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Abstract
We formulate and solve a control problem where
data are sent over a communication network that
introduces random time delays. Past time delays are
assumed known by the use of timestamps and the
probability distribution of future delays are modeled
with a Markov chain with continuous observation
densities. We generalize previous results on LQG
control of jump linear systems to cover this situation.

1. Introduction
Modern control systems often use a communication
network to send measurement and control signals
between nodes. A common communication network
reduces the cost of cabling, and offers modularity
and flexibility in systems design. Possible alterna-
tives include CAN, Profibus, FIP, Ethernet and ATM.
Communication delays in such networks can vary in
a random fashion. The reason for this can be e.g. in-
terrupt driven events, data dependent computation
times, use of dynamic schedules, collisions or varying
network load.

In previous papers we have addressed the problem
of analysis of given control laws using Markov chain
theory. In this contribution we present the optimal
linear quadratic controller. This is a generalization
of old results in jump linear systems and the results
in Nilsson (1996) and Nilsson et al. (1996)where the
LQG-problem is solved with the assumption that the
time delays are independent from sample to sample.
It was also shown how timestamps can be used in the
LQG-controller. In Nilsson and Bernhardsson (1996)
it is shown how to analyze a given controller when
the delays are modeled using the Markov chain setup
in Section 1.2.

1.1 Jump Linear Systems

Jump linear systems can in discrete time be written

∗ This work is supported by NUTEK, Swedish National Board for
Industrial and Technical Development, Project Dicosmos, 93-3485.

as

xk+1 � A(rk)xk + B(rk)uk,

where A(rk) and B(rk) are functions of the state rk

in a Markov chain. Jump linear systems was intro-
duced in the 60’s by Krasovskii and Lidskii (1961).
The LQ-problem was solved by Sworder (1969).
Since then much work have been done for Jump lin-
ear systems, see Ji et al. (1991) for a survey. Recent
work include solutions in terms of Linear Matrix In-
equalities, see e.g. Rami and Ghaoui (1997). In our
setup each Markov state corresponds to a given con-
tinuous probability distribution of the time delays.
This is a popular, efficient model class in e.g. speech
recognition, see the review paper Rabiner (1989) but
has to our knowledge not been used in the control
field of jump linear systems.

The resulting controller is of a form tractable for fast
implementations. It is a linear feedback with gain
scheduling on last measured time delay which can
be precomputed in a one-parameter table. A time-
varying Kalman filter is also needed, but the special
system structure makes an efficient implementation
possible so that no Riccati equations have to be
solved on-line. It is assumed that the state of the
Markov chain is known at time of control. If the
state is unknown it can be estimated using standard
methods from Hidden Markov Models, see Elliot
et al. (1995), but the form of the optimal controller
is not known.

1.2 Models of Real Time Communication
Networks

We will study a model that captures the dependency
between successive time delays. This gives a quite
flexible model class for which it is possible to derive
analytical results of optimal controllers, the separa-
tion principle holds and which allows model iden-
tification using well established methods from e.g.
speech recognition. It is important to keep the num-
ber, s, of Markov states low. The reason for this is



that the number of transition probabilities that must
be identified grows like s2 and the computational
time can grow like s6.

EXAMPLE 1—SIMPLE NETWORK MODEL

To get a simple network model we can let the net-
work have three states, one for low network load, one
for medium network load, and one for high network
load. In Figure 1 the transitions between different
states in the communication network are modeled
with a Markov chain. Together with every state in

L M H

Figure 1 An example of a Markov chain modeling the
state in a communication network. L is the state for low
network load, M the state for medium network load, and
H is the state for high network load. The arrows show
possible transitions in the system.

the Markov chain we have a corresponding delay dis-
tribution modeling the delay for that network state.
These distributions could typically look like the prob-
abilistic distributions in Figure 2.
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Figure 2 The delay distributions corresponding to the
states of the Markov chain in Figure 1. Here L is the state
for low network load, M the state for medium network
load, and H is the state for high network load.

