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Abstract

As automatic sensing and Information and Communi-
cation Technology (ICT) get cheaper, building moni-
toring data becomes easier to obtain. The availability
of data leads to new opportunities in the context of en-
ergy efficiency in buildings.

This paper describes the development and valida-
tion of a data-driven grey-box modelling toolbox for
buildings. The Python toolbox is based on a Modelica
library with thermal building and Heating, Ventilation
and Air-Conditioning (HVAC) models and the optimi-
sation framework in JModelica.org. The toolchain fa-
cilitates and automates the different steps in the system
identification procedure, like data handling, model se-
lection, parameter estimation and validation.

To validate the methodology, different grey-box
models are identified for a single-family dwelling with
detailed monitoring data from two experiments. Vali-
dated models for forecasting and control can be iden-
tified. However, in one experiment the model perfor-
mance is reduced, likely due to a poor information
content in the identification dataset.

Keywords: grey-box models, parameter estimation,
collocation method, validation, Modelica

Introduction

The continuous progress in ICT has led to the avail-
ability of small and low-cost sensors, low-power wire-
less data transfer protocols, cheap and accessible data
storage and powerful servers. Applied to the building
sector, these technologies can be used to collect large
amounts of building monitoring data at relatively low
costs. The abundance of data gives rise to new oppor-
tunities and applications in existing buildings like fault

detection, energy efficiency analysis and model-based
building operation. A first step in many of these ap-
plications is the creation of a building energy system
model.

Models can be classified according to the white-
box, grey-box and black-box paradigm. (Bohlin,
1995; Madsen and Holst, 1995; Kristensen et al., 2004;
Henze and Neumann, 2011). Although the bound-
aries between these categories are blurry and often
overlapping, this paradigm is useful for understanding
the modelling procedure. White-box modelling bases
the model solely on prior physical knowledge of the
building. Most building simulation software falls un-
der this category, like TRNSYS, EnergyPlus and many
others (Crawley et al., 2008). Black-box modelling
bases the model solely on response data (monitoring
of the building) and a universal model set, including
e.g. AR and ARMAX. Although physical insight is
not required for making a black-box model, a model
structure has to be chosen and this often involves mak-
ing assumptions about the system, for example with
regard to linearity. Grey-box identification methods
and tools cater for the situation where prior knowledge
of the object is not comprehensive enough for satisfac-
tory white-box modelling and, in addition, purely em-
pirical black-box methods do not suffice because the
involved physical processes are too complex. Grey-
and black-box models are also called inverse models.

The difference between white- and grey-box mod-
elling is not in the complexity of the model. A single-
state model can be a white-box model if all param-
eters can be fixed based on physical knowledge only.
However, when one or more parameters in a white-box
model are estimated based on a fitting of the model to
measurement data, the model becomes grey, no mat-
ter its complexity. Therefore, the distinction between



white and grey cannot be made by only looking at the
model structure: one has to know how the model pa-
rameters have been identified.

All three model types can be either deterministic
or stochastic. A deterministic model cannot explain
the differences between the model output and the true
variations of the states (observations). Madsen and
Holst (1995) therefore introduced a Wiener process in
the system equations to cope with the simplifications
of the model and uncertainties in inputs and monitor-
ing. The obtained model is a stochastic state-space
model.

For existing buildings with available monitoring
data, the grey-box approach is considered to combine
the best of two worlds: physical insight and model
structure from the white-box paradigm and parameter
estimation and statistical framework from the black-
box paradigm. This paper describes an approach to
grey-box modelling for buildings and the development
of a toolbox combining Modelica and Python. The re-
sulting framework will be referred to as the toolbox in
the remainder of this paper and will be validated on
a single-family dwelling. The toolbox is not publicly
available, but can be obtained with an open-source li-
cense for research purposes by contacting the authors
of this paper.

The toolbox has been developed with two purposes
in mind. A first application is model predictive control
(MPC). In this context, the grey-box model serves as
the control model in a feed-back loop with the build-
ing. According to Henze (2013), the process of model
identification accounts for 70 % of the effort for imple-
menting an MPC controller. Automating this process
can therefore reduce the total cost of MPC in build-
ings. To validate such a control model, the k-step pre-
diction performance is used. A second application is
load forecasting for real buildings. The forecast hori-
zon is typically one day or one week. In this case, a
different metric to validate the model is required: the
simulation performance. This is the model deviation
from a measured output in an open-loop simulation
when measured disturbances are applied.

It is clear that a model showing a good simulation
performance will also have a good k-step prediction
performance. The opposite is not true. Therefore, we
will use the simulation performance as quality crite-
rion for the model validation.

This paper is split in two parts. The first describes
the methodology and development of the toolbox. The
second describes the validation results for a well mon-
itored experimental single-family dwelling near Mu-

nich, Germany. The validation is carried out for two
different experiments on the same building.

Part I

Methodology
Overview

A high-level overview of the toolbox is shown in Fig-
ure 1. The toolbox is composed of four major compo-
nents:

1. the Modelica library FastBuildings with thermal
zone models, HVAC components and building
models;

2. different .mop files specifying the model compo-
nents and which parameters to estimate;

3. JModelica.org as a middle layer for compilation
of the .mop files as well as formulation and solu-
tion of the optimisation problem;

4. Python module greybox.py delivering the user in-
terface and top-level functionality.

Figure 1: Overview of the grey-box buildings toolbox.

Modelica library FastBuildings

Modelica is an equation-based modelling language for
cyber-physical systems (Elmqvist, 1997). The object-
oriented philosophy stimulates model reuse, resulting
in many available libraries, often open-source and free.
Modelica is gaining importance in the building simula-
tion community (Wetter, 2011; Wetter and Van Treeck,
2013). The choice for Modelica for the construction



of the models is based on three major arguments (Wet-
ter, 2009). Firstly, Modelica allows for linear, non-
linear and hybrid model formulations and therefore
it does not limit the model structure as such. Sec-
ondly, Modelica is equation-based, thus allowing effi-
cient Newton-type solvers to be used as an alternative
to for example genetic algorithms. Thirdly, Modelica
has a connector concept to support component-based
modelling.

The FastBuildings library targets low-order build-
ing modelling. The library has sub-packages for ther-
mal zone models (including windows), HVAC, user
behaviour, inputs, buildings and examples. Single
and multi-zone building models can be created eas-
ily by instantiating one of the predefined templates in
the Building sub-package and redeclaring the desired
submodels, like the thermal zone, HVAC or window
model. The following design principles are applied
throughout the library.

• The thermal connectors are HeatPorts from the
Modelica.Thermal package, which is part of
the Modelica Standard Library (MSL).

• Thermal resistors and capacitances are not used
from the MSL. Simplified versions with less aux-
iliary variables are implemented. They have ex-
actly the same interface and connectors to ensure
compatibility with the MSL.

• A strict naming convention is used for consis-
tency and to enable the greybox.py toolbox to au-
tomate certain tasks.

• The library heavily relies on the extends con-
struct in order to avoid code duplication. This
is specifically useful for the thermal zone models
that have increasing complexity as a function of
their order.

• An inner/outer component simFasBui passes
all inputs like weather data, occupancy etc. from
the top level to all sublevels.

