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ABSTRACT 
 
Photodynamic therapy for the treatment of cancer relies on the presence of light, sensitizer and oxygen. By monitoring 
these three parameters during the treatment a better understanding and treatment control could possibly be achieved. 
Here we present data from in vivo treatments of solid skin tumors using an instrument for interstitial photodynamic 
therapy with integrated dosimetric monitoring. By using intra-tumoral ALA-administration and interstitial light delivery 
solid tumors are targeted. The same fibers are used for measuring the fluence rate at the treatment wavelength, the 
sensitizer fluorescence and the local blood oxygen saturation during the treatment.  The data presented is based on 10 
treatments in 8 patients with thick basal cell carcinomas. The fluence rate measurements at 635 nm indicate a major 
treatment induced absorption increase, leading to a limited light penetration at the treatment wavelength. This leads to a 
far from optimal treatment since the absorption increase prevents peripheral tumor regions from being fully treated. An 
interactive treatment has been implemented assisting the physician in delivering the correct light dose. The absorption 
increase can be compensated for by either prolonging the treatment time or increasing the output power of each 
individual treatment fiber. The other parameters of importance, i.e. the sensitizer fluorescence at 705 nm and the local 
blood oxygen saturation, are monitored in order to get an estimate of the amount of photobleaching and oxygen 
consumption. Based on the oxygen saturation signal, a fractionized irradiation can be introduced in order to allow for a 
re-oxygenation of the tissue. 
 
Keywords: photodynamic therapy, interstitial, ALA, PpIX, dosimetry, photobleaching, tissue oxygen saturation, tissue 

absorption, diagnostic, system 
 

1. INTRODUCTION 
 
In the search for new treatment modalities for cancer treatment, photodynamic therapy (PDT) has shown promising 
results in terms of selectivity and efficacy1, 2. PDT relies on the presence of a photosensitizing agent, for example δ-
aminolevulinic acid (ALA)-derived protoporphyrin IX (PpIX), which once activated by light of the appropriate 
wavelength generates cytotoxic species, mostly singlet oxygen and oxygen radicals. Tissue necrosis is caused by a 
combination of immediate cell death and apoptosis induced by these radicals and indirect damage to the vascular 
system3, 4. ALA-mediated PDT has been successfully used in the treatment of superficial lesions in the skin, bladder and 
aerodigestive tract and for the treatment of actinic keratosis5. 
Interstitial light delivery via optical fibers has been pursued by many groups6, 7, opening up the possibility to treat also 
thicker and deeper lying tumors. An additional advantage of interstitial delivery of the therapeutic irradiation using 
multiple fibers is that it facilitates treatment of irregularly shaped lesions, while sparing normal surrounding tissue.  
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The light distribution during interstitial PDT depends on the tissue optical properties and tissue inhomogeneities can 
greatly influence the deposited light dose in different tumor regions. Another factor one has to take into account is any 
treatment induced changes of the tissue structure and tissue optical properties, such as edema, changes in blood flow and 
tissue oxygenation or hyperthermia. 
The tissue response to PDT is tightly connected to the oxygenation of the tissue, where a good oxygen access leads to a 
better treatment outcome. For ALA-mediated PDT, a high irradiance at the therapeutic wavelength has been shown to 
induce less extensive tissue damage, an effect that has been explained by oxygen depletion occurring at the higher 
irradiances8, 9. Besides inhibiting the photodynamic reaction, oxygen depletion also affects the light transmission in 
tissue. During a PDT treatment session the tumor is gradually de-oxygenated, which based on the higher absorption 
coefficient of deoxy-hemoglobin as compared to oxy-hemoglobin, would lead to a decrease in light transmission 
throughout the tumor volume. Studies by Foster et al. have shown up to 15-fold increase in light penetration at 630 nm 
when comparing a hypoxic to a well-oxygenated tissue phantom containing human erythrocytes10. These results further 
emphasize the need for a good tumor oxygenation level as de-oxygenated tissue limits light penetration and prevents the 
entire tumor volume from receiving a sufficient light dose.  
The treatment induced sensitizer photobleaching is an oxygen dependent process, where the initial rate of sensitizer 
photobleaching correlates well with the tissue oxygenation. Therefore it has been suggested that studying the rate of 
sensitizer photobleaching could be a useful dosimetric tool in trying to predict the treatment outcome11.  
 
