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Populärvetenskaplig
sammanfattning

Benskörhet är en folksjukdom där de drabbade framförallt tappar stora mängder
benmassa, vilket medför en ökad risk för benbrott. Omkring 40% av alla kvin-
nor över 50 år kommer drabbas av ett benbrott till följd av benskörhet. De flesta
benbrotten sker i lårbenshalsen, kotorna i ryggraden eller i handleden. Trots att be-
handlingar av benbrott har förbättrats betydligt under de senaste åren så leder ofta
brott av lårbenshalsen till komplikationer som medför att 20-24% av de drabbade
avlider inom ett år efter benbrottet. I dag diagnostiseras benskörhet genom att mäta
bentätheten i lårbeneshalsen eller ryggraden från en 2D röntgen-liknande bild. Me-
toden är inte tillräcklig, eftersom omkring 30% av patienterna som bryter ett ben
på grund av benskörhet inte identifieras som individer med hög risk för benbrott.
Nya metoder som tar hänsyn till fler faktorer för att beräkna risken för benbrott
behövs.

Datorsimuleringar kan skapa tredimensionella modeller som beskriver formen
och de mekaniska egenskaperna av lårbenet hos varje individ. Sådana datormodeller
kan beräkna vilken kraft som behövs för att bryta ett ben. Den beräknade kraften
kan korreleras till risken för benbrott. Datormodeller skapas vanligtvis utifrån 3D
datortomografi-bilder, vilket kräver en högre stråldos för patienten och högre kost-
nader för hälso- och sjukvården jämfört med 2D-röntgenbilder. Tidigare har en
metod som kan rekonstruera höftbenets geometri och bentäthetsfördelning i 3D
baserat på endast en 2D-röntgenbild utvecklats. Metoden består av kliniska da-
tortomografi bilder av lårbenet och innehåller information om form och bentäathet
i befolkningen. Syftet med den nuvarande avhandlingen var därför att utveckla en
metod som kan förbättra diagnostiseringen av benskörhet. Detta genom att kom-
binera den redan utvecklade 3D-rekonstruktionen av benets geometri och densitet
från en 2D-röntgenbild med noggranna beräkningar av benstyrka och risk för ben-
brott. Målet med den nya metoden är att förutsäga vilken kraft som behövs för att
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viii Populärvetenskaplig sammanfattning

bryta ett ben för att slutligen kunna förutspå individens risk för att bryta lårbens-
halsen.

De nya utvecklade beräkningsmodellerna i det här arbetet måste valideras nog-
grant innan de kan tillämpas i kliniken. Första steget i projektet blev därför att utföra
experimentella mekaniska tester på lårben där förskjutningen av benet mättes med
hjälp av två kameror och en teknik som kallas digital bildkorrelation. Tekniken gör
det möjligt att följa förskjutningna av olika punkter i bilden och därmed beräk-
na töjningarna över ett brett område. Det möjliggör en mer omfattande validering
av beräkningsmodellerna än vad som tidigare gjorts, när endast data från ett fåtal
mätpunkter använts för validering. Sedan byggdes beräkningsmodeller som med
hjälp av finita element metoden förutsa det mekaniska beteendet av benen. Klassis-
ka beräkningsmodeller byggdes från 3D datortomografibilder för att bestämma den
högsta noggrannheten som kan uppnås med beräkningsmodeller. Därefter kombi-
nerades den traditionella finita element metoden med en 3D-rekonstruktion från
en 2D-röntgenbild, där syftet var att förutspå kraften vid brott utifrån en enda 2D-
röntgenbild.

Beräkningsmodellerna är lovande och gav bra resultat. De klassiska modellerna
baserat på datortomografibilder kunde förutse kraften vid brott med en felmarginal
på 1-2%. Datormodellerna från en rekonstruerad 3D benstruktur kunde förutse
kraften vid brott med en genomsnittlig felmarginal på 12%. Den lägre noggrann-
heten i de 3D-rekonstruerade modellerna kompenserades av att dessa modeller kan
skapas utifrån endast bilder som används i dagens diagnostik av benskörhet.

Förhoppningen är att inom en snar framtid jämföra utfallen från beräkningsmo-
dellerna med data från observationsstudier om benskörhet och benbrott på grupper
av personer som följs över lång tid. Om resultatet från en sådan pre-klinisk stu-
die uppfyller förväntningarna så har metoden potential att testas i kliniken inom
några år. Att mer exakt kunna förutspå en individs risk för benbrott på detta sätt
skulle möjliggöra mer riktade medicinska behandlingar av benskörhet utan att öka
kostnaderna för hälso- och sjukvården.



Abstract

Osteoporosis is defined as low bone density, and results in a markedly increased risk
of skeletal fractures. It has been estimated that about 40% of all women above 50
years old will suffer from an osteoporotic fracture leading to hospitalization. Cur-
rent osteoporosis diagnostics is largely based on statistical tools, using epidemiolog-
ical parameters and bone mineral density (BMD) measured with dual energy X-ray
absorptiometry (DXA). However, DXA-based BMD proved to be only a moder-
ate predictor of bone strength. Therefore, novel methods that take into account
all mechanical characteristics of the bone and their influence on bone resistance to
fracture are advocated. Finite element (FE) models may improve the bone strength
prediction accuracy, since they can account for the structural determinants of bone
strength, and the variety of external loads acting on the bones during daily life.

Several studies have proved that FE models can perform better than BMD as
a bone strength predictor. However, these FE models are built from Computed
Tomography (CT) datasets, as the 3D bone geometry is required, and take several
hours of work by an experienced engineer. Moreover, the radiation dose for the
patient is higher for CT than for DXA scan. All these factors contributed to the
low impact that FE-based methods have had on the current clinical practice so far.

This thesis work aimed at developing accurate and thoroughly validated FE
models to enable a more accurate prediction of femoral strength. An accurate es-
timation of femoral strength could be used as one of the main determinant of a
patient’s fracture risk during population screening.

In the first part of the thesis, the ex vivo mechanical tests performed on cadaver
human femurs are presented. Digital image correlation (DIC), an optical method
that allows for a full-field measurement of the displacements over the femur surface,
was used to retrieve strains during the test. Then, a subject-specific FE modelling
technique able to predict the deformation state and the overall strength of human
femurs is presented. The FE models were based on clinical images from 3D CT
datasets, and were validated against the measurements collected during the ex vivo
mechanical tests. Both the experimental setup with DIC and the FE modelling
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x Abstract

procedure have been initially tested using composite bones (only the FE part of
the composite bone study is presented in this thesis). After that, the method was
extended to human cadaver bones. Once validated against experimental strain mea-
surements, the FE modelling procedure could be used to predict bone strength.

In the last part of the thesis, the predictive ability of FE models based on the
shape and BMD distribution reconstructed from a single DXA image using a sta-
tistical shape and appearance model (SSAM, developed outside this thesis) was as-
sessed. The predictions were compared to the experimental measurements, and the
obtained accuracy compared to that of CT-based FE models. The results obtained
were encouraging. The CT-based FE models were able to predict the deformation
state with very good accuracy when compared to thousands of full-field measure-
ments from DIC (normalised root mean square error, NRMSE, below 11%), and,
most importantly, could predict the femoral strength with an error below 2%. The
performances of SSAM-based FE models were also promising, showing only a slight
reduction of the performances when compared to the CT-based approach (NRMSE
below 20% for the strain prediction, average strength prediction error of 12%), but
with the significant advantage of the models being built from one single conven-
tional DXA image.

In conclusion, the concept of a new, accurate and semi-automatic FE modelling
procedure aimed at predicting fracture risk on individuals was developed. The per-
formances of CT-based and SSAM-based models were thoroughly compared, and
the results support the future translation of SSAM-based FE model built from a
single DXA image into the clinics. The developed tool could therefore allow to
include a mechanistic information into the fracture risk screening, which may ulti-
mately lead to an increased accuracy in the identification of the subjects at risk.
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Chapter 1

Preamble

Osteoporosis is a metabolic bone disease which results in a reduction of bone
density and in an alteration of bone quality. The main effect of osteoporosis

is an increased fracture risk consequent to the loss of bone density. Osteoporotic
fractures typically occur in the hip, spine and wrist [1]. Such fractures are associated
with a dramatic increase of the patient morbidity and mortality as a consequence
of the surgical operation and immobilization periods needed to treat them. It has
been estimated that the lifetime risk of any fracture of the hip, spine or wrist is
almost 40% in Caucasian women and 13% in Caucasian men from 50 years of age
onwards [2]. These data, combined with the progressively increasing ageing of the
population (median age increased by 0.3 years per year during the past decade, [3])
convey the idea of how crucial it is to timely identify the subjects at risk in order to
treat them and prevent osteoporotic fractures.

Current diagnostics of osteoporosis is based on measurement of bone mineral
density (BMD) at either the hip or the lumbar spine, using dual energy X-ray ab-
sorptiometry (DXA) [4]. The BMD value is compared with the average value for
healthy young female subjects of the same population. According to the World
Health Organization (WHO) criteria, osteoporosis is defined as a BMD that lies
2.5 standard deviations (SD) or more below this reference value. The risk of sus-
taining an osteoporotic fracture is in turn estimated based on the measured BMD
values. A series of epidemiological parameters can be added to complement BMD
in fracture risk prediction such as in, e.g., FRAX [5]. These methods present the
advantage of being very easy to administer. However, there are evidences that BMD
is only a moderate predictor of fracture risk [6, 7]. It has been reported that BMD
alone can predict fractures with a detection rate of 30-50% with a false positive
rate of 15% [6]. These numbers indicate that a more accurate method to predict
fracture risk in elderly individuals should be developed [8].

It has been hypothesised that bone strength could be a better predictor of the
fracture risk, since the ultimate strength of a bone is not only a function of the
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2 Preamble

mineral density, but also of the bone shape, material distribution, and the different
loading conditions. Consistently with this hypothesis, BMD alone was reported to
be only a moderate predictor of bone strength [9]. Subject-specific finite element
(FE) models have the potential to accurately predict the strength of human bones.
Since the first investigations by Lotz et al. [10, 11], many improvements have been
achieved, and FE models have proved their ability to predict femoral strength bet-
ter than what BMD does [12]. Despite the promising results, FE models have not
yet been introduced in the clinical practice [13], with the first clinical experimenta-
tions only being proposed in the last years [14]. Among the reasons that prevented
FE models to be adopted in clinical practice is the fact that FE models are typi-
cally built from computed tomography (CT) data, while DXA images are normally
taken in clinics for fracture risk prediction. Besides, the generation of FE models
is usually not fully automatic, and requires the intervention of a trained engineer.
These factors would ultimately result in an increased cost of a screening, with the
improvement in fracture risk prediction accuracy not justifying the increase in costs
[15]. Developing an FE modelling procedure which is more automatic and relies
on DXA images would overcome the above mentioned limitations, thus facilitating
direct clinical experimentation of the new method.

Statistical shape and appearance models (SSAMs) have the potential to recon-
struct the 3D shape and density distribution of an object given its 2D projection
and a statistical atlas of the shape and density variability. The creation of the sta-
tistical atlas is typically based on principal component analysis (PCA), while the
reconstruction of a particular sample is performed through solving an optimization
problem. Statistical shape and appearance models could therefore be used to re-
construct the shape and BMD distribution of human femurs, and ultimately build
three dimensional FE models from a two dimensional DXA image. The assessment
of the accuracy of such a modelling framework represents the thread of this thesis.



Chapter 2

Aim and design of the study

The main objective of this thesis is to develop and validate a subject-specific FE
modelling procedure that could predict femoral strength from a DXA image

and a SSAM-based reconstruction.

2.1 Aim of the study

The specific aims of this thesis are:

• To develop an experimental setup that collects reliable and spatially resolved
strain measurements of human femurs subjected to a single leg stance loading
scenario.

• To develop a subject-specific FE modelling procedure from CT data that
can predict the mechanical behaviour and strength of a human femur, and
validate the models against experimental measurements.

• To incorporate a SSAM algorithm in the subject-specific FE modelling pro-
cedure, and evaluate the performance of the SSAM-based models against the
CT-based models and the experimental measurements.

3



4 Aim and design of the study

2.2 Design of the study

In order to fulfil the declared aims, the study design depicted in figure 2.1 was
followed.

Figure 2.1: Design of the study.



Chapter 3

Background

This chapter is briefly reviewing the topics constituting the basis of this thesis
work. First, osteoporosis is defined, and the impact of osteoporotic fractures on

the society is delineated. The methodology used to assess fracture risk for individuals
in the clinical practice is described. Then, the potential of FE models to provide an
improved accuracy of fracture risk prediction is discussed. As FE models need to be
thoroughly validated, the main techniques to measure deformation on bones during
ex vivo mechanical tests are also introduced. Last, the methodologies that allow to
reconstruct the three-dimensional shape and bone density distribution from a two-
dimensional clinical image are treated.

3.1 Osteoporosis

Osteoporosis is a condition resulting in skeletal fragility, where bone strength is
sufficiently low for fractures to occur with minimal trauma, often no more than
what is applied by routine daily activities [16]. Osteoporosis has been operationally
defined on the basis of BMD. The most widely validated technique to measure
BMD is DXA. According to the WHO criteria, osteoporosis is defined as a BMD
that lies 2.5 SD or more below the average value for young healthy women [4]. The
difference in SD units from the given mean is called T-score. The four categories
for diagnosis are:

• normal (T-score -1.0 and above)

• low bone mass, referred to as osteopenia (T-score between -1.0 and -2.5)

• osteoporosis (T-score -2.5 and below)

• severe osteoporosis (T-score -2.5 and below, with history of a fracture)

5



6 Background

These definitions are widely accepted and have also served as a diagnostic and in-
tervention threshold level for many years. However, advances in research demon-
strated limitations of adopting the osteoporosis definition alone as a fracture risk
predictor [6]. Defining fracture risk by BMD alone does not capture the majority
of people at risk for breaking a bone. In 2004, a scientific group gathered to re-
evaluate the assessment of osteoporosis and fracture risk. As an outcome, a revised
description of osteopenia and assessment of osteoporosis was released in 2008. The
revised assessment complemented BMD with selected risk factors for fracture. The
developed methodology was called FRAX, and determines the 10-year probability
of incurring in a major osteoporotic fracture (i.e., in the humerus, wrist, hip or
spine). FRAX was developed by WHO and its estimates have been incorporated
into clinical guidelines of several national osteoporosis societies [17, 18, 19, 20],
which regards it as the current gold standard for osteoporosis and fracture risk di-
agnostics. FRAX will be covered in more detail in section 3.1.2.

3.1.1 Hip fractures: epidemiology

Osteoporotic hip fractures (hereafter referred to as hip fractures) are fractures occur-
ring in the proximal end of the femur (the long bone running through the thigh,
see figure 3.1) as a consequence of a minor trauma (or no trauma at all in some
cases) in osteoporotic subjects. The impact of all osteoporotic fractures, and hip
fractures in particular, is huge on our society. Osteoporosis ranks high among dis-

Figure 3.1: An X-ray image of the hip bones. The arrow points to the os-
teoporotic hip fracture. Retrieved from https://en.wikipedia.org/wiki/
Hip_fracture.

https://en.wikipedia.org/wiki/Hip_fracture
https://en.wikipedia.org/wiki/Hip_fracture
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Figure 3.2: Burden of diseases estimated as disability-adjusted life years (DALYs)
in 2002 in the Americas and Europe combined. Reprinted from the summary
meeting report (Brussels, 5-7 May 2004) of the WHO Scientific Group on the
Assessment of Osteoporosis at Primary Health Care Level [21], Copyright WHO
(2007).

eases that cause people to become bedridden, which in turn exposes them to the risk
of serious complications. The occurrence of complication can be a life-threatening
event especially in elderly people. The WHO estimated that 2.8 million disability-
adjusted life years were lost in 2002 in the Americas and Europe combined [21].
The comparison of this data with the burden of other diseases can help to realise
the impact of osteoporosis on Western society (figure 3.2). Osteoporotic fractures
are responsible of a greater burden than breast cancer and hypertension, with hip
fractures themselves accounting for a burden superior to that of prostate cancer.

In epidemiological terms, the impact of osteoporosis and osteoporotic hip frac-
tures can be analysed in terms of their prevalence, incidence, morbidity and mor-
tality.

• Prevalence: the prevalence of osteoporosis increases with age for both sexes. A
study conducted in Germany reported a prevalence of osteoporosis in patients
with fractures of 36% for patients older than 60 years, and 50% for patients
older than 70 years [22].

• Incidence: the incidence of hip fracture was found to increase exponentially
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with age. Regional differences are also considerable, with Scandinavia having
world highest reported incidence of hip fracture [23]. The incidence at 80
years in Sweden is 933 cases per 100000 person-years in men, and 1549
cases per 100000 person-years in women. These data can be compared with
those from a region with relatively high risk such as Italy, 295/100000 in
men, 871/100000 in women, and a region with low risk like Chile, whose
incidence is 44/100000 in men, and 119/100000 in women [23].

Seventy percent of hip fractures occurs in women (and 61% of all osteo-
porotic fractures) [24]. This difference between men and women is likely
to be associated with the decreased oestrogen levels following menopause.
Bone cells contain functional oestrogen receptors and, although the molecu-
lar mechanisms of the oestrogen action have not been fully elucidated, there
is convincing evidence that oestrogen loss is associated with bone loss and
increased risk of fracture [25, 26].

• Morbidity: hip fractures are associated with high morbidity rates. Loss of
function and independence among fractured individuals is profound, with
40% unable to walk independently and 60% requiring assistance a year later
[27]. Less than half of those who survive the hip fracture regain their previous
level of function [28]. Because of these losses, 33% are totally dependent or
in a nursing home in the year following a hip fracture [29, 30, 31], and the
health-related quality of life was found to be significantly lower in subjects
with an osteoporotic fracture as compared with subjects without fractures
[32].

• Mortality: up to 20% of patients die in the first year following hip fractures
[33, 29], mostly due to pre-existing medical conditions, and increased risk
of passing away persists for at least 5 years [34].

Although no significant variation in neither age-adjusted prevalence of osteoporosis
nor age-adjusted hip fracture incidence was detected in the past 45 years [35], the
demographic changes in the population will lead to an increase of the hip fracture
cases. Assuming no further change in the age- and sex-specific incidence, the num-
ber of hip fractures is estimated to be 2.6 million per year by the year 2025, and 4.5
million per year by the year 2050, with a percentage increase of 310% and 240%
for men and women, respectively [36].

3.1.2 Estimation of fracture risk

Although low BMD confers increased risk for fracture, most fractures occur in post-
menopausal women at moderate risk [37, 38, 39, 40], and evidence suggests that
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many women who sustained a fragility fracture have not been appropriately diag-
nosed and treated for probable osteoporosis [41, 42]. Therefore, attempts have been
made to include other clinical factors in the computation of a patient’s fracture risk.

The clinical gold standard for the assessment of fracture risk is FRAX. FRAX
was released in 2008 by WHO, and is currently available as a free online tool
(www.shef.ac.uk/FRAX/) [43, 44]. The aim of FRAX is to predict the 10-year
probability of a major osteoporotic fracture in men and women by combining the
areal BMD information with a series of clinical risk factors. FRAX can also provide
an estimation based on the risk factors only, without any areal BMD data provided
to the statistical algorithm. The risk factors include age, sex, race, height, weight,
body mass index, a history of fragility fracture, a parental history of hip fracture, use
of oral glucocorticoids, rheumatoid arthritis, current smoking, and alcohol intake
of three or more units per day. According to the American National Osteoporo-
sis Foundation, FRAX should be used to calculate fracture risk for patients with a
T-score between -1.0 and -2.5 in the spine, femoral neck, or total hip region [44].

Although representing a step forward in terms of analysing fracture risk as a
multi-factorial event, FRAX is not free from limitations. Criticisms have been arisen
concerning the lack of a publicly available description of the equations implemented
in FRAX [45]. While indulging on these aspects is not among the scope of this sec-
tion, it is more interesting to observe that FRAX has been reported not to perform
consistently better than simpler fracture risk assessment tools [46], or even BMD
alone [47]. The inclusion of more clinical risk factors has been proposed to increase
the FRAX predictive accuracy [48, 44, 49], most of them targeted at addressing
the propensity to fall. A major improvement could also be provided by the abil-
ity to calculate the load that a patient’s bone could withstand without fracturing
[50]. This information could be predicted with greater accuracy using mechanistic
approaches such as personalised FE models [12].

3.2 Finite element models for prediction of bone
strength

The FE method is a numerical approach to obtain approximate solutions to arbi-
trary differential equations. In a nutshell, analysing a physical domain using the
FE method consists in dividing the domain into smaller parts, so-called finite ele-
ments. For each finite element, an approximate solution to the partial differential
equations describing its physical phenomena of interest can be found. Typically,
the approximation consists in assuming that the variable of interest, which might
vary in a highly non-linear manner over the entire domain, is varying in a simpler
fashion (usually polynomially) over a finite element. The equations describing each
finite element are assembled into a larger system of equations that covers the en-

www.shef.ac.uk/FRAX/
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tire finite element mesh. The solution of the system of equations can be found,
and the discrete solution of the original continuous problem is retrieved. A more
comprehensive treatment of the theory of FE analysis can be found in Ottosen and
Petersson [51].

While the emergence of the FE method took place in the late 1950s and early
1960s, the method is reported to appear first in the orthopaedic literature in 1972
[52]. The stress or strain state in bones had earlier been postulated to play a relevant
role in several biomechanics or orthopaedics related problems [53]. However, the
classic mechanics approach could not fully answer many of the questions about the
stress state in bones, due to the highly non-linear structural properties of bone. The
ability of the FE method to evaluate stresses and strains in structures with complex
shape, loading and material behaviour was therefore seen as a promising tool to
answer these questions.

The first study using subject-specific FE models to predict the mechanical be-
haviour of human femurs was conducted by Lotz et al. in 1991 [10, 11]. The
study, divided in two separate publications analysing the linear and non-linear be-
haviour, used two human cadaver femurs, whose FE models were built by retriev-
ing shape and material properties from their CT scans. One femur was tested in
a configuration resembling single leg stance, whereas the second femur was tested
in a configuration resembling a fall to the side. The yield and fracture load were
accurately predicted when compared to data from the in vitro tests performed on
the two femurs. However, the predicted surface stresses correlated poorly with the
measurements acquired in vitro using strain gauges.

In the following years, many other studies employing subject-specific FE models
to predict bone mechanics have been proposed [54, 55, 56, 57, 58]. Although the
level of complexity of the models has constantly been increasing with the increase
in the available computational power, the approach to build a subject-specific FE
model has remained almost the same. A schematic of the modelling framework is
shown in figure 3.3. First, the specific femur is imaged using CT (or, less frequently,
using magnetic resonance imaging). The femur geometry is then retrieved from the
CT images, a procedure usually referred to as segmentation. Segmentation consists
in labelling the region corresponding to bone in each CT slice, with a process that
can be more or less automatic. Once the femur geometry is obtained and converted
to a format that is suitable for meshing, a 3D mesh is created. For this step, an
automatic mesh generation software is generally adopted to subdivide the domain
into a set of small, as geometrically regular as possible, finite elements [59]. The
subsequent step is to map the material properties of each finite element based on
the bone density. For this purpose, the CT images are calibrated using a calibration
phantom with known equivalent bone density, and different empirical relationships
[60] can be used to convert bone density to bone mechanical properties (typically,
the Young’s modulus). More or less complex material behaviours (from simple lin-
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Figure 3.3: Typical modelling framework to build a subject-specific FE model.
First, the CT images are acquired (top left). Then, the three-dimensional geometry
of the bone is retrieved by segmentation of the CT images, and a three-dimensional
finite element mesh is built (top right). The FE mesh is superimposed to the CT
scan, and the calibrated grey values of the CT images are used to map the specific
material properties for each element (bottom right). Last, the boundary conditions
are prescribed to the FE mesh, and the FE problem is solved (bottom left).

ear elastic approach to including yield, strain rate dependency, anisotropy, etc.)
can be defined for bone [61]. The desired boundary conditions can ultimately be
prescribed for the FE model, and the solution obtained using an FE solver package.

Following the described modelling approach, FE models have reached a high
degree of accuracy. The prediction accuracy is determined relatively to a set of ob-
servations, typically from ex vivo mechanical tests [62, 63, 64]. A short review of
the most common measurement techniques used in ex vivo mechanical tests is pro-
vided in section 3.3. The ultimate aim of FE models is often to accurately predict
bone strength, therefore the majority of the studies compares the predicted values
versus the experimentally obtained fracture loads [65, 66]. However, since most
of the bone strength criteria adopted in FE computations are based on either the
strain or stress levels predicted on the specimen, a validation in terms of strain/stress
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prediction accuracy is often advocated [62, 64]. For the case of human femurs in
a configuration resembling single leg stance, studies reported a strain prediction
accuracy with a coefficient of determination in the range of 0.95-0.97 [67, 55],
whereas the femoral strength was predicted with an absolute error of a few hundred
Newtons, and coefficient of determination between 0.75 and 0.96 [13].

3.3 Strain measurements in bone

Accurately measuring strains during ex vivo mechanical tests is crucial both to de-
rive improved constitutive laws for bone, and to appropriately validate numerical
predictions from, e.g., FE analyses. Different techniques can be used to experimen-
tally measure strains. Here, a brief recap of the four most relevant techniques to
measure strains on bone at the organ level is proposed.

3.3.1 Strain gauges

A strain gauge (SG) is a device that can measure the deformations of the material
to which it is attached by reading the variation of the resistance of a conductor
exposed to a force that elongates or contracts it. A backing material carries the
deformation from the tested material to the electrical grid. Given the resistance of
the conductor in the undeformed state, R, its variation as a function of the applied
strain, ϵ, is given by:

∆R

R
= Ksϵ, (3.1)

where Ks is the so-called gauge factor, which expresses the sensitivity of the strain
gauge. Strain gauges are usually either mono-axial, with one single gauge grid, or
tri-axial. In the latter, three gauge grids are placed in a ”rosette” configuration,
which allows to determine the principal strains magnitudes and directions.

The first documented application of strain gauges to bone mechanics is from
1944 [68], and since then strain gauges represented the most commonly adopted
mean to measure deformation on bones during ex vivo mechanical tests [69, 70,
71, 72]. One of the main challenges of using SGs onto bones is to obtain a proper
bonding. Typically, the bone surface has to be cleaned from soft tissue and degreased
using acetone. The SGs are then bonded using cyanoacrylate glue or epoxy resins. A
waterproofing layer of silicon or Teflon is usually added [69] to preserve the electrical
contacts of SGs while keeping the bones wet in order to maintain their original
mechanical properties [73].

Strain gauges are still considered the gold standard, due to their high and well
documented accuracy. They do, however, present some limitations, mainly due
to the discreteness of the measurements (typically no more than 12-15 SGs per
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proximal femur are applied, each covering an area of 1-5 mm2). Bonding SGs to
regions with very thin cortex (such as, e.g., the femoral neck) has also been shown to
provide a reinforcement effect that can in turn underestimate the measured strains
by a factor up to 15 % [74, 75].

3.3.2 Fibre Bragg grating sensors

Although only sporadically used, fibre Bragg grating sensors (FBGSs) represent an
interesting solution to measure strains. First commercialised in 1995, FBGSs con-
sist of a fibre with different refraction indexes in the inner and outer cores. When
the fibre gets stretched, its grating period changes, which ultimately results in a
change in the wavelength of the reflected ultraviolet light. The latter is linked to the
change in the spatial period of the refractive index modulation, according to [76]:

λB = 2ηeffΛ, (3.2)

where λB is the Bragg wavelength of the FBGS, ηeff is the index of the fibre, and
Λ is the periodicity of the grating. A longitudinal deformation of the fibre causes a
change of both Λ and ηeff . The resulting change in λB can then be related to the
applied longitudinal strain via:

∆λB
λB

= (1 − ρe)ϵz. (3.3)

It follows that if the photoelastic coefficient ρe is known, the longitudinal strain ϵz
in the fibre can be derived.

FBGSs are small (typical diameter around 100 µm), lightweight, and biocom-
patible. The absence of electrical circuits allows the positioning in very narrow
environments such as, for example, the interface between a bone and an implant.
Despite these very interesting features, the applications to bone mechanics are lim-
ited [77, 78], mostly because the accuracy of FBGSs did not prove to be comparable
to that of strain gauges [76].

3.3.3 Digital image correlation

Digital image correlation (DIC) is a non-contact technique which consists in ac-
quiring digital images of the tested specimen during different stages of the mechan-
ical test. One digital image is then compared to another by taking a block of pixels
(subset), and minimizing the grey value difference between a subset from the first
image (template) and a displaced copy in the second image. DIC measurements
can be classified based on the dimensionality: 2D (one camera used, 2 components
of the position and displacement vector obtained as an output), 3D-surface (two
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Figure 3.4: Schematic of a simple 2D DIC algorithm.

cameras in a stereo-vision system, 3 components of the position and displacement
vector obtained for the surface of the specimen), 3D-volume (also known as digital
volume correlation, a tomographic imaging device is used, and the full 3D volume
deformation field is obtained).

The main principles of DIC are hereby described for a simple 2D case. The
reader is referred to Sutton et al. [79] for a more comprehensive essay on the topic.
A flowchart representation of a simple DIC algorithm is shown in figure 3.4. The
process starts with taking two pictures, one of which is the template (usually, a
picture taken in the undeformed state of the specimen). The two digital pictures can
be seen as two matrices of grey level values, with each entry representing a physical
point in the analysed grid (figure 3.5). The size of the subset (i.e., the window over
which the correlation between the two pictures is evaluated) is then determined.
There is not a univocal formula to calculate the optimal size of the subset, although
some practical recommendations exist [79, 80]. Sutton et al. proposed, as a general
guideline, to have image plane speckles sampled by at least a 3 by 3 pixel array, with
each image plane subset containing at least 3 by 3 speckles [79]. Once the subset size
is set, a search zone is usually defined. A search zone is a submatrix over which the
correlation of the subset between the two pictures is calculated. The definition of a
search zone is not strictly necessary, but it dramatically reduces the computational
cost of the DIC algorithm.

The DIC algorithm works then as a loop for each point of the analysed grid:
the correlation (typically, Zero-normalised squared differences are used) between
the subset for the specific entry in the template and all the possible subset configu-
rations within the search zone of the second image is calculated. The matrix of the
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Figure 3.5: Region of interest of a simple 2D DIC analysis (red), analysed point
grid (yellow), search zone (blue), and subset zone (green).

correlation coefficients is stored, and the entry giving its maximum value is taken
as the new position of the analysed entry.

When the DIC algorithm is executed over all the entries, a matrix with the
displacements over the horizontal and vertical directions is obtained for each en-
try. This allows to extrapolate a full-field displacement field by, e.g., direct linear
interpolation. Strains can then be calculated using different techniques. One of
them consists in triangulating the point grid, thus defining a set of constant strain
triangles. These triangles are then treated following the FE theory, where the nodal
coordinates and displacements can be used to derive the Green strain tensor:

E = 1
2

(FT F − I), (3.4)

where E is the Green strain tensor, I is the unit tensor, and F is the deformation
gradient tensor, which can be defined as:

F = I + D = I +

 ∂u
∂X

∂u
∂Y

∂v
∂X

∂v
∂Y

 , (3.5)

where D is the displacement gradient tensor, and u and v are the components of
the displacement vector. The displacement gradient tensor D can be derived for
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Figure 3.6: Representation of a constant strain triangular element in its unde-
formed state. The nodal coordinates are displaced by ui,j,k and vi,j,k along the X
and Y direction.

constant strain triangular elements (figure 3.6) by considering that the displace-
ment vector can be obtained from the element shape functions Ni,Nj ,Nk, and the
displacement components at each node, ui,j,k and vi,j,k:

u =

u

v

 =

Ni 0 Nj 0 Nk 0

0 Ni 0 Nj 0 Nk





ui

vi

uj

vj

uk

vk


, (3.6)

where:
Ni = 1

2A
[xjyk − xkyj + (yj − yk)X + (xk − xj)Y ] (3.7)

Nj = 1
2A

[xkyi − xiyk + (yk − yi)X + (xi − xk)Y ] (3.8)

Nk = 1
2A

[xiyj − xjyi + (yi − yj)X + (xj − xi)Y ] (3.9)

The components of the displacement vector as of equation 3.6 can thus be derived
with respect to X and Y , which in turns allows the deformation gradient tensor F
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(equation 3.5) and the Green strain tensor E (equation 3.4) to be calculated as a
function of the nodal coordinates and displacements.

Initially adopted for measurement of large displacements and deformations,
DIC started being applied to small strain tests with the emergence of high resolution
digital cameras. A review about the use of DIC in the field of biomechanics has been
recently presented by Palanca et al. [81].

The first application of DIC with femurs during ex vivo mechanical tests was
reported in 2011 [82]. 2D DIC was used to measure displacements and strains over
22 cadaver femurs tested in a configuration resembling a fall to the side. The dis-
placement rate was 100 mm/s, which required using high-speed cameras (6000 fps,
1024 x 512 pixels). However, the 2D DIC approach was only able to qualitatively
describe the strain distribution over the femurs, as a 3D-surface approach would be
more suitable for the curvilinear surfaces of human femurs.

Gilchrist et al. [83] compared the strains measured with 3D-surface DIC with
the measurements from SGs. One rosette strain gauge was glued on the antero-
superior aspect of the femoral neck of 20 cadaver femurs, and a speckle pattern air-
brushed over the same area. Femurs were loaded to 50% of their estimated fracture
load ([84], 0.5 mm/s, 100 fps at a resolution of 1280 x 800 pixels) in a configura-
tion resembling a fall to the side. Minor principal strains at the peak force of the test
were compared between DIC and SG, showing good correlation (root mean square
average difference 127 µϵ, SD = 239 µϵ), as well as the presence of a random noise
in the DIC data from one image to the other. After that, the femurs were tested in
an impact simulator of a sideways fall (impact velocity 3 m/s, 9216 fps, 576 x 188
pixels), and the strains recorded using DIC only. However, quantitative strain data
were not reported in the paper for the impact test.