• The models for thermal zones, HVAC and user
behaviour have exactly the same interface as their
equivalents in the IDEAS library. IDEAS, de-
veloped by KU Leuven and 3E, is an open-
source library for modelling and simulation of
buildings and integrated districts (Baetens et al.,
2012). Therefore, it is very easy to replace one or
more detailed components from an IDEAS-based
model by a low-order equivalent from the Fast-
Buildings library.

Currently, the thermal zone models available in
the FastBuildings library are based on a resistor-
capacitance (RC) network analogy which is often used
for the modelling of thermal processes. This is how-
ever not required: any model that specifies a relation-
ship between the heat flows and temperatures at the
interface of a thermal zone can be implemented. Dif-
ferent examples of models in the library are schemati-
cally presented in Figure 5 in Part II.

The FastBuildings library largely contains the do-
main specific knowledge that is fundamental in grey-
box modelling. Different thermal zone models often
encountered in literature are present in the library and
it is very easy to add more models (Davies, 2004;
Bacher and Madsen, 2011; Sourbron et al., 2013;
Reynders et al., 2014). The FastBuildings library is
very dynamic in the sense that it is being extended
with extra building models the more it is applied to
different cases. How these models are chosen in a for-
ward selection approach is explained in Section Tool-
box functionality and work flow. The FastBuildings
library is distributed with the Modelica license 2 and
can be found in the openIDEAS source code repository
on Github (KU Leuven and 3E, 2014).

The JModelica.org platform

The toolbox relies heavily on the JModelica.org plat-
form, which is an open-source tool for simulation and
optimisation of dynamic systems described by Mod-
elica code (Åkesson et al., 2010). For simulation
purposes, JModelica.org uses the Functional Mockup
Interface (Blochwitz et al., 2011). For optimisation
purposes, JModelica.org offers various algorithms and
also supports the Modelica language extension Opti-
mica (Åkesson, 2008). Optimica allows for high-level
formulation of dynamic optimisation problems of the
type presented in Section I.

Every model structure for which the parameters
have to be estimated is characterised by a different
.mop file. These files are very similar to ordinary Mod-
elica (.mo) files, but they can also contain Optimica
code. Each .mop file has the same structure and has to
define two models: one model for simulation, called
Sim, and one for parameter estimation, called Parest.
By default, the models are based on the FastBuildings
Modelica library, which has been developed in con-
junction with this toolbox. However, this is not re-
quired for the toolbox to work, as long as some nam-
ing conventions are followed. Any parameter present



in the model can be estimated, including initial values
of the states.

The toolbox estimates the unknown model parame-
ters using JModelica.org’s algorithm based on direct
collocation. Collocation is used to discretise time,
which reduces the optimisation problem to a nonlin-
ear program (NLP), as presented in Section Solution
method and described in more detail in Magnusson and
Åkesson (2012), where in particular optimal control is
also treated. JModelica.org utilises third-party NLP
solvers, which require first- and second-order deriva-
tives of all expressions in the NLP with respect to all
decision variables. CasADi is used to obtain these by
algorithmic differentiation (Andersson et al., 2012).
In this paper we use the NLP solver IPOPT with the
sparse linear solver MA27 from HSL (Wächter and
Biegler, 2006; HSL, 2013).

Problem formulation

Identification of the unknown model parameters is for-
mulated as a dynamic optimisation problem of the gen-
eral form

minimise
∫ t f

t0
e(t)T Qe(t)dt, (1a)

with respect to x(t),w(t),u(t), p,

subject to F(t, ẋ(t),x(t),w(t),u(t), p) = 0,
(1b)

x(t0) = x0, (1c)

∀t ∈ [t0, t f ].

The system dynamics are modelled by a differential-
algebraic equation (DAE) system (1b), where t is the
time, x(t) is the state, w(t) is the vector-valued al-
gebraic variable, u(t) is the vector-valued system in-
put, which includes both control variables and distur-
bances, and p is the vector of parameters to be esti-
mated.

Algebraic variables often occur in Modelica mod-
els. A typical example is the conversion of measured
electricity consumption in a radiative and a convective
fraction. The resulting radiative and convective heat
fluxes are contained in w(t).

The DAE system may be implicit, non-linear, time-
variant, and high-index. It is the result of the com-
pilation of the FastBuildings model. In the case of
high-index systems, index reduction is automatically
performed by the JModelica.org compiler.

Since a gradient-based method is applied to solve
the dynamic optimisation problem, F needs to be

twice continuously differentiable with respect to all of
its arguments (except the first one). This disables the
use of hybrid models. Initial conditions are given by
specifying the initial state, as given by (1c), where t0
is the start time. The initial state is usually unknown,
in which case some, or all, elements of x0 can also be
introduced as elements of the vector p.

The objective (1a) of the optimisation is to minimise
the integrated quadratic deviation e of the model out-
put from the corresponding measurement data. The
model output y is typically some of the states, but
could also be some of the algebraic variables (and also
inputs, as discussed below). The matrix Q, which typi-
cally is diagonal, is used to weigh the different outputs.
The measurement data is assumed to be a function of
time, denoted by yM. Since measurements are typi-
cally discrete in time, they are simply interpolated lin-
early to form yM. The output deviation e is then given
by

e(t) := y(t)− yM(t). (2)

The inputs can be treated in two different ways. The
first is to assume that the inputs are known exactly by
their measurement data and treat them as fixed values
instead of decision variables. The second way is to
have an error-in-variables approach where the inputs
are kept as decision variables and treat them as model
output, that is, include them in the vector y and pe-
nalise their deviation from the corresponding measure-
ment data. The second way is useful for coping with
uncertainties in measurement data.

Solution method

The approach taken to solve the optimisation problem
(1) is based on low-order direct collocation as pre-
sented by Biegler (2010). The idea is to divide the
time horizon into a number of elements, ne, of fixed
(but possibly distinct) lengths hi and approximate the
time-variant system variables ẋ,x,w and u by a poly-
nomial of time within each element, called a colloca-
tion polynomial. These polynomials are determined
by enforcing the dynamic constraints at a certain num-
ber of points, nc, within each element. These points
are called collocation points and ti,k is used to denote
collocation point number k ∈ [1..nc], where [1..nc] de-
notes the integer interval between 1 and nc, in element
number i ∈ [1..ne].



The system variables’ values at these points, de-
noted by

(ẋi,k,xi,k,wi,k,ui,k,ei,k) :=

(ẋ(ti,k),x(ti,k),w(ti,k),u(ti,k),e(ti,k)),

are then interpolated based on Lagrange interpola-
tion polynomials to form the collocation polynomials.
There are different schemes for choosing the place-
ment of collocation points with different numerical
properties. In this paper we only consider Radau col-
location.

All collocation methods correspond to special cases
of implicit Runge-Kutta methods and thus inherit de-
sirable stability properties making them suitable for
stiff systems.

This approximation reduces (1), which is of infinite
dimension, into a finite-dimensional nonlinear pro-
gram (NLP) of the form

min.
ne

∑
i=1

(
hi

nc

∑
k=1

ωkeT
i,kQei,k

)
, (3a)

w.r.t. ẋi,k,xi,l,wi,k,ui,k, p,

s.t. F(ti,k, ẋi,k,xi,k,wi,k,ui,k, p) = 0, (3b)

x1,0 = x0, (3c)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (3d)

ẋi,k =
1
hi

nc

∑
j=0

α j,k · xi, j, (3e)

∀i ∈ [1..ne], ∀k ∈ [1..nc], ∀l ∈ [0..nc].

