stages of a project. The importance and
challenges of automation is clear from the survey. Conclusions: Most of the findings
are general testing issues and are not specific to regression testing. Challenges and
good practices relate to test automation and testability issues.

 67

1 Introduction

Regression testing is retesting of previously working software after a change to
ensure that unchanged software is still functioning as before the change. According
to IEEE, regression testing is Selective retesting of a system or component to verify that
modifications have not caused unintended effects and that the system or components still complies
with its specified requirements [8]. The need for effective strategies for regression testing
increases with the increasing use of iterative development strategies and systematic
reuse in software projects. Studies indicate that 80% of testing cost is regression
testing and more than 50% of software maintenance cost is related to testing [3].

There is a gap between research and practices of regression testing. Research on
regression testing mainly focuses on selection and prioritization of test cases.
Several techniques for regression test selection are proposed and evaluated.
Engström et al. reviewed the literature in the field recently [4] and highlights the
importance of the test context to the outcome of regression testing techniques.
Only few empirical evaluations of regression test selection techniques are carried
out in a real industrial context, [5, 16, 17].

However industry practice on regression testing is mostly based on experience
alone, and not on systematic approaches. There is a need for researchers to better
understand the needs and practices in industry. Rooksby et al. [11] argue for the
need for investigation and characterization of real world work. They conclude that
improvements of current testing practices are meaningful in its specific local
context and "cannot be brought about purely through technically driven innovation". In their
paper they highlight, based on experiences from testing in four real projects, that
improvements in industry are not always sophisticated and accurate as is often
pursued in research.

In order to retrieve a better understanding of real world needs and practices, a
qualitative survey [6 p. 61-78] of industry practice of regression testing is
conducted, by means of focus group discussions in a software process
improvement network (SPIN) and a questionnaire to validate the results. Issues
discussed in the focus group were definitions and practices of regression testing in
industry as well as challenges and improvement suggestions. A total of 46 software
engineers from 38 different organizations participated in the focus group and
questionnaire survey. Results are qualitative and of great value in that they highlight
relevant and possible directions for future research.

To the extent of our knowledge no industrial surveys on regression testing
practices have been reported on. However experience reports on regression testing
in industrial software development projects can be found [9]. Onoma et al.
conclude that regression testing is used extensively and that several companies
develop in-house RT tools to automate the process. Re-test all is a common
approach and the selection of test cases is not a critical issue.

 68

When it comes to testing practices in general a couple of industrial surveys have
been undertaken [2, 7, 12, 13], concluding that test automation is a key
improvement issue [13] and that test case selection for continuous regression
testing is a hard task. No systematic approach for test case selection was used by
the companies but instead they relied on the developers expertise and judgment
[12]

This paper is organized as follows: Section 2 describes how the survey is conducted
and discusses validity issues. In section 3 results are presented and analyzed. Finally
conclusions are provided in section 4.

2 Method description

The study's overall goal is to characterize current regression testing practices in
industry for the sake of research. It also aims at identifying good practices for
spreading across different companies as well as areas in need for improvement
within the companies and possibly identification of future research topics. Hence, a
qualitative survey is found appropriate [6 p. 61-78]. The research questions for the
survey are:

RQ1 What is meant by regression testing in industry?
RQ2 Which problems or challenges related to regression testing exist?
RQ3 Which good practices on regression testing exist?

The survey is conducted using two different research methods, one focus group
discussion [10 p. 284-289] in a SPIN group, and one questionnaire in a testing
interest network. The focus group was used to identify concepts and issues related
to regression testing, while the questionnaire was used to validate the findings in a
different setting. A similar approach was used for a unit testing survey in 2006 [12].

2.1 Focus group

The focus group meeting was arranged at one of the monthly meetings of SPIN-
syd, a software process improvement network in Southern Sweden [14]. The
members of the network were invited to a 2.5 hour session on regression testing in
May 2009. 15 industry participants accepted the invitation, which is about the
normal size for a SPIN-syd monthly meeting, and the same as for our previous unit
testing survey [12]. The focus group meeting was moderated by two academics and
one industry participant, and observed by a third academic. An overview of the
focus group participants is shown in Table 1.

 69

Table 1. Participants in focus group meeting. Number of developers in the surveyed
company: extra small is 1, small is 2-19, medium is 20-99, and large 100-999.

Company Domain Size Role
A Automation Medium Participant
A Automation Medium Participant
A Automation Medium Participant
G Medical devices Medium Participant
G Medical devices Medium Participant
I Information systems Large Moderator
I Information systems Large Participant
S Telecom Large Participant
S Telecom Large Participant
E Telecom Large Participant
X Consultant Extra small Participant
C Consultant Extra small Participant
Q Consultant Medium Participant
K Consultant Medium Participant
O Consultant Large Participant
L Academics N/A Researcher
L Academics N/A Researcher
L Academics N/A Observer

The industry participants represented automation, medical devices, information
systems (IS), and telecom domains. Consultants also participated which were
working with testing for their clients. The product companies all produce
embedded software and were both of medium and large size while consultancy
firms of all sizes were represented.

The session was organized around five questions:

 What is regression testing?
 When do the participants regression test?
 How do the participants regression test?
 What are the participants' problems regarding regression testing?
 What are the participants' strengths regarding regression testing?

For each of the questions, the moderator asked the participants to write their
answers on post-it charts. Then each participant presented his or her view of the
question and the responses were documented on white boards.

After the session, key findings were identified using qualitative analysis methods.
Statements were grouped into themes, primarily structured by the five questions,
and secondary according to keywords in the statements. Further, the results were
restructured and turned into questions for use in the questionnaire.

 70

 71

2.2 Questionnaire

The resulting questionnaire consists of 45 questions on what regression testing is,
with five-level Likert-scale response alternatives: Strongly disagree, Disagree, Neutral,
Agree, Strongly Agree and an additional Not Applicable option (see Fig 1). One
question on automation vs manual used five scale alternatives from Automated to
Manual (see Fig 2). Further, 29 questions on satisfaction with regression testing
practices in the respondents' organizations had the response alternatives Very
Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied and Not Applicable (see Fig 3).
The questionnaire was defined in the SurveyGizmo questionnaire tool for on line
data collection [1].

Respondents were invited through the SAST network (Swedish Association for
Software Testing) through their quarterly newsletter, which is distributed to some
2.000 testers in Sweden, representing a wide range of company sizes and
application domains. Respondents were promised an individual benchmarking
report if more than three participants from one company responded, and a chance
for everybody to win a half-day seminar on testing given by the second author.
Thirty two respondents answered the complete questionnaire, which are presented
in Table 2.

Table 2. Respondents to the questionnaire. Number of developers in the surveyed
company: extra small is 1, small is 2-19, medium is 20-99, and large 100-999.
Company Domain Size
Me Small Automation
Te Medium Automation
V Large Automotive
Tc Small Business

intelligence
Ql Medium Business

intelligence
Ti Medium Business

intelligence
C Large Consultant
Ha Large Consultant
H Large Consultant
H Large Consultant
Q Medium Consultant
R Small Consultant
K Medium Consultant
Si Large Consultant
So Large Consultant
T Small Consultant
Tp Medium Consultant
Eu Medium Finance
Sk Large Finance
A Medium Finance

Company Domain Size
U Medium Information

systems
Sm Medium Information

systems
W Small Information

systems
B Large Information

systems
L Large Insurance
Mu Large Insurance
Ma Large Medical devices
E Large Telecom
Hi Medium Telecom
M Medium Telecom
S Large Telecom
S Large Telecom

The respondents cover the range of company sizes and domains. Out of the 32
respondents, 9 were developing embedded systems in particular within the telecom
domain, 12 developed information systems in particular within the domains of
business intelligence and finance, and 11 were consultants. Out of 21 product
companies, 3 represent small development organizations, 9 represent medium sized
organizations and 8 represent large organizations. The size of the consultancy
organizations are not specifically relevant, but is reported to indicate the variation.

2.3 Threats to validity

The study does not aim at providing a statistically valid view of a certain population
of companies, as intended with general surveys [6]. The research questions are
focused on existence and not on frequencies of responses. Hence, we consider the
survey having more character of multiple case studies on a certain aspect of several
cases and consequently we discuss threats to validity from a case study perspective
[15].

Construct validity concerns the underlying constructs of the research, i.e. terms and
concepts under study. We mitigated construct validity threats by having the first
question of the focus group related to terminology and concepts. Thereby, we
ensured a common understanding for the rest of the group meeting. In the survey,
however, the terms may be interpreted differently and this is out of control of the
researchers.

Internal validity relates to identification of casual relationships. We do not study any
casual relationships in the study, and we just briefly touch upon correlations
between factors. Patterns in the data that might indicate correlations are interpreted
conservatively in order not to over interpret the data.

External validity relates to generalization from the findings. We do not attempt to
generalize in a statistical sense; any generalization possible is analytical
generalization [15]. In order to help such generalization, we report characteristics
of the focus group members and questionnaire respondents in table 1 and table 2.

3 Analysis of the results

The focus group and survey results were analyzed using the Zachman framework,
which originally was presented for analysis of information systems architectures
[18]. The framework has six categories, what, how, where, who, when and why, although
these terms were not originally used. For each category, questions are defined,
tailored to the domain under investigation. Originally intended for IS development,
Zachman [18] proposed that it might be used for developing new approaches to
system development. We use it similar to Runeson [12], i.e. to structure the

 72

outcome of the focus group meetings and to define the validation questionnaire,
although we primarily focus on what, how and when.

An overview of the questionnaire results is shown in Figures !, 2 and 3. Questions
are referred to in the text as [Qx] for question x. The analysis is then presented
according to the framework questions and identified strengths and weaknesses in
subsections 3.1 to 3.4.

Figure 1 Number of responses for each questionnaire alternative on regression test
practices

 73

Figure 2 Number of responses for each questionnaire alternative on automated vs.
manual regression testing

Figure 3 Number of responses for each questionnaire alternative on satisfaction with
regression test practices

3.1 What?

There is good agreement in the focus group and among the survey respondents
regarding what regression testing is. Regression testing involves repetitive tests and
aims to verify that previously working software still works after changes to other
parts. Focus can be either re-execution of test cases or retest of functionality. As
for testing in general the goal of the regression testing may differ between different

 74

organizations or parts of an organization. The goal may be either to find defects or
to obtain a measure of its quality. Regression testing shall ensure that nothing has
been affected or destroyed, and give an answer to whether the software has
achieved the desired functionality, quality and stability etc. In the focus group
discussion, an additional goal of regression testing was mentioned as well; to obtain
a guide for further priorities in the project. Regression testing offers a menu of
what can be prioritized in the project, such as bug fixes. This additional goal was
only confirmed to some extent by 35% of the respondents [Q8].

Different kinds of changes to the system generate regression testing. Mentioned in
the focus group discussion and confirmed by the majority of the respondents were:
new versions, new configurations, fixes, changed solutions, new hardware, new
platforms, new designs and new interfaces [Q9-16]. One third of the respondents,
mostly small and medium sized organizations, indicated that regression testing is
applied regardless of changes, while in larger organizations, regression testing was
tighter connected to changes [Q17]. The amount and frequency of regression
testing is determined by the assessed risk, the amount of new functionality, the
amount of fixes and the amount of available resources. The first three factors are
confirmed by the majority of the respondents [Q29-31] while the agreement on the
dependency on resources availability varies to a greater extent among the
respondents [Q32].

3.2 When?

Regression testing is carried out at different levels (e.g. module level, component
level and system level [Q18-20]) and at different stages of the development
process. From focus group discussions it was found that that some organizations
regression test as early as possible while other regression test as late as possible in
the process, and some claimed that regression testing is continuously carried out
throughout the whole development process. The purpose may be slightly different
for the three options; early regression test to enable early detection of defects, and
late regression testing for certification or type approval purposes.

How often regression testing is carried out differed as well; some organizations
regression test daily while others regression test at each software integration, at
each milestone, or before releases [Q24-26]. In some cases the availability of
resources is determinant. Among the questionnaire responses, there were large
variations on how often regression testing is applied. The most common approach
is to regression test before releases (indicated by 95% of the respondents) [Q27].
Only 10% of the respondents regression test daily [Q24].

