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Cover figure.  Scanning electron micrograph demonstrating the endothelial surface of a 

glomerular capillary from the kidney of a normal rat. Numerous endothelial pores, or 

fenestrae, are evident (Magnification × 21,400.). 
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ABSTRACT 

To the extent that increased urinary protein excretion is an indicator of alterations of the 

glomerular capillary wall (GCW) and appearance of tubulointerstitial damage, proteinuria can 

be a good marker of the overall severity of the glomerular and tubulointerstitial damage, and 

therefore, the prognosis of glomerular diseases. Studies I, II, and III show that it is the type of 

proteinuria, rather than the degree of albuminuria, that predicts the progression in renal, 

proteinuric diseases. For instance, we found that the quantity of urinary IgM correlated to the 

decrease of glomerular filtration rate (GFR) in primary glomerular diseases, irrespective of 

the degree of albuminuria. 21% of patients with initial proteinuria with high IgM content 

developed end-stage renal failure compared to none of the patients with proteinuria with low 

IgM content. Patients who maintained high urinary IgM excretion during the course of 

glomerular disease showed a more rapid GFR decline over time compared to patients with 

maintained low IgM excretion despite persistent high degree of albuminuria (study II). 

Changes in urinary IgG, but not in albumin excretion, during the course of the glomerular 

disease, correlated to changes in urinary protein HC excretion (study III). Protein HC is a 

marker of impairment of the proximal tubular function.   

In study IV, we observed that patients with type 2 DN had a higher urinary excretion of high 

molecular weight proteins (IgG and IgM) than patients with type 1 DN, despite similar degree 

of albuminuria. This suggests partly different patho-physiological mechanisms in diabetic 

nephropathy (DN) in type 1 and type 2 diabetes mellitus. Patients with type 2 DN have a 

better preserved ratio of urinary excretion of IgG2/IgG4 than type 1 DN patients, indicating 

that the charge selectivity is less impaired in type 2 DN.  

Finally, old but not young hypertensive rats (study V) develop proteinuria as a result of a 

dysfunction of the glomerular capillary filter, affecting primarily its size-selectivity. The 
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changes are functionally compatible with the appearance in the glomerular barrier of an 

increased number of unselective pores.  

Conclusions: During the course of glomerular diseases a maintained low urinary excretion of 

IgG or IgM indicates a salutary prognosis. Different patho-physiological mechanisms of 

albuminuria in type 1 and type 2 diabetes have been found, and hypertension induced 

proteinuria is primarily a size-selective disorder. 
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INTRODUCTION 

The process of urine formation begins with the filtration of nearly protein-free fluid across the 

glomerular capillary wall (GCW), as first experimentally demonstrated by Wearn and 

Richards in 1924 (1). In 1842, William Bowman described the structure of the glomerulus, 

and later on, Ludwig argued that the initial event in the process of urine formation involves 

separation from the plasma of a protein-free ultrafiltrate by the walls of the glomerular 

capillaries (2, 3). In 1896, Starling described the mechanisms responsible for the ultrafiltrate 

formation, namely the magnitude and direction of the hydraulic and colloid osmotic pressures 

across capillary walls (4). Since 1970’s, tracer macromolecules of well defined size and shape 

such as dextrans, Ficoll, and proteins have been extensively used to characterize the 

permeability of the GCW. The fractional clearances of such test probes have proven to be 

determined by the size- and charge-selectivity of the capillary wall, and by the charge, shape, 

deformability and size of the transported macromolecules (5, 6). Glomerular diseases are 

characterized by defects in both size- and charge selectivity of the GCW and result in so-

called “glomerular proteinuria” (6). The main interest of this thesis, and the studies it is based 

on, is the diagnostic and prognostic value of the urinary excretion of endogenous proteins in 

glomerular diseases. 

 

The kidneys 

The kidneys are situated on both sides of the posterior part of the abdomen, behind the 

peritoneum. Each kidney is about 11-12 cm long and weighs about 150 gram. The kidneys 

contains of a total of two millions glomerulae (7, 8). The glomerulus is a lobulated network of 

convoluted capillary blood vessels surrounded by the  Bowman’s capsule, Fig.1 (7, 8). The 

total length of the, 9-12 µm in diameter  capillaries, in a single glomerulus is 9.5 mm, giving 



Diagnostic and prognostic value of proteinuria   

 11

an overall capillary length of 19 km, and a glomerular surface area of ≈ 1 m2 in the kidneys 

(7-10).  

Mesangial Matrix
and Cell

Proximal Tubule

Fenestrae

Bowman’s capsule

GBM

Endothelium

Efferent Arteriol

Distal Tubule

Afferent Arteriole

Juxtaglomerular

cells

Figure 1. Schematic diagram of the glomerulus.

Distal Tubule

 

 

Glomerular filtration 

The major function of the glomerulus is to produce an ultrafiltrate from the blood using the 

GCW as a filter. The glomerular filtration process differs from the transcapillary exchange 

process as in other organs in two ways. First, the GCW almost completely excludes plasma 

proteins of the size of albumin (radius 36Å) or larger from the filtrate. Second, the glomeruli 

exhibit an extraordinary high permeability-surface area product (PS) to water and small 

solutes and also a very high capillary filtration capacity (6). Fluid movement across the 

glomerulus is, similar to the conditions in other capillaries, governed by the Starling forces, 

i.e. the effective hydrostatic pressure gradient minus the effective oncotic pressure gradient 

(4). The glomerular filtration rate (GFR) can thus be described by:  

)( ∆Π−∆×= PLpSGFR  

Where, Lp represent the hydraulic conductivity of the GCW, and S is the surface area 

available for filtration. P∆ denotes the hydrostatic pressure in the glomerular capillaries 
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minus the hydrostatic pressure in the Bowman’s space, and ∆Π  the effective oncotic pressure 

in the glomerular capillaries minus that in the Bowman’s space. If LpS is 4 

ml/min/mmHg/100g of kidney weight in humans, and P∆ ≈ (52-15) mmHg, while ∆Π ≈ (28-

0) mmHg, then, the GFR in man equals 4 x 3 x [(52-15) - (28-0)] ≈ 120 ml/min. GFR can be 

measured clinically using molecules that are freely filtered across the glomerulus and that are 

not bound to plasma proteins nor are absorbed or secreted by the tubules, e.g. inulin or Cr 

EDTA. Normal GFR in females is 95±20 ml/min and in males 120±25 ml/min (11).  