Helgason et al. [85] also performed a drop tower test in a sideways fall con-
figuration using DIC. One proximal human femur was used in this case (16.5 kg
impactor, 3.5 m/s impact speed, 9009 fps, 384 x 384 pixels). However, also in this
study the strains collected with DIC were presented only qualitatively.

3.3.4 Digital volume correlation

Digital volume correlation (DVC) is essentially the extension of the 2D-DIC algo-
rithm to the third dimension. It can be applied to, e.g., tomographic datasets, as
proposed first by Bay et al. in 1999 [86]. The different type of input images is in-
deed the main difference between DIC and DVC. While DIC is relying on digital
images, in which an artificial speckle pattern can be used to improve the correlation,
DVC works on tomographic, attenuation-based, datasets, and has therefore to rely
on the naturally occurring patterns in the material. As a consequence, most of the
studies applying DVC to bone were performed at the tissue level [87, 88, 89] in
order to take advantage of the natural features of bone, such as the spongy trabec-
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ular network. Only one study used DVC to investigate human bone at the organ
level by scanning whole L1 vertebra samples [89]. However, the noise levels in the
measured strain data were only 10 times lower than yield strain. DVC cannot there-
fore be considered a mature technique for the investigation of strains at the organ
level for physiological load magnitudes. For a more comprehensive review of the
literature of DVC studies on bone, we refer the reader to the review paper recently
published by Roberts et al. [90].

3.4 Statistical reconstruction of 3D shape and BMD
distribution of bones

Although FE models can accurately predict bone mechanics and strength, they have
not yet been introduced into the clinical practice. One of the reasons is that subject-
specific FE models, as illustrated in section 3.2, necessitate a tomographic scan to
be built. CT scans are not usually taken for the purpose of osteoporosis diagnostics.
Instead, DXA, which is less expensive while still providing the required densitomet-
ric information, is used for the diagnosis.

It would therefore be optimal to build subject-specific FE models from DXA
images to predict bone strength and fracture risk. In this context, the easiest and
most intuitive approach is to build two-dimensional FE models using the subject’s
DXA image of the hip. Although such modelling approach proved to accurately
predict bone strength [91, 92, 93, 94, 95], it is not able to overcome some of the
intrinsic limitations due to the 2D nature of the imaging, mainly related to the
impossibility to test the bone in the out of plane directions.

Another approach to the issue consists in reconstructing the 3D shape and
BMD distribution of a specific bone based on its 2D DXA image. While recon-
structing the 3D femoral shape and density based on solely a DXA image is tech-
nically not possible, a solution can be accomplished by introducing some a priori
information. A common method is to use a statistical model that includes informa-
tion about how the shape and the density change between individuals of the same
population [96, 97]. A statistical model describing the variability of the shape of an
object inside a population is called statistical shape model (SSM). A statistical model
describing the variability of the appearance (e.g., the mineral density in the case of
bone) of an object inside a population is called statistical appearance model (SAM).
A model that implements both shape and appearance in the same mathematical
framework is referred to as statistical shape and appearance model (SSAM).

Statistical shape models have been proposed by Cootes and Taylor in the early
1990s [98, 99], while statistical appearance models were presented in 2001 [100].
The idea behind SSM and SAM is to describe the variability of a set of parameters
in an elegant and compact fashion. Typically, PCA is calculated, and the obtained
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statistical model consists of a mean shape/appearance and a set of principal modes of
variation. Each specimen of the population used to build the SSM/SAM can then be
reconstructed as a linear combination of a finite amount of principal modes. With
respect to medical image analysis of bone, SSMs have mainly been used for achieving
automatic image segmentation [101], but have also found successful application in
the generation of realistic synthetic anatomies [102], object classification [97], and
3D reconstruction from 2D images [103, 104, 105].

To build a SSM, the shapes of the bones in the training set are typically de-
scribed through a set of commonly defined landmark points. Once the landmarks
are positioned, the different bones are aligned with each other. The average shape
is defined as the shape having each landmark in the mean position, and the SSM
can be built by performing a PCA of the covariance matrix. The latter is a matrix
that measures the variation of the different shapes from the average shape.

Building a SAM follows the same principles of building a SSM, with the differ-
ence that the appearance of the model (typically BMD) has to be captured instead
of the shape. When building a SSAM, shape and BMD are combined in one single
covariance matrix (which implies that these two entities have to be normalised),
and PCA is applied only once. Volumetric FE meshes are usually adopted as a tool
that can contain both the shape and the BMD distribution for each sample [97],
although image-based approaches can also be used [106].

The reconstruction of the 3D shape/density distribution from a single planar
image can be obtained by solving an optimization problem, in which the statisti-
cal model template is registered over the planar image. SSM-based templates are
generally registered using a set of anatomical landmarks, whereas SAM-based tem-
plates are registered based on the intensity levels in the image. For SSAM models,
a radiographic image can be digitally reconstructed from the SSAM and be used to
solve the optimization problem based on shape and density together.

The combination of the 3D reconstruction of a specific femur using SSAM with
FE analysis has therefore the potential to produce accurate 3D FE models of human
femurs starting from the single DXA image commonly used in the current clinical
screening.
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Chapter 4

Material and Methods

This chapter describes the methodologies adopted in the studies conducted dur-
ing this thesis work. First, a list of the material used for the studies is provided.

Then, the experimental mechanical tests performed with the aim to collect meaning-
ful data for the validation of the numerical models are described. The methodolo-
gies used to build subject-specific FE models of human femurs from tomographic
images are presented. Finally, the techniques to combine FE modelling with the
statistical reconstruction of the 3D shape and density from a single 2D image are
presented.

4.1 Material

Composite bones were used to perform feasibility studies of both the experimental
and numerical methodologies used in this thesis. Six 4th generation, medium-sized,
composite femur bones were obtained (model 3403, Sawbones, Pacific Research
Laboratories, Inc., USA). These composite femurs mimic the shape and material
properties of human bones, and consist of a cortical compartment made of short
glass fibre reinforced epoxy and an internal trabecular compartment made of solid
foam [107]. Composite bones were CT-scanned (SOMATOM Definition Flash,
Siemens, Germany) in air (pixel size 0.24-0.29 mm, 0.4 mm slice thickness).

The actual experimental and numerical studies were conducted using cadaver
bones. To this purpose, three proximal cadaver femurs have been harvested fresh
at Kuopio University Hospital. Ethical approval for the collection of samples was
granted by the Finnish National Authority for Medicolegal Affairs (permission
number: 5783/04/044/07). All the donors have been inspected, and no conditions
that could affect bone metabolism have been detected. The full list of the collected
proximal femurs, together with the most relevant patient data is reported in table
4.1. For each of the specimens, imaging with both CT (Somatom Definition
AS64, Siemens AG, 0.4 x 0.4 x 0.6 mm voxel size) and DXA with two different
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Specimen
[ID]

Side
[L/R]

Age at
death
[yrs.]

Gender
[M/F]

BMD
[g/cm3]

Height
[cm]

Weight
[kg]

1 L 22 M 1.16 186 106
2 R 58 M 0.60 183 85
3 L 58 M 0.89 183 112

Table 4.1: Material set adopted in this thesis. For each proximal femur the main
patient information is provided, together with the BMD at the femoral neck mea-
sured with DXA.

devices (Lunar Prodigy and Lunar iDXA, GE Healthcare, pixel size 1.05 x 0.60 mm
and 0.25 x 0.3 mm pixel size, respectively) were available. Besides, tomographic
scans were performed on the specimens after the mechanical tests (section 4.2) using
a cone beam CT (CBCT, Planmed Verity, 0.2 x 0.2 x 0.2 mm voxel size). When
performing mechanical tests, the specimens were kept wet, immersed in phosphate
buffered saline solution to preserve tissue hydration when not in use, and put back
into the freezer as soon as possible.

4.2 The DIC experiment

Experimental strain measurements for the composite bones were available from a
previous study [108]. Briefly, strains were collected with DIC in a configuration re-
sembling single leg stance. The composite bones were tested up to fracture at a con-
trolled displacement rate of 1.0 mm/min. Two cameras (4M pixels, 4 fps) recorded
the anterior surface of the composite bones during the test, and DIC was calculated
over the recorded images using Vic3D (v2007, Correlated Solutions, Inc.). This
set of experimental measurements has been used to validate the predictions of the
specimen-specific FE models of composite bones (section 4.3.1).

In the following of this section, the experimental mechanical tests performed
on the three cadaver bones are described.

4.2.1 Specimen preparation and embedding

The three proximal cadaver femurs were allowed to thaw, and the soft tissue was
carefully removed using a scalpel and fine sandpaper in order not to damage the pe-
riosteum. The specimens were distally resected 5.5 cm below the minor trochanter
level and the most distal part was embedded in epoxy. The epoxy pot was eventually
used to constrain the distal end by inserting it into a custom made steel holder.

In order to ensure a consistent alignment between the different specimens, an
experimental reference system was defined based on the proximal femur anatomy.
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Figure 4.1: Schematic of the alignment procedure of the specimens, and definition
of the experimental reference system: the red landmarks show the 3 contact points
of a femur when lying on its anterior side. The plane passing through these 3 points
defines the anterior plane XY. The blue landmarks show the two most lateral points
of the specimen at the greater trochanter level, and at the level of the distal cut.
The line passing through these two points defines the longitudinal direction (Y-
axis, green). The Z-axis (in blue) is finally defined as the axis orthogonal to the XY
plane.

First, the bone was leaned on a horizontal, flat surface with the anterior side down.
The three contact points of the femur with the surface, located at the femoral head,
at the greater trochanter and in the shaft (red points in figure 4.1) defined the ante-
rior plane. The longitudinal shaft axis was defined as the line connecting the most
lateral points (identified as the contact points of the femur with a pin placed per-
pendicularly to the defined anterior plane) at the minor trochanter level and at the
most distal part of the shaft available (blue points in figure 4.1). The combination
of the anterior plane and the longitudinal axis allowed to univocally define a Eu-
clidean reference system, and the specimens were embedded in epoxy (Technovit
4071, Heraeus Kulzer, Germany) by aligning the anatomical longitudinal axis to
the actuator direction of the loading device, and the anatomical anterior plane to
one face of the steel holder. Specimen #3 was embedded in a 2.5 cm deep epoxy pot,
whereas specimens #1 and #2 were embedded in a 5 cm deep epoxy pot. This was
because the initially planned 2.5 cm deep embedding was later judged to be at risk
for local failures of the epoxy. The latter event could potentially compromise the
validity of the obtained measurements, and also hinder an accurate reproduction of
the prescribed boundary conditions in the corresponding FE models (section 4.3).
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The superior aspect of the femoral head was covered with a stainless steel spher-
ical cap in order to prevent local crushing and evenly distribute the loading. The
cap was applied by aligning its small circle plane to the XZ plane of the experimen-
tal reference system (figure 4.1). This solution proved to be effective in protecting
the femoral head in previous experiments [109]. The three specimens were then
prepared for the camera recordings and the following DIC analysis of the images
by applying a random speckle pattern. First, a matt white background was ap-
plied over the anterior femoral surface using a solvent-based spray paint (Gamma,
The Netherlands). The white background served to increase the contrast of the
acquired images, thus reducing the noise and improving the correlation when per-
forming DIC. After the paint had dried, a random speckle pattern was applied using
a permanent marker. Although more time consuming than the more conventional
airbrush, using a permanent marker allowed for a better control and repeatability
of the speckle size, and an enhanced contrast. The desired size of the speckle was
chosen based on the camera settings, with the aim of having each speckle sampled
by at least a 3 by 3 pixel array [79]. This setting minimises the oversampling and
provides a reasonable intensity pattern reconstruction via interpolation. Based on
these considerations, speckles of an average size of 0.6 x 0.6 mm were applied over
the anterior surface of the femur, which resulted in 6 by 6 pixel sampling for each
speckle with the adopted camera settings (figure 4.2).

Figure 4.2: Picture acquired from one high-speed camera showing the speckle
pattern applied over the anterior surface of the specimen, and over the control
plate. A 25 x 25 pixel subset is shown in red to provide a reference for the image
spatial resolution.
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4.2.2 Mechanical testing

The three specimens were placed in the loading device (5500R, Instron, Inc.), with
the distal pot rigidly constrained to the moving part of the loading device using
6 bolts (figure 4.3). The steel cap on the femoral head was greased in order to
reduce friction, with the ultimate aim of avoiding the onset of undesired load com-
ponents along the plane perpendicular to the prescribed loading direction. A 100
kN load cell (accuracy 0.5% of the reading down to 1/500th of the load cell ca-
pacity, Instron, Inc.) was placed on the upper part of the loading device at the
contact point with the femoral head. The analogue signals of the load cell and of
the rotary encoder (providing information about the applied displacement) of the
loading device were sent to a digital acquisition (DAQ) module (Isi-DAQ-STD-
8D, Isi-Sys, GmbH, Germany). The DAQ module sampled the analogue signals
at the same frequency as the camera recordings, and synchronised them with the
digital clock signal from the master camera. This allowed to have global force and
displacement measurements associated with each of the acquired camera images. A
control plate of approximately 35 x 35 mm size was placed on a side of the tested
specimen (figure 4.2). The control plate translated jointly with the distal steel pot
during the test, and an optimal speckle pattern was applied over its anterior surface
using a sticker. The purpose of the control plate was to have an undeformed entity
moving alongside the specimen during the test, which could be used to evaluate the
noise level in the DIC data during the image processing phase (section 4.2.3). In
fact, the control plate should theoretically record only a rigid translation with no
deformation throughout the whole test. Whichever strain other than zero recorded
onto the plate could be considered to be an artefact due to the noise in the mea-
surements, and could therefore serve as an indicator of the noise levels in the DIC
measurements.

The mechanical tests were performed by putting the femoral head in contact
with the upper part of the loading device, and then applying a constant displace-
ment rate of 15 mm/s until macroscopic failure of each specimen. Two high-speed
cameras (Fastcam SA1.1, Photron, Inc.) with resolution of 1M pixels (giving ap-
proximately a 0.1 mm/pixel spatial resolution for the acquired images) recorded the
experiment at a frame rate of 3000 fps. The two cameras were placed in front of
the anterior aspect of the tested specimens, and had a baseline camera distance of
280 mm, with a pan angle of 29◦. The two cameras were synchronised with each
other, using a master-slave configuration, and with the analogue measurements
from the loading device, using the DAQ module. Two high intensity cold light
sources (DX15, Hedler GmbH, Germany) provided a diffuse light to the recorded
scene, thus allowing for a short shutter time and high aperture of the cameras.
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Figure 4.3: A picture of the experimental setup. A composite bone was used
instead of the actual cadaver femurs to take this picture to avoid unnecessary de-
hydration of the cadaveric bones.

4.2.3 Image processing and data extraction

The images acquired during the experiments were processed using DIC to extract
the displacement field, which could then be differentiated to obtain the strain field.
The software Vic-3D (v7, Correlated Solutions, Inc.) was used to perform the cal-
culations. As DIC is based on the assumption of the examined medium being a
continuum, two different set of parameters were defined: the first, which will be
referred to as the pre-fracture parameter set, was applied to all the acquired frames
until a crack formation was noticeable with the naked eye. The second set, which
will be referred to as the near-fracture parameter set, was applied to the 50 frames
preceding and following the crack formation. The two DIC parameter sets were
defined as reported in table 4.2.

The pre-fracture parameter set was meant to analyse the strain levels in the femur
during the whole test, including the elastic phase of the test where the strain levels
are moderate. A filter was therefore applied to the calculated DIC displacement
in order to remove some noise in the measurements before taking the derivative
to calculate the strains. Conversely, the near-fracture parameter set was meant to
investigate the local strains before the crack generation: therefore, no filtering was
implemented, and the step size was reduced in order to get a better coverage of the
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Subset
size
[px]

Step
size
[px]

Filtering Strain calculation

Pre-fracture 25 5

Low-pass filter with
100 Hz cut-off
on the obtained
displacements

Green-Lagrangian,
spatial decay filter
of 5 px size

Near-fracture 25 1 No filter
Green-Lagrangian,
spatial decay filter
of 5 px size

Table 4.2: Parameter sets adopted to run DIC.

area close to the crack formation.
The noise levels in the strain measurements were determined using the control

plate. The average and maximum values of the major principal strain measured
over the plate were taken as indicators of the noise level of the DIC measurements.
The noise levels were evaluated first when the loading device was turned on, but
not operating (resting mode), and subsequently when the actual test was ongoing
(operating mode).

Three virtual strain gauges were defined on the anterior surface of each specimen
in order to enable a qualitative comparison with the strain gauge data available in
literature for similar experiments. The position of the three SGs was identified on
the anterior surface of the femoral head, femoral neck, and diaphysis, consistently
with the procedure for strain gauge placement adopted by Cristofolini et al. [75].
In order to replicate the same placement procedure on a digital geometry, the 3D
shape of each specimen was first obtained via semi-automatic segmentation of the
CT images (Seg3D2, CIBC, University of Utah) and spatially registered to the DIC
point cloud via a Matlab (v8.1, The Mathworks, Inc.) code based on the genetic
optimization algorithm. The procedure described in [75] was finally replicated on
the registered 3D model using a multimodal data framework software which allowed
to pick landmarks on the surface [110]. The position of the virtual SGs is shown in
figure 4.4. The strains at the three selected locations were evaluated by averaging the
strain levels over a 3 mm2 circular area around each point, as the strain gauges used
in [75] covered the same area. The calculated principal strains were finally plotted
as a function of the applied force.

The overall distribution of the principal strain magnitude and orientation over
the time of the experiment was also obtained for two representative loads, namely:
100% of the subject’s body weight (BW), and at the last frame before a crack could
be detected on the images with the naked eye.
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Figure 4.4: The location of the virtual strain gauges on the anterior head (AH),
neck (AN), and diaphysis (A1). The nomenclature of the three virtual strain gauges
was chosen in consistency with the work of Cristofolini et al. [75].

4.3 CT-based FE models

In this section, the methodology used to build subject-specific FE models based
on CT images of the specimen is presented first, for both composite and cadaver
bones. Then, the methods to validate the predictions against the experimental mea-
surements are reported.

4.3.1 FE modelling of composite bones

The FE models for the composite bones were built based on their CT images. First,
the triangulated geometry was extracted using a semi-automatic segmentation pro-
cedure based on active contours [111]. The geometry of the epoxy pot used to con-
strain the distal part of the composite bones during the mechanical tests was also
retrieved from the CT images, and used to reconstruct the experimental reference
system. The obtained geometry was converted to Non-uniform rational B-spline
(NURBS) surfaces through a reverse engineering process (Rhinoceros 4.0, Robert
McNeel & Associates, USA, with RhinoResurf plugin, Resurf3D, China). The
NURBS geometry was then used to create a quadratic tetrahedral mesh (approxi-
mately 150000 nodes and 100000 elements, mean element volume 2.75 mm3, Hy-
permesh v11.0, Altair Engineering, Inc.). Material properties were assigned based
on the material data provided by the manufacturer, with transversely isotropic prop-
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erties implemented in the cortical compartment of the femoral neck and diaphysis,
and isotropic properties elsewhere (figure 4.5). The boundary conditions repro-
duced the load and constraints imposed during the mechanical tests for which strain
measurements were available [108].

Figure 4.5: FE models of a composite bone. Transversely isotropic material prop-
erties (longitudinal Young’s modulus 16 GPa, transverse Young’s modulus 10 GPa,
Poisson’s ratio 0.26) were assigned to the cortical compartment at the femoral shaft
(depicted in blue) and femoral neck (in red), with the longitudinal direction as-
sumed to be parallel to their respective anatomical axes. Isotropic material proper-
ties were assigned to the epoxy pot (Young’s modulus 2.5 GPa, Poisson’s ratio 0.3,
in green), the internal spongy compartment (Young’s modulus 155 MPa, Poisson’s
ratio 0.3), the femoral head region (Young’s modulus 16 GPa, Poisson’s ratio 0.26,
in yellow). Reprinted from paper II with permission from Elsevier.
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4.3.2 FE modelling of cadaver bones

Subject-specific CT-based FE models were built for the three cadaver bones based
on a consolidated procedure [112, 55]. The femur geometry was segmented from
the CT images using a semi-automatic procedure. This procedure consisted of a first
thresholding to coarsely obtain the femur shape, followed by a dilation/erosion step,
and a hole filling filter. Finally, the obtained segmentation was inspected slice by
slice, and manual corrections were applied wherever necessary. The whole segmen-
tation procedure was performed using Seg3D (v2.1.5, CIBC, University of Utah).
The same segmentation procedure was applied to the CBCT images acquired after
the mechanical tests in order to extract the shape of the distal epoxy pot and of the
distal fragment of the femur after fracture. The latter was registered to the femur
shape obtained from the CT images. This procedure allowed to accurately identify
the experimental reference system over the FE models by using the registered distal
epoxy pot. Besides, the registered distal fragment of the femur was used during the
validation stage to verify how close the predicted fracture onset was to the actual
fracture rim obtained during the mechanical tests.

The segmented femoral geometry was converted to NURBS surfaces through
a reverse engineering process (Rhinoceros 4.0, Robert McNeel & Associates, USA,
with RhinoResurf plugin, Resurf3D, China). The NURBS geometry was then used
to create a mesh of quadratic tetrahedral elements (approximately 140000 nodes
and 100000 elements, Hypermesh v13.0, Altair Engineering, Inc.).

The elements belonging to the epoxy pot were assigned an isotropic Young’s
modulus of 2.5 GPa, in accordance with the mechanical properties reported for the
product (Technovit 4071) by the manufacturer (Heraeus Kulzer, Germany). The
elements belonging to the femur were instead assigned an isotropic Young’s mod-
ulus based on the Hounsfield Unit (HU) values of the CT voxels that are within
the element volume. The available CT images were reconstructed using a sharp
convolution kernel (B60f, Siemens AG, Germany). This kernel aims at providing
sharp images with high contrast between different objects. To achieve this, the ker-
nel behaves as a high-pass filter, and overestimates the intensity gradients on the
periosteal and endosteal bone surface. This would ultimately result in an overesti-
mated Young’s modulus in the FE models at the periosteal and endosteal surface.
The optimal solution to this issue would have been to perform a new reconstruction
of the CT images using a softer kernel. However, the raw images were no longer
available at the time the FE models were built. Therefore, the effect of the sharp
kernel was instead mildened by applying a 5 x 5 pixel size mean filter over the re-
constructed images. Bonemat_V3 algorithm [113] was used to assign the Young’s
modulus to each element based on the filtered CT values. Bonemat_V3 uses a tri-
linear interpolation to calculate the HU field; the HU field is then transformed into
a Young’s modulus field, and finally the numerical integration over each element
volume is performed to assign an element-specific Young’s modulus [114, 113]. To
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transform the HU field into a Young’s modulus field, the calibrated HU values had
to be converted to an equivalent radiological density of phosphate dipotassium us-
ing a phantom (Model 3 CT, Mindways, Inc.). The Young’s modulus was derived
from the equivalent radiological density using a set of relationships that was first
proposed by Schileo et al. [55]: the equivalent radiological density was considered
to be equivalent to the ash density, which was then converted to apparent density
using the relation:

ρash/ρapp = 0.6. (4.1)

Finally, the apparent density was converted to Young’s modulus using the relation
proposed by Morgan et al. [115]:

E = 6850 ∗ ρ1.49
app . (4.2)

The Poisson’s ratio was set to 0.4 [116] for all the elements. The load was equally
distributed among the 10 most superior first order surface nodes of the femoral
head.

A rate-dependent material model with different strain limit values for yield and
failure was implemented to predict the femoral strength (figure 4.6). The rate de-
pendence was given by changing the Young’s modulus of each specific element at
each increment as a function of the strain rate for that specific element at the pre-
vious increment:

Ei
elem = Eref

elem ∗ SRCFelem. (4.3)

In the above equation, SRCFelem is the strain rate correction factor for the specific
element, defined as:

SRCFelem =


1, if

(
ϵ̇i−1

elem
ϵ̇ref

)0.06
≤ 1(

ϵ̇i−1
elem
ϵ̇ref

)0.06
, otherwise

, (4.4)

where ϵ̇i−1
elem is the absolute major principal strain rate for the specific element at

the previous calculated increment, and ϵ̇ref is the strain rate at which both the limit
yield strain [117] and the density-elasticity relationships [115] were experimentally
obtained (5000 µϵ/s).

The bi-linear behaviour was given by defining strain limit values for element
yielding (figure 4.6). Different limit values for tension and compression were de-
fined, where tension in the FE models was given by the major principal strain values,
and compression by the minor principal strain values. When an element reached
the yield strain limit (10 400 µϵ in compression, 7300 µϵ in tension, [117]), the
modulus of the element was reduced to 5.5% of the tangent modulus [118], and
the simulation proceeded to the subsequent increment. The femoral strength was
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Figure 4.6: The material model used to predict bone strength in the FE models.
The mechanical behaviour of an element changes for different SRCFs, according to
equation 4.4. The femoral strength was predicted using threshold strain values for
yield (ϵy) and failure (ϵf ). The different thresholds for tension and compression are
marked with ”t” and ”c” superscript, respectively. The tangent modulus is reduced
to 5.5% of its value in the elastic phase, as extrapolated from the raw measurements
from Reilly et al. [118]. Reprinted from paper IV with permission from Elsevier.

determined by defining strain limit values for element failure. Analogously to the
yielding, different limit values for tension and compression were defined. Accord-
ing to the experimental findings of Reilly et al. [118], 21 000 µϵ was taken as the
ultimate strain in compression, and 26 050 µϵ as the ultimate strain in tension.

All the FE simulations were solved using Abaqus (v6.12-4, Dassault Systèmes,
France). When assessing the strain prediction accuracy of the FE models, a load
corresponding to 4 times the body weight of the subject was imposed, and the sim-
ulation was solved as a linear elastic problem in one single increment. Geometrical
non-linearities were accounted for by activating the NLGEOM option. Prediction
of the femoral strength was performed by imposing consecutive 0.05 mm displace-
ment increments to the FE model, with the simulation time increment opportunely
tuned in order to obtain a displacement rate of 15 mm/s (i.e., the same displace-
ment rate imposed during the experimental tests). The specimen was considered to
be failed at the increment when the first element failed, and the sum of the reac-
tion forces at the constraints during that increment taken as the predicted femoral
strength.
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4.3.3 Validation

Validation of composite bones
The FE predictions for the six composite bones were compared in terms of principal
strains to the experimental data available [108]. The validation was performed for
each composite bone at a load of 3500 N, and at the last available frame before
fracture.

The strain prediction accuracy was assessed by comparing the principal strain
pattern predicted by the FE models to the principal strains measured with DIC for
the same load magnitude applied. Typically, FE and DIC data have different spatial
resolution. Therefore, an automatic registration and data comparison method was
developed in Matlab. The DIC point cloud was first registered to the corresponding
FE mesh using a genetic optimization algorithm. Then, the experimental measure-
ment points for which the tracking quality parameter was greater than two times the
optimal value declared by the software developer (confidence interval for the point
matching greater than 0.02 pixels, Correlated Solutions, Inc.) were removed from
the analysis. The DIC point cloud was then shrunken by removing the 5 outermost
layers of points. This was done in order to drop the strains calculated at the borders
of the cloud from the analysis, since these were more prone to artefacts due to either
higher surface curvatures or reduced search zone. Then, for each surface element of
the FE mesh, the radius (Rsmallest) of the smallest sphere circumscribing it was cal-
culated. The principal strains of all the DIC points located inside a spherical volume
of radius equal to 2 ∗ Rsmallest were averaged, and the obtained values compared to
the element principal strains predicted by the FE simulation. The strain prediction
accuracy was finally evaluated by performing a linear regression analysis of the ma-
jor and minor principal strains magnitudes. Determination coefficient (R2), slope
and intercept of the regression, normalised root mean square error (NRMSE) and
peak error of the FE predictions were calculated. Bland-Altman [119] plots were
also presented to graphically show the overall agreement between experimentally
measured principal strains and FE predicted principal strains.

Validation of cadaver bones
The validation of the FE predictions for the three cadaver bones was performed both
in terms of strain prediction accuracy in the elastic sector of the force-displacement
curve and in terms of the predicted femoral strength.

The assessment of the strain prediction accuracy was performed using a method
similar to the one adopted for the composite bones. Two substantial modifications
were introduced when validating cadaver bones, namely: (i) the principal strains
of the DIC points were averaged over the volume of a sphere with radius equal to
1∗Rsmallest, and (ii) a robust regression analysis with bi-square weighting function
was performed instead of the more conventional linear regression analysis. The latter
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change was motivated by the fact that the robust regression analysis is less sensitive
to non-normality in the distribution of the residuals and heteroscedasticity in the
data.

When assessing the femoral strength prediction accuracy for the three cadaver
femurs, the strength predicted by the FE models was compared to the maximum
force recorded during the ex vivo mechanical tests. Relative error and standard
error of the estimate (SEE) were reported, as well as a graphical representation of
the distance between the predicted fracture onset and the experimentally obtained
fracture rim.

4.4 Combining SSAM and FE modelling

In this section, the methodology to build subject-specific FE models based on the
3D shape and BMD distribution as reconstructed using a shape template and a
SSAM is described. The methodology to build the statistical shape and appearance
models is also reported. The performances of FE models based on SSAM recon-
structions are compared to those of the CT-based FE models (as described in section
4.3) for the reconstructed femoral shape only, the reconstructed BMD distribution
only, and the combination of the two.

4.4.1 SSAM generation and bone reconstruction

The generation of the SSAM and the algorithm for bone reconstruction were de-
veloped by Sami P. Väänänen during his PhD studies [120], and were presented in
[121]. The SSAM was generated using 34 proximal femur anatomies, whose CT
images were segmented. The average shape was calculated using a set of automati-
cally detected landmarks, and a template mesh with fine tetrahedral elements (1.6
million elements, Hypermesh 11.0, Altair, Inc.) was built for this average shape.
The template mesh was subsequently morphed over the geometry of each bone of
the 34 bone anatomies available, and element-specific bone density was assigned
based on the HU values using Bonemat_V2 algorithm [113]. The SSAM was fi-
nally created by performing a singular value decomposition (SVD) of the matrix
containing the nodal coordinates of the meshes and the density values associated to
each element. As nodal coordinates and element densities had different scales and
unit of measure, their values were separately normalised before calculation of the
SVD.

To reconstruct the 3D shape and density distribution starting from a single 2D
image, a genetic algorithm was used to register the SSAM to the 2D reference image.
A digital reconstructed radiography (DRR), consisting of a projection of the SSAM
instance onto the coronal plane, was generated at each iteration round and used
for the registration. The cost function was defined in order to take into account
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mesh quality [122], anatomical positioning, and the sum of the absolute difference
of the areal BMD between reference image and DRR of the SSAM instance. The
reconstruction was performed for all the three specimens, each of them using three
types of reference images:

• DXA image acquired with Lunar iDXA (hereafter referred to as simply
”iDXA”)

• DXA image acquired with Lunar Prodigy (hereafter referred to as simply
”Prodigy”)

• 2D image obtained by projecting the CT images along the anteroposterior
plane (hereafter referred to as simply ”CTproj”)

All the analyses and comparisons described in the remaining of this chapter were
performed for all specimens and all 2D reference images.

4.4.2 Comparison of SSAM-based and CT-based FE models

The SSAM-based FE models were compared to the CT-based FE models by divid-
ing the comparison into the different components reconstructed by the SSAM: the
femoral shape, the BMD distribution, and the combination of the two.

In order to allow a proper comparison of the results, the FE models obtained as
an output of the SSAM-based reconstruction, consisting of 1.6 million elements,
were all remeshed (Hypermesh v14.0, Altair Engineering, Inc.) with the same
parameters used to generate the CT-based FE models described in section 4.3.2.
The remeshed SSAM-based models had approximately 100000 elements each. The
remeshed SSAM-based models were used in all the comparisons described in this
subsection, and will be referred to as SSAM-based models for the sake of simplic-
ity.

SSAM-based shape models
To evaluate the effect of the SSAM-based shape on the FE models accuracy, the
SSAM-based models were superimposed to the CT datasets. Then, the material
properties were assigned to each element of the SSAM-based models using Bone-
mat_V3 and the same density-elasticity relationships used for the CT-based models.

When compared to the CT-based models described in section 4.3.2, the recon-
structed SSAM-based models were shorter, and the epoxy pot used to constrain the
distal part was also missing. Therefore, the SSAM-based models were merged to
the CT-based models in order to apply the same boundary conditions as in the me-
chanical tests described in section 4.2. The SSAM-based models were first registered
to the experimental reference system. Then, the lowest nodal coordinate along the
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Figure 4.7: Generation of the FE models implementing the SSAM-based shape
(SSAM-based shape and SSAM-based shape and BMDmodels): the model produced
by the SSAM-based reconstruction (depicted in blue, left side) has a shorter shaft
than the actual sample, as reconstructed by segmentation of its CT scan (CT-
based model depicted in green, left side). In order to replicate the same boundary
conditions as in the experiments (section 4.2), the most distal part of the CT-based
FE model was added to the SSAM-based FE model, and connected to it using tie
constraints (right side, the yellow nodes from the SSAM-based models are tied to
the red nodes of from the CT-based model).