An accurate dosimetry model, which takes the fluence rate distribution within the tissue volume of interest, the sensitizer 
concentration and the tissue oxygenation into account, is of major importance in interstitial photodynamic therapy. 
Recently we have reported on the construction and initial clinical testing of an instrument for interstitial photodynamic 
therapy which allows for diagnostic measurements in order to monitor the treatment progression12. The six optical fibers 
used for delivery of the therapeutic irradiation are also utilized in order to monitor the fluence rate at the treatment 
wavelength, the protoporphyrin IX fluorescence and the tissue oxygen saturation during the treatment session. Here we 
present data from monitoring tissue light transmission changes during 10 treatment sessions and what this might have for 
consequences on treatment outcome. Also, results from measuring the protoporphyrin IX photobleaching and the oxy- 
and deoxy-hemoglobin concentration changes are presented.  
 

2. MATERIAL AND METHODS 

2.1. Instrumentation 
An instrument for interstitial photodynamic therapy has been used, where a maximum of six bare end optical fibers are 
utilized to deliver the therapeutic light into the tumor mass, see Figure 112. The same fibers can also be used in order to 
perform diagnostic measurements during the treatment session.  

 

Light 
distribution 

module 

Imaging 
Spectrometer 

Computer  
 

Optical 
fibres 

  Diagnostic 
light unit 

Therapeutic 
light unit 

 
Figure 1. Schematic describing the overall instrument layout.  
 
While in treatment mode, light from the therapeutic light unit, which consists of six diode lasers, each emitting a 
maximum of 200 mW at 635 nm, is guided into the light distribution module and coupled into the six 400 µm diameter 
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patient fibers. During a treatment session, the therapeutic irradiation is repeatedly interrupted in order to perform 
measurements of diagnostic importance. In measurement mode, light from the diagnostic light unit is coupled into one of 
the patient fibers via the light distribution module. After interacting with the tissue some of the light is detected by the 
remaining five fibers and coupled into an imaging spectrometer covering the spectral range 620-810 nm. One 
measurement sequence involves successively coupling the output from the two diagnostic light sources into each and 
every one of the six patient fibers.  
 
The first diagnostic light source is a diode laser similar to the treatment lasers. Upon emission from one of the patient 
fibers the light transmission at 635 nm to the other five fibers is monitored as a function of the delivered light dose. This 
measurement monitors changes in light transmission, which might be a consequence of e.g. bleeding at the fibre tips, 
variations in tissue oxygen saturation, changes in blood flow or blood volume, and an insufficient treatment may thus be 
prevented by re-inserting fibers or compensating for possible transmission variations by adjusting the treatment time. The 
635 nm irradiance also induces PpIX fluorescence at 705 nm throughout the tumour volume. This signal is monitored 
simultaneously to the light transmission at the therapeutic wavelength and is used to study the rate of PpIX 
photobleaching. 
 
The other diagnostic light source is a light emitting diode covering the spectral range between 760 and 810 nm. The 
transmission in between patient fibers is used to assess the optical density within this wavelength interval, 

0

(t)
logA(t)

S

S−= ,            (1) 

where 0S  is the initial light transmission and S(t) is the light transmission as detected during the subsequent 

measurement sequences. The measurement of A(t) is used to monitor changes in oxy- and deoxy-hemoglobin 
concentration by means of the modified Beer-Lambert law and least squares fitting. According to the modified Beer-
Lambert law, which is an empirical description of light attenuation in scattering media, the change in optical density can 
be expressed as  

