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Abstract 

In the study of motor systems it is often necessary to track the movements of an experimental 

animal in great detail to allow for interpretation of recorded brain signals corresponding to different 

control signals. This task becomes increasingly difficult when analyzing complex compound 

movements in freely moving animals. One example of a complex motor behavior that can be studied 

in rodents is the skilled reaching test where animals are trained to use their forepaws to grasp small 

food objects, in many ways similar to human hand use. To fully exploit this model in 

neurophysiological research it is desirable to describe the kinematics at the level of movements 

around individual joints in 3D space since this permits analyses of how neuronal control signals relate 

to complex movement patterns. To this end, we have developed an automated system that 

estimates the paw pose using an anatomical paw model and recorded video images from six 

different image planes in rats chronically implanted with recording electrodes in neuronal circuits 

involved in selection and execution of forelimb movements. The kinematic description provided by 

the system allowed for a decomposition of reaching movements into a subset of motor components. 

Interestingly, firing rates of individual neurons were found to be modulated in relation to the 

actuation of these motor components suggesting that sets of motor primitives may constitute 

building blocks for the encoding of movement commands in motor circuits. The designed system will, 

thus, enable a more detailed analytical approach in neurophysiological studies of motor systems. 
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1. Introduction 

The central nervous system fundamentally deals with the control of actions. Consequently 

behavioral studies have often been a natural starting point for investigations aimed at 

understanding its functions. For the same reason, the search for new therapies for 

neurological and psychiatric diseases largely depend on animal models designed to mimic 

certain aspects of the disease that cause observable changes in the behavior of the subject. 

With the more recent development of techniques allowing for simultaneous recording of 

neuronal activity in many parts of the central nervous system in freely behaving animals, 

the electrophysiological processes underlying such changes in behavior - or even the 

generation of specific components of observed actions - have the potential to be 

investigated in much greater detail (Nicolelis, 2008). The access to neuronal data with 

sub-millisecond temporal precision in turn further increases the need for more detailed 

documentation of movement patterns displayed by freely behaving animals. However, 

because natural behavior typically involves chains of movement sequences incorporating 

many partially overlapping motor components, an extra challenge in this respect is to 

reliably identify and isolate the execution of these individual motor elements. The most 

common approach for behavioral recording in neurophysiological research is probably the 

use of digital video techniques, where image sequences are obtained from different 

camera angles and specific behaviors are either manually identified off-line (Cenci and 

Lundblad, 2007; Whishaw et al., 1999) or, when clearly visible in any of the cameras, 

automatically identified and quantified from this viewing angle (Peikon et al., 2009; 

Vorhees et al., 1992). In situations where movements involve several joints the problem of 

tracking motor components involving for example small angle changes in distally located 

joints becomes increasingly complex. A well-studied and functionally very important 

example of movement sequences involving parallel movements in multiple joints in 

humans is the skilled arm and hand movements involved in reaching for and grasping of 

different objects (de Bruin et al., 2008; Gentilucci et al., 1997; Jeannerod, 1984). Perhaps 

surprisingly, rodents can after extensive training also perform reaching and grasping 

movements using their forepaw in many ways similar to a human hand, hence making this 

behavior particularly well suited for studies on skilled motor control in translational 

research (Peterson, 1934; Sacrey et al., 2009).  
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To be able to track forelimb movements with high fidelity in the skilled reaching task we 

designed a system that uses a three-dimensional (3D) model of the paw for which 

movements are reconstructed based on image sequences recorded from multiple viewing 

angles. Each paw pose is estimated by an optimization procedure that maximizes a 

matching quality measure in order to retrieve the best approximation of that pose. The 

matching quality is measured as the discrepancy between projections of the 3D model 

onto the image planes and the actual images, using edges and silhouettes as cues. We here 

describe how this system allows us to correlate single unit activity of neurons in 

corticostriatal circuits in rats to different motor components in the reaching-grasping 

sequence, opening up for significantly more detailed analyses of skilled movement 

control.  

 

2. Materials and Methods 

2.1. Animals  

One adult female Sprague-Dawley rat (230g; Taconic Inc.) was used in the study. The 

animal was kept on 12:12 h light cycle and received food and water ad libitum except 

for a 22 h-period prior to each testing session during which no food was provided. 

After each testing session the animal had free access to food for 1 h. All experiments 

were approved in advance by the Malmö/Lund ethical committee of animal 

experiments. 

 

2.2. Training protocol 

The rat was trained during a three week period prior to the implantation of recording 

electrodes according to the protocol described by Whishaw and colleagues (Whishaw 

et al., 2008). Training entailed habituation of the rat to the apparatus, habituation to 

the food reward (pellet) and establishment of paw dominance. The training continued 

until performance no longer improved between sessions, reflecting a fully learned 

behavior (Hermer-Vazquez and Moshtagh, 2009). See Appendix A for details. 
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2.3. Electrodes 

Formvar-insulated 33 µm tungsten wires (CFW Inc.) were arranged into four separate 

4x5 arrays with 250 µm spacing between adjacent wires.  Each array consisted of 16 

recording channels and two reference channels, as well as two blind channels. The 

wires of each array were cut to the appropriate length for the corresponding recording 

site (cortical or striatal). Reference wires were cut 1 mm shorter than the recording 

wires and de-insulated 300 µm at the tip, positioning them dorsally to the recording 

site (at the cortical surface and within the corpus callosum, for cortical and striatal 

arrays, respectively). The wires were attached to board-to-board-connectors (Kyocera 

5602) with conducting epoxy (Epotek EE 129-4), and linked to the acquisition device 

via a board-to-Omnetics connector adapter (Kyocera 5602; Omnetics). A 200 µm 

silver wire was used as animal ground via direct connection to four screws inserted 

into the cranium. 