The NLP objective (3a) is an approximation of the
original objective (1a) based on Gauss-Radau quadra-
ture, where the measurement error ei,k in each colloca-
tion point is summed and weighted by the correspond-
ing element length hi and quadrature weight ωk, which
depends on the choice of collocation points. Note that
the decision variables are not only the unknown pa-
rameters p, but also the discretised system variables
ẋi,k,xi,l,wi,k, and ui,k (unless it has been eliminated).
The constraint (1b) from the continuous-time model
dynamics is transformed into the discrete-time con-
straint (3b) by enforcing it only in each of the collo-
cation points.

Since the states need to be continuous (but not dif-
ferentiable) with respect to time, the new continuity
constraint (3d) needs to be introduced. Because we
use Radau collocation, where no collocation point ex-
ists at the start of each element, this also requires the
introduction of the new variables xi,0, which represent
the value of the state at the start of element i. With the

introduction of x1,0, the initial condition (1c) is tran-
scribed into (3c).

Finally, we introduce the constraints (3e) to capture
the dependency between x and ẋ, which is implicit in
(1). The state derivative ẋi,k in a collocation point is
approximated by a finite difference of the collocation
point values of the state in that element. The finite dif-
ference weights αl,k are related to the butcher tableau
of the Runge-Kutta method that corresponds to the col-
location method.

All that remains is to solve the NLP (3) in order to
obtain an approximate solution to the original problem
(1). We do this numerically using IPOPT, as described
in Section The JModelica.org platform.

Toolbox functionality and work flow

The user interacts with the toolbox through the grey-
box.py Python module. This module defines two
classes GreyBox and Case, as shown in Figure 1.
The idea is to instantiate the GreyBox class once for
the system identification of a given building. The
GreyBox object will contain many different instances
of the Case class. Every Case is an attempt (success-
ful or not) to obtain a model for the given building.
The Case therefore keeps track of the model struc-
ture, identification data, initial guess, solver settings
and results of a single parameter estimation attempt.
The functionality of the toolbox is packed in methods
of the GreyBox class and can be grouped into different
domains, according to the foreseen workflow. This is
shown in Figure 2. This workflow is discussed in the
following paragraphs.

Figure 2: Workflow and high-level functionality in the tool-
box.

The methods under data handling are used to load
the data files, resample the data if desired, create data



slices of given lengths (for example one week, but can
be any period) and show a plot of any data slice. Typ-
ically, one data slice is the training set, and the other
slices can be used for cross-validation. Resampling the
data is an important step because the toolbox automat-
ically chooses the collocation points to coincide with
the measurements. Thus, the (size of) the numerical
problem (3) is strongly dependent on the chosen sam-
pling time, and it is often a good strategy to start with
a large sampling time and refine it in a later stage.

When the data has been pre-processed, a model
structure has to be specified in the model selection
step. This is accomplished by specifying the path
to a .mop file. There are two models in the .mop
file: a Modelica model for simulation, called Sim,
and a Modelica + Optimica model for parameter es-
timation, called Parest. The main difference is that
in the model Parest, the value of the Optimica at-
tribute free is set to true for each parameter to be
estimated. The compilation of both models happens
automatically by invoking the corresponding JModel-
ica.org functionality. Model information (state vector,
parameter vector and required inputs) and solver set-
tings are also obtained in this step.

Before the parameter estimation can be attempted,
an initial guess has to be specified for each element in
the parameter vector. These can be set by default, by
inheritance, by Latin hypercube sampling or manually.

When the default initial guesses are used, an appro-
priate value is chosen for each parameter, based on its
name. For example, the naming convention in Fast-
Buildings forces all parameter names for thermal re-
sistances to start with ’R’ (like RWal), for thermal ca-
pacities with ’C’ (like CZon), for fractions with ’fra’
(like fraRad), etc. Based on the first letter(s) of a pa-
rameter to be estimated, a default initial value will be
set.

An alternative for obtaining the initial guess is to
start from the optimised parameter vector of a previous
case, the parent case. This is especially useful when
a new .mop file is selected that has similarities with
a previously processed .mop file. Due to the naming
conventions in FastBuildings, the corresponding pa-
rameters will have the same name. Therefore, the best
initial guess for a similar parameter in the new model
will be the optimal value from the parent. For new
parameters, the default initial guess method described
above is used.

The last automated option to obtain initial guesses
is based on Latin hypercube sampling. Due to the
non-convexity of the problem, there can potentially

exist many local minima. To investigate the parame-
ter search space more systematically and increase the
chances of finding a global minimum, a Latin hyper-
cube sampling method has been implemented. This
method will take a single initial guess as well as lower
and upper bounds for each parameter and derive a
univariate beta distribution from these three values.
The distribution can be symmetric or asymmetric, as
shown in Figure 3.
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Figure 3: Symmetric and asymmetric beta distributions.
The parameters a and b characterise the probability den-
sity function.

The Latin hypercube sampling will then derive n
stratified samples from each distribution and combine
them randomly to obtain n different initial guesses.
Each of these guesses will be copied to a new case
to keep track of the results.

When a case has an initial guess for the parame-
ter vector, the parameter estimation can be started.
However, the NLP (3) requires good initial guesses for
each of the decision variables (including all collocated
states and algebraic variables). This is handled by sim-
ulating first with the Sim model and the initial guess of
the parameter vector. The resulting simulation trajec-
tories are used as initial guesses for the decision vari-
ables in (3). Numerical scaling factors for each system
variable are also computed as the infinity norm of the
corresponding trajectory.

The solution time and the number of iterations can
vary a lot depending on the initial guess and the abil-
ity of the model to represent the measurement data.
Through the IPOPT interface, the toolbox allows the
specification of a maximum solution time and/or a
maximum number of iterations after which it will in-
terrupt the optimisation.

The estimation adds the optimised parameter vector
to the case, as well as the IPOPT solver statistics.



The validation of the results is always based on a
post-simulation with the Sim model and the optimised
values of the parameter vector. This can be done on the
training data (auto-validation) or on any other dataset
(cross-validation). There are both visual and quantita-
tive validation methods. The visual methods contain,
for example, time series plots of the resulting trajec-
tories and corresponding residuals, scatter plots of the
residuals with monitoring data and a plot of the au-
tocorrelation function of the residuals. This also im-
plies a check on the weights of the matrix Q from (1a)
in case the error-in-variables method is used. When
a full Latin hypercube sample has been estimated, a
visual check of the different local optima is imple-
mented. This can be used to judge whether the sam-
ple was large enough to suppose that the global opti-
mum has been found. The quantitative methods are
based on a computation of the root-mean-square error
(RMSE) for each trajectory in the vector e from (2).
As the RMSE is computed based on post-simulation
with adaptive step length, discretisation errors in the
collocation method are accounted for in the model val-
idation process.

A computation of the confidence interval for each of
the estimated parameters is implemented. This gives
an indication of the accuracy of the estimation and the
parameter’s influence on the model’s input-output be-
haviour. The standard deviation of the estimated pa-
rameters p̂ is computed according to Englezos and
Kalogerakis (2000). The standard deviation for pa-
rameter i is the square root of the diagonal element on
(i, i) in the covariance matrix cov(p̂) of the estimated
parameters, which is given by

cov(p̂) = σ̂
2(JT J)−1,

where σ̂2 is the estimated variance of the output devi-
ation e. J is composed based on the results of a sim-
ulation with the estimated parameters and sensitivities
computations activated. J contains the sensitivities of
the model outputs with respect to the estimated param-
eters as shown in Eq. (4).

