
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Flexible Implementation of Model Predictive Control Using Sub-Optimal Solutions

Henriksson, Dan; Åkesson, Johan

2004

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Henriksson, D., & Åkesson, J. (2004). Flexible Implementation of Model Predictive Control Using Sub-Optimal
Solutions. (Technical Reports TFRT-7610). Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 07. Oct. 2022

https://portal.research.lu.se/en/publications/c9c414b6-a22d-479c-9027-d5f64b1120eb


ISSN 0280–5316
ISRN LUTFD2/TFRT7610SE

Flexible Implementation of Model
Predictive Control Using

SubOptimal Solutions

Dan Henriksson
Johan Åkesson

Department of Automatic Control
Lund Institute of Technology

April 2004



Department of Automatic Control

Lund Institute of Technology
Box 118

SE221 00 Lund Sweden

Document name

INTERNAL REPORT
Date of issue

April 2004
Document Number

ISRN LUTFD2/TFRT7610SE

Author(s)

Dan Henriksson, Johan Åkesson
Supervisor

Sponsoring organisation

Title and subtitle
Flexible Implementation of Model Predictive Control Using SubOptimal Solutions

Abstract

The online computational demands of model predictive control (MPC) often prevents its application to
processes where fast sampling is necessary. This report presents a strategy for reducing the computational
delay resulting from the online optimization inherent in many MPC formulations. Recent results have
shown that feasibility, rather than optimality, is a prerequisite for stabilizing MPC algorithms, implying
that premature termination of the optimization procedure may be valid, without compromising stability.
The main result included in the report is a termination criterion for the online optimization algorithm
giving rise to a suboptimal, yet stabilizing, MPC algorithm. The termination criterion, based on an
associated delaydependent cost index, quantifies the tradeoff between successively improved control
profiles resulting form the optimization algorithm and the potential performance degradation due to
increasing computational delay. It is also shown how the cost index may be used in a dynamic scheduling
application, where the processor time is shared between two MPC tasks executing on the same CPU.

Key words

Model Predicive Control, Feedback Scheduling, Delay Compensation

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
20

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE221 00 Lund, Sweden
Fax +46 46 222 44 22 Email ub2@ub2.lu.se



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. MPC Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Feasibility and Optimality . . . . . . . . . . . . . . . . . . . . 7

2.2 QPSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Termination Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Dynamic Realtime Scheduling of MPCs . . . . . . . . . . . . . 11

5. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Simulation Environment and Implementation . . . . . . . . . 12

5.2 Simulation of One MPC Controller . . . . . . . . . . . . . . . 13

5.3 Dynamic Scheduling of Two MPC Tasks . . . . . . . . . . . . 15

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3



4



1. Introduction

Model predictive control (MPC), see, e.g., [Garcia et al., 1989; Richalet, 1993; Qin
and Badgwell, 2003], has been widely accepted industrially during recent years,
mainly because of its ability to handle constraints explicitly and the natural
way in which it can be applied to multivariable processes. The computational
requirements of MPC, where typically a quadratic optimization problem is solved
online in every sample, have previously prohibited its application in areas where
fast sampling is required. Therefore MPC has traditionally only been applied to
slow processes, mainly in the chemical industry. However, the advent of faster
computers and the development of more efficient optimization algorithms, see,
e.g., [Cannon et al., 2001], has led to applications of MPC also to processes
governed by faster dynamics. Some recent examples include [Dunbar et al., 2002;
Dunbar and Murray, 2002].

From a realtime implementation perspective, however, the execution time char
acteristics associated with MPC tasks still poses many interesting problems.
Execution time measurements show that the computation time of an MPC con
troller varies significantly from sample to sample. The variations are due to, e.g.,
reference changes or external disturbances. To cope with this, an increased level
of flexibility is required in the realtime implementation.

The highly varying execution times introduce delays which are hard to compen
sate for. The longer time spent on optimization the larger the latency, i.e., the
delay between the sampling and the control signal generation. The latency has
the same effect as an input time delay, and if it is not properly compensated for
it will affect the control performance negatively. However, since the optimiza
tion algorithms used in MPC are iterative in nature, and, typically, reduce the
quadratic cost for each iteration step, it is possible to abort the optimization
before it has reached the optimum, and still fulfill the stability conditions.

