LUND UNIVERSITY

LQG-I/O - A CTRL-C Library for LQG Design

Nilsson, Bernt

1986

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, B. (1986). LQG-I/O - A CTRL-C Library for LQG Design. (Technical Reports TFRT-7329). Department
of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/200bef7d-c293-43f9-9fcd-ca6d6bd70a21

CODEN: LUTFD2/(TFRT-7329)/1-26/(1986)

LQG-1/0
A CTRL-C library for LQG design

Bernt Nilsson

Department of Automatic Control
Lund Institute of Technology
August 1986

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Report

Date of issue

August 1986

Document Number

CODEN: LUTFD2/(TFRT-7329),/1-26/(1986)

Author(s)
Bernt Nilsson

Supervisor

Karl Johan Astrém

Sponsoring orgauisation
STU Contract No 85-4809

Title and subtitle

LQG-1/O , a CTRL-C library for LQG design.

Abstract

This is a documentation of a CTRL-C library, LQG-1/O. It handles Linear Quadratic Gaussian
Control design based on Input/Output approach.

A simple HELP-facility for CTRL-C libraries is also developed.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

Language
English

Number of pages
25

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Telex: 83248 lubbis hmd.

1. Introduction

This report is a documentation of a Ctrl-C library, LQGI/O . This stands for
Linear Quadratic Gaussian (LQG) control design based on Input/Output approach
(I/0). The library is based on the polynomial design in Chapter 12 in Astrém and
Wittenmark, Computer Controlled Systems.

In Ctrl-C there are already good facilities for LQG-synthesis based on the state
space approach. LQGI/O is an alternative which has some good and new
possibilities.

In this report a HELP-facility for CTRL-C-libraries is also developed.

2. LQGIO-library

The LQGIO-library contains macros for Optimal Control Design based on the
Input/Output approach. A theoretical reference is chapter 12 in Astrém and
Wittenmark, Computer Controlled Systems. The main subjects for the library are
Optimal Prediction, Minimum-Variance Control and Linear Quadratic Gaussian
Control based on Input/Output approach. But to support this a number of other
macros are also required.

Library Contents:

CLVAR - Calculate variances in a closed loop system.
COVAR - Calculate the Covariance Function of a ARMA-process.
CPL1 - Plots the COVAR.
MINVAR - Calculate a Minimum-Variance Controller.
OPTPRED - Calculate a Optimal d-step Predictor.
DIOPHANT - Solve the Diophantine equation.
PRED - Solve the predictor problem.
FACTOR - Factorization of a polynomial.
LQGA - Calculate a LQG-controller (I/O-approach)
LQGCF - Same as LQGA, but can handle Common Factors.
COMFAC - Find the Greatest Common Divisor.
LQGSPEC - Calculate the P-polynomial in the LQG-problem.
PZPLOT - Plots poles and zeros for a discrete time system
CLPZ - Plots poles and zeros for a closed loop system

This library takes about 44 procent of the function buffer in CTRL-C. The
HELP-facility, described in chapter 3, takes 16 procent and the macros only 28
procent of the buffer.

When building libraries like this, one should think about the size of the library.
Its important not to build to big libraries, which makes it hard to have more then
one library activated, in the function buffer, on the same time.

Small libraries gives you the opportunity to create and use your one favorite
environment of macros.

A conclusion from the discussion above is that the library described in this
paper in to big. One way to make this library smaller would be to make the
HELP-macro as a separate function. An other is to divide the hole library in
sublibraries.

Macro Description

Below each macro is described. What its doing and how it is done. Also which
submacros it needs and a reference to the algorithm it uses. The macro codes
you will find in Appendix 1. All polynomials are in the forward shift operator, q.

[] = CLPZ(ab.cr.sit)
Plots poles and zeros for a discrete time closed loop system in a
singular diagram with the unit circle. Poles are represented by
diagonal cross, zeros by octagons and noise zeros by squares. a,b and
c are the process polynomials and r,s and t are the controller.
This macro uses PZPLOT.

[yvar,uvar] = CLVAR(ab,c,var,rs)
This macro computes the output variance, yvar, and control signal
variance, uvar, of a closed loop system with the process polynomials,
a,b and c, and the controller polynomials, r and s. The argument, var,
is the noise variance.
It uses the COVAR-macro.

[a1,b1,a2m,a2p] = COMFAC(a,b)
Finds the greatest common divisor, a2, of a and b. a2m is the factor of
a2 witch has its zeros on or outside the unit disc and a2p has its
inside. al and bl are the polynomials left after cancellation of a2 in a
and b.

[ry.rye] = COVAR(a,ckmax);
Uses the Yule-Walker equation for computing the covariance function,
ry, and the cross covariance function, rye, for an ARMA-process, a
and c. kmax is the time axes.
Developed by Mats Lilja.
Reference : Olbjer , TIDSSERIEANALYS , appendix

[] = CPL1(r);
A macro for plotting the covariance function, r, from the
COVAR-macro.