1.3 Timestamps and Clock Synchronization
The time delays are unknown in advance. At time k
it is however possible to have information about old,
or some of the old, time delays. For some networks
(such as CAN) this information can be obtained di-
rectly, for others it can be achieved by so called time-
stamps. The idea is to adjoin the time of generation
to each signal sent. The receiver can then compare
the timestamp with his local clock and calculate the
time delay. In some cases arrival information need

to be sent back to the controller node. This requires
reliable, synchronized clocks. The implementation of
this is a research area in itself. For us it suffices to
know that such synchronized clocks can under rea-
sonable assumptions be implemented with low cost,
see Mills (1991).

1.4 Control of Systems with Varying Time
Delays

This section gives a short summary of previous
work on systems with varying time delays, see the
references for a thorough review.

Make the System Time-Invariant An ap-
proach to make the closed loop system time-invariant
was presented in Luck and Ray (1990). The idea is
to introduce buffers of the same length as the worst
case delays at the controller and actuator node. The
problem with this method is that it makes the de-
lays longer than necessary, which can degrade con-
trol performance, see Nilsson et al. (1996).

Stochastic Approaches In Liou and
Ray (1991) a setup with a time skew between the
sensor and controller is studied. The resulting pro-
cess description is

xk+1 � Akxk + Bkuk,

where Ak and Bk are random due to the random
delays. An LQ-optimal controller is presented, but
it is not known whether the separation principle
applies.

In Krtolica et al. (1994) a problem with the delays
as a multiple of the sampling interval is studied.
The number of sampling intervals the signals are
delayed is modeled with a Markov chain. Necessary
and sufficient conditions for zero-state mean-square
exponential stability are derived.

2. Problem Formulation
In this section we will setup the network and plant
model for the system in Figure 3. It is assumed that
the sensor node is sampled regularly at a constant
sampling period h. The measurement are sent via
the network to the controller node. The controller
node is assumed to be event driven, i.e. upon arrival
to the controller node the control signal is calculated
and sent via the network to the actuator node. The
computation time, τ c, is included in τ ca. The actuator
node is assumed to be event driven, i.e. the control
signal will be used as soon as it arrives.

2.1 The Markov Communication Network
The network delays are collected in the variable
τ k, where τ k is a random variable with probability
distribution given by the state of a Markov chain.
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Figure 3 Distributed digital control system with in-
duced delays, τ sc , τ c and τ ca .

For instance τ k can be a vector with the delays in
the loop, i.e. τ k � [τ sc

k , τ ca
k ]T . The Markov chain has

the state rk ∈ {1, ..., s} when τ k is generated. The
Markov chain then makes a transition between k and
k+ 1. The transition matrix for the Markov chain is
Q � {qij}, i, j ∈ {1, ..., s}, where

qij � P(rk+1 � j t rk � i).

Introduce the Markov state probability

π i(k) � P(rk � i), (1)

and the Markov state distribution vector

π (k) � [π 1(k) π 2(k) . . . π s(k) ] .

The probability distribution for rk is given by the
recursion

π (k+ 1) � π (k)Q
π (0) � π 0,

where π 0 is the probability distribution for r0.

2.2 Discrete Time System

The controlled process is assumed to be linear of the
form

dx
dt
� Ax(t) + Bu(t) + v(t), (2)

where x(t) ∈ R n, u(t) ∈ R m, v(t) ∈ R n and where
A and B are matrices of appropriate sizes. The con-
trolled input is denoted by u(t) and v(t) is white noise
with zero mean and covariance Rv. As a simplifica-
tion we will assume that the delay from sensor to
actuator always is less than the sampling period h,
i.e. τ sc

k +τ ca
k < h. If this condition is not satisfied con-

trol signals may arrive at the actuator in corrupted
order, which makes the analysis much harder. The
influence from the network is collected in the vari-
able τ k, which has a probability distribution gov-
erned by an underlying Markov chain. Discretizing

(2) in the sampling instants, see Åström and Witten-
mark (1990), gives

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1+ vk, (3)
where

Φ � eAh, (4)

Γ0(τ sc
k , τ ca

k ) �
∫ h−τ sc

k −τ ca
k

0
eAsdsB , (5)

Γ1(τ sc
k , τ ca

k ) �
∫ h

h−τ sc
k −τ ca

k

eAsdsB . (6)

The output equation is

yk � C xk + wk, (7)
where yk ∈ R p. The stochastic processes vk and wk

are uncorrelated white noise with zero mean and
covariance matrices R1 and R2 respectively.