Y-direction was determined for the SSAM-based FE model, and the CT-based FE
model cut along the XZ plane at that Y-coordinate (figure 4.7). The part of the CT-
based model above the cutting point along the XZ plane was removed. The epoxy
pot from the CT-based model was added, and the three components (SSAM-based
model, distal CT-based femur model, CT-based epoxy model) were connected to-
gether using surface based tie elements (Abaqus v2016, Dassault Systèmes, France).
The constraints at the epoxy pot where thus kept unaltered, while the vertical load-
ing was again equally shared among the 10 uppermost single-order nodes on the
femoral head. The whole cutting and merging operation, together with the defini-
tion of the boundary conditions, was automatically performed via a custom made
Matlab code.
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SSAM-based BMD models
To evaluate the effect of the SSAM-based BMD on the FE models accuracy, the CT-
based FE models were taken, and the Young’s modulus for each element assigned
based on the SSAM-based reconstructed BMD values. To do that, a custom made
Matlab code was developed. The code took both the CT-based and the SSAM-
based FE models, and warped the latter onto the first. Then, a scan through all
the elements of the CT-based FE models was performed to find the elements of the
SSAM-based FE models that intersected each element. The intersection volume
was calculated, and the element density was defined as the average of the densities
in the intersecting SSAM-based elements, weighted by the intersection volumes:

ρi
CT−based =

∑
j

(
ρj

SSAM−based ∗ Vij∑
j Vij

)
, (4.5)

where ρi
CT−based was the density of the ith element of the CT-based mesh,

ρj
SSAM−based was the density of the jth element of the SSAM-based mesh, and

Vij was the volume of the intersection between the ith element of the CT-based
mesh and the jth element of the SSAM-based mesh. The Young’s modulus for each
element was then obtained by converting the density into Young’s modulus using
equations 4.1 and 4.2.

Not all the elements of the CT-based mesh could be assigned a Young’s modulus
based on the intersection with the elements of the SSAM-based mesh, as the CT-
based mesh was longer than the SSAM-based one. Therefore, all the elements of the
CT-based mesh that did not intersect with any element of the SSAM-based mesh
were allowed to keep the Young’s modulus assigned using the CT-based material
mapping described in section 4.3. An additional step was also added to compensate
for potential artefacts in the BMD distribution due to inaccuracies in the SSAM-
based reconstruction. This consisted in:

1. a compensation for the partial volume effect: for each surface element of
the model, the Young’s modulus was defined as the maximum between the
value originally assigned through the mapping and the Young’s moduli of the
elements lying directly underneath it.

2. a compensation for potential over- and undershoot in the SSAM-based re-
constructed material properties: the maximum Young’s modulus allowed for
all the elements was set to 22 GPa, and the minimum Young’s modulus for
the surface elements was set to 5 GPa.

SSAM-based shape and BMD models
The combined effect of SSAM-based shape and BMD distribution on the accuracy
of the FE predictions was also assessed. This was done by combining the techniques
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adopted for comparing SSAM-based shape alone and BMD distribution alone. This
generated an FE model which had both the shape and the BMD distribution as
they were reconstructed using the SSAM, but in a model which had approximately
100000 elements, and the distal part added to apply the desired boundary condi-
tions.

4.4.3 Validation

The validation for all the SSAM-based models was performed analogously to what
was done for the CT-based FE models of cadaver bones, and described in section
4.3.3. The strain prediction accuracy was assessed by robust regression analysis at
a load corresponding to 4 times the subject’s BW. The only difference was in the
method to register the DIC point cloud over the FE models. Here, an additional
step consisting in a point-to-surface projection was added after the registration itself,
with the aim of correcting local inaccuracies due to possible reconstruction errors
of the SSAM-based models. The ability to predict bone strength was assessed by
implementing the rate-dependent material behaviour with different limit values for
yield and fracture in tension and compression, as described in section 4.3.2, and
comparing the obtained femoral strength values with the maximum force recorded
during the ex vivo mechanical tests (section 4.2).



Chapter 5

Results

This chapter reports the results obtained during this thesis work using the
methodologies described in chapter 4.

5.1 The DIC experiment

5.1.1 Mechanical testing

The three cadaver bones broke at an applied load of 13383 N (specimen #1), 7856
N (specimen #2), and 9080 N (specimen #3). The recorded force versus displace-
ment curves are reported in figure 5.1. The coefficient of determination (R2) for

Figure 5.1: The force versus displacement curves for specimen #1 (red), specimen
#2 (green), and specimen #3 (blue). Reprinted from paper III with permission
from ASME.

39
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the three force versus displacement curves up to the maximum recorded force was
equal or greater than 0.99. A sudden drop in the measured force was present in all
the curves after the maximum recorded force had been reached. The linearity of the
displacement versus time curves was also assessed, to verify if the prescribed bound-
ary conditions of 15 mm/s constant displacement rate had actually been achieved.
The coefficient of determination was greater than 0.99 for all the three tests, with a
NRMSE always below 11%.

5.1.2 Image processing and data extraction

The noise in the DIC measurements was estimated using the control plate. When
using the pre-fracture parameter set, and with the loading device turned on but not
operating, the average major principal strain detected on the control plate was 31 ±
22 µϵ, 49 ± 30 µϵ, and 16 ± 12 µϵ for specimens #1, #2, and #3, respectively. The
corresponding maximum values of the major principal strain were 142 µϵ, 361 µϵ,
and 51 µϵ. The noise levels increased when the loading device was turned on and
operating. The average major principal strain on the control plate while the tests
were ongoing rose to 164 ± 27 µϵ, 106 ± 29 µϵ, and 81 ± 19 µϵ, with maximum
recorded values of 593 µϵ, 659 µϵ, and 532 µϵ, respectively.

The principal strains collected from the three virtual SGs also showed a linear
relationship with respect to the applied force (figure 5.2). The coefficient of deter-
mination was always greater than 0.96 (NRMSE always smaller than 19%), except
for the major principal strains collected by the virtual SGs at the diaphysis level
of specimens #1 and #2. The locations covered by these two virtual SGs seemed
indeed to be subjected to pure compression, with the major principal strains being
constantly around zero throughout the whole test. No good linear correlation could
therefore be detected for these two measurements with respect to the applied force
(figure 5.2).

The strain rate was also calculated for the virtual SGs. The von Mises strain
rate at the three virtual strain gauges was reported for each specimen (figure 5.3).
The strain rate varied between the different locations, with the highest strain rates
always located at the femoral head or neck, while the diaphysis was subjected to a
lower strain rate.

The linearity of the principal strains with respect to the applied force was also
investigated for each single DIC point acquired. When considering all the data
from the three specimens, 91% of the data points had a coefficient of determina-
tion greater than 0.9 (average NRMSE = 12% ± 7%, maximum NRMSE = 32%),
with 81% of the data points having a coefficient of determination greater than 0.95
(average NRMSE = 11% ± 5%, maximum NRMSE = 22%).

The major and minor principal strain directions for a force corresponding to the
subjects’ body weight and at the frame right before fracture are reported in figures
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5.4 and 5.5, respectively. The principal strain directions did not drastically change
during the test as the applied force increased. Nevertheless, a more uniform align-
ment of the principal directions could be noticed for higher values of the applied
force. The corresponding major and minor principal strain magnitudes at the same
stages of the mechanical test were reported in figures 5.6 and 5.7.

The fracture limit plots are presented in figure 5.8. The video recording of
specimen #1 was interrupted a few frames before the fracture, likely due to a human
error in actioning the trigger. The fracture limit plots are therefore presented only
for specimens #2 and #3. These plots show that tensile strains (major principal
strains) were higher than compressive strains (minor principal strains) in the anterior
surface of the specimens at the frame immediately before the crack was detected.
The major principal strains in the specimens at crack formation are shown in figure
5.9. The strain magnitudes in the crack region after the crack formation have to be
interpreted only in a qualitative manner, as DIC calculations imply the existence
of a medium that can be described as a continuum. The points whose sum of the
absolute value of the major and minor principal strains was highest were consistently
located where the crack was going to be detected in the following frame (figure 5.8,
red points).

The residual strains 0.08 s after the crack formation were in the order of a few
hundred microstrains. Higher strain magnitudes (greater than 1000 µϵ) could be
found in the crack region. The mean and median values of the residual principal
strains are reported in table 5.1.

Specimen ID Principal strain Median [µϵ] Mean [µϵ]
2 major 153 339
2 minor 239 433
3 major 329 760
3 minor 319 560

Table 5.1: Mean and medial value for the major and minor principal strains de-
tected in the specimens 0.08 s after the crack formation.
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Figure 5.2: Major (positive sector) and minor (negative sector) principal strains as
a function of the applied force in the virtual SGs for the three specimens tested. The
SGs on the head are shown in blue, those on the femoral neck in green, and those
at the diaphysis in red. Reprinted from paper III with permission from ASME.
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Figure 5.3: Von Mises strain rate versus the applied force for the three virtual
strain gauges, for all the three specimens tested. The SGs on the head are shown
in blue, those on the femoral neck in green, and those at the diaphysis in red.
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Figure 5.4: The major principal strain directions for the three specimens for a force
corresponding to the subjects’ body weight and at the frame right before the crack
formation. Only a sub-sample of the DIC points was depicted with red arrows,
while the direction of all the points is indicated by the background colour of the
bone, according to the legend on the right of the figure.

Figure 5.5: The minor principal strain directions for the three specimens for a
force corresponding to the subjects’ body weight and at the frame right before the
crack formation. Only a sub-sample of the DIC points was depicted with red
arrows, while the direction of all the points is indicated by the background colour
of the bone, according to the legend on the right of the figure.



45

Figure 5.6: The major principal strain distribution for the three specimens for a
force corresponding to the subjects’ body weight and at the frame right before the
crack formation.

Figure 5.7: The minor principal strain distribution for the three specimens for a
force corresponding to the subjects’ body weight and at the frame right before the
crack formation.
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Figure 5.8: Fracture limit plot for specimens #2 (top) and #3 (bottom) at the last
frame available before a crack could be detected. The 5% of the points whose sum
of the absolute major and minor principal strain is highest are depicted in red (left),
and their anatomical location is shown in the same colour (right). Reprinted from
paper III with permission from ASME.

Figure 5.9: Evolution of the major principal strains for specimens #2 and #3 at
the frames when the crack is formed. The strain data are superimposed to the raw
images acquired by the master camera. Reprinted from paper III with permission
from ASME.
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5.2 CT-based FE models

5.2.1 Composite bones

The preliminary tests conducted on the six composite bones proved the validity
of the proposed registration and validation approach. The approximately 50000
experimental data points per femur obtained from DIC were accurately registered
over the FE models, and the linear regression analyses provided a high accuracy
for the principal strains predicted along the whole anterior surface. One of the six
composite bones was an outlier in the experimental data, showing a lower slope in
the force-displacement curve [108]. When this composite bone was removed from
the pooled set of validation data, the coefficient of determination, R2, was 0.91,
with a slope of 0.94 and a NRMSE of 5% for an applied force of 3500 N. The
analogous validation performed at the frame before fracture corroborated the valid-
ity of the validation method, even when the specimens were in a highly deformed
state. The accuracy of the principal strain validation was slightly worse than in the

Figure 5.10: Scatter plot (left) and Bland-Altman plot (right) for the five com-
posite bones (one outlier excluded after analysis of the force-displacement curves
in [108]) when a force of 3500 N is applied (top), and at the last frame available
before specimen fracture (bottom). The solid blue line in the Bland-Altman plot
shows the mean value of the difference, with the red dotted lines showing the 95%
confidence limits. Reprinted from paper II with permission from Elsevier.
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3500 N case (R2 = 0.89, slope = 0.82, NRMSE = 6%), likely due to the lack of any
plasticity implemented in the FE models of the composite bones. Regression plots
and Bland-Altman plots for both the 3500 N and close to fracture load cases are
reported in figure 5.10.

5.2.2 Cadaver bones

The validation of the strain prediction accuracy was performed on approximately
1600 data points per specimen (4826 data points in total). The robust linear regres-
sion analysis at a load of 4 times the body weight gave a coefficient of determination
of 0.94 (NRMSE = 9%), with a regression slope and intercept equal to 0.9 and
133 µϵ, respectively. The scatter plot of the FE predicted versus the DIC measured
principal strains and the Bland-Altman plot are reported in figure 5.11 for the 3
specimens pooled. The results of the robust linear regression analyses are reported
in table 5.2 for the three bones pooled as well as for each individual bone. The
individual validation for each specimen (scatter and Bland-Altman plots reported
in figure 5.12) always provided a coefficient of determination greater than 0.9, with
slope close to unity, and intercept of a few hundred microstrains (see table 5.2).

The FE models were able to predict the femoral strength with a relative error of
-1.5% for specimen #1, and +1.2% for specimen #2 (table 5.3). The standard error
of the estimation (SEE) for the two specimens was 155 N. The femoral strength for
specimen #3 could not be compared with the experimental measurements due to the
slippage of the protective cap. This caused an unexpected change in the prescribed
boundary conditions, which could not be accurately modelled in the FE models.
The slippage of the cap is likely to have caused a stress concentration close to the rim
of the cap itself, which ultimately produced an abnormal fracture mechanism. This
speculation was corroborated by the peculiar fracture pattern exhibited by specimen
#3 (figure 5.9), where the crack originated in the superolateral part of the femoral
neck, close to the rim of the steel cap. The FE models predicted bone failure to

3 bones pooled Bone #1 Bone #2 Bone #3

R2 0.94 0.92 0.94 0.95
Slope 0.96 0.92 0.97 1.01
Intercept [µϵ] 133 144 174 79
NRMSE 9% 10% 11% 11%
Max error % 65% 46% 59% 83%

Table 5.2: Strain prediction accuracy at four times the body weight for the CT-
based FE models, for the three bones pooled, and the three individual bones taken
separately.
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Figure 5.11: Scatter plot of the FE predicted principal strains versus the DIC mea-
sured strains (left), and Bland-Altman plot (right) for the 3 specimens pooled. The
solid blue line in the Bland-Altman plot shows the mean value of the difference,
with the red dotted lines showing the 95% confidence limits. Reprinted from
paper IV with permission from Elsevier.

Specimen #1 Specimen #2
Experimental strength [N] 13383 7856
Predicted strength [N] 13184 7947
Difference [%] -1.5% +1.2%

Table 5.3: Comparison of the predicted versus experimentally measured bone
strength for specimens #1 and #2.

initiate under compression on the medial aspect of the femoral neck for all the
specimens. The fracture onset predicted by the FE models appeared to be located
very close (less than 1 cm away) to the fracture rim obtained during the ex vivo
mechanical tests (figure 5.13).
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Figure 5.12: Scatter plots of the FE predicted principal strains versus the DIC
measured strains (left column), and Bland-Altman plots (right column) for each of
the three specimens tested. The solid blue line in the Bland-Altman plot shows the
mean value of the difference, with the red dotted lines showing the 95% confidence
limits. Reprinted from paper IV with permission from Elsevier.
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Figure 5.13: Graphical comparison of the experimentally obtained fracture rim
(black line) and the FE predicted fracture onset (red dots). The major (central row)
and minor (bottom row) principal strains detected with DIC at the frame before
fracture are superimposed. For specimen #1, whose DIC recordings at fracture
were not available due to a technical problem (see section 5.1.2), the strains for
the last available frame are shown (for which the applied load was greater than
99% of the fracture load, estimated by comparing the DIC data with the internal
recordings of the loading device during the experiments). Reprinted from paper
IV with permission from Elsevier.
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5.3 Combining SSAM and FE modelling

The validation of the strain prediction accuracy for the SSAM-based models was
performed at a load corresponding to four times the subject’s body weight. The
results of the robust linear correlation analyses are presented in figure 5.14. The
coefficient of determination was in all cases greater than 0.83, with a maximum of
0.92 for the SSAM-based shape and BMD model using the CT projection as the
reference image. The NRMSE was around 10%, with a maximum of 16% for the

Figure 5.14: Scatter plot of the FE predicted principal strains versus the DIC
measured strains for the three types of SSAM-based models built, and the three
different types of 2D reference images used for the reconstruction. The results of
the three proximal femurs are pooled together in each scatter plot.
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Bone #1 Bone #2 Bone #3
CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy

R2 0.90 0.90 0.90 0.84 0.83 0.83 0.92 0.89 0.89
Slope 1.00 0.91 0.92 1.03 0.99 1.08 1.03 0.85 0.97
Intercept [µϵ] 225 199 200 257 263 283 142 84 107
NRMSE 13% 11% 11% 19% 18% 20% 12% 12% 12%
Max error % 64% 69% 70% 89% 89% 113% 63% 58% 80%

Table 5.4: Strain prediction accuracy at four times the body weight for the SSAM-
based BMD models of the three individual bones, for the three different types of
2D reference image.

Bone #1 Bone #2 Bone #3
CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy

R2 0.89 0.82 0.82 0.89 0.88 0.88 0.91 0.79 0.83
Slope 0.88 1.00 1.04 0.98 1.03 1.11 1.07 1.22 1.23
Intercept [µϵ] 201 309 332 102 167 158 61 127 141
NRMSE 12% 18% 19% 13% 15% 18% 10% 13% 15%
Max error % 73% 188% 87% 125% 136% 108% 82% 134% 176%

Table 5.5: Strain prediction accuracy at four times the body weight for the SSAM-
based shape models of the three individual bones, for the three different types of
2D reference image.

SSAM-based shape model using Prodigy as the reference image. The slope of the
robust linear regression was always within ± 10% from unity for all cases except
two (SAM-based shape from Prodigy, and SAM-based shape and BMD from iDXA).
The results of the robust linear regression analyses conducted for each individual
bone are presented in table 5.4, 5.5, 5.6 for the SSAM-based BMD, SSAM-based
shape, and SSAM-based shape and BMD cases, respectively. These results can be
compared with the accuracy for the corresponding CT-based FE models reported
in table 5.2.

The femoral strength predicted by the SSAM-based models was validated only
for samples #1 and #2, due to the technical issues with sample #3, which were

Bone #1 Bone #2 Bone #3
CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy

R2 0.88 0.84 0.86 0.94 0.89 0.9 0.92 0.87 0.88
Slope 0.81 0.76 0.88 0.90 0.74 0.86 0.98 0.86 0.99
Intercept [µϵ] 197 217 252 109 141 181 68 3 17
NRMSE 11% 14% 15% 10% 11% 13% 9% 8% 12%
Max error % 34% 37% 43% 51% 70% 61% 74% 72% 91%

Table 5.6: Strain prediction accuracy at four times the body weight for the SSAM-
based shape and BMD models of the three individual bones, for the three different
types of 2D reference image.
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Bone #1 Bone #2 SEE
[N]CTproj iDXA Prodigy CTproj iDXA Prodigy

SSAM-based
BMD

9858
(-26%)

11309
(-15%)

11007
(-18%)

7115
(-9%)

7789
(-1%)

5046
(-35%)

2267

SSAM-based
shape

12776
(-4%)

9301
(-30%)

11983
(-18%)

7885
(+0.4%)

8525
(+8%)

7445
(-5%)

1975

SSAM-based
shape and
BMD

13106
(-2%)

13009
(-3%)

14820
(+11%)

9777
(+24%)

9203
(+17%)

8859
(+13%)

1215

Table 5.7: Femoral strength prediction accuracy for the SSAM-based FE models
of specimens #1 and #2, for the three different types of 2D reference image.

explained in section 5.2. The SEE for the SSAM-based shape and BMD models was
1215 N, with an average absolute relative error of 12% (± 8%, maximum absolute
relative error 24%). All the results of the femoral strength validations for the SSAM-
based models are reported in table 5.7. The femoral strength estimation was on
average more accurate for the SSAM-based models built from CTproj (SEE = 1689
N) than for the models built from iDXA (SEE = 1974 N) and Prodigy (SEE =
1938 N). This is consistent with the greater information provided by the CTproj
images compared to the DXA scans. Furthermore, the SSAM-based models built
from CTproj showed a significantly higher accuracy in the shape reconstruction, as
evidenced by the point-to-surface distance plots reported in figure 5.15. Most of the
higher errors in the shape reconstruction were located in regions whose contribution
to the mechanical behaviour of a femur is negligible, like the most superior tip of the
greater trochanter. As the femoral neck is the most critical region when it comes
to femoral fracture, the volumetric difference between the CT-based models and
the SSAM-based models was calculated for the neck region only. The results are
reported in table 5.8. When considering the results from figure 5.15 and table 5.8
together, it appears that the closer agreement between the femoral neck volume in

Bone #1 Bone #2 Bone #3
CTproj +9% +10% +9%
iDXA +19% +13% -6%

Prodigy +5% +15% +0.3%

Table 5.8: Difference in volume between the femoral neck region of the CT-based
models and the SSAM-based models reconstructed from the three different refer-
ence images.
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Figure 5.15: Point-to-surface distance between the different SSAM-based models,
and the CT-based models described in section 4.3, for the three different femurs
and the three types of reference image.

CT-based models and SSAM-based models from Prodigy is not accompanied by
an equally high accuracy in the shape recovery, with errors as high as 3 mm in the
neck region. Conversely, the good agreement (always within 10% difference) in
the femoral neck volume for the SSAM-based models from CTproj was matched
with a superior accuracy in the shape recovery. These results are consistent with the
generally higher accuracy in both strain and femoral strength predictions exhibited
by SSAM-based models obtained from CTproj images.
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Chapter 6

Discussion

The aim of this thesis was to develop a subject-specific FE modelling procedure
that can predict femoral strength using a single DXA scan. Towards this aim,

the thesis work was divided into three main blocks, namely: collection of strain
and femoral strength data from ex vivo mechanical tests, development of a subject-
specific FE modelling procedure based on CT images, and development of a subject-
specific FE modelling procedure based on the 2D to 3D reconstruction from a single
DXA image using a SSAM.

The first block, the collection of experimental data from ex vivo mechanical
tests, mainly aimed at creating a reliable and thorough set of data against which it
was possible to validate the FE model predictions. The development of an accurate
subject-specific FE modelling procedure from CT data aimed at defining a gold
standard for the strain and femoral strength prediction. Finally, SSAM-based FE
models were developed to predict strain and femoral strength from a single DXA
image, thus allowing for a mechanistic prediction of bone strength that can provide
added value to the current osteoporosis diagnostics.

The accuracy of the SSAM-based FE models was calculated by comparing the
predicted strains with the measurements from the ex vivo tests. This accuracy was
in turn compared to the gold standard, as represented by the CT-based FE models.

6.1 Collection of experimental measurements from
ex vivo mechanical tests

The design of the ex vivo mechanical tests was based on the information collected
during the feasibility studies performed on composite bones both experimentally
(section 4.2, and [108]) and numerically (section 4.3.1). The aim was to collect
accurate experimental data with high spatial resolution in a test whose boundary
conditions were physiologically meaningful as well as accurately replicable in an FE
simulation.

57
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A loading configuration resembling single leg stance was chosen, based on
its relative ease of implementation, and because it is one of the most commonly
adopted configurations in literature [58, 70, 71, 123, 124]. 3D-surface DIC was
used to measure the deformations, as it is a non-contact technique which allows
to reconstruct the full-field strain distribution over the surface recorded by the
cameras.

The noise from the strain measurements collected with DIC is an issue that
has not been extensively addressed for bone mechanics applications [83, 108, 125].
Therefore, a control plate was placed on the side of the tested bone and used to
assess the noise levels in the measurements. With the adopted settings for DIC
calculation and data processing, strains in the order of 16-49 µϵ were detected in the
control plate for repeated acquisitions while the loading device was turned on, but
not operating. The noise levels increased to 81-164 µϵ when the loading device was
operating, i.e., the control plate was moving vertically together with the constrained
distal pot (figure 4.3). This is an interesting result, since most of the studies adopt
repeated measurements of static objects to address noise in DIC strain data [108,
126], and the effect of rigid body movements have been evaluated using artificially
displaced images [127, 128]. The obtained results evidence the need to assess the
increased noise that results from the sample translation during the actual experiment
and not only with simulated images.

The reduction of noise in the data obtained using DIC is generally pursued by
implementing one or more filters. Typically, such filters act either on the input
images (e.g., a low-pass filter can be used to reduce aliasing effects), or on the ob-
tained strain field, with the latter approach reported to give the best results [126].
Filters acting on the strain field are typically implemented in the proprietary DIC
software. However, this gives the user less control over the filtering parameters,
and a limited range of choices in terms of filtering strategy. In the DIC software
used for this thesis work (Vic 3D v7, Correlated Solutions, Inc.), the calculated
strains are always smoothed using a local filter (i.e., the filter over the strains cannot
be disabled). The implemented filter is a 90% centre-weighted Gaussian filter, for
which the size of the smoothing window can be determined by the user (but with
an allowed minimum size of 5 data points). In order to gain more control over the
strain calculations, the displacement field was retrieved from the DIC software and
different filtering and strain derivation techniques were tested using custom-written
Matlab codes. The filtering strategy that gave the best results in removing the ran-
dom noise between consecutive frames consisted in: (i) filtering the displacement
vector for each tracked point using a low-pass filter with a cut-off frequency of 100
Hz, (ii) introducing the filtered displacement data back into the DIC software, and
use them to derive the Green-Lagrangian strains, and (iii) filtering the obtained
strains using a spatial decay filter of 5 pixel size. This procedure was used to calcu-
late the strain field over the whole range of the loading curve, except for the last 50
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frames before fracture. For the latter frames, no filtering over the displacements was
applied. This choice was based on the need to get the highest possible resolution
both in space and in time to extract relevant information about crack formation.

The measurements collected during the ex vivo mechanical tests showed that
the chosen displacement rate of 15 mm/s resulted in a strain rate in the 3 virtual
SGs of approximately 0.04 s-1. This value is comparable to the strain rate values
detected during in vivo studies, where strain rates in the order of 0.03-0.05 s-1 were
detected for high intensity activities such as jumping or running [129, 130]. Thus,
it corroborates the physiological meaningfulness of the acquired measurements.

Using the implemented displacement rate, the tested bones showed a linear
elastic behaviour up to fracture. The principal strains detected with DIC were highly
correlated with the applied force: R2 > 0.96 for the three virtual SGs, with 90%
of the total data points showing an R2 > 0.9 (average NRMSE = 12%). Most
of the points showing a low linear correlation with the applied force were located
either close to the constraints (where the strains are constantly very low, therefore
not correlating with the increasing force), or in regions with high curvature (where
the correlation quality can decrease during the test due to, e.g., shadowing effects).
The linearity of principal strains versus applied force is in agreement with what
was reported by Juszczyk et al. [124] for femurs tested at a displacement rate of
3-30 mm/s. An additional evidence of the elastic behaviour of the femurs up to
the macroscopic fracture was provided by the analysis of the residual strains after
0.08 seconds from the crack opening. In fact, all the strains were in the range
of a few hundred microstrains (thus close to the noise levels in the control plate).
Higher strains were instead detected in proximity of the fracture rim. Although
DIC data in regions close to a discontinuity should be interpreted only qualitatively,
this phenomenon suggests that plasticity is involved during bone damaging. This
observation also corroborates the adoption of a bi-linear material model to predict
femoral strength in FE models.

Bones #1 and #2 underwent a basicervical fracture, with a macroscopic crack
opening on the superior aspect of the femoral neck and propagating approximately
in parallel to the intertrochanteric line (figure 5.13). No clear fracture precursor
could be identified by looking at the principal strain data in the frames before crack
formation for neither bone #1 (at least until the camera recordings were available,
the force at the time of the recording interruption was greater than 99% of the
peak force) nor bone #2 (figure 5.9). Bone #3 underwent a sub-capital fracture,
instead, with the crack propagating almost vertically. High strains could be located
in the region where the fracture occurred a few milliseconds before the crack ac-
tually opened (figure 5.9). The fracture limit plots (figure 5.8) suggested that two
cracks might have originated at different locations. A closer inspection of the video
recordings showed that the protective steel cap glued on the femoral head actually
slipped a few milliseconds before fracture. It is likely that the edge of the steel cap
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hit the sub-capital region of the bone causing a damage that initiated the peculiar
fracture pattern of bone #3. Surely, the slipping of the steel cap caused an unpre-
dicted change in the prescribed boundary conditions. For this reason, the fracture
load for bone #3 was not used to validate the FE model’s accuracy in predicting
femoral strength.

In summary, the developed ex vivo testing procedure was able to provide thou-
sands of strain measurements collected at high frequency. These can be used to
extensively validate the ability of the FE models to predict the strains for a single leg
stance configuration, both in the elastic regime and up to the specimen fracture.

6.2 Development of a CT-based FE modelling proce-
dure to predict femoral strength

The CT-based FE models were built with the aim of assessing the best accuracy
achievable by FE models in terms of strain and femoral strength prediction. The
validation was carried out for the 3 bones against the ex vivo measurements collected
using DIC.

CT scans acquired ex vivo were used to build the CT-based FE models, using a
procedure consisting of:

• Segmentation of the CT images

• Reverse engineering of the segmented geometry

• Meshing with tetrahedral elements

• Assignment of the inhomogeneous isotropic Young’s moduli based on the
calibrated HUs.

A similar procedure has been adopted in the past, giving a good accuracy in strain
prediction both in configurations resembling single leg stance [131, 132] and a
fall to the side [112]. However, in both cases the strain prediction accuracy was
assessed against up to 16 measurements from SGs. In this study, the full-field strain
distribution over the anterior surface of the femurs was obtained from DIC and
used to more extensively validate the FE predictions. Finally, the femoral strength
was predicted using a dedicated material model (figure 4.6) and compared to the
peak force recorded during mechanical tests.

The principal strains were predicted with high accuracy (R2 = 0.94, NRMSE
= 9% for the three bones pooled, figure 5.11) for a load corresponding to four
times the subject’s BW. This accuracy was comparable to highest accuracy found
in literature for FE models of human femurs in single leg stance (R2 = 0.95-0.97,
[132, 67]). The Bland-Altman plot for the three bones pooled (figure 5.11) did
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not show any clear trend in the distribution, with the majority of the points lying
within the 95% confidence limits.

Supported by the achieved accuracy in the prediction of principal strains, a
strain-based material model to predict femoral strength was developed. The choice
of using strains as limit values for the material model was motivated by the fact
that limit strain values for both yield and fracture were proved to be independent of
age, gender, and bone porosity [133, 134]. This feature is crucial when developing
a criterion to predict femoral strength which should be equally accurate in a very
heterogeneous group of patients. Besides, a simple strain limit criterion applied
to linear FE models achieved a high coefficient of determination between predicted
and experimental femoral strength (although the slope and intercept of the reported
regression were statistically different from unity and zero, respectively) [135]. The
developed material model included rate-dependence of the tangent modulus and
different yield and failure strain limit values for tension and compression (figure
4.6). The material model was free from any internal parameter calibration, i.e., none
of the acquired experimental measurements was used to adjust the implemented
material properties. All the limit values were obtained from published studies that
conducted mechanical testing on bone at the mesoscale level: yield strain values
from Bayraktar et al., [117], ultimate strain and post-yield reduction of the tangent
modulus were obtained from the data published by Reilly et al. [118], and the
dependence of the tangent modulus from strain rate at the 0.06 power was assumed
after Carter and Hayes [136]).

CT-based FE models implementing the developed material model predicted
femoral strength with a relative error below 2% (SEE = 155 N). This accuracy is in
line with the best results available in literature [137, 54]. These studies, however,
used part of the available specimens as a training set to calibrate the limit values of
the adopted failure criteria. The present CT-based FE models were instead based
on published experimental data and did not use any internal parameter calibration.

The FE models predicted the crack to originate in the medial aspect of the
femoral neck, which is mainly subjected to compressive strains in the prescribed
loading configuration. Although the predicted fracture onset was very close to the
experimental fracture rim (figure 5.13), the prediction of a fracture originating in
the medial side is in contrast with the experimental high-speed video recordings,
where the fracture seemed to originate in the lateral aspect of the femoral neck. It
can be hypothesised that the fracture happened as a two-step process, in which an
initial compressive failure in the medial side of the neck led to the opening of a
macroscopic crack on the opposite side. An analogous failure mechanism was re-
ported by de Bakker et al. [138] for femurs loaded in a configuration resembling
a fall to the side. In that study, high-speed cameras were placed on the medial and
lateral aspect of the neck, evidencing that bone failure occurred first on the lateral
aspect of the neck (mainly subjected to compression in a fall to the side configura-
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tion), and almost immediately resulted in a macroscopic crack on the medial side
(subjected to tension in a fall to the side configuration). It is therefore possible that
the same failure mechanism happened for femurs in single leg stance, with medial
and lateral side inverted as a consequence of the different loading configuration.

In summary, the CT-based FE models were able to obtain a high accuracy for
both strain and femoral strength, therefore representing a valuable benchmark to
evaluate the performance of SSAM-based FE models on the same sample.

6.3 Development of SSAM-based FE models to pre-
dict femoral strength from DXA

The SSAM-based FE models were built with the aim of overcoming the limitation
of the need of a CT scan to build a 3D subject-specific FE model that predicts
femoral strength in individuals. Therefore, the FE modelling strategy described in
section 3.2 was combined with the 3D reconstruction of shape and appearance that
can be obtained by projecting a SSAM instance over a single DXA image [121].

Three different SSAM-based FE models were built: one implementing only the
reconstructed bone shape (SSAM-based shape model), another implementing the
reconstructed BMD only (SSAM-based BMD model), and the third implementing
both shape and BMD as reconstructed from the DXA image (SSAM-based shape and
BMD model). The idea was to quantify the individual effects of the shape (SSAM-
based shape models) and BMD (SSAM-based BMD models) reconstruction errors
on the accuracy of FE models obtained from the reconstruction of both shape and
BMD from a DXA image (SSAM-based shape and BMD models).

The SSAM-based shape and BMD models predicted the principal strains with
high accuracy against experimental data obtained with DIC (coefficient of determi-
nation 0.87, NRMSE below 12% for the three bones pooled together, figure 5.14).
This accuracy is only slightly lower than that achieved by the CT-based FE models
for the same specimens and the same load case (coefficient of determination 0.94,
NRMSE of 9%, figure 5.11 and table 5.2).