 75

3.3 How?

From the focus group discussions it was identified that tests used for regression
testing may be a selection of developer's tests, a selection of tester's tests, a
selection of tests from a specific regression test suite, or new test cases are
designed. According to questionnaire responses, the most common is to reuse test
cases designed by testers. Strategies for regression test selection mentioned in the
focus group were: complete retest, combine static and dynamic selection, complete
retest of safety critical parts, select test cases concentrating on changes and possible
side effects, ad-hoc selection, smoke test, prioritize and run as many as possible,
and focus on functional test cases. Questionnaire results confirm that it is common
to run a set of specified regression test cases every time, together with a set of
situation dependent test cases. Ad-hoc selection seems not to be a common
approach; only 10% of the respondents indicate that approach [Q42]. 70% of the
respondents confirm the focus on functional test cases [Q44] and 50% confirm the
usage of smoke tests [Q45].

A project may include several different regression testing activities. Both manual
and automatic regression testing are applied. 50% of the respondents indicate an
equal amount of manual and automatic regression testing while 30% perform
regression testing exclusively manually [Q46].

3.4 Weaknesses and strengths

The focus group had an open discussion about both weaknesses and strengths in
their regression testing practices, and it showed that in several cases representatives
from one organization had solution proposals where others had problems. Some
problems were common to most of the participants (e.g. lack of time and resources
to regression test and insufficient tool support) while others were more specific.
The outcome of the discussion was a list of 29 possible problem areas which were
validated in the questionnaire.

Test case selection. Several problems related to test case selection were discussed in
the focus group. It was mentioned that it is hard to assess the impact of changes on
existing code and to make a good selection. It is hard to prioritize test cases with
respect to product risks and fault detection ability, and to be confident in not
missing safety critical faults. Determining the required amount of tests was also
considered a problem, and it is hard to assess the test coverage.

Participants wished for a regression test suite with standard test cases and for
regression testing guidelines at different stages of a project with respect to quality
aspects. Some participants were satisfied with their impact analysis and with their
test management systems. As a response to the test selection problem, exploratory

 76

testing was recommended and also to have a static test set used for each release.
No specific test selection technique was referred to, such as the ones reviewed by
Engström et al. [4].

The results from the questionnaire responses are in this respect not conclusive.
The responses are divided evenly across the whole spectrum, with a slight shift
towards satisfaction. However, in terms of processes for impact analysis and
assessment of test coverage the challenges identified in the focus group where
confirmed by a third of the respondents even though as many were satisfied. [Q47-
51].

Test case design. Lack of time and resources for regression testing was a recurring
complaint in the discussions. So also in the case for test case design. Among
respondents to the survey were as many satisfied as dissatisfied in this matter
[Q52]. One proposal mentioned in the focus group was to focus on test driven
development and thus make developers take test responsibility, hence building test
automation into the development process, which may be reused for regression
testing purposes as well.

Automated and manual regression testing. Automating regression testing causes
problems and manual testing is time and resource consuming. Both problems and
proposals were discussed in the focus group. Within the focus group, participants
were satisfied and dissatisfied with automation as well as with their manual testing.
Most participants wanted a better balance between automated and manual testing
and support in determining cost benefit of automating regression testing.

It is not only costs for implementing the automated tests that need to be
considered, but also costs for maintaining the test suites and in many cases manual
analysis of results. It was proposed to define interfaces for automation below the
user interface level in order to avoid frequent changes of the test scripts, due to
user interface changes. Use of manual testing was recommended for testing of user
experience and for exploratory testing.

The problems of automation were confirmed by questionnaire responses. 60% of
the respondents were dissatisfied with the balance between manual and automated
regression testing [Q56], the assessment of cost/benefit, execution of automated
regression tests as well as the environment for automated regression testing. In
contrast, as many were satisfied with their manual testing, 60% [Q59].

Regression testing problem areas. Specific problem areas for regression testing,
mentioned in the discussion forum were: regression tests in real target environment
and in simulated target environment, regression testing of third party products and
of GUI:s. For each problem mentioned, were among the participants both those
who had problems and those who were satisfied with their solutions. None of the
problem areas was confirmed by a majority of negative answers in the
questionnaire even though between 10-25% were dissatisfied in each case [Q60-

 77

64]. As testing of databases is subject to regression testing research, this area was
added to the questionnaire, although not mentioned in the focus group.

Test results. Several of the participants in the focus group were unsatisfied with how
test results were presented and analyzed. In many cases verdict reporting is
inconsistent and often there is no time to do a thorough analysis. Some
participants said that their reporting of results and analysis works well and gave
examples of good factors, such as having an independent quality department and
having software quality attributes connected to each test case, which is good not
only for for reporting results but also for prioritization and selection of test cases.

The questionnaire responses were generally neutral regarding consistency of verdict
reporting and processes and practices for analyzing results, but agreed that
practices for presentation of results from automated tests were not good enough
[Q68].

Test suite maintenance. The focus group named maintenance of test suites and test
cases as a problem. Participants stated that much of the regression testing is
redundant with respect to test coverage and that there is a lack of traceability from
tests to requirements. Some of the participants were satisfied with their tools and
processes for traceability and claimed that they are good at maintenance of test
cases in case of changes in the product. A recommendation was to have
independent review teams reviewing the test protocols.

Questionnaire responses confirmed the lack of good tools for documenting
traceability between test cases and requirements but otherwise the variation in the
responses to the questions regarding maintenance was great [Q69-71].

Testability. An issue brought up in the focus group were the amount of
dependencies in the software and its relation to testability. Participants expressed a
wish for a test friendly design where the structure enables a simple delimitation of
relevant tests. There is a need for design guidelines considering testability,
modularization of the software and clearer dependencies in order to make it easier
to set test scopes.

Questionnaire responses indicate satisfaction with coordination/communication
between designers and testers [Q72] and neutrality to modularization of the system
[Q74]. Further they confirmed the need for minimization of dependencies in the
system [Q73] as well as for testability issues in design guidelines [Q75].

Test planning. Finally some needs and recommendations regarding the test planning
was given. Again a cost model was asked for: It would be nice to have a cost model for
environments and technical infrastructure covering; automated testing, test data, test rigs, unit tests,
functional tests, performance tests, target/simulator and test coverage.

Everyone in the focus group agreed that it is better to test continuously than in
large batches. A rule of thumb is to plan for as much test time as development time

 78

even when the project is delayed. It is also good to have a process with a flexible
scope for weekly regression tests, e.g. core automated scope, user scenarios, main
regression scope, dynamic scope, dynamic exploratory scope etc. In order to
broaden the coverage, it was proposed to vary the test focus between different test
rounds.

4 Conclusions

Regression testing increases in software projects as software becomes more and
more complex with increasing emphasis on systematic reuse and shorter
development cycles. Many of the challenges, highlighted in the study, are not
specific to regression testing but are general to all testing. However, they have a
significant impact on how effective the regression testing becomes. Questions
involving automated testing are of course particularly important for regression
testing, as the same tests are repeated many times. Similarly, a test-friendly design is
of great importance when one wants to do a selective retesting. Literature on
regression testing tends to focus on the selection of test cases based on changes in
the code, but for practitioners it does not seem to be the most important issue.

Regression testing definitions (RQ1) are very much the same across all surveyed
companies and in line with formal definitions [8] although the regression testing
practices differ. Regression testing is applied differently in different organizations,
at different stages of a project, at different levels and with varying frequency.
Regression testing is not an isolated one-off activity, but rather an activity of
varying scope and preconditions, strongly dependent on the context in which it is
applied. In most development organizations, regression testing is applied
continuously and at several levels with varying goals. This further underlines the
need for industrial evaluations of regression testing strategies, where context
information is clearly reported, as was previously noted [4].

Regression testing challenges (RQ2) relate to test case selection, trade-offs between
automated and manual testing and design for testability. Issues related to test
automation are:

 Assessment of cost/benefit of test automation
 Environment for automated testing and the presentation of test results.

Design issues affect regression testing since there is a strong relation between the
effort needed for regression testing and the software design. Design for testability,
including modularization with well defined and observable interfaces, helps
verifying modules and their impact on the system. This could be addressed by
including testability in design guidelines. Except for the design issues, coordination
and communication between designers and testers work well.

 79

Good practices (RQ3) were also reported on:

 Run automated daily tests on module level.
 Focus automation below user interface.
 Visualize progress monitoring.

These practices are not specific to regression testing. The latter item is not specific
testing at all, but is a management practice that becomes critical to regression
testing as it constitutes a key part of the development project progress. This
indicates that regression testing should not be addressed nor researched in
isolation; rather it should be an important aspect of software testing practice and
research to take into account.

5 Acknowledgment

The authors would like to thank Per Beremark for moderating the focus group
meeting and to all participants in the focus group and questionnaire. The work is
partly funded by The Swedish Governmental Agency for Innovation Systems
(VINNOVA) in the UPPREPA project under grant 2005-02483, and partly by the
Swedish Research Council under grant 622-2004-552 for a senior researcher
position in software engineering.

6 References

[1] Surveygizmo. http://www.surveygizmo.com, Dec 2009. a web tool for
questionnaires and polls.

[2] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information to
assist regression testing. IEEE Transactions on Software Engineering,
35(4):452-469, 2009.

[3] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14-30, 2010.

[4] E. Engström, P. Runeson, and G. Wikstrand. An empirical evaluation of
regression testing based on fix-cache recommendations. In Proceedings of the
3rd International Conference on Software Testing Verification and Validation,
2010. in press.

[5] Flink. The survey handbook. SAGE Publications, 2nd edition, 2003.
[6] M. Grindal, J. Offutt, and J. Mellin. On the testing maturity of software

producing organizations. In Testing: Academia & Industry Conference-
Practice And Research Techniques (TAIC/PART), 2006.

[7] IEEE. IEEE standard for software test documentation. IEEE Std(829-1983,
Revision),1998.

[8] K. Onoma, W.-T. Tsai, M. H. Poonawala, and H. Suganuma. Regression
testing in an industrial environment: Progress is attained by looking backward.

 80

Association for Computing Machinery. Communications of the ACM,
41(5):81-86, 1998.

[9] Robson. Real World Research. Blackwell Publishing, 2nd edition, 2002.
[10] J. Rooksby, M. Rouncefield, and I. Sommerville. Testing in the wild: The

social and organisational dimensions of real world practice. Computer
Supported Cooperative Work (CSCW), 18(5):559-580, 2009.

[11] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529{552,
1996.

[12] P. Runeson. A survey of unit testing practices. IEEE Software, 23(4):22, 2006.
[13] P. Runeson, C. Andersson, and M. Höost. Test processes in software product

evolution a qualitative survey on the state of practice. Journal of Software
Maintenance and Evolution: Research and Practice, 15:41-59, 2003.

[14] P. Runeson, P. Beremark, B. Larsson, and E. Lundh. SPIN-syd - a non-profit
exchange network. In 1st International Workshop on Software Engineering
Net-working Experiences, Joensuu, Finland, 2006.

[15] P. Runeson and M. Höost. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131-
164, 2009.

[16] M. Skoglund and P. Runeson. A case study of the class firewall regression test
selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering, pages 72-81,
2005.

[17] L. White and B. Robinson. Industrial real-time regression testing and analysis
using firewalls. Proceedings 20th IEEE International Conference on Software
Maintenance, pages 18-27, 2004.

[18] J. A. Zachman. A framework for information systems architecture. IBM
Systems Journal, 26(3):276-293, 1987.

 81

 82

Paper IV:

An Empirical Evaluation of
Regression Testing Based on Fix-
cache Recommendations

Emelie Engström, Per Runeson and Greger Wikstrand

Published in proceedings of International Conference on Software Testing Verification and
Validation (ICST ’10), April 2010

Abstract

Background: The fix-cache approach to regression test selection was proposed to
identify the most fault-prone files and corresponding test cases through analysis of
fixed defect reports. Aim: The study aims at evaluating the efficiency of this
approach, compared to the previous regression test selection strategy in a major
corporation, developing embedded systems. Method: We launched a post-hoc case
study applying the fix-cache selection method during six iterations of development
of a multi-million LOC product. The test case execution was monitored through
the test management and defect reporting systems of the company. Results: From
the observations, we conclude that the fix-cache method is more efficient in four
iterations. The difference is statistically significant at α = 0.05. Conclusions: The new
method is significantly more efficient in our case study. The study will be replicated
in an environment with better control of the test execution.