Remark: The assumption that the delays from
sensor to actuator are less than h can be changed
to that the variation in the delays from sensor
to controller are less than h. This generalization
requires that the process state is extended with some
old control signals.

2.3 Delay Distributions

Let Yk denote the sigma algebra generated by the
random components up to time k, i.e.

Yk � {e0, ..., ek , τ 0, ..., τ k , r0, ..., rk}.
The probability distribution of τ k is assumed given
by the state rk of the Markov chain, i.e.

P(τ k ∈ F t Yk) � P(τ k ∈ F t rk)
for all measurable sets F . Markov chains with con-
tinuous observation densities will be used. Figure 2
shows the probability distribution

fi(τ k) � P(τ k t rk � i)
for i � 1, 2, 3 corresponding to low, medium, and high
load on the network. Note that discrete observation
densities are covered as a special case obtained by
letting fi be a sum of Dirac functions.

3. Optimal LQG Control — Markov
Communication Networks

3.1 Optimal State Feedback
In this section we solve the control problem set up
by the cost function

JN � xT
N QN xN + E

N−1∑
k�0

[
xk

uk

]T

Q
[

xk

uk

]
, (8)



where

Q �
[

Q11 Q12

QT
12 Q22

]
(9)

is symmetric, positive semi-definite, and Q22 is posi-
tive definite. The solution of this problem follows by
the same technique as for the standard LQG prob-
lem. We have the following result:

THEOREM 1—OPTIMAL STATE FEEDBACK

Given the plant (3), with noise free measurement of
the state vector xk, i.e. yk � xk, and knowledge of
the Markov state rk. The control law that minimizes
the cost function (8) is given by

u∗
k � −Lk(τ sc

k , rk)
[

xk

u∗
k−1

]
(10)

where, for rk � i, i � 1, . . . , s, we have

Lk(τ sc
k , i) �(Q22 + S̃22

i (k+ 1))−1 ⋅
⋅ [QT

12 + S̃21
i (k+ 1) S̃23

i (k+ 1) ]

S̃i(k+ 1) �E
τ ca

k

GT
s∑

j�1

qij Sj (k+ 1)G
∣∣∣τ sc

k , rk � i


G �

[
Φ Γ0(τ sc

k , τ ca
k ) Γ1(τ sc

k , τ ca
k )

0 I 0

]
Si(k) �E

τ sc
k

(
F T

1 QF1 + F T
2 S̃i(k+ 1)F2

∣∣∣rk � i
)

F1 �
[

I 0

−L(τ sc
k , rk)

]

F2 �

 I 0

−L(τ sc
k , rk)

0 I


Si(N) �

[
QN 0

0 0

]
.

S̃ab
i (k) is block (a, b) of the symmetric matrix S̃i(k),

and Qab is block (a, b) of Q.

Theorem 1 states that the optimal controller with
full state information is a linear feedback depending
on τ sc

k and rk

uk � −Lk(τ sc
k , rk)

[
xk

uk−1

]
.

The equation involved in going from Sj (k+1) to Si(k)
is a coupled Riccati equation evolving backwards in
time. Each step in this iteration will contain expecta-
tion calculations with respect to the stochastic vari-
ables τ sc

k and τ ca
k . Under reasonable assumptions,

that we will not discuss here, a stationary value S∞i
of Si(k) can be found by iterating the stochastic Ric-
cati equation. In practice a tabular for L∞(τ sc

k , rk)

can then be calculated to get a control law on the
form

uk � −L(τ sc
k , rk)

[
xk

uk−1

]
,

where L(τ sc
k , rk) is interpolated from the tabular

values of L∞(τ sc
k , rk) in real-time.

EXAMPLE 2—VARIABLE DELAY LQ-DESIGN

Consider the closed loop system in Figure 4. Assume

Actuator
node

Controller
node

Process Sensor

τ k

h

Figure 4 Digital control system with induced delay. The
time-delay τ k is determined by the state rk of the Markov
chain in Figure 5.

that the distribution of the communication delay τ k

from controller to actuator is given by the state rk of
a Markov chain. The Markov chain has two states,
see Figure 5. The delay is

1 2

1− q1

q1 q2

1− q2

Figure 5 Markov chain with two states. State 1 corre-
sponds to no delay, and state 2 corresponds to a time-delay
in the interval [d− a, d+ a], see Equation (11).