 

The size selective function of the GCW has been extensively investigated by measuring 

transglomerular filtration of tracer macromolecules (6). The filtrate-to-plasma concentration 

ratio of a test macromolecule (e.g. albumin) towards a reference solute such as Cr EDTA, 

which appears in Bowman’s space in the same concentration as in plasma water, is denoted 

“fractional clearance” or “sieving coefficient” (θ) of the transported macromolecule through 

the GCW. It is a convenient way to measure permselectivity, varying from 0, when the test 

molecule is impermeable, to 1, when the molecule is not measurably restricted at normal GFR 

(6). Note that θ is not a constant, but varies with the GFR (12).  

 

The permeability characteristics of the glomerular capillary wall: Despite the extremely 

low resistance to the flux of water, the human glomerular filter very efficiently restricts the 

passage of macromolecules from blood into Bowman’s space, see table 1 (12-19). The 

passage of low molecular weight (LMW) proteins, e.g. proteins smaller than 30 kDa MW, and 

with a radius smaller than 25 Å, is almost completely unrestricted in normal individuals (6, 

20, 21). The estimated albumin concentration in normal glomerular ultrafiltrate is only about 

20 mg/L compared to approximately 40000 mg/L concentration of the protein in human 

plasma (19, 22). Thus, the glomerular sieving coefficient of albumin is 5-6 x 10-4 (12, 15-19). 
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In normal individuals the transport of negatively charged albumin is restricted by a factor of 

7-10 compared to equally sized, uncharged macromolecules, table 1 (12, 14).  

180.00002990 Åα2macroglobulin

15,180.00555 ÅIgG

140.00835 ÅFicoll

12,170.00636 ÅNeutral albumin

12,15-190.000636 ÅNative albumin

130.3730 ÅDextran

130.0630 ÅNative HRP

130.00732 ÅAnionic HRP

ReferencesθRadiusProtein

Table 1. Glomerular sieving coefficient (θ) of macromolecules of 
different size, charge and configuration in normal rats.

 

This view of the glomerular filter as a highly size- and charge-selective barrier has been 

challenged recently by Comper and his associates (23). The authors found that θ for albumin 

was nearly a 100-fold higher than previously reported, and they found little evidence for 

charge-selectivity of the glomerular filter (23, 24). If this were correct, then no less than 600 g 

of albumin would pass the human glomerular filter every day! Therefore they had to postulate 

a non-degradative ‘retrieval pathway’ to account for the reabsorption to plasma of almost the 

entire filtered load of albumin. Furthermore, a substantial fraction of urinary proteins was 

reported to be degraded and excreted in the final urine as protein fragments. It was proposed 

that a reduced protein ‘retrieval’ to plasma, or reduced protein degradation, would be mainly 

responsible for the increased urinary protein excretion occurring in a number of proteinuric 

disorders. This concept was specifically tested by Ohlson et al in the isolated perfused kidney 

model. However, they found considerable evidence that the classical view is still the most 

acceptable (25).  
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The most widely used description of macromolecular transport across the GCW indicates that 

the glomerular filter is perforated by pores having either a continuous log-normal distribution 

of radii, or by of two discrete populations of pores (12, 18, 26, 27). This hypothetical 

description of GCW is not based on ultra-structural analyses but on a hydrodynamic theory of 

hindered solute transport through water filled pores, as first modelled by Pappenheimer et al 

(28). The two-pore theory of capillary permeability adequately describes the fractional 

clearance data obtained in experimental and in clinical studies (12, 18, 29-32). In the “two-

pore with a shunt model” the vast majority of pores are "small pores". The small pores exhibit 

a radius of ≈29Å vis-à-vis negatively charged, rigid, spherical proteins, and a radius of 37-

38Å vis-à-vis uncharged macromolecules (12, 18). The second pore population consists of a 

very small number of  “large pores” of radius 90-115Å (18). The small pores are essentially 

impermeable to macromolecules the size of albumin or larger. Such molecules are normally 

transported by convection across the large pores (27). In addition to the two pores, the GCW 

may display “shunts”, which are very sporadic physiological “membrane defects”, large 

enough to allow the transport of very large proteins and even red blood cells (29, 33). Proteins 

such as IgM (radius 120Å) are able to pass the GCW only through these shunts (18). 

Conceivably, a repairing apparatus normally seals these shunts, and an increased transport of 

IgM indicates unsealing of the shunts and/or increased density of these defects in the GCW 

(29, 33). 

 

The glomerular filter 

The GCW consists of the glomerular basement membrane (GBM), an endothelial cell layer, 

and an epithelial cell layer (Fig.2). Both the cell layers are coated with a negatively charged 

surface coat (10-60 nm thick), called the glycocalyx (9). Furthermore, a much larger 

exclusion area extending from the endothelial surface for anionic macromolecules, possibly 
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composed of glycosylated macromolecules and adsorbed plasma proteins, has been described, 

denoted the “endothelial surface layer” (ESL) (34). The fenestrae between the endothelium 

cells are 50-60 nm in diameter, and also appear to be filled with plugs of glycocalyx or ESL 

up to 90 nm in height. They are thought to provide the GCW with size- and, most importantly, 

with charge-selectivity (9, 34, 35). 

Glycocalyx
Endothelium

GBM

Epithelium

Urinary Space
Figure 2. A schematic diagram of the glomerular capillary wall
showing the luminal surface coat lining the endothelium and filling
out the fenestrae. The ultrafiltrate passes through the downstream
layers into the urinary space (Bowman’s capsule). 