 

2.4. Surgery 

Implantations were performed under Fentalyl/Medetomidine anesthesia (0.3/0.3 

mg/kg, i.p.). Electrodes were implanted in the forelimb area of the primary motor 

cortex (center coordinates: AP: +1.5, ML: ±2.8, DV: -1.0 from cortical surface, 

Donoghue and Wise, 1982) and of the striatum, (center coordinates: AP: +0.2, ML: 

±3.8, DV: -3.5 from cortical surface, West et al., 1990) in both hemispheres. The 

implant was fixated with dental acrylic attaching to screws in the skull. After surgery 

the anesthesia was reversed by Atipamezole hydrochloride (5 mg/kg, i.p.). 

Buprenorphine (0.5 mg/kg, s.c.) was administered as postoperative analgesic. The 

animal was allowed to recover for a week after implantation before testing 

commenced. 

 

2.5. Experimental set-up 

The testing apparatus for the reaching task consisted of a 450x140x350 mm (l/w/h) 

transparent Plexiglas cage with a 13 mm wide aperture at the middle of one of the 

short sides (vertical position of aperture: 40 to 150 mm above the ground). Outside the 
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aperture a 30 mm deep shelf was positioned. To facilitate the placement of food 

pellets, three separate hemispherical indentations (5 mm in diameter) were made in the 

shelf 15 mm from the outer edge of the slit. The middle pocket was positioned right in 

front of the aperture with the other two pockets centered 6.5 mm more lateral on each 

side. This configuration prevented the rat from using its tongue to acquire the pellet. 

Furthermore, it permitted the experimenter to decide which paw the rat had to use, as 

this geometry allows only reaches with the paw contralateral to the side pockets (for 

further details, see Whishaw and Pellis, 1990). At the center of the cage was a 40 mm 

high solid obstacle that enforced a forelimb stepping movement similar to the actual 

reaching and grasping movement, for comparison of similar movements with different 

purposes.  

 

2.6.  Reaching task 

In the behavioral task the rat was placed in the reaching apparatus from where it could 

obtain 45 mg food pellet rewards, positioned in the indentation on the reward shelf, 

via controlled reaches through the aperture of the wall. A trial ended either if the rat 

acquired the pellet after one or several reach attempts, or if the pellet at any time was 

moved from its original position, in which case the food pellet was manually removed 

by the experimenter. In order to produce discrete reaching trials, the rat was trained to 

return to the end of the cage opposite to the reaching slit before it was presented with 

another food pellet, requiring the animal to reposition before every trial. Moreover, by 

semi-randomly withholding food the rat was prompted to identify the presence of a 

pellet before each reach attempt, yielding maximal accuracy of each skilled reach 

(Appendix A).  

 

2.7.   Acquisition of neurophysiological signals 

Extracellular neuronal recordings were acquired using a multichannel recording 

system with Cheetah software (Neuralynx Inc.) and digitized at 32 kHz per channel. 

Local field potentials were bandpass filtered between 0.1-300 Hz (not used in this 

study) and action potential waveforms between 600-9000 Hz.  
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2.8.  Video acquisition systems 

The details of the paw movement during the reach and grasp behavior were captured 

by two front-view cameras (CMOS, 640x480 pixels; Dalsa Inc.) positioned close to 

the aperture. Additionally, three mirrors positioned along the edges of the reward shelf 

gave two extra viewing planes for each front-view camera. Thus, the front-view 

cameras and mirrors were mounted such that six complementary viewing planes 

covered the region of interest where the rat forelimb was moving. Extra care was taken 

to avoid uneven light conditions or reflexes from surfaces. To ensure that inadvertent 

variations in the camera positions would not influence the 3D reconstruction a 

calibration procedure with an object of known measures was performed at the start of 

each recording. This allowed for off-line determination of the mathematical function 

that best described the projections of 3D objects onto the image planes. The apparatus 

also included one side camera recording the movements of the rat within the box 

(Stingray, 640x480 pixels; Allied Vision Technologies). 

The two front-view cameras were triggered by an external pulse generator (Master 8, 

A.M.P.I) acquiring images at 200 Hz during a time period manually controlled by a 

switch during the ongoing experiment, while the side-view camera continuously 

acquired images at 50 Hz. A set of images acquired from this set of cameras at the 

same moment in time is in the following referred to as a multiframe. In order to ensure 

perfect temporal alignment between the acquired images and the neuronal recordings, 

the timestamp for each multiframe was also stored in the Neuralynx multichannel 

recording system. Uncompressed image data was sampled from the three cameras on 

three separate computers, using Common Vision Blox software (Stemmer Imaging, 

Gmbh) and FireView (Allied Vision Technologies), for the front-view and side-view 

cameras, respectively. Post-acquisition compression of stored data was made for 

reduction of data size using standard DivX-codecs. 

 

2.9.  Software implementation  
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The analysis software was implemented using an object-oriented approach in Matlab 

(MathWorks) along with mex-functions (C code compiled in Matlab) that handled a 

few frequently used low-level functions [the program can be obtained from the 

authors on request]. For derivation of equations used in projective geometry see 

Appendix B. 