τ k �
{

0 if rk � 1,

rect(d− a, d + a) if rk � 2,
(11)

where rect(d−a, d+a) denotes a uniform distribution
on the interval [d−a, d+ a]. It is also assumed that
d− a > 0 and d+ a < h. The controlled process is{

ẋ � x+ u+ e

y � x

Discretizing the process in the sampling instants
determined by the sensor we get

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1+ Γeek



where

Φ � eh,

Γ0(τ k) �
{

eh − 1, if rk � 1,

eh−τ k − 1, if rk � 2.

Γ1(τ k) �
{

0, if rk � 1,

eh−τ k(eτ k − 1), if rk � 2.

This is a system where we can use the derived
synthesis method. The design is made by setting up
a cost function to be minimized. Here we will use (8)
with

Q11 � CT C � 1 Q12 � 0 Q22 � 1.

As we in this example only have statistical informa-
tion about the control delay when we calculate the
control signal the controller will not be a function of
τ k. The optimal control will be

uk � −L(rk)
[

xk

uk−1

]
,

where rk is the state of the Markov chain. In this
example the Markov chain state is assumed known
when the control signal is calculated. Solving the
coupled Riccati equations in Theorem 1 gives L(rk).
In Figure 6 the stationary LQ-cost is evaluated in
the q1−q2 space for h � 0.3, d � 0.8h and a � 0.1h.
From Figure 6 it can be observed that the most
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0
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9
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Figure 6 Level curves for the cost function in q1 − q2
space for the system in Example 2. The minimal value is
8.66, which is attained for (q1 � 1, q2 � 0). The following
level curves are {9, 10, 11, 12, 13, 14}.

advantageous cases for control is when q1 is close
to 1, and when both q1 and q2 are close to 0. In both
these cases we have what can be called a “close to
deterministic system”. If q1 is close to 1 we will be
in the no delay state most of the time. In the other
case where both q1 and q2 are small we will switch
between state 1 and state 2 every sample, which
could be characterized as a deterministic system
with period 2 samples.

3.2 Optimal State Estimate

It is often impossible to get full state information.
A common solution to this is to construct a state
estimate from the available data. In our setup there
is the problem of the random time delays which enter
(3) in a nonlinear fashion. The fact that the old time
delays up to time k−1 are known at time k, however,
allows the standard Kalman filter of the process
state to be optimal. This is because xk only depends
on delays in the set {τ sc

0 , ..., τ sc
k−1, τ ca

0 , ..., τ ca
k−1}, as seen

from (3).
When we are to calculate an estimate of xk we
assume that we know old values of the process
output and process input. These can simply be stored
in the controller for later use. We also assume that
old values of the transfer delays for process output
measurements and control signals are known. One
way to achieve this is by using timestamps, see
Section 1.3. Denote the information available when
the control signal uk is calculated by Yk. This has
the structure

Yk � {y0, ..., yk , u0, ..., uk−1, τ sc
0 , ..., τ sc

k ,
τ ca

0 , ..., τ ca
k−1, r0 , ..., rk}.

Notice that the sensor to controller delay τ sc at
time k and older are available, but the controller to
actuator delays τ ca are only known up to time k−1.

The state estimator that minimizes the error covari-
ance is given in the following theorem.

THEOREM 2—OPTIMAL STATE ESTIMATE

Given the plant (3)–(7). The estimator

x̂ktk � x̂ktk−1+ K k(yk − C x̂ktk−1) (12)

with

x̂k+1tk � Φ x̂ktk−1+ Γ0(τ sc
k , τ ca

k )uk + Γ1(τ sc
k , τ ca

k )uk−1

+ Kk(yk − C x̂ktk−1)
x̂0t−1 � E(x0)
Pk+1 � ΦPkΦT + R1

− ΦPkCT [C Pk CT + R2]−1C PkΦ

P0 � R0 � E(x0xT
0 )

Kk � ΦPkCT [C Pk CT + R2]−1

K k � PkCT [C Pk CT + R2]−1

minimizes the state estimate error variance E{[xk −
x̂k]T [xk − x̂k] t Yk}. Note that the filter gains Kk

and K k do not depend on τ sc and τ ca. Moreover,
the estimation error is Gaussian with zero mean and
covariance Pktk � Pk − PkCT [C Pk CT + R2]−1C Pk.