When used to predict bone strength, SSAM-based shape and BMD models had
a SEE of 1215 N for specimens #1 and #2 combined and the three different 2D
reference images (average absolute error 12 ± 8%, table 5.7). The CT-based models
predicted bone strength with a SEE of 155 N and an average absolute error of 1%.
The reduced accuracy for SSAM-based shape and BMDmodels can be ascribed to lo-
calised higher errors in the reconstruction of BMD combined with the adoption of
a strain based fracture criterion, which does heavily depend on a correct estimation
of the tangent modulus. Besides, two trends can be observed in the bone strength
predictions. The first is that the models built using CTproj as the 2D reference
image were more accurate (SEE = 1689 N) than the models built using iDXA (SEE
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= 1974 N) or Prodigy (SEE = 1938 N). This trend is consistent with the higher
signal-to-noise ratio of CTproj data than iDXA and Prodigy. The superior spatial
resolution of iDXA (pixel size 0.25 x 0.3 mm) with respect to Prodigy (pixel size
1.05 x 0.6 mm), conversely, did not result in a superior prediction accuracy (table
5.2). The second trend is the higher SEE for SSAM-based BMDmodels with respect
to SSAM-based shape models. This suggests that the reconstruction error for BMD
is more influential than the reconstruction error for shape to the final bone strength
prediction. However, further investigations are required to draw more definite con-
clusions on this aspect.

Previous studies have proposed to use 3D models reconstructed from a 2D refer-
ence image to improve the accuracy of fracture risk prediction [139, 97]. However,
most of these studies used the reconstructed 3D models to measure 3D anatomical
and densitometric parameters starting from a single 2D image. The collected param-
eters were then used as features to classify fractured subjects against non-fractured
ones, and ultimately to complement the current epidemiological-based diagnostic
tool [140, 141, 142].

Only a few studies used 3D models reconstructed from a 2D reference image
to predict femoral strength using a mechanistic approach. Bryan et al. [102] esti-
mated fracture risk using a mechanistic approach on 1000 femoral anatomies that
were generated using a statistical model. The results of the FE analyses were finally
used to identify geometrical or densitometric features that could help to classify
the samples at high risk from those at low or moderate risk. However, this ap-
proach used material properties from CT scans, and no experimental validation
could be provided, since the statistical tool was used to generate realistic shapes,
not to reconstruct a specific anatomy based on its 2D reference image. Thevenot et
al. [143] proposed a method to build 3D FE models from a radiographic image.
The 3D shape was reconstructed using a shape template and a set of measurements
that could be taken onto the radiographic image. The material properties were
estimated based on the CT-based values of the bones in the training set and a ho-
mogeneity index derived from the target radiographic image. Using this approach,
the femoral strength of 21 cadaver human femurs was predicted for a configuration
resembling a fall to the side, reaching a remarkable accuracy (coefficient of deter-
mination of 0.63, SEE = 543 N). The results of the SSAM-based shape and BMD
models proposed in this thesis are comparable to those obtained by Thevenot et al.
in their study. The SEE of 1215 N achieved by the SSAM-based shape and BMD
models was obtained for specimens whose average fracture load was 10620 N (table
5.3), tested in a configuration resembling single leg stance. The specimens tested
by Thevenot et al. fractured at an average load of 3188 N (value extrapolated from
the digitalisation of the data presented in figure 4 of [143]). The higher SEE of
the SSAM-based shape and BMD models is therefore consistent with the specimens
breaking at much higher load. When comparing the absolute error of the predic-
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tion, the SSAM-based shape and BMD models had a maximum error of 24% (table
5.7), against a maximum error of 54% in Thevenot et al. (value extrapolated from
the digitalisation of the data presented in figure 4 of [143]).

The results obtained by the SSAM-based shape and BMDmodels support the po-
tential of SSAM-based FE models to provide a mechanistic contribution to fracture
risk prediction in individuals, while maintaining DXA as the method to image the
patients. Besides, the implementation of models using only the SSAM-based shape
and only the SSAM-based BMD could help the future development of SSAM-based
reconstructions by providing a quantitative estimation of the effect of the different
reconstruction errors on the final model accuracy.

6.4 Limitations

The main limitations of this thesis are: (i) the limited sample size, (ii) the single
loading configuration examined, (iii) the uncertainty in the localisation of the frac-
ture onset, and (iv) the limited use of some of the data acquired with DIC.

Sample size
A limitation of this thesis work resides in the small size of the examined sample.
With the exception of the feasibility studies conducted on six composite bones,
all the other studies were conducted on three cadaver proximal femurs. Although
many of the investigations conducted in this thesis resulted in highly accurate pre-
dictions, the low sample size limited the amount of statistical analyses that could be
performed on them, and consequently the strength of the conclusions that could
be drawn from the obtained results.

Strictly linked to the low sample size is the limitation concerning the reduced
representativeness of the sample. All three cadaver proximal femurs came from male
donors, of which one was of young age (table 4.1). This limitation was partly com-
pensated by the adoption of strain limit values for the prediction of bone yield and
failure together with an element-specific material mapping strategy from the cali-
brated CT-data. In fact, the differences in bone mechanical behaviour for different
age groups are correlated to differences in tissue ash density [144, 134].

Originally, five cadaver proximal femurs were retrieved for the ex vivo mechan-
ical tests. However, two of these specimens experienced an early failure of the distal
epoxy embedding during the test, which resulted in a severe change in the pre-
scribed boundary conditions. As a result, the experimental measurements on these
two bones were of no practical use, and the two specimens were therefore discarded
from all the studies. Following this, the distal epoxy embedding was reinforced for
the remaining specimens whenever possible (section 4.2.1). While having exper-
imental data from all the five specimens would have certainly been beneficial for
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all the studies, that would not have changed the power of the performed statisti-
cal analyses. The collection of high numbers of cadaver bones is a common issue
amongst many research groups. Validating SSAM-based FE models against experi-
mental measurements could represent a partial solution to this issue, since it would
allow the generation of thousands of synthetic bone instances whose shape and me-
chanical behaviour are representative of the real bone mechanical behaviour.

Loading configuration
A limitation which directly follows from the low sample size is that only one loading
configuration has been tested. Numerical investigations showed that testing multi-
ple loading conditions in both single-leg-stance and sideways fall configurations can
improve the association between predicted bone strength and classification of frac-
tured cases versus non-fractured [145]. However, this would require the FE models
to be validated for different loading configurations. CT-based FE models built with
a procedure analogous to the one proposed in section 4.3 accurately predict strains
for a variety of sideways fall configurations in the elastic regime [112], and a simple
strain limit criterion predicts the failure characteristics of proximal femurs in both
stance and sideways fall [135]. While these two aspects give reasonable evidence
that the CT-based models described in section 4.3 can accurately predict femoral
strains and strength for a sideways fall configuration, the ability of SSAM-based
models to produce adequately accurate predictions in a sideways fall configuration
is yet to be proven.

One possibility to validate samples in multiple loading configurations is to per-
form non-destructive mechanical tests on the available specimens for different load-
ing conditions [124, 109]. The absence of damage caused to the specimens during
repeated non-destructive tests is typically assessed by monitoring the strains in real-
time using SGs in order not to overcome a certain threshold value. While there
is no consensus about the reliability of a non-destructiveness assessment based on
a few SG measurements, DIC does not allow to measure strains in real-time, as
DIC is calculated after the images have been acquired. Therefore, non-destructive
tests were not performed on the available proximal femur anatomies, and this thesis
focused on a single-leg-stance loading configuration only.

Localisation of fracture onset
Despite the extensive amount of data points collected, a definite answer on where,
when and how fracture originates could not be provided. Two main reasons can
be found for this, namely: (i) the frame rate adopted (3000 fps) not being high
enough to capture the crack opening and propagation, and (ii) the DIC recordings
covering only one anatomical aspect of the bones under test. The inability to localise
the fracture onset during the experiments in turn affects the validation of the FE
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results, as the prediction of the fracture onset due to a compressive failure of the
medial side of the neck (section 6.2) could be neither confirmed, nor rejected.

Ideally, two pairs of faster cameras (9000 fps cameras have already been used in,
e.g., [146]) should record the mechanical test, covering at least the two anatomical
aspects that are more prone to fracture (for a typical configuration resembling single-
leg-stance, the lateral and medial side of the femoral neck).

Usage of all the collected experimental measurements
One of the challenges that comes with collecting measurements using full-field tech-
niques such as DIC is how to effectively process and present the huge amount of
data collected. For the experiments described in section 4.2, and with the DIC
parameters adopted, 10000 data points per specimen were collected at 3000 fps
during a time span of about 0.5 s. Some new ways to show these data were pro-
posed (e.g., virtual strain gages, fracture limit plots, maps of the principal strain
directions, etc.), but most of the data acquired were still not presented. Although a
single answer on how to use and effectively represent this huge amount of data can-
not be provided, as that would depend on the study aims, the increasing adoption
of full-field techniques in experimental bone mechanics is calling for new solutions
to this issue.

The creation of reliable online platforms for sharing scientific datasets could
allow different researchers to work on the same experimental data, thus making a
broader use of the available measurements. Nevertheless, the question of how to
make proper use of the huge amount of data coming from full-field measurements
remains an open question within the biomechanics community.

6.5 Future perspectives

Short-term perspectives: continuation of this thesis work
The ideal continuation of this thesis work should address the limitations mentioned
in the section above, with the aim to provide an improved ability to predict bone
strength using SSAM-based reconstructed FE models.

Performing additional experimental mechanical tests in a configuration resem-
bling a fall to the side would allow overcoming the limitations about the limited
sample size and the single loading configuration inspected. An improved experi-
mental design that allows simultaneous and synchronised camera recordings of two
opposite aspects of the femoral neck would also help to elucidate the mechanisms
leading to bone failure. The feasibility of an experimental design that provides re-
liable strain measurements in a sideways fall configuration is currently under eval-
uation using composite bones. New cadaver femoral samples are also collected to
increase the size of the current sample.
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Future works should also aim at providing a more seamless integration of the
SSAM-based reconstruction with the FE analysis. With the perspective of a future
clinical application in mind, the current procedure requiring a trained engineer to
build the models and long computation times (about one day to predict femoral
strength using a desktop PC) needs to be further refined. The computation time
could be reduced by using hardware acceleration (e.g., GPU computing) and by
refactoring the code. The level of automation could also be enhanced by developing
the new codes for the SSAM-based reconstruction and the FE analysis as a unified
module, and not as two separate components.

Last, the features of the SSAM-based reconstruction could also be enhanced.
While recalling that the technical development of the SSAM-based reconstruction
was not part of this thesis, a few enhancements could be proposed hereby. A first
improvement would consist in re-building the SSAM using a higher number of
samples in the training set. In the current implementation, 34 unpaired human
proximal femur anatomies were used to build the SSAM (13 right and 21 left; 30
men and 4 women; age 50 ± 16 years, [121]). It is reasonable to hypothesise that
re-building the SSAM on a higher number of samples would lead to an increased
ability to reconstruct the 3D shape and density distribution. The possibility to
build two separate SSAMs for men and women should also be explored. A potential
improvement to the SSAM-based FE models could be represented by the addition
of cortical thickness and anisotropy information.

The ability to reconstruct a longer portion of the femur than the one imaged in
DXA could also be implemented. Such feature would allow the prescription of more
physiological boundary conditions to the models, by means of allowing a better
identification of the anatomical axes for the specific subject. An improved SSAM
algorithm which can more accurately detect cortical density and cortical thickness
as well as reconstruct missing parts of the femur is under active development, with
the first preliminary results of this updated algorithm expected by the end of 2016.

The accuracy of the 3D reconstruction of shape and BMD distribution from
DXA images has only been evaluated for DXA images acquired ex vivo [121]. Fu-
ture works should therefore aim at evaluating the effect of factors typically occurring
during in vivo DXA scans (e.g., in the presence of soft tissue) on the accuracy of the
reconstructed shape and BMD distribution, and ultimately on the strength predic-
tion accuracy of the SSAM-based shape and BMD models.

Long-term perspectives: the road to the clinics
The ultimate goal of applying FE models for osteoporosis diagnostics is to improve
the accuracy of the fracture risk prediction. In this context, achieving an accurate
and reliable estimation of femoral strength should be seen as a first step along the
road that leads to clinical application. An ideal road to the clinical application could
be defined by referring to the technology readiness levels (TRLs) table proposed by
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TRL Description of research and development activities
TRL1: Technical
watch

Monitoring of fundamental technological innovations
and discovery of fundamental biological mechanisms

TRL2: Basic tech-
nology research

Application of fundamental technological innovation to
the quantification, prediction, and modification of fun-
damental biological mechanisms

TRL3: Research to
prove feasibility

Demonstration of hypothesis testing and initial proof of
concept in a limited number of in silico and in vitro
models

TRL4: Technology
demonstration

Demonstration of proof of concept and safety in a de-
fined laboratory or animal model

TRL5: Technology
demonstration

Preclinical studies, including good laboratory practices,
animal safety and toxicity, are sufficient to support in-
dustrial application

TRL6: Technology
demonstration

Phase 1 clinical trials: support to proceed to Phase 2 clin-
ical trials; safety, usability, impact, accuracy on small co-
hort

TRL7: System /sub-
system development

Phase 2 clinical trials: accuracy and efficacy on medium
cohort; scalability and impact

TRL8: System test,
launch, and opera-
tions

Phase 3 clinical trials: efficacy on large cohort; cost-
benefit analysis, primary research for Health Technology
Assessment

TRL9: Postmar-
keting studies and
surveillance

Postmarketing studies and surveillance; registers, failure
analysis, postmortem examinations

Table 6.1: Technology readiness levels (TRLs). Reprinted from Viceconti and
Hunter [147].

Viceconti and Hunter [147] and reported in table 6.1. The technological improve-
ments described in the previous section should bring the SSAM-based prediction of
bone strength to the TRL5 stage. The road to the last stage of technology readiness
level, TRL9, should therefore comprise the three phases of clinical trial:

• Phase 1 clinical trial (TRL6): the greatest challenge to get to phase 1 clin-
ical trial is to obtain clinical credibility [147]. Phase 1 clinical trials are
normally conducted on 20-100 participants, and consist in a clinical re-
search comparing the accuracy of the new technology with that of the cur-
rent standard of care. Some studies tried to use FE-based strength predic-
tion to classify fractured cases from control group on small clinical cohorts
[148, 145, 93, 149, 150]. The results of these studies show a significant,
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albeit non dramatic, increase of the predictive accuracy when using mecha-
nistic predictions of bone strength. It has also been shown that the analysis
of multiple loading conditions can significantly improve the association be-
tween FE-based strength prediction and fracture [145]. Therefore, the design
of computer based experiments is expected to play a key role in further im-
proving the predictive ability of FE-based fracture risk predictions. Moving
from simpler comparative and parametric analyses to design of experiments
and probabilistic approaches [151, 152]) can help to assess and reduce the
sensitivity of the prediction, thus increasing the predictive ability.

• Phase 2 clinical trial (TRL7): the second phase of clinical trial is performed on
a higher number of participants compared to phase 1 (typically, a few hun-
dred participants are involved). The aim of this phase is to verify the accuracy
and efficacy on medium-sized cohorts, and to quantify the potential impact
of the new technology on the clinical practice. A phase 2 clinical study could
therefore adopt a mechanistic FE-based technology to assess the fracture risk
at baseline for a medium-sized cohort. After the follow-up time, the predic-
tive ability could be compared to the ability achieved by the current standard
of care. The author of this thesis is not aware of any FE-based fracture risk
prediction technology that was allowed to enter phase 2 of clinical trial at the
time of writing.

• Phase 3 clinical trial (TRL8): the biggest challenge for a technology that
had reached TRL7 is typically the need to re-engineer the whole process in
order to handle large volumes of data at low costs [147]. The process re-
engineering will therefore aim at facilitating the integration and automation
of the subject-specific modelling procedure [153]. Many subject-specific
models require a considerable amount of pre- and post-processing by a
trained operator with an engineering background. While this can be an
acceptable solution during the development phase, it cannot be economi-
cally sustainable when the technology is adopted on a large-scale. In this
perspective, the development of a mature SSAM-based FE modelling tech-
nology should contribute to greatly reduce the amount of work required
by a trained engineer. Another aspect to be considered is the turnaround
time [147]. The time of a fracture risk prediction obtained with FRAX is
in the order of 15-45 minutes. The SSAM-based shape and BMD models
would instead take 1-2 days to provide a prediction of bone strength with
the current technology. A re-engineering of the technology should therefore
aim at making the whole process faster, both by using hardware and software
optimizations, and by considering a reduction of the computational com-
plexity (e.g., implementing a simpler criterion to predict bone strength will
worsen the strength prediction accuracy, but may not worsen the accuracy
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of fracture risk prediction [154, 135])

Two large prospective cohorts will be used to perform clinical trials on the developed
SSAM-based prediction of bone strength. The first cohort (Osteoporosis risk factor
and Prevention, OSTPRE [155, 156]) includes about 2500 female subjects (age
range 72-81 years, subjects being imaged with DXA at five year intervals starting
from 1989), while the second prospective cohort (ManOS) includes about 2000
men (Osteoporotic fractures in men, MrOS, Swedish database only; age > 65 years
when enrolled in the study, imaging with DXA at 4.5 year intervals [157, 158,
159]). The availability of these two large prospective cohorts for men and women
will allow to undergo both phase 1 and phase 2 of the clinical trial, and to assess the
ability to predict femoral strength and fracture risk on both men and women for two
populations with high incidence of osteoporosis. As for phase 3 of the clinical trial,
a solution to make the diagnosis faster and more cost-effective could be to introduce
a multi-step screening, in which the subjects’ BMD can be assessed with ultrasound
first [160], and only those subjects who are judged to be at risk are further evaluated
with SSAM-based FE analysis [161].

The road to the clinics has shown in the past to require a consistent amount
of time and funding. At the same time, this road is expected to get easier to be
covered in the future [147]. The overall design of a technology allowing to main-
tain the current standard of care in terms of imaging while providing a mechanistic
prediction of fracture risk has a considerable potential of being successfully experi-
mented in clinical trials, and to finally achieve a cost-effectiveness that could justify
its adoption in clinical practice.
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Summary and Conclusions

In this thesis, a method to accurately predict femoral strength using FE models
based both on CT images and on SSAM-reconstructed data from DXA was devel-

oped. The full-field surface strain distribution for cadaver femurs tested in a single
leg stance configuration was collected and used to validate the FE predictions.

The main findings obtained during this thesis work are:

• Digital image correlation can be used to extensively validate FE predictions: DIC
provides strain data for thousands of points covering one anatomical aspect
of the femur, against the 10-15 measurements per bone obtained using strain
gauges. The DIC data can be spatially registered over the FE models, and the
validation can be performed by evaluating which experimental data points
are within the sphere of interest of each finite element.

• A low-pass filtering of the displacement field obtained with DIC can effectively
reduce the noise levels in the strain data: the noise in the DIC measurements
is an aspect that needs to be considered, especially when elastic strains are
examined. A control plate allowed to continuously assess the noise levels,
and showed that filtering DIC displacements over time before deriving strains
can be an effective solution to keep the noise levels low without losing spatial
accuracy.

• Femurs behave linearly elastic up to fracture when loaded at physiologically rele-
vant strain rates: the major and minor principal strains over the whole ante-
rior surface of the femurs tested were highly linear with respect to the applied
force. Evidences of plastic deformation were only found in proximity of the
fracture rim, suggesting that local plastic damage is involved in the fracture
mechanics.

• CT-based FE models can accurately predict principal strains in human proximal
femurs: an accuracy comparable to the state of the art studies was obtained
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when thousands of strain measurements from DIC were used to validate FE
models. The high accuracy obtained over a broad portion of the femoral
surface supports the adoption of a strain-based criterion to predict femoral
strength.

• A rate-dependent material model with strain limit values for yield and failure
can predict femoral strength within 2% error: the material model and fracture
criterion implemented in the FE simulations used concepts and limit val-
ues taken from published experimental studies conducted at the mesoscale
level, with no internal parameter calibration. Bone stiffening when loaded at
higher strain rates was considered, as well as the tangent modulus reduction
following yield. Both yield and failure were based on separate strain limit
values for tensile and compressive behaviour.

• FE models built from reconstructed DXA images can predict principal strains
and femoral strength with only a slightly reduced accuracy: the FE modelling
procedure was combined with the 3D reconstruction of shape and BMD
distribution obtained using a SSAM and a femur template. This allowed to
build a 3D FE model starting from a single DXA image. The accuracy of
both principal strains and femoral strength was only slightly lower than that
obtained by CT-based FE models, showing the high potential of the SSAM-
based FE models as a fracture predictor in clinical applications.
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Osteoporosis related fractures are a social burden that advocates for more accurate

fracture prediction methods. Mechanistic methods, e.g. finite element models, have been

proposed as a tool to better predict bone mechanical behaviour and strength. However,

there is little consensus about the optimal constitutive law to describe bone as a material.

Extracting reliable and relevant strain data from experimental tests is of fundamental

importance to better understand bone mechanical properties, and to validate numerical

models.

Several techniques have been used to measure strain in experimental mechanics, with

substantial differences in terms of accuracy, precision, time- and length-scale. Each

technique presents upsides and downsides that must be carefully evaluated when

designing the experiment. Moreover, additional complexities are often encountered when

applying such strain measurement techniques to bone, due to its complex composite

structure.

This review of literature examined the four most commonly adopted methods for strain

measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and

digital volume correlation), with a focus on studies with bone as a substrate material, at

the organ and tissue level. For each of them the working principles, a summary of the main

applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons

are provided.

& 2015 Elsevier Ltd. All rights reserved.
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Understanding bone mechanical behaviour under different
loading conditions is of great importance to prevent and treat
bone fracture in individuals. Finite element (FE) models have
been proposed as an automatic and mechanistic method to
assess bone strength and fracture risk in individuals (Cody
et al., 1999; Huiskes and Chao, 1983; Prendergast, 1997).
However, there is no consensus about the optimal constitu-
tive model and bone strength criterion to be implemented in
such FE models (Natali and Meroi, 1989; Peng et al., 2006;
Zysset, 2003; Helgason et al., 2008). This is because bone
is a complex composite material, with properties that
among other things change with time- and length-scale
(Cristofolini et al., 2008; Ding and Dalstra, 1997). Treating
bone fractures, e.g. in the form of total joint replacement or a
fixation device, requires knowledge of the mechanical stimuli
exerted by such devices, since bone can remodel itself in
response to the local mechanical stimulation (Webster
Müller, 2011; Robling et al., 2006). FE models can also help
predicting the outcome of such surgical treatments if bone
mechanical properties and strength are correctly modelled.

To identify the optimal material model for bone and
account for the intrinsic inter- and intra-patient variability,
the design of proper experiments with the aim of 1) better
characterizing bone material properties, and 2) providing a
validation benchmark for numerical investigations (Viceconti
et al., 2005; Cristofolini et al., 2010; Anderson et al., 2007) is
required. Depending on the specific aim, such experimental
tests can be performed at different time- and length-scales.
However, all the experiments need to extract reliable quanti-
tative information about bone behaviour. Apart from record-
ing the overall force and displacement during the
experiment, usually displacements and strains can be mea-
sured at different locations over the tested samples. Depend-
ing on the required time, spatial resolution and the kind of
mechanical tests performed, several techniques can be used
to measure bone strain.

The continuous technological development provides new
measurement tools with increased accuracy and precision.
Consequently, the obtained strain data increases both in

1. Introduction resolution and number, from the first discrete measurements
using extensometers, to the full-field reconstructions
achieved today with optical methods. The technological
development, however, does not guard against instrumenta-
tion misuse, and/or data misinterpretation. Methodological
studies are available for each of the different strain measure-
ment techniques (Klokova, 1978; Gillard et al., 2014; Kleckers,
2009; Bornert et al., 2009). Nevertheless, a vast majority of
those was performed using flat, polished, and standardized
specimens of polymeric or metallic materials. Human bones
present additional complexities when it comes to strain
measurements, mainly due to the geometry, surface rough-
ness and humidity. As a consequence, additional care needs
to be taken when measuring strains in human bones.

To our knowledge, an extensive review that covers the
principal techniques for strain measurement with focus on
human bone is lacking in the literature. Earlier reviews are
either outdated and does therefore not include the latest
developments (Pratt et al., 1979; Bedzinski and Tyndyk, 2000;
Gdoutos et al., 1982; Ovryn, 1993), or limited to one single
strain measurement technique (Roberts et al., 2014). Our aim
is to provide a comprehensive review of the most commonly
adopted methods to measure strains on bone, at a length
scale of the organ- and tissue-level. The main methods of
strain measurement adopted in bone biomechanics are
reviewed, with their main applications, as well as their pros
and cons. It is our intention that this manuscript should act
as a reference guide for researchers who are designing a new
experiment and need to choose the most suitable strain
measurement method.

2. Approach

A first literature search was performed to identify the most
relevant techniques for strain measurements on bone at the
organ level. A review of some of the most relevant books on
experimental biomechanics of bone (Miles and Tanner, 1992;
An and Draughn, 1999) was made together with the analysis
of the results of a “(strain OR measurement) AND bone”
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) search. Four

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 0 ( 2 0 1 5 ) 4 3 – 5 444

94 Paper I



strain measurement techniques were identified (Fig. 1), as
they were most frequently used in the spanned range of
literature:

– strain gauges
– fibre Bragg grating sensors
– digital image correlation
– digital volume correlation

For each of the methods, a brief description of the
principles, followed by a summary of the most relevant
applications to bone biomechanics is provided. The cited
studies were retrieved through a PubMed search, focusing
on the applications of each technique on human bone
samples at the organ-level length scale (Table 1). Where
many studies on human bones were available, priority was

given to studies of the femur due to its high fracture
incidence (Meling et al., 2009). A few studies investigating
the micro-scale behaviour of bone were included for digital
volume correlation, since the state-of-the-art studies with
this technique were performed based on micro-CT data.

2.1. Strain gauges

The first application of bonded strain gauges (SG) was
reported in 1938, and the first application to bone biomecha-
nics dates only a few years later (Gurdjian and Lissner, 1944).
Since then, SGs have been heavily used in bone biomecha-
nics, and they are still considered the gold standard in bone
strain measurement because of their accuracy and high
frequency response.

2.1.1. Working principles
SGs measure the strains by reading the increase/decrease of the
resistance of a metallic material when exposed to an external
tensile/compressive force that elongates/contracts it. Given the
original resistance of the material, R, its variation as a function
of the applied strain, ε, is given by: ΔR=R¼ Ksε, where Ks is the
gauge factor, the coefficient expressing the SG sensitivity
(Kyowa Electronic Instruments). A backing material carries
deformation from the tested material to the electrical grid. SG
typically have 3 differently oriented gauge grids (Fig. 1a). This so
called “rosette” configuration allows to obtain 3 independent
strain measurements in different directions, and thus deter-
mine the principal strains and principal strain orientations. An
accurate strain measurement requires a proper bonding of the
backing material to the specimen. Optimally, the surface for SG
measurement should be chemically clean, with an appropriate
roughness, a surface alkalinity corresponding to a pH of 7, and a
visible gauge layout lines for locating and orienting the SG
(Vishay Micro-Measurements, 2005). Bone does not have these
features, and therefore different procedures have been adopted
to optimize the bone surface for SG applications.

2.1.2. Most relevant studies
From the PubMed search, 239 publications were retrieved,
where of four were considered most relevant. One additional
study from a journal not indexed in PubMed (Roberts, 1966)
was also reported (Table 1). Roberts (1966) defined a set of
procedures to apply SGs on bone samples. These procedures
included wiring, bonding, and waterproofing. The bone sur-
face was prepared by removing all soft tissue and subse-
quently degreasing it with acetone, while body fluids were
absorbed using sponges. SGs were bonded using cyanoacry-
late or epoxy resins. Waterproofing was performed by coating
the gauge top surface and wiring junctions with Glyptol and
silicon rubber, whereas Teflon-insulated copper was used for
wiring. As will be shown below, only minor modifications to
this protocol have been introduced in the following 50 years.

Kim et al. (2001) investigated the strain distribution in the
proximal human femur using SGs in response to the insertion
of two different types of femoral stems. Ten 451 rosettes
(3� 1.25 mm2 rectangular grid, 9� 9 mm2 measuring grid
carrier) were bonded to the proximal femora at four levels,
namely at the calcar (medial side) and 2, 4, and 8 cm distal to
the most caudal part of the femoral head. Bone surface was

Fig. 1 – The four strain measurement techniques reviewed:
a) strain gauges, b) fibre Bragg grating sensors, c) digital
image correlation, and d) digital volume correlation. For each
of these techniques, a schematic of the working principle is
shown on the right, and an example of application to bone
mechanics is reported on the left side. Parts of the figure are
reprinted from Fresvig et al. (2008); Sutton (2007); Gillard et
al. (2014) with permission of Elsevier, and Spie.
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prepared for strain measurement by sandpapering, degreas-
ing with acetone and drying in O2 stream. An etchant was
applied to the gauge site, and then rinsed with saline. SGs
were bonded with two-component PMMA adhesive, and
waterproofed using epoxy sealing. Femora were first tested
in the intact configuration (900 N for all specimens), and then
after the stem components insertion. A study adopting an
almost identical procedure was proposed by Aamodt et al.
(2001). Also, the same specimen preparation and strain gauge
application procedure was adopted recently to investigate the
different mechanical response of composite and cadaver
femora (Basso et al., 2014).

A few years later, Østbyhaug et al. (2009) investigated the
cortical strain pattern in response to insertion of two types of
femoral stems. Twelve pairs of contralateral femora were
obtained, and the stem was implanted randomly in the left or
right femur. On each specimen, 10 strain-gauge rosettes
(3�1.25 mm2 rectangular grid, 9�9 mm2 measuring grid
carrier) were attached at four levels at the medial, lateral,
and anterior aspects of the proximal femur. The bone surface
was prepared for strain measurement by using acetone and
etchant. The SGs were bonded using two-component PMMA
adhesive, and subsequently waterproofed using a sealant.

In the same years, the group of Cristofolini and Viceconti
performed several studies aimed at experimentally measuring
the strain response of intact bones using SGs (Cristofolini et al.,
2008, 2010; Zani et al., 2015). The strain distribution in the
proximal human femoral metaphysis was measured in differ-
ent configurations resembling single leg stance, using non-
destructive tests (Cristofolini et al., 2009). A force corresponding
to 75% of the body weight (BW) was applied, and bone was
assumed to behave linearly until 2.5BW. Eleven triaxial stacked
SGs (3�1.3 mm2 rectangular grid, 10� 10mm2 measuring grid
carrier) were bonded to different locations (4 around the head, 3
around the neck, and 4 around the proximal diaphysis). The
area for strain measurement was prepared by first degreasing it
with ethanol, and then with a cocktail of acetone and 2-
propanol. Then, the pores in the bone were filled, and the bone
surface was waterproofed with two layers of polyurethane. Any
excess of polyurethane was removed with fine sandpaper, and
the SG bonded with cyanoacrylate glue. Finally, three layers of

polyurethane were applied over each SG to protect their
electrical circuits from water. Strains were sampled at 100 Hz
(with a low-pass cut-off of 10 Hz). Major principal strains, minor
principal strains, and the angle of the principal strains were
computed. The SG reinforcement effect (Perry, 1986) was
estimated with FE analyses, and was found to vary from region
to region, ranging fromo1% up to 15%. Such effect was more
pronounced where the cortex was thinner (reinforcement lower
than 4% for bone thicker than 1mm).

A similar approach was recently proposed by the same
group for a sideways fall configuration (Zani et al., 2015).
Sixteen SGs were bonded to one cadaver human femur,
following the same protocol described above (one SG added
on the lateral side of the femoral neck). Non-destructive tests
were performed for 12 different sideways fall configurations,
as well as in six different single leg stance configurations.
Each of the non-destructive loading case was repeated six
times. The specimens were eventually tested up to fracture in
sideways fall. The study analyzed the repeatability of the
measurements, showing that differences between different
loading configurations were two-three orders of magnitude
larger than the variability between repetitions of the same
loading configuration.

2.2. Fibre Bragg grating sensors

Fibre Bragg gratings were discovered in 1978, with the first
fibre Bragg grating sensors (FBGS) commercialized in 1995.
Applications to bone biomechanics were reported in the late
2000s, with the aim of measuring strains at the interface
between two materials, e.g. bone and a prosthesis. Such
measurements would not be possible with traditional SGs,
whose electrical circuitry would be damaged, or with optical
methods, since the materials under examination are not
transparent (Fresvig et al., 2008).

2.2.1. Working principles
A FBGS consists of a fibre with different refraction indexes in
the inner and the outer core. Stretching an FBGS changes its
grating period, resulting in a change in wavelength of the
reflected ultraviolet light. This change in wavelength is

Table 1 – Search criteria to retrieve the reviewed studies on PubMed. For each method, the search keywords used and the
number of retrieved publications are reported, together with the detail of the eligible studies. Two publications non-
indexed in PubMed were added in the strain gauges section.