 

The GBM is a gel like material, 200 nm in width in rats, and 300-400 nm in humans, and is 

composed of tightly cross-linked extracellular matrix proteins, such as type IV collagen, 

laminin, nidogen and proteoglycans (36). Type IV collagen and laminin provide strength and 

flexibility to the GBM and also an adhesion surface for endothelial cells and podocytes. The 

heparan sulfate proteoglycans, perlecan and agrin, may contribute to the charge-selective 

permeability of the GBM (37), although this was recently questioned (38). The epithelial 

cells, the podocytes, cover the external surface of the GBM. They are highly specialized cells 

forming multiple interdigitating foot processes leaving in between them filtration slits, 

spanned by a “slit diaphragm”, 30 to 40 nm in width (39). The foot processes stabilize the 

glomerular architecture by counteracting the distension of the GBM (40). Nephrin is a major 
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structural component of the slit diaphragm, and the absence of nephrin, or any other slit 

diaphragm associated proteins, e.g. podocin, CD2-associated protein, Neph1, or alpha-actinin-

4  leads to proteinuria and the nephrotic syndrome (41-45). 

 

It is still not recognized which of the substructures of the GCW represents the ultimate 

permeability barrier, serving to retain plasma proteins in the circulation (46, 47). The blood 

flow is of great importance to maintain the GFR, and hence, the glomerular barrier function 

and, under normal hemodynamic conditions, albumin may be restricted already at the 

endothelial level, Fig.2 (33, 34, 47-49). In addition, the absence of concentration polarization 

within the GBM raises the possibility that the glycocalyx-filled fenestrae play a greater role in 

the size-selectivity than the GBM or the slit-diaphragm (9, 12, 50). The charge selectivity of 

the GCW is attributed mainly to the glycocalyx and/or ESL and to the heparan sulphate 

proteoglycans of the GBM (35, 37). Orosomucoid and albumin are among serum proteins that 

are thought to have a role in determining capillary permeability by maintaining and 

reinforcing the charge barrier (51-53). In all proteinuric diseases, whether immune complex 

mediated or not, the podocytes show structural changes with effaced foot processes, and 

occasionally separation from the GBM (40). Because of limited capacity of podocytes to 

proliferate, even after injury, podocyte loss or low podocyte number per glomerulus, may 

contribute to the development and progression of glomerulosclerosis and proteinuria (40, 54-

57). 

 

Proteinuria, pathogenesis and sequelae 

An abnormal excretion of proteins in the urine is the hallmark of experimental and clinical 

glomerular diseases. Proteinuria is an indicator of alterations in the GCW and in tubular 
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protein uptake. It can be a good marker of the overall severity of the glomerular and 

tubulointerstitial damage, and therefore, of the prognosis of glomerular diseases. 

 

The proteins filtered into the primary urine are normally reabsorbed via receptor-mediated 

endocytosis in the proximal convoluted tubules (19, 58). Megalin and cubilin are the two 

receptors known to be important for normal tubular reabsorption of filtered proteins (58, 59). 

The absorbed proteins are completely hydrolysed within the lysosomes and their resulting 

amino-acids cross the basolateral membrane to be returned to the circulation (58). Normally, 

the proximal tubules reabsorb approximately 90 –95% of the filtered albumin while LMW 

proteins, such as protein HC, or light chains, are reabsorbed almost completely (19). 

Tubulointerstitial injury causes an impairment of proximal tubular uptake of filtered proteins 

which leads to increased urinary excretion of LMW proteins, the characteristic feature of 

tubular proteinuria (20, 21). The normal upper limit of the total daily urine protein excretion is 

less than 150 mg, and normal urine consists of 20-30 mg albumin, 10-20 mg of LMW 

proteins, and 40-60 mg of secretory proteins, such as Tamm-Horsfall protein and IgA (60-62). 

In glomerular injuries, altered size- and charge-selective properties of the GCW result in 

increased filtered load of albumin and HMW proteins (63). When the reabsorptive capacity of 

the proximal tubules is exceeded, these proteins appear in the final urine, a phenomenon 

called “glomerular proteinuria”, although it also includes a component of “tubular” 

proteinuria.   

 

Proteinuria may in itself contribute to ongoing renal injury by causing mesangial and 

tubulointerstitial damage (64, 65). In fact, proteinuria is the major determinant of progressive 

renal failure (66-68). The most widely proposed cause of tubular injury in proteinuric 

glomerular disease is the extensive tubular uptake of filtered plasma proteins, including 
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growth factors and complement factors, cytokines and protein bound substances, such as fatty 

acids, carried by the filtered albumin. These factors may induce tubular production of 

vasoactive and inflammatory cytokines, causing an invasion of the interstitium by 

inflammatory cells (69-75). In highly selective proteinuria, i.e. an almost pure urinary loss of 

albumin, the tubulointerstitial damage is infrequent, and almost all patients retain normal 

kidney function (76-78). With non-selective proteinuria, an increasing number of patients 

develop tubulointerstitial damage and progress to renal failure (79-81). It is generally believed 

that impairment of the charge-selectivity of the glomerular filter is the predominant lesion in 

selective proteinuria (82). The predominant lesion in non-selective proteinuria is a size-

selectivity dysfunction, with the functional appearance of unselective “large pores” and or 

“shunts” in the glomerular filter (63).  

 

Assessment of proteinuria   

The clinical indication for proteinuria assessment is the screening for, and follow-up of renal 

diseases. During the screening, albuminuria is usually detected by dipstick methods, e.g. 

Albustix®, in which the albumin concentration may be underestimated in diluted urine. The 

amount of protein in urine collected over a 24-hour period is used as the “golden standard” for 

measurement of proteinuria. However, because of the high risk of collection errors in a 24-

hour sampling, and for practical and economic purposes, many investigators prefer to use 

urinary protein to creatinine index (PCI) instead (83-93). In pathological conditions, the high 

correlation to the 24 hour urine protein excretion, makes PCI in a single voided urine 

specimens accepted in clinical routine practice (68, 85, 86, 89-94). Reference values for PCI 

are: < 3.8 mg/mmol for albumin, < 0.8 mg/mmol for IgG, and <0.7 mg/mmol for protein HC 

in random urine specimen (61, 62, 91, 94).  
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The selectivity of proteinuria, assessed by the selectivity index (SI), is measured by the 

comparison of the clearance of high molecular weight proteins, e.g. IgG or IgM, with the 

clearance of transferrin or albumin as markers of intermediate size proteins (29, 95). SI based 

on α2-macroglobuin or IgM is of better predictive value than SI based on IgG (29).  