 

2.10. Paw model 

The rat paw was modeled as a set of 13 elements of which one element represents the 

palm of the paw and the other 12 represent the phalanges (three for each of the four 

long digits - the most radial digit, corresponding to the human thumb, was not 

included in the model due to its particularly reduced size in rodents). Each element 

was described as an ellipsoid joined to the adjacent elements at defined points, 

corresponding to anatomical bones and joints. The size and position of the paw 

elements was manually adjusted to fit a high resolution 3D-image of the paw. To 

allow for individual differences in paw size, overall scaling of the model paw was 

performed for each animal (system robustness to choice of parameter values are 

presented in Appendix C). A few logical constraints based on physiological limitations 

were introduced to narrow down searches for possible paw poses. For example, the 

most distal phalanx of the paw is especially small which makes the tracking of 

movements in the third (distal interphalangeal; DIP) joint of the digit less reliable. 

This joint was therefore assumed to have a flexion/extension parameter determined by 

the physiological influence of the second (proximal interphalangeal; PIP) joint; in 

detail, the DIP-joint was set to have the same angle as the PIP-joint, with a flexion 

limit of 60 degrees, measured from its fully extended state (Landsmeer, 1963). 

After decreasing the degrees of freedom, the included parameters were the following: 

i) Three parameters for wrist position in space 

ii) Three parameters for wrist movements 

iii) One parameter for opposition of the palm due to movement of the metacarpal 

bones 
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iv) One parameter for adduction/abduction for each digit 

v) Two parameters for flexion/extension of the first two joints of each digit (the 

metacarpophalangeal; MCP-joint, and the PIP-joint).  

These parameters add up to a total of 19 degrees of freedom that together define the 

movements of the model paw. The most likely paw pose in 3D space could then be 

estimated by adjusting the orientation of the ellipsoid elements around their respective 

movement axes and projecting the composite pose onto calculated image planes 

corresponding to the camera and mirror positions (Fig.1).  

 

2.11. Paw pose estimation 

For each multiframe, an iterative optimization procedure was employed to estimate the 

paw pose in terms of the parameter set described in 2.10. In order to find the initial set 

of parameters, we employed a database containing the parameter sets corresponding to 

the most commonly encountered poses (see 2.11.3). The search algorithm then 

generated a number of hypothetical poses and chose the one that best matched the 

captured video in each iterative step. The following section describes how matching 

quality was measured and Section 2.11.2 how hypothetical poses were generated in 

the search algorithm. 

 

2.11.1. Matching quality 

To measure the matching quality of a given pose with respect to the video images we 

used a combination of two matching quality measures - first, the silhouette matching 

quality, measuring how well the video image silhouette is explained by the given pose, 

and second, the edge matching quality, measuring how well the video image edges are 

explained by the pose (Oikonomidis et al., 2011). 

Prior to each reaching session, an image of the static background was captured. This 

image was then used to detect foreground objects by so called background subtraction. 

Pixels deviating significantly from the background image are likely to belong to 

foreground objects such as the forelimb, the food pellet or the snout. Hence, pixels 
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with a deviation over a predefined threshold are classified as foreground. This 

information was stored in a binary silhouette image ࡿ, where ௜ܵ௝ ൌ 1 means 

foreground and ௜ܵ௝ ൌ 0 means background for the pixel at ሺ݅, ݆ሻ. 

If we then consider a given pose, defined by the values for all the 19 parameters 

denoted in section 2.10, and project the 3D model of the pose onto a given image 

plane, we obtain a predicted silhouette image ࡿ෡. If the model parameters are correct, 

matrices ࡿ and ࡿ෡ should be similar. To quantify this we used the Jaccard index, being 

the number of pixels that are equal to 1 in both of the matrices ࡿ and ࡿ෡, divided by the 

number of pixels equal to 1 in at least one of the matrices ࡿ or ࡿ෡. Thus, the silhouette 

matching quality was defined as 

ௌݍ ൌ
෍ ௌ೔ೕௌመ೔ೕ

೔,ೕ

෍ ௌ೔ೕฮௌመ೔ೕ
೔,ೕ

          (1) 

where || is the logical OR-operator. 

To measure the edge matching quality, an edge image ࡱ  was computed from ࡿ in the 

following way. First, the 8-neighborhood (horizontal, vertical and diagonal) of each 

foreground pixel is analyzed. If at least one of the pixels in the neighborhood is 

background, the pixel is considered to be an edge pixel. The edge orientation in that 

point is approximated as the mean angle from the center pixel to all background pixels 

in the neighborhood. Depending on this angle, the corresponding element in the edge 

image ࡱ is set to either -1 (for angles from 0 to π) or +1 (for angles from π to 0). If 

there are no background pixels in the neighborhood the corresponding element is set to 

0. Finally, the measured edge image ࡱ is filtered with a Gaussian filter to increase 

robustness. 

Analogously, a predicted edge image ࡱ෡ was constructed from ࡿ෡, but without the 

Gaussian filtering. Edge matching quality was then defined as: 

ாݍ ൌ
ඨ௠௔௫ቊ଴,෍ ா೔ೕா෠೔ೕ

೔,ೕ
ቋ

෍ |ா෠೔ೕ|
೔,ೕ

    (2) 

Both ݍௌ and ݍா yield values between 0 and 1, where 1 corresponds to a perfect match. 

The combined matching quality for each view was then obtained as 
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ݍ ൌ   ா      (3)ݍௌݍ

Finally, the total matching quality was defined as the average of the combined 

matching quality over all viewing planes. 

 

2.11.2. Generating hypotheses 

The 19 parameters describing paw poses were divided into five subsets which were 

processed consecutively, as an exhaustive search over all combinations of the 19 

parameters would be computationally unfeasible. At each step of the search algorithm, 

optimization was performed over one of these subsets. To illustrate how this 

optimization is carried out we here consider two of the subsets. The others follow the 

same principles. 