[x,y] = DIOPHANT(a,bc);
Solves the Diophantine equation, A X + B Y = C, where ABCX and Y
are polynomials.
Developed by Mats Lilja.

[es,amp,cplus cmin,cms] = FACTOR(c)

Factorization of polynomial ¢ to the factorized one, cs. The
C-polynomial will be divided into two parts. One with its zeros inside
the unit disc, cplus, and one with zeros on and outside, cmin. The
cmin-polynomial will then be factorized into the unit disc, cms. The
noice variance will be amplified with the magnitude amp. The macro
uses ROOT to find the roots in C. The roots are then sorted and
factorized.

Reference : CCS Theorem 6.3 (p. 142-3)

[r.s,amp] = LQGA(a,b,c,rho)

Calculate a Gaussian Linear Quadratic Controller by an Input/Output
approach. You have to enter the process polynomials, a,b and ¢, and
the design parameter, rho. Output from the macro you get the
controller polynomials, r and s. Amp is the amplified noise. This macro
can't handle common factors in a and b (see LQGCF).

This macro uses following submacros: FACTOR, LQGSPEC and DIOPHANT.
Reference: CCS Lemma 12.2 & Teorem 12.4 (p.301-2)

[r.s,amp] = LQGCF(a,b,c,rho)
An algorithm for LQG-syntesis of a ARMAX-process with common
factors in the process polynomials, a and b. This is a special case
which LQGA can’t handle.
This macro uses: FACTOR, COMFAC, LQGSPEC and DIOPHANT
Reference: CCS Theorem 12.5 (p. 306)

[p.ps.r] = LQGSPEC(a,b,rho)
Solves the spectral factorization in the LQG-problem,
r PPx=rau A Ax + z-d B Bx .
The macro uses ROOT to find the roots in PPx. The roots are then
sorted and factorized in a proper way. Reference : CCS Lemma 12.1
(p. 299)

[r.;s,amp] = MINVAR(a,b,c)
The MINVAR-macro calculate the minimum-variance controller, r and
s. a,b and c is the process polynomials and amp is the amplified noise.

It solves the prediction problem by using the Diophantine equation. If
the C-polynomial has zeros outside or on the unit disc it will spectral
factorized. Also the B-polynomial will be factorized in 'good' and 'bad’
parts , so that the controller will be stable.

It uses the FACTOR- and PRED-macro.

Reference : CCS Theorem 12.2 and 12.3 (p. 293-6)

[r.s.pvar] = OPTPRED(a,c,d,var)
To calculate the optimal d-step predictor OPTPRED solves the
Diophantine equation. To get a stable predictor the C-polynomial must
have its zeros inside the unit disc (Factorization). The arguments are
the process polynomials, a and ¢, the prediction horizon, d, and the
noise variance, var. The OPTPRED will answer with predictor
polynomials, r and s, and the predictor variance, pvar.
OPTPRED uses the FACTOR- and the PRED-macros.
Reference : CCS Theorem 12.1 (p. 288 and 290-1 (unstable C))

[f.g] = PRED(ab,c.d)
This macro solves the d-step predictor problem by solving the
Diophantine equation, A F + B G = C q-~(d-1).
This macro uses ML:s DIOPHANT-macro.
Reference : CCS Theorem 12.1 (p. 288)

{] = PZPLOT(ab,c)
Plots poles and zeros for a discrete time system in a singular diagram
with the unit circle. a,b and ¢ are the process polynomials. Poles are
represented by diagonal cross, zeros by octagones and noise zeros by
squares.

3. HELP-facility for CTRL-C libraries

A big disadvantage with the use of libraries in CTRL-C has been the lack of help
facilities. If you use a library from an other user you don't have any help
facility at all (exept if you have printed documentation).

In MATHLAB-PC you have a very good help facility. If you type HELP
<func.name>, you get the comments in the function head.

This was the idea for making this help facility for libraries. The result become
much more general, but instead it takes a lot of function buffer.

The HELP-macro is an ordinary CTRL-C function (you find the code for the
macro in Appendix II). The macro is called HLPLQG and has one argument, witch
is a string of at least four letters. If the string has more then four letters it will
be truncated.

A string of letters in CTRL-C will be translated to numbers in a vector. This
vector can be compeared with a known vector (word) and if the two match a
comment is written on the screen using the echo facility in Ctrl-C.

An _example:

This macro below is an example of the HELP-facility idea.

//[] = HLP(string)
// An example of the HELP-facility for CTRL-C libraries

string = string(1,1:4);
word = 'NEWS';

if max(abs(string-word))=0 , echo=2 ;

ﬁ NO NEWS IS GOOD NEHS !
/1

echo=0;

And if we run it we get following:
[> hlp('news')

[> // NO NEWS IS GOOD NEWS !
[> //

[> echo=0;

Observe that the dubble slash is important, because it indicates that this line is a
comment.

You can now get some help for each macro in the HLPLQG-macro.