Keywords Retrieved
publications

Eligible References

Strain gauges
(SG)

(Gauge OR gage OR distribution) AND
human AND (femur OR femurs OR
femora) AND strain

239 4þ1 Kim et al., 2001; Østbyhaug et al., 2009; Zani
et al., 2015; Cristofolini et al., 2009 Extra:
Roberts, 1966

Fibre Bragg
grating
sensors
(FBGS)

(Bragg OR grating OR (optical AND (fibre
OR fibre))) AND (bone OR femur OR
femora) AND strain

26 2 Fresvig et al., 2008; Reikeras et al., 2011

Digital image
correlation
(DIC)

(Digital AND image AND correlation) AND
(femur OR bone) AND (strain OR
mechanics)

78 5 Gilchrist et al., 2013; Helgason et al., 2014;
Grassi et al., 2014; Tang et al., 2015; Op Den
Buijs and Dragomir-Daescu, 2011

Digital
volume
correlation
(DVC)

(Digital AND volume AND correlation)
AND (femur OR bone) AND (strain OR
mechanics)

13 5 Gillard et al., 2014; Roberts et al., 2014; Hussein
et al., 2012; Dall'Ara et al., 2014; Palanca et al.,
2015
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related to the change in the spatial period of the refractive
index modulation using Bragg's law, which can be written in
the form (Werneck et al., 2013): λB ¼ 2neffΛ, where λB is the
Bragg wavelength of the FBGS, ηeff is the effective refractive
index of the fibre, and Λ is the periodicity of the grating. Thus,
a longitudinal deformation can change both Λ and ηeff, the
latter by the photo-elastic effect and the former by increasing
the pitch of the grating. This causes a change in λB, which can
be related to the applied longitudinal strain via:
Δ λB=λB ¼

�
1�ρe

�
: By knowing the photoelastic coefficient ρe,

strains can be derived.

2.2.2. Most relevant studies
From the PubMed search, 26 publications were retrieved,
where of 2 were considered relevant (Table 1). Fresvig et al.
(2008) addressed the suitability of FBGSs for strain measure-
ment on bones by comparing them with SGs. Tests were
conducted on an acryl tube and on human femur diaphysis.
Both were reduced to a cylindrical shape, and 4 SGs and 4
FBGSs were mounted with a 451 relative shift. The specimens
were compressed step-wise, and the longitudinal strains
from SGs and FBGSs were recorded. No significant differences
were found between the measured strains on the acrylic tube
(Pearson correlation coefficients between sensors ranged
from 0.986–1.0) or the cylindrical bone sample (Pearson
correlation coefficient from 0.629–0.999). However, the stan-
dard deviation of the difference between FBGSs was not
provided, as the different sensors were not subjected to the
same deformation due to alignment inaccuracies of both the
gauge and loading axis.

Reikeras et al. (2011) continued from the conclusions of
Fresvig et al. (2008), and used FBGSs to measure the strains at
the implant–cortex interface of a cadaver femur with an
implanted stem prosthesis. SGs were used to measure the
strains on the external cortex. To prepare the bone for FBGS
measurements, four shallow vertical ditches were made in
the endosteal cortex (corresponding to the position and
longitudinal direction of the rosette vertical SGs on the
outside periosteal cortex). FBGSs were mounted in the ditches
and bonded with cyanoacrylic adhesive. The stem of the
prosthesis was not interfering with the FBGSs. The principal
strains from the SGs were compared with the single direction
strain measurements of the corresponding FBGSs, under the
assumption of the principal strain direction being aligned
with the vertical axis.

2.3. Digital image correlation

The first formulations of digital image correlation (DIC) to
measure deformations are from 1980s (Sutton et al., 1983;
Peters and Ranson, 1982). DIC was initially adopted for
measurements of large displacements/strains. The evolution
of digital imaging devices with high resolution and increased
frame rate recently allowed DIC to be used to detect strains
on the order of a few hundred microstrains. Thus, applica-
tions of DIC in the field of bone mechanics are very recent.

2.3.1. Working principles
Digital image correlation is a non-contact method where one
digital image is mapped onto another digital image. The

images show the specimen that is tested, and the transfor-
mation field between the two images is used to retrieve the
displacement field on the surface of the specimen. The
transformation field is determined by maximizing a correla-
tion coefficient. The latter is determined by examining pixel
intensity array subsets on two or more corresponding images.
The measurement accuracy of DIC can be affected by many
factors, such as the size of the subset area used to match the
same point in two images taken at different time points
(Sutton et al., 2009), the step size (i.e., the number of pixels by
which the subset is shifted to calculate the strain field) and, if
used, the type of data smoothing/filtering adopted.

DIC measurements can be 2D (one camera used), or
surface-3D (two cameras used in stereovision). The full 3D
approach (where a 3D imaging device, e.g. an X-ray tomo-
graph, is used) is referred as digital volume correlation (DVC),
and is treated separately in this review.

2.3.2. Most relevant studies
From the PubMed search, 78 publications were retrieved,
where of five were considered relevant (Table 1). Op Den
Buijs and Dragomir-Daescu (2011) used 2D DIC to measure
displacements and strains over 22 cadaver femora. The bones
were tested in a configuration resembling a fall to the side, at
a displacement rate of 100 mm/s up to fracture. Images were
recorded with a high-speed video camera (1024� 512 px,
6000 fps). However, results of the measured strains were only
qualitatively presented for two representative femora. Also,
no description of the applied speckle pattern (if any) and
image correlation algorithm used for analysis was provided.

Gilchrist et al. (2013) assessed the capability of DIC to
accurately measure strains on bones by comparing the
strains measured by DIC to the measurements from SGs,
considered as a gold standard. To do so, 20 human proximal
femora were prepared with a strain rosette glued on the
antero-superior femoral neck, and a speckle pattern was
airbrushed over the same area. Femora were loaded to 50%
of their predicted fracture load (determined using the method
proposed by Boehm et al. (2008)) at 0.5 mm/s. Images were
recorded at 100 fps with 1280�800 px (approx. 17 px/mm)
resolution. Minor principal strains were used for validation.
Results showed a good correlation (root mean square average
difference 127 mε, standard deviation 239 mε), but also the
presence of random image-to-image noise in the DIC data.
The strains were only compared at one single location
(anterior-superior aspect of the femoral neck), and at one
time frame (corresponding to the maximal force in the test).
Thereafter, DIC was used to measure strains in an impact
simulator of sideways falls. However, DIC strain measure-
ments recorded during the simulated fall on the side were not
shown in the paper, and the authors only reported that strain
fields calculated by DIC exhibited steep strain gradients,
which were attributed to bone inhomogeneity.

Helgason et al. (2014) performed a drop tower test over one
proximal human femur specimen in a sideways fall config-
uration. The impact between the 16.5 kg impactor and the
specimen occurred at a 3.5 m/s speed. Two high-speed
cameras recorded the proximal femur anteriorly and poster-
iorly (two separate 2D DIC set-up) at 9009 fps, 384� 384 px
(pixel pitch¼0.25 mm). However, the strains measured were
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only qualitatively compared to the predictions of FE models
(minimum principal strains on the anterior surface shown),
and no quantitative data was reported from the strain
measurements.

Grassi et al. (2014) recently performed a study investigat-
ing the strain response of three human cadaver femora at
physiological-like strain rates. Two high-speed (3000 fps)
cameras were used in a surface 3D DIC scheme, and different
correlation settings were used to analyze the whole load
curve and the near-fracture behaviour. Those correlation
settings were determined from an undeformed control plate
which was used as a noise level reference during the tests. A
data filtering method was developed, in which the obtained
displacement vectors for each point were filtered in time
using a low-pass filter. The filtered displacements were then
used to calculate the strains. Digital SGs were identified and
their output compared with literature. The evolution of the
principal strain magnitude and direction was analyzed at
different stages of the loading curve, and the collected data
can act as a quantitative and comprehensive benchmark for
numerical models.

Tang et al. (2015) investigated the mechanical behaviour of
human cortical bone at the tissue level under shear. They used,
among other techniques, 2D DIC to map the surface strains
during the shear test. Polished 20� 5� 3mm3 bone samples
with two V-shaped notches were obtained and tested under
pure shear up to fracture at a 0.2 mm/min displacement rate.
Strains were measured on a 3.6�2.7 mm2 section using an
optical microscope equipped with a digital camera (4 fps). Use of
optical microscope images together with the intrinsic micro-
structural features of the polished samples provided a con-
trasted enough pattern in the acquired digital images, so no
artificial speckle pattern was needed.

2.4. Digital volume correlation

Digital volume correlation (DVC) for tomographic datasets
was first proposed by Bay et al. (1999). They proposed that the
2D-DIC concepts could be extended to match small sub-
volumes of a tomographic reconstruction before and after
undergoing loading to obtain a full volumetric field of 3D
motions. DVC applications in bone mechanics are thus very
recent.

2.4.1. Working principles
DVC is essentially the 3D extension of the 2D-DIC method. In
2D-DIC, a coefficient based on the summed difference of
intensity values in a subset of a planar images is minimized.
In DVC, the minimization is done on a 3D-subset where
intensity values corresponding to (x,y,z) values are compared
to a standard and the summed difference minimized using the
predictive 3D displacement fields. Since tomographic
attenuation-based images are used, a “white light” speckle
pattern is not available, and DVC relies on naturally occurring
patterns of the specimen to track changes in material features.

2.4.2. Most relevant studies
Thirteen publications were retrieved, where of five were rele-
vant (Table 1). Since only a limited number of publications on

DVC in bone mechanics was available, some experimental
studies performed on non-human bones were also included.

Roberts et al. (2014) recently reviewed the application of
DVC on trabecular bone, with the aim of clarifying the role of
the different correlation parameters on the outcome. The
main conclusions are

– subset size is the most influential parameter in terms of
measurement precision.

– A global correlation approach can reduce displacement
measurement error compared to local techniques. This is
accomplished by imposing continuity requirements, such
that mapping of a single subset depends on mapping of
adjacent regions.

– Since it is not possible to apply an artificial speckle pattern
inside a specimen, the accuracy and precision of displace-
ment and strain measurement are affected by the differ-
ent bone micro-structure (e.g., bone volume fraction,
trabecular number and separation, structure model index).

Hussein et al. (2012) used DVC to investigate the
mechanics of 30 L1 vertebrae. To the authors' knowledge,
this is the first and solely study reporting the usage of DVC on
human bones at the organ level. The L1 segments were first
preconditioned 10 times at 400 N, and were then imaged with
a mCT. Step-wise 1 mm displacements were applied allowing
20 min relaxation time between steps. Samples were mCT
scanned after each step (mCT80, Scanco Medical, 37 mm voxel
size, 70 kVp, 114 mA, and 300 ms integration time). A final
mCT scan was performed after fracture. A hexahedral mesh
was created from the segmented vertebral geometries. The
elements of the mesh defined the subsets used for DVC
calculations. The correlation between subsets was calculated
using a maximum likelihood method. Accuracy and precision
were high when using simulated displacements (mean-bias
error and root-mean-square error for the displacement about
0.025% and 0.35%, respectively). However, errors increased
when real image data from repeated mCT acquisitions were
used. This might have been due to imaging inaccuracies, such
as X-ray beam fluctuations, or repositioning errors, which
together led to a discrepancy between repeated measure-
ments of 7407630 mε (0.5871.12 voxels displacement).

The need for accurate quantification of the measurement
inaccuracies in DVC measurements was addressed by Gillard
et al. (2014), with a study on porcine trabecular bone. Five
repeated mCT scans were performed (HMX ST, Nikon Metrol-
ogy, 24.6 mm voxel size, 105 kVp) on the same specimen, the
first three without moving the sample, and the last two after
shifting it by 125 mm in the vertical direction. DVC was
calculated using a local approach (i.e., the shift of the pattern
within each subset is independent from the shift of the
neighbouring subsets) based on the fast Fourier transform
(FFT). Strain resolutions ranging between 70 mε and 800 mε
were reported when using the identified optimal correlation
parameters (64 voxels sub-volume size, 50% overlap). More in
detail, repeated scans without repositioning led to an accu-
racy (average strain) and precision (standard deviation of the
strain) of 40 and 140 mε, respectively. When the specimens
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were repositioned between scans, the reported accuracy and
precision were 250 and 750 mε, respectively. A significant
decrease in the sub-volumes correlation was also reported
when the trabeculae started to yield or fail. This led to
unrealistic strain values, and the authors proposed to cut
out points whose correlation values are below 0.9.

Dall'Ara et al. (2014) performed a methodological study
aimed at evaluating precision and accuracy of DVC strain
measurement on bovine cortical and trabecular bone speci-
mens (3 mm in diameter, 29 mm in length) imaged with mCT
(Skyscan 1172, Bruker, 10 mm voxel size, 59–70 kV, 1180 ms
exposure time). A custom global (i.e., the displacement of
each subset is affected by the displacements of its neighbour-
ing elements) DVC algorithm was used based on the ShIRT
library (Barber and Hose, 2005) for deformable image registra-
tion. Briefly, an elastic registration algorithm was coupled to
a FE simulation to calculate the strains in the mesh. Accuracy
and precision were analyzed by comparing virtually displaced
scans, repeated scans without any repositioning of the
sample, and repeated scans taken after sample repositioning.
The authors concluded that the main source of error was the
intrinsic noise of the mCT images. The error in the measure-
ment could be decreased by increasing the size of the grid for
strain calculation (a power law relationship between the two
is reported), paying the price of decreased spatial resolution.
For a grid size of 50 px, the accuracy and precision ranges
reported were 425–692 mε and 202–394 mε, respectively. Per-
forming DVC on cortical bone resulted in a 10–25% decrease
in the accuracy compared to trabecular bone with identical
procedure. Therefore, the authors suggested that DVC strain
measurements could be used to efficiently discriminate
yielded from non-yielded regions. Reaching the accuracy
needed to investigate the elastic regime required an increase
of the grid size that would have ultimately reduced the
spatial resolution too much.

Palanca et al. (2015) compared the performances of three
different DVC algorithms on two cylindrical samples of
cortical and trabecular bone, respectively. The samples were
imaged with mCT (Skyscan 1172, Bruker, 10 mm voxel size,
59–70 kV, 1180 ms exposure time). Most likely, the same
datasets as in Dall'Ara et al. (2014) were used in this study.
The three algorithms evaluated in this study were: two
proprietary codes (LaVision Ltd, Germany) based on FFT and
direct correlation (DC), respectively, and the ShIRT-based
approach proposed in Dall'Ara et al. (2014). The comparison
was performed in terms of strain accuracy (average strain)
and precision (standard deviation), both against repeated
scans without repositioning, and virtually displaced volumes.
The FFT-based DVC exhibited a much faster computation
time, but also the worst accuracy (one order of magnitude
difference with respect to the other two methods) and
precision. Both ShIRT- and DC-based DVC algorithm had
accuracy and precision in the order of a few hundred micro-
strains when the optimal parameters (50 voxels subset size)
were adopted. In general, ShIRT-based DVC performed better
than the other two algorithms, and the authors ascribed this
to the global nature (which implies a continuity assumption)
of the approach.

3. Discussion

The increasing number of studies aiming to model bone
behaviour and bone fracture requires adequate validation
methods. However, extracting relevant and accurate strain
measurements from biomechanical experiments on bone is a
challenge. The aim of the present review was to examine the
most relevant literature regarding strain measurements on
human bone samples ex vivo, with focus on the organ- and
tissue-level. Each relevant technique was presented with an
emphasis on the additional complexity introduced by having
bone as the substrate material.

The comparison between experimental studies and differ-
ent strain measurement techniques was somewhat impaired
by the lack of a commonly defined metrics. In an attempt to
compare the methods, we chose to report sampling fre-
quency, spatial resolution, and strain accuracy for the studies
where such data was available (Table 2). Please observe that
the values for strain accuracy might have been defined in
different ways for different techniques, and sometimes
between different studies adopting the same technique.
Therefore, references were provided for each reported value,
and the reader is encouraged to check the referred papers to
get a more detailed definition.

3.1. Strain gauges

SGs are often considered the gold standard for strain measure-
ments on bone. However, obtaining accurate strain data with
SGs is not trivial. Bone characteristics do not naturally meet the
requirements for optimal SG adhesion (Vishay Micro-
Measurements, 2005), and the procedures to optimize bone
surface for SG measurements require training and skills. More-
over, SG measurement on bone presents intrinsic limitations.
The first is the discreteness of the measurement. SGs can only
record the average strain of the area to which they are bonded.
The number of SGs that can be applied over a sample is limited
by practical obstacles, e.g., limited presence of flat enough areas
over the bone surface, electrical wires hindrance, etc. This results
in having typically no more than 20 SGs applied over a proximal
femur sample. Besides, the SG location has to be determined
beforehand. Such position is usually determined either through
numerical simulations, or by pursuing consistency with previous
literature. This is an important limitation when the strains
leading to, e.g., yielding or crack formation are investigated.
Finally, SGs themselves have non-negligible stiffness, which
leads to the so-called “reinforcement effect” (Perry, 1986). The
entity of the reinforcement can be calculated theoretically under
certain conditions (Beatty and Chewning, 1979; Ajovalasit et al.,
2010), and has been estimated to be up to 15% on thin cortical
sections of a femur using a validated FE procedure (Cristofolini
et al., 2009).

3.2. Fibre Bragg grating sensors

The main advantages of FBGSs are small size, light wei-
ght, biocompatibility, chemical inertness, and immunity to
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electromagnetic interference. Most of these qualities repre-
sent a significant advantage for in vivo application of FBGSs.
As for the ex vivo applications, the main advantage of FBGSs
is the absence of damageable electrical circuitry, that allows
their positioning for example at the interface between two
materials. This makes FBGSs a valuable option to investigate
the strain response at the bone/implant interface. The poten-
tial of such application was shown by Reikeras et al. (2011),
who found that deformations on the external cortex and the
internal cortex at the bone/implant interface are not related.
Thus, it is important to measure strains directly at the bone/
implant interface to eventually improve implant design.
Despite FBGSs are commercially available in a rosette config-
uration (thus being able to measure principal components of
strain, analogously to SGs), the only two applications found
in bone mechanics used single-fibre FBGSs. This represents a
limitation to those studies, as the hypothesis of principal
strains being aligned to the shaft axis is likely not to hold at
the bone–implant interface.

A few studies have compared the accuracy of FBGSs and
SGs, where SGs provided a higher precision (Werneck et al.,
2013). Fresvig et al. (2008) reported non-significant differences
between SG and FBGS, but a direct quantitative comparison
was not provided. While SGs attain a high linearity in the
response, FBGSs have a different sensitivity between positive
and negative loads, and a very high sensitivity to temperature
gradients (Kleckers, 2009). Di Sante et al. (2014) reported that
the sensitivity values for FBGSs may differ significantly from
the theoretical value for silica fibres, and recommended an
in-situ calibration against a gold standard. Further develop-
ment of the sensor technology, together with a more refined
set-up for the application to bone material can possibly lead
to an accuracy approaching that of SGs.

3.3. Digital image correlation

DIC has some advantages over the methods discussed above.
First is the potential to obtain the full-field strain response of
the bone, rather than a finite number of discrete strain
measurements. A second advantage is the non-contact nat-
ure of DIC, which reduces the reinforcement effect to a
minimum (or even completely eliminates it if no paint is
applied (Tang et al., 2015)). Last, the rapid development of
digital imaging technology results in the possibility of obtain-
ing more accurate spatial and time resolved strain data.
Despite these advantages, DIC has been scarcely used in
ex vivo experiments, and no consensus exists on its reliability
for bone mechanics. This is mostly due to the lack of
methodological studies conducted with DIC on bone samples.
Such studies are limited to 2D-DIC studies evaluated using
synthetic images (Bornert et al., 2009; Amiot et al., 2013; Pan
et al., 2009), thus not considering the spectrum of additional
complexities introduced by testing human bone samples (e.g.,
non-planar, rough and wet surfaces, tracked using a 3D-
surface DIC approach). Only Gilchrist et al. (2013) performed
a validation of DIC on bone against one SG.

Most experimental studies using DIC adopted a 2D
approach over femoral bone specimens (Op Den Buijs and
Dragomir-Daescu, 2011; Helgason et al., 2014). This approach
likely introduces significant artefacts in the measured strains
as soon as the normal to the bone surface deviates from the
optical axis of the camera. This limited the authors to a
qualitative analysis of the measured DIC data. Such 2D DIC
approach is instead suitable for studies involving regular
shape, polished bone samples as in Tang et al. (2015). Another
potential issue with DIC is linked to its continuum nature.
DIC in its original formulation (Sutton et al., 2009) inherently

Table 2 – Comparison of the performances of the four reviewed methods based on the reviewed studies. The spatial
resolution was determined as the size of the excitation grids for the SG, and as the pixel/voxel size for DIC/DVC. Strain
accuracy was reported when available (only indicative values).

Sampling frequency [Hz] Spatial resolutionn Type of
measurement

Strain
accuracy
[lε]

Strain
gauges

100 Hz (Cristofolini et al., 2009) 3� 1.25 mm2 grid size (Kim et al., 2001;
Østbyhaug et al., 2009)

Contact,
discrete

N/A

3� 1.3 mm2 grid size (Cristofolini et al.,
2009)

Optical
Bragg
grating
fibre

60 Hz (Reikeras et al., 2011) N/A Contact,
discrete

N/A

Digital
image
correlation

3000 Hz (Grassi et al., 2013) – 9216 Hz
(Gilchrist et al., 2013) (100 Hz for DIC
validation against SG (Gilchrist et al.,
2013))

5 px/mm (Gilchrist et al., 2013; Helgason
et al., 2014) – 10 px/mm (Grassi et al., 2014)
(17 px/mm for DIC validation against SG
(Gilchrist et al., 2013))

Non-contact,
full-field

�33 με in
the
standing
control
plate

Digital
volume
correlation

�3� 10�4 (estimated by the authors) 12–82 μm voxel size (Roberts et al., 2014) Non-contact,
full-field

740 με
(Hussein
et al., 2012)
20–250 με
(Gillard
et al., 2014)
10–792 με
(Dall'Ara
et al., 2014)
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assumes that the object under consideration shows no strong
discontinuities in displacement between consecutive images.
This condition is clearly violated when a crack is formed on
the specimen, and suggests additional care when dealing
with DIC measurements from dynamic impact tests, such as
in, e.g., (Gilchrist et al., 2013; Helgason et al., 2014). Thus, care
must be taken to exclude regions where the continuum
hypothesis is violated, unless extended DIC formulations
are adopted (Nguyen et al., 2011; Roux et al., 2009). However,
such extended DIC formulations are still under development,
and out of the scope of the present review.

A proper application of DIC requires that the correlation
parameters are optimized for that specific application. That
implies that an a priori optimal set of parameters does not
exist, nor does a univocal formula to calculate them. Some
general guidelines about the choice of the correlation para-
meters (subset size, step size, and filtering) can be found in,
e.g., Sutton et al. (2009). In simple terms, the larger a subset is,
the more information it will contain, thus increasing the
likelihood of obtaining a good correlation. On the other hand,
an increase of the subset size leads to a decreased spatial
resolution. Analogously, an increase of the step size will
reduce the noise in the calculated strains, but will reduce
the spatial resolution. Ultimately this results in the need to
find an optimal trade-off between the parameters, which may
require both experience and a considerable amount of trials.

One last concern with DIC is the determination of spatial
resolution of the extracted displacement/strain field. The
spatial resolution of DIC data is driven by the spatial resolu-
tion of the acquired images (in terms of px/mm ratio).
However, the final resolution of the strain measurements
depends on a number of other factors, like optical lens
quality, marker size (Lionello and Cristofolini, 2014), and the
correlation algorithm/parameters adopted. The absence of a
univocal definition for the spatial resolution leads to that DIC
spatial resolution is not reported, potentially impairing the
clarity of the reported results, and the possibility to compare
different studies.

3.4. Digital volume correlation

Digital volume correlation is the extension of 2D-DIC to the
third spatial dimension. Thus, the same considerations as for
DIC still holds. Although DVC can be performed on different
type of 3D images (e.g. magnetic resonance, confocal micro-
scopy, optical coherence tomography), applications to bone
biomechanics at the organ and tissue level have only been
reported using CT images. When compared to DIC with digital
images, the use of X-ray tomographic reconstructions to calcu-
late the strain field leads to two additional sources of noise,
namely: (i) the noise of the tomographic images, which is
generally higher than that of digital images, and (ii) that it is
impossible to apply an artificial speckle pattern to enhance the
correlation. The majority of studies adopting DVC on bone
samples (Gillard et al., 2014; Roberts et al., 2014; Hussein et al.,
2012), investigated bone mechanical properties at the tissue-
level. This is because the trabecular bone at the tissue-level
consists of a spongy network which is very well suitable for the
calculation of a correlation coefficient between subsets of such
network. The reported ranges of accuracy and precision for

DVC strain measurements on trabecular bone samples are
20–1280 mε and 39–630 mε, respectively (extrapolated from
Dall'Ara et al. (2014)). Only one DVC study investigated human
bone at the organ level by scanning whole L1 vertebra samples
(Hussein et al., 2012). However, the level of noise between
repeated acquisitions of an undeformed sample was greater
than 7407630 mε. This value is only 10 times lower than the
yield strain reported for trabecular bone in vertebrae
(Kopperdahl and Keaveny, 1998), thus impairing the investiga-
tion of strains at physiological load levels. Dall'Ara et al. (2014)
evidenced that both the precision and accuracy errors decrease
with a power law as a function of the increasing size of the
correlation window. However, increasing the size of the correla-
tion window leads to a loss of spatial resolution. This poses the
problem of finding the best compromise between spatial
resolution and strain resolution for the designed study. The
noise of the DVC measurements was also found to be related to
the intrinsic noise of the tomographic images. Dall'Ara et al.
(2014) also compared their accuracy and precision with those
achieved by Gillard et al. (2014) when equivalent correlation
parameters (two different DVC approaches were adopted in the
two studies) were used. They found that the FFT-DVC approach
in Gillard et al. (2014) achieved a better accuracy in the
stationary test (i.e., repeated scans without repositioning),
whereas the method by Dall'Ara et al. (2014) performed better
in when the specimen was repositioned after the first scan.

The relevant issue of comparing the performances of
different DVC algorithms on a common set of data was only
recently addressed by Palanca et al. (2015). The study showed
that a DVC approach implementing a continuity constraint
between neighbouring subsets provided a higher strain accu-
racy and precision than local DVC approaches when evalu-
ated using repeated scans without repositioning, in
agreement with Roberts et al. (2014). Another important
aspect that should be addressed is the optimal image resolu-
tion for DVC, i.e., what image resolution is good enough to
achieve a high correlation between the subsets while not
having an unnecessarily high X-ray dose or long scanning
time. To our best knowledge, no study has addressed this
question for bone samples yet.

The results reported in the evaluated DVC studies show
that accuracy and precision are both around 200 mε when a
subset size corresponding to �700 mm is used (Dall'Ara et al.,
2014). Thus, the strains during the elastic regime cannot be
measured with a proper accuracy with current methodology.
It is instead possible to successfully use DVC to discern
yielded areas, and to measure strains around the yield point.
However, it has to be observed that measuring over the yield
point has other drawbacks. It is in fact not possible to obtain a
good correlation value between excessively distorted subsets
(Gillard et al., 2014).

In summary, DVC is a very powerful tool to explore the full
field 3D strain distribution in bone samples. However, two
main issues have to be solved: (i) the noise levels in mCT
scans, and (ii) the time needed to acquire one mCT volume. As
for the first issue, use of synchrotron-based tomographic
scanners can possibly contribute to address such limitation
in the immediate future. Although providing a limited field-
of-view, synchrotron-based tomographic scanners allow for
higher image resolutions and less noisy image due to the
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higher brilliance and collimation of the X-ray source. As for
the time needed to acquire one CT volume, this currently
represents a severe limitation to DVC studies, as a full scan
can take up to several hours. This means that the real time
bone response, as well as creep and stress relaxation effects
in bone cannot be investigated.

4. Conclusions

The scope of this review was to provide the means to decide
which of the reviewed methods best fits the needs of the
reader's experiment. It appears evident that no method is
clearly superior to the others. However, the following con-
clusions can be drawn:

– Despite being old, SGs are still the gold standard when it
comes to strain accuracy and measurement repeatability.
They are recommended for accurate, discrete measure-
ments in specific locations that can be a priori determined.

– FBGSs have lower precision and accuracy than SGs. FBGSs
are recommended for regions where SG application is
impaired by practical reasons. The interface between
internal bone cortex and an artificial implant is a typical
example of this.

– DIC presents advantages over SGs, including but not
limited to the higher number of measurements, which
allows for the reconstruction of full-field strain patterns.
However, the estimation of the spatial resolution of DIC
measurements is not trivial, and noise has to be handled
with care. Therefore, future studies adopting DIC should
report all the details of their procedure, especially includ-
ing the parameters chosen to calculate the correlation
coefficients (subset size, step size, etc.)

– Digital volume correlation can augment the knowledge in
terms of internal strain distribution in bone in response to
different loading conditions and when approaching yield.
However, DVC is sensitive to noise in the obtained strain
data. Such noise effects need to be controlled and mea-
sured in order to get a proper strain resolution. Moreover,
the long acquisition time currently limits the usability to
experiments where the real time strain response is not
crucial.
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Grédiac, M., Hild, F., Mistou, S., Molimard, J., Orteu, J.-J., Robert,
L., Surrel, Y., Vacher, P., Wattrisse, B., 2009. Assessment of
digital image correlation measurement errors: methodology
and results. Exp. Mech. 49 (3), 353–370.

Cody, D.D., Gross, G.J., Hou, F.J., Spencer, H.J., Goldstein, S.A.,
Fyhrie, D.P., 1999. Femoral strength is better predicted by finite
element models than QCT and DXA. J. Biomech. 32 (10),
1013–1020.

Cristofolini, L., Juszczyk, M., Taddei, F., Viceconti, M., 2009. Strain
distribution in the proximal human femoral metaphysis. Proc.
Inst. Mech. Eng. H 223 (3), 273–288.

Cristofolini, L., Schileo, E., Juszczyk, M., Taddei, F., Martelli, S.,
Viceconti, M., 2010. Mechanical testing of bones: the positive
synergy of finite-element models and in vitro experiments.
Philos. Trans. A: Math. Phys. Eng. Sci. 368 (1920), 2725–2763.

Cristofolini, L., Taddei, F., Baleani, M., Baruffaldi, F., Stea, S.,
Viceconti, M., 2008. Multiscale investigation of the functional
properties of the human femur. Philos. Trans. A: Math. Phys.
Eng. Sci. 366 (1879), 3319–3341.

Dall’Ara, E., Barber, D., Viceconti, M., 2014. About the inevitable
compromise between spatial resolution and accuracy of strain
measurement for bone tissue: a 3D zero-strain study. J.
Biomech. 47 (12), 2956–2963.

Di Sante, R., Donati, L., Troiani, E., Proli, P., 2014. Reliability and
accuracy of embedded fiber Bragg grating sensors for strain
monitoring in advanced composite structures. Met. Mater. Int.
20 (3), 537–543.

Ding, M., Dalstra, M., 1997. Age variations in the properties of
human tibial trabecular bone. J Bone Joint Surg Br. 79,
995–1002.

Fresvig, T., Ludvigsen, P., Steen, H., Reikerås, O., 2008. Fibre optic
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a b s t r a c t

Patient-specific finite element models have been used to predict femur strength and

fracture risk in individuals. Validation of the adopted finite element modelling procedure

against mechanical testing data is a crucial step when aiming for clinical applications.

The majority of the works available in literature used data from strain gages to validate

the model, thus having up to 15 experimental measurements. Optical techniques, such as

digital image correlation, can help to improve the models by providing a continuous field of

deformation data over a femoral surface. The main objective of this study was to validate

finite element models of six composite femora against strain data from digital image

correlation, obtained during fracture tests performed in quasi-axial loading configuration.

The finite element models were obtained from CT scans, by means of a semi-automatic

segmentation. The principal strains both during the elastic phase and close to the fracture

were compared, and showed a correlation coefficient close to 0.9. In the linear region, the

slope and intercept were close to zero and unity, while for the case when fracture load was

simulated, the slope decreased somewhat. The accuracy of the obtained results is

comparable with the state-of-the-art literature, with the significant improvement of

having around 50,000 data points for each femur. This large number of measurements

allows a more comprehensive validation of the predictions by the finite element models,

since thousand of points are tracked along the femoral neck and trochanter region, i.e., the

sites that are most critical for femur fracture. Moreover, strain measurement biases due to

the strain gage reinforcement effect, were avoided. The combined experimental–numerical

approach proved to be ready for application to in-vitro tests of human cadaver femurs, thus

helping to develop a suitable mechanistic fracture risk criterion.
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1. Introduction

Hip fractures are known to be a major trauma, especially

affecting the elderly and resulting in a dramatic increase in

patient morbidity and mortality (Roth et al., 2010). Hip

fracture incidence increases exponentially with age (Burge

et al., 2007) due to concurrent increase in fall rate (Berry and

Miller, 2008; Parkkari et al., 1999) and decrease in bone

strength (Courtney et al., 1995; Keaveny et al., 2010). Osteo-

porosis is a skeletal disease that causes an increased bone

resorption, thus significantly reducing bone strength (Armas

and Recker, 2012). Current methods for osteoporosis diagno-

sis (Cawthon et al., 2009; Svejme et al., 2012), or prediction of

fracture risk (Kanis et al., 2005) that are mainly based on

epidemiological parameters, are not sufficient to detect all at

risk (Lekamwasam, 2010; Silverman and Calderon, 2010). For

example, they lack characterization of spatial distribution of

bone mineral density in all three dimensions. Subject-specific

finite element (FE) models based on clinical imaging data

have been proposed to overcome such limitation and assess

bone strength (Cong et al., 2011; Schileo et al., 2008; Trabelsi

et al., 2009; Viceconti et al., 2004). They provide a mechanistic

model accounting for the 3D geometry of bone, its material

property distribution, and also the different loading conditions.