 

Search algorithm I - Flexion/extension optimization  

The algorithm searches for the best combination of flexion/extension parameter values 

for a pose with their current values as the starting point.  

1. Create ݊ଵ hypotheses for the flexion at the first joint (MCP) of digit 2 in an interval 

centered at the current flexion value. 

2. Similarly, create ݊ଶ hypotheses for the second joint (PIP). 

3. For each of the ݊ଵ݊ଶ pairs of hypotheses, compute the fraction of the major axes of 

the three ellipsoids that overlaps with areas classified as foreground when projected 

onto all the different camera image planes. If below some threshold, discard the 

hypothesis. 

4. For the remaining hypotheses, generate silhouette and edge images for digit 2 from 

the 3D model and evaluate how much of the silhouette and edges that correspond to 

the observed counterparts. Keep the ݉ best hypotheses. 

5. Repeat step 1-4 for digits 3, 4, and 5. 

6. For all ݉ସ combinations of flexion parameters, evaluate the total matching quality 

and assume the best combination as the result of optimization. 
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Search algorithm II - Wrist position optimization 

The algorithm searches for the best position of the wrist with the current position as 

the starting point. 

1. Sample ݊ values for each of the three spatial dimensions in intervals centered on 

current position values. The possible combinations of these values lead to ݊ଷ 

hypothetical poses. 

2. For each of the ݊ଷ hypothetical poses, compute the fraction of the major axes of the 

ellipsoids of the digits that overlaps with areas classified as foreground when projected 

onto all the different camera image planes. If below some threshold, discard the 

hypothesis. 

3. For all remaining hypotheses, evaluate the total matching quality and assume the 

best combination as the result of the optimization. 

 

Optimization was iterated over the five subspaces until no further improvement of 

matching quality was found for any of the different search spaces. Control experiment 

confirmed that differences in matching quality of final pose estimates depending on 

the specific search order used were small (Appendix C). 

 

2.11.3. Pose estimation initialization 

The database employed to initialize the optimization procedure for paw pose 

estimation contained the parameter sets corresponding to the most commonly 

encountered paw poses. In addition, poses that had previously proven difficult to 

estimate were also included (such poses were identified by poor matching quality in 

earlier tracking results and were semi-automatically re-estimated and manually 

verified to have high matching quality before being added to the database). As a 

starting point, each search was initialized through selection of a set of parameters from 

the database based on the optimal parameter set found in the previous step. The entire 
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database was used if no such parameter set existed. Heuristic functions were employed 

to decrease the number of parameter sets to a more limited number and the set with 

best matching quality according to Eq. 3 was chosen for initialization. This procedure 

contributed to an increase in robustness and speed of the subsequent search 

algorithms. 

 

2.12. Analysis of single unit activity 

Spiking activity in each channel of the extracellular recordings was separated into 

single unit (SU) or multi unit (MU) activity through manual spike feature based 

sorting techniques (Offline Sorter, Plexon Inc.). To isolate action potentials from a 

single unit, waveforms plotted in principal component feature space (PC1-PC3) were 

required to form a cluster well separated from both noise and other units. A refractory 

period of 1.6 ms was assumed and was used as a control criterion for isolated SUs. 

SUs encountered in the same channel across days were assumed to be the same if they 

had similar waveform and firing dynamics. The video tracking gave us an extensive 

parametrical description of the whole reaching and grasping movement, allowing 

flexibility in how to align and compare different reaching trials. We chose to use the 

time of maximal forelimb extension as our temporal reference since that permitted us 

to include and compare also those attempts that occurred after a failed first attempt. 

This was important for the subsequent neurophysiological analysis, where a main goal 

was to study how variations in the reaching and grasping movements were reflected in 

neural activity, and these higher-order attempts added substantial variation to our data 

set. Once the times of maximal extension were determined standardized firing rates 

were estimated by convoluting the spike trains with a Gaussian kernel (=30 ms, step 

size=10 ms, “psth” function in the Chronux toolbox, Mitra and Bokil, 2008) and 

normalizing them to the standard deviation of the baseline (-1500 ms to -500 ms). 

Paired, two-sided Wilcoxon signed rank tests were used to test for significant 

deviations from baseline activity (p<0.05, “signrank” function in Matlab 2010b) 

 

3. Results 
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3.1. Acquisition of experimental data  

Behavioral and neuronal data were acquired in eight sessions on different days, where 

each session continued as long as the rat showed interest for the task. Each of the eight 

sessions contained on average 52±37 (mean±SD) reaching trials, which in 

unsuccessful trials often included several additional reach attempts.  

 

3.2. Reliability of pose estimation 

It was initially confirmed through visual inspection of a large number of reaching 

sequences that the calculated paw poses corresponded very well to the subjective 

estimates of the poses as judged by the good fitting of the pose projection onto the 

video images from the different cameras. A typical image sequence from two camera 

views and the projection of the calculated pose of the 3D model onto the 

corresponding image planes are shown in Fig. 2A. Obtaining a more quantitative 

measure of tracking performance is however a more challenging task since it 

essentially requires ground truth information on the exact paw pose; that is, direct 

measurements on the physical paw (Erol et al., 2007; Ho et al., 2011) which is not 

possible in freely moving animals. We therefore instead evaluated the performance of 

the system quantitatively using a paraformaldehyde fixated rat forepaw with static 

joint angles that was manually positioned in many different spatial locations typical of 

normal reaching movements in the set-up. The ‘true’ joint angles of the fixated paw 

were determined in a separate procedure from a large number of photos taken from 

different angles that were used to create a visual hull of the paw surface to which the 