 

Albumin is the most abundant circulating plasma protein, (69 kDa MW, serum concentration 

38-40g/L) and has a variety of functions (96). These include maintenance of the oncotic 

pressure, buffering of acid-base changes, and transport of multiple bioactive substances such 

as fatty acids, steroid hormones and vitamins. Liver is the major site of synthesis of albumin, 

and its breakdown mainly occurs in the endothelial cells (96). The absolute level of serum 

albumin reflects not only the level of its synthesis and breakdown, but also its volume of 

distribution, the availability of amino acid precursors, and the albumin loss into urine, 

intestinal lumen and from the skin (97).  

 

Immunoglobulins, or antibodies, are a complex group of functionally and structurally related 

proteins that protect the organism from invasion by pathogenic microorganisms and their 

toxic products. The basic structure of the immunoglobulin molecule consist of a monomer 

that contains four polypeptide chains, two heavy chains (each of 50 kDa MW) and two light 

chains (kappa or lambda, each of 20 kDa MW) linked by disulfide bonds (98). There are five 

major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM antibodies.  

Immunoglobulin G (IgG) is a monomeric molecule of 150 kDa, which predominates in 

secondary or memory immune response against infectious organisms. It is found on surface of 

memory B cells and predominantly in the blood. It constitutes 75% of serum 

immunoglobulins. Normal serum concentration of IgG is 5-15g/l. There are four subclasses of 

IgG, differing in the number of disulfide bonds and in the length of the hinge region. IgG1 has 
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the highest concentration in human serum (3-10g/l), followed in order by IgG2 (1-3.5 g/l), 

IgG3 (0.3-1g/l), and IgG4 (0.2-0.5g/l) (99).  

Since IgG2 is neutral and IgG4 is negatively charged, a low value of urine IgG2/IgG4 ratio 

reflects loss of charge selectivity of the glomerular capillary wall. 

 

Immunoglobulin M (IgM) is the third most common serum Ig with serum concentration of  

0.5-4g/l. IgM is composed of five complete Ig units linked by disulfide bonds to form a 

pentamer with a molecular weight of 950 kDa (98, 99). IgM is the first immunoglobulin to be 

made by the foetus and the first antibody made by a virgin B cells when it is stimulated by 

antigen. As a consequence of its pentameric structure, IgM is a good agglutinating and 

complement fixing immunoglobulin, very efficient in clumping and lysis of microorganisms.  

 

Protein HC (alias α1-microglobulin) is a human complex forming glycoprotein, 

heterogeneous in charge, and was fist described by Tejler and Grubb (100). It is composed of 

a single polypeptide chain and its physiological function is unknown (101). Complexes 

between protein HC and IgA and between protein HC and albumin are present in most human 

biological fluids but they are not present in normal urine and rarely in pathological urine 

(102). Only the free form of protein HC is filtered through the GCW, and thus, found in 

normal urine. Protein HC is relatively stable in urine and is also stable at low urinary pH 

values. The high sensitivity of increased urinary excretion of protein HC makes the 

determination of the urinary excretion of protein HC an ideal instrument for demonstration of 

proximal tubular disorders (101-106). 
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Figure 3. Four patterns of glomerulus histology. (A) minimal change, (B) 
membranous, (C) focal glomerulosclerosis and (D) Cresentic GN. 

A

B

C

D

Glomerular diseases 

Disorders of glomerular 

structure and function are the 

leading cause of end stage 

renal disease (ESRD) (107, 

108). Glomerular diseases 

may be primary or secondary 

to systemic disease such as 

diabetes or SLE (109, 110). 

See table 2. 

   

Hepatitis induced GNNephrosclerosis

Lupus nephritisDiabetic nephropathy

•Secondary renal disorder

Crescentic glomerulonephritis

Focal segmental glomerulonephritis

Mesangiocapillary glomerulonephritisMembranous glomerulopathy

Mesangioproliferative glomerulonephritisFocal Segmental glomerulosclerosis

IgA nephropathyMinimal change Nephropathy

•Primary renal disorder

Proliferative changesNon proliferative changes

Table 2. Histological classification of glomerular diseases.

 

The term glomerulonephritis (GN) is used to denote diseases characterized by intraglomerular 

inflammation and cellular proliferation. Both humoral and cell-mediated immune mechanisms 

play a part in the pathogenesis of the glomerular inflammation (109-112). Non-proliferative 

forms of nephropathies,  characterized by chronic non-inflammatory mechanisms of renal 
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injury, may also induce an increase in glomerular permeability and proteinuria without 

significant histological alterations in the glomeruli, Fig.3 (113, 114). 

 

IgA nephropathy (IgA N) is a mesangioproliferative GN characterised by diffuse mesangial 

deposition of Immunoglobulin A. It is the most common form of GN worldwide (110). The 

disease occurs in all ages with a peak incidence in the second and third decades of life. Males 

are affected up to sex times more frequently than females. IgA N presents in 50-60% of cases 

with episodes of gross hematuria that is frequently associated with respiratory- or 

gastrointestinal tract infection. In 30% of cases it presents with persistent microscopic 

hematuria and proteinuria, and occasionally, in 10% of cases, with nephrotic syndrome or 

rapidly progressive nephritis (113). The disease progresses to ESRD in 20-40% of cases (110, 

115, 116). 

 

Mesangial proliferative glomerulonephritis is found in 5 to 10% of renal biopsies (117). 

The patho-histological findings are characterised by mesangial cell proliferation and increase 

in mesangial matrix. Circulating immune complexes are present in 50 to 70% of cases. The 

disease usually presents with proteinuria, often in the nephrotic range. It accounts for 3-5% of 

patients with idiopathic nephrotic syndrome (117). Corticosteroid treatment leads to remission 

in 20 to 60% of the cases. Frequent relapses, partial remissions and glucocorticoid 

dependence are not uncommon (113). 

 

Membranous glomerulopathy is the most common cause of idiopathic nephrotic syndrome 

in adult Caucasians (118). It is characterised by immune deposits of IgG and complement 

components predominantly on the subepithelial surface of the GCW. The disease is usually 

idiopathic but may be secondary to drugs (gold, penicillamine), infections (hepatitis B virus), 
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autoimmune diseases (SLE), or malignancy (118). Patients present typically with the 

nephrotic syndrome, and in 20% of cases, with non-nephrotic range proteinuria.  Spontaneous 

remission occurs in 40% of patients while ~30% develop progressive renal failure (118-120). 

