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Abstract

This paper describes some possible applications of Ärtifi-
cial Intelligence methods in control engineering. Due to
the restriction of ÀI methods to well-defrned knowledge do-

mains (expert systems), the growing interest in fuzzy con-

trol methods and the possible application of simple neural

networks, a large number of applications in all areas of tech-

nical science came into consideration. The recent availabil-
ity of adequate software and lately also of special purpose

hardware tools has accelerated this development.

1 Introduction

In process automation there is a tendency to use Plant-
wide Control systems which combine in one system tacti-
cal, managerial, scheduling, operational and control tasks

for production and process control. A multilayered infor-
mation processing system is defined based on the various
levels of decision making. Än increasing number of people

from diflerent disciplines are involved in the operation of
these systems, each with their own background and exper-
tise and their different demands and requirements concern-

ing the overall system behavior. The system should provide

the various users with advisory and consultancy possibili-

ties, based on the different kinds of specialized knowledge.

It is clear that a lot of quantitative information is processed

within and between the various levels of automation, but
there is also a growing need for concentrated and qualitative
information. In the expert systems used at these levels the
main emphasis is on explanation facilities and knowledge
translation, highlighting the key functions and parameters

on each decision level. There is a need for a distributed ex-

pert and intelligent system, passing global information to

the various levels of automation and inferencing on the spe-

cialized and more detailed information at the given level.

This system should be coupled to the distributed computer
control system or incorporated in the existing hard- and

softwa¡e. When we classifiy the application areas of expert
sytems in automation systems we can distinguish systems

which are based mainly on static or on dynamic informa-
tion. Another division could be based on classification re-

quirements or design and control problems. It is clear that
because of the time critical situation the highest demands

are put on the use of expert and other intelligeni systems

on the supervisory and control level. In these systems the
expertise of process operators and control systems design-

ers is mixed with the time-va.rying information obtained
directly from the p¡ocess by the rneasurements.

This paper is concerned with the lower levels of au-
tomation at which the knowledge-based and intelligent sys-
tem should be implemented in a ¡eal-time environment.
The most promising applications are found in the areas of:
- alarm monitoring, diagnosis and handling
- supervisory and adaptive control
- modeling of the operator
- intelligent and direct expert control

The application of expert systems in modeling and

system identification and in control system design will only
be touched on in this paper, because of their mainly off-
line character and their emphasis on explanation and user-
guidance facilities. However, the development of a combi-
nation of a real-time control system which automatically
asks for advice and initiates a design and identification ses-

sion is a most challenging prospect.

The paper is organized as follows. Some general re-
flections on feedback control and artificial intelligence are

given in Section 2, where different ways to use Ä.I methods
in feedback control are reviewed. Section 3 deals with the
case when an expert system is used to supervise different
control strategies, this is called indirect expert control be-
cause there is a weak coupling between the control system
and the expert system. In Section 4 we discuss direct real-
time expert control where the expert system is more tightly
coupled to the control system. There is a special class of
direct ¡eal-time expert control systems that have been used

in industry for some time. They are based on modeling
the actions of a good operator by rules. Such systems are

discussed in Section 5. Section 6 gives a brief treatment of
learning systems, which appear to be a very promising area
both from the research and the application point of view,

2 Feedback Control and Artificial
Intelligence

Historically, feedback control and artificial intelligence have
common roots in early cybernetics. Äfter the initial de-

velopment stage the fields, however, evolved in different
directions. Ä major difference is that ÄI has almost ex-
clusively focused on static problems while dynamics is the
key issue in feedback control. Today, however, there is a
growing awareness that AI techniques may be useful in con-
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trol systems. This is manifested by manufacturers of con-

trol systems that are exploring ÀI and by vendors of ÄI
systems who are looking into process control applications'

See Kawakita et al (1988), Moore et al (1987), Oyen et al

(t988), Reynolds (1988) and Sachs et al (1986). Ämong

the applications considered we find monitoring, diagno-

sis, alarm handling, quality control, design, planning and

scheduling and control, It is, however, less clear precisely

where the advantages may lie. In this section we present an

overview of the different application areas. Some of them

will be treated in more detail in the following sections'

Algorithrns and }leuristics

The development of control theory has for a long time been

characterized by algorithm development, both algorithms

for on-line control and algorithms to design control systems'

In control engineering practice there are, however, many
problem areas that are not handled by algorithms alone.

It is, for example, necessary to have a good knowledge of a

control problem; including the dynamics of the process and

the disturbances, specifications and implementation con-

straints to be able to choose a particular algorithm. This

knowledge is difficult to represent in algorithms but it can

conveniently be represented in rules or semantic netwo¡ks.

Because of the focus on algorithms the other aspects of con-

trol system design have also largely been disregarded in the

control research community. The possibilities of represent-

ing the design knowledge using ÄI techniques may refocus

the interest.