3D model could be manually fitted with high precision (Fig. 2B and C)  

The joint angles of the pose estimates generated by the system for the fixated paw (one 

for each paw positioning) was shown to deviate on average only 2.4±2.4% of the full 

movement range for each joint compared to the reference pose obtained by manual 

fitting of the 3D model to the visual hull (in Cartesian coordinates this error 

corresponds to a spatial shift of the joint positions of 0.29±0.22 mm [being in the same 

range as the camera resolution for an individual image plane: 5 pixels/mm]). In the 

histogram in Fig. 2D, the mean error of all the estimated poses compared to the 

reference pose are summarized and an example of a relatively poor estimate (worse 
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than 95% of the estimates) is shown to illustrate the degree of resemblance in this 

situation (Fig. 2E). Thus, it appeared that at least in this simplified testing paradigm 

the system provided accurate pose estimates for all the positions tested. It was also 

confirmed that the matching scores generated by the quality function used to assess the 

goodness of pose fitting (2.11.1) had a strong inverse correlation with the calculated 

distance from the  reference pose [Pearson's correlation coefficient: = -0.85, 

p<<0.001].  

Furthermore, computer simulations were employed to evaluate the robustness of the 

search algorithm to variations of free parameter values (such as 

foreground/background thresholds or size scaling of the model paw) and sensitivity to 

input noise (for example light reflections or variations in illumination). Such noise will 

typically result in segmentation errors. In the simulations performed the system overall 

displayed a stable performance in situations resembling actual recording conditions 

and using parameter values within the normally used range. Outside a given interval, 

system performance would then gradually deteriorate. These data are summarized in 

Appendix C. 

 

3.3 Identification of motor components 

In most types of natural behavior several, partially overlapping, movement 

components are combined into compound motor actions. In previous studies using 

manual classification of movements, a limited number of heuristically defined motor 

components have been proposed to make up the reaching and grasping movements of 

rats performing this task (Gholamrezaei and Whishaw, 2009; Whishaw and Pellis, 

1990). As a starting point for identification of motor components we therefore divided 

a subset of recorded reaching trials into movement sequences incorporating four of the 

previously suggested phases: 1) Advancement, 2) Arpeggio, 3) Grasping and 4) 

Retraction. Due to variations in reaching speed, the number of multiframes in each 

phase often varied slightly between different trials. However, the start and end points 

of each phase were generally easily identifiable. For all the 19 degrees of freedom, the 

parameter values obtained from the multiframe corresponding to the start point of each 

phase were subtracted from that corresponding to the end point. Averaging these 
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parameter differences thus generated four 19-dimensional movement vectors 

representing the joint movements of each phase. By considering Retraction as 

backward Advancement, the Retraction vector could be replaced by the negative 

Advancement vector. The remaining three vectors were subsequently used as base 

vectors of the motor components, spanning a 3D motor component space. To 

eliminate tracking noise and to further separate the different motor components, any 

non-zero vector element corresponding to movement in a joint that was judged not to 

be part of a given motor component was set to zero - for example wrist movements 

were not considered to be part of grasping. Examples of calculated motor components 

are shown in Fig. 3. Note that even though each motor component was extracted from 

movements of a certain part of the compound action sequence, they were often 

flexibly combined with other motor components during the reaching and grasping 

movement. 

 

3.4 Reaching movements described in motor component space 

By reducing the 19 degrees of freedom to this much smaller set of motor components, 

each reach attempt could be relatively well described as a trajectory in 3D motor 

component space. The reduction was achieved through a least-squares approximation 

of each 19-dimensional vector to a linear combination of the three base vectors, which 

results in a unique point on the trajectory in the 3D motor component space. 

Interestingly, in spite of the reduced dimensionality this compact 3D representation of 

the compound movements proved sufficient to separate different reaching and 

grasping patterns in most reaching trials. In fact, in many reaching trials the three 

motor components were executed in close to sequential order giving rise to line 

segments of movement trajectories running almost parallel with the axes in 3D motor 

component space. Ten individual reaching trials recorded during a single session are 

shown in Fig. 4. Note that although no single trial is identical to the others, trajectories 

from successful trials (green) are spatially separated from failures (red) in this 

representation (shadow images on the sides of the box denote one standard deviation 

from the mean trajectory of each of the two groups). 
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3.5 Modulation of neuronal firing correlated with actuation of motor components 

The neural recordings included single- and multiunit activity from the primary motor 

cortex and dorsolateral striatum. As expected, several units displayed a wide range of 

different task related firing rate modulations. This included phasic increase in activity 

before, during or after the task, but also partial or total suppression of activity during 

the task. Using a comparatively long time window of -500 ms to 200 ms (relative to 

the time of maximal forelimb extension) when comparing firing rates to baseline (-

1500 ms to -500 ms) we found that the overall fraction of task related SU neurons was 

35 % (29/83). The corresponding number for MUs was 13% (5/38). To search for 

neuronal modulation specifically linked to the actuation of the identified motor 

components, the reaching attempts were sorted with respect to the maximum value of 

each component in each attempt and data were divided into three equally sized groups 

(low/middle/high). That meant that each reach attempt was assigned to either low, 

middle or high three times (once for each component) so that a specific reach attempt 

could be, for example, low in the advancement, middle in the arpeggio and high in the 

grasp component. Group dependent rate modulations were subsequently tested for by 

comparing differences between the medians of the three groups (Kruskal-Wallis test, 2 

d.f.) in 10 ms time steps (see 2.12 for details). Using the distinction that a cell was 

considered significantly modulated in relation to a given motor component if the null 

hypothesis that the medians were identical could be rejected at the p=0.05 level in at 

least eight consecutive time steps, it was found that 11%, 13% and 10% of the SUs 

were significantly modulated in relation to Advancement, Arpeggio and Grasp, 

respectively. For MUs the corresponding numbers were 21%, 5% and 21%. Examples 

of three cells [SUs recorded in striatum (top/middle) and motor cortex (bottom)] 

showing specific modulations in relation to actuation of the three different motor 

components are presented in Fig. 5. Thus, the system proved to allow for the 

correlation of neuronal recordings to kinematic data representing sub-components of 

compound reaching movement thereby opening up for future studies on how the 

central nervous system encodes motor commands. 