J =


∂y1(t)
∂ p1

∂y1(t)
∂ p2

. . . ∂y1(t)
∂ pnp

∂y2(t)
∂ p1

∂y2(t)
∂ p2

. . . ∂y2(t)
∂ pnp

...
...

. . .
...

∂yny (t)
∂ p1

∂yny (t)
∂ p2

. . .
∂yny (t)
∂ pnp

 (4)

In this equation, y1 . . .yny are the ny model outputs
and p1 . . . pnp are the np free parameters. This method
can only be applied when the model output is equal to
one or more states.

The final step in the system identification is model
acceptance. Model acceptance is needed on two lev-
els: for a single model, and between different models.
For a single model, generally a Latin hypercube sam-
pling is executed and the resulting global optimum is
accepted if it is a valid solution. Valid means that:

• the parameters do not lie on the specified mini-
mum or maximum bounds;

• the parameter values are physically reasonable;

• the confidence intervals are within reasonable
bounds.

These criteria are not totally objective and often re-
quire an expert’s check on the model. If the global op-
timum is not valid, the local optima are analysed and
may contain a valid model. If no valid model is found
within the sample, there are different options. A new
Latin hypercube sample can be generated with differ-
ent distributions and/or a larger sample size. Some-
times it can also help to change numerical settings for
the solver or to resample the data differently. If none
of these solutions leads to a valid model, the selected
model structure cannot be matched to the considered
identification dataset and a different model structure
has to be chosen.

A forward selection approach is preferred for inter-
model acceptance. This approach starts with a very
simple model, generally a first order single zone model
with a low number of free parameters. Then, model
order and complexity are increased until (i) the mod-
els cannot be validated or (ii) the RMSE in cross-
validation cannot be improved anymore. The selection
of the candidate models in this procedure is not sys-
tematic. The procedure can be carried out manually or
automatically. The manual solution is a trial and error
procedure, often accompanied by tailor-made models
based on the results of previous identification attempts.
For the automatic solution, the modeller makes a se-
lection of models that is passed to the toolbox. The
toolbox will then sort the models according to the
number of parameters and start with the identification
of the least complex one. Validation tests are specified
by the user and the toolbox will automatically select
the best valid model. Which models are passed to the
toolbox is again a user-specified choice based on ex-
pertise and available meta-information. It is of course
possible to pass every model of the FastBuildings li-
brary, but this will often result in an unacceptable
CPU-time. Even if the forward selection procedure is



not as strict as the one presented by Bacher and Mad-
sen (Bacher and Madsen, 2011), it has several practi-
cal advantages. Firstly, the initial guesses and distri-
butions for the parameters can be inferred from pre-
viously identified models. This is enabled by a strict
naming convention in the FastBuildings library and by
the fact that similar model components like walls, in-
filtration, solar gains etc. are repeated in more com-
plex models. Secondly, starting from the first identi-
fied model, there is always a reference performance
(RMSE) with which the new results can be compared.
This approach avoids overfitting of the model, as will
be demonstrated in Part II.

Data requirements

The developed grey-box modelling approach is in-
tended for existing buildings. The aim is not to de-
velop a detailed emulator model, but to develop a sim-
plified low-order model that works well in an MPC
context or for predicting loads in buildings. For prac-
tical use in existing buildings, we can not count on the
existence of detailed emulator models, hence model
order reduction approaches are excluded. Therefore,
the aim is to develop a methodology that can cope with
very little meta-information and a limited amount of
measurement data.

With regard to the meta-information, the require-
ments depend on the complexity of the model. For
very simple models, typically single-zone and without
HVAC components, there is no need for any a-priori
knowledge of the building. Only the location of the
building has to be known if weather data is to be ob-
tained from a generic weather service. Other build-
ing properties, like building size, orientation, window
area, envelope properties etc. are not required. Nev-
ertheless, this information can be beneficial for fixing
initial guesses and for validation of estimated parame-
ters.

The more meta-information we want to use, the
more manual interventions are needed in the identi-
fication procedure. Therefore, this information is op-
tional. By default, initial guesses are hard coded based
on naming conventions. This means for example that
all resistances in a model are attributed the same initial
value, unless a resistance with the same name has been
estimated in the parent case of the current model. In
this situation, the initial guess is the optimised value
from the parent case. Experience shows that the com-
bination of these initial guesses with the Latin hyper-
cube sampling is sufficient to find good parameter esti-

mates also without using a-priori knowledge. Also for
the very first model in the forward selection approach,
which is supposed to be very simple, this works reli-
ably.

The toolbox uses upper and lower bounds for the pa-
rameter estimation. The main reason for these bounds
is to reduce the feasible region and thus the search
space. Most bounds reflect basic physical laws, for
example by imposing that resistances, capacities, gA
values and fractions have to be positive. For fractions,
an upper bound of one can be imposed, but it can also
be relaxed. This can be used for example to obtain in-
ternal gains as a fraction of measured electricity con-
sumption. Thanks to body heat gains, this estimated
fraction is allowed to be larger than one. Most param-
eters do not have an upper bound because it is impossi-
ble to specify them without using meta-information. If
a parameter estimation would result in unrealistic high
values, this is to be detected by either too high confi-
dence intervals, an expert check on the values or bad
cross-validation. The use of bounds for the starting
temperatures of the states is illustrated in Part II.

Sometimes, meta-information can be replaced by an
analysis of the available data. For example, a large
window area on a specific orientation can be discov-
ered automatically by a correlation analysis on zone
temperatures with incident radiation on different ori-
entations. This information is then used to select
which solar radiation components are used as distur-
bances in the model.

For more complex models however, more meta-
information is needed. When a multi-zone model is
created, information about the position of available
zone measurements (temperature, humidity, electric-
ity consumption etc.) is very useful to decide on the
zoning strategy. If the model has to contain the HVAC
system, some information is necessary, in particular
about the presence of specific equipment. This infor-
mation is used to adapt the model structure to the in-
stalled HVAC system.

The first requirement for the monitoring dataset is
that the meaning of all variables is clear. The dataset
has to contain at least the indoor and ambient temper-
ature and heating/cooling loads at hourly interval. The
ambient temperature (and other weather variables) can
also be obtained from a weather service if the location
of the building is known. The availability of more vari-
ables is beneficial and will improve the model. Elec-
tricity consumption monitoring (with sub-metering for
plug power) is strongly recommended. More sub-
meters for electricity always improve the information



Figure 4: Front view and ground floor of the experimental
house (north is up). For experiment 2, Zone 2 refers to the
3 small rooms in the north.

content and usability, for example for creating equip-
ment scheduling profiles. When the HVAC system is
to be modelled, a measurement of the energy use of
different components is required.

Occupancy measurements are often not available.
Mostly, the model does not need the occupancy itself,
but the internal gains from body heat transfer. In of-
fices, these are correlated with plug power. Alterna-
tively, occupancy can be modelled based on measure-
ments of relative humidity or CO2. This is not yet im-
plemented in the current version of the toolbox.

Part II

Validation
Methodology

Experimental setup

A detailed experiment was set up by Fraunhofer IBP
(Holzkirchen, Germany) in order to collect monitoring
data from well-known buildings near Munich, the twin
houses (Kersken et al., 2014). We use monitoring data
from one of these houses. A schematic overview of the
building is given in Figure 4.