 83

1 Introduction

Regression testing is a resource consuming activity in software development. This
is particularly true for iterative development approaches, where features are added
to existing software in an iterative fashion. Regression testing is performed to
ensure that previously functioning software is not corrupted by the changes.
Studies indicate that 80% of testing cost is regression testing and more than 50%
of software maintenance cost is related to testing [3]

Several techniques for regression test selection are proposed and evaluated.
Engström et al. recently reviewed the literature in the field [4] and concluded that
most of the proposed regression test selection techniques are not feasible to scale
up to testing of large complex real time systems. Industry practice on regression
testing is mostly based on experience alone, and not on systematic approaches.
There is an urgent need to decrease regression testing cost and increase test
efficiency in industry.

A pragmatic approach to regression testing is proposed by Wikstrand et al. [12].
The basic idea is to link test cases to source files based on information from the
test management and defect reporting systems. Test cases are then prioritized with
respect to how fault prone their linked files are, if changed. A cache, as proposed
by Kim et al. [7], is used to monitor which files are fault-prone and fixed in recent
iterations. The fault prediction effectiveness of the fix-cache method has been shown
to be good [12]. However, the efficiency of the regression testing based on these
recommendations has not been evaluated earlier.

In this paper we report on the first empirical evaluation of test suite efficiency of
the fix-cache method. In an industrial setting we compare the efficiency between
the traditional manually selected test suites and the test suites recommended by the
fix-cache tool. Our results indicate that the tool based selection generates more
efficient test suites.

The paper is structured as follows. In Section 2 we briefly present the regression
test selection method under study as well as related work. Section 3 presents the
design and execution of the evaluation case study. In Section we analyze the
validity of the study and we discuss the results and future work in Section 4.

2 Background and related work

The regression test selection algorithm being evaluated in this paper was first
described by Wikstrand et al. [12]. The algorithm is based on three processes:
identifying fault prone source files, linking test cases to source files, and
recommending test cases. The company where the study was performed, has a

 84

defect report management system, where affected files are recorded when a defect
report is closed. This was crucial to the effectiveness of the described algorithm.
The three processes are described below.

a) Identifying fault prone files: When defect reports are closed, the corresponding
updated files are marked as hits in a fix-cache as proposed by Kim et al. [7]. As
recommended in the original paper, the cache size was fixed at 20% of the total
number of files. To maintain the size, files were removed from the cache using a
least recently used logic.

b) Linking test cases: Also when defect reports are closed, they are traced back to the
originating system test case (if any) and marked correspondingly. The test case is
thus linked through the closed defect reports to the files which were changed as a
result of the fault that was detected when the test case failed.

c) Recommending test cases: When a new test campaign is about to be conducted, the
changes on a file level to the product, compared to the previous test iteration, are
obtained from the source management system. If a file is both in the fix-cache and
has one or more linked test cases, the linked test cases are recommended for
execution. References to the linking defect reports are given as a rationale to aid
the test leader in deciding whether to follow the recommendation.

Wikstrand et al. reported on the precision of the fix-cache. The hit rate, i.e. the
number of files with fixes which were already in the cache, of the cache on a week-
by-week basis was found to be 50-80% [12], less than the 73-95% reported by Kim
et al.[7], although in the same magnitude.

Sheriff et al. [11] published a study on a similar approach, although with a focus on
clusters of files which tend to be changed together. They evaluated the test case
selection and found that the methodology proposed test cases, additional to those
based on pure file changes, in 50 % of the cases. However, it is not clear from the
evaluation whether these test cases actually found more faults or not.

Engström et al. published a comprehensive systematic review of all empirical
evaluations of regression test selection techniques [4]. They conclude that only 4
out of 15 case studies are conducted in a large scale context, i.e. larger than 100000
LOC, and no more than 1 out of 21 experiments is conducted on large scale
artefacts. Software size is not the only criterion for making a study realistic, but the
observation calls for more industry evaluations of regression testing methods.

Several studies investigate relationships between fault-proneness and various
software metrics, among those lines of code is the most straightforward and most
investigated [2]. However, the relation is shown to be logarithmic [8], indicating
that smaller classes cause relatively more problems than larger ones. In this study,
we only use the characteristic of observed fault proneness as a predictor for future
fault proneness.

 85

3 Empirical evaluation

3.1 Research question and method

The aim of the study was primarily to evaluate the efficiency of the fix-cache
approach to regression test selection, compared to the previously used regression
test selection strategy in a major corporation, developing embedded systems. We
refer to efficiency as the number of found faults per selected test case. Our
research question is hence:

 Is the fix-cache regression test selection method more efficient than the
previously applied experience-based method?

Methods for empirical evaluations include experiments [13] and case studies [10].
Studies of real industrial size are hard to conduct with the level of control required
for a formal experiment. Case studies are less controlled, but offer on the other
hand a broader spectrum of data to observe. For our evaluation, we have chosen to
conduct a case study, in which the data collection and analysis is mostly post hoc.

3.2 Case study setting and results

The case under study is a development project at ST-Ericsson in Lund, Sweden.
ST-Ericsson develops platform software and hardware designs for embedded
mobile devices. The part of the product under study comprises several million lines
of code. It is developed at multiple sites across three continents.

Each week, new increments and fault fixes to a number of the modules in the
product are delivered to the main development branch for system and regression
testing. In this study, the focus has been on regression test cases from a limited
area of system test. The test area in question is representative of the product and
tests a cross section of modules and requirements, but we are not able to report
any more details about the selected modules for confidentiality reasons.

The fix-cache regression test selection approach was applied during six iterations of
regression testing. A list of recommended test cases, based on the method, was
delivered to the test department and later followed up by monitoring the test
management and defect management databases. Due to lack of control in the case
study, not all recommended test cases were executed. We discuss the implications
of this in Section 3.3. The actual number of test cases selected and executed are
presented in Table 1, as is the total number of executed test cases, based on the
ordinary selection method, which mainly is based on fixed test case priorities and
test planning heuristics.

 86

We evaluated the fault detection efficiency, defined as:

xecutedtestcasese
dfaultsfounEff

#
#

det =

Figure 1 Fault detection efficiency for each iteration

Table 1. Number of test cases for each iteration. RTC = recommended test cases;
XRTC = executed recommended test cases; TXTC = total executed test cases

Iteration 1 2 3 4 5 6
RTC 27 41 99 1 11 78
XRTC 13 12 71 1 5 47
TXTC 552 480 1301 906 1203 1317

Table 2. Number of failed tests for each iteration. XRTC = executed recommended
test cases; TXTC = total executed test cases

Iteration 1 2 3 4 5 6
XRTC 5 5 30 0 2 7
TXTC 78 56 232 271 170 261

The efficiency for each of the six iterations is reported in Figure 1. Since only one
test case was selected in iteration 4, we consider this iteration being an outlier and it
is hence excluded from the subsequent analysis. There are probably factors out of
the study control that confuse the picture, since the efficiency of the experience-
based method is 0.30 for iteration 4, compared to 0.12-0.18 for the other iterations
(see Table 3 last row).

The underlying data on selected number of test cases and failed tests are reported
in Table 1 and Table 2 respectively. We analyzed the difference between the
efficiency of the two approaches using a t-test. There is a significant difference
between the two at a 5% significance level t = -3.7033, df = 4.629, p = 0.01602.

 87

Figure 2. Diagram relating the sets of test cases to each other. RTC = recommended test
cases; nXRTC= non-executed recommended test cases; XRTC = executed
recommended test cases; TXTC = total executed test cases

3.3 Sensitivity analysis

Since all the recommended test cases were not executed, as reported in Table 1,
there is a major threat to the validity of the study that the results are an effect of
the properties of the executed set of test cases, rather than the test selection
method as such. In order to validate the results, we conducted a sensitivity analysis,
calculating theoretical boundaries for the efficiency.

Figure 3. Sensitivity analysis for iterations 1-3, 5 and 6 - share of test cases detecting
defects vs. iterations

For the sensitivity analysis, the set of Recommended Test Cases are denoted RTC
in Figure 2. The Total number of eXecuted Test Cases (TXTC) does not cover all
RTC, and hence only the eXecuted share of the Recommended Test Cases

 88

(XRTC) subset of RTC is executed. We draw our main conclusions based on
XRTC only as we do not know the properties of the set of non-eXecuted share of
the Recommended Test Cases (nXRTC).

The worst case, i.e. with the lowest efficiency, would be if the test cases of nXRTC
all would pass. The best efficiency case would be if all nXRTC fail, although this is
not a realistic case. Two further alternative scenarios are a) if the nXRTC are as
efficient as the TXTC subset, and b) if the nXRTC are as efficient as the XRTC
subset. In the latter case, the RTC efficiency would be exactly the same as the
XRTC efficiency, reported above.

These four alternative scenarios are presented in Figure 3 and the data is tabulated
in Table 3, using the previously used approach as a reference (eff_TXTC). The
worst case is not significantly better than the traditional approach (t = -0.5393, df =
5.246, p = 0.6118) while the other two approaches are (eff_best_case: t = -8.3817,
df = 4.483, p = 0.0006645; eff_as_TXTC: t = -2.7125, df = 5.661, p = 0.0371).

Table 3. Table 3 Sensitivity analysis using efficiency data for the different approaches
over iterations 1- 6, counting iteration 4 as an outlier

Approach 1 2 3 4 5 6
eff_worst_case 0.19 0.12 0.30 N/A 0.18 0,09
eff_best_case 0.70 0.83 0.59 N/A 0.73 0.49
eff_as_TXTC 0.26 0.20 0.35 N/A 0.26 0.17
eff_as_XRTC 0.38 0.42 0.42 N/A 0.40 0.15
eff_TXTC 0.14 0.12 0.18 0.30 0.14 0.20

We conclude from the scenario analysis that the efficiency of the fix-cache test case
selection method is not due to the incomplete execution of test cases, but the
inherent properties of the method itself.

3.4 Checking assumptions

The fix-cache selection method is based on assumptions concerning fault churn and
fault location. We checked whether these are fulfilled in the studied environment,
although with different data sets than the above study.

Fault churn - The fix-cache algorithm is based on the assumption that the faults are
not evenly distributed over software modules, and that this distribution is changing
over time i.e. there is a fault churn. A Pareto-like distribution of faults over modules
is statically identified in several studies, e.g. [1,5], while the dynamic behaviour is
not studied before, i.e. whether different modules are fault-prone at different
occasions.

The assumption was tested by studying post-hoc which modules would have been
included in the fix-cache, based on comparing the most fault prone modules in two
time periods.

 89

Among modules with at least one fix, the top 20% with the most fixes were
selected in each of a three-month period. The share of modules common to the
top 20% in the two periods was 66%. A repeated measures ANOVA was
conducted on all modules with fixes, with the number of fixes in each of the three-
month periods as the dependent variable. The test indicated that the fault
distributions were different in the two time periods (p<.003), hence the
assumption is supported.

Fault location - The other basic assumption is that test cases find faults in the same
fault location, which sets the upper limit for the method's effectiveness. To test this
assumption we analyzed whether test cases, which have failed more than once, lead
to fixes in the same modules.

We observed a small number of test cases where fails lead to more than one defect
report, causing fixes in the software. 27% of these test cases lead to fixes in the
same modules, while the remaining 73% of the test cases lead to fixes in different
modules each time. We consider the assumption weakly supported by the studied
test cases.

4 Threats to validity

We analyze threats to the validity of the study and report countermeasures taken to
reduce them. The definitions follow Wohlin et al. [13].

Conclusion validity is concerned with the statistical analyses underpinning the
conclusions. The statistical analyses use the robust t-test and in the checking of
assumptions, ANOVA. In the sensitivity analysis, we repeat the t-test for each
variant, but towards the same reference. Hence, the error rate problem is not
apparent.

Internal validity is about the risk for other factors impacting on the relation
between what is manipulated and the outcome. The limitation here is that the
original set of test cases as well as the small share of selected test cases may not be
representative. However, the sensitivity analysis indicates that the conclusions are
robust.