Stability of model predictive control algorithms has been the topic of much re
search in the field. For linear systems, the stability issue is well understood,
and also for nonlinear systems there are results ensuring stability under mild
conditions. For an excellent review of the topic, see [Mayne et al., 2000]. In sum
mary, there are two main ingredients in most stabilizing MPC schemes; terminal
penalty and terminal constraint. These two tools has been used separately or in
combination to prove stability for many existing MPC algorithms. It is also well
known that feasibility, rather than optimality, is sufficient to guarantee stability,
see, for example [Scokaert et al., 1999].

This report quantifies the control performance tradeoff between successive it
erations in the optimization algorithm (gradually improving the control signal
quality) and the computational delay (increasing by each iteration). The tradeoff
is quantified by the introduction of a delaydependent cost index, which consti
tutes the main contribution of this report. (A preliminary qualitative simulation
study was presented in [Henriksson et al., 2002a].) The index is based on a
parameterization of the cost function used in the MPC formulation. The key
observation is that since computational delay may significantly degrade control
performance, premature termination of the optimization algorithm may be ad
vantageous over actually finding the optimum. It will be shown how a simple
termination criterion based on the cost index can be employed to improve control
performance when computing resources are scarce.

5



Another contribution of the report, is the application of the termination criterion
and cost index to realtime scheduling. Traditional realtime scheduling of control
tasks is based on task models assuming constant, known, worstcase execution
times for all tasks. However, the large variations in execution time for MPC
tasks render realtime designs based on worstcase bounds very conservative and
give unnecessary long sampling periods. Hence, more flexible implementation
schemes than traditional fixedpriority or deadlinebased scheduling are needed.

In feedback scheduling, [Årzén et al., 2000; Cervin et al., 2002], the CPU time
is viewed as a resource that is distributed dynamically between the different
tasks based on, e.g., feedback from CPU usage and qualityofservice (QoS). For
controller tasks the qualityofservice corresponds to the control performance.
Another approach that can be tailored towards MPC is scheduling of imprecise
computations [Liu et al., 1991; Liu et al., 1994]. Here, each task is divided in
a mandatory part (finding a feasible solution) and an optional part (QP op
timization), which are scheduled separately. The dynamic scheduling strategy
proposed in this report schedules the optional parts of the MPC tasks using the
cost indices as dynamic task priorities.

The rest of the report is organized as follows. The MPC formulation is given
in Section 2. Section 3 describes a termination criterion, based on the delay
dependent cost index, which is used to dynamically tradeoff computational delay
and optimization. Section 4 describes a dynamic scheduling scheme for schedul
ing of multiple MPC controllers. Section 5 contains a case study, evaluating the
performance of the termination strategy and dynamic scheduling scheme. Finally
the conclusions are given in Section 6.

2. MPC Formulation

The MPC formulation is based on [Maciejowski, 2002] and assumes a discrete,
linear process model on the form

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cyx(k)

z(k) = Czx(k) + Dzu(k)

(1)

where y(k) is the measured output, z(k) the controlled output, x(k) the state
vector, and u(k) the input vector. The function to minimize at time k is

J(k, ∆U , x(k)) =

Hp
∑

i=1

iẑ(k + ihk) − r(k + i)i2
Q +

Hu−1
∑

i=0

i∆û(k + ihk)i2
R (2)

where ẑ is the predicted controlled output, r is the current setpoint, û is the
predicted control signal, Hp is the prediction horizon, Hu is the control horizon,
Q ≥ 0 and R > 0 are weighting matrices, and ∆u(k) = u(k) − u(k − 1). It is
assumed that Hu < Hp and that û(k+i) = û(k+ Hu−1) for i ≥ Hu. See Figure 1.

∆U =
(

∆û(k)T . . . ∆û(k + Hu − 1)T
)T

is the solution vector.

Introducing sequences U and Z equivalently to ∆U , the state and control signal
constraints may be expressed as

W∆U ≤ w FU ≤ f GZ ≤ n (3)

6



z

u

r
ẑ
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Figure 1 The basic principle of model predictive control.