Two experiments are performed, resulting in two
datasets of about 40 days each. Each experiment con-
sists of consecutive periods of free floating operation,
a randomly ordered logarithmically distributed binary
sequence (ROLBS) for heat inputs and a temperature
controlled operation. The differences between the ex-
periments are detailed in Table 1.

There are no users in the experimental house. The
heating consists of electrical heaters in each of the
spaces. By consequence, the models presented in this

Setup Exp. 1 Exp. 2
Period Summer Winter
Blinds Closed Open
Zoning Single zone Two zones (doors

closed and sealed)
Heating Sequence Different sequence

Table 1: Overview of the differences between both experi-
ments.

paper focus on the building only and do not include
components for users or HVAC.

Control versus forecasting

The presented grey-box approach aims at identifying
models for forecasting and control. We have argued
that the simulation performance is the correct criterion
to validate the models, and it is sufficient to validate
models for forecasting. However, a model with a good
simulation performance is not necessarily suited for
optimal control. Some additional criteria are:

• observability: models that are not observable can-
not be initiated in the right state with an adapted
state estimation procedure;
• complexity: the model has to fit in an optimal

control framework. In particular, non-linear mod-
els are difficult to optimise;
• solver time: even if the requirements above are

fulfilled, solving the OCP may require more
time than is available between subsequent control
steps.

However, we are confident that the models pre-
sented in this paper are suited for MPC. Firstly, state
estimation has been implemented on identical and
very similar models as those presented in this paper
(Vande Cavey et al., 2014). Secondly, the presented
models are all linear (even if the FastBuildings library
and our our optimal control framework JModelica.org
both allow non-linear models). Thirdly, we have tested
those models in MPC and the computation times for
solving the OCP are around one minute or much less
depending on the initialisation and forecasting hori-
zon.

The ultimate validation of a control model is by as-
sessing its control performance, but this is subject to
future work. We therefore assume that the models con-
sidered here are suitable for control if they have a good
simulation performance.



Simulation performance

The simulation performance is quantified by the sim-
ulation error SE. It is a weighted average of the root
mean square error (RMSE) for a set of n model out-
puts:

SE =
n

∑
j=1

q j(RMSE j), (5)

where

RMSE j =

√
∑

m
i=1 (y j(ti)−M j(ti))2

m
.

The weighting factors q j are the diagonal elements
of matrix Q of (1a). For each selected output variable,
y j(ti) is the model output at time instant ti and M j(ti)
is the corresponding measurement. The model outputs
are taken at m time instants, corresponding to the data
points. These m data points may be the raw measure-
ment data or the result after a downsampling operation.
The measurement data M is used to form yM in (2) by
interpolation. However, as the toolbox sets the collo-
cation points so that they coincide with the time in-
stants ti defined by the (resampled) measurement data,
no interpolation is actually needed.

It is important to implement the validation as cross-
validation (as opposed to auto-validation). This means
computing the simulation performance on a section of
the dataset that was not used for identification. For val-
idation of the control performance, a short validation
period of about 1 day is sufficient. However, in order
to validate the load forecasting application, we need a
much longer dataset. As our experiments contain each
40 days of data, we split them in two equal parts: the
identification and (cross-)validation subsets. We will
refer to the simulation performance in cross-validation
as prediction performance.

For the validation simulation, an initial state vector
is required. This state vector can be identified by filter-
ing techniques from measurement data up to the start
time of the validation dataset. In this study, the val-
idation dataset starts where the identification dataset
ends. Therefore, the state vector can be determined as
the model state at the end of the identification period.

As explained in Part I, the forward selection ap-
proach results in a single grey-box model for a given
dataset. We will call this model the accepted model.
It is the model resulting in the lowest SE on the cross-
validation dataset that is valid.

For the experimental house however, almost all
meta-information is available: dimensions, construc-
tion, window positions, material properties, ventila-

tion rates etc. In order to validate the grey-box tool-
box for its intended use and work flow, none of this
meta-information is used in the modelling phase.

Experiment 1

Data handling and zoning

The available dataset is very detailed. There are differ-
ent temperature sensors (in different rooms and also
within a single room to measure stratification), heat
flux measurements, humidity sensors etc. The sam-
pling period of the data is 10 minutes. We start the
forward selection procedure with a simple single-zone
model lumping all heated spaces, and we neglect the
interaction with the boundary spaces (attic and cel-
lar). For this thermal zone, an average zone temper-
ature TZon has to be defined. As we know nothing
about the building (we do not use the available meta-
information) we just average all temperatures of the
heated spaces and sum their heating loads. We also
resample the 10 minute data to hourly values. This re-
duces the size of the numerical problem because the
toolbox automatically chooses the collocation points
to coincide with the measurements. An overview of all
models that are successfully identified and validated in
the forward selection procedure is shown in Figure 5.

A first model

The first single-zone model is model A of Figure 5.
The model has only one state TZon. The free param-
eters are the thermal capacity CZon and start temper-
ature TZon(0), the total solar transmittance gA of the
windows and a total heat loss coefficient RWal repre-
senting all heat losses to the ambient temperature TAmb
(see Table 2).

Model inputs are the ambient temperature TAmb,
global horizontal radiation IGlo,Hor, and summed heat-
ing loads QHea. The use of the global horizontal radia-
tion instead of the radiation on several vertical surfaces
is an approximation that allows us to estimate only one
gA value. In subsequent model refinements we will
use the radiation components on different orientations
and multiple windows. The identification is based on
a minimisation of RMSE(Tzon).

As for all models that will be discussed below, a
Latin hypercube sample with initial guesses has been
created and the best result of this sample is presented.
Table 2 gives the resulting parameter estimates and
their estimated 95% confidence interval for the first or-
der model. The RMSEauto is 0.61 K and the RMSEcross



Model A Model B

Model D

Model FModel E

Model C

Figure 5: Overview of identified valid models for experiment 1. See the nomenclature at the end of this article for the
meaning of the variables.



Parameter Estimated value 95% conf.
CZon 5.4e7 J/K +/- 2.2e6
RWal 7.0e-3 K/W +/- 1.2e-4
TZon(0) 30.0 ◦C -
gA 2.65 m2 +/- 0.16 m2

Table 2: Overview of free parameters and their estimated
values for the first order model (model A).

is 2.01 K which is not very accurate. Still, this model
is a good starting point and it provides useful initial
guesses for the parameters in more detailed models.

Model refinements

Different models of increasing complexity have been
identified. Without discussing all attempts in detail,
we try to give an overview of the model improve-
ments. An overview of the RMSE values for auto and
cross-validation of all successfully identified models is
shown in Figure 6 and the model schemes are shown
in Figure 5. The accepted model is discussed in more
detail in the next section.

Model B The single state model cannot capture all
dynamics in the measurement data. More states are
needed. A variety of additional states can be sug-
gested, such as internal mass TInt , inertia of the build-
ing envelope TWal , inertia of the heat emission system
THea etc. Different two-state models have been identi-
fied, the best model (on cross-validation) has an addi-
tional state for the walls (model B). This model has six
free parameters (of which two are initial temperatures
of the states). The RMSEauto is 0.31 K and RMSEcross

is 0.76 K. This is a substantial improvement compared
to the single-state model.