The proposed FE models need to be validated thoroughly in

the laboratory before being tested in clinical practice (Viceconti

et al., 2005). Although several earlier studies using FE models

have directly provided bone strength assessment using strain-

or stress-based criteria (Keyak et al., 2001; Koivumäki et al.,

2010), an in-vitro validation in terms of stress/strain prediction

accuracy is required (Cristofolini et al. 2010). These previous

studies achieved a high level of accuracy by validating their FE

models with experimentally measured principal strains (Bessho

et al., 2007; Taddei et al., 2007; Trabelsi et al., 2009). The

determination coefficient between experimental measured

principal strains and FE predicted strains reported in the above

cited papers ranges from 0.92 (Bessho et al., 2007) to 0.96

(Trabelsi et al., 2009). Only Bessho et al. (2007) performed both

experiments and FE simulations up to the fracture level, despite

using a loading rate (0.5 mm/min) very far from an expected

physiological value (Al Nazer et al., 2012).

Nevertheless, in the above-mentioned studies, the reported

values for accuracy of bone strain prediction were calculated

using a limited number of data points, i.e., up to 15 in-vitro

measurements collected by using strain gauges (SG) during

tests in quasi-axial loading configurations. Increasing the

number of data points and acquiring strain distribution over

the entire anatomical surface using thousand of measure-

ments would allow for a more comprehensive validation of the

FE models and improve the understanding of the tension/

compression strain state occurring under loading.

Recently, optical techniques like digital image correlation

(DIC) have been used to measure superficial strains over

geometrically irregular surfaces (Chuang et al., 2011;

Moerman et al., 2009; Sztefek et al., 2010), such as the surface

of the human femur (Dickinson et al., 2011; Op Den Buijs and

Dragomir-Daescu, 2011). The basic idea of DIC is to track

the position of the same set of physical points shown in

a reference image and in one (or more) deformed image.

Then, the recorded sets of coordinates can be used to

calculate the strains, using different kind of algorithms

(Bruck et al., 1989; Luu et al., 2011; Ma et al., 2012; Pan

et al., 2012, 2009; Su and Anand, 2003). Although the first

applications of DIC in material testing date back to 1985

(Bruck et al., 1989; Chu et al., 1985), the method has been

introduced more recently in experimental biomechanics (Bay,

1995; Benecke et al., 2009; Ning et al., 2011; Verhulp et al.,

2004; Zhang and Arola, 2004). One of the main advantages of

DIC is the possibility to describe a continuous field of

deformations by simultaneously tracking thousands of points

on a surface. This technique can also mitigate the reinforce-

ment due to the non-negligible stiffness of the sensor

mounted onto (or embedded into) the tested material. This

can be a particular issue when using SGs (Ajovalasit et al.,

2010; Beatty and Chewning, 1979; Perry, 1986) on regions with

low elastic modulus, such as the femoral neck surface.

To the authors knowledge, DIC has been adopted only a few

times in combination with FE modelling for validation pur-

poses of human femur mechanical behaviour, either using

composite (Dickinson et al., 2011) or cadaver (Op Den Buijs and

Dragomir-Daescu, 2011) specimens. Dickinson et al. (2011)

tested one composite femur bone in quasi-axial configuration

at different load magnitudes and recorded the strains using

DIC. DIC data were averaged over a 5 mm2 area, providing 25

measurements. The corresponding FE models were then

validated in terms of von Mises strains. Op Den Buijs and

Dragomir-Daescu (2011) acquired 2D DIC measurements from

22 cadaver human femora, and used the experimental data to

validate 13 bi-dimensional FE models in terms of overall

stiffness (9 specimens were used for tuning the simulation

parameters). Therefore, there is currently no study in which FE

results are validated against 3D principal strain measurements

over an entire (that is, using thousand data points) surface of

proximal femur. An evaluation of the principal strain would

allow a better assessment of the tension/compression state

with respect to von Mises strains. Furthermore, it would

enable a direct comparison of the achieved strain prediction

results with those reported in the literature (Bessho et al.,

2007; Schileo et al., 2008; Trabelsi et al., 2011), and facilitate

future developments of strain-based fracture criteria.

Recently, an extensive experimental benchmark employing

optical strain measurements was performed by our group

(Väänänen et al., 2012a). Six composite human femora were

tested until fracture using a quasi-axial loading configuration,

and a deformation gradient field was recorded with a DIC

system. Composite bones include of a cortical part made of

fiber-reinforced epoxy, and a cancellous part made of a solid

rigid polyurethane foam, in order to mimic the mechanical

properties of human bones. Use of composite femora instead

of cadaver samples was preferred, since one of the objectives

was to examine the extent of the reliability and repeatability of

the DIC measurements. With composite femora we could

isolate the effects of inter-individual variations in samples

from the effects of the physical mechanism of deformation.

As a consequence, the aim of the present study was to

provide a validation of a FE modelling technique against

full-field surface principal strains measured by DIC over six

similar composite human femur bones, using an automatic

procedure for data spatial registration and comparison.
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2. Material and methods

Six 4th generation medium-sized composite femur bones

(model 3403, Sawbones, Pacific Research Laboratories Inc.,

Vashon, USA) were used. The composite bones were imaged

with a CT scanner (SOMATOM Definition Flash, Siemens,

Munich, Germany) in air, with a resolution ranging from 0.24

to 0.29 mm, and a slice thickness of 0.4 mm.

2.1. Experimental measurements

Details about the experimental measurements are minutely

described in Väänänen et al. (2012a), and only briefly reported

here. Femora were cut 15 cm below the minor trochanter and

the distal end was embedded in an aluminium pot (height

and diameter 5 cm, wall thickness 3 mm) that was filled with

epoxy (Technovit 4071, Heraeus Kulzer, Wehrheim, Germany).

The anterior aspect of each composite femur was painted

with a white background spray layer, and a black random

speckle pattern was applied with an airbrush. The resulting

surface was dividable into about 50,000 uniquely traceable

points. Each femur was loaded until fracture in a quasi-axial

configuration, with a constant displacement rate of 1.0 mm/

min (corresponding to a global strain rate of 0.0058 min�1).

The deformations were recorded throughout the whole

mechanical testing process by two digital cameras (Limess

Messtechnik und Software GmbH, Krefeld, Germany, resolu-

tion 4 Mpixel, maximum frame rate 7 Hz, image correlation

processing done with Vic-3D 2007 software, Correlated Solu-

tions, Inc., USA), at 4 frames per second, while the applied

load was recorded at 15 frames per second by the uniaxial

load cell (maximum load 20 kN, Zwick-Roell, Germany)

placed on the upper effector of the loading machine.

2.2. Finite element modeling

Triangulated geometry and experimental reference system

orientation of the composite bones were retrieved using a

semi-automatic segmentation procedure based on an active

contour method (Yushkevich et al., 2006). Non-Uniform

Rational B-Splines (NURBS) models were created from the

triangulated geometries through a reverse engineering process

(Rhino v4.0, Robert McNeel & Associates, Seattle, USA), and

meshes with 10-noded unstructured tetrahedral elements

(average 148,894 nodes, 98,662 elements, mean element

volume 2.75mm3) were built (Hypermesh v11.0, Altair Engi-

neering, Inc., Troy, USA). Linear elastic transversely orthotropic

material properties were applied, according to the material

data provided by the manufacturer (Table 1). The principal

axes of orthotropy were modelled to be parallel to the

anatomical shaft axis and neck axis in the shaft and neck

region, respectively (Fig. 1). The shaft axis was determined as

the line passing through the centroids of the two shaft

sections: the first taken at the minor trochanter level and

the second at the most distal level. To define the neck axis, an

anatomical landmark corresponding to the centre of the

femoral head was first determined as the centre of the largest

Table 1 – Material properties for the cortical and cancellous part of the synthetic bone in use. Material property data are
based on ASTM D-638, D-695, and D-1621 (http://www.sawbones.com).

Cortical, longitudinal

tensile

Cortical, longitudinal

compressive

Cortical, transverse

tensile

Cancellous,

compressive

Density [g/cm3] 1.64 1.64 1.64 0.27

Young’s modulus

[MPa]

16,000 16,700 10,000 155

Poisson’s ratio 0.26 0.26 0.26 0.3

Fig. 1 – Material properties and boundary conditions in the

FE model. Isotropic material properties were applied to the

epoxy pot (depicted in green), the internal spongy material,

and the femoral head region (in yellow). Orthotropic

material properties were assigned to the femoral shaft (in

blue) and neck (in red) region, with principal axes of

orthotropy as shown. The force was applied on the top of

the femoral head, while the distal epoxy was constrained to

mimic the experimental conditions. (For interpretation of

the references to color in this figure legend, the reader is

referred to the web version of this article.)

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 1 ( 2 0 1 3 ) 8 6 – 9 488

109



sphere that could be fitted into the femoral head. Then, the

segmented dataset was rotated in order to align the neck

region to the first axis of the CT reference system, and the

centroid was calculated for all the segmented CT slices in the

femoral neck region. The femoral neck axis was defined as the

line passing through the centre of the femoral head, providing

the best least-square fit of all the femoral neck slice centroids.

The search was iterated until the location of the neck axis

converged (Väänänen et al., 2011b). A custom Matlab (v7.12,

The Mathworks, Inc., Natick, USA) code was used to identify

the needed landmarks and anatomical axes for one femur,

and to apply rigid registration of the coordinates of the land-

marks in order to fit them to the geometries of all six femora.

A load of 3500 N was chosen for the FE modelling from the

experimentally recorded linear region of the force-displacement

curve. This load was chosen as it represented the end of the

linear region of the curve in most of the samples. Additionally,

the load at fracture from the mechanical test was analyzed for

each bone (range 4719–6747 N). The load cases were applied to

the FE models, and the simulations were solved using Abaqus

standard solver (v6.9.1, Dassault Systemes HQ, Vélizy-Villacou-

blay, France).

2.3. Validation procedure

From the DIC measurements, a cloud of about 50,000 points

over the anterior surface of each femur was available for

deformation measurements. Each cloud was registered to

the corresponding FE mesh, using a Matlab code based on a

genetic optimization algorithm (mean node-to-node dis-

tance 0.8 mm, maximum node-to-node distance 3.9 mm).

Experimental measurement points with a tracking quality

parameter greater than two times the provided optimal

value (2% of the total) were removed from the analysis

according to the recommendations by the Vic-3D 2007

software guidelines. The DIC measurements were then

averaged over a spherical volume of interest (VOI) to match

the DIC points and FE mesh elements. First, the smallest

sphere circumscribing each tetrahedral element was deter-

mined. From this, the VOI was defined as a spherical region

with the same coordinates of the centre, and with double

the radius. Prediction accuracy was finally evaluated by

comparing principal strains. Data from the six femurs were

analyzed both separately and after pooling, and linear

regression analysis between experimental and the FE cal-

culated values was performed. Determination coefficient

(R2), slope and intercept, root mean square error (RMSE),

and peak error of the FE predictions were calculated.

Bland–Altman plots (Bland and Altman, 1999) were also

calculated in order to provide a graphical interpretation of

the agreement between experiments and FE prediction.

Plots were drawn both for the 3500 N load and for the

fracture load, and the 95% limit of agreement was depicted

over each plot.

3. Results

3.1. Comparison of the 3500 N load case

When all 6 bones were pooled, the FE models predicted the

experimentally measured principal strains at 3500 N load

with a coefficient of determination, R2, of 0.87, a slope of

0.84 and an intercept close to zero (Fig. 2). RMSE was

around 900 me, with peak errors in the order of 96%, those

circumscribed to only a few points (Fig. 2). The result for

each individual bone highlighted some variation in the

accuracy of strain prediction (Fig. 3). One of the six femora

showed a lower slope (bone number 3, individual valida-

tions reported in Fig. 4). This bone was an outlier in the

experimental results, and by removing it from the pooled

data validation (please see subsequent discussion), values

of correlation coefficient and slope were increased to 0.91

and 0.94, respectively, while the RMSE decreased to less

than 700 me (Fig. 5).

3.2. Comparison of the fracture load case

When loading the bones until fracture, capacity of the FE

model to predict the experimental findings decreased some-

what (Fig. 6). The slope of the linear correlation decreased to

Fig. 2 – Prediction accuracy of the principal strains in the six bones pooled together at 3500 N load: linear correlation (a), and

Bland–Altman plot (b). The dotted lines represent the 95% confidence interval.
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0.76 for the six bones pooled, with correlation coefficient

equal to 0.87. RMSE was 1800 me, while the peak errors were

in the same percentage order of magnitude as the results

obtained at 3500 N load (Fig. 6a). When removing the one

outlier in experimental data from the validation, the slope

was 0.82, with a correlation coefficient of 0.89 (Fig. 6c).

4. Discussion

The aim of the present work was to develop an automatic

procedure for reliable validation of subject-specific FE models

against experimental measurements from a DIC system.

The proposed validation framework can directly take the

results file of the FE simulation as an input and provide the

accuracy metrics information as an output. 50,000 experi-

mental measurements from each femur were collected for

validation of the FE models, which brings it up to more than

600,000 measurements overall. This is, to the authors’ knowl-

edge, one of the greatest number of data points used for

validation for this kind of application. The principal strains

predicted by the FE simulations proved to be highly correlated

with the experimental recordings from the DIC system.

Determination coefficient was close to 0.9 for both the elastic

region and the fracture load cases, with the slope and the

intercept close to unity and zero, respectively, for 5 out of the

6 bones tested. RMSE was below 7% both at 3500 N and at the

fracture load, while higher errors between FE predictions and

experiments were circumscribed to a few points, as depicted

in Fig. 3.

The validation results in this study in the elastic field

region indicated only a minor worsening of the accuracy

parameters with respect to the state-of-the-art literature

(Bessho et al., 2007; Schileo et al., 2008; Trabelsi et al., 2009),

which were obtained using less than 15 SG measurements

from each cadaver bone tested. Those studies reported the

coefficient of determination to be between 0.92 and 0.96 for

the elastic field phase of bone mechanical behaviour.

Excluding the outlier composite bone in the experiments,

Fig. 3 – Maps for the prediction error in each femur for the

first principal strain (lstrain, left column) and the third

principal strain (lstrain, right column). (For interpretation

of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 4 – results of the linear regression analyses for each individual bone at 3500 N load.
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the present study reported a coefficient of determination of

0.91, with slope and intercept of the linear correlation very

close to unity (0.94) and zero (130 me), respectively. Inspec-

tion of the Bland–Altman plots (Figs. 2 and 5b) shows how

specimen number 3 contributed to increase the standard

deviation between experiments and numerical calculation.

Furthermore, after excluding bone 3 from the computation,

the Bland–Altman plot for 5 bones (Fig. 5b) showed that

almost all the points with negative compressive strains

were within the confidence interval region, whereas in the

Fig. 5 – Prediction accuracy for the principal strains in five bones pooled together at 3500 N load. The experimental outlier,

bone number 3 was left out from the validation. Linear correlation is depicted in (a), and Bland–Altman plot in (b). The dotted

lines represent the 95% confidence interval.

Fig. 6 – Linear correlation (a) and Bland–Altman plot (b) for the six bones pooled together when a load equivalent to the

fracture load was applied to each specimen. The same plots are provided with the outlier bone excluded (linear correlation

and Bland–Altman plot in (c) and (d) sector, respectively).
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tensile strain region the points are only slightly more

spread.

The advantage of our study is primarily the large number

of measurements, which allowed us to perform a more

comprehensive assessment of the FE predictions. By tracking

thousand of points in the femoral neck and trochanter

region, much more information is obtained from the sites

of the femur that are most prone to fractures (Arakaki et al.,

2011). The spatial resolution of DIC is greater than the

resolution achievable with strain gages, thus it allows track-

ing of the peak strain values more accurately. Besides, strain

measurement biases related to the SG reinforcement effect

(Ajovalasit et al., 2010; Beatty and Chewning, 1979; Perry,

1986), are likely to be strongly mitigated by using only a thin

paint layer. The Matlab-based validation framework provided

automatic registration of the DIC cloud, averaging of the

experimental measurements, and strain prediction accuracy

parameters calculation.

Validation of the FE models at the fracture load was also

provided. A reduction in the values of quality parameters was

observed, as compared to the data at 3500 N. While the correla-

tion coefficient was still around 0.9, the RMSE was twice the

value obtained at 3500 N. Further, the measured strains were

underestimated by 20%. This decrease in prediction agreement

is likely to be due to the post-yield phenomena occurred during

experiments in proximity of the fracture (Gardner et al., 2010;

Zdero et al., 2010), which was not accounted for when develop-

ing the FEmodels. The difference between the slope of the cloud

of positive strain points (first quadrant in Fig. 6), and slope of the

cloud of negative strain points (third quadrant in Fig. 6) supports

this hypothesis. Also when looking at the Bland–Altman plots

for the fracture load case (Fig. 6b and d), the spread of the

positive strain data appears to be more marked, thus corrobor-

ating the hypothesis of the occurrence of some plastic strain

phenomena before the fracture.

To the authors’ best knowledge the only comparable work

available in literature was provided by Dickinson et al. (2011).

With respect to the aforementioned work, and from an

experimental perspective, the current work presented a much

greater number of DIC measurements (50,000 measurements

from each of the six composite femurs employed, instead of

1875 measurements from one composite bone) collected at a

greater load magnitude (3500 N and fracture load, against a

maximum applied load of 1200 N). From a computational point

of view, a validation in terms of principal strains (instead of

von Mises) is presented, thus permitting a more quantitative

assessment of tension and compression behaviour. Last, the

FE models presented in the present work achieved a higher

strain prediction accuracy. Dickinson et al. (2011) reported a

value of 0.86 for coefficient of determination (against 0.91 for

the present study, when the outlier bone is excluded from the

computation), with a slope of the regression line equal to 0.9

(0.94 in the present study). This improvement in the accuracy

of strain prediction is likely to be due to the implementation of

orthotropic material properties in the FE modelling procedure.

A similar study involving validation of femoral FE models

against DIC data was also provided by Op Den Buijs and

Dragomir-Daescu (2011), using human cadaver femora.

Nevertheless, in that study the analysis was limited to 2D

for both the FE models and the DIC recordings (only one video

camera was employed). Moreover, DIC measurements were

used for validating models in terms of their stiffness, while

experimentally measured strains were only qualitatively

compared to the FE predicted strains.

Composite femur bones were employed in this study, since

the scope was to evaluate the effectiveness, repeatability and

automation of the modelling and validation procedures.

Despite their synthetic nature, composite bones have a similar

mechanical behaviour as cadaver bones (Cristofolini et al.,

1996), while exhibiting a very low intra- and inter-specimen

variability (Heiner, 2008). Use of the cadaver bones with great

inter-sample variability (Cristofolini et al., 2009) could have

been a significant source of uncertainties of the results

obtained. Instead, use of six nearly identical composite bones

provided better means to estimate variability in experimental

findings, and their effect on the FE modelling procedure and

accuracy. Thus, strong indications of the reliability and repeat-

ability of both the experimental setup (Väänänen et al., 2012a)

and the FE modelling and validation framework were provided,

representing a fundamental milestone towards application of

the proposed methodology in in-vitro testing on cadaver bones.

A limitation of the study is the presence of smaller areas

or single points that experience very high errors. Those high

errors are located either at the boundaries of the DIC cloud, or

in proximity of regions with markedly high curvature. The

same phenomenon was pointed out by Dickinson et al. (2011).

Further tuning of the DIC acquisition parameters, speckle

pattern, and hardware update are expected to reduce this

problem.

As a second limitation, one of the six femurs reported a

noteworthy underestimation of the FE predicted strains with

respect to the experimental measurements. Analysis of the

raw data from the mechanical tests indicated that mechanics

of this particular bone was exceptional compared to that of

the remaining five bones. It exhibited both loading and strain

curves that were highly different. In particular, the strain

levels at the same load magnitude were higher than in the

other specimens (Väänänen et al., 2012a). This is most likely

the reason why the reported slope in this bone is far from

unity. However, further investigations are ongoing to better

understand what exactly occurred in that specific composite

bone specimen.

The lack of a more comprehensive modelling of the

fracture data (including post-yield phenomena etc.), despite

available experimental data at fracture should also be

acknowledged as a limitation. However, we chose to focus

the study on the data from all the samples at a fixed load

magnitude of 3500 N. This was because at that load, all the

bones were still behaving linearly. Modelling the post-yield

material non-linearity of composite bones close to the frac-

ture event was considered outside the scope of the present

study, because the post-yield behaviour of composite bones is

likely quite different from the post-yield behaviour of

human bones.

Despite those limitations, the proposed combined experi-

mental and numerical method proved to be ready for direct

application in human cadaver bones testing. Validation of

subject-specific FE models of human cadaver bones against

DIC measurements has already been planned as a future

work. This will allow an accurate tuning of the FE modelling
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procedure, and also provide the means for a comprehensive

analysis of the post-yield behaviour of human bones. Taken

together, this will help to develop a reliable subject-specific

fracture risk criterion.
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femoral strain distribution coincide with the occurrence of
cervical versus trochanteric hip fractures? An experimental
finite element study. Medical & Biological Engineering &
Computing 48, 711–717.

Lekamwasam, S., 2010. Application of FRAX model to Sri Lankan
postmenopausal women. Journal of Clinical Densitometry:
The Official Journal of the International Society for Clinical
Densitometry 13, 51–55.

Luu, L., Wang, Z., Vo, M., Hoang, T., Ma, J., 2011. Accuracy
enhancement of digital image correlation with B-spline
interpolation. Optics Letters 36, 3070–3072.

Ma, S., Zhao, Z., Wang, X., 2012. Mesh-based digital image
correlation method using higher order isoparametric
elements. The Journal of Strain Analysis for Engineering
Design 47, 163–175.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 1 ( 2 0 1 3 ) 8 6 – 9 4 93

114 Paper II



Moerman, K.M., Holt, C. a, Evans, S.L., Simms, C.K., 2009. Digital
image correlation and finite element modelling as a method
to determine mechanical properties of human soft tissue
in vivo. Journal of Biomechanics 42, 1150–1153.

Ning, J., Braxton, V.G., Wang, Y., Sutton, M.A., Wang, Y., Lessner,
S.M., 2011. Speckle patterning of soft tissues for strain field
measurement using digital image correlation: preliminary
quality assessment of patterns. Microscopy and Microanalysis
17, 81–90 (The Official Journal of Microscopy Society of
America, Microbeam Analysis Society, Microscopical Society
of Canada).

Op Den Buijs, J., Dragomir-Daescu, D., 2011. Validated finite
element models of the proximal femur using two-
dimensional projected geometry and bone density. Computer
Methods and Programs in Biomedicine 104, 168–174.

Pan, B., Asundi, A., Xie, H., Gao, J., 2009. Digital image correlation
using iterative least squares and pointwise least squares for
displacement field and strain field measurements. Optics and
Lasers in Engineering 47, 865–874.

Pan, B., Wu, D., Yu, L., 2012. Optimization of a three-dimensional
digital image correlation system for deformation
measurements in extreme environments. Applied Optics 51,
4409.

Parkkari, J., Kannus, P., Palvanen, M., Natri, A., Vainio, J., Aho, H.,
Vuori, I., Jarvinen, M., 1999. Majority of hip fractures occur as a
result of a fall and impact on the greater trochanter of the
femur: a prospective controlled hip fracture study with 206
consecutive patients. Calcified Tissue International 65,
183–187.

Perry, C.C., 1986. Strain-gage reinforcement effects on orthotropic
materials. Experimental Techniques 10, 20–24.

Roth, T., Kammerlander, C., Gosch, M., Luger, T.J., Blauth, M.,
2010. Outcome in geriatric fracture patients and how it can be
improved. Osteoporosis International 21, S615–S619.

Schileo, E., Dall’ara, E., Taddei, F., Malandrino, A., Schotkamp, T.,
Baleani, M., Viceconti, M., 2008. An accurate estimation of
bone density improves the accuracy of subject-specific finite
element models. Journal of Biomechanics 41, 2483–2491.

Silverman, S.L., Calderon, A.D., 2010. The utility and limitations
of FRAX: a US perspective. Current Osteoporosis Reports 8,
192–197.

Su, C., Anand, L., 2003. A New Digital Image Correlation
Algorithm for Whole-field Displacement Measurement. In:
Proceedings Singapore-MIT Alliance Symposium of
Innovation in Manufacturing Systems and Technology.

Svejme, O., Ahlborg, H.G., Nilsson, J.-Å., Karlsson, M.K., 2012.
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Full-Field Strain Measurement
During Mechanical Testing
of the Human Femur
at Physiologically Relevant
Strain Rates
Understanding the mechanical properties of human femora is of great importance for the
development of a reliable fracture criterion aimed at assessing fracture risk. Earlier ex
vivo studies have been conducted by measuring strains on a limited set of locations using
strain gauges (SGs). Digital image correlation (DIC) could instead be used to reconstruct
the full-field strain pattern over the surface of the femur. The objective of this study was
to measure the full-field strain response of cadaver femora tested at a physiological strain
rate up to fracture in a configuration resembling single stance. The three cadaver femora
were cleaned from soft tissues, and a white background paint was applied with a random
black speckle pattern over the anterior surface. The mechanical tests were conducted up
to fracture at a constant displacement rate of 15 mm/s, and two cameras recorded the
event at 3000 frames per second. DIC was performed to retrieve the full-field displace-
ment map, from which strains were derived. A low-pass filter was applied over the meas-
ured displacements before the crack opened in order to reduce the noise level. The noise
levels were assessed using a dedicated control plate. Conversely, no filtering was applied
at the frames close to fracture to get the maximum resolution. The specimens showed a
linear behavior of the principal strains with respect to the applied force up to fracture.
The strain rate was comparable to the values available in literature from in vivo meas-
urements during daily activities. The cracks opened and fully propagated in less than
1 ms, and small regions with high values of the major principal strains could be spotted
just a few frames before the crack opened. This corroborates the hypothesis of a strain-
driven fracture mechanism in human bone. The data represent a comprehensive collec-
tion of full-field strains, both at physiological load levels and up to fracture. About
10,000 points were tracked on each bone, providing superior spatial resolution compared
to �15 measurements typically collected using SGs. These experimental data collection
can be further used for validation of numerical models, and for experimental verification
of bone constitutive laws and fracture criteria. [DOI: 10.1115/1.4028415]

Introduction

The femur is the bone in the human body that is most frequently
fractured [1,2]. Aside from the femur fractures that result from
high-energy impacts, such as car accidents, there is a continuously
increasing number of fractures occurring after low-energy or no

impact [3]. Many of these occurrences are due to osteoporosis.
Most femoral fractures occur in the proximal region [2], and result
in a dramatic increase in patient morbidity and mortality [4]. In
clinical practice, the fracture risk is currently estimated based on
the bone mineral density values and use of statistical tools that
account for clinical risk factors [5]. These methods have the
advantage of being easy to access and administer, but they also
have severe limitations [6,7]. One limitation is that the bone ge-
ometry and mechanical properties are poorly considered in these
methods. However, bone mechanical properties are highly
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correlated with fracture risk in individuals [8,9]. Therefore, the
mechanics of femoral neck fractures have been investigated
through ex vivo experiments, with the aim of directly providing
information on the bone mechanical properties [10,11], and of
complementing numerical studies [12]. Most previous studies
conducting mechanical ex vivo tests on proximal femora meas-
ured the structural properties [13] and/or the strain levels in a few
predetermined locations using SGs [14].

DIC is a noncontact method that acquires digital images of an
object and performs image analysis to extract full-field shape, de-
formation and/or motion measurements [15]. The use of DIC for
full-field strain measurements during mechanical testing of long
bones has been introduced only recently. Dickinson et al. explored
the potential of DIC as a tool for strain measurement using a syn-
thetic composite bone with the aim to be used for validation for
numerical studies [16]. The strain prediction accuracy was compa-
rable to that in previous literature; however, the validation was
performed against 25 measurements from as many selected spots,
and not against the full-field data. Other studies, e.g., Op Den
Buijs and Dragomir Daescu [17], used 2D DIC to measure strains,
thus allowing only qualitative evaluation of the obtained measure-
ments. Gilchrist et al. used high-speed cameras and DIC to mea-
sure strains on proximal human femora under a simulated fall on a
side [18]. The reliability of DIC strain measurements on human
femora was also determined by a direct comparison with SG data.
Our research group recently performed some experiments using
DIC, with the aim of addressing the strain measurement repeat-
ability using synthetic bones [19], and to investigate the compres-
sion behavior and fracture mechanism of rat bones [20]. However,
no studies have investigated the full-field strain response of ex
vivo human femora at a strain rate compatible with those found
during normal daily activities, e.g., walking or single leg stance.
Thus, the aim of the present study was to investigate the mechani-
cal response of cadaver proximal femora up to fracture in a con-
figuration resembling single leg stance, using a 3D-surface DIC
system equipped with high-speed cameras.

Material and Methods

Material. Three fresh-frozen proximal cadaver femora were
obtained from Kuopio University Hospital through an ethically
approved protocol (ethical permission by National Authority for
Medicolegal Affairs 5783/2004/044/07). Computed tomography
(CT) scans were obtained (Siemens Definition AS64, Siemens
AG, Germany, 0.4� 0.4� 0.6 mm voxel size) of each specimen
to exclude the presence of fractures or other abnormalities. None
of the donors had any history of musculoskeletal disorders. The
height, weight, sex, and age at death of the donors are reported in
Table 1. Soft tissues were removed from the femora by using scal-
pels and fine sandpaper. During the imaging and mechanical test-
ing phase, the femora were kept in plastic boxes partly filled with
phosphate buffered saline solution to preserve tissue hydration
when not in use, and put back in the freezer afterward.

Specimen Preparation. The anatomical planes were identified
from the proximal femur geometry to ensure a consistent align-
ment between the three specimens. Bones were resected 5.5 cm
below the minor trochanter and leaned on the anterior side on a
flat surface. The three contact points located on the femoral head,

greater trochanter and shaft defined the anterior plane for each
femur (Fig. 1, red circles). The shaft axis was then defined as the
line connecting the most lateral points of the femur at the minor
trochanter level and at the distal cutting region level (Fig. 1, blue
triangles). Following the defined reference frame, the distal part
of each specimen was inserted in a custom-made, stainless steel
holder that was subsequently filled with cold-cured epoxy resin
(Technovit

VR

4071, Heraeus Kulzer, Germany). The height of the
epoxy pot was 2.5 cm for specimen #3, whilst the other two speci-
mens required a 5 cm tall pot in order to avoid relative movements
during the mechanical test. To prevent local crushing, the superior
part of the femoral head was covered with a stainless steel cap,
which was applied over the femoral head using epoxy (Fig. 1).

Each specimen was optimized for camera recordings and DIC
measurements by applying a matt white background over the anterior
surface using a solvent-based spray paint (Gamma, The Netherlands).
After the white paint dried, a black random speckle pattern was man-
ually applied using a permanent marker. This ensured a high repeat-
ability in terms of speckle size, and an enhanced contrast between
the speckle and the background. Following the practical recommen-
dations from Sutton [15, Chap. 10], speckles should be sampled by
at least a 3 by 3 pixel array to minimize oversampling. With the
adopted camera settings (reported in the next section), and aiming at
obtaining a 6 by 6 pixel speckle size, the physical speckle size was
set to a minimum of 0.6� 0.6 mm.

Mechanical Testing. Two high-speed cameras (Fastcam
SA1.1, Photron, Inc.) with 1 Mpx resolution were used to record
the test at 3000 frames per second (fps). With the adopted parame-
ters for DIC recording (pan angle 29 deg, baseline camera distance
280 mm), a spatial resolution of approximately 0.1 mm/px was
achieved. Two high-intensity cold light sources (DX15, Hedler
GmbH, Germany) were used to enhance the light to allow camera
recordings with a short shutter time and high aperture settings.

Mechanical tests were performed with a single monotonic ramp
at 15 mm/s up to the macroscopic failure of each specimen. The
distal pot was rigidly mounted on the moving part of the loading
machine (5500 R, Instron, Inc.), and the contact point with the
steel cap placed over the femoral head was greased to minimize

Table 1 Patient information (sex, age at death, height/weight,
and leg side) for the three specimens tested

Specimen
ID

Sex
(M/F)

Age
(yr)

Height
(cm)

Weight
(kg)

Side
(L/R)

#1 M 22 186 106 L
#2 M 58 183 85 R
#3 M 58 183 112 L

Fig. 1 (a) Experimental setup. (b) A raw image from the master
DIC camera, showing one sample with its control plate. (c)
Sketch of the specimen preparation. Frontal plane was defined
by the three contact points on the frontal side of the femur,
depicted with red circles. The shaft axis was defined by the two
most lateral points at the smaller trochanter level and at the cut-
ting plane level, respectively (blue triangles). This reference
system was used to guide the insertion of the distal pot, and
the application of the protective cap on the femoral head. The
position of the three virtual SGs is shown with green squares.
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the friction and avoid undesired load components. A load cell
(maximum axial load 100 kN, accuracy 0.5% of the reading within
1/500th of the load cell capacity, Instron, Inc.) measured the con-
tact force at the femoral head. The analog recordings of the
applied displacement and resulting force from the loading
machine were sampled at the same recording frequency of the
cameras, and converted to a digital signal using a digital acquisi-
tion module (Isi-DAQ-STD-8D, Isi-Sys GmbH, Germany). This
digital acquisition module was taking both the analog data from
the loading machine and the clock digital signal from the master
camera as an input, and providing synchronized measurements of
the measured force and displacement as a digital output signal to a
computer equipped with the control software (Vic-3D 2010, Cor-
related Solutions, Inc.). During the tests, a control plate of approx-
imately 35� 35 mm size with a speckle pattern applied with a
sticker was rigidly connected to the moving part of the loading
machine to serve as a zero reference for control and analysis of
systematic errors and random noise (Fig. 1).