3.3 Optimal Output Feedback

The following theorem states that the combination
of Theorem 1 and Theorem 2 is optimal.

THEOREM 3—SEPARATION PROPERTY

Given the plant (3)–(7), with Yk known when the
control signal is calculated. The controller that min-
imizes the cost function (8) is given by

u∗
k � −L(τ sc

k , rk)
[

x̂ktk
u∗

k−1

]
(13)

with

L(τ sc
k , rk) � (Q22 + S̃22

i (k+ 1))−1 ⋅
⋅ [ QT

12 + S̃21
i (k+ 1) S̃23

i (k+ 1) ]

where S̃i(k) is calculated as in Theorem 1, and x̂ktk
is the minimum variance estimate from Theorem 2.

4. Future Work
Future work will include:

• Studies of how the system performs if the state
of the Markov chain is not known. In this case
the network model will be a hidden Markov
model.

• Experimental verification of the results on a
research platform for distributed control.

References
ÅSTRÖM, K. J. and B. WITTENMARK (1990): Computer Con-

trolled Systems—Theory and Design, second edition.
Prentice-Hall, Englewood Cliffs, New Jersey.

ELLIOT, J. E., L. AGGOUN, and J. B. MOORE (1995): Hid-
den Markov models, estimation and control. Springer-
Verlag.

JI, Y., H. J. CHIZECK, X. FENG, and K. A. LOPARO (1991):
“Stability and control of discrete-time jump linear
systems.” Control-Theory and Advanced Technology,
7:2, pp. 247–270.

KRASOVSKII, N. N. and E. A. LIDSKII (1961): “Analytic de-
sign of controllers in systems with random attributes,
I, II, III.” Automation and Remote Control, 22:9–11,
pp. 1021–1025, 1141–1146, 1289–1294.

KRTOLICA, R., Ü. ÖZGÜNER, H. CHAN, H. GÖKTAS,
J. WINKELMAN, and M. LIUBAKKA (1994): “Stability of
linear feedback systems with random communication
delays.” Int. J. Control, 59:4, pp. 925–953.

LIOU, L.-W. and A. RAY (1991): “A stochastic regulator for
integrated communication and control systems: Part
I - Formulation of control law.” Transactions of the
ASME, Journal of Dynamic Systems, Measurement
and Control, 113, pp. 604–611.

LUCK, R. and A. RAY (1990): “An observer-based com-
pensator for distributed delays.” Automatica, 26:5,
pp. 903–908.

MILLS, D. (1991): “Internet time synchronization: the
network time protocol.” IEEE Trans. Communications,
39:10, pp. 1482–1493.

NILSSON, J. (1996): Analysis and Design of Real-Time Sys-
tems with Random Delays. Lic Tech thesis TFRT–3215,
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

NILSSON, J. and B. BERNHARDSSON (1996): “Analysis of
real-time control systems with time delays.” Proceed-
ings of the 35th IEEE Conference on Decision and Con-
trol, 1996, Kobe, Japan, pp. 3173–3178.

NILSSON, J., B. BERNHARDSSON, and B. WITTENMARK

(1996): “Stochastic analysis and control of real-time
systems with random time delays.” Proceedings of the
13th International Federation of Automatic Control
World Congress, San Francisco, pp. 267–272.

RABINER, L. R. (1989): “A tutorial on hidden markov mod-
els and selected applications in speech recognition.”
Proc. of the IEEE, 77:2, pp. 257–286.

RAMI, M. A. and L. E. GHAOUI (1997): “LMI optimization
for nonstandard riccati equations arising in stochastic
control.” IEEE Transaction on Automatic Control. to
appear.

SWORDER, D. D. (1969): “Feedback control of a class of
linear systems with jump parameters.” IEEE Trans-
actions on Automatic Control, 14:1, pp. 9–14.