You can also get an overview of what the library contents by the argument
'SHOW'. This will type the list of macros like the one from page 1.

There is an other reserved word, 'NEWS'. The string 'NEWS' stands for a
opportunety to communicate with other users and declaire news and changes in
the library.

This is an example of using HLPLQG-macro :

hlplqg('minvar')
[r,s,amp]=MINVAR(a,b,c)

[>

il

// This macro calculates the minimum variance controller
!/ G s

/1 u(k) = - ——--—- y(k) = - - y(k)
//
/]
//
//
/]

Bplus F r

,b,c — Process polynomials
S - Controller polynomials
mp - amplified noise due to non-monic C and Spec.Fac.

a
r

)

/1
/| Reference: CCS Theorem 12.2 & 12.3 (p. 293-6)

/] To do this it uses the SPEC-macro and the PRED-macro.
echo=0;

4. Exemples

In this last chapter some very simple exemples from the course in Computer
Controlled Systems are solved by the macros in the LQGIO-library.

Exemple 12.3
A stochastic process is described by
y(k) - 0.9y(k-1) = e(k) + 5e(k-1)

a) Determine an eqvivalent description such that the zero of a corresponding
polynomial C is inside the unit circle.

[> a=[1 -.9];
[> c=[1 5);

hlplqgg('factor"')
[cs.,amp,cplus,cemin,cms]=FACTOR(c)

[>

/1

/1

/| Factorization of polynom C(z).

/] ¢ = cplusscmin

/] cms = spec.fac(cmin)

!/ cs = cplusxcms amp = amplifid noice from spec.fac.
/1
/1
e

Reference : CCS Theorem 6.3 (p. 142-3)

1.0000 0.2000
[> css=ampxcs
CSS =

5. 1.
[> ry=covar(a,c,20)

[> rycss=covar(a,css,20)

[> cpli(ry)

[> cpli(ryess)
200. 200.
180. |- 180. 1

o o
160. | 160. }
-] [+]
140. o 140. °
120. | ° 1 120. | &
-] o
*

100. ° - 100. +

(-]
80. - = 80. |

o
o -1
60. ° 1 60. |
o
° o
40. | ° 1 40. ? o
o o °
20. = - 5
5. 10. .

15.

20.

0.

5.

We see that the two different ARMA-processes has the same covariance functions.

b) Determine the two-step-ahead predictor for the process and the variance of
the predictor error.

[>

hlplqg('optpred’)

//[r.s,pvar]=OPTPRED(a,c,d,var)

- qG s
y(k+d|k) = —— y(k) = - y(k)
Cx r

PVAR is the prediction variance.

D T ™ T e e e e e L L
S~

/
/
/
/
/
/
/
/
/

Reference :

This macro uses the PRED-macro and the SPEC-macro.

ho=0;

CCS Theorem 12.1 (p. 288)

[>
[>
PVAR

55

{1

d=2;

[r.s,pvar]=optpred(a,c.d,1)

.2500

L300

GLe00

/ Calculate the optimal d-step predictor.

] C+ has its zeros inside the unit disk.

R =

1.0000 0.2000

Exemple 12.11
Given the process

y(k) - 1.5y(k-1) + 0.7y(k-2) = u(k-2) - 0.5u(k-3) + e(k) - 0.2e(k-1)
a) Assume no disturbance and compute the deadbeat controller for the system.
Mats Lilja has developed a very nice CTRL-C macro for polynomial synthesis
based on the algorithm described in CCS, Algorithm 10.1 (p. 231). The macro is
called DRST2 (OBS! it is not included in LQGIO-library).

[> bminus = 1;

[am =[1 00 0];

[> bm1 = [1 O];

[> ao = [1 O];

[> ar = 1;

[> [r.s.t]=drst2(a,bbminus,ambmi,ao.ar)

1.5500 -1.0500 0.0000
R =
1.0000 1.0000 -0.7500
b) Assume now that we have disturbances. Compute the minimum-variance
control law.
[> [rmv,smv]=minvar(ab.c)
SMV =
1.2500 -0.9100 0.0000
RMV =

1.0000 0.8000 -0.6500

c) What is the steady-state variance of y (and u) when the deadbeat and the
minimum-variance controllers are used. Assume Var(e)=1.

[> [yvps.uvps]=regvar(ab.c,1r;s)
UVPS =
2.7538
YVPS =
2.7800
[> [yvmv,uvmv]=regvar(ab,c,1 rmv,smv)
UVMV =
1.6708
YVMV =
2.6900

The difference in variances of y is not very large but the control signal variance
is reduced by 40 procent.

d) Use the LQG-macros to calculate LQG-controllers with some different
weightings on the control signal.

[> [rl1sl1]=1qga(a,b,c,0)
SL1 =

1.2500 -0.9100 0.0000
RL1 =

1.0000 0.8000 -0.6500

When rho is set to zero we get the minimum-variance control law obtained
in b).