( )( ) LDPFtcA
i

ii ⋅⋅∑ ∆=∆ ε ,          (2) 

where ε [M-1 cm-1], c [M] and L [cm] are the extinction coefficient of the medium, the concentration of the absorbing 
component and the source detector separation, respectively. The summation is taken over all absorbing chromophores, 
i.In the following analysis we assume oxy- and de-oxy hemoglobin are the only chromophores whose absorption might 
change during the treatment and that any light transmission changes are due to changes in the concentration of these two 
tissue constituents. DPF is the differential pathlength factor, which is dependent on wavelength, tissue type and 
measurement geometry. By assuming that DPF remains constant during the treatment session one can use equation (3) 
below to relate the measured optical density changes to relative chromophore concentration changes13, 14, 

[ ] [ ]( ) LDPFHbOHb
S

S
A HbOHb

final ⋅⋅∆+∆=−=∆ εε
0

log ,       (3)  

where HbOε  and Hbε  are the wavelength dependent extinction coefficients of oxy- and deoxy-hemoglobin, 

respectively. By measuring the tissue optical density changes and using the known extinction coefficients of oxy- and 
deoxy-hemoglobin within a certain wavelength interval15, the changes of these chromophores can be calculated. 
In order to derive equation (3) several assumptions have been made. First, one has to assume a scattering coefficient that 
remains constant over time and that is much larger in magnitude than the absorption coefficient. Second, Equation (3) is 
valid only for small and global concentration changes in homogenous tissues. Finally, DPF requires knowledge of the 
initial absorption and scattering coefficients, which in this work have been chosen according to Table 1.  
 
The above analysis is not only used to assess the oxy- and deoxy-hemoglobin concentration changes. Based on the 
known extinction coefficients of oxy- and deoxy-hemoglobin, the changes in light transmission at the treatment 
wavelength can be approximated by extrapolating the measured optical density changes from the wavelength region 760-
810 nm down to 635 nm. The motivation for doing this extrapolation is to check whether the treatment induced 
absorption changes as reported on in this paper are due to changes in tissue oxygenation, blood flow and blood volume. 
By monitoring the treatment induced changes in tissue oxygen saturation a fractionized irradiation might be introduced in 
order to allow for an increased oxygen inflow to the treated region. 
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2.2. Patients 
The study included 8 patients with thick skin lesions and was approved by the Local Ethics Committee at the Lund 
University Hospital. Five lesions were diagnosed as nodular basal cell carcinomas, whereas the remaining three lesions 
were diagnosed as superficial basal cell carcinoma, squamous cell carcinoma and keratoacanthoma/squamous cell 
carcinoma. Two of the patients diagnosed with basal cell carcinomas underwent two treatment sessions, resulting in a 
total of 10 treatment sessions performed.  
At the time of treatment the tumor geometry was determined visually and by palpation by an experienced oncologist. The 
lesion was photosensitized by mixing ALA (5-aminolevulinic acid, MEDAC GmbH, Hamburg, Germany) into an oil-in 
water emulsion (Essex Cream, Schering Corp., Kenilworth, USA) to a concentration by weight of 20 %, which was 
applied topically with a 10-mm margin to the lesion 4-6 hours before the therapeutic irradiation. An occlusive dressing 
(Tegaderm™, 3M, UK) was used in order to prevent the cream from smearing and an ordinary dressing shielded the area 
from ambient light prior to the treatment irradiation. Thirty minutes prior to the treatment, three patients were also given 
ALA intra-tumorally by dissolving 1.5 g ALA powder in 10 ml 0.9% saline buffer. Prior to the therapeutic irradiation the 
lesion was prepared according to clinical praxis by disinfecting the treatment area, and subsequently administering 
Xylocain (AstraZeneca, Södertälje, Sweden) subcutaneously as anesthetics. The six sterilized patient fibers were inserted 
and subsequently fixed in a holder which in turn was attached to the patient stretcher. The fiber positions were chosen to 
get as homogenous a light distribution inside the lesion as possible while sparing the surrounding tissue. 
In order to get an approximate prediction of the treatment times necessary, the fluence rate, φ(r), within the lesion was 
determined by solving the steady-state diffusion equation16, 