This formulation leads to a convex linearinequality constrained quadratic pro
gramming problem (LICQP) to be solved at each sample. The problem can be
written on matrix form as

min
θ

V (k) = θ TH θ − θ TG +C s.t. Ωθ ≤ ω . (4)

where θ = ∆U and the matrices H , G , C , Ω, and ω depend on the process model
and the constraints, see [Maciejowski, 2002]. Only the first element of ∆U is
applied to the process and the optimization is then repeated in the next sample.
This is referred to as the receding horizon principle, see Figure 1.

2.1 Feasibility and Optimality

The problem of formulating stabilizing MPC schemes has received much atten
tion in the last decade. For linear MPC, the conditions for stability are well
understood, and several techniques for ensuring stability exist, including termi
nal penalty, terminal equality constraint, and terminal sets, see [Mayne et al.,
2000]. For simplicity, we will use a terminal equality constraint to ensure sta
bility, see, e.g., [Bemporad et al., 1994].

The following theorem (adopted from [Bemporad et al., 1994]) summarizes the
important features of a stabilizing MPC scheme based on a terminal equality
constraint. Without lack of generality we assume that r(k) is zero.

THEOREM 1
Consider the system (1) controlled by the receding horizon controller based on
the cost function (2), subject to the constraints (3). Let r(k)=0. Further assume
terminal constraints x̂(k + Hp + 1)=0 and û(k + Hu)=0, Q≥0 and R>0 and that
(Q

1
2 Cz, A) is a detectable pair. If the optimization problem is feasible at time k,

then the origin is stable, and z(k)T Qz(k) → 0 as k → ∞.

Proof. Let ∆U ∗
k=(∆û∗

k(k), ∆û∗
k(k + 1), . . . , ∆û∗

k(k + Hu − 1)) denote the optimal
control sequence at time k. Obviously, ∆U k+1=(∆û∗

k(k+1), . . . , ∆u∗
k(k+ Hu−1), 0)

is then feasible at time k + 1. Consider the function V (k)=J(k, ∆U ∗
k, x(k)) with
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r(k)=0. Then we have the following relations:

V (k + 1) = J(k + 1, ∆U ∗
k+1, x(k + 1))

≤ J(k + 1, ∆U k+1, x(k + 1))

= V (k) − z(k + 1)T Qz(k + 1)

−∆u(k)T R∆u(k).

(5)

Since V (k) is lowerbounded and decreasing, z(k)T Qz(k) → 0 and ∆u(k)T R∆u(k)

→ 0 as k → ∞. Further, using the fact that (Q
1
2 Cz, A) is a detectable pair, it

follows that ix(k)i → C < ∞ as k → ∞.

REMARK 1
To prove the stronger result that the origin is asymptotically stable, the addi
tional assumption that the system (1) has no transmission zeros at q = 1 from
u to z could be imposed. Notice also that the sensible assumption that Q > 0
implies that z(k) → 0 as k → ∞, which is, however, automatically achieved if
the transmission zero condition is fulfilled.

The important feature in the proof of this theorem is embedded in equation (5). In
order for the stability proof to work, it must be ensured that V (k) is decreasing,
which, however, does not require optimality of the control sequence ∆U . See,
e.g., [Scokaert et al., 1999] for a thorough discussion on this topic. Rather, having
fulfilled the stability condition V (k+1) < V (k), the optimization may be aborted
prematurely without losing stability. In the case study in Section 5, the terminal
constraint û(k + Hu)=0 has been relaxed, in order to increase the feasibility
region of the controller. To remove this complication, the control signal, u, rather
than the control increments, ∆u, could be included in the cost function. Notice,
however, that the important feature of the stability proof that will be explored
is the inequality (5) and that other, more sophisticated, stabilizing techniques
may well be used instead.

2.2 QPSolver

There are two major families of algorithms for solving LICQPs; active set meth

ods [Fletcher, 1991] and primaldual interior point methods, e.g., Mehrotra’s
predictorcorrector algorithm, [Wright, 1997]. Both types of methods have ad
vantages and disadvantages when applied to MPC, as noted in [Bartlett et al.,
2000] and [Maciejowski, 2002]. Rather, the key to efficient algorithms lies in
exploring the structure of the MPC optimization problem.

Recent research has also suggested interesting, and fundamentally different
MPC algorithms, see, e.g., [Kouvaritakis et al., 2002] and [Bemporad et al., 2002],
known as explicit MPC. Here, the optimization problem is solved offline for all
x(k), resulting in an explicit piecewise affine control law. At runtime, the prob
lem is then transformed into finding the appropriate (linear) control law, based
on the current state estimation. However, when the complexity of the problem in
creases, so does the complexity of the problem of finding the appropriate control
law at each sample.