Treatment with cytotoxic agents and prednisolone is indicated in progressive cases (118, 119). 

 

Minimal change nephropathy is responsible for 90% of nephrotic syndromes in children 

and 20% of nephrotic syndromes in adults (121). Morphologic changes are apparent only on 

electron microscopy that shows diffuse effacement of foot processes of the podocytes. The 

pathogenesis is unknown, but probably linked to T-cell mediated immunity (122). Clinically, 

the disease is characterised by the abrupt onset of nephrotic syndrome, normal renal function, 

and normotension. Spontaneous remissions occur in 40% of cases, and progression to renal 

failure is very rare (121, 123). 

 

Focal segmental glomerulosclerosis (FSGS) has characteristic pathological features of focal 

and segmental glomerular scars found on light microscopy of renal biopsy (121). The disease 

is a common cause of nephrotic syndrome in adults (20 to 30%), especially in black males 

(124). Renal failure occurs in more than 50% of patients within 10 years (121, 125). FSGS is 

idiopathic, but may associate with intravenous drug use and is found in 20% of heterosexual 

HIV-positive persons (126). A non-immunoglobulin circulating factor seems to account to 

cases that recur after kidney transplantation (127).  

 

Diabetic nephropathy (DN) is a (microvascular) complication of both type 1 and type 2 

diabetes, that is associated with ESRD and premature death from cardiovascular disease (128, 

129). Histologically, DN is characterised by diffuse or nodular mesangial expansion with 

thickening of the GBM (130). In patients with type 2 DN, particularly those with 



Omran Bakoush, 2004 

 24

hypertension, renal biopsy shows significant nephrosclerosis as well. Hyperglycaemia and 

increased intraglomerular pressure cause an increased synthesis of several cytokines and 

growth factors, in particular transforming growth factor-β (TGF-β). The cytokines have been 

identified to stimulate matrix production or inhibit matrix degradation and thus, lead to 

glomerulosclerosis and proteinuria (131, 132). The earliest clinical evidence of DN is 

appearance of low degree albuminuria, referred to as microalbuminuria (>30mg/day) (133, 

134). Untreated, 20-40% of type 1 diabetes patients with microalbuminuria will progress to 

overt nephropathy over a period of 10 years (135-138). Once overt nephropathy occurs the 

GFR starts to fall at an average rate of  4-6 ml/min/year  (135, 139). DN has become the most 

common cause of ESRD in Europe and US (108). As the incidence of type 2 diabetes 

increases, and the age of onset declines, the burden of DN will further increase in the future. 

Improved glycemic control has proven to dramatically decrease the incidence of DN (135, 

140-142). Treatment with renin angiotensin system blockers and certain calcium channel 

blockers can reduce the progression to ESRD (143-146).  

 

Hypertensive nephrosclerosis is the characteristic renal lesion associated with essential 

hypertension. Hypertension is considered present when the systolic blood pressure (SBP) is 

140 mm Hg or higher, the diastolic blood pressure (DBP) is 90 mm Hg or higher, or the 

patient is on antihypertensive medication (147). It is estimated that 24% of the adult 

population is hypertensive, and 6% of hypertensive patients are at risk for progression to 

ESRD (147, 148). Systolic hypertension is a powerful predictor of development of renal 

injury, and the uncontrolled hypertension accounts for 27% of all new cases in ESRD (147-

151). Histologically, hypertensive nephrosclerosis is characterized by myointimal hyperplasia 

of interlobular and afferent arteriolar vessels, hyaline arteriolosclerosis especially of the latter, 

wrinkling collapse of the glomerular tuft and,  commonly, global glomerulosclerosis (147).  
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Hypertension may cause renal damage as result of glomerular ischemia and hypoperfusion 

induced by progressive narrowing of the lumina of preglomerular arteries and arterioles. By 

contrast, afferent vasodilatation in remnant nephrons of individuals with hypertension, 

especially those with a low number of nephrons, transmit the systemic hypertension to 

glomerular capillaries, which may lead to progressive renal failure (152-154). Renal 

susceptibility genes play a role in the development of nephrosclerosis (153). Increased 

awareness of high blood pressure and treatment of hypertension has contributed to a dramatic 

reduction in morbidity and mortality attributable to hypertension (155).  
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AIMS OF THE PRESENT STUDIES 

1. To study the urinary excretion of IgM and albumin as prognostic markers in a number of 

proteinuric glomerular diseases in order to examine whether pathophysiological and 

patho-morphological differences may influence the renal outcome (Study I). 

2. To re-examine correlations between the renal function and alterations (regression or 

progression) of urinary excretion of IgM and albumin in the course of proteinuric 

glomerular diseases (Study II) 

3. To study the effect on renal tubular function of urine excretion of large proteins by 

examining the correlation between the degree of tubular damage, assessed by the level of 

urine α1-microglobulin (protein HC), on the one hand, and urinary levels of IgG and 

albumin on the other hand, in chronic glomerular diseases (Study III).  

4. To investigate the potential difference in the patho-physiology between patients with 

diabetic nephropathy in type 1 diabetes mellitus (type 1 DN) and type 2 diabetes mellitus 

(type 2 DN) by comparing the patterns of urinary excretion of proteins of different size 

and charge (study IV). 

5. To examine the mechanisms of albuminuria resulting from severe, longstanding 

hypertension by measuring the transglomerular transport of native and neutral albumin in 

spontaneously hypertensive rats (SHR) of various age. 
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MATERIALS AND METHODS 

The characteristic of the patients in the studies I to IV are shown in tables 3 and 4.  

Table 3. Number of patients (male/female) in studies I-IV

18/2---Diabetes type 2

14/2---Healthy subjects

71563784Total 

15/7---Diabetes type 1

12/16/01/18/1Nephrosclerosis

-3/33/35/3Minimal change nephropathy

-8/410/412/7Membranous GN

-4/33/214/2IgA nephropathy

-12/124/617/15Mesangioproliferative GN

Male/FemaleMale/FemaleMale/FemaleMale/FemaleDiagnosis
IVIIIIII

 

 

Table 4. Inclusion and Exclusion criteria in studies I-IV

StudiesCriteria

II, IV< 250 µmol/L•Serum creatinine

I-IV•Rapidly progressive glomerulonephritis

I-IV•Systemic diseases

I, II, III•Diabetic Nephropathy

Exclusion criteria

I, III< 400 µmol/L

II>100 mg/mmol

I, III, IV>20 mg/mmol•Albumin creatinine index

Inclusion criteria
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The patients in the first three studies were all participants in a large investigation program of 

glomerular diseases being conducted at the Nephrology Department, University Hospital of 

Lund, Sweden.  