∑=−∇
i

)S()(µ)( i

2

eff

2 rrr φφ ,          (4) 

where µeff = [ )µ(µ3µ '

saa + ]1/2, µa and '

sµ  are the effective attenuation, absorption and reduced scattering coefficients. For 

this prediction, the values in Table 1 were chosen for these parameters17. The source term, ∑S(ri) was modelled as 
isotropic point sources, denoted by the index i. A commercial program (FEMLab®, Comsol, Sweden) was used to model 
the fluence rate distribution by using the finite element method. For the case of superficial lesions, the extrapolated 
boundary condition was used. Based on the fluence rate distribution, the absorbed dose throughout the tumour volume 
was calculated. With a threshold (15 Jcm-3)18 for the absorbed light dose considered sufficient for inducing cell necrosis, 
an estimate of the necessary treatment time was calculated. 
 

Tissue type 
aµ  

(cm-1) 

'
sµ  

(cm-1) 
normal 0.16 12.0 
tumor 0.31 12.4 

Table 1. Tissue optical properties used in modeling the light distribution. 
 
Individual fiber output powers were kept constant throughout the treatment session at power levels ranging from 25 to 
100 mW. The therapeutic irradiation was interrupted with varying time intervals (30-120 s) in order to perform the 
measurement sequences (approx. 45 s). Measurement sequences were performed more frequently at the beginning of the 
treatment session in order to follow the rapid sensitizer photobleaching and also prior to and at the end of the treatment 
session. 
 

3. RESULTS 
 
Using the first diagnostic light source, the spectra recorded via the other five fibers typically looked like the inset in 
Figure 2. A signal describing the light transmission as a function of delivered light dose was obtained by summing the 
detected signal within the spectral interval 625 to 645 nm for each measured spectrum. Figure 2 shows three examples of 
the light transmission temporal profiles where the signals have been normalized to their respective initial values. Curves I 
and II display varying absorption changes during the treatment session, whereas curve III could possibly be explained by 
blood pooling at the fiber tip. Data with characteristics of curve III, i.e. a rapid loss of signal resulting in an insufficient 
signal-to-noise ratio were excluded from further data analysis. Out of a total of 60 fiber insertions in 10 patients, possible 
blood pooling at the fiber tips could be identified in 4 cases. 
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Figure 2. Three illustrations of light transmission variations between patient fibers from three different treatment sessions. Inset shows 
raw data, where dashed vertical lines indicate spectral region for studying light transmission signal (a) and sensitizer fluorescence (b). 
 
All treatment sessions were performed using six patient fibers positioned approximately equidistantly around the tumor 
center. Measuring the light transmission between all possible fiber combinations results in 30 signals from each 
measurement sequence. If only looking at transmission signals between neighbouring fibers, i.e. 12 signals, it is easier to 
identify lesion inhomogeneities and follow changes in optical properties with only minor influence of source-detector 
separations. Figure 3 shows the average of the light transmission between neighbouring fibers during one treatment 
session after normalizing each signal to its initial value. Judging by the size of the error bars, which denote standard 
deviations, the decrease in light transmission was rather homogenous within the entire tumor volume. An immediate 
result of the absorption increase and the thereby limited light distribution is that the entire tumor volume did not receive a 
light dose above the predefined threshold supposed to be required in order to produce tissue necrosis. Assuming that it is 
only a change in the absorption coefficient that cause the decreasing signal in Figure 3 and that the change is homogenous 
within the entire tumor volume, one can calculate the change in absorption coefficient as a function of the treatment time. 
Using this information, it is possible to model the actual light distribution and thereby re-calculate the expected treatment 
volume. This analysis relies on the validity of the diffusion equation and use of the extrapolated boundary condition for 
the case of superficial lesions. For the case illustrated in Figure 3, the absorption coefficient was found to increase by 73 
±15 %, which resulted in a treated volume at the end of the treatment session as illustrated in Figure 4. The figure shows a 
cross section through the middle part of the tumor and clearly, the entire volume was not fully treated.  
 