An MPC algorithm based on the online solution of a QPproblem is used in
this report. The value of the cost function at each iteration in the optimiza
tion algorithm is of importance. Specifically, if the decay of the cost function is
slow, it may be a good choice to terminate the optimization algorithm, and use
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the suboptimal solution, rather than allowing the algorithm to continue and
thereby introduce additional delay in the control loop. In the scheduling case,
long execution times will also affect the performance of other control loops.

From this point of view, there is a fundamental difference between an active set
algorithm and a typical primaldual interior point method. The active set algo
rithm explicitly strives to decrease the cost function in each iteration, whereas a
primaldual interior point algorithm rather tries to find, simultaneously, a point
in the primaldual space that fulfills the KarushKuhnTucker conditions. In the
latter case, the duality gap is explicitly minimized in each iteration, rather than
the cost function. With these arguments, and from our experience using both
types of algorithms, we conclude that an active set algorithm is preferable for
the application in this report.

3. Termination Criterion

To be able to determine when to abort the MPC optimization and output the con
trol signal, it is necessary to quantify the tradeoff between the performance gain
resulting from subsequent solutions of the QPproblem, and the performance loss
resulting from the added computational delay. This will be achieved by the intro
duction of a delaydependent cost index, which is based on a parameterization
of the cost function (2).

Assuming a constant time delay, τ < h, the process model (1) can be augmented
(see, e.g., [Åström and Wittenmark, 1997]) as

x̃(k + 1) = Φ̃ x̃(k) + Γ̃u(k)

y(k) = C̃y x̃(k)

z(k) = C̃zx̃(k) + Dzu(k)

(6)

where

x̃(k) =


 x(k) u(k − 1)




T

Φ̃ =









Φ Γ1(τ )

0 0








, Γ̃ =









Γ0(τ )

1









C̃y =


 Cy 0


 , C̃z =


 Cz 0




Γ0(τ ) =

∫ h−τ

0
eAsds B, Γ1(τ ) = eA(h−τ )

∫ τ

0
eAsds B

and A and B are the corresponding continuous time system matrices of the plant.
The matrices H , G , C , Ω, and ω in (4) all depend on the system matrices and
thus on the delay, τ . Ideally, these matrices should be updated from sample to
sample based on the current computational delay.

However, using the representation (6) it is possible to evaluate the cost function
(2) assuming a constant computational delay, τ , over the prediction horizon. The
assumption that the delay is constant over the prediction horizon is in line with
the assumptions commonly made in the standard MPC formulation, e.g., that
the current reference values will be constant over the prediction horizon. Thus,
for each iterate, ∆U i, produced by the optimization algorithm, we compute

Jd(∆U i,τ ) = ∆U T
i H (τ )∆U i − ∆U T

i G (τ ) +C (τ ) (7)
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Figure 2 The solid curve shows the delaydependent cost index Jd, and the dashed
curve shows the original cost function used in the QPalgorithm.

This cost index penalizes not only deviations from the desired reference trajec
tory, but also performance degradation due to the current computational delay,
τ . There are two major factors that affect the evolution of Jd. On one hand, an
increasing τ , corresponding to an increased computational delay, may degrade
control performance and cause Jd to increase. On the other hand, Jd will de
crease for successive ∆U i:s since the quality of the control signal has improved
from the last iteration. Figure 2 shows the evolution of Jd during an optimiza
tion run. In the beginning of the optimization, Jd is decreasing rapidly, but then
increases due to computational delay. In this particular example, the delayed
control trajectory seems to achieve a lower cost than the original. This situa
tion may occur since the cost functions are evaluated for nonoptimal control
sequences, except for the last iteration. Notice, however, that for the optimal
solution, Jd is higher than the original cost. The proposed termination strategy
is then to compare the value of Jd(∆U i,τ i) with the cost index computed after
the previous iteration, i.e., Jd(∆U i−1,τ i−1), where τ i denotes the current compu
tational delay after the ith iteration. If the cost index has decreased since the
last iteration, we conclude that we gained more by optimization than we lost by
the additional delay. On the other hand, if the cost index has increased, the opti
mization may be aborted. However, the requirement stemming from the stability
proof, i.e., V (k + 1) ≤ V (k) must also be fulfilled if the optimization algorithm
is to be terminated prematurely. Notice that the matrices needed to evaluate Jd

should be calculated offline.