 

4. Discussion 
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To perform detailed motion tracking of movements around multiple joints in freely 

moving animals using traditional semi-manual movement tracking is a daunting task 

requiring many hours of analyses by well-trained observers (Hermer-Vazquez et al., 

2004; Hyland and Jordan, 1997; Whishaw and Pellis, 1990). For some motion tracking 

applications, fully automatic systems have been developed to facilitate this procedure, 

typically by the use of reflective markers on concerned body parts (Peikon et al., 2009; 

Zakotnik et al., 2004). However, in the case of hand pose estimation in humans, 

improved motion tracking algorithms not requiring body markers have been developed 

recently (Erol et al., 2007). To track fine movements in subjects not suitable for 

tracking with markers such as freely behaving rodents, this latter solution is clearly 

preferable. Consequently, a primary objective of the current study was to develop a 

marker-less motion tracking system and evaluate the system using reaching and 

grasping movements performed by rats. A further requirement was that the system 

must provide kinematic data on forepaw movements in this behavioral task at a level 

of detail that allow us to study minor differences between reaching trials to correlate 

this variability to parallel neuronal recordings in motor control circuits. 

In the data presented here, it is shown that high-resolution tracking of fine movements 

involving multiple joints can be performed automatically by the system from recorded 

video sequences of a rat grasping food pellets, with reliable outcome. Although the 

accuracy of the pose estimates generated by the system could not be directly evaluated 

in the real reaching situation the control experiments on a fixated paw indicated that 

mean errors were typically only a few tenths of a millimeter. This precision was 

judged to be sufficient for the intended purposes and compares well to systems 

designed for human hand tracking (Oikonomidis 2010, Nirei et al. 1996). The system 

also proved to be relatively robust to addition of artificial noise or manipulation of free 

parameters over a wide range. Thus, under the variations of normal experimental 

conditions the pose estimates provided by the system appears to be reliable enough for 

the desired applications. It is also illustrated how this more detailed kinematic 

description can be used as a basis for new analytical approaches in neurophysiological 

investigation of motor signals. In fact, several examples of specific firing rate 

modulations in single cells relating to the actuation of the individual motor 

components were found. Although a more comprehensive analysis of motor coding in 

corticostriatal circuits would require a significantly larger data set the current results 
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nevertheless clearly indicate that the obtained kinematic data opens up for very 

detailed neurophysiological studies of motor control circuits. These findings are 

encouraging since the demand for detailed tracking of movement kinematics with high 

temporal precision is steadily increasing in neurophysiological research to permit 

interpretation of the rapidly growing neuronal data sets of freely behaving animals 

(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis, 2001). Hence, 

automated methods like the one described in this paper could potentially become an 

important tool in basic and applied neuroscience. However the described method 

could likely also improve the quality of behavioral experiments in many other fields 

and partly reduce the need for the elaborate and time consuming process of manual 

scoring that, in addition, often requires extensive training to ensure reliable and 

reproducible identification of movement patterns (Cenci and Lundblad, 2007; Eshkol, 

1958; Whishaw and Pellis, 1990; von Laban, 1980).  

In the current study previously identified motor components (advancement/retraction, 

arpeggio and grasping) was used as a starting point for analysis. Nevertheless, the 

decomposition of any movement into motor components can naturally be done in 

many different ways once the detailed movements over individual joints have been 

extracted by the system. This flexibility in the choice of bases functions and spatial 

coordinate system for the description of movements may prove particularly important 

in investigations of supraspinal motor control systems given the ongoing controversy 

regarding the primary coding strategy used by these systems (see for example; 

Georgopoulos et al., 1986; Loeb et al., 1996; Todorov and Jordan, 2002).           

For experiments requiring an even higher level of detail in motion tracking a few 

improvements to the current system could be made. In our current model design, the 

distal interphalangeal joint of the digits is assumed to have the same angle as the 

proximal interphalangeal joint due to the small size of the 3rd phalanx (up to a 

maximum distal joint flexion angle of 60 degrees). While this is a reasonable 

approximation when considering the anatomical constraints of the muscles and 

tendons of the digits (Landsmeer, 1963) and was deemed sufficient for the current 

purposes, it may be desirable in other applications to have independent tracking of 

movements around this joint. Similarly, additional parameters such as separate 

metacarpal bones, a shoulder and an elbow joint could be beneficial to add to the 
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model. Indeed, in a recently published study using x-ray video techniques to track 

skeletal bones during reaching movements in rats, complex coordination of the 

proximal parts of the limb and trunk were found (Alaverdashvili et al 2008). In 

relation to our data it is worth noting that the x-ray images highly resemble the 

projections of our 3D paw model onto these viewing planes, although in our study 

images of the paw were also obtained from an additional viewing plane. Finally, as 

neural data is sampled in magnitudes of tens of kilohertz it would in some experiments 

be appropriate to have a comparable rate of acquisition of images for the behavioral 

tracking. In the current set-up an image acquisition rate of 200 Hz appears to meet 

basic criteria, but a higher acquisition rate would likely remove some of the tracking 

noise since consecutive poses would be more alike.  