Construct validity is concerned with the alignment between what is measured and
what is the underlying construct. The test case efficiency measure is only one view
of a good regression test selection procedure. The overall defect detection
effectiveness is even more important, i.e. the share of defects detected by different
test case selection methods. The available data in this case did not allow us to
perform such an analysis. Two assumptions for the method was analyzed in
Section 3.4 and found supported and weakly supported, respectively, although on a
small number of test cases.

 90

External validity is related to generalizability of the results. We have no indications
that this environment is unique, but the method should of course be evaluated and
tailored to other environments before launching it widely. Its underlying
assumptions of Pareto distributed faults is verified by other research, e.g. [1,56] but
the dynamic variation over time is not verified in those studies.

5 Discussion and future work

The fix-cache regression test selection technique is a simple, but apparently
efficient technique for test case selection. It makes use of information that already
is collected and stored in different databases. Setting it into use involves mainly
connecting these databases together.

Our empirical evaluation indicates that the technique is more efficient than the
previously used technique. The set of test cases that were selected and executed
found significantly more defects per test case than the previously used approach
did.

Still, there are many questions remaining open. One major question is whether the
defect detection effectiveness is better as well. The technique selected a small set of
test cases, so the number of faults found is very small compared o the number
selected by the manual method.

The size of the cache is a factor that impacts on the number of selected test cases.
Future evaluations include varying the cache size, and evaluating the efficiency for
various sizes of the cache. They should also include data collection to enable
analysis of effectiveness measures such as precision and inclusiveness [9]. Other
pragmatic strategies, such as random selection of a given percentage should also be
applied as a reference.

Replications in other companies and settings are also encouraged to increase the
knowledge of the fix-cache regression test selection method.

6 References

[1] C. Andersson and P. Runeson. A replicated quantitative analysis of fault
distributions in complex software systems. IEEE Transactions on Software
Engineering, 33(5):273, 2007.

[2] V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical
investigation. Communications of the ACM, 27(1):42–53, 1984.

[3] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information to
assist regression testing. IEEE Transactions on Software Engineering, 35(4):452–
469, 2009.

 91

 92

[4] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, 2010.

[5] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a
complex software system. IEEE Transactions on Software Engineering, 26(8):797–
814, 2000.

[6] M. Hamill and K. Goseva-Popstojanova. Common trends in software fault
and failure data. IEEE Transactions on Software Engineering, 35(4):484–496,
2009.

[7] S. Kim, T. Zimmermann, E. Whitehead, and A. Zeller. Predicting faults from
cached history. 29th International Conference on Software Engineering (ICSE’07),
pages 489–498, 2007.

[8] Koru, D. Zhang, K. El Emam, and H. Liu. An investigation into the
functional form of the size-defect relationship for software modules. IEEE
Transactions on Software Engineering, 35(2):293–304, 2009.

[9] G. Rothermel and M. Harrold. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering, 22(8):529–551, 1996.

[10] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
2009.

[11] M. Sherriff, M. Lake, and L. Williams. Prioritization of regression tests using
singular value decomposition with empirical change records. The 18th IEEE
International Symposium on Software Reliability (ISSRE ’07), pages 81–90, 2007.

[12] G. Wikstrand, R. Feldt, J. Gorantla, W. Zhe, and C. White. Dynamic
regression test selection based on a file cache an industrial evaluation.
International Conference on Software Testing Verification and Validation (ICST ’09),
pages 299–302, 2009.

[13] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering: an introduction. Kluwer, 2000.

Paper V:

Software Product Line Testing - A
Systematic Mapping Study

Emelie Engström and Per Runeson

Conditionally accepted for publication in Journal of Information and Software Technology

Abstract

Context: Software product lines (SPL) are used in industry to achieve more efficient
software development. However, the testing side of SPL is underdeveloped.
Objective: This study aims at surveying existing research on SPL testing in order to
identify useful approaches and needs for future research. Method: A systematic
mapping study is launched to find as much literature as possible, and the 64 papers
found are classified with respect to focus, research type and contribution type.
Results: A majority of the papers are of proposal research types (64 %). System
testing is the largest group with respect to research focus (40%), followed by
management (23%). Method contributions are in majority. Conclusions: More
validation and evaluation research is needed to provide a better foundation for SPL
testing.

 93

1 Introduction

Efficient testing strategies are important for any organization with a large share of
their costs in software development. In an organization using software product lines
(SPL) it is even more crucial since the share of testing costs increases as the
development costs for each product decreases. Testing of a software product line is
a complex and costly task since the variety of products derived from the product
platform is huge. In addition to the complexity of stand-alone product testing,
product line testing also includes the dimension of what should be tested in the
platform and what should be tested in separate products.

Early literature on product lines did not spend much attention to testing [7] (p278-
279), but the issue is brought up after that, and much research effort is spent on a
variety of topics related to product line testing. In order to get a picture of existing
research we launched a systematic mapping study of product line testing. The aim is
to get an overview of existing research in order to find useful results for practical
use and to identify needs for future research. We provide a map over the existing
research on software product line testing. Overviews of challenges and techniques
are included in several earlier papers, as well as a couple of brief reviews. However
no extensive mapping study has been reported on earlier.

Systematic mapping is a relatively new research method in software engineering,
adapted from other disciplines by Kitchenham [31]. It is an alternative to systematic
reviews and could be used if the amount of empirical evidence is too little, or if the
topic is too broad, for a systematic review to be feasible. A mapping study is
performed at a higher granularity level with the aim to identify research gaps and
clusters of evidence in order to direct future research. Some reports on systematic
mapping studies are published e.g. on object-oriented software design [3] and on
non-functional search-based software testing [1]. Petersen et al. [58] describe how to
conduct a systematic mapping study in software engineering. Our study is
conducted in accordance with these guidelines. Where applicable, we have used the
proposed classification schemes and in addition, we have introduced a scheme
specific to our topic.

This paper is organized as follows: Section 2 describes how the systematic mapping
methodology has been applied. Section 3 summarizes challenges discussed in
literature in response to our first research question. In section 4 we compile
statistics on the primary studies to investigate the second research question. Section
5 presents the classification schemes used and in section 6 the actual mapping of the
studies, according to research questions three and four, is presented together with a
brief summary of the research. Finally, discussion and conclusions are provided in
sections 7 and 8, respectively.

 94

2 Research method

2.1 Research questions

The goal of this study is to get an overview of existing research on product line
testing. The overall goal is defined in four research questions:

RQ1 Which challenges for testing software product lines have been identified? Challenges
for SPL testing may be identified in specific surveys, or as a bi-product of other
studies. We want to get an overview of the challenges identified to validate the
relevance of past and future research.
RQ2 In which fora is research on software product line testing published? There are a few
conferences and workshops specifically devoted to SPL. However, experience
from earlier reviews indicates that research may be published in very different
for a [15].
RQ3 Which topics for testing product lines have been investigated and to what extent? As
SPL is related to many different aspects, e.g. technical, engineering, managerial,
we want to see which ones are addressed in previous research, to help
identifying needs for complementary research.
RQ4 What types of research are represented and to what extent? Investigations on types
of research in software indicate that the use of empirical studies is scarce in
software engineering [21]. Better founded approaches are advised to increase
the credibility of the research [69] and we want to investigate the status for the
specific subfield of SPL testing.

2.2 Systematic mapping

In order to get an overview of the research on SPL testing, a systematic mapping
study is carried through. A detailed description on how to conduct systematic
mapping studies, and a discussion of differences between systematic mapping and
systematic reviews, is presented by Petersen et al.[58]. The mapping process consists
of three activities; i) search for relevant publications, ii) definition of a classification
scheme, and iii) mapping of publications.

In this study, search for publications is done in five steps of which the two last steps
validate the search, see Figure 1, using a combination of data base searches and
reference based searches [67]. In the first step an initial set of papers was identified
through exploratory searches, mainly by following references and links to citing
publications, with some previous known publications as the starting point
[42][72][47][60][52][59] The result of this activity was 24 publications, which were
screened in order to retrieve an overview of the area; frequently discussed
challenges, commonly used classifications and important keywords.

 95

The second step consisted in reading introduction sections and related works
sections in the initial set of publications and extending the set with referenced
publications relevant to this study. Only papers with a clear focus on the testing of a
software product line published up to 2008 were included. This resulted in
additional 33 publications. In order to avoid redundancy in research contributions
and to establish a quality level of included publications we decided however to
narrow down the categories of publications after this stage. Non peer reviewed
publications; such as technical reports, books and workshop descriptions, in total 23
publications, were excluded from the set of primary studies. Among those is an early
technical report by McGregor [42]. (cited in 70% of the publications) which is used
to find relevant primary studies, but not included among the primary studies as
such. Another result of this step was a summary of challenges in SPL testing
identified by the community and a preliminary classification scheme for research
contributions.

In the third step we screened titles in proceedings from the most frequent
publication forum from the previous steps; the workshop on Software Product Line
Testing (SPLiT), and from the corresponding main conference; the Software
Product Line Conference (SPLC). The number of primary studies is 53 after this
step.

Figure 1 Search for publications on software product line testing

The fourth and fifth steps are validating the first three. The fourth step includes
automatic searches with Google Scholar and ISI Web of science. The search string
was “product” and “line/lines/family/families” and “test/testing” and it was
applied only to titles, which has shown to be sufficient in systematic reviews [12].
This search resulted in 177 hits in Google Scholar and 38 hits in ISI Web of science.
The search in web of science did not result in any new unique contribution.

 96

Excluded publications were, except for the above mentioned, tool demonstrations,
talks, non-english publications, patent applications, editorials, posters, panel
summaries, keynotes and papers from industrial conferences. In total 49
publications were relevant for this study according to our selection criteria. This set
was compared to our set of 53 papers from step three and 38 papers were common.
The differing 11 publications were added to the study. In the fifth step the set of
papers was compared to a set of paper included in a systematic review on product
line testing by Lamancha et al. [38]. Their study included 23 papers of which 12
passed our criteria on focus and publication type. All of these were already included
in our study. Thus we believe that the search for publications is sufficiently
extensive and that the set of publications gives a good picture of the state of art in
SPL testing research.

A summary of the inclusion and exclusion criteria is:

 Inclusion: Peer reviewed publications with a clear focus on some aspect of
software product line testing.

 Exclusion: Publications where either testing focus or software product line

focus is lacking. Non-peer reviewed publications.

The answer to RQ1 was retrieved through synthesising the discussions in the initial
24 publications until saturation was reached. Several publications are philosophical
with a main purpose to discuss challenges in SPL testing and almost all papers
discuss the challenges to some extent in the introductory sections. All challenges
mentioned were named and grouped. A summary of the challenges is provided in
section 3. Answers to questions RQ2, RQ3 and RQ4 are retrieved through analysing
the 64 primary studies. A preliminary classification scheme was established through
keywording [58] abstracts and positioning sections. Classifications of the primary
studies were conducted by the first author and validated by the second.
Disagreements were resolved through discussions or led to refinement of the
classification scheme, which in turn led to reclassification and revalidation of
previously classified publications. This procedure was repeated until no
disagreements remained.

2.3 Threats to validity

Threats to the validity of the mapping study are analyzed according to the following
taxonomy: construct validity, reliability, internal validity and external validity.

Construct validity reflects to what extent the phenomenon under study really
represents what the researchers have in mind and what is investigated according to
the research questions. The terms product lines, software product lines and

 97

family/families are rather well established, and hence the terms are sufficiently
stable to use as search strings. Similarly for testing, we consider this being well
established. Another aspect of the construct validity is assurance that we actually
find all papers on the selected topic. We have searched broadly in general
publication databases which index most well reputed publication fora. The long list
of different publication fora indicates the width of the searching is enough. The
snowball sampling procedure has been shown to work well in searching with a
specific technical focus [67]. We also validated our searches against another review,
and found this review covering all papers in that review.

Reliability focuses on whether the data are collected and the analysis is conducted in
a way that it can be repeated by other researchers with the same results. We defined
search terms and applied procedures, which may be replicated by others. The non-
determinism of one of the databases (Google scholar) is compensated by also using
a more transparent database (ISI Web of Science). Since this is a mapping study, and
no systematic review, the inclusion/exclusion criteria are only related to whether the
topic of SPL testing is present in the paper or not. The classification is another
source of threats to the reliability. Other researchers may possibly come up with
different classification schemes, finer or more course grained. However, the
consistency of the classification is ensured by having the classifications conducted
by the first author and validated by the second.