The MPC formulation assumes a process model without delay. Another possible
approach would be to include a fixedsample delay in the process description.
However, since the computational delay is highly varying, compensating for the
maximum delay may become very pessimistic and lead to decreased obtainable
performance. We will also assume that the control signal is actuated as soon as
the optimization algorithm terminates, not to induce any unnecessary delay.
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4. Dynamic Realtime Scheduling of MPCs

The cost index and termination criterion described above, will now be applied in
a dynamic realtime scheduling context. Controller tasks are often implemented
as tasks on a microprocessor using a realtime kernel or a realtime operating
system (RTOS). The realtime kernel or OS uses multiprogramming to multiplex
the execution of the tasks on the CPU. To guarantee that the time requirements
and time constraints of the individual tasks are all met, it is necessary to sched
ule the usage of the CPU time.

During the last two decades, scheduling of CPU time has been a very active
research area and a number of different scheduling models and methods have
been developed [Buttazzo, 1997; Liu, 2000]. The most common, and simplest,
model assumes that the tasks are periodic, or can be transformed to periodic
tasks, with a fixed period, Ti, a known worstcase execution time, Ci, and a hard

deadline, Di. The latter implies that it is imperative that the tasks always meet
their deadlines, i.e., that the actual execution time in each sample is always less
or equal to the deadline.

MPC tasks, however, do not fit this traditional task model very well, mainly be
cause their highly varying execution times. On the other hand, MPC offers two
features that distinguish it from ordinary control algorithms from a realtime
scheduling perspective. First, as we have seen in the previous section, it is pos
sible to abort the computation and thereby reduce the execution time. Second,
the cost index contains relevant information about the state of the controlled
process. Thus, the cost index can be viewed as a realworld qualityofservice
measure for the controller, and be used as a dynamic task priority by the sched
uler. This also enables a tight and natural connection between the control and
the realtime scheduling.

The MPC algorithm can be divided into two parts. The first part consists of find
ing a starting point fulfilling the constraints in the MPC formulation (constraints
on the controlled and control variables and the terminal equality constraint) and
to iterate the QP optimization algorithm until the stability condition of Theorem
1 is fulfilled. The second part consists of the additional QP iterations that further
reduce the value of the cost function. The second part of the algorithm may be
aborted without jeopardizing stability, as discussed above.

Based on this insight, the MPC algorithm can be cast into the framework of
scheduling of imprecise computations [Liu et al., 1991; Liu et al., 1994]. Using
their terminology, the first part of the MPC algorithm is called the mandatory
subtask, and the second part is called the optional subtask. The mandatory sub
tasks will be given the highest priority, whereas the optional subtasks will be
scheduled based on the values of the MPC cost indices. Listing 1 contains pseudo
code of a dynamic scheduling scheme of the optional subtasks. The strategy also
exploits the tradeoff between optimization and computational delay.

It should be noted that comparing cost indices directly may not be appropri
ate when the controllers have different sampling intervals, prediction horizons,
weighting matrices, etc. In those cases, it would be necessary to scale the cost
indices to obtain a fair comparison. The scheduling could also use feedback from
the derivatives of the cost functions, as well as the relative deadlines of the
different controllers.
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Listing 1 Dynamic realtime scheduling strategy for MPC tasks.

determine MPC sub-task i with highest J_d;

schedule sub-task i for one iteration;

now = currentTime;

delay_i = now - start_i;

if (optimum_reached_i) {

actuate plant_i;

oldcost_i = J_d(u_i, delay_i);

} else {

costIndex = J_d(u_i,delay_i);

costIndexInc == (costIndex > oldCostIndex);

stabilityReq == (costIndex < oldcost_i);

if (costIndexInc && stabilityReq) {

abort optimization;

actuate plant_i;

oldcost_i = J_d(u_i, delay_i);

}

oldCostIndex = costIndex;

}

5. Case Study

The proposed termination criterion and dynamic realtime scheduling strat
egy have been evaluated in simulation using a second order system, a double
integrator:

ẋ =









0 1

0 0








x +









0

1








u

y =


 1 0


 x

(8)

The plant was discretized using the sampling interval h = 0.1 s. In the simu
lations, z = x1 was set to be the controlled state and the constraints huh ≤ 0.3
and hx2h ≤ 0.1 were enforced. The MPC controller was implemented as described
in Section 2, with prediction horizons Hp = 50 and Hu = 20 and weighting
matrices Q = 1 and R = 0.1.