Image Correlation. After the mechanical testing, the DIC of
the recorded images was calculated for each specimen (Vic-3D
v7, Correlated Solutions, Inc.) to obtain a discrete displacement
field for each recorded frame. A triangularization process analo-
gous to the one used in the finite element method retrieved strains
from this discrete displacement field [15]. Two different sets of
parameters were used for the DIC and strain calculation, called
prefracture and near-fracture. The prefracture parameter set was
applied to all frames before the fracture, i.e., before the crack for-
mation was noticeable with the naked eye. The near-fracture pa-
rameter set was applied to 100 frames preceding and following
the crack opening frame, i.e., 50 frames before and 50 frames after
fracture. The two DIC parameter sets were defined as follows:

—Prefracture: DIC was calculated with a subset size (that is,
the size of the area used to evaluate the gray level pattern)
of 25 px and a step size (defined as the number of pixels by
which the subset is shifted to calculate the displacement
field) of 5 px. All the frames were compared to the same
specimen reference picture, taken in the undeformed config-
uration. The displacement vector at each recorded point was
filtered using a low-pass filter at a cut-off frequency of 100
Hz to remove high-frequency vibration components. Green-
Lagrangian strains were then calculated from the filtered
displacement field using a spatial decay filter of 5 px size.

—Near-fracture: DIC was calculated with subset size¼ 25 px,
step size¼ 1 px, and no filters were applied to the obtained
displacement. The Green-Lagrangian strains were calculated
with the same spatial decay filter as in the prefracture mode.

DIC Postprocessing. To enable comparison with literature, the
location of three virtual SGs was identified over the measured field at
the femoral head, neck and diaphysis level [21], as shown in Fig. 1
(green squares). The 3D shape of each specimen was obtained by
semi-automatic segmentation of the CT datasets (Seg3D2, CIBC,
University of Utah), and spatially registered to fit with the DIC point
clouds, using a MATLAB (v8.1, The Mathworks, Inc.) code based on a
genetic optimization algorithm. The position of the virtual SGs was
identified over the registered 3D models using a multimodal data
software [22]. The strains in those three locations were averaged
over a 3 mm2 area to reproduce the output of a SG typically used in
previous tests. The calculated principal strains were then plotted
against the applied force. The strain rate at the three virtual SGs loca-
tion was also evaluated with a custom-written MATLAB code. More-
over, the evolution of the principal strain magnitude and orientation
was investigated for several representative loads: 75%, 100%, and
150% of the body weight (BW), and at the frame immediately before
fracture. The latter was defined as the last frame in the time series
where a crack was not visible with the naked eye.

The noise levels were benchmarked against the control plate
placed on a side of the specimen under test (Fig. 1). This plate was
rigidly connected to the distal holder of the femur, moving together

with it during the test. As no force was applied onto this plate, a con-
stant null strain should theoretically be obtained from its DIC dis-
placement field. Thus, the average and the maximum values of the
major principal strain detected by the DIC algorithm on this control
plate were evaluated before and during the test, and taken as an indi-
cation of the noise level of the measurements.

Using the data from the near-fracture parameter set, the peak
strains at fracture were measured, and the crack evolution was
plotted. Fracture limit diagrams were produced, showing the prin-
cipal strain components at the fracture instant, with the aim of
identifying a possible fracture precursor, as they provided some
useful information in previous studies on rat bones [20]. The re-
sidual strains in the femora 0.08 s after fractures were also eval-
uated to provide a qualitative estimation of the amount of plastic
phenomena that occurred.

Results

“Global” Measurements. The coefficient of determination (R2)
of the displacement–time curves was greater than 0.99 for all tests,
and the corresponding normalized root mean square error (NRMSE)
was smaller than 11%. Each mechanical test took approximately
0.5 s. The force–displacement curves for the three femora exhibited
a sudden drop after the maximum force had been reached (Fig. 2).
The coefficient of determination for all the force–displacement
curves was equal to or higher than 0.99 up to the maximum recorded
force. The maximum force recorded for the three specimens was
13,383 N, 7856 N, and 9080 N, respectively.

DIC Noise. Using the prefracture parameter set, the average
major principal strain detected on the control plate in the resting
mode (i.e., with loading machine turned on but not operating) was
31 6 22 le, 49 6 30 le, and 16 6 12 le for the three specimens,
respectively. The corresponding maximum recorded values of the
major principal strain were 142 le, 361 le, and 51 le, respectively.
When the mechanical test was ongoing, the values raised
to 164 6 27 le, 106 6 29 le, and 81 6 19 le, respectively.
The maximum recorded major principal strains during test were
593 le, 659 le, and 532 le, respectively.

Simulated Strain Gauges. The strain data from the simulated
SGs show a linear-wise behavior with respect to the applied force
until fracture (Fig. 3). The linear correlation coefficient was
greater than 0.96 (NRMSE smaller than 19%) for all the SGs from
all the specimens, except for one SG in specimen #1 and #2,
whose positions were set too close to the distal pot (Table 2). As a
consequence, the strains were measured over a substantially unde-
formed region, thus weakly correlating with the increasing applied
force. The strain rate calculated from the virtual SGs varied
between the different SG locations, with the greatest values con-
stantly located at the femoral head or neck. For all tested

Fig. 2 Force–displacement curves for the three specimens
tested. Specimen #1 is shown in red (dotted line), #2 in green
(dashed line), and #3 in blue (continuous line).
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specimens, the maximum value of the strain rate was recorded
just before the fracture with magnitudes ranging between 0.032
and 0.053 s�1.

Strain Linearity. The linear correlation of the principal strains
with respect to the applied force was investigated also over the
whole cloud of measurements. Pooling the principal strains of the
three specimens, 91% of the points had a coefficient of determina-
tion greater than 0.9 (average NRMSE for these points 12% 6 7%,
maximum NRMSE¼ 32%), and 81% had a coefficient of

determination greater than 0.95 (average NRMSE for these
points¼ 11% 6 5%, maximum NRMSE¼ 22%).

Principal Strains Magnitude and Direction. The major and
minor principal strain directions did not change noticeably during
the test as the applied force increased (Figs. 4 and 5, respectively).
However, a more uniform alignment of the principal directions
was observed with increasing force levels. The corresponding
major and minor principal strain magnitudes consistently
increased (in absolute value) with the increasing levels of the
applied load (Figs. 6 and 7, respectively).

Fracture Limit. Due to a technical problem with the camera
trigger, the video recordings of specimen #1 were interrupted just
a few frames before the fracture. Thus, results at fracture can only
be presented for specimens #2 and #3. The frames closest to the
crack formation and propagation were isolated, and the evolution
of the major principal strain during those frames is depicted in
Fig. 8. The fracture limit plots indicate that tensile strains domi-
nate over compressive strains in the anterior surface of the femora
at fracture (Fig. 9). The points with the highest sum of the abso-
lute value of the major and minor principal strains are consistently
located where the cracks are subsequently formed in 0.3 ms
(Fig. 9, black points).

Residual Strains. The residual strains 0.08 s after the crack
opening were in the order of a few hundred microstrains. High
strain levels (greater than 1000 le) were found only in the crack
region. Mean and median values of the residual principal strains
are reported in Table 3.

Discussion

The aim of the present study was to investigate the mechanical
behavior of human femora both under physiological loading and
at fracture, using DIC to measure the strain response at the surface
during ex vivo mechanical testing.

The noise in the DIC measurements was evaluated during the
postprocessing phase using a control plate, rigidly joined to the
moving part of the loading machine but not subjected to any de-
formation. A constant null strain should theoretically be detected
by DIC on the control plate. This does not happen in reality,
where hardware intrinsic limitations and external disturbances
might add undesired components to the measured signals [23].
The latter will add noise to the calculated strains; the strains
detected over the undeformed control plate can thus be taken as
an indication of such noise component. High-frequency oscilla-
tions, likely caused by vibration of the loading machine, can gen-
erate noise in the DIC displacement field. This noise was more
pronounced along the out-of-plane direction of the cameras, likely
due to the intrinsic limitations in the stereographic reconstruction.
The noise is further amplified when deriving the strains. A low-

Fig. 3 Evolution of the major (positive sector) and minor (neg-
ative sector) principal strains, as a function of the applied force,
in the simulated SGs for the three femora. The strain gage on
the head is depicted in blue (continuous line), the one on the
neck in green (dashed line), and the one at the diaphysis level
in red (dotted line).

Table 2 Linear regression data for the simulated SGs at different positions (H 5 femoral head, N 5 femoral neck, D 5 proximal
diaphysis) for the three specimens tested

R2 NRMSE (%) Slope (le/N) Intercept (le/N)

Specimen
number

SG
position e1 e2 e1 e2 e1 e2 e1 e2

1 H 0.99 0.99 0.92 0.95 0.40 �0.35 73.7 �58.7
1 N 0.98 0.99 0.86 0.97 0.28 �0.39 20.0 �13.9
1 D 0.58 0.98 0.35 0.87 0.03 �0.24 �49.5 �75.1
2 H 0.99 0.99 0.88 0.90 0.77 �0.54 23.1 �121.0
2 N 0.98 0.99 0.86 0.96 0.61 �0.90 69.4 �93.7
2 D 0.51 0.99 0.30 0.94 0.08 �0.77 145.0 �98.8
3 H 0.96 0.99 0.81 0.90 0.63 �0.46 54.6 �13.8
3 N 0.99 0.99 0.93 0.94 0.34 �0.46 96.2 �30.6
3 D 0.99 0.98 0.90 0.87 0.29 �0.18 20.5 �37.6

111010-4 / Vol. 136, NOVEMBER 2014 Transactions of the ASME

122 Paper III



pass filter was thus applied on the DIC displacement data in the
prefracture stage, before strain derivation. This reduced the noise
levels in the control plate to �100 le. The strain levels from the
control plate define the worst case scenario, since the plate was
located on one side of the camera field of view, and all the camera
and lighting settings were specifically optimized to best capture
the surface of the femur. However, the derivation of strains for the
crack propagation phase was conducted without any previous fil-
tering, to get the maximum time and spatial resolution.

Our findings show that the chosen displacement rate corre-
sponded to a strain rate in the virtual strain gages of �0.04 s�1,
which is comparable to the values found in literature from in vivo
strain measurements during physiological activities like walking
and running [24,25].

The tested specimens revealed a linear behavior in terms of
strain levels on the surface against applied force (R2> 0.96 for
the virtual SGs, and R2> 0.9 for over 90% of the measurements,
with average NRMSE of 12%). Points with low correlation
were located at the boundaries of the DIC cloud, where uncer-
tainties in the strain calculation may arise related to the adopted
algorithm [15], and close to the holding pot, where negligible
strains were measured throughout the test, thus weakly correlat-
ing with the increasing force. These results corroborate the find-
ings by Juszczyk et al. [11], who reported a linear correlation
between principal strains and applied force on a limited set of
anatomical locations, using SGs. Our results provide a signifi-
cant complement to them by showing that the linear correlation
extends to the whole anterior surface of the femur, with about

Fig. 4 The orientation of the major principal strain direction for the three femora at four
different load levels, defined by 75%, 100%, and 150% of the BW, and at the frame immedi-
ately before the crack formation. Only a subsampling of the points was depicted with
arrows, and the direction of the other points is indicated by the background color of the
femur, according to the legend on the right.

Fig. 5 The orientation of the minor principal strain direction for the three femora at four
different load levels, defined by 75%, 100%, and 150% of the BW, and at the frame immedi-
ately before the crack formation. Only a subsampling of the points was depicted with
arrows, and the direction of the other points is indicated by the background color of the
femur, according to the legend on the right.
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Fig. 7 Minor principal strain distribution for the three femora at four different load levels,
defined by 75%, 100%, and 150% of the BW, and at the frame immediately before the crack
formation

Fig. 8 Crack formation and propagation for specimens #2 and #3: the major principal strain
distribution is superimposed on the raw pictures recorded. The major principal strains after
the crack opened are not shown, as the fast surface motion resulted in a slightly out-of-focus
picture. This impaired the correct image correlation.

Fig. 6 Major principal strain distribution for the three femora at four different load levels,
defined by 75%, 100%, and 150% of the BW, and at the frame immediately before the crack
formation
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10,000 points per specimen tracked using an optical full-field
technique.

The linear, macroscopically elastic, behavior of the tested
specimens up to fracture is also corroborated by the analysis of
the residual strains measured 0.08 s after fracture. The strains
were in the order of a few hundred microstrains, with higher
strains confined in proximity of the fracture rim where small
localized plastic phenomena are likely to happen.

The major and minor principal strain directions formed a pattern
that corresponds to the classic theory of Wolff’s law [26], such that
the “principal tensile group” and the “principal compressive group”
are clearly visible in the results (Figs. 4, 5, and 10). The principal
strain directions (Figs. 4 and 5) aligned more with those identified by
Wolff, for higher loads. This means that the surface strains of a
human femur subjected to a single stance-like load have principal
orientations that tend to follow the internal trabecular orientation.
Thus, our results confirm the significant contribution of trabecular
bone to load bearing. These results are also in agreement with the
principal directions of anisotropy found through a Gradient Structure
Tensor analysis of clinical CT scans [27], and when implementing
anisotropy in finite element models [28].

The fracture event lasted for less than �1 ms after the first crack
formation was seen in the camera recordings. Specimen #3 under-
went a subcapital fracture, and a cloud of points with high major
principal strains (>15,000 le) was present in the fracture region
several milliseconds before the crack actually formed. This cloud
constantly expanded and increased in magnitude until the crack
abruptly formed and propagated. The major principal strain can
thus be seen as a good fracture predictor for this case, in agree-
ment with previous experimental and numerical studies [29]. The
fracture limit plot in Fig. 9 (bottom) also corroborates this hypoth-
esis, i.e., the cracked region exhibited the highest values of tensile
strains. Specimen #2 underwent a different kind of fracture, which
can be classified as a basicervical femur fracture. The fracture
onset was located on the superior aspect of the femoral neck and

the crack propagated almost parallel to the intertrochanteric line.
No clear fracture precursor was found in this case, as only a small
region where high strains concentration could be spotted in the
fracture region before the crack opened, whilst a wide region with
high major principal strains was present in the subcapital region
without giving rise to a crack. This suggests that the crack actually
originated in a region out of the field of view of the recording sys-
tem, most likely in the superior aspect of the neck, which was only
partly covered by the cameras due to its high curvature. Then, DIC
captured the fracture propagating over the camera field of view,
where a combination of high tensile and compressive strains was
driving the crack propagation, as shown in Fig. 9 (top).

To our knowledge, this is the first study conducting comprehen-
sive mechanical tests up to fracture on human cadaveric bones
using high frame rate DIC to evaluate the full-field response at
physiologically relevant strain rates. Dickinson et al. [16] and
V€a€an€anen et al. [19] tested synthetic femoral bones, which
resulted in conclusions only related to the feasibility of DIC over
such geometries. Testing cadaveric specimens involves additional
challenges related to tissues hydration and preservation, and to the
presence of small anatomical features on the surface (such as
microholes, protuberances and wrinkles) that are not reproduced
in synthetic femora. Mechanical tests on cadaver femora using
DIC were performed by Op Den Buijs and Dragomir-Daescu [17].
However, only one video camera was used for DIC recordings,
meaning that only 2D strain measurement was possible. That is likely
to adversely affect the accuracy of the measurements in high curva-
ture regions. Moreover, only qualitative analysis of the strain data
was provided, as only the global bone stiffness was evaluated quanti-
tatively. Gilchrist et al. [18] investigated the femur behavior during
fall on the side, while our study aimed at evaluating a physiological
loading condition such as single leg stance.

Compared to literature where SGs are used, the advantage of
DIC is in the higher number of measurements, i.e., about 10,000
measurement points with the prefracture parameter set, against
10–15 measurements typically obtained with SGs. This allows us
to obtain a full-field deformation measurement over the recorded
bone surface. Moreover, DIC measurements are noncontact, prac-
tically eliminating the reinforcement effect that could be signifi-
cant when using SGs over thin surfaces [30].

The main limitation with the present study is the low number
(n¼ 3) of tested cadaveric femora, which prevents us from doing
a reliable statistical analysis. All three specimens came from male
donors, of which one young and two middle aged (Table 1), thus
they do not cover the variability in the population in terms of femoral
size, cortical thickness, and bone density. However, the main

Fig. 9 Fracture limit plot for specimens #2 and #3 at the last
frame before the crack is detected. The 5% of the points with a
higher sum of the principal strains is evidenced in black in the
plots (left), and their anatomical location is shown with the
same color (right).

Table 3 Median and average value of the residual strains
measured in specimen #2 and #3 0.08 s after the crack was
noticed

Specimen number Principal strain Median (le) Average (le)

2 e1 153.3 338.9
2 e2 238.6 433.4
3 e1 328.6 760.1
3 e2 318.6 559.6

Fig. 10 The orientation of the major and minor principal strain
directions for specimen #2 at the frame immediately before the
crack formation. The orientations are reported over a sagittal
section of the femur obtained with a high-resolution CT scanner
(Verity CT scanner, Planmend, Finland). The CT images and the
full-field orientation data were coregistered manually, with aim
of qualitatively showing the correspondence between the prin-
cipal strain directions on the bone surface, and the internal tra-
becular orientation.
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findings of the study in terms of fracture toughness at a physiological
strain rate are not affected by this, since aging is believed to result in
increasing the brittleness in mechanical behavior of bone [31].

Another limitation is the slightly different boundary conditions
applied to specimen #3, since the other two specimens required a
deeper epoxy potting in order to achieve stability inside the holder.
At first, a 2.5 cm tall pot was built also for specimens #1 and #2.
However, it was judged to be too weak. Thus, we believed it was
safer to reinforce the epoxy pot by adding 2.5 cm extra material, in
order to eliminate the risk of possible mechanical instabilities. The
greater stability of specimen #3, in comparison to the other two was
probably related to its significantly greater shaft diameter that almost
filled the base of the distal steel box. However, these differences in
the distal holding level should not affect the mechanical behavior sig-
nificantly, since similar fracture patterns have been found in a multi-
tude of previous studies using very different boundary conditions.

A final limitation is the frame rate of the camera recordings. De-
spite being high for the currently available technology (3000 fps), it
only allowed us to record 3–4 frames of the crack opening and prop-
agation at the adopted displacement rate. Future studies should aim
at adopting even higher frame rates and expanding the field covered
by the DIC. The latter point can be addressed, for example by using
a second pair of cameras pointing at the posterior side of the femur.

In summary, the developed ex vivo testing protocol was able to
provide a detailed high-frequency strain mapping of the whole
femoral surface, including also the fracture region. The collected
data showed a linear behavior of the proximal human femora
when loaded up to fracture at a physiologically relevant strain
rate, suggesting that the principal strains at the surface can repre-
sent a reliable fracture discriminant. The full-field collection of
displacement and deformation measurements will also act as an
extensive benchmark for subject-specific finite element models of
proximal femur [32,33].
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Nomenclature

fps ¼ frame rate, expressed in frames per second
ms ¼ time, expressed in milliseconds
R2 ¼ coefficient of determination
e1 ¼ major principal strain
e2 ¼ minor principal strain
le ¼ strain, expressed in microstrains (strain� 10�6)
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a b s t r a c t

Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment
in individuals. A thorough laboratory validation against experimental data is required before introducing
such models in clinical practice. Results from digital image correlation can provide full-field strain dis-
tribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with
strain gauges. The aim of this study was to validate finite element models of human femora against
experimental data from three cadaver femora, both in terms of femoral strength and of the full-field
strain distribution collected with digital image correlation. The results showed a high accuracy between
predicted and measured principal strains (R2¼0.93, RMSE¼10%, 1600 validated data points per speci-
men). Femoral strength was predicted using a rate dependent material model with specific strain limit
values for yield and failure. This provided an accurate prediction (o2% error) for two out of three
specimens. In the third specimen, an accidental change in the boundary conditions occurred during the
experiment, which compromised the femoral strength validation. The achieved strain accuracy was
comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against
10–16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure
location being very close to the experimental fracture rim. Despite the low sample size and the single
loading condition tested, the present combined numerical–experimental method showed that finite
element models can predict femoral strength by providing a thorough description of the local bone
mechanical response.

& 2016 Elsevier Ltd. All rights reserved.

Fragility fractures due to osteoporosis are a huge problem in
Western society (Burge et al., 2007). Pharmacological treatment
can increase strength of osteoporotic bones and reduce fracture
risk (Kanis et al., 2013) but should be targeted to individuals
whose risk of fracture is highest (Lindsay et al., 2005).

Osteoporosis is diagnosed based on bone mineral density
measured in the proximal femur or lumbar spine using Dual-
Energy X-ray absorptiometry. By including epidemiological
parameters, fracture risk is estimated (Cummings et al., 2006;

1. Introduction Kanis et al., 2005). This method has a relatively poor accuracy
(30% false negatives (Järvinen et al., 2005; McCreadie and
Goldstein, 2000)), and is ethnic-specific (Watts et al., 2009).
Subject-specific finite element (FE) models from computed
tomography (CT) scans can increase the prediction accuracy by
providing a comprehensive description of the bone's mechan-
ical response. Although the prediction accuracy is considerably
high both for strains (R240.95 (Schileo et al., 2008; Yosibash
et al., 2007)) and femoral strength (standard error of estima-
tion(SEE)o400 N (Koivumäki et al., 2012)), FE models have not
yet been introduced in clinical practice. This is due to several
reasons including concerns about validation (Henninger et al.,
2010; Viceconti et al., 2005). Typically, validation against
ex-vivo measurements with strain-gauges is performed. This
limits the data to �10–15 measurements at pre-selected spots
(Grassi and Isaksson, 2015). Optical methods like digital image
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correlation (DIC) (Gilchrist et al., 2013; Helgason et al., 2014;
Op Den Buijs and Dragomir-Daescu, 2011) provide a more
comprehensive validation benchmark. We recently collected
DIC measurements at a physiological loading rate on three
femora (Grassi et al., 2014), suited for reliable validation of FE
models.

Therefore, the aim of the present study was to predict fracture
load in human femora using subject-specific FE models. Validation
was performed for strains calculated with FE against strains measured
experimentally with DIC, and for femoral strength calculated with FE
against the maximum force recorded experimentally.

2. Material and methods

Three male cadaver human proximal femora were harvested fresh at Kuopio
University Hospital, Finland (ethical permission 5783/2004/044/07). None of the
donors had any reported musculoskeletal disorder. Height, weight, sex and age at
death are reported in Table 1. The specimens were CT scanned (Definition AS64,
Siemens AG, 0.4�0.4�0.6 mm voxel size).

2.1. Mechanical testing

The three femora were mechanically tested to failure in a single-leg-stance
configuration, and strains were measured using DIC. The experimental protocol
was reported in detail by Grassi et al. (2014). Briefly, the specimens were cleaned
and resected 5.5 cm below the minor trochanter. The femoral shaft below the
minor trochanter was embedded in epoxy and constrained. A stainless steel cap
was applied on the femoral head to distribute the load and avoid local crushing.
The gap between the cap and the femoral head was filled with epoxy. The anterior
surface was prepared for DIC by applying a random black speckle pattern over a
matt white background. Mechanical tests were performed in a single-leg-stance
configuration, with the load applied on the femoral head parallel to the shaft axis.
Specimens were loaded at 15 mm/s until macroscopic failure. DIC was performed
on the acquired images (two Fastcam SA1.1, Photron, Inc., 3000 frames per second;
VIC 3D v7, Correlated Solutions, Inc., 25 px subset, 5 px step, 100 Hz low-pass
displacement filter), and the Green–Lagrange strains were retrieved at each frame
(�10,000 uniquely traceable points per specimen) (Grassi et al., 2014).

2.2. Finite element modelling

FE models were generated using a consolidated procedure (Grassi et al., 2013;
Schileo et al., 2008). Femur geometry was semi-automatically segmented from CT
(threshold, dilation/erosion, and manual correction, Seg3D2, University of Utah).
The geometries were reverse-engineered (Rhinoceros 4.0, Robert McNeel &
Associates, USA, and RhinoResurf, Resurf3d, China), and a second-order tetrahedral
mesh (�140,000 nodes, �100,000 elements, Hypermesh v13.0, Altair Engineering)
was created. Elements in the epoxy pot were assigned an isotropic Young's mod-
ulus of 2.5 GPa, (Technovit 4071, Heraeus Kulzer). Elements belonging to the femur
were assigned Young's modulus based on the Hounsfield Unit (HU) values. CT
images were reconstructed using a sharp convolution kernel (B60f). Each axial slice
was filtered using a mean filter of 4�4 px size to compensate for the HU over-
estimation due to this kernel. Bonemat_V3 (Taddei et al., 2007) assigned inho-
mogeneous isotropic material properties to the elements, based on the HU values
of the volume enclosed by each element. HU values were converted to equivalent
radiological density (Model 3CT, Mindways Inc.), and the Young's modulus was
derived using the relationships proposed by Schileo et al. (2008). Poisson's ratio
was set to 0.4 (Reilly and Burstein, 1975). The geometry of the epoxy pot was used
to identify the experimental reference system (Fig. 1). The load was equally dis-
tributed among the 10 most superior surface nodes on the femoral head. FE
simulations were solved using Abaqus (v6.12-4, Dassault Systèmes).

2.3. Strain prediction accuracy

Strain prediction accuracy was evaluated at a force of four times the body
weight (BW). The predicted principal strains were compared to DIC measurements.
A registration and data comparison method was adopted, based on a procedure
that earlier provided good results for composite bones (Grassi et al., 2013). The DIC
point cloud was registered over the FE model using an iterative closest point
approach. For each surface element, the smallest sphere circumscribing it was
calculated. All DIC data lying within the sphere were averaged, and the obtained
value compared to the FE element strain. A robust regression analysis with bisquare
weighting function of the major and minor principal strain magnitudes was per-
formed to assess the accuracy. Bland–Altman plots (Bland and Altman, 1999) pro-
vided a visual interpretation of the agreement between predicted and measured
principal strains.

2.4. Femoral strength prediction accuracy

The FE models implemented a rate-dependent material model, with different
strain limit values for yield and failure (Fig. 2). Each element was assigned its
specific initial modulus (Erefelem) as described above. A strain rate correction factor:
SRCFelem ¼ ðϵ̇elem =ϵ̇ref Þ0:006was defined, where ε_ elem is the absolute major principal
strain rate, and ε_ ref is the strain rate at which yield values and density–elasticity
relationship were obtained (5000 mε/s (Bayraktar et al., 2004; Morgan et al., 2003)).
The tangent modulus was defined as: EelemðSRCFÞ ¼ SRCFelem � Erefelem .

Table 1
Patient information (sex, age at death, height, weight, and leg side) for the three
specimens used in this study.

Specimen ID Sex (M/F) Age [years ] Height [cm] Weight [kg] Side (L/R)

#1 M 22 186 106 L
#2 M 58 183 85 R
#3 M 58 183 112 L

Fig. 1. Overview of the study. Top left: the subject-specific FE models were built
starting from the CT scan through a process of segmentation, reverse engineering,
tetrahedral meshing, and material property mapping based on the calibrated CT
values. The origin of the experimental reference system was set in a base corner of
the epoxy pot, with x-axis and y-axis aligned to horizontal and vertical side,
respectively. The load was applied along the negative y-direction on the femoral
head. Bottom left: schematic of the experimental setup. The specimens were tested
until fracture in a single-leg-stance position, and deformations measured using 3D
surface digital image correlation (Grassi et al., 2014). Right: the FE predictions were
compared to the measured principal strains by registering the experimental point
cloud over the FE model, and then averaging the experimental values within each
element's volume of interest.

Fig. 2. The material model implemented in the FE models to predict bone strength.
The response was strain rate dependent, according to the defined strain rate cor-
rection factor (SRCF). The behaviour of one element for two different values of SRCF
is shown in the stress strain diagram. Bone strength was predicted using threshold
strain values for yield (εy) and failure (εf). Different thresholds were chosen for
tension (“t” superscript) and compression (“c” superscript). The post-yield modulus
was set to 5.5% of the modulus in the elastic range, as extrapolated from the
measurements reported by Reilly et al. (1974).
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Fig. 3. Prediction accuracy for the principal strains for the three bones pooled (top) and for each bone separately (row 2–4). The applied force was 4 times the subjects' body
weight. The robust linear regression analyses are shown on the left, and Bland–Altman plots on the right. The dotted lines represent the 95% confidence interval.
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Different limit strain values in tension (major principal strains) and compres-
sion (minor principal strains) were implemented for yield and failure. When ele-
ment strain exceeded the yield strain limit (10,400 mε compression, 7300 mε ten-
sion (Bayraktar et al., 2004)), the modulus was reduced to 5.5% of the tangent
modulus (Reilly et al., 1974), and the simulation continued. An element was con-
sidered failed when the ultimate strain limit was exceeded (21,000 mε compression,
26,050 mε tension (Reilly et al., 1974)).

The FE analysis was conducted by applying consecutive 0.05 mm increments,
with the time increment tuned to 15 mm/s displacement rate. The specimen was
considered failed when the first element failed, and the applied force taken as the
predicted femoral strength. This value was compared to the maximum force
recorded during the experiment. Relative error and SEE were reported. The pre-
dicted fracture onset location was qualitatively compared to the experimental
fracture rim.

3. Results

3.1. Strain prediction accuracy

For the three bones pooled (4826 data points), principal strains
magnitudes were predicted with a determination coefficient (R2)
of 0.94. The regression slope was 0.96, and the intercept 133 mε.
The normalised root mean square error (NRMSE) was 9%. The
predicted versus measured principal strains and the Bland–Altman
plot are reported in Fig. 3. When validating each bone individually
(Fig. 3), R2 was always 40.9, with slope and intercept close to
1 and 0, respectively.

3.2. Femoral strength prediction accuracy

Femoral strength was predicted with an error of �1.5% and
þ1.2% for bone #1 and #2, respectively (SEE¼155 N, Table 2).
Femoral strength for the third specimen could not be validated
because the cap slipped experimentally, which changed the pre-
scribed boundary conditions. FE models predicted failure to initi-
ate in compression on the medial aspect of the neck. The predicted
fracture onset was o1 cm away from the experimental fracture
line (Fig. 4).

4. Discussion

This study aimed to assess the ability of subject-specific FE
models to predict principal strains and femoral strength in human
femora. This is, to our knowledge, the first study reporting a
strain-fracture load FE validation against full-field strain mea-
surements at physiologically relevant strain rates (maximum
strain rate 0.032–0.053 s�1 (Grassi et al., 2014)).

Strains were predicted with a high accuracy (R2¼0.94,
NRMSE¼9%), comparable to the highest reported for human
femora in analogous loading configurations (R2¼0.95–0.97 (Schi-
leo et al., 2008; Yosibash et al., 2007)). The strain accuracy in those
studies was obtained against �10 measurements. In this study,
�1600 measurements covering the femur anterior surface (Grassi
et al., 2014) were used. This corroborates the validity of our FE
modelling approach, and represents one of the strengths of this
study. The majority of the points laid within the confidence limits

of the Bland–Altman plots, with no observable trends in the dis-
tribution (Fig. 3).

Rate-dependent material with strain limit values for yield and
failure was implemented. Limit values were taken from literature
(Bayraktar et al., 2004; Reilly and Burstein, 1974). SRCF was
defined, similar to Schileo et al. (2014). However, they applied a
constant SRCF to all elements. In our implementation, SRCF was
calculated for each element, and updated at every time increment,
thus more realistically describing the rate dependency of bone.

Femoral strength was accurately predicted for the first two
specimens (�1.5% and þ1.2%). SEE was comparable to the best
published results (Bessho et al., 2007; Koivumäki et al., 2012). The
latter were obtained using some specimens to train the models
and identify the optimal strain/stress limit values, and validating
the predictions over the remaining specimens. Our approach is
instead free from internal parameter calibration, and uses limit
values from experiments investigating bone properties at the
mesoscale level.

Fracture load was not validated for the third specimen, since
the cap slipped during the experiment. As a result, specimen #3
exhibited a peculiar fracture pattern: the crack originated close to
the rim of the cap and propagated vertically (Grassi et al., 2014).

Failure onset was predicted on the medial aspect of the neck, a
region mainly in compression. The onsets were close to the
experimental fracture rim (Fig. 4). The experimental images show
the crack originating on the superolateral aspect of the neck
(Grassi et al., 2014), which is predominantly loaded in tension. We
hypothesised that macroscopic crack formation was a consequence
of a compressive failure of the medial side of the neck, occurring

Table 2
Bone strength of the two specimens used in this study as measured during the
experiments (Grassi et al., 2014), and predicted using FE models.

Bone #1 Bone #2

Experimental strength [N] 13,383 7856
Predicted strength [N] 13,184 7947
Difference [%] �1.5% þ1.2%

Fig. 4. Top: graphical comparison of the experimentally obtained fracture rim
(black) with the fracture onset location predicted by the FE models (red). Middle:
the experimentally measured major principal strains at 0.3 ms before a crack was
detected in the DIC images are superimposed to the fracture rim and the predicted
fracture onset. Bottom: the experimentally measured minor principal strains at
0.3 ms before a crack was detected in the DIC images are superimposed to the
fracture rim and the predicted fracture onset. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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fractions of milliseconds before the crack formation. A similar two-
step failure mechanism has been reported for femora in side-fall
(de Bakker et al., 2009). There, high-speed cameras placed on the
medial and lateral aspect showed a two-step failure, where the
first failure was in compression on the superolateral aspect. The
macroscopic crack occurred immediately after on the contralateral
side. An analogous mechanism, with medial and lateral side
inverted due to the different loading direction, can very well occur
in single-leg-stance. In our experiment, no video recordings of
medial and lateral side were available, leaving the question about
fracture onset unanswered. Future experiments investigating bone
fracture should, whenever possible, use more cameras covering a
broader area.