A significant treatment induced absorption increase was established in 8 of 9 treatments by performing a one-sided 
Student's t-test, where P<0.02 was considered significant. Figure 5 shows the mean of the remaining light transmission at 
the end of the treatment sessions. The data displayed was achieved by averaging the light transmission between 
neighbouring patient fibers from the last measurement sequence in each treatment session. The varying light transmission 
change could not be explained only by the different inter-fiber distances used in the individual treatments. Data from 
treatment session 4 has been excluded since the optical fibers lost their original positions when the patient started 
coughing after 240 s of therapeutic irradiation.  
In a similar manner as when calculating the actual absorbed light dose for Figure 4, the actual light dose in the tumor bed 
has been calculated and compared to the planned light dose as modeled before the treatment session. The result of this 
comparison is shown in Table 2, where the minimum of the actual light dose in the tumor bed is expressed as a 
percentage of the minimum of the planned light dose. 
 

0 20 40 55
0

0.2

0.4

0.6

0.8

1

1.2

Delivered light dose (J)

Li
gh

t t
ra

ns
m

is
si

o
n

Treatment 6
Treatment 3
Treatment 4

I 

II 

III 

620 640 660 680 700 720 740 760 780 800
0

5

10

15

20

25

Wavelength (nm)

In
te

ns
ity

 (
a.

u.
)

a b 

134     Proc. of SPIE Vol. 5689

Downloaded from SPIE Digital Library on 04 Jul 2011 to 130.235.188.41. Terms of Use:  http://spiedl.org/terms



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Delivered light dose (J)

N
o

rm
al

iz
e

d 
flu

en
ce

 r
at

e

 
Figure 3. Average of normalised light transmission between patient fibers from one patient. 
 

 
Figure 4. Tumor cross sections at the end of the treatment session. Figure to the left shows treated regions when assuming a constant 
absorption coefficient throughout the treatment session, whereas in the rightmost figure the calculations for the absorbed dose are 
based on transmission changes as displayed in Figure 3. 
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Figure 5. Average of remaining light transmission for 9 treatment sessions. Data is based on light transmission signals between 
neighbouring fibers and error bars denote standard deviations. 
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Treatment session Delivered light dose 
(% of planned light dose) 

1 75 
2 44 
3 90 
4 - 
5 70 
6 84 
7 65 
8 80 
9 74 
10 97 

Table 2. Actual delivered light dose as percentage of planned light dose. 
 
In order to quantify the PpIX photobleaching, the signal within the spectral interval b (695-715 nm) as indicated by the 
inset in Figure 2 is studied after subtracting a constant background off-set. A typical sensitizer photobleaching curve is 
shown in Figure 6, where the average of the normalized fluorescence signal as detected via the patient fibers in one 
patient has been plotted as a function of the delivered light dose. Again, the error bars denote one standard deviation 
above and one below the average signal. Data from the treatment sessions display a rapid initial photobleaching followed 
by a slowly decaying fluorescence level. One should observe that the evaluated sensitizer fluorescence signal has not 
been compensated for the absorption increase as seen from the fluence rate measurements. 
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Figure 6. PpIX fluorescence as a function of delivered light dose.  Data represents the average signal from one of the treatment 
sessions. 
 
With the second diagnostic light source emitting, the recorded raw spectra were evaluated according to Equation (3) in 
order to assess variations in oxy- and deoxy-hemoglobin concentration. Figure 7.a shows the evaluated tissue optical 
density for a few selected treatment times. Figure 7.b illustrates the corresponding concentration changes of oxy- and 
deoxy-hemoglobin. Using the known extinction coefficients of oxy- and deoxy-hemoglobin, these signals were also used 
in order to predict the variation in light transmission at 635 nm between the patient fibers. Figure 7.c illustrates the 
agreement between the measured light transmission at 635 nm and the transmission curves predicted by extrapolating the 
calculated absorbance at 760-810 nm for one pair of patient fibers during one treatment session. 
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Figure 7.a) Measured optical density in the wavelength interval 760 to 810 nm. b) Oxy- and deoxy-hemoglobin changes as a function 
of the delivered light dose. c) Measured (solid) and calculated (dashed) light transmission. Calculations are based on data according to 
a) and b). 
 