Internal validity is concerned with the analysis of the data. Since the analysis only uses
descriptive statistics, the threats are minimal. Finally, external validity is about
generalization from this study. Since we do not draw any conclusions about
mapping studies in general, but only on this specific one, the external validity threats
are not applicable.

3 Challenges in testing a software product line

Software product line engineering is a development paradigm based on common
software platforms, which are customized in order to form specific products [59]. A
software platform is a set of generic components that form a common structure,
from which a set of derivative products can be developed [46]. The process of
developing the platform is named domain engineering, and the process of deriving
specific products from the platform is named application engineering [59]. We refer
to domain testing and application testing, accordingly. The variable characteristics of
the platform are referred to as variability; the specific representations of the
variability in software artefacts are called variation points, while the representation
of a particular instance of a variable characteristic is called a variant [59].

A number of challenges regarding testing of software product lines have been
identified and discussed in the literature, which are identified in this mapping study
(RQ1). They can be summarized in three main challenges concerning i) how to

 98

handle the large number of tests, ii) how to balance effort for reusable components
and concrete products, and iii) how to handle variability.

3.1 Large number of tests

A major challenge with testing a software product line regards the large number of
required tests. In order to fully test a product line, all possible uses of each generic
component, and preferably even all possible product variants, need to be tested. The
fact that the number of possible product variants grows exponentially with the
number of variation points, makes such thorough testing infeasible. Since the
number of products actually developed also increases, there is an increased need for
system tests as well.

The main issue here is how to reduce redundant testing and to minimize the testing
effort through reuse of test artefacts. The close relationship between the developed
products and the fact that they are derived from the same specifications indicates an
option to reduce the number of tests, due to redundancy. A well defined product
line also includes a possibility to define and reuse test artefacts.

3.2 Reusable components and concrete products

The second major challenge, which of course is closely related to the previous, is
how to balance effort spent on reusable components and product variants. Which
components should be tested in domain (platform) engineering, and which should
be tested in application (product) engineering? [59] A high level of quality is
required for the reusable components but still it is not obvious how much the
testing of reusable components may help reducing testing obligations for each
product. There is also a question of how to test generic components, in which order
and in how many possible variants. The planning of the testing activities is also
further complicated by the fact that software process is split and testing may be
distributed across different parts of the organizations.

3.3 Variability

Variability is an important concept in software product line engineering, and it
introduces a number of new challenges to testing. Variability is expressed as
variation points on different levels with different types of interdependencies. This
raises a question of how different types of variation points should be tested. A new
goal for testing is also introduced in the context of variability: the verification of the
absence of incorrect bindings of variation points. We have to be sure that features
not supposed to be there are not included in the end product. The binding of
variation points is also important. Complete integration and system test are not

 99

4 Primary studies

Following the method defined in Section 2.2, we ended up in 64 peer reviewed
papers, published in workshops, conferences, journals and in edited books (RQ2).
The papers are published between 2001 and 2008, and summarized by publication
fora in Table1.

Table 1. Distribution of publication fora

Publication Fora Type #
International Workshop on Software Product Line Testing (SPLiT) Workshop 23
International Workshop on Software Product-family Engineering (PFE) Workshop 3
Software Product Lines – Research Issues in Engineering and
Management

Book chapter 3

Software Product Line Conference (SPLC) Conference 2
ACM SIGSOFT Software Engineering Notes Journal 1
Communications of the ACM Journal 1

Concurrency: Specification and Programming Workshop Workshop 1
Conference on Composition-Based Software Systems Conference 1

Conference on Quality Engineering in Software Technology
(CONQUEST)

Industry
Conference

1

Development of Component-based Information Systems Book chapter 1
European Conference on Information Systems, Information Systems in a
Rapidly Changing Economy, (ECIS)

Conference 1

European Workshop on Model Driven Architecture with Emphasis on
Industrial Application

Workshop 1

Fujaba days Workshop 1
Fundamental Approaches to Software Engineering (FASE) Conference 1
Hauptkonferenz Net.ObjectDays Industry

Conference
1

International Computer Software and Applications Conference Conference 1
International Conference on Advanced Information Systems (CAiSE) Conference 1
International Conference on Automated Software Engineering (ASE) Conference 1
International Conference on Computer and Information Technology
(ICCIT)

Conference 1

International Conference on Engineering of Complex Computer Systems
(ICECCS)

Conference 1

International Conference on Software Engineering and Formal Methods
(SEFM)

Conference 1

International Conference on Software Reuse (ICSR) Conference 1
International Symposium on Computer Science and Computational
Technology (ISCSCT)

Conference 1

International Symposium on Empirical Software Engineering (ISESE) Conference 1
International Symposium on Software Reliability Engineering (ISSRE) Conference 1
International Symposium on Software Testing and Analysis (ISSTA) Conference 1

 100

Publication Fora Type #
International Workshop on Requirements Engineering for Product Lines
(REPL)

Workshop 1

International Workshop on Software Product Family Engineering (PFE) Workshop 1
International Workshop on Product Line Engineering The Early Steps:
Planning, Modeling, and Managing (PLEES)

Workshop 1

International Workshop on Software Product Lines Workshop 1
International Workshop on Test and Analysis of Component Based
Systems (TaCOS)

Workshop 1

Journal of Software Journal 1
Nordic Workshop on Programming and Software Development Tools
and Techniques (NWPER)

Workshop 1

The European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE)

Conference 1

The Role of Software Architecture for Testing and Analysis (ROSATEA) Workshop 1
Workshop on Advances in Model Based Testing (A-MOST) Workshop 1

Workshop on Model-based Testing in Practice Workshop 1
Total 64

In Table 2 and Table 3, the distribution over time is reported for the 64 primary
studies. Note that one paper spans two research foci according to our classification
scheme. Hence the total number of classification items in Table 2 is 65.

Table 2. Distribution over research focus

Research Focus 2001 2002 2003 2004 2005 2006 2007 2008 Total
Test Organization and
Process

1 1 1 2 1 1 1 2 10

Test Management 2 3 1 3 2 4 15
Testability 1 1 2
System and Acceptance
Testing

 1 4 4 3 7 2 5 26

Integration Testing 1 1 2 4
Unit Testing 2 1 3
Automation 4 1 5
Total 1 2 9 15 6 13 8 11 65

Table 3. Distribution over publication types

Type of Publication 2001 2002 2003 2004 2005 2006 2007 2008 Total
Book Chapter 4 4 6%
Conference Paper 4 1 2 3 4 5 19 30%
Journal Paper 1 1 1 3 5%
Workshop Paper 1 2 5 13 4 4 4 5 38 59%
Total 1 2 9 15 6 12 8 11 64 100%

 101

5 Classification Schemes

Publications are classified into categories in three different dimensions: research focus,
type of contribution and research type. This structure is presented by Petersen et al. [58].
However the different categories are adapted to this particular study. Establishing
the scheme and mapping publications was done iteratively as new primary studies
were added. When the scheme was finally set, all classifications were reviewed again.

Six categories of research focus (RQ3) were identified through the keyword method
described by Petersen et al.[58]: i) test organization and process, ii) test management,
iii) testability, iv) system and acceptance testing (ST and AT), v) integration testing
(IT), vi) unit testing (UT), and vii) automation. Test organization and process includes
publications with a focus on the testing framework, seeking answers to how the
testing activities and test assets should be mapped to the overall product line
development and also how product line testing should be organized overall. Papers
on product line testing in general are also mapped into this category. Test management
includes test planning and assessment, fault prediction, selection of test strategies,
estimates of the extent of testing and test coverage. Papers on how to distribute
resources (between domain engineering process and application engineering
process, between different test activities, and between different products) are
included as well. Testability includes papers with a focus on other aspects of product
line engineering rather than the testing, but still with the goal of improved testing.
The test levels used in the classification are system and acceptance testing, integration
testing, and unit testing. Paper topics cover both design of new test cases and selection
of already existing test cases. Test cases could be designed from requirements or
from generic test assets. Some papers focus on the automation of testing.

Contribution type is classified into five categories: Tool, Method, Model, Metric, and
Open Items. Tools refer to any kind of tool support for SPL testing, mostly in the form
of research prototypes. Methods include descriptions of how to perform SPL testing,
both as general concepts and more specific and detailed working procedures. Models
are representations of information to be used in SPL testing. Metrics focus on what
to measure to characterize certain properties of SPL testing. Finally, open items are
identified issues that need to be addressed.

The classification of research types (RQ4) is based on a scheme proposed by
Wieringa et al. [78]. Research is classified into six categories: i) validation research, ii)
evaluation research, iii) solution proposals, iv) conceptual proposals, v) opinion papers, and vi)
experience papers. Validation research focuses on investigating a proposed solution which
has not yet been implemented in practice. Investigations are carried out
systematically and include: experiments, simulation, prototyping, mathematical
systematically analysis, mathematical proof of properties etc. Evaluation research
evaluates a problem or an implemented solution in practice and includes case
studies, field studies, field experiments etc. A Solution proposal is a novel or significant
extension to an existing technique. Its benefits are exemplified and/or argued for. A
Conceptual proposal sketches a new way of looking at things, but without the

 102

preciseness of a solution proposal. Opinion papers report on the authors´ opinions on
what is good or bad. Experience papers report on personal experiences from one or
more real life projects. Lessons learned are included but there is no systematic
reporting of research methodology.

6 Mapping

Figure 2 shows a map over existing research foci related to software product line
testing, distributed over type of research and type of contribution. The number of
publications on each side differs, since some publications provide multiple
contributions e.g. both a model and a method. Most research effort is spent on
system testing with contributions such as proposed methods for test case design,
sketched out in detail but not yet evaluated, i.e. solution proposals. An overview of
research presented by focus is given in sections 6.1.1 – 6.1.7.

Figure 2 Map of research focus on software product line testing. Research focus on the Y
axis; contribution type on the left side of the X axis, and research type on the right side of
the X axis.

 103

6.1 Research focus

Figure 3 shows the distribution of research foci. A paper is assigned to several foci if
it has a clear contribution to more than one area. Each of the focus areas is
discussed below.

Research focus

Organization
and Process

15%

Management
23%

Testability
3%

System and
acceptance

test
40%

Integration test
6%

Unit test
5%

Automation
8%

Figure 3 Distribution of research foci

6.1.1 Test Organization and Process

McGregor points out the need for a well designed test process, and discusses the
complex relationships between platforms, products and different versions of both
platforms and products in his technical report [42]. He argues there and elsewhere
[41] for a structure of test assets and documentation in alignment with the structure
of the constructed products. This is further concretized by Knauber and Hetrick
[32]. Kolb and Muthig [35][37] discuss the importance and complexity of testing a
software product line and component-based systems. They pinpoint the need for
guidelines and comprehensive and efficient techniques for systematically testing
product lines. They also promote the idea of creating generic test cases.