This study is limited by its small sample size, with three spe-
cimens tested. A second limitation regards specimen #3, whose
fracture load could not be validated due to the cap slippage.
Nevertheless, the strain response for specimen #3 was analysed at
4BW, since slippage occurred later. Specimen #3 showed a very
high strain accuracy (R2¼0.94, slope¼0.99, Fig. 3), which corro-
borates the accuracy of the proposed FE modelling approach in
predicting femoral mechanical behaviour. The single loading
direction investigated is also limiting. Future works will aim at
extending our combined experimental/numerical approach to a
sideways fall configuration.

In summary, a simple subject-specific FE modelling technique,
free from internal parameter calibration, accurately predicted the
mechanical behaviour of human femora in a single-leg-stance
configuration, both in terms of strain response and fracture load.
These results support the translation of FE into clinical studies,
where the predicted bone strength could complement epidemio-
logical parameters in fracture risk estimation.
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ABSTRACT 

Computed tomography (CT)-based finite element (FE) models may improve the current 
osteoporosis diagnostics and prediction of fracture risk by providing an estimate for femoral 
strength. However, the need for a CT scan, as opposed to the conventional use of dual energy X-
ray absorptiometry (DXA) for osteoporosis diagnostics, is considered a major obstacle. The 3D 
shape and bone mineral density (BMD) distribution of a femur can be reconstructed using a 
statistical shape and appearance model (SSAM) and the DXA image of the femur. Then, the 
reconstructed shape and BMD could be used to build FE models to predict bone strength. Since 
high accuracy is needed in all steps of the analysis, this study aimed at evaluating the ability of a 3D 
FE model built from one 2D DXA image to predict the strains and fracture load of human femora.  

Three cadaver femora were retrieved, for which experimental measurements from ex vivo 
mechanical tests were available. FE models were built using the SSAM-based reconstructions: using 
only the SSAM-reconstructed shape, only the SSAM-reconstructed BMD distribution, and the full 
SSAM-based reconstruction (including both shape and BMD distribution). When compared to
experimental data the SSAM-based models predicted accurately principal strains (coefficient of 
determination>0.83, normalised root mean square error<16%) and femoral strength (standard
error of the estimate 1215 N). These results were only slightly inferior to those obtained with CT-
based FE models, but with the considerable advantage of the models being built from DXA images. 
In summary, the results support the feasibility of SSAM-based models as a practical tool to 
introduce FE-based bone strength estimation in the current fracture risk diagnostics. 
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INTRODUCTION 

Fragility fractures represent a major concern in the modern Western society, with both fracture 
incidence and associated economic burden continuously increasing (Burge et al. 2007). The majority 
of low-energy trauma fractures can be ascribed to bone weakness due to osteoporosis (Johnell and 
Kanis 2006). While pharmacological treatments can increase the strength of osteoporotic bone and 
reduce the risk of fracture (Kanis et al. 2013), the identification of the subjects at high risk of fracture 
remains an issue. The methods currently adopted in the clinical practice are based on measurement of 
bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA), often complemented by 
epidemiological and statistical parameters (Kanis et al. 2005; Cummings et al. 2006). These methods 
are limited in their ability to accurately diagnose osteoporosis (30% false negatives (Järvinen et al. 2005; 
Järvinen et al. 2014)), with the epidemiological and statistical tools often not being general enough, due 
to their ethnic-specificity (Watts et al. 2009; Lekamwasam 2010; Silverman and Calderon 2010). 

Subject-specific finite element (FE) models have the potential to improve the accuracy of fracture risk 
predictions by providing an accurate estimate for bone strength, together with a comprehensive and 
local characterization of the mechanical response of bone under different loading conditions. Although
FE models can predict femoral strength more closely, as compared to BMD based on DXA images 
(Cody et al. 1999), they are still not used in the clinics to predict fracture risk. One reason for this is 
that the majority of the proposed FE modelling techniques is based on computed tomography (CT) 
datasets. When compared to DXA, CT has higher operational cost and provides a higher radiation 
dose to the patients (Kanis 2002). Subject-specific FE models from DXA images would overcome this 
issue, enabling also the possibility of conducting clinical trials in parallel with the current diagnostics. 
When building FE models from DXA images, the two main approaches are: (i) construction of two-
dimensional FE models using the planar image provided by the DXA instrument (Op Den Buijs and 
Dragomir-Daescu 2010; MacNeil et al. 2012; Sarkalkan et al. 2014a; Yang et al. 2014; Dall’Ara et al. 
2016), and (ii) use of statistical tools (most often based on principal component analysis, PCA) to
reconstruct the 3D shape and BMD distribution from a planar DXA image, and use the reconstructed 
information to perform a 3D FE analysis (Langton et al. 2009; Whitmarsh et al. 2011; Väänänen et al. 
2015). Two-dimensional FE models based on DXA may accurately predict femoral strength (Yang et 
al. 2014; Dall’Ara et al. 2016), but cannot overcome the limitations inherent to their two-dimensional 
nature, such as the inability to test the bone in out-of-plane direction or to localize the point where the 
fracture originates. The 3D shape and BMD reconstruction from a 2D image using statistical tools has 
the potential to overcome these issues. The accuracy in the reconstruction of both shape and BMD 
has reached remarkable levels (average shape reconstruction error 1.4 mm, mean absolute difference 
of the reconstructed volumetric BMD 185 mg/cm3 (Väänänen et al. 2015)). 

However, to the authors’ best knowledge, no 3D FE models obtained from statistical reconstruction 
of a DXA image have been confirmed to accurately predict the mechanical behaviour of human 
femora, and ultimately the bone strength (Sarkalkan et al. 2014b; Castro-Mateos et al. 2014). Bryan et 
al. (2009) used a statistical model to generate 1000 realistic femur anatomies and estimate their fracture 
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risk in a configuration resembling a postero-lateral fall. However, the generated models used material 
properties from CT data, and no direct validation could be provided, since the models were randomly 
generated. Whitmarsh et al. (2012) used a statistical reconstruction of shape and BMD from DXA 
images to discriminate hip fracture cases. The contribution of the reconstructed models was restricted 
to the extraction of three-dimensional anatomical shape and density parameters. These were used as 
additional risk factors to improve the accuracy of the discrimination. Thus, no actual FE analyses of 
the mechanical behaviour of the reconstructed models were performed. Grassi et al. (2014a) evaluated 
the ability of PCA-based finite element models to predict the mechanical behaviour of 8 human 
femora. A high correlation was found between the strains predicted by the reconstructed PCA-based 
models and those measured during analogous experimental tests on the same specimens. However, 
the PCA-based models were reconstructed against 3D CT data, and no validation of femoral strength 
was provided. Thevenot et al. (2014) proposed a specific method to construct 3D FE models of 
proximal femora from a single radiograph, using a shape template and a set of geometrical parameters 
that were measured from the radiograph. The models were used to predict femoral strength on 21 
samples in a condition resembling a fall to the side, showing a promising accuracy (coefficient of 
determination = 0.64, standard error of the estimate = 543 N). The material properties for the models 
were estimated based on the CT-based values of the training set bones and a homogeneity index 
derived from the radiograph. Therefore, the subject-specific BMD distribution was not taken into 
account, which can be a limitation when samples with BMD significantly different from that of the 
seven bones of the training set are examined. Recently, Bonaretti et al. (2014) created statistical models 
of shape and appearance using both an image-based approach (i.e., the result of the reconstruction is 
a volumetric image) and a mesh-based approach (i.e., a FE-ready mesh is reconstructed and used to 
store the shape and appearance information in the statistical model), and their strain predictions were
compared to those of FE models built from segmentation of the original CT images. Both image-
based and mesh-based approaches predicted similar principal strains when compared to the CT-based 
models, but with the mesh-based approach being more compact (i.e., requiring less modes of variation 
to provide an accurate reconstruction) and significantly less computationally intensive. The study 
concluded that image-based approaches were preferred, since some severely distorted elements were 
found when using the mesh-based approach. However, element distortion can be mitigated by using 
a mesh relaxation algorithm, and by implementing a modified cost function for bone reconstruction
(Väänänen et al. 2015). 

Recently, our group presented a mesh-based statistical shape and appearance model (SSAM) to 
reconstruct shape and BMD of a proximal femur from a single DXA image (Väänänen et al. 2015), as 
well as a subject-specific FE modelling procedure from CT scans to predict strain and strength of 
human proximal femora (Grassi et al. 2016). The latter study was validated against a set of full-field 
experimental measurements collected using digital image correlation (DIC) (Grassi et al. 2014b). In the 
present study, subsequently, we aimed at evaluating the ability of a SSAM-based FE model to accurately 
predict strains and strength in human femora. The results were validated against experimental DIC
data, and compared to the performance of analogous CT-based FE model. 
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MATERIAL AND METHODS  

Materials. Three male cadaver human femora, harvested fresh at Kuopio University Hospital, Finland 
(ethical permission 5783/2004/044/07) were used for this study. Height, weight, sex, BMD at the 
femoral neck, and age at death are presented in table 1. None of the donors had any reported 
musculoskeletal disease. The specimens were scanned both with CT (Somatom Definition AS64, 
Siemens AG, 0.4 x 0.4 x 0.6 mm voxel size) and with two DXA devices (Lunar Prodigy and Lunar 
iDXA, GE Healthcare, pixel size 1.05 x 0.60 mm and 0.25 x 0.3 mm, respectively). For all specimens, 
experimental strain measurements were obtained from mechanical tests performed up to fracture in a 
configuration resembling single leg stance. The force versus displacement curves were acquired from 
the loading device, while the full-field strain distribution was acquired using DIC (Grassi et al. 2014b).  

Specimen 
ID 

Sex 
(M/F) 

Age 
[years] 

Height 
[cm] 

Weight 
[kg] 

Neck BMD 
[g/cm3] 

Side 
(L/R) 

#1 M 22 186 106 1.16 L 

#2 M 58 183 85 0.6 R 

#3 M 58 183 112 0.89 L 

Table 1: Patient information (sex, age at death, height, weight, BMD at femoral neck and leg side) for the three samples used in this study. 

Creation of the models. The SSAM has been thoroughly described earlier (Väänänen et al. 2015),
and is only briefly summarized here. A training set of 34 proximal femur anatomies was retrieved. The 
samples were segmented, and their average shape was calculated. A template mesh of the average shape 
was generated (1.6 million tetrahedral elements, Hypermesh 11.0, Altair Engineering, Inc.) and 
morphed over the shape of each bone in the training set. A Matlab (The Mathworks, Inc.) re-
implementation of Bonemat_V2 (Taddei et al. 2007; Venäläinen et al. 2016) was used to map bone 
density over each morphed mesh based on the underlying calibrated CT values. The SSAM was created 
by performing the singular value decomposition of a matrix containing the nodal coordinates of each 
morphed tetrahedral mesh and the density values for each element, arranged column-wise. The
reconstruction of a femur from its 2D image was performed by using a genetic algorithm to register 
the SSAM to the 2D reference image. A digital reconstructed radiography (DRR) was generated at 
each iteration round by projecting the SSAM instance onto the coronal plane. The cost function of the 
genetic algorithm was given by the sum of three components: the sum of absolute difference of the 
areal BMD between DRR and the 2D reference image, the mesh quality of the instance (Liu and Joe 
1994), and the anatomical positioning. For each of the present samples, the reconstruction was 
performed using three different 2D reference images, namely: 2D projection of the CT image along 
the antero-posterior plane (hereafter referred to as CTproj), the DXA image obtained with Lunar 
Prodigy (lower resolution, hereafter referred to as Prodigy), and the DXA image obtained with Lunar 
iDXA (higher resolution, hereafter referred to as iDXA). 
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The CT-based FE modelling procedure has also been previously described in detail (Grassi et al. 2016). 
Briefly, the femur geometry was retrieved through semi-automatic segmentation of the CT images. 
The geometry was converted to Non-Uniform Rational B-Splines and meshed (~100k elements, 
Hypermesh v13.0). Inhomogeneous isotropic Young’s moduli were assigned using Bonemat_V3 
(Taddei et al. 2007) and a set of empirical relationships to link radiological density to the modulus of 
elasticity (Schileo et al. 2008).  

The CT-based FE modelling procedure was combined with the SSAM and the reconstruction 
algorithm to build subject-specific FE models from a single DXA image. For each sample three
different reference images were used for reconstruction (CTproj, iDXA, Prodigy). Three different 
models were built for each of the three samples (#1, #2, and #3), and for each of the three reference 
images used for reconstruction:  

i) A FE model obtained using the CT-based geometry (considered as the true bone shape), 
and the bone density as estimated from the SSAM-based reconstruction of the DXA image. 
This model will be referred to as SSAM-BMD. 

ii) A FE model obtained using the estimated bone geometry as reconstructed by registering 
the SSAM on the DXA image, and the bone density from calibrated CT-values (considered 
as the true bone density distribution). This model will be referred to as SSAM-shape. 

iii) A FE model obtained using both the estimated geometry and the estimated bone density 
as reconstructed by registering the SSAM on the DXA image. This model will be referred 
to as SSAM-shape & BMD. 

The rationale behind these three models was to evaluate the individual effects of each step in the shape 
(SSAM-shape models) and BMD reconstruction (SSAM-BMD models) on the final accuracy obtained 
by models implementing both shape and BMD as reconstructed by registering the SSAM on the DXA 
image (SSAM-shape & BMD models). 

The SSAM-BMD models were created as follows: the CT-based FE meshes used in (Grassi et al. 2016) 
were retrieved, and the bone density distribution was mapped based on the reconstructed BMD 
obtained by registration of the SSAM on the DXA image. Therefore, the model obtained by registering 
the SSAM on the DXA image (hereafter referred to as SSAM-based mesh) was first registered and 
then morphed to the CT-based geometry. The BMD in the SSAM-based mesh was presented as a 
three-dimensional step-function according to the element borders. Then, the BMD was captured into 
the target CT-based mesh by integrating the function over each element in the target mesh. As a result, 
the density at each element was given by the average of the densities in the SSAM-based mesh, 
weighted by the volume of intersection between the element itself with each element of the SSAM-
based mesh. Young’s moduli were retrieved from density values using the same density-elasticity 
relationship as adopted for CT-based FE models. After the mapping, a two-step compensation process 
was applied, where: (i) the modulus of elasticity of the surface elements was derived as the maximum 
between the mapped value and the moduli of the neighbouring elements that were not surface elements 
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as well, and (ii) the allowed maximum modulus of elasticity for the model was set to 22 GPa (Bayraktar 
et al. 2004), while the minimum modulus of elasticity for the surface elements was set to 5 GPa 
(assuming very thin cortex and consequently a Young’s modulus corresponding to that of the 
underlying trabecular bone (Rho et al. 1993)). The whole registration, warping, and density mapping 
procedure was implemented in Matlab. 

The SSAM-shape models were created by taking the geometry of the SSAM-based mesh. The geometry 
was meshed using Hypermesh (v14.0, Altair, Inc.), using the same parameters adopted in Grassi et al. 
(2016) (element size 1.5 mm on the femoral neck, 2 mm elsewhere, ~100k tetrahedral elements). The 
mesh was then registered to the CT reference system, and the bone density values were assigned based 
on the underlying CT-values using Bonemat_V3 (Taddei et al. 2007). The geometry of the SSAM-
based mesh included a smaller portion of the bone than the femoral segment imaged with CT. In order
to create SSAM-shape models with the same length as that of the CT-based models, the missing distal 
part of the shaft and the epoxy pot from the CT-based models were connected to the model using tie 
connections in Abaqus (v2016, Dassault Systèmes). These procedures were implemented in Matlab. 
An example of the model is shown in figure 1.  

 
Figure 1: Schematic of the generation of the FE models implementing the SSAM-based shape (SSAM-shape and SSAM-shape & BMD 
models): the model produced by the SSAM-based reconstruction (depicted in blue, left side) present a shorter shaft than the actual sample, as 
reconstructed by segmentation of the its CT scan (CT-based model depicted in green, left side). In order to test the SSAM-shape based models 
while keeping the exact same boundary conditions as in the experiments (Grassi et al. 2014) and in the CT-based FE models (Grassi et al. 
2016), the most distal part of the CT-based FE model was added to the SSAM-based FE model, and connected to it using tie constraints 
(Abaqus v2016, Dassault Systèmes). The distal cut region of the SSAM-based FE model (yellow points) was thus rigidly connected to the 
cutting region of the CT-based FE model (red points). 
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The SSAM-shape & BMD models were created by taking the shape of the reconstructed SSAM-based 
models, analogously to what described for the SSAM-shape models, as well as including the bone 
density from the reconstructed SSAM-based models, using the procedure described for the SSAM-
BMD models. 

Performance comparison. In order to evaluate the performance of each of the models created, 
identical boundary conditions to those in the experiments (Grassi et al. 2014b) and in the CT-based 
FE models (Grassi et al. 2016) were applied. The ability of the models to predict the mechanical 
behaviour of bone was then evaluated both in terms of strain prediction accuracy, and of ability to
predict femoral strength. 

To assess the strain prediction accuracy, a force equal to four times the body weight (BW) of the 
subject was applied onto the femoral head, equally distributed among the 10 most superior nodes on 
the surface. The principal strain patterns were then obtained and compared to principal strains 
measured experimentally with DIC. To do this, the DIC cloud was registered over the FE model using 
an iterative closest point algorithm. When the model had its shape retrieved from SSAM reconstruction 
(SSAM-shape and SSAM-shape & BMD models), a point to surface projection of the DIC points over 
the FE model was performed. For each surface element of the FE models, the smallest sphere 
circumscribing it was calculated. All DIC data within that sphere were averaged, and the obtained 
experimental value was compared to the FE element strain. A robust regression analysis with bi-square 
weighting function of the major and minor principal strain magnitudes was finally performed. The 
coefficient of determination, slope, intercept, normalized root mean square error (NRMSE) and 
maximum error were reported for each robust regression. The same accuracy parameters obtained 
earlier by the CT-based FE models (Grassi et al. 2016) are also reported to allow for a comparison 
between the proposed SSAM-based models and the state of the art. 

To validate femoral strength prediction, a rate-dependent material model, with different strain limit 
values for yield and failure, was used (Grassi et al. 2016). The material model and failure criterion are 
depicted in figure 2. The FE analyses were conducted in displacement control with consecutive 0.05 
mm increments. The sum of the reaction forces at the increment where the first element of the model 
failed was calculated to indicate the predicted femoral strength. The simulation time was adjusted to 
provide a displacement rate of 15 mm/s, identical to the value used in the experimental mechanical 
tests. The predicted and experimental femoral strength data were compared in terms of relative error 
and standard error of the estimate (SEE). Again, the accuracy of  the strength prediction achieved by 
CT-based FE models (Grassi et al. 2016) was presented to enable immediate comparison. 
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Figure 2: Diagram showing the material model implemented to predict femoral strength, as proposed first in (Grassi et al. 2016). Each element is assigned a 
modulus of elasticity which applies for the reference strain rate (5000 µε/s, consistently with the strain rate used to experimentally obtain the density-elasticity 
relationships (Morgan et al. 2003) and yield limit values (Bayraktar et al. 2004) used in this model). The strain rate was then constantly updated for each 

element during the simulation, and its modulus of elasticity according to relationship for 𝐸(𝜖)̇ shown in figure. Yield and failure were defined by separate 

thresholds for tension and compression. When an element reached the yield state, its modulus of elasticity was reduced to 0.55 ∗ 𝐸(𝜖)̇   , and the simulation 
proceeded. The simulation was stopped when the first surface element reached the failed state, and the applied force at that stage taken as the predicted femoral 
strength. 

The error in the shape reconstruction was also assessed. The distance between the nodes of the SSAM-
shape models and the surface of the CT-based models was calculated. In addition, the volumetric 
difference between the SSAM-shape and CT-based models was calculated limited to the femoral neck 
region. 

RESULTS  

The results of the robust regression analyses for the principal strains predicted at 4 BW are reported 
in figure 3 for the three bones pooled of the SSAM-BMD, SSAM-shape, and SSAM-shape & BMD 
models. The coefficient of determination was always greater than 0.83, while the slope was within ± 
10% from unity for all but two cases (SSAM-shape models from Prodigy images, and SSAM-shape &
BMD models from iDXA images).  
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Figure 3: Prediction accuracy for the major and minor principal strains for SSAM-BMD (1st column), SSAM-shape (2nd column), and SSAM-shape & 
BMD (3rd column) models of the three bones pooled together. From top to bottom, the accuracy results are plotted for the models using CT projection, iDXA,
and Prodigy images for the SSAM-based reconstructions. 

The coefficient of determination was consistently higher for the models using the CT projection for
the reconstruction, followed by those using Prodigy images. The models based on the use of iDXA 
images showed the lowest values. For comparison, the analogous robust regression analysis for the 
CT-based models (Grassi et al. 2016) when the data on three bones were pooled provided an R2 of 
0.94, with a slope of 0.96 (intercept = 133 µε), NRMSE = 9%, with a maximum estimation error of 
65%. 
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bone #1 bone #2 bone #3 

CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy 

SSAM-
BMD 

R2 0.9 0.9 0.9 0.84 0.83 0.83 0.92 0.89 0.89 
slope 1 0.91 0.92 1.03 0.99 1.08 1.03 0.85 0.97 
Intercept (µε) 225 199 200 257 263 283 142 84 107 

NRMSE 13% 11% 11% 19% 18% 20% 12% 12% 12% 

max error% 64% 69% 70% 89% 89% 113% 63% 58% 80% 

SSAM-
shape 

R2 0.89 0.82 0.82 0.89 0.88 0.88 0.91 0.79 0.83 
slope 0.88 1 1.04 0.98 1.03 1.11 1.07 1.22 1.23 
Intercept (µε) 201 309 332 102 167 158 61 127 141 
NRMSE 12% 18% 19% 13% 15% 18% 10% 13% 15% 

max error% 73% 188% 87% 125% 136% 108% 82% 134% 176% 

SSAM-
shape 

& 
BMD 

R2 0.88 0.84 0.86 0.94 0.89 0.9 0.92 0.87 0.88 

slope 0.81 0.76 0.88 0.9 0.74 0.86 0.98 0.86 0.99 

intercept (µε) 197 217 252 109 141 181 68 3 17 

NRMSE 11% 14% 15% 10% 11% 13% 9% 8% 12% 

max error% 34% 37% 43% 51% 70% 61% 74% 72% 91% 

CT-
based  
(Grassi 
et al. 
2016)

R2 0.92 0.94 0.95 

slope 0.92 0.97 1.01 

intercept (µε) 144 174 79 

NRMSE 10% 11% 11% 

max error% 46% 59% 83% 
     

Table 2: Prediction accuracy for the major and minor principal strains for SSAM-BMD models of the three bones taken individually. For each bone, the 
accuracy obtained using the three different 2D reference images (CT projection, iDXA, and Prodigy) for the SSAM-based reconstruction is reported. The 
accuracy parameters reported by Grassi et al. (2016) for the CT-based models were also reported in the last row to allow for an easy comparison.  

The individual validation of the single bones demonstrated a coefficient of determination greater than 
0.79 for all cases and a NRMSE always below 20%, as shown in table 2 for the SSAM-BMD, SSAM-
shape, and SSAM-shape & BMD models. The slope was generally close to unity, with a few exceptions: 
the slope was underestimated by 14-26% for the SSAM-shape & BMD models using iDXA images for 
the reconstruction. On the other hand, the slope of SSAM-shape models for bone #3 was 
overestimated by 22% and 23% when using iDXA and Prodigy images for reconstruction, respectively. 
The previous results of the analogous individual validations for the CT-based FE models in Grassi et 
al. (2016) are also reported in table 2.Due to a technical problem during the mechanical test, the femoral 
strength could not be validated for bone #3 (please see (Grassi et al. 2016)). The SEE for the SSAM-
shape & BMD models (pooling the models from the three 2D reference images) was 1215 N (table 3). 
Typically, more accurate strength estimations were obtained when using CTproj data as the 2D 
reference image (SEE = 1689 N, against SEE equal to 1974 N and 1938 N for iDXA and Prodigy 
data, respectively).  
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  Bone #1  Bone #2 

SEE [N]   CTproj iDXA Prodigy CTproj iDXA Prodigy 

SSAM-BMD 
9858  

(-26%) 
11309  
(-15%) 

11007  
(-18%) 

7115  
(-9%) 

7789  
(-1%) 

5046  
(-35%) 2267 

SSAM-shape 
12776  
(-4%) 

9301  
(-30%) 

10983  
(-18%) 

7885 
(+0.4%) 

8525  
(+8%) 

7445  
(-5%) 1975 

SSAM-shape & 
BMD 

13106  
(-2%) 

13009  
(-3%) 

14820 
(+11%) 

9777  
(+24%) 

9203 
(+17%) 

8859 
(+13%) 1215 

CT-based (Grassi 
et al. 2016) 13184 (-1%) 7947 (+1%) 155 

Experimentally 
measured (Grassi 
et al. 2014b) 13383 7856 - 

Table 3: Femoral strength prediction accuracy for bones #1 and #2, for the three different FE models (SSAM-BMD, SSAM-shape, and SSAM-shape & 
BMD), each of them built for the three different 2D reference images (CT projection, iDXA, and Prodigy). The relative error to the actual femoral strength 
measured experimentally (Grassi et al. 2014b) is reported between parentheses. The strength prediction accuracy reported by Grassi et al. (2016) for the CT-
based models was also reported in the last row to allow for an easy comparison.

The shape reconstructions performed over CTproj evidenced a higher accuracy in boundary recovery 
than those based on iDXA and Prodigy images (figure 4). Higher reconstruction errors were generally 
localized in regions with negligible contribution to the mechanical behaviour of femora, such as the 
tip of the greater trochanter. The volumetric difference at the femoral neck, calculated between the 
SSAM-shape and CT-based models (table 4), highlighted the reconstruction error in a region with 
crucial mechanical contribution under the single leg stance configuration. 

  
Bone 

#1 
Bone 

#2 
Bone 

#3 

CTproj 9% 10% 9% 

iDXA 19% 13% -6% 

Prodigy 5% 15% 0.3% 

Table 4: Relative change between the volume of the femoral neck of the SSAM-shape models and the CT-based models (here considered as the true value), for 
the three different types of 2D reference image (CT projection, iDXA, and Prodigy). Positive values indicate that the SSAM-reconstructed shape is bigger. 
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Figure 4: Error in the shape reconstruction for the three different femora (from left to right, bone #1, #2, and #3) and the different types of images (from top 
to bottom, CT projection, iDXA, and Prodigy) used for the SSAM-based reconstruction. 

DISCUSSION 

This study posed the main question of how accurately a 3D FE model reconstructed from a single 
DXA image and a SSAM could predict tissue strains and strength of proximal femur. The gold standard 
method, CT-based 3D FE model, was applied as a reference. To properly answer this question, it is 
necessary to understand the relative contribution of the different factors (bone shape, BMD 
distribution, local reconstruction errors, etc.) to the prediction accuracy. To this aim, three different 
models were built, implementing the reconstructed bone shape only (SSAM-shape models), the 
reconstructed BMD distribution only (SSAM-BMD models), and the combination of these two 
(SSAM-shape & BMD models). 

The SSAM-shape & BMD models predicted strains with high accuracy (coefficient of determination >
0.87, NRMSE < 12% for the three bones pooled, figure 3), when validated against thousands of 
experimental strain measurements per bone collected with DIC. CT-based FE models obtained a 
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coefficient of determination of 0.94, with a NRMSE of 9% for the same set of samples and 
experimental data (Grassi et al. 2016). Our present results on accuracy were only slightly lower. 
Nevertheless, SSAM-shape & BMD models reconstructed using iDXA significantly underestimated the 
strain levels (slope of the robust linear regression = 0.78). The inaccuracy was mostly related to bones 
#1 and #2 (SSAM-shape & BMD models from iDXA, table 2). By implementing only the shape and 
only the BMD from the SSAM reconstruction we can explain how to the strain underestimation 
occurred for these two cases. When implementing only SSAM-BMD (SSAM-BMD models from
iDXA, table 2) and SSAM-shape (SSAM-shape models from iDXA, table 2), both samples exhibited a 
slope close to unity. However, due to the shape reconstruction error, the volume in the femoral neck 
region was overestimated by 13-19% (iDXA values, figure 4 and table 4). Therefore, a correct 
reconstruction of the material properties was associated with a femoral neck that was 13-19% bigger 
in volume than the CT-based one, which led to a stiffer femoral neck and ultimately underestimated 
the principal strains for the iDXA cases. This reveals that the accuracy in the shape reconstruction 
from SSAM models should be evaluated not only in terms of the absolute point-to-surface distance, 
but also in terms of the capacity to preserve the actual volumes of the different anatomical 
compartments (femoral neck first, but also femoral head, and shaft). 

The SSAM-shape & BMD models predicted femoral strength with a SEE of 1215 N and a maximum 
absolute relative error of 24% (table 3). The CT-based models predicted femoral strength with a SEE 
of 155 N and a maximum absolute relative error of 1.5% for the same set of data (Grassi et al. 2016). 
The accuracy data on femoral strength (table 3) were scattered. Typically, femoral strength was 
predicted with high accuracy, but also some outliers with lower accuracy were found in the data. At 
least two main trends were observed, namely: (i) the models built using CTproj as 2D reference image 
were more accurate than those built with iDXA and Prodigy. This was consistent with the fact that 
CTproj data had a higher signal-to-noise ratio than DXA images. The different spatial resolution 
between iDXA (pixel size 0.25 x 0.3 mm) and Prodigy (pixel size 1.05 x 0.6 mm) was not found to 
affect the accuracy of the SSAM-based models, instead (ii) the SSAM-BMD models had a higher SEE
than the SSAM-shape models. This evidence suggested that the error in the reconstruction of BMD, 
and consequently of the material properties, influenced the outcome more than the error in the shape 
reconstruction. Consistent to this finding, Bonaretti et al. (2014) found that the mesh-based SSAM 
reconstructions (like the one used in this study) are less accurate than the image-based SSAM 
reconstructions in estimating the original bone density distribution. This was also consequent to the 
fact that a strain based criterion, thus strongly dependent on the correctly estimated value for modulus 
of elasticity, was adopted for the calculation of femoral strength. 

This is, to our best knowledge, the first study evaluating the ability of a FE model built from a 
statistical-based reconstruction to predict strains and femoral strength of human proximal femora 
anatomies against direct ex vivo measurements. A validation in terms of strain prediction accuracy was 
already proposed (Grassi et al. 2014a). However, the femoral strength was not evaluated and, more 
importantly, the PCA-based reconstruction was performed over the 3D CT data (Grassi et al. 2014a). 
This limited the applicability of the study to the reconstruction of synthetic anatomies aimed at 
exploring the effects of anatomical variability. In the present study the FE models were reconstructed 
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from two-dimensional reference images, thus making them suitable for subject-specific estimation of 
fracture risk. Earlier, Thevenot et al. (2014) validated their models in terms of femoral strength and 
reported a SEE of 543 N, a lower value than the SEE reported in the present study (SEE = 1215 N, 
table 3). However, the present samples were tested in a configuration resembling single leg stance. 
They were fractured at an average load of 10620 N. Thevenot et al. tested their samples in an 
experimental configuration resembling a fall to the side, with a much lower fracture load (average 3188 
N, as extrapolated by digitalisation of data from figure 4 in (Thevenot et al. 2014)). The present higher 
SEE is therefore consistent with the fracture load being three times higher than that found by 
Thevenot et al. In terms of relative error, the maximum absolute relative error in the prediction of 
femoral strength was 24% in our study, whereas it was 54% in Thevenot et al. (as extrapolated by 
digitalisation of data from figure 4 in (Thevenot et al. 2014)). 

Other studies have also proposed to use PCA-based models to predict fracture risk (Gregory et al. 
2004; Schuler et al. 2010; Whitmarsh et al. 2012). However, those studies used the reconstructed shape 
and BMD distribution either to obtain three-dimensional anatomical and densitometry measurements 
that complemented the standard estimation of fracture risk, or to employ the model parameters as 
features for the classification. The present study, instead, used SSAM-based models to predict femoral 
strength using a purely mechanistic approach, analogously to how it is done with gold standard CT-
based FE models.  

The present study is limited by its small sample size, with three proximal human femora tested. 
However, the accuracy of the adopted SSAM-based method in reconstructing shape and BMD was 
previously validated using a higher number of samples (Väänänen et al. 2015). As the present focus 
was on the ability of the reconstructed models to predict strain and femoral strength, only the samples 
for which full-field strain data from ex vivo mechanical tests were available (Grassi et al. 2014b) were 
used. 

The combination of the current epidemiological-based estimation of individual fracture risk could be 
greatly improved by the addition of a mechanistic prediction of the load that a bone can bear without 
fracturing (Viceconti et al. 2015). When aiming to manage effectively the future challenges related to 
known increase of musculoskeletal diseases, such as osteoporosis and bone fractures, we are much 
limited with the existing medical technology. DXA is the current clinical standard to diagnose 
osteoporosis and ultimately estimate fracture risk. Adoption of CT for this screening is not realistic in 
a short-term scenario. Therefore, the current study aimed to improve the understanding of how useful 
the 3D FE models, as reconstructed from a single 2D DXA image, are to predict femoral strength. 
Based on the present findings, SSAM-based FE models provided a highly accurate representation of 
the subject-specific bone mechanics in terms of bone strains (R2 > 0.87, NRMSE < 12%). However, 
the accuracy in the prediction of femoral strength was inferior to those obtained with the state-of-the-
art CT-based models (SEE = 1215 N, against SEE = 155 N for the CT-based models). The greater 
error in femoral strength estimation was mostly due to the presence of a few outliers in the data (table 
3). The present results support the future translation of SSAM-based FE models into the clinics as a 
tool to complement the current methods for prediction of fracture risk by providing a mechanistic 
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information of the bone mechanical behaviour. Further, these results could help to tailor future 
development of SSAM-based reconstructions with the aim to further improve their accuracy towards 
that of CT-based models.  
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