In study I we followed renal function in 84 patients with biopsy verified glomerular disease 

over a median of 41 (± 3) months. The patients were subdivided into groups with low 

(≤0.002) and high (>0.002) proteinuria selectivity index based upon the IgM / albumin 

clearance ratio (IgM-SI), and into groups with low (≤200 mg/mmol) and high (>200 

mg/mmol) albumin creatinine index (ACI).  

 

In study II we followed 37 proteinuric patients (21 males and 16 females) with glomerular 

disease and significant initial albuminuria for a mean of 44 (± 3.6) months. The comparisons 

between the patients were made according to the findings at the end of the study, by dividing 

them into three groups. One group had decreasing albuminuria (by more than 50%), one 

group had persisting albuminuria and low (<0.04mg/mmol creatinine), urinary IgM excretion 

and the last group had persisting albuminuria and high (≥ 0.04mg/mmol) urinary IgM 

excretion.  

 

In study III, we studied the relationship between urinary excretion of IgG, albumin, and 

protein HC in 56 patients (33 males and 23 females) with glomerular disease at the time of the 

diagnostic renal biopsy and after a mean of 49 follow-up months. 

 

In study IV urinary albumin, IgG2, IgG4 and IgM were assessed in 20 patients (18 males and 

2 females) with albuminuria and biopsy verified diabetic nephropathy due to type 2 diabetes, 

along with 22 (15 males and 7 females) patients with type 1 diabetes and macroalbuminuria 

(Tables 3 and 4). The measurements were compared with those in a control group consisting 
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of 13 (12 males and one female) patients with nephrosclerosis due to systemic hypertension, 

and with a second control group consisting of 16 (14 males and 2 females) healthy controls.  

 

In study V, we assessed the glomerular sieving coefficients (θ) for neutral albumin (θn-alb) and 

for native (negatively charged) albumin (θalb) in spontaneously hypertensive rats (SHR) of age 

3, 9, and 14 months in comparison with age matched normal control Wistar rats (NCR). The 

hypothesis was that increases in the glomerular permeability of both negatively charged and 

neutral albumin would indicate a preferential size-selective dysfunction of the glomerular 

capillary wall (GCW), while an increased permeability to negatively charged albumin, as 

compared to neutral albumin, predominantly would indicate a charge selectivity dysfunction 

of the GCW. The glomerular sieving coefficients ( θ) was assessed using a tissue (renal) 

uptake technique together with urinary sampling, described at some length elsewhere. Renal 

tracer protein clearance was calculated from the amount of tracer radioactivity accumulated in 

the two kidney cortices + the TCA precipitable urine tracer activity (collected during the 

tracer infusion period) divided by the plasma tracer “area under curve” (AUC). Protein 

sieving coefficients θ were calculated by dividing the measured protein clearance by the GFR. 

The GFR was assessed using the plasma to urine clearance of 51Cr-EDTA.  

 

Calculations 

The “gold standard” techniques for measurement of GFR using renal inulin or iothalamate 

clearances are time consuming and difficult to perform. However, given its simplicity, low 

cost, and widespread use, serum creatinine and creatinine clearance have been relied upon as 

the principal indicator of renal function in clinical and epidemiological studies (156-158). 

Various formulas for conversion of serum creatinine into creatinine clearance have been 

developed. The Cockcroft-Gault formula is probably the most used (159), where:  
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men)for  23.1(
mmol/L)( creatinine Serum

weightage)-(140   (Ccr) clearance Creatinine × 
×

=
µ

 

A more recently developed formula, based on data derived from the Modification of Diet in 

Renal Disease (MDRD) study, correlates well with measured GFR, and is of use in patients 

with mild to moderate renal insufficiency but is inaccurate in patients with normal or above 

normal GFR (160, 161), namely:  

female). if 0.742 ( (age)  mg/dl) creatinine (serumx  {186  GFR -0.203-1.154 ××=  

 

IgG2/IgG4 ratio was calculated as: 

(mg/l) ionconcentrat IgG4 Urine
(mg/l) ionconcentrat IgG2 Urine  

                                                 

IgM-selectivity index (IgM-SI) was calculated according to the formula (29, 162):  

Albumin x UrineIgM  Serum
Albumin Serumx IgM  Urine  

                                                 

Theoretical analysis 

According to the two-pore model, the glomerular clearance of any protein larger than the 

assumed small-pore radius is determined by its convective transport across large pores. Thus, 

its large-pore clearance )( LCl is just the product of the large pore volume flow ( LJv ) and the 

(large pore) reflection coefficient )( Lσ , or actually )1( Lσ− , of the solute: 

 )1( LLL JvCl σ−=   (1) 

Since native albumin is negatively charged, it would be completely excluded from the small 

pore pathway in the glomerular filter, and thus be confined to convective transport through 

large pores (12). Based on that consideration, the large pore volume flow LJv could be 
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determined from the sieving coefficient of native albumin (θalb)and from GFR assuming a 

fixed value (100Å) for the large pore radius (18). 

 )1( L
L

alb GFR
Jv σθ −=  (2) 

Charge selectivity defect: If charge selectivity is lost, then native albumin, which is normally 

excluded from the small pore pathway, will be able to penetrate the small pores, leading to a 

selective increment in θalb, so that it will eventually approach the sieving coefficient of neutral 

albumin (θn-alb). 

 

Size selectivity defect: If enlarged, less selective pores are formed when permeability is 

increased, then charge and size selectivity will be changed in parallel, leading to increases in 

both θalb and θn-alb. If new large pores are formed, then, because of the presence of negative 

charges in the large pores, the changes in θalb would be less pronounced than those in θn-alb, 

according to the following equation: 

 albn
albnL

albL
alb −

−−
−

∝ θ
σ
σ

θ
)1(
)1(

 (3) 

For 100 Å large pores albL )1( σ−  will be 0.398 (accounting for negative charges on albumin 

and on the pore walls according to the Debye Hückel theory of ion-ion interaction) 

and albnL −− )1( σ  will be 0.593.  