Model C We can still improve the model by increas-
ing its order to three states. Many attempts lead in-
deed to lower RMSE values in auto-validation, but not
in cross-validation. This means these models are over-
fitted. We found one model however that slightly im-
proves RMSEcross to 0.74 K. This model is able to re-
duce RMSEauto by 50% to 0.15 K but this barely re-
sults in a better prediction performance. The model
has an additional state for the thermal inertia in the
zone and an additional resistance rIn f in parallel with
the wall. This leads to 10 free parameters.

Model D An analysis of the residuals reveals a cor-
relation between model error and solar radiation. We

still use the global horizontal radiation IGlo,Hor to es-
timate a single gA value. The incorporation of solar
gains can be refined by adding windows and connect-
ing each window to a different solar radiation. In our
attempts, we obtained the best results with two win-
dows, connected to the vertical global radiation on
East and West respectively. This resulted again in a
large reduction of RMSEauto to 0.10 K and a small re-
duction of RMSEcross to 0.71 K.

Model E When analysing the data, we have found
a possible cause for the discrepancy between the re-
sults in auto and cross-validation. In the identifi-
cation dataset, the mean attic temperature is higher
than in the validation set, leading to overestimation
of temperatures on cross-validation. When we add a
thermal resistance to the attic and estimate its value
we can indeed improve the prediction performance.
The obtained model has an RMSEauto of 0.09 K and
RMSEcross is 0.56 K. The model has 12 parameters,
and none of the estimated values are physically impos-
sible or are positioned at their minimum or maximum
boundary. This is an important validation criterion, it
requires however an expert check.

All subsequent attempts to improve the model lead
to non-physical models. This may seem a non-
issue since we are dealing with grey-box models
in which the parameters are allowed to represent
lumped characteristics. However, experience shows
that when models have unrealistic values for the phys-
ical (lumped) parameters, these are always accompa-
nied by extremely large confidence intervals.

Model F A different situation occurs when all phys-
ical parameters have acceptable values, but the esti-
mated initial temperatures for the states are at the im-
posed boundaries (270 K and 310 K by default). When
this happens for a state corresponding to a large time
constant (large RC value), the state does not act very
dynamically and the energy balance of the model is
biased. However, it is often possible to obtain a valid
model by limiting the initial state temperatures to a
narrow bound based on physical insight and analy-
sis of the measurement data. This will never lead
to a lower RMSE on auto-validation because we ex-
clude the optimal solution from the feasible region.
However, it may result in a lower RMSE on cross-
validation and thus a better prediction performance.
What happens is that the numerically (slightly) better
solution is shifted to a more physical solution.
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Figure 6: RMSE values for auto-validation (filled mark-
ers) and cross-validation (hollow markers) for the different
models as a function of the number of estimated parameters
and the model order n.

This is also observed in experiment 1. We try to
improve the model with 12 parameters by adding a
state for the boundary with the attic (model F). This
adds two parameters to be estimated, the thermal ca-
pacity of the boundary CBou and the initial tempera-
ture of this state TBou(0). The optimisation returns
TBou(0) = 270 K (-3.15 ◦C). Physically, we know this
temperature should lie somewhere between the tem-
peratures of the zone and the attic. By increasing
the lower bound to 22.9 ◦C we find a valid model
with an RMSEauto of 0.09 K and a strongly improved
RMSEcross of 0.33 K. This model, with 14 parameters,
is the accepted model. It will be discussed in more de-
tail below. Further attempts led to non-physical mod-
els or did not improve the forecasting performance
while adding unnecessary model complexity.

Model validation

Table 3 gives the resulting parameter estimates for
model F. The normalised confidence intervals are
shown in Figure 7. The toolbox does not compute
confidence intervals for the initial temperatures of the
states. We can see that all confidence intervals are rea-
sonably small. Together with the physically meaning-
ful parameters this is an indication of validity for our
model. More specifically, this indicates that the model
is not overfitted.

Figures 8 and 9 show the measured and simulated
zone temperatures for the identification and validation
datasets respectively. The latter represents the simula-
tion performance SE as we have only one model out-
put TZon in (5). We can see that, given perfect pre-
dictions of the disturbances, the model is able to pre-
dict the measured temperature very well, even in an
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Figure 7: Normalised confidence interval for the parame-
ters in the accepted model for experiment 1.

Par. Meaning Value
CBou State boundary to attic 8.1e+07 J/K
CInt State internal mass 2.6e+07 J/K
CWal State building envelope 2.3e+08 J/K
CZon State zone 3.4e+06 J/K
TBou(0) Initial temperature 22.9 ◦C
TInt(0) Initial temperature 29.6 ◦C
TWal(0) Initial temperature 27.1 ◦C
TZon(0) Initial temperature 30.3 ◦C
RBou Resistance to attic 3.4e-2 K/W
RIn f Resistance to ambient 1.5e-2 K/W
RInt Resistance CZon ↔CInt 1.0e-3 K/W
RWal Resistance envelope 1.8e-2 K/W
gA1 gA windows East 0.46 m2

gA2 gA windows West 1.03 m2

Table 3: Overview of estimated parameters for the accepted
model (model F) for experiment 1.
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the identification dataset (auto-validation) in the accepted
model for experiment 1.
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Figure 9: Measured and simulated zone temperature for the
validation dataset (cross-validation) in the accepted model
for experiment 1.

open-loop simulation over 20 days. However, a dis-
advantage of the accepted model is that it is dependent
on a prediction of the temperature of the attic. Without
this information, the simulation performance would be
poor. The control performance can still be good if an
online estimation and/or state estimation compensates
for the slow dynamics caused by the presence of the
attic. This will be elaborated in future research.

From these results, we conclude that the grey-box
model is validated for both forecasting and control of
the dwelling monitored in this experiment.

Experiment 2
Data handling and zoning

One of the fundamental differences compared to ex-
periment 1 is that in this experiment, two different
temperature regimes are maintained leading to two
distinct thermal zones. Each of these zones is com-
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Figure 10: Measured (averaged) temperatures for both
zones and ambient temperature for the full experiment 2.
The first half of the data is the identification dataset, the
second half is the validation set.

posed of different rooms. The most basic zoning ap-
proach consists of modelling only two zones and av-
eraging the measurements in individual rooms accord-
ingly. We will call these zones Zon1 and Zon2. Mod-
els with more than two zones have not been investi-
gated.

Again, we do not use available meta-information but
simply average all available measurements and we re-
sample the data to hourly values. From a plot of the
averaged measured zone temperatures (see Figure 10),
we can see that TZon2 has a different control and is very
stable. Also the heating power for zone 2 is about ten
times smaller than for zone 1 (not shown). As we will
see later, this will complicate the estimation of the dy-
namics of zone 2.

Single-zone models

In contrast to experiment 1, we aim for a two-zone
model. There will be no boundary condition so we
will be able to predict the temperature for both zones
simultaneously when only their heating power and the
weather conditions are known. However, in order to
get a grip on the dynamics and the orders of magnitude
for the parameters, we first try to identify two single-
zone models with the temperature of the other zone as
a boundary condition. This will also provide useful
indications regarding the order of magnitude of the SE
of the two-zone model.

Without describing all steps to create the models we
briefly discuss the results for the single-zone models.
For both zones we have found a good fit with model
B of Figure 5 (with an additional resistance RBou be-
tween TZon and the boundary temperature of the other
zone). It is a second-order model with 8 parameters



of which two are initial temperatures. Each zone has a
single window connected to the radiation on a vertical,
south oriented plane (instead of the global horizontal
radiation as indicated in the scheme of model B).