As previously pointed out, the reaching and grasping behavior in rodents bears many 

similarities to the corresponding behavior in primates and other larger animals 

indicating that this model lends itself well to translational research, although the very 

rapid execution of movements in small animals obviously constitutes an extra 

challenge. This difference between primate and rodent behavior must also be taken 

into account when analyzing neuronal correlates of different movement components 

since the neuronal activity related to specific sub-components of the movement as well 

as the potential use of sensory feedback for corrections of ongoing movements is more 

limited in the latter group (typical minimum latencies of tactile cortically evoked 

potentials in rat/man are ~10/20 ms whereas typical reaching times in this task are 

~250/500 ms, see; Allison and Hume, 1981; Sacrey et al., 2009). It is also worth 

pointing out that while rats primarily depend on odor cues to locate the position of the 

food pellets humans rely on visual guidance in a similar reaching task when the 

experimental conditions allow for it (de Bruin et al., 2008; Whishaw and Tomie, 

1989). However, in spite of the overall slower actuation of reaching and grasping 

movements in humans, many of the individual motor components involved are 

undoubtedly executed very rapidly – thus the automated image analysis approach 

developed here may also open up for new studies of reaching in humans. The 

technique could potentially provide a new tool for more detailed movement tracking 

both in the lab (for example in studies of motor learning and control) and in the clinic - 

diagnosing diseases which affect the motor system at an early time point, giving 

guidance in selection of optimal treatment strategies  (Doan et al., 2010; Jenkins et al., 
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2010) or helping to assess the effectiveness of rehabilitation programs after for 

example trauma or ischemic events affecting motor systems (Massie et al., 2009; 

McCrea et al., 2005).  

 

 

Appendix A. Training Protocol 

1. Every day for a few days prior to the experiments, the rats were accustomed to the food 

reward after 20-24 hours food deprivation. After each training session the animal received 

free supply of their regular food for one hour. 

2. The teaching of the reaching behavior began by making the rats aware that there will be 

food placed on the shelf. This was done by placing multiple pellets on the shelf nearby the 

aperture for the rats to reach for in any way they can. 

3. The acquisition of food was subsequently made harder by moving the pellets further 

away from the opening slit, forcing the rats to use their forepaws to reach for the pellets.  

4. As the rats developed a preference of paw, only one pellet was placed in the socket 

contralateral to their paw of choice to further promote the use of this paw. 

5. In the next training step the rat was taught to move to the back of the cage after each 

reaching trial, this was achieved by simply not placing any food rewards on the shelf until 

the rat had reached the opposite end of the cage. This was needed to properly separate 

different trials. 

6. To verify that the displayed behavior was indeed goal directed reaching for food; no 

food pellet was placed on the shelf at certain occasions. If the rat made a reach attempt 

anyhow, no pellet was placed on the shelf the consecutive trial either, thereby forcing the 

rat to identify the presence of food before attempting to reach for it. 

 

Appendix B. Projective geometry 

B1. The camera model 

A camera matrix describes the transformation of 3D points to 2D points in a pinhole camera: 

ࢄ → is a 3 ࡼ where ,ࢄࡼ ൈ 4 camera matrix and ࢄ ൌ ሾܺ ܻ ܼ 1ሿ் a 3D point represented in 

homogeneous coordinates. This transformation is expressed in the camera equation, 
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ܠߣ ൌ  (B.1)      ,܆ܲ

where ࢞	 ൌ 	 ሾݔ ݕ 1ሿ் is the 2D image point ሾݔ  ሿ் represented in homogeneousݕ

coordinates, and ߣ ൐ 0 is the depth, i.e., the distance from the 3D object point ࢄ to the image 

plane (Hartley and Zisserman, 2000). The estimation of the camera matrix P is performed 

using Direct Linear Transformation (DLT) (Abdel-Aziz and Karara, 1971). Using an object 

whose 3D coordinates are known and manually entering the image coordinates of some points 

of the object gives the user a set of 3D coordinates and their corresponding image coordinates 

which is used for DLT. 

 

B2. Quadric surfaces 

A quadric surface is a surface in a 3D space defined by a second order implicit equation, 

ࢄࡽࢀࢄ ൌ 0, 

where ࢄ ൌ ሾܺ ܻ ܼ 1ሿࢀ is a homogenous coordinate-vector and ࡽ a 4x4 symmetric matrix. 

Quadrics can be used to describe a number of geometrical shapes, where the ellipsoid and the 

elliptical paraboloid are the ones used in the present study. In detail, each of the phalanges, 

the palm of the paw, the forearm, and the food pellet are modeled as ellipsoids, while the 

snout is modeled as an elliptical paraboloid. Through defining all geometrical shapes of the 

tracked objects as quadrics, analytical solutions and efficient implementations are possible for 

the majority of the employed mathematical operations.  For instance, the projection of an 

ellipsoid onto an image plane as well as the silhouette outline of the projection can be 

computed analytically, and the quadrics ࡽ଴ and ࡽଵ occupying the same space can be detected 

by analyzing the eigenvalues of ࡽ଴
ିଵࡽଵ. This is described further by (Stenger, 2001). 