[> [r12:s12]=1qga(a,b,c,0.5)
SL2 =

0.8596 -0.6575 0.0000 0.0000
RL2 =

1.0000 0.4928 -0.4696 0.0000
[> [yvi2,uvl2]=clvar(ab,c,1,rl2;s12)

UVL2 =

10

0.7770
YVLZ =
2.8487
This controller decreases the control signal variance but increases the output

variance compeared with the deadbeat and the minimum-variance controllers.

LQGCF is a macro which solves the LQG-problem with common factors in A and
B. This algorithm is taken from CCS theorem 12.5. If we use it on a problem with
no common factors, we don't get any direct term in the controller. In such cases
one should NOT use this algorithm.
[> [rr.ss]=lqgcf(a,b,c,0.3)
SS =
0.7204 -0.6757 0.0000
RR =
1.0000 0.5762 0.4456 -0.4826
If we have a problem with for instance drifting disturbance, then we get a
unstable A-polynomial and a common factor in A and B. In this exemple we have
the same process as before but A and B has a common factor and its zero is on
the unit circle at 1.
[> aa=[1 -2.5 2.2 -0.7 0];
[> bb=[1 -1.5 0.5];
[> root(aa)
ANS =
0.7500 + 0.3708i
1.0000 - 0.0000i
0.7500 - 0.3708i
0.0000 + 0.0000i
[> [rcfscf]=lqgcf(aa,bb,c,0.3)
SCF =
3.0784 -3.8973 1.4792 0.0000
RCF =
1.0000 0.5762 -2.6328 1.0566

[> root(rcf)

ANS =

11

-2.0834 - 0.0000i
1.0000 - 0.0000i
0.5072 + 0.0000i

This controller has a direct term and the R-polynomial contains the common
factor which has its zeros outside or on the unit circle.

[> pzplot(aa,bb,c)
[> t=c;

[> clpz(aabb,c,refscf.t)

Poles and Zeros

Imag

2.5000

1.6667 |- "

0.8333}F

0.0000 o

Imag

-0.8333} _

-1.6667 -

2.5000 b ——— :
F.5000 -1.6667 -0.8333 0.0000 0.8333 1.6667 2.5000
Real

Appendix I: LQGIO macros
//[]=CLPZ(a,b,c,rs,t)
/1

// Plots the poles and zeros for a
/| discrete time closed loop system
1l

// ab,c - process polynomials

// r.s.t - controller polynomials

//

/| pole - diagonal cross

/] zero - octagon

// noise zero - square

//

// This macro uses the PZPLOT-macro

//

// Author : Bernt Nilsson

ar = conv(ar);

bs = conv(b,s);
nar = size(ar);

nbs = size(bs);

d = nar(2)-nbs(2);
for i=1:d , bs=[0 bs];
arbs= ar + bs;

cr = conv(cr);

tc = conv(tb);
kmax= nar(2)+1;
pzplot(arbs tb,cr)

Appendix [: 1

//[yvar,uvar]=CLVAR(ab,c,varr;s)
/]

/| Computes the variance for a closed loop system
-CS

I CR
/1l y=s-——m- e ; u=m ———
// AR + BS AR + BS

/l

// yvar = output variance
// uvar = control signal variance

// This macro uses ML:s COVARiance macro

/] and COMFAC.
/1

!/ Author : Bernt Nilsson

ar = conv(ar);

bs = conv(b,s);

nar = size(ar);

nbs = size(bs);

d = nar(2)-nbs(2);

for i=1:d , bs=[0 bs];

arbs= ar + bs;

cr = conv(cr);

cs =-conv(cs);

kmax= nar(2)+1;
[arb1,cr1]=COMFAC(arbs cr);
ry = COVAR(arbicrikmax);

yvar= ry(1,2)svar;
[arb2,cs2]=COMFAC(arbs cs);
ru = COVAR(arb2s,cs2kmax);
uvar= ru(1,2)svar;

//[a1,b1,a2m,a2p]=COMFAC(a,b)
/
/] Finds the greatest common divisor, A2, of A and B.

/| A2m is the factor of A2 which has its zeros on or
/| outside the unit disc and A2p has its inside.

/1

/] Author : Bernt Nilsson
ra = root(a);
rb = root(b);

nra = size(ra);
nrb = size(rb);

epi = le-14;
k = 1;
a2(1) = 1;

for j=1:nrb(1) , ...
for i=1:nra(1}) , ...
if epi>abs(rb(j)-ra(i)) , ra2(k)=rafi) ; k=k+1;
for i=1:k-1 , acf=conv(a2,[1 -ra2(i)});...
[a1,remain]=deconv(a,acf);...
if remain<epi , a2=acf;
al = deconv(a,a2);
bt = deconv(b,a2);
na2= size(a2);
if na2(2)>1 , ra2 = root(a2);
az2p = 1;
for i=1:na2(2)-1 , if abs(ra2(i))<1-epi , a2p=conv(a2p,[1 -ra2(i)]);
a2m = deconv(a2,a2p);

//Iry.rye]=COVAR(a,c kmax);

/| Uses Yule-Walker for computing the covariance

// and the cross covariance functions for an

/| ARMA-process.