Table 4 gives the resulting parameter estimates for
both models. The corresponding RMSE values are
given in Table 5. The normalised confidence intervals
are shown in Figure 11. From these results we can see
the following:

• for all parameters, the order of magnitude is
roughly the same for both zones;
• the thermal resistance of the boundary is a factor

5 higher when estimated from zone 2;
• zone 2 has a much better RMSEauto than zone 1,

but a higher RMSEcross;
• the confidence intervals for zone 2 are much

larger, except for RBou and RWal;
• both zones have higher solar aperture areas than

for experiment 1. This makes sense considering
that in experiment 1 the blinds were closed, and
in experiment 2 they are open.

The low RMSEauto for zone 2 is misleading. Both
the confidence intervals and cross-validation show that
the model for zone 2 is not very good. We can under-
stand this result by analysing the measurement data
as shown in Figure 10. The temperature in zone 2 is
extremely flat during the identification period. There-
fore, the thermal inertia in this zone is not excited and
consequently it is very hard or even impossible to es-
timate the time constants and other parameters of a
dynamic model. We can conclude that poor datasets
(with little excitation of the states) cause difficulties
for the identification of dynamic models. Whenever
possible, the building control system should cause suf-
ficient excitation of all building components during the
identification period. This conclusion has been formu-
lated previously in literature, amongst others by Sour-
bron et al. (2013) and Žáčeková et al. (2014).

We now try to identify a two-zone model by com-
bining the two single-zone models.

Two-zone model

The two-zone model has two outputs on which the
simulation error SE will be computed according to (5):
TZon1 and TZon2. We take both weight factors w j = 1.

For the model of the boundary between both zones
two options are explored: a thermal resistance, or
a wall composed of two resistances and a capacity.
In principle, the parameter values should not deviate

Parameter Zon1 Zon2 Unit
CInt 1.7e7 2.7e7 J/K
CZon 2.6e6 1.2e7 J/K
TInt(0) 26.4 22.7 ◦C
TZon(0) 29.5 22.5 ◦C
RBou 6.2e-3 2.9e-2 K/W
RInt 1.3e-3 6.0e-4 K/W
RWal 3.9e-2 4.8e-2 K/W
gA 3.1 0.28 m2

Table 4: Overview of estimated parameters for the accepted
single-zone models for experiment 2.
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Figure 11: Normalised confidence intervals for the esti-
mated parameters for both single-zone models.

RMSEauto RMSEcross

Zone 1 0.27 K 0.51 K
Zone 2 0.07 K 0.65 K
SE 0.34 K 1.16 K

Table 5: RMSE of individual zone models and resulting SE.



Figure 12: Accepted two-zone model for experiment 2.

much from the ones in Table 4. We also expect the
largest parameter deviations for the parameters with
the largest confidence intervals.

Without an additional state in the boundary wall be-
tween the zones, the results are not very good: the
model has an SEauto of 0.37 K and SEcross of 1.74 K.
Moreover, the initial temperature of CInt for zone 2 lies
at the boundary of 270 K (-3.1 ◦C) and rises monoton-
ically during the identification period, thus falsifying
the energy balance.

With an additional state CBou as shown in Figure 12,
the simulation performance improves. However, anal-
ysis of the estimated parameters reveals again an ini-
tial temperature TInt(0) of 270 K. This time however,
the capacity CInt is not very large, and an attempt to
narrow down the feasible region for the initial tem-
perature leads to a valid model. The SEauto becomes
0.335 K and SEcross drops to 1.65 K. We should not be
surprised that SEauto drops slightly below the level of
0.343 K obtained with the two single-zone models: an
additional degree of freedom is introduced with CBou.

Further attempts to improve the model were not suc-
cessful, the accepted model is discussed in more detail
below.

Model validation

Table 6 shows the resulting parameter estimates for the
accepted model presented in Figure 12. All parame-
ters have physical values. For zone 1, the parameters
barely shift compared to the single-zone model. For
zone 2 however, most parameters change with a fac-
tor of± 10. This again indicates that the identification
dataset is worse for zone 2.

When the SE is split in the RMSE values for each
zone separately, Table 7 is obtained. Zone 1 has a very
good performance, also in cross-validation. Zone 2
however has a bad RMSEcross. By comparison of Ta-
ble 5 and Table 7, we see that the single-zone model
for Zone 2 has a better prediction performance than
the two-zone model. If we were more interested in

Parameter Zon1 Zon2 Unit
CInt 1.9e7 1.1e8 J/K
CZon 2.8e6 5.5e8 J/K
TInt(0) 26.8 23.9 ◦C
TZon(0) 29.2 22.5 ◦C
RInt 1.4e-3 4.0e-5 K/W
RWal 2.0e-2 5.9e-3 K/W
gA 2.4 18.7 m2

CBou 4.0e9 J/K
RBou 1.7e-2 K/W
TBou(0) 25.3 ◦C

Table 6: Overview of estimated parameters for the accepted
two-zone model for experiment 2.

RMSEauto RMSEcross

Zone 1 0.23 K 0.51 K
Zone 2 0.10 K 1.14 K
SE 0.33 K 1.65 K

Table 7: RMSE and SE of accepted two-zone model.

predicting zone 2 than zone 1, we need to increase the
weighting factor w2 from Eq. (5).

The bad simulation performance of zone 2 also be-
comes evident when comparing the measured and sim-
ulated zone temperatures. These are shown in Fig-
ures 13 and 14. For zone 1 however, the prediction per-
formance is very good, despite the deviation on zone 2.
Again, we can stress the importance of online identifi-
cation and state estimation in order to avoid recurring
model bias.
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Figure 13: Measured and simulated temperature of both
zones for the identification dataset (auto-validation) in the
accepted model for experiment 2.
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Figure 14: Measured and simulated temperature of both
zones for the validation dataset (cross-validation) in the ac-
cepted model for experiment 2.

Conclusion

Inverse modelling is gaining attention in the build-
ing simulation community. More specifically grey-box
modelling is considered as a strong framework for the
creation of low-order models for analysis and control
of monitored buildings. The first part of this paper
presents an approach to obtain grey-box models in a
largely automated way, which are applicable in both
MPC and forecasting.

The first step is the creation of a building library
with many potential model candidates. The Model-
ica package FastBuildings contains low-order models
for thermal zones, HVAC, users, single and multi-zone
buildings.

Next, a toolbox is presented that largely automates
the parameter estimation of the FastBuildings models.
It is implemented as a Python module that wraps the
functionality of JModelica.org and presents the user a
high-level interface for all common operations. The
use of a gradient-based method allows an efficient nu-
merical solution of the parameter estimation problems.
Specific attention is paid to robustness and ease-of-
use. A Latin hypercube sampling of the parameter
search space overcomes local-minima issues related to
the non-convexity of the optimisation problem. The
toolbox is not publicly available, but can be obtained
with an open-source license for research purposes by
contacting the authors.

The toolbox is validated on two datasets generated
by the detailed monitoring of a single-family house
near Munich, Germany. In experiment 1, a single-zone
building is identified that has a very good prediction
performance. In an open-loop simulation over 20 days
on the cross-validation dataset, the model deviations

are very small with an RMSEcross of only 0.33 K.
In experiment 2, a two-zone building is identified

with mixed performance. For the first zone, a good
prediction performance is achieved with an RMSEcross

of 0.51 K. The second zone however has more dif-
ficulties. Due to a weak excitation in the identifica-
tion dataset, an RMSEcross of 1.14 K is obtained. This
clearly points out the need of good identification data.