 

Appendix C. Robustness to choice of free parameter values and measurement noise 

C1. Assessment of algorithm robustness to variation in free parameter values 

In the first stage of the algorithm the paw is separated from the background based on the light 

intensity in individual pixels (2.11.1). Proper foreground/background segmentation is 

therefore sensitive to choice of threshold value. In (Table C.1) the precision (SD of the 
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distribution of pose estimate errors) and accuracy (mean pose estimate error) of pose 

estimates compared to the fixated reference pose (Fig. 2D) are presented for a range of 

threshold values (10-70% of dynamic range) showing a relatively stable performance. The 

error in each joint angle is normalized to the observed full range of motion for that joint angle 

and the average value over all joint angles is presented. 

Because the size of the image of the paw may vary slightly depending on interindividual 

differences or changes in the camera set-up, the paw model is manually scaled to the video 

images for each animal. In (Table C.2) the precision and accuracy of pose estimates compared 

to the fixated reference pose are similarly presented for a range of scaling values (80-120% of 

actual value). Note the comparatively stable performance for sizes deviating < 20% from 

original size. 

As described in (2.11.2) the search algorithm was based on an iterative process consecutively 

searching the five parameter subspaces. Because methods based on stepwise local 

optimization run the risk of entering local minima we evaluated to what extent different 

search orders generated different final pose estimates. The video sequence of a reaching trial 

containing 25 multiframes was searched iteratively using ten different randomly chosen 

orderings of the five subspaces. Comparing the variation in final pose estimate accuracy for 

the different search orders showed that choice of search order had a measurable but in practice 

negligible effect on final pose estimate quality [SD was on average only ±0.13% of full joint 

movement range (corresponding to ±0.01mm) which should be compared to the mean 

accuracy of 2.94% (or 0.31mm) for this data set]. 

 

C2. Assessment of algorithm robustness to measurement noise 

Measurement noise, such as fluctuations in illumination conditions, focusing errors, light 

reflexes and shadows will ultimately result in errors in paw segmentation (2.11.1). Hence, to 

allow for a quantitative evaluation of the robustness of the pose estimates to acquisition noise, 

computer simulations were performed where errors in segmentation were introduced in a 

controlled manner through addition of artificial noise to paw images. Synthetic silhouette 

images were first generated from the geometric paw model by projection onto the image 

planes and segmentation errors were then modeled by distortion of these silhouette images. 

To simulate segmentation errors a number of foreground pixels were chosen at random and all 
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foreground pixels at a distance varying from 5 to 10 pixels from these points were labeled as 

background. Similarly, areas around a number of randomly chosen background pixels were 

changed to foreground pixels. The effect on pose estimation quality as a function of degree of 

distortion of the self-generated images is shown in Table C.3. The segmentation error is 

expressed as the number of erroneously labeled pixels divided by the number of foreground 

pixels in the original image. The error in each pose parameter is normalized to the observed 

full range of motion for that parameter and the average value over all parameters is presented. 
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Figures with legends 

 

Fig. 1. Computational principle for estimation of paw poses. The pose of a 3D forepaw model 

is inferred by fitting of the calculated 2D projections onto the different image planes. An estimated 

3D paw pose and two of the six image planes (above and side) are shown. Colored silhouettes 

outlined on the video images denote the calculated projections. 
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Fig. 2. Tracking of skilled reaching movement sequences. (A) The tracking of the paw in a 

typical reaching and grasping movement for two of the six viewing planes. The silhouette outline 

of the estimated paw pose is superimposed on the images for illustration of tracking performance 

(colored dots/lines indicate joints/bones of the model). (B) Visual hull of the fixated paw shown 

from four different viewing angles. (C) Reference pose obtained by manual fitting of the 3D 

model to the visual hull. (D) Histogram of differences in joint angles between estimates provided 

by the system and the manually fitted reference pose (errors are denoted in percentage of total 

movement range; n=76 poses). (E) Example of a less accurate pose estimate provided by the 

system (mean angle error = ~3.3%). Note that for 95% of the estimates the mean error is less than 

3.3% and that even for less accurate pose estimates great resemblances to the manually fitted 

reference pose (C) is evident.  
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Fig. 3. Decomposition of skilled reaching into motor components. Examples of heuristically 

defined motor components of compound reaching and grasping movements. The Advancement 

motor component (left) captures translation along the axis ranging from the aperture of the box to 

the food pellet. Arpeggio (middle) captures the pronation of the forelimb and adduction of the 

digits preceding grasping and Grasp (right) is associated with changes in the angles of the joints of 

the paw and digits.  



 

30 

 

 

Fig. 4. Movement trajectories in motor component space. Example of reaching trials 

represented in motor component space. Five individual successful reaching trials (green) are 

shown together with five unsuccessful trials (red). Dots indicate the time points of paw pose 

estimations (5 ms intervals) and colored shadows on box walls indicate one SD from the mean 

trajectory for each group. For ease of comparison, the plot only contains first reach attempts.  
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Fig. 5. Neural correlation to motor components. Examples of neurons correlated to individual 

motor components. Reach attempts are sorted depending on the peak value for a motor component 

during the attempt, as shown in the left column. The top row is sorted for advance so that the 

shortest extensions are pooled into the blue group, the intermediate extensions into the purple 

group and the longest into the red group. In the same manner, the middle row is sorted for 

arpeggio and the bottom row is sorted for grasp. The middle column show standardized peri-event 

firing rates and raster plots of individual trials for each group, aligned to time point of maximum 

paw extension and averaged over all attempts in each group. A green line indicates a significant 

difference in firing rates between any of the three groups (p<0.05). The right column shows the 

autocorrelogram and waveform for each presented neuron. 

  



 

32 

 

 

       

 

 

 

 

 

             

 

 

 

 

   

              

 

Robustness to image distortion

Robustness to paw size variation 

Robustness to light intensity thresholding 