/1

/| ry = covariance function (coll = time , col2 = covar.)

/| rye = cross covar. funct. (coll = time , col2 = cross covar.)

/| Reference: Olbjer , TIDSERIEANALYS : Appendix

/l

// Author : Mats Lilja

a=[a0];
c=[cO];
dima = size(a);
na = dima(2);
dimc = size(c);
nc = dimc(2);
dac = na - nc;

Appendix I : 2

Appendix [: 3
if dac>0, ¢ = [c 0%(1:dac)]; nc = na;
da =na - 1;
dc = nc - 1;
nn = nc;
ee = eye(nn);
for j=1:nn, eee(j,:) = ee(nn-j+1,);
for j=1:na, aa(1,j) = a(na-j+1);
for j=1:nn, ma(j,:) = conv(aa.ee(j,:));
for j=1:nn, mc(j,:) = conv(c.eee(j,));
mail = ma(:,na:nn+da);
mci = mc(:,nc:nn+dc);
ma2 = mal;
for j=1:da, ma2(:,j+1) = ma2(:,j+1) + ma(:,na-j);
rye = mal\c’;
ry = maz\(mcisrye);
al = afa(1);
al = ail(2:na);
k1 = kmax + 1;
for j=(nn+1):k1, ry(j) = -alsry(j-1:-1:j-da);
for j=(nn+1):k1, rye(j) = -alsrye(j-1:-1:j-da);
coll = (O:kmax)';
col2 = ry(1:k1);
co!3 = rye(1:k1);
ry = [coll col2];
rye = [coll col3];

/1] = cpli(r);
/l

// A macro for plotting the COVAR-macro.
//
// Author : Mats Lilja

plot('scale’);

erase;

plot(r(:,1).,r(:,2),'point=9");

//[x.y]=Diophant{a,b,c);
/| Solves the Diophantine equation
/] AX+BY=cC

/| where AB,CX and Y are polynomials.

// A unique solution is guaranteed by choosing deg(Y) = deg(A)-1
/] and deg(X) = deg(C) - deg(A).

//

// Note that na,nb,nc etc. below are coefficient vector dimensions
// and NOT polynomial degrees.
// Author: Mats Lilja

dima=size(a);
na=dima(2);
dimb=size(b);
nb=dimb(2);
dimc=size(c);
nc=dimc(2);

nx=nc-na+1;

ny=na-1;

ex=eye(nx);

ey=eye(ny);

for j=1:nx, mx(j,:)=conv(a,ex(j,:));
for j=1:ny, my(j,:)=conv(b,ey(j.));

m = [mx ; [Oxeye(nynx-nb+1) my]];
Xy = c/m;

x = xy(1:nx);

y = xy(nx+1:nc);

//[cs amp cplus cmin,cms]=FACTOR(c)

/| Factorization of polynom C(z).
/| ¢ = cplusxcmin
/| cms = spec.fac(cmin)

/| cs =cplusxcms ; amp = amplifid noice from spec.fac.

/l

/[Reference : CCS Theorem 6.3 (p. 142-3)
// Author : Bernt Nilsson

/[Factorization of C = C+xC-

dimc = size(c);

nc = dimc(2);

cmin = 1;

r = roots(c);

for i=1:nc-1 , if abs(r(i))>=1 , cmin=conv(cmin,[1 -r(i)]);

/ [Factorization of C- into the unit circle

ncmin= size(cmin);

amp = cmin{ncmin(2));

cplus= deconv(c,cmin);

for j=0:ncmin(2)-1 , csp(j+1)=cmin(ncmin(2)-j)/amp;
cms = csp'; i
cs = conv(cms,cplus);

Appendix 1 : 4

//[r.s,amp]=LQGA(a,b,crau)
/]

// Calculate a Gaussian Linear Quadratic Controller

// by an input/output approach.

// ab,c - the process polynomials

// rau - design parameter

// rs - controller polynomials

// amp - amplifid noice due to non-monic C and Spec.Fac.

/
/| Reference: CCS Lemma 12.2 & Teorem 12.4 (p.301-2)

// This macro uses following Ctrl-C macros:
// EACTOR, LQGSPEC and DIOPHANT.