Finally, we want to point out two advantages of
the proposed methodology that come from the use of
Modelica. Firstly, the grey-box model is equation-
based. This means that we have an acausal model
relating all variables with equations, as opposed to
an input-output model with a predefined information
flow direction. Therefore, inputs and outputs can be
switched as long as the problem is balanced. For ex-
ample, given a temperature set point, the grey-box
model would predict the heating load. Secondly, Mod-
elica creates a large freedom in the model formula-
tion by allowing also non-linear model components.
These are typically encountered in heat transfer coef-
ficients and HVAC equipment. Future developments
of the grey-box toolbox and the FastBuildings library
will explore these options.

Nomenclature

Symbol Meaning
T Temperature
C Thermal capacity
R Thermal resistance
Q Thermal flux
gA Solar admittance
I Solar radiation

Subscript Meaning
Zon Zone (mostly denoting air)
Int Internal
Wal Walls / building envelope
Emb Embedded (heating or cooling) system
In f Infiltration
Bou Boundary
Amb Ambient (outdoor)
Con Convective
Rad Radiative

Acknowledgement

Roel De Coninck wishes to thank Innoviris (Region of
Brussels) for supporting this work on the side of 3E via



the ITEA2 project Enerficiency (contract RBC/11 DS
143a) and the European commission for supporting
his work on behalf of KU Leuven by supporting the
FP7 project PerformancePlus (contract nb. 308991).
Fredrik Magnusson acknowledges support from the
Swedish Research Council through the LCCC Lin-
naeus Center and is also a member of the ELLIIT Ex-
cellence Center at Lund University.

References

Åkesson, J. (2008). Optimica—an extension of mod-
elica supporting dynamic optimization. In Proc.
6th International Modelica Conference 2008.

Åkesson, J., K.-E. Årzén, M. Gäfvert, T. Bergdahl,
and H. Tummescheit (2010, November). Mod-
eling and optimization with Optimica and
JModelica.org—languages and tools for solving
large-scale dynamic optimization problems. Com-
puters and Chemical Engineering 34(11), 1737–
1749.

Andersson, J., J. Åkesson, and M. Diehl (2012).
CasADi – A symbolic package for automatic dif-
ferentiation and optimal control. In S. Forth,
P. Hovland, E. Phipps, J. Utke, and A. Walther
(Eds.), Recent Advances in Algorithmic Differen-
tiation, Lecture Notes in Computational Science
and Engineering, Berlin. Springer.

Bacher, P. and H. Madsen (2011, February). Iden-
tifying suitable models for the heat dynamics of
buildings. Energy and Buildings 43(7), 1511–1522.

Baetens, R., R. De Coninck, J. Van Roy, B. Ver-
bruggen, J. Driesen, L. Helsen, and D. Saelens
(2012). Assessing electrical bottlenecks at feeder
level for residential net zero-energy buildings
by integrated system simulation. Applied En-
ergy ((Special issue on Smart Grids, Renewable
Energy Integration, and Climate Change Mitigation
- Future Electric Energy Systems)).

Biegler, L. T. (2010). Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. MOS-SIAM Series on Optimization.
Mathematical Optimization Society and the Soci-
ety for Industrial and Applied Mathematics.

Blochwitz, T., M. Otter, M. Arnold, C. Bausch,
C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss,
M. Monteiro, T. Neidhold, et al. (2011, March).

The functional mockup interface for tool indepen-
dent exchange of simulation models. In "8th In-
ternational Modelica Conference", Dresden, Ger-
many, pp. 20–22.

Bohlin, T. (1995). Editorial - Special issue on grey
box modelling. International Journal of Adaptive
Control and Signal Processing 9, 461–464.

Crawley, D. B., J. W. Hand, M. Kummert, and B. T.
Griffith (2008, April). Contrasting the capabilities
of building energy performance simulation pro-
grams. Building and Environment 43(4), 661–673.

Davies, M. G. (2004). Simple Models for Room
Response. In Building Heat Transfer, Chapter 14,
pp. 311–334. Chichester: John Wiley & Sons, Ltd.

Elmqvist, H. (1997). Modelica - A unified object-
oriented language for physical systems modeling.
Simulation Practice and Theory 5(6), 32.

Englezos, P. and N. Kalogerakis (2000, October).
Applied Parameter Estimation for Chemical En-
gineers, Volume 81 of Chemical Industries. CRC
Press.

Henze, G. P. (2013, May). Model predictive control
for buildings: a quantum leap? Journal of Building
Performance Simulation 6(3), 157–158.

Henze, G. P. and C. Neumann (2011). Building sim-
ulation in building automation systems. In J. L. M.
Hensen and R. Lamberts (Eds.), Building perfor-
mance simulation for design and operation, pp.
401–440.

HSL (2013). A collection of Fortran codes for large
scale scientific computation. http://www.hsl.
rl.ac.uk.

Kersken, M., I. Heusler, and P. Strachan (2014,
September). Erstellung eines neuen, mess-
datengestützten validierungs-szenarios für
gebäude-simulationsprogramme. In Christoph van
Treeck, Dirk Müller (eds.) Proceedings of BauSIM
2014, Aachen, Germany, pp. 144–151. IBPSA.

Kristensen, N. R., H. Madsen, and S. B. Jorgensen
(2004, February). Parameter estimation in stochas-
tic grey-box models. Automatica 40(2), 225–237.

KU Leuven and 3E (2014). open-IDEAS source code
repository. https://github.com/open-ideas.

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://github.com/open-ideas


Madsen, H. and J. Holst (1995). Estimation of
continuous-time models for the heat dynamics of
a building. Energy and Buildings 22, 67–79.

Magnusson, F. and J. Åkesson (2012, September).
Collocation methods for optimization in a Mod-
elica environment. In 9th International Modelica
Conference, Munich, Germany.

Reynders, G., J. Diriken, and D. Saelens (2014, Oc-
tober). Quality of grey-box models and identified
parameters as function of the accuracy of input
and observation signals. Energy and Buildings 82,
263–274.

Sourbron, M., C. Verhelst, and L. Helsen (2013,
May). Building models for model predictive con-
trol of office buildings with concrete core activa-
tion. Journal of Building Performance Simula-
tion 6(3), 175–198.

Vande Cavey, M., R. De Coninck, and L. Helsen
(2014). Setting up a framework for model predic-
tive control with moving horizon state estimation
using JModelica. In 10th International Modelica
Conference, Lund, Sweden, pp. 1295–1303.

Wetter, M. (2009, June). Modelica-based modelling
and simulation to support research and develop-
ment in building energy and control systems. Jour-
nal of Building Performance Simulation 2(2), 143–
161.

Wetter, M. (2011). A view on future building system
modeling and simulation. In J. L. M. Hensen and
R. Lamberts (Eds.), Building performance simula-
tion for design and operation, pp. 28.

Wetter, M. and C. Van Treeck (2013). IEA EBC An-
nex 60 - New generation computational tools for
building and community energy systems based on
the Modelica and Functional Mockup Interface
standards. http://iea-annex60.org/about.
html.

Wächter, A. and L. T. Biegler (2006). On the im-
plementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear pro-
gramming. Mathematical Programming 106(1),
25–57.
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