 

Statistical methods 

The data in the tables are expressed as medians and ranges or means ± SE (study II and V). 

Statistical comparison between the patient groups was performed with non-parametric Mann-

Whitney test, or Kruskal Wallis test when applicable. Correlation was tested using 

Spearman’s correlation coefficient. P < 0.05 was selected as the level of significance. Urine 
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concentrations of IgM below the detection limit were set at 0.01 mg/mmol and urinary HC-CI 

and IgG-CI below the detection limit were set at 0.1 mg/mmol. The statistical package for 

social science (SPSS, version 10) was used. P ≤ 0.05 (or when appreciate P ≤ 0.01) was 

selected as the level of significance. 

 

RESULTS AND DISCUSSION 

Studies (I - III) 

Clinical and experimental data indicate that glomerular proteinuria affects the progression of 

renal impairment in glomerular diseases by enhancing the formation of tubulointerstitial 

fibrosis (163). However, several recent reports suggest that it may not be albumin per se, but 

rather other factors associated with the enhanced urinary leakage of plasma proteins, such as 

complement factors or protein-bound inflammatory cytokines (e.g. TGF-β), that might cause 

these sequelae (70, 164).  

 

Studies I-II show that an 

increased urine IgM 

excretion predicts an 

unfavourable outcome, 

while a decreased urine 

excretion of this protein 

correlates to a more 

salutary prognosis in 

patients with primary 

glomerular diseases. This is true also when the total proteinuria, often presented as 

albuminuria, is persisting. In study I, patients with a high IgM based selectivity index (IgM-
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Figure 4. GFR decline rate in study I patients with low
respectively high values of IgM-selectivity index.
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SI) significantly decreased their renal function, by an average of 8 ml/min/year (Fig.4). 

Furthermore, 21% of the patients in this group developed end stage renal failure (ESRD) 

during the study time. In comparison, patients with low IgM-SI on average maintained their 

kidney function unaltered during observation time, although they had a higher degree of 

albuminuria (411 mg/mmol) than the patients in the high IgM-SI group (151 mg/mmol) 

(p<0.001). None of the patients in low IgM-SI group developed ESRD.  

 

Observations of patients with 

glomerular diseases with long-time 

persistent albuminuria in study II 

showed that only patients with 

persistent high urinary IgM 

excretion decreased significantly 

in renal function, while those with 

reduced urine IgM excretion 

preserved their renal function 

(Fig.5). In both studies, an increased urine IgM excretion was the strongest single predictor of 

the GFR decline (r=0.73, p<0.001).  

 

The pivotal role of albuminuria in the progression of renal tubular function impairment in 

glomerular diseases was further questioned in study III, where its relation to the urinary 

excretion of protein HC (reflecting the impairment of tubular protein uptake) was examined. 

We found that changes in urinary excretion of protein HC in a single patient during the 

follow-up time were much more strongly (r2=0.7) associated with changes in the urine IgG 

excretion than with changes in the degree of albuminuria (r2=0.29) (Fig.6). In consistency 
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with other recent investigations, these studies (I-III) shows a significant correlation between 

non-selective proteinuria and the degree of tubulointerstitial damage (77).  

 

Percentage of change of urinary IgG excretion

600%400%200%0%-200%

Pe
rc

en
ta

ge
of

 c
ha

ng
e

in
 p

ro
te

in
 H

C
C

I

800%

600%

400%

200%

0%

-200%

Figure 6. Correlation between the changes in 
urine protein HC and IgG excretion.

 

 

According to the “two-pore with a shunt” theory, macromolecules of the size of albumin or 

larger are normally transported through large pores of the GCW (26, 27). Since the population 

of these pores is, under normal conditions, relatively small, the transport of albumin across the 

GCW is usually low. Very large proteins, such as IgM, are able to pass the GCW only 

through the extremely rare shunts (18, 33). In case of loss of charge selectivity of the 

glomerular filter the “effective” small pore radius increases (by 8 Å) from ~29 to ~37 Å, thus 

enabling albumin to escape in large quantities through the small pores. Proteins larger than 

albumin are, however, still unable to pass through the small pore pathway. Thus, selective 

proteinuria is usually a consequence of a charge-selective defect rather than a size-selective 

disorder. This situation is conceivably the case in minimal charge nephropathy, but also in 

some other glomerular diseases (165). Once the glomerular disease produces alterations in the 

size-selective properties of the GCW, the urine contains an increased amount of large proteins 
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such as IgG and IgM. However, whereas the increased urinary excretion of IgG reflects 

increased density of “large pores” in the GCW, the occurrence of IgM in the final urine 

conceivably reflects a markedly increased population of highly unselective pathways, i.e. 

shunts. Recently, varying degrees of ultrastructural defects in the glomeruli, measuring 15-

200 nm in diameter, were revealed in nephrotic patients by transmission electron microscopy 

using a tissue negative staining method. These ultrastructural defects were not seen in normal 

renal tissue (166). Thus, proteins of size of IgM could make a sensitive marker of such 

defects, and an increased urinary IgM excretion apparently would predict a more severe 

glomerular injury and poorer renal outcome in glomerular diseases (Fig. 7). 

  

Severe Renal Injury

Developments of shunts and rupture of GCW 

Increased glomerular permeability to HMW proteins

Persistent renal injury Remission of renal injury

Persistent HMW proteinuria        Decreased  HMW proteinuria

Progressive decline                           Maintenance of
in kidney Function kidney Function

Figure 7. Pathophysiology of progressive nephropathy

 

Isolated albuminuria may represent alterations in either the charge- or size-selective properties 

of the GCW, or both. These alterations do not necessarily correlate to a gross damage of the 

GCW, which in turn, could explain the lack of correlation between albuminuria and the 

progress of the renal function impairment or development of interstitial fibrosis.  
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Figure 8. Urinary IgM excretion in healthy individuals and in patients 
with diabetic nephropathy due to type 1 and type 2 diabetes. 
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Figure 9. urine IgG2/IgG4 ratio in healthy individuals and patients with
diabetic nephropathy due to diabetes mellitus type 1 and type 2.
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Study IV 

Proteinuria is widely 

regarded as a hallmark of 

nephropathy in both type 1 

and type 2 diabetes (128, 

129). Until now, few 

studies have compared type 

1 and type 2 DN (167). 