5.1 Simulation Environment and Implementation

Realtime MPC control of the doubleintegrator process was simulated using the
TrueTime toolbox [Henriksson et al., 2002b]. Using TrueTime it is possible to
perform detailed cosimulation of the MPC control task executing in a realtime
kernel and the continuous dynamics of the controlled process. Using the toolbox
it is easy to simulate different implementation and scheduling strategies and
evaluate them from a control performance perspective.

In the standard implementation, the MPC task is released periodically and new
instances may not start to execute until the previous instance has completed.
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Figure 3 Control performance when the optimization algorithm is allowed to finish in
every sample. The bad performance is a result of considerable delay and jitter induced
by the large variations in execution time. During the transients the long execution times
cause the control task to miss its next invocation, inducing sampling jitter. The dashed
lines in the velocity and control signal plots show the constraints used in the MPC for
mulation.

This implementation will allow for task overruns without aborting the ongoing
computations. The control signal is actuated as soon as the task has completed.

In the dynamic scheduling scheme, the MPC task is divided into a mandatory
and an optional part as described in Section 4. The mandatory part is scheduled
with a distinct high priority, whereas the priority of the optional part is changed
dynamically depending on the current value of the cost index in comparison to
the other running MPC tasks.

5.2 Simulation of One MPC Controller

The first simulations consider the case of a single MPC task implemented ac
cording to the standard task model described in the previous section. Figure 3
shows the result of a simulation where the optimization is allowed to finish in
each sample. Delay and jitter induced by the large variations in execution time
compromise the optimal control performance. The constraints are shown by the
dashed lines in the velocity and control signal plots. As seen in the plots the
constraints are violated at some points. This is due to the computational delay,
which is not accounted for in the MPC formulation.

Figure 4 shows a simulation where the termination criterion from Section 3
is exploited. The cost index (7) is evaluated after each iteration, and if it has
increased since the last iteration, the optimization is aborted and the current
control signal is actuated. As can be seen from the simulations, the control per
formance has increased significantly.

Figure 5 shows a comparison of the number of iterations needed for full opti
mization (top) and the number of iterations after which the optimization was
aborted due to an increasing value of Jd (bottom). The execution time of each
iteration in the simulation was 10 ms. Average values for computation times
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Figure 4 Control performance obtained using the proposed suboptimal approach where
the QPoptimization may be aborted according to the termination criterion described in
Section 3. The performance is increased substantially compared to Figure 3.
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Figure 5 Number of iterations for the QPsolver. The top plot shows the number of
iterations to find the optimum. The bottom plot shows the number of iterations after
which the optimization is terminated and the suboptimal control is actuated.

and the number of iterations in the QP optimization algorithm in each sample is
summarized in Table 1. The number of necessary iterations denotes the number
of QPiterations needed to fulfill the stability condition. It can be seen that the
total execution time of the MPC task is reduced by 35 percent by using the pro
posed termination criterion. The execution time for the mandatory part of the
algorithm is roughly constant for both approaches. In the full optimization case,
the execution time will exceed the 100 ms sampling period during the transients,
causing the control task to miss deadlines and experience sampling jitter.
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Table 1 Average timing values per sample for a simulation.

Optimization Full Suboptimal

Total time [s] 0.1055 0.0692
Mandatory time [s] 0.0302 0.0297
Number of iterations 8.87 5.66
Number of necessary iterations 1.70 1.89

Table 2 Performance loss comparison in the single MPC case.

Strategy Loss

Ideal case 1.0

Full optimization 1.35
Suboptimal 1.09

To quantify the simulation results, the performance loss

J =

∫ Tsim

0

(

iz(t) − r(t)i2
Q + i∆u(t)i2

R

)

dt (9)

was recorded in both cases. The weighting matrices, Q and R, were the same as
used in the MPC formulation. The performance loss was scaled with the loss for
an ideal simulation. The ideal case was obtained by simulating full optimization
and zero execution time in each sample. The results are given in Table 2.