Tevalinna et al. address the problem of dividing product line testing into two distinct
instantiations of the v-model; testing is product oriented and no efficient techniques
for domain testing exist [73]. Two problems are pointed out: First, complete
integration and system testing in domain engineering is not feasible, and second, it is
hard to decide how much we can depend on domain testing in the application
testing. They also discuss four different strategies to model product line testing:
testing product by product, incremental testing of product lines, reusable asset
instantiation and division of responsibilities [73]. Weingärtner discusses the
application of product family engineering in an environment where development
was previously done according to the V-model [76]. Jin-hua et al. proposes a new

 104

test model for software product line testing, the W-model [24]. Ganesan et al. [17]
compare cost benefits of a product focused test strategy contra an infrastructure
focused test strategy and introduces a cost model to be able to quantify the
influences on test costs from a given product variant. Ghanam et al. [19] discuss
testing in the context of agile PL and highlights challenges in applying test driven
development (TDD) in SPL. Shalius reports on positive experiences of agile testing
in the context of XP and RUP [68]

Table 4. Papers on Test Organization and Process

Author Title Paper type Contribution
type

Shaulis (2004) [68] Salion's Confident Approach to
Testing Software Product Lines

Experience
report

Tool

Knauber, Hetrick
(2005) [32]

Product Line Testing and Product Line
Development - variations on a
Common Theme

Solution
proposal

Method

McGregor (2001)[41] Structuring Test Assets in a Product
Line Effort

Conceptual
proposal

Model

Weingärtner (2002)
[76]

Product family engineering and testing
in the medical domain-validation
aspects

Opinion Model

Ganesan, Knodel,
Kolb, Haury, Meier
(2007)[17]

Comparing Costs and Benefits of
Different Test Strategies for a Software
product Line: A study from Testo AG

Validation
research

Model

Jin-hua, Qiong, Jing,
(2008) [24]

The W-Model for Testing Software
Product Lines

Solution
Proposal

Model

Kolb, Muthig (2003)
[35]

Challenges in Testing Software
Product Lines

Opinion
paper

Open Items

Tevanlinna, Taina,
Kauppinen (2004)
[73]

Product Family Testing - a Survey Opinion
paper

Open Items

Kolb, Muthig (2006)
[37]

Techniques and Strategies for Testing
component-Based Software and
Product Lines

Experience
Report

Open Items

Ghanam, Park,
Maurer (2008) [19]

A Test-Driven Approach to
Establishing & Managing Agile
Product Lines

Conceptual
proposal

Open Items

6.1.2 Test Management

The research on test management contains several proposals and a few evaluated
research statements. Tevanlinna proposes a tool, called RITA (fRamework
Integration and Testing Application) to support testing of product lines [72]. Kolb
presents a conceptual proposal that sets focus on test planning and test case design,
based on risks [34]. Mc Gregor and Im make a remark that product lines vary both
in space and in time, and outline a conceptual proposal to address this fact [43].
Oster et al. proposes a story driven approach to select which features to be tested in
different product instances [57].

 105

McGregor discusses, in his technical report, the possibility of product line
organizations to retrieve a high level of structural coverage by aggregating the test
executions of each product variant in the product line [42]. Schneidemann
optimized product line testing by minimizing the number of configurations needed
to verify the variation of the platform [70]. Gustafsson worked on algorithms to
ensure that all features of a product line are covered in at least one product instance
[22]. Cohen et al. [9] define a family of cumulative coverage criteria based on a
relational model capturing variability in the feasible product variants, e.g. the
orthogonal variability model. Kauppinenen et al. propose special coverage criteria
for product line frameworks [29].

In order to reduce the test effort, McGregor proposes a combinatorial test design
where pairwise combinations of variants are systematically selected to be tested
instead of all possible combinations [42]. Muccini and van der Hoek [48] propose a
variant of this approach for integration testing, “core first then big bang”, and
emphasize the need for a combination of heuristic approaches to combine in order
to effectively perform integration testing. Cohen et al. [9] propose application of
interaction testing and connect this to the combinatorial coverage criteria.

Table 5. Papers on Test Management

Author Title Paper type Contribution
type

Tevanlinna (2004) [72] Product family testing with RITA Solution
Proposal

Tool

Kolb (2003)[34] A Risk-Driven Approach for
Efficiently Testing Software Product
Lines

Solution
Proposal

Method

Scheidemann (2006)[70] Optimizing the selection of
representative Configurations in
Verification of Evolving Product
Lines of Distributed Embedded
Systems

Solution
Proposal

Method

Gustafsson (2007)[22] An Approach for Selecting Software
Product Line Instances for Testing

Validation
Research

Method

McGregor, Im
(2007)[43]

The Implications of Variation for
Testing in a Software Product Line

Conceptual
Proposal

Method

Oster, Schürr,
Weisemöller (2008) [57]

Towards Software Product Line
Testing using Story Driven Modeling

Conceptual
Proposal

Method

Cohen, Dwyer, Shi
(2006)[9]

Coverage and Adequacy in Software
Product Line Testing

Solution
Proposal

Model,
Method

Al Dallal, Sorenson
(2008) [2]

Testing software assets of
framework-based product families
during application engineering stage

Validation
Research

Model,
method, tool

Zeng, Zhang, Rine
(2004) [80]

Analysis of Testing Effort by Using
Core Assets in Software Product Line
Testing

Solution
Proposal

Model

Dowie, Gellner,
Hanssen, Helferich,

Quality Assurance of Integrated
Business Software: An Approach to

Solution
Proposal

Model

 106

Author Title Paper type Contribution
type

Herzwurm, Schockert
(2005) [14]

Testing Software Product Lines

Jaring, Krikhaar, Bosch
(2008) [25]

Modeling Variability and Testability
Interaction in Software Product Line
Engineering

Evaluation
Research

Model

McGregor (2008) [44] Toward a Fault Model for Software
Product Lines

Conceptual
Proposal

Model

Kauppinen, Taina,
Tevalinna (2004) [29]

Hook and Template Coverage
Criteria for Testing Framework-based
Software Product Families

Conceptual
Proposal

Metric

Denger, Kolb (2006)
[11]

Testing and Inspecting Reusable
Product Line Components: First
Empirical Results

Validation
Research

Open Items

Muccini, van der Hoek
(2003) [48]

Towards Testing Product Line
Architectures

Opinion
Paper

Open Items

Al Dallal and Sorenson present a model that focuses on framework testing in
application engineering [2]. They identify uncovered framework use cases and select
product test cases to cover those. The model is empirically evaluated on software,
some 100 LOC in size.

Zeng et al. identify factors that influence SPL testing effort, and propose cost
models accordingly [80]. Dowie et al. evaluate different approaches to SPL testing,
based on a theoretical evaluation framework [14]. They conclude that the customer’s
perspective is missing in SPL testing, and must be included to make the approach
successful.

Jaring et al. propose a process model, called VTIM (Variability and Testability
Interaction Model) to support management of trade-offs on the binding point for a
product line instance [25]. They illustrate the model on a large-scale industrial
system. Denger and Kolb report on a formal experiment, investigating inspection
and testing as means for defect detection in product line components [11].
Inspections were shown to be more effective and efficient for that purpose. Mc
Gregor [44] discusses the need for more knowledge on faults likely to appear in a
product line instance, and outlines a fault model. Fault models may be used as a
basis for test case design and as help in estimating required test effort to detect a
certain class of faults.

6.1.3 Testability

McGregor discusses testability of software product lines in his technical report. This
refers to technical characteristics of the software product that helps testing. Trew
[74] identifies classes of faults that cannot be detected by testing and claim the need
for design policies to ensure testability of an SPL. Kolb and Muthig [36] discuss the
relationships between testability and SPL architecture and propose an approach to
improve and evaluate testability.

 107

Table 6. Papers on Testability

Author Title Paper type Contribution
type

Kolb, Muthig
(2006)[36]

Making Testing Product Lines More
Efficient by Improving the Testability of
Product Line Architectures

Conceptual
Proposal

Model, Method

Trew (2004)
[74]

What Design Policies Must Testers Demand
from Product Line Architects?

Conceptual
Proposal

Open Items

6.1.4 System and Acceptance Testing

Table 7. Papers on System and Acceptance Testing

Author Title Paper type Contribution
type

Hartmann, Vieira, Ruder
(2004)[23]

UML-based approach for
validating product lines

Solution
Proposal

Tool

Bertolino, Gnesi (2003)[6] Use Case-based Testing of
Product Lines

Solution
Proposal

Method

Bertolino, Gnesi (2003)[4] PLUTO: A test Methodology for
product Families

Validation
Research

Method

Kamsties, Pohl, Reis,
Reuys (2003)[27]

Testing Variabilities in Use case
Models

Solution
Proposal

Method

Nebut, Pickin, Traon,
Jéséquel (2003)[50]

Automated Requirements-based
Generation of Test Cases for
Product Families

Validation
Research

Method

Stephenson, Zhan, Clark,
McDermid (2004)[71]

Test Data Generation for Product
Lines - A Mutation Testing
Approach

Solution
Proposal

Method

Geppert, Li, Rössler,
Weiss (2004) [20]

Towards Generating Acceptance
Tests for Product Lines

Validation
Research

Method

Olimpiew, Gomaa (2005)
[55]

Model-based Testing for
Applications Derived from
Software Product Lines

Solution
Proposal

Method

Reuys, Kamsties, Pohl,
Reis (2005) [64]

Model-Based System Testing of
Software Product Families

Evaluation
Research

Method

Mishra (2006) [47] Specification Based Software
Product Line Testing: A case
study

Solution
Proposal

Method

Olimpiew, Gomaa (2006)
[53]

Customizable Requirements-based
Test Models for Software Product
Lines

Evaluation
Research

Method

Pohl, Metzger (2006)[60] Software Product Line Testing Conceptual
Proposal

Method

Reis, Metzger, Pohl
(2006)[62]

A Reuse Technique for
Performance Testing of Software
Product Lines

Evaluation
Research

Method

Reuys, Reis, Kamsties,
Pohl, (2006) [66]

The ScenTED Method for
TestingSoftware Product Lines

Evaluation
Research

Method

 108

Author Title Paper type Contribution
type

Li, Geppert, Roessler and
Weiss (2007) [39]

Reuse Execution Traces to
Reduce Testing of Product Lines

Evaluation
Research

Method

Bashardoust-Tajali,
Corriveau (2008)[8]

On extracting Tests from a
Testable Model in the Context of
Domain Engineering

Solution
Proposal

Method

Kahsai, Roggenbach,
Schlingloff (2008)[26]

Specification-based Testing for
Software ProductLines

Solution
Proposal

Method

Olimpiew, Gomaa
(2008)[54]

Model-Based Test Design for
Software Product Lines

Solution
Proposal

Method

Uzuncaova, Garcia,
Khurshid, Batory (2008)
[75]

Testing Software Product Lines
Using Incremental Test
Generation

Validation
Research

Method

S Weißleder, D Sokenou,
BH Schlingloff (2008)
[77]

Reusing State Machines for
Automatic Test Generation in
Product Lines

Solution
Proposal

Method

Dueñas, Mellado, Cerón,
Arciniegas, Ruiz, Capilla
(2004) [13]

Model driven testing in product
family context

Solution
Proposal

Model

Nebut, Traon, Jezequel
(2006)[52]

System Testing of Product Lines:
From Requirements to Test Cases

Validation
Research

Model

Olimpiew, Gomaa (2005)
[56]

Reusable System Tests for
Applications Derived from
Software Product Lines

Conceptual
Proposal

Model

Kang, Lee, Kim, Lee
(2007)[28]

Towards a Formal Framework for
Product line Test Development

Solution
Proposal

Model, Method

Nebut, Pickin, Traon,
Jezequel (2002) [51]

Reusable Test Requirements for
UML-Model Product Lines

Solution
Proposal

Model, Method

Bertolino, Fantechi,
Gnesi, Lami (2006)[5]

Product Line Use Cases: Scenario-
Based Specification and Testing of
Requirements

Solution
Proposal

Model, Method

Most research effort is spent on system and acceptance testing, 40 %. The most
frequent goal is automatic generation of test cases from requirements. Requirements
may be model based, mostly on use cases [62], formal specifications [47] or written
in natural language [8].

Hartman et al. present an approach based on existing UML based tools and methods
[23]. Bertolino and Gnesi introduce PLUTO, product line use case test optimization
[4][6], which is further elaborated by Bertolini et al. [5]. Kamsties et al. propose test
case derivation for domain engineering from use cases, preserving the variability in
the test cases [27].

Nebut et al. propose an algorithm to automatically generate product-specific test
cases from product family requirements, expressed in UML [51][50], more
comprehensively presented in [52]. They evaluate their approach on a small case
study. Reuys et al. defined the ScenTED approach to generate test cases from UML
models [64], which is further presented by Pohl and Metzger [60]. Olimpiew and

 109

Gomaa defined another approach using diagrams, stereotypes and tagged values
from UML notations [55][54] which was illustrated in a student project [53]. Dueñas
et al. propose another approach, based on the UML testing profile [13] and Kang et
al. yet another process, based on UML use cases and a variability model [28].
Weißleder et al. specifically reuse state machines and generate sets suites, using OCL
expressions [77].

Mishra [47] and Kahsai et al. [26] present test case generation models, based on
process algebra formal specifications. Uzuncanova et al. introduce an incremental
approach to test generation, using Alloy [75]. Bashardoust-Tajali and Corriveau
extract tests for product testing, based on a domain model, expressed as generative
contracts [8].

Stephensen et al. propose a test strategy to reduce the search space for test data,
although without providing any reviewable details [71]. Geppert et al. present a
decision model for acceptance testing, based on decision trees [20]. The approach
was evaluated on a part of an industrial SPL. Li et al. utilize the information in
execution traces to reduce test execution of each product of the SPL [39].