Indeed, urinary IgM 

excretion as marker of the 

size-selective injury in type 

2 DN has, to our 

knowledge, not been 

studied before at all. In 

study IV, the patients with 

type 1 DN and type 2 DN 

did not differ with regard to 

the degree of albuminuria, serum creatinine or urine protein HC concentration. However, 

compared to patients with type 1 DN, the type 2 DN patients showed an increased urine 

excretion of IgG, suggesting a more severe size-selective dysfunction in type 2 DN. The size-

selective properties of the glomerular capillary wall were relatively intact in type 1 DN. The 

appearance of IgM in the urine in type 2 DN patients can be interpreted to reflect a markedly 

increased population of highly non-selective “shunt”-pathways (Fig.8). The urine IgG2/IgG4 

ratio was high in type 2 DN and low in type 1 DN patients (p<0.01) (Fig.9). This suggests that 

the charge selectivity of the glomerular barrier in type 2 DN patients is preserved. Thus, while 



Diagnostic and prognostic value of proteinuria   

 37

an impairment of the charge selectivity of the GCW is probably the major cause of proteinuria 

in early type 1 diabetes, the proteinuria in type 2 DN is primarily due to a size-selective 

dysfunction. It is likely that the presence of hypertension and an increased vascular resistance 

in patients with type 2 DN may induce ischemia and structural changes in the glomeruli 

resulting in proteinuria mainly reflecting a size-selective dysfunction in type 2 DN (168, 169). 

 

Study V 

The major result from study V is that the glomerular sieving coefficient of native albumin 

(θalb) in SHR, was normal during the first 9 months of hypertension, but significantly 

increased in old animals, as compared to that in age matched NCR (Fig.10). The glomerular 

sieving coefficient of native albumin (θalb) in SHR increased from 5.0 (±0.5) x10-4 at 3 

months, to 7.6(±0.8)x10-4 at 9 months, and to 12.9(±0.9)x10-4 at 14 months of age (p<0.001), 

while θalb did not change 

significantly with age in NCR, 

remaining at 7.0(±0.5)x10-4 at 3 

and 9 months and at 

7.2(±0.9)x10-4 at 14 months of 

age, respectively. Thus, in SHR, 

it takes more than half a lifetime 

of hypertension to develop 

proteinuria and kidney damage.   

 

Furthermore, the glomerular disturbance developed during long-standing hypertension is of 

size-selective nature, and not represented by a primary charge-selective defect of the GCW. 

Thus, the ratio of neutral to negative albumin clearance was maintained high throughout the 
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life span of the hypertensive rats, and the increases θalb  in old SHR was significantly 

correlated with increases in θn-alb (r=0.86, p<0.001). This may, according to pore theory, be 

explained by the creation of an increased number of rather unselective pores of intermediate 

radius (64.2 Å; cf. small and large pores). All the animals studied (NCR and SHR) thus 

showed a generally higher clearance of neutral albumin (7 fold) than of native (negatively 

charged) albumin, indicating a normally marked influence of charge on transglomerular 

protein transport.  

 

The albumin sieving coefficient (0.0007) obtained by the present tissue renal uptake technique 

or earlier micropuncture studies (0.00062) (19) along with a recent report by Norden et al, 

(170) of the absence of a significant amount of albumin degradation products in normal urine, 

contradicts the recent reports that the glomerulus is normally highly leaky to albumin (23). 

Our data reconfirm the old concept of the GCW as a highly charge- and size-selective barrier 

to the passage of macromolecules of the size of albumin or larger. 
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CONCLUSIONS 

• The findings of the present studies indicate that it is possible to predict the rate of 

progression in renal diseases in patients with non-diabetic glomerulopathies by the 

type of proteinuria rather than by the degree of albuminuria.  

• High urinary IgM excretion correlates to a decreased GFR in primary glomerular 

diseases regardless of the degree of albuminuria. In parallel, low urinary IgM 

excretion indicates beneficial prognosis in these diseases.  

• Since IgM can be predicted to pass the glomerular barrier entirely through large shunts 

or defects in the glomerular capillary wall, a decreasing urine content of IgM might be 

considered as a sign of recovery of the glomerular damage 

• The difference in the proteinuria patterns in type 1 and type 2 diabetic nephropathy, in 

addition to the clinical and functional differences, suggests mutually different patho-

physiological mechanisms of nephropathy in the two entities of diabetic renal disease. 

• In old age, hypertensive rats develop proteinuria as a result of a dysfunction of the 

glomerular capillary wall, affecting primarily its size selectivity. This conceivably 

occurs by the appearance of an increased number of rather unselective pores in the 

glomerular filtration barrier in untreated, long-standing hypertension.  
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FUTURE PERSPECTIVES 

An increased use of non-invasive diagnostic and prognostic approaches in glomerular diseases 

would be beneficial to the patients and also be cost-effective. The studies presented in this 

thesis illustrate the use of urinary proteins as markers of glomerular and tubular dysfunction 

and the prognosis of proteinuric renal diseases. The studies have raised several questions 

requiring further investigation. Identification, at early stages of glomerular disorders, of 

patients with poor renal prognosis suggests more intensive clinical follow-up of such patients 

and provides insights for the design of future therapeutic studies on e.g. urinary IgM 

excretion. An interesting issue would be to evaluate the effects of ACE-inhibitor treatment 

and/or immunosuppressive drug treatment of this group of patients. Further studies are needed 

to elucidate the association between urine IgM excretion and the urinary excretion of other 

biologically active proteins, such as TGF-β or complement factors, to further evaluate the 

mechanisms of glomerular disease and the progression to renal failure. 

Finally, the permeability properties of the glomerular filter in healthy and diseased conditions 

might be further studied using proteins of different size and charge, e.g. albumin, IgG and 

IgM, in order to add further understanding to the function of the glomerular sieving process 

and the mechanisms of glomerular injury. Although, at present, this can only be made in 

animal models of glomerular diseases, this may help in improving the medical care of 

individuals with glomerular diseases.  
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