/l

// Author : Bernt Nilsson

/ [Factorization of C

amp = c(1,1);
cf = c/amp;
if max(abs(roots(c)))>=1 , [cf,amps]=FACTOR(c); amp=ampsamps;

//Spectral factorization of P
[p.ps.rr] = LQGSPEC(a,b,rau);

/ [Reciprocal polynomials

epi = le-14;

na = size(a);

for i=1:na(2) , as(1,i)=a(na(2)-i+1);

while abs(as(1,1))<epi , as=as(1,2:na(2)) ; na(2)=na(2)-1;
nc = size(cf);

for i=1:nc(2) , cs(1,i)=cf(nc(2)-i+1);

//Solution of the Diophantine equation
rp = rrp;

t.es = conv(b,cs);

[x,ss]= DIOPHANT(as,rp,bes);

//Poiynomial division

vl == conv(ps x);

if rau<>0 , vl = vl + conv(rausass);
rs = deconv(vl,b);

//Controller polyomials

nrs = size(rs);

nss = size(ss);

d = nrs(2)-nss(2);

for i=1:nrs(2) , r(1,)=rs(nrs(2)-i+1);
for i=1:nss(2) , s(1,i)=ss(nss(2)-i+1);
z(1,1)=1;

for i=2:abs(d)+1 , z(1,i)=0;

if d>0 , s=conv(z,;s);

if d<0 , r=conv(zr);

/;[r.S.awp]=LQGCF(a,b,c,rau)
/

// An LQG-algorithm for syntesis of a
// ARMAX-process with common factors
// between A, B.

/l
/| Reference: CCS Theorem 12.5 (p. 306)

// This macro uses: FACTOR, COMFAC, LQGSPEC and DIOPHANT

//

// Author : Bernt Nilsson

/[Factorization of C

amp = c(1,1);

cf = c/amp;

if max(abs(root(c)))>=1 , [cf,amps]=FACTOR(c); amp=amp*amps;

//Common factors, A and B
[a1,b1,a2m,a2p]=COMFAC(a,b);

//Spectral factorization of P

Appendix [: 5

[p1.ps1,rr1]=LQGSPEC(a1,bi rau);

//Solution of the Diophantine equation
vl = conv(p1.cf);

aa2 = conv(al,a2m);
[r1,51]=DIOPHANT(aa2,b1,v1);

r = conv(real(a2m)real(ri));

na2m = size(a2m);

m = na2m(2)-1;

z =1;

for i=2:m , z(1,)=[z 0];

s = conv(zreal(s1));

Appendix I : 6

//[p.ps.r]=LQGSPEC(a,b,rau);
/1

/| Solves the spectral factorization in the
// LQG-problem.
!/ r PPx =rau A A« + z~d B B

//Reference : CCS Lemma 12.1 (p. 299)
!/ Author : Bernt Nilsson

/ [Reciprocal polynomials

epi = le-14;

na = size(a);

nb = size(b);

d = na(2)-nb(2);

for i=1:na(2) , asp(i)=a(na(2)-i+1);

as = asp';

while abs(as(1,1))<epi , as=as(1,2:na(2)) ; na(2}=na(2)-1;
for i=1:nb(2) , bs(1,i)=b(nb(2)-i+1);

while abs(bs(1,1))<epi , bs=bs(1,2:nb(2)) ; nb(2)=nb(2)-1;

/ [Polynomial multiplication z~d Bs
z(1) = 1;

for i=2:d+1 , z(i)=0;

bs = conv(z'bs);

//Spectral factorization

// { when rau=0 we have a special case

// witch must be handled with some care)
hla = rauxconv(a,as);

hlb = conv(b,bs);

hl = hlb;

k = size(hla)-size(hlb);

if rau<>0 , for i=1:k(2) , hlb = [0 hlb];

if rau<>0 , hl = hla + hlb;

P =1

rpps = roots(hl);

np = size(rpps);

[i,y]= sort(abs(rpps));

p = [1-rpps(i(1))];

for j=2:nb(2)+d-1 , p = conv(p,[t -rpps(i(}))]);
rps = deconv(hlp);

nrps = size(rps);

r = rps(nrps(2));

ps = rps/r;
p = real(p);
ps = real(ps);
r = real(r);

//[r.s.amp]=MINVAR(a,b,c)

// This macro calculate the minimum variance controller

!/ G s

/! u(k) = - —————— y(k) = - - y(k)

[/ Bplus F r

/]

// abc - Process polynomials

/| rs - Controller polynomials

// amp - amplifid noice due to non-monic C and Spec.Fac.
//

// Reference: CCS Theorem 12.2 & 12.3 (p. 293-6)

/| To do this it uses the FACTOR-macro and the PRED-macro.

/l

// Author : Bernt Nilsson

/ [Factorization of C

amp = c(1,1);

cs = cfamp;

if max(abs(root(c)))>=1 , [cs,amps]=FACTOR(c); amp=amp*amps;

/ [Factorization of B=B+#B- and Spec. Fac. of B-

bplus= b;

bmin = 1;

bms = 1;

ampb = 1;

epi = le-14;

if max(abs(root(b)))>=1-epi , [bs,ampb,bplus,bmin,bms]=FACTOR(b);

/[Prediction problem

cc = conv(cs,bms);

na = size(a);

nb = size(b);

d = na{(2)-nb(2);

f =1;

[f.g]= PRED(a,bmin,cc.d);

//Minimum-Variance Controller
ss =g;

rr = conv(bplusf);

r =rr/rr(l);

s =ss/rr(l);

Appendix I : 7

//Irs.pvar]=OPTPRED(a,c,d,var)

// Calculate the optimal d-step predictor.
- qG s

/] y(k+d|k) = —— y(k) = - y(k)
/! Cx r

~
~—

// C» has its zeros inside the unit disk.
// PVAR is the prediction variance.