6.1.5 Integration Testing

Table 8. Papers on Integration Testing

Author Title Paper type Contribution
type

Reuys, Reis,
Kamsties, Pohl,
(2006) [66]

The ScenTED Method for Testing
Software Product Lines

Evaluation
Research

Method

Kishi, Noda
(2004)[30]

Design Testing for Product Line
Development based on Test Scenarios

Solution
Proposal

Method

Li, Weiss, Slye
(2007) [40]

Automatic Integration Test Generation
from Unit Tests of eXVantage Product
Family

Evaluation
Research

Method

Reis, Metzer, Pohl
(2007)[63]

Integration testing in software product
line engineering; A model-Based
Technique

Validation
Research

Method

The ScenTED method is proposed also for integration testing in addition to system
and acceptance testing, and hence mentioned here [66]. Reis et al. specifically
validated its use for integration testing in an experimental evaluation [63]. Kishi and
Noda propose an integration testing technique based on test scenarios, utilizing
model checking techniques [30]. Li et al. generate integration test from unit tests,
illustrated in an industrial case study [40].

6.1.6 Unit Testing

Different approaches to create test cases based on requirements including
variabilities, are proposed with a focus on how to cover possible scenarios. In

 110

ScenTED, [65], UML-activity diagrams are used to represent all possible scenarios.
Nebut et al. [49] use parameterized use cases as contracts on which testing coverage
criteria may be applied. Feng et al. use an aspect-oriented approach to generate unit
tests [16].

Table 9. Table 1 Papers on Unit Testing

Author Title Paper type Contribution
type

Feng, Liu, Kerridge
(2007) [16]

A product line based aspect-oriented
generative unit testing approach to
building quality components

Validation
Research

Method

Reuys, Reis,
Kamsties, Pohl,
(2003)[65]

Derivation of Domain Test Scenarios
from
Activity Diagrams

Solution
Proposal

Model

Nebut, Fleurey,
Traon, Jezequel
(2003) [49]

A Requirement-Based Approach to test
Product Families

Validation
Research

Model, Method,
Tool

6.1.7 Test Automation

McGregor et al. [45] propose and evaluate an approach to design test automation
software which is based on correspondence between variability in product software
and in test software. Condron [10] proposes a domain approach to automate PL
testing, combining test automation frameworks from various locations in the entire
product line where test is needed. Knauber and Schneider [33] explore how to
combine aspect oriented programming and unit testing and thus reach traceability
between implementation of variability and its test. Ganesan et al. [18] focus on
performance testing, reporting on a realization of an environment for testing
response time and load of an SPL. Williams presents an approach to integrating test
automation in an existing development environment for control systems [79].

Table 10. Papers on Test Automation

Author Title Paper type Contribution
type

Knauber, Schneider
(2004) [33]

Tracing Variability from
Implementation to Test Using
Aspect-Oriented Programming

Conceptual
Proposal

Tool

Williams (2004)[79] Test Case Management of Controls
Product Line Points of Variability

Solution
Proposal

Tool

Condron (2004)[10] A Domain Approach to Test
Automation of Product Lines

Solution
Proposal

Tool

Ganesan, Maurer, Ochs,
Snoek, Verlage
(2005)[18]

Towards Testing Response time of
Instances of a web-based Product
Line

Evaluation
Research

Tool

McGregor, Sodhani,
Madhavapeddi
(2004)[45]

Testing Variability in a Software
Product Line

Evaluation
Research

Method

 111

6.2 Research type

Figure 4 shows the distribution of research types in the area of software product line
testing. The most frequent research type is solution proposals 41%. Adding
solution, conceptual proposals and opinion papers sum up to 64% of the papers.
14% of the papers report on evaluation of the proposals and 3% are experience
reports. 19% present other types of validation, primarily off-line approaches.

Research type

Conceptual
Proposal

17%

Evaluation
Research

14%

Experience
Report

3%

Opinion Paper
6%

Solution
Proposal

41%

Validation
Research

19%

Figure 3 Distribution of Research Type

7 Discussion

The surveyed research indicates software product line testing being a rather
immature area. The seminal paper is presented in 2001 [42], and most papers are
published in workshops and conferences; only three has reached the maturity of a
journal publication.

Software product line testing seems to be a “discussion” topic. There is a well
established understanding about challenges, as summarized in Section 98. However,
when looking for solutions to these challenges, we mostly find proposals. The
mapping shows that 64% of the papers found include proposals, which contain
ideas for solutions of the identified challenges, but only 17% of the research report
actual use and evaluation of proposals.

 112

This is not unique for the SPL testing. Ramesh et al. reviewed publications in 13
computer science journals, and found less than 3% being case studies, field studies
or experiments [61]. Close to 90% were of research type “conceptual analysis”,
which is close to our “proposals” categories. In software engineering, the case is
somewhat better. Glass et al. reported 2002 that “conceptual analysis” also
dominates in software engineering (54%), while case study, field study and
experiment sum up to less than 10% [21].

Product line testing is a large scale effort and evaluations are costly [73], which is
one of the explanations behind the limited share of empirical studies. However,
extensive experience in PL engineering exist within companies (Philips, Nokia,
Siemens etc. [59] but no studies on testing can be found [73].

The distribution across the research foci, with its major share on system testing is
natural. This is where product line testing may gain a lot from utilizing the fact that
it is a software product line. Testability issues, especially related to the product line
architecture have an underdeveloped potential to be researched. Approaches that
help isolate effects of variability to limited areas of the software would help improve
the efficiency of product line testing. Test management issues have a reasonable
proportion of the studies, although issues of balancing e.g. domain vs. product
testing are not treated. Some sketched out proposals and many high-level opinions
on how this should be done are reported on but none of them has been evaluated
empirically.

Almost all of the proposed strategies for product line testing are idealistic in the
sense that they put specific requirements on other parts of the development process
than the testing. Hence, it is hard to find “useful approaches”, since they require
major changes to the whole software engineering process, e.g. formal models for
requirements and variability. In a majority of the publications the handling of
variability is in focus. Different approaches for test case derivation are based on
specific ways of documenting and handling variation points. This is natural since
variability is the core concept in product line development. However from the
perspective of system testing the main challenge is how to deal with the large
number of required tests of a range of product variants which are more or less
similar. How variability is handled may not always be possible to affect or even
visible at that stage. There is a need for strategies for test case design and selection,
which are feasible for incremental introduction and applicable in a testing context
regardless of the maturity of the product line organization.

The contribution type is mostly of “method” type. Product line engineering in
general, and testing in particular, need new methodological approaches. However,
methods need to be supported by underlying models for their theoretical
foundation, tools for their practical use and metrics for their management and
evaluation.

 113

8 Conclusions

We launched a systematic mapping study to get an overview of existing research on
software product line testing. We identified 64 papers published between 2001 and
2008.

The picture of research needs and challenges is quite clear and unanimous, enabling
a focused research endeavor. In response to RQ 1, the main challenges are i) the
large number of tests, ii) balance between effort for reusable components and
concrete products, and iii) handling variability. Still, there is a need to address
different focus: process and organization, management, testability, test case design
as well as test automation. To respond to RQ2, we conclude that the research is
mostly published in workshops (59%) and conferences (30%), with only four book
chapters and three journal publications issued so far. The research topics identified
are (RQ3) i) test organization and process, ii) test management, iii) testability, iv)
system and acceptance testing, v) integration testing, vi) unit testing, and vii)
automation, with high-level test case derivation as the most frequent topic followed
by test management. Research methods (RQ4) are mostly of proposal type (64%)
with empirical evaluations and experience as a minor group (17%).

With a clear picture of needs and challenges, we encourage the research community
to launch empirical studies that use and evaluate the proposals, in order to give a
solid foundation for software product line testing in industry. Further, trade-off
management issues seem to be in need of deeper understanding and evaluation.

9 References

[1] W. Afzal, R.Torkar, R. Feldt, A Systematic Mapping Study on Non-
Functional Search-Based Software testing, in 20th International Conference on
Software Engineering and Knowledge Engineering (SEKE), (2008).

[2] J. Al Dallal and P. Sorenson, Testing software assets of framework-based
product families during application engineering stage, in Journal of Software, Vol
3, No 5 (2008), 11-25, May 2008

[3] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton, S. Linkman,
Evidence relating to Object-Oriented Software Design: A survey. First
International Symposium on Empirical Software Engineering and Measurement (2007).

[4] A. Bertolino and S. Gnesi, PLUTO: A Test Methodology for Product-
Families, 5th International Workshop Software Product-Family Engineering:,Siena, Italy
(2003).

[5] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, Product Line Use Cases:
Scenario-Based Specification and Testing of Requirements, Chapter 11 in

 114

Software Product Lines Research Issues in Engineering and Management, (Eds.) T.
Käkölä and J. C. Duenas, Springer (2006).

[6] A. Bertolino, S. Gnesi, Use Case-based Testing of Product Lines, Proc.
ESEC/FSE, pp. 355-358, ACM Press.(2003).

[7] J. Bosch, Design and Use of Software Architectures. Adopting and evolving a product-line
approach. Addison-Wesley (2000)

[8] S. Bashardoust-Tajali, J-P. Corriveau, On Extracting Tests from a Testable
Model in the Context of Domain Engineering, 13th IEEE International
Conference on Engineering of Complex Computer Systems, pp.98-107 (2008).

[9] M.B. Cohen, M. B. Dwyer, J. Shi. Coverage and Adequacy in Software
Product Line Testing. In: Proceedings of the ISSTA 2006 Workshop on Role of
Software Architecture for Testing and Analysis. 53-63, ACM. New York (2006)

[10] C. Condron. A Domain Approach to Test Automation of Product Lines.
International Workshop on Software Product Line Testing. (2004)

[11] C. Denger, R. Kolb. Testing and Inspecting Reusable Product Line
Components: First Empirical Results. Proceedings 5th International Software Metrics
Symposium. (2006)

[12] O. Dieste, A. Grimán and N. Juristo. (2008) Developing search strategies for
detecting relevant experiments. Empirical Software Engineering. DOI:
10.1007/s10664-008-9091-7

[13] J. C. Dueñas, J. Mellado, R. Cerón, J. L. Arciniegas, J. L. Ruiz, R. Capilla.
Model driven testing in product family context. First European Workshop on
Model Driven Architecture with Emphasis on Industrial Application. (2004)

[14] U. Dowie, N. Gellner, S. Hanssen, A. Helferich, G. Herzwurm, S. Schockert.
Quality Assurance of Integrated Business Software: An Approach to Testing
Software Product Lines. Proceedings of the 13th European Conference on Information
Systems, Information Systems in a Rapidly Changing Economy, (ECIS). (2005)

[15] E. Engstrom, P. Runeson, M. Skoglund. A systematic review on regression test
selection techniques. Information and Software Technology, Volume 52, Issue 1,
January 2010, Pages 14-30,

[16] Y. Feng, X. Liu, and J. Kerridge. A product line based aspect-oriented
generative unit testing approach to building quality components. In Proceedings
of the 31st Annual international Computer Software and Applications Conference
(COMPSAC). (2007).

[17] D. Ganesan, J. Knodel, R. Kolb, U. Haury, G. Meier. Comparing costs and
benefits of different test strategies for a software product line: a study from
Testo AG, in: Proceedings of Software Product Line Conference (SPLC), 2007.

[18] D. Ganesan, U. Maurer, M. Ochs, B. Snoek, M. Verlage. Towards Testing
Response Time of Instances of a Web-based Product Line. In Proceedings of

 115

[19] Y. Ghanam, S. Park, and F. A. Maurer. A Test-Driven Approach to
Establishing & Managing Agile Product Lines. The 5th SPLiT Workshop –SPLC
2008, Ireland.

[20] B. J. Geppert, J. Li, F. Rossler and D. M. Weiss.Towards Generating
Acceptance Tests for Product Lines. 8th International Conference on Software Reuse.
Madrid, Spain (2004)

[21] R. L. Glass, I. Vessey, V. Ramesh. Research in Software Engineering: an
analysis of the literature, Information and Software Technology 44:491-506 (2002).