4. DISCUSSION 
 
Using a recently developed system for interstitial photodynamic therapy, we have monitored light transmission changes, 
sensitizer photobleaching and hemoglobin concentration changes within the treated tissue during treatment of thick skin 
lesions.  
When addressing the therapeutic light transmission within the tumor, the most important aspect is whether there is blood 
pooling at the fiber tips. Because of the high absorption coefficient of blood, local bleeding was easily recognized by a 
marked loss of light transmission. Judging by the huge impact blood absorption has on the light distribution within the 
tissue, it is of great importance to monitor this parameter.  
After excluding data influenced by local bleeding or characterized by an insufficient signal-to-noise ratio, a significant 
treatment induced absorption increase was found in 9 of 10 treatment sessions. The absorption increase influences the 
volume that is treated, as illustrated in Figure 4 for one of the treatment sessions. Figure 5 shows that the degree of 
absorption increase varies among patients, which further indicates that there is need for individual monitoring of the light 
distribution within the lesion during treatment. 
 
Other groups have also reported on a decrease in light transmission in tissue during PDT19-21 and possible explanations 
include damage to the tissue microcirculation21, alteration of the local blood flow and perfusion19, local hyperthermia or 
tissue de-oxygenation as a result of the oxygen consumption10, 19. Here we have tested the hypothesis that changes in 
tissue oxygen saturation and blood volume result in the observed tissue absorption increase. Since deoxy-hemoglobin is a 
much stronger absorber at 635 nm than oxy-hemoglobin, de-oxygenation will results in an increase of the tissue 
absorption. By measuring the optical density in the wavelength range 760 to 810 nm and using the modified Beer-
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Lambert law, variations in oxy- and deoxy-hemoglobin concentration have been calculated. By extrapolating the 
absorbance in this NIR wavelength range to 635 nm it is possible to compare the changes in light transmission predicted 
by the calculated changes in hemoglobin concentration to those actually measured at 635 nm. For some patients this 
comparison shows excellent agreement, emphasizing the importance of well oxygenated tissue not only for production of 
toxic radicals but also for enabling a sufficient light distribution throughout the tumor volume. 
In many cases, the data analysis also indicates a change in blood volume. PDT is often associated with vascular 
shutdown22, 23 and vasoconstriction has also been noticed using ALA-induced PpIX as photosensitizer, especially with 
systemic drug administration24. In the case of topical or intra-tumoral ALA application, these effects on the blood 
perfusion are not as pronounced25, 26. In this study it is more likely that the blood volume increased as a consequence of 
tissue inflammatory response and/or damage to tissue microcirculation. In the latter case, blood stasis could result from 
microagglutination of red blood cells27, thereby increasing the average concentration of red blood cells. 
 
As shown in Figure 6, the PpIX fluorescence displays a rapid initial photobleaching followed by a more slowly decaying 
fluorescence level. Although not shown here, the signal is well described by a sum of two exponential terms, where the 
exponent of the rapidly vanishing term can be used to quantify the initial rate of photobleaching. König et al.28 have 
suggested using the rate of sensitizer photobleaching as a dosimetric tool in trying to predict the treatment outcome.  
Although using another sensitizer than ALA-induced PpIX, Woodhams et al.22 have observed a drop in oxygen 
saturation in regions where tissue necrosis was found post treatment. The authors have speculated whether is it possible 
to use real-time monitoring of oxygen saturation during PDT in order to improve the treatment outcome.  
The importance of a well oxygenated tissue during PDT has also been shown by Curnow et al.9, who reported up to three 
times more necrosis when using fractionated as compared to continuous irradiation. The effect has been explained by 
improved oxygen inflow to the treatment volume. Based on the results presented here and on the work presented by these 
references, it seems highly desirable to implement real-time dosimetry during PDT.  
 
In summary, we have reported on real-time measurement of light transmission during interstitial PDT in vivo. The data 
indicate treatment induced changes of the tissue optical properties, where the effect this has on the light distribution is of 
great importance for the treatment outcome. Also, by monitoring the sensitizer photobleaching and the tissue oxygen 
saturation, it might be possible to introduce treatment feed-back with the ultimate goal of treatment outcome 
improvement. 
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