ﬁReference : CCS Theorem 12.1 (p. 288)

% This macro uses the PRED-macro and the FACTOR-macro.
// Author : Bernt Nilsson

cs =c;

amp = 1;

if max(abs(root(c)))>=1 , [cs,amp]=FACTOR(c);
[f.g] = PRED(a,1,cs,d);

r = CS;
s =[g0];
sumf = 0;

nf = size(f);
for i=1:nf(2) , sumf=sumf+f(i)*+2;
pvar = sumfxampx*x2svar;

Appendix I : 8

//[£.g]=PRED(a,b,c.d)

// This macro solves the d-step predictor problem
/| by solving the Diophantine equation.

AF + BG = C q-~(d-1)

T————
.

// This macro uses ML:s DIOPHANT-macro.
Il

// Author : Bernt Nilsson

q(1) =1;

for i=2:d , q(i)=0 ;

cc = conv(cq');

[f.g] = DIOPHANT(a,b,cc);

/] [1=PZPLOT(a,b,c)
/!

// Plots the poles and zeros for a
/| discrete time system.

/| ab.c - process polynomials

//
// pole - diagonal cross
/] zero - octagon

/| noise zero - square
// Author : Bernt Nilsson

na=size(a);
nb=size(b);
nc=size(c);
maxa=0;
maxb=0;
maxc=0;

Appendix I : 9
if na(1,2)>1 , poles=root(a) ; maxa=max(abs([real(poles);imag(poles)]));
if nb(1,2)>1 , zeros=root(b) ; maxb=max(abs([real(zeros);imag(zeros)]));
if nc(1,2)>1 , nzeros=root(c); maxc=max(abs([real(nzeros);imag(nzeros)]));
scale=roun(2xmax([maxa;maxb;maxc;1]) + 0.5)/2;
numhb = 6;

dx = 2sscale/numb;

psize=[-scale -scale;scale scale;dx dx];
plot(psize,'SCALE')

erase

window([149/190 1;0 0]);

xaxx=[-scale;scale];

xaxy=[0;0];

yaxx=[-0.0001;0.0001];

yaxy=[scale;-scale];

t=0:0.05:2.1xpi;

x=cos(t);

y=sin(t);

plot{xaxx xaxy,yaxx,yaxy,'solid’ x,y,'solid")

if na(1,2)>1 , plot(real(poles),imag(poles),'point=1')
if nb(1,2)>1 , plot(real(zeros),imag(zeros),'point=9’)
if nc(1,2)>1 , plot(real(nzero),imag(nzero),'point=3')
title('Poles and Zeros',' 1111 111 111I')

xlabel('Real’,’ 11I')

ylabel('Imag’,' 11I')

Appendix II : 1
Appendix li: LQGIO Help macro

//[]=hlplqg(string)

//This is a HELP-macro for the LQG-library
string = string(1,1:4);

word='show’;

if max(abs(string-word)}=0 , echo=2;
// LQGI/O Library

N e

// This is a library for Linear Quadratic Gaussian Control Syntesis (LQG)
// based on Input/Output approach. (Reference: CCS chapter 12).

/| CLVAR - Calculate the Output- and Cont. Sign. Variance.

// COVAR - Calculate the Covariance Function of a ARMA-proc.
// CPL1 - Plots the COVAR.

// MINVAR - Calculate a Minimum-Variance Controller

/| OPTPRED - Calculate a Optimal d-step Predictor.

// DIOPHANT - Solves the Diophantine equation

// PRED - Solves the predictor problem by solving the Diophantine eq.
// FACTOR - Factorization of a polynomial.

// LQGA - Calculates a LQG-controller (I/O-appr.).

// LQGCF - Same as LQG but handle Common Factors.

// COMFAC - Finds the Greatest Common Divisor.

// LQGSPEC - Calculate the P-polynomial in the LQG-problem.

// PZPLOT - Plots poles and zeros for a discrete time system.

/| CLPZ - Plots poles and zeros for a closed loop system.

/l

echo=0;

word="news";
if max(abs(string-word))=0 , echo=2;

22 NO NEWS IS GOOD NEWS !

echo=0;

word="clva’;

if max(abs(string-word))=0 , echo=2;
//[yvar,uvar]=CLVAR(a,b,c,varr,;s)
/1

/| Computs the variance for a closed loop system

// CR -CS

y = ———- e ; u= ———- e
/! AR + BS AR + BS
/l

// yvar = output variance
// uvar = control signal variance

// This macro uses ML:s COVARiance macro

Appendix I :

echo=0;

word='cova’;
if max(abs(string-word})=0 , echo=2;
//[ry rye]=COVAR(a,c kmax);

// Uses Yule-Walker for computing the covariance

// and the cross covariance functions for an

// ARMA-process.