[22] T. Gustafsson. 2007. An Approach for Selecting Software Product Line
Instances for Testing. International Workshop on Software Product Line Testing.
(2007)

[23] J. Hartmann, M. Vieira, A. Ruder. UML-based Approach for Validating
Product Lines. Intl. Workshop on Software Product Line Testing (SPLiT), Avaya
Labs Technical Report, pp. 58-64, Boston, USA, August (2004).

[24] L. Jin-hua, L. Qiong and L. Jing. The W-Model for Testing Software Product
Lines. International Symposium on. Computer Science and Computational Technology
(ISCSCT). (2008)

[25] M. Jaring, R.L Krikhaar, J. Bosch. Modeling Variability and Testability
Interaction in Software Product Line Engineering. Seventh International Conference
on Composition - Based Software Systems. ICCBSS. pp.120-129. (2008)

[26] T. Kahsai, M. Roggenbach, B.-H. Schlinglof: Specification-based testing for
software product lines.
In Sixth IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2008, Cape Town, South Africa, 10-14 November 2008 (2008)

[27] E. Kamsties, K. Pohl, S. Reis and A. Reuys. Testing variabilities in use case
models. In F. van der Linden, Ed., Proceedings of the 5th International Workshop on
Software Product-Family Engineering, PFE-5 (Siena, Italy, Nov. 2003), Springer,
Heidelberg, 6--18. (2003)

[28] S. Kang, J. Lee, M. Kim, and W Lee. Towards a Formal Framework for
Product Line Test Development. In Proceedings of the 7th IEEE international
Conference on Computer and information Technology (October 16 - 19, 2007). CIT.
IEEE Computer Society, Washington, DC, 921-926. (2007)

[29] R. Kauppinen, J. Taina, and A. Tevanlinna. Hook and template coverage
criteria for testing framework-based software product families. In Proceedings of
the International Workshop on Software Product Line Testing, pages 7--12, August
(2004).

 116

[30] T. Kishi, and N. Noda. Design Testing for Product Line Development based
on Test Scenarios. presented at Software Product Line Testing Workshop (SPLiT),
Boston, MA, (2004).

[31] B. A. Kitchenham. Guidelines for performing Systematic Literature reviews in
Software Engineering Version 2.3. Technical Report S.o.C.S.a.M. Software
Engineering Group, Keele University and Department of Computer Science
University of Durham.(2007)

[32] P. Knauber and W. Hetrick. Product Line Testing and Product Line
Development - Variations on a Common Theme, Proceedings of International
Workshop on Software Product Line Testing (SPLiT 2005).(2005)

[33] P. Knauber and J. Schneider. Tracing Variability from Implementation to Test
Using Aspect-Oriented Programming. International Workshop on Software Product
Line Testing SPLiT. (2004).

[34] R. Kolb. A Risk Driven Approach for Efficiently Testing Software Product
Lines. 5th GPCE Young. Researches Workshop, Erfurt, Germany Sep. (2003)

[35] R. Kolb. and D. Muthig, Challenges in Testing Software Product Lines. In
Proceedings of CONQUEST'03, Nuremberg, Germany, pp. 81--95, September
(2003).

[36] R. Kolb and D. Muthig. Making testing product lines more efficient by
improving the testability of product line architectures. In Proceedings of the
ISSTA 2006 Workshop on Role of Software Architecture For Testing and Analysis
(Portland, Maine, July 17 - 20, 2006). ROSATEA '06. ACM, New York, NY,
22-27. DOI= http://doi.acm.org/10.1145/1147249.1147252 (2006)

[37] R. Kolb and D. Muthig. Techniques and Strategies for Testing Component-
Based Software and Product Lines. Chapter 7 in Development of Component-Based
Information Systems. Advances in Management Information Systems Volume 2 / 2006 ,
pages 123 - 139 (2006)

[38] B.P Lamancha,. M.P Usaola and M.P Velthius. Software Product Line Testing
- A Systematic Review. 4th International Conference on Software and Data Technologies
(ICSOFT) p. 23-30. (2009)

[39] J. J. Li, B. Geppert, F.Roessler and D. M. Weiss. Reuse Execution Traces to
Reduce Testing of Product Lines. Proceedings of the International Workshop on
Software Product Line Testing (2007)

[40] J. J. Li, D. M. Weiss and J. H. Slye. Automatic Integration Test Generation
from Unit Tests of EXVantage Product Family. Proceedings of the International
Workshop on Software Product Line Testing (2007).

[41] J. D. McGregor. Structuring Test Assets in a Product Line Effort. In Proceedings
of the Second International Workshop on Software Product Lines: Economics,
Architectures, and Implications, pages 89--92, May 2001.

 117

[42] J. D. McGregor, Testing a Software Product Line. Technical Report,
CMU/SEI-2001-TR-022, ESC-TR-2001-022.

[43] J. D. McGregor, K. Im. The Implications of Variation for Testing in a
Software Product Line. International Workshop on Software Product Line Testing
(SPLiT 2007).(2007)

[44] J. D. McGregor, Toward a Fault Model for Software Product Lines. In
proceedings Fifth International Workshop on Software Product Line Testing. (SPLiT
2008) - informatik.fh-mannheim.de. Page 27. (2008)

[45] J. D McGregor, P. Sodhani., S. Madhavapeddi. Testing Variability in a
Software Product Line. In: Proceedings of the International Workshop on Software
Product Line Testing, Avaya Labs, ALR-2004-031, 45–50 (2004)

[46] M. Meyer and A. Lehnerd. The Power of Product Platforms. Free PRess, New
York, (1997)

[47] S. Mishra. Specification Based Software Product Line Testing: A case study.
Proceedings of the Concurrency: Specification and Programming Workshop. Pages 243-
254. (2006)

[48] H. Muccini and A. van der Hoek. Towards Testing Product Line
Architectures, Electronic Notes in Theoretical Computer Science 82 No. 6, (2003).

[49] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel. A Requirement-based
Approach to Test Product Families. In International Workshop on Product
Family Engineering (PFE), (2003).

[50] C. Nebut, S. Pickin, Y. Le Traon, and J. M. Jezequel. Automated requirements-
based generation of test cases for product families. In Proceedings 18th IEEE
International Conference on Automated Software Engineering (2003).

[51] C. Nebut, S. Pickin, Y. Le Traon, and J. M. Jezequel. Reusable Test
Requirements for UML-Model Product Lines. International Workshop on
Requirements Engineering for Product Lines (REPL) (2002)

[52] C. Nebut, Y. Le Traon and J. M. Jézéquel. System Testing of Product Lines:
From Requirements to Test Cases Software Product Lines, Research Issues in
Engineering and Management, chapter, pages 447–477. Springer, (2006).

[53] E. M. Olimpiew and H. Gomaa. Customizable requirements based test models
for software product lines. International. Workshop on Software Product Line Testing,
Baltimore, MD , August (2006)

[54] E. M. Olimpiew and H. Gomaa. Model-Based Test Design for Software
Product Lines. International Workshop on Software Product Line Testing (SPLiT
2008). (2008)

[55] E. M. Olimpiew and H. Gomaa, Model-based testing for applications derived
from software product lines, 1st Workshop on Advances in Model-Based Software
Testing, A-MOST’05, ACM Press (2005)

 118

[56] E. M. Olimpiew and H Gomaa. Reusable System Tests for Applications
Derived from Software Product Lines, International Workshop on Software Product
Line Testing (SPLiT 2005), pp. 8-15. (2005).

[57] S Oster, A Schürr, I Weisemöller. Towards Software Product Line Testing
using Story Driven Modeling. In Proceedings of 6th International Fujaba Days. Pages
48-55 (2008)

[58] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson. Systematic Mapping
Studies in Software Engineering. 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE). University of Bari, Italy, 26 - 27 June
(2008)

[59] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles,and Techniques, Springer, Heidelberg, August (2005).

[60] K. Pohl and A. Metzger (2006). Software product line testing. Communications of
ACM 49(12): 78-81.

[61] V. Ramesh, R. L. Glass, I. Vessey. Research in Computer Science: an empirical
study, The Journal of Systems and Science, 70(1-2):165-176 (2004).

[62] S. Reis, A. Metzger and K.Pohl A Reuse technique for Performance Testing of
Software Product Lines. In: Proc. of the Intl. Workshop on Software Product Line
Testing, Mannheim University of Applied Sciences, Report No. 003.06, 5-10
(2006).

[63] S. Reis, A. Metzger and K.Pohl. Integration Testing in Software Product Line
Engineering: A Model-Based Technique. In: Dwyer, M.B.; Lopes, A. (Eds.)
Proceedings Fundamental Approaches to Software Engineering, 10th Intl Conference,
FASE 2007, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007, Braga Portugal, March 24 - April 1, LNCS
4422. (2007).

[64] A. Reuys, E. Kamsties, K. Pohl, and S. Reis. Model-based system testing of
software product families. In O. Pastor, and J. Falcao e Cunha, Eds., Proceedings
of the 17th Conference on Advanced Information Systems Engineering, CAiSE (Porto,
Portugal, June 2005), Springer, Heidelberg, 519--534.(2005)

[65] A. Reuys, S.Reis, E.Kamsties and K. Pohl. Derivation of domain test scenarios
from activity diagrams. In Proceedings of the International Workshop on Product Line
Engineering The Early Steps: Planning, Modeling, and Managing (PLEES'03), (2003).

[66] A. Reuys, S. Reis, E. Kamsties and K. Pohl. The ScenTED Method for
Testing Software Product Lines. In: Software Product Lines, pp. 479–520.
Springer, Heidelberg (2006).

[67] P. Runeson and M. Skoglund, Reference-based search strategies in systematic
reviews, 13th International Conference on Empirical Assessment & Evaluation in
Software Engineering, Durham University, UK (2009).

 119

 120

[68] C. Shaulis. Salion's Confident Approach to Testing Software Product Lines.In:
Proc. of International conference on Product Line Testing, Boston, Massachusetts, USA
(SPLiT 04). (2004)

[69] M. Shaw, What makes good research in software engineering? International
Journal on Software Tools for Technology Transfer (STTT), Springer, 4(1):1433-2779
(2002)

[70] K.D Scheidemann. Optimizing the Selection of Representative Configurations
in Verification of Evolving Product Lines of Distributed Embedded Systems.
Proceedings of the 10th International Software Product Line Conference (SPLC’06), pp.
75-84. (2006)

[71] Z. Stephenson, Y. Zhan, J. Clark, and J. McDermid. Test Data Generation for
Product Lines - A Mutation Testing Approach. In: Nord, R.L. (ed.) SPLC
2004. LNCS, vol. 3154, Springer, Heidelberg (2004)

[72] A. Tevanlinna. Product family testing with RITA. Proceedings of the Eleventh
Nordic Workshop on Programming and Software Development Tools and Techniques
(NWPER). Pages 251-265. (2004)

[73] A. Tevanlinna, J. Taina, R. Kauppinen, Product family testing: a survey. ACM
SIGSOFT Softw. Eng. Notes 29(2): 12-17.. DOI: 10.1145/979743.979766 (2004)

[74] T. Trew. What Design Policies must Testers Demand from Product Line
Architects?, Proc. Int. Workshop on Software Product Line Testing, 2004.

[75] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing Software
Product Lines Using Incremental Test Generation. In: ISSRE (2008)

[76] J. Weingärtner. Product Family Engineering and Testing in the Medical
Domain — Validation Aspects. In Software Product-Family Engineering, 4th
International Workshop (PFE) (Bilbao, Spain, October 3–5 2001), Revised
Papers, LNCS 2290/2002. Pages 56-77. (2002)

[77] S Weißleder, D Sokenou, BH Schlingloff. Reusing State Machines for
Automatic Test Generation in Product Lines. 1st Workshop on Model-based
Testing in Practice (2008)

[78] R. Wieringa, N. Maiden, N. Mead and C. Rolland et al. Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering 11(1): 102-107. (2006).

[79] J. J. Williams. Test Case Management of Controls Product Line Points of
Variability. International Workshop on Software Product Line Testing, SPLiT, (2004)

[80] H Zeng, W Zhang, D Rine. Analysis of Testing Effort by Using Core Assets in
Software Product Line Testing. International Workshop on Software Product Line
Testing, SPLiT, (2004)

http://doi.acm.org/10.1145/979743.979766

	Abstract
	Acknowledgements
	Content