5.3 Dynamic Scheduling of Two MPC Tasks

In the following simulations the dynamic scheduling strategy proposed in Sec
tion 4 will be compared to ordinary fixedpriority scheduling. Two MPC con
trollers are implemented and executed by two different tasks running concur
rently on the same CPU controlling two different doubleintegrator processes.
Both MPC controllers are designed with the same prediction and control hori
zons, sampling periods, and weighting matrices in the MPC formulation.

Both controllers were given squarewave reference trajectories, but with different
amplitudes and periods. The reference trajectory for MPC1 had an amplitude
of 0.3 and a period of 10 s. The corresponding values for MPC2 were 0.4 and
12 s. The different reference trajectories will cause the relative computational
demands of the MPC tasks to vary over time. Therefore, it is not obvious which
controller task to give the highest priority. Rather, this should be decided online
based on the current state of the controlled process.

The simulation results are shown in Figures 68. The first two simulations show
the fixedpriority cases. MPC1 is given the highest priority in the first simula
tion, and MPC2 is given the highest priority in the second simulation. It is seen
that we get different control performance, depending on how we choose the pri
orities. By giving MPC2 the highest priority, the performance in this particular
simulation scenario is considerably better than if the priorities are reversed.

The performance using dynamic scheduling based on the cost index (7) is shown
in Figure 8, and the performance is improved significantly. Figure 9 shows a
closeup of the computer schedule during one sample. After both tasks have
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Figure 6 Control performance using fixedpriority scheduling where MPC1 (solid) is
given the highest priority. MPC2 (dashed) is constantly preempted by the higher priority
task, consequently degrading its performance.
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Figure 7 Control performance using fixedpriority scheduling where MPC2 (dashed) is
given the highest priority. Comparing with Figure 6 it can be seen that the performance
is worse using this priority assignment.
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Figure 8 Control performance using the dynamic scheduling approach. Scheduling
based on cost functions makes sure that the most urgent task gets access to the pro
cessor, thus increasing the overall performance.
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Figure 9 Computer schedule in a sample using the dynamic scheduling approach (high
= running, medium = preempted, low = idle). The figure shows the completion of the
mandatory part, as well as the value of the cost index after each QPiteration.

completed the mandatory parts of their algorithms, the execution trace (the
dynamic priority assignments) is determined based on the values of the cost
functions of the individual tasks. These values after each iteration are shown in
the figure. The termination criterion aborts both tasks at time 0.08.

The scaled performance loss (9) for the individual control loops were added up
to obtain a total loss for each scheduling strategy. The results are summarized
in Table 3. It can be seen that the improvement using dynamic scheduling is
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Table 3 Performance loss for the different scheduling strategies.

Strategy Loss

Ideal case 2.0
Fixed priority / MPC1 highest priority 2.47
Fixed priority / MPC2 highest priority 2.79
Dynamic costbased scheduling 2.43

less significant in the case where MPC1 is given the highest priority. This is,
however, due to the reference trajectories applied in this particular simulation.
Also, in the fixedpriority case, the constraint on the state x2 is significantly
violated, which is not accounted for in the calculation of the cost index.

Using the proposed dynamic scheduling strategy we arbitrate the computing
resources according to the current situation for the controlled processes, and the
varying computational demands caused by reference changes and other external
signals are taken into account at runtime. It should be noted that the control
performance obtained using the dynamic costbased scheduling would have been
the same if the reference trajectories for the two controllers had been switched.
As seen this is not the case using ordinary fixedpriority scheduling.

6. Conclusions

In this report we have shown how a novel termination criterion can be employed
to improve the performance of suboptimal, stabilizing MPC. A delaydependent
cost index has been presented that quantifies the tradeoff between improved
control signal quality resulting from successive iterations in the optimization
algorithm and potential control performance degradation due to computational
delay. The criterion provides guidance for when to terminate the optimization
algorithm, while preserving the stability properties of the MPC algorithm.

It has also been shown how the cost index can be used in the context of dynamic
realtime scheduling. The cost index has been used to provide the scheduling
algorithm with information to be used for deciding which of two MPC controllers
that should be allocated execution time. Using the index for scheduling, it has
been shown how the overall control performance may be significantly improved
compared to traditional fixedpriority scheduling.
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