/1

/| ry = covariance function (coll = time , col2 = covar.)

/| rye = cross covar. funct. {coll = time , col2 = cross covar.)

/l
// Reference: Olbjer , TIDSERIEANALYS : Appendix
echo=0;

word='cpll’;
if max(abs(string-word))=0 , echo=2;

/1] = cpli(r);
//

// A macro for plotting the COVAR-macro.
echo = 0O;

word="minv’;

if max(abs(string-word))=0 , echo=2;
//lr.s,amp]=MINVAR(a,b,c)

//

// This macro calculate the minimum variance controller

/l G s

/! u(k) = - ——-- v(k) = - - y(k)

// Bplus F r

/1

// ab,c - Process polynomials

// rs - Controller polynomials

// amp - amplifid noice due to non-monic C and Spec.Fac.
/l

/| Reference: CCS Theorem 12.2 & 12.3 (p. 293-6)

// To do this it uses the FACTOR-macro and the PRED-macro.
echo=0;

word='optp';

if max(abs(string-word))=0 , echo=2;
//Irs,pvar]=OPTPRED(a,c,d,var)

/]

// Calculate the optimal d-step predictor.
/- qG s

/[y(k+d[k) = -- y(k) = - y(k)

// Cx r

/| Cx has its zeros inside the unit disk.
/| PVAR is the prediction variance.

I/
/[Reference : CCS Theorem 12.1 (p. 288)

// This macro uses the PRED-macro and the FACTOR-macro.
echo=0;

word="'diop’;

2

Appendix I :

if max(abs(string-word))=0 , echo=2;
//Ix,y]=Diophant(a,b.,c);

/| Solves the Diophantine equation
// AX+BY=C

// where ABCX and Y are polynomials.

// A unique solution is guaranteed by choosing deg(Y) = deg(A)-1
/] and deg(X) = deg(C) - deg(A).

echo=0;

word="pred’;

if max(abs(string-word))=0 , echo=2;
//1f.g]=PRED(a,b,c.d)

/1

// This macro solves the d-step predictor problem
/| by solving the Diophantine equation.

/] AF + BG = C q-(d-1)

/]

// This macro uses ML:s DIOPHANT-macro.
echo=0;

word='fact’;

if max(abs(string-word))=0 , echo=2;
/[[cs amp,cplus ,cmin,cms]=FACTOR(c)

// Factorization of polynom C(z).
// ¢ = cplusxcmin
/| cms = spec.fac(cmin)

/| c¢s = cplusxcms ; amp = amplifid noice from spec.fac.
/l

//Reference : CCS Theorem 6.3 (p. 142-3)

echo=0;

word='lqga’;

if max(abs(string-word))=0 , echo=2;
//[rs,amp]=LQGA(a,b,c,rau)
/]

// Calculate a Gaussian Linear Quadratic Controller

// by an input/output approach.

/l

// ab,c - the process polynomials

// rau - design parameter

// rs - controller polynomials

// amp - amplifid noice due to non-monic C and Spec.Fac.
/l

/| Reference: CCS Lemma 12.2 & Teorem 12.4 (p.301-2)

/ This macro uses following Ctrl-C macros:
// FACTOR, LQGSPEC and DIOPHANT.
echo=0;

word="lqgc';

if max(abs(string-word))=0 , echo=2;
//[r,s amp]=LQGCF(a,b,c,rau)

/1

3

Appendix II : 4

// An LQG-algorithm for syntesis of a
// ARMAX-process with common factors
// between A, B.

/1
// Reference: CCS Theorem 12.5 (p. 306)

// This macro uses: FACTOR, COMFAC, LQGSPEC and DIOPHANT
echo=0;

word='lqgs";
if max(abs(string-word))=0 , echo=2;
//[p.ps r]=LQGSPEC(a,b,rau)

/| Solves the spectral factorization in the
// LQG-problem.
// r PP+ = rau A A% + z~d B Bs

/l
//Reference : CCS Lemma 12.1 (p. 299)

echo:=0;

word='comf';
if max(abs(string-word))=0 , echo=2;
//[a1,b1,a2m,a2p]=COMFAC(a,b)

// Finds the greatest common divisor, A2, of A and B.
Il

// A2m is the factor of A2 witch has its zeros on or
/] outside the unit disc and A2p has its inside.
echo=0;

word='pzpl’;

if max(abs(string-word))=0 , echo=2;
//[] = PZPLOOT(a,bc)

//

// Plots poles and zeros for a
/| discrete time system

/1

/| ab,c - process polynomials
/]

// pole - diagonal cross
/| zero - octagon

// noise zero - square
echo=0;

word='clpz’;

if max(abs(string-word))=0 , echo=2;
//[] = CLPZ(ab,c,rs.t)

/| Plots poles and zeros for a

// discrete time closed loop system
/l

// a)b,c - process polynomials

/| rst - controller polynomials

/1
// pole - diagonal cross
/| zero - octagon

/| noise zero - square
echo=0;