Supervision Logic

In the actual practical implementation of control systems

the algorithms are only a minor part of the code in a control
system. Apart from the man-machine interface the major
part of the code in a control system is actually the logic that
surrounds the control algorithm. This logic takes care of
switches between manual and automatic control, bumpless

parameter changes and anti-windup in simple controllers.

In more complex controllers it also handles the supervision

of automatic tuning and adaptation. It is also a common
experience that the effort required to implement and debug

this code is signiflcant. Since the supervision code is easily

expressed in logic it is a natural candidate for use in an

expert system.

Merger of PLC and DDC

ln process control there are two types of automation sys-

tems, the continuous time control executed by the control
algorithm (DDC) and the discrete logic and sequencing

(PLC). It is a clea¡ trend that these systems are merging.
Suppliers of DDC systems are adding logic and sequencing,

and suppliers of PLC systems are adding PID algorithms.
Àn expert system can be used as an alternative to logic and

sequencing or as an extension.

Merger of MIS and DCCS

In Plant-wide Control there is a merging between Manage-

ment lnfo¡mation Systems (MIS) and Distributed Digital

Control Systems (DCCS). Suppliers of both systems are de-

veloping software and network facilities in order to to realize

an information processing system for the complete frame-
work of operational and control tasks. Al, various levels of
automation expert systems are introduced. It is clear that
these systems should process knowledge related to the de-

mands of their respective automation level, but also should
pass, receive and dist¡ibute knowledge to their neighboring
levels in a concentrated form. A distributed expert system

can be used to guide and supervise the shut-down and start-
up procedures and the transients between different modes
of operations in a multi-product plant unde¡ various load
conditions.

Modeling and System Identification

Modeling and system identiflcatìon are important elements

in solving a control problem. Conventional static and dy-
namic models contain a wealth of knowledge which can be

exploited in many ways. There are, however, also situations
where the models are not known with sufficient accuracy or
where they are too complex. Qualitative physics and quali-
tative modeling developed in the ÄI community may be.an

interesting complement. See Bobrow and llayes (1984), de

Kleer and Brown (1984), Forbus (ro80) and Kuipers (1986).

The field of system identification has developed significantly
over the past 30 years. A lot of the knowledge developed has

been included in software packages like ldpac and Matlab.
Considerable expertise is required to use these packages.

Two types of knowledge is required, knowledge about sys-

tem identification and knowledge about a particular pack-

age. It has been shown that both types of knowledge can
conveniently be represented using scripts and rules. See

Larsson and Persson (1986, 1988a, 1988b).

A challenging feature of these sytems can be experiment
planning liy thé in-line application of sysfem identiflcâticjn
and modeling procedures. On the basis of the acquired and

required knowledge, a selection of experiments is made, re-
stricted by available or allowed measutement time, allowed
signal magnitude, the frequency domain to be excited, etc.

Control System Design

Control system design is an area which requires expertise.
Several attempts have been made to capture this expertise
in a knowledge based system. See e.g. Taylor, Fredrick,
James et al (1987), MacFarlane and Ackermann (1987). In
the first experiments the use of conventional expert system
shells was attempted. lt appears, however, that it would
be hiehly desirable to have tools that can also ìnteract with
conventional models of control systems and conventional
control design algorithms.

Autornatìc Tuning l)evices

There are several devices on the market that attempt to
help a user to lune a controlle¡. Examples are the Su-
pertuner and the Protuner. These devices typically carry
out some type of system identifrcation from plant experi-
ments and then give the recommended controller tuning.
Related techniques are used in some of the single loop
cont¡ollers with automatic tuning. See Bristol and Kraus
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(1984), Kraus and Myron (1984) and Åström and Hägglund

(1988). Although these devices are useful it is clea¡ that the

tuning of a controlle¡ is not always uniquely determined by

the process dynamics. It also depends on the purpose of
control. A typical example is level control where the pur-

pose can be tight level control as well as surge tank oper-

ation when it is desired that the level swings over the full
range. From this viewpoint it appears reasonable to have a

more sophisticated system for tuning advice that can also

can take the purpose of control into account. It would also

be highly desirable to have design data in such a system

because sometimes good tuning parameters can be com-

puted from design data. It is also clear that applications in

control system design and in automatic tuning are closely

related.
In sophisticated cont¡ollers such as adaptive and predictive

control algorithms a number of parameters have to be pre-

set by a control engineer and to be tuned or supelvised

by an intelligent system. À few parameters are, however,

strongly related to the system requirements and should be

tuned by the operator or control engineer. These param-

eters represent the key parameters in a control loop de-

sign, like bandwidth, overshoot and noise reduction. These

parameters are the controller knobs of the controller and

are translated to parameters inside the controller algorithm
which can be completely irrelevant for the user. An ex-

ample of the tuning of a self-tuning adaptive controller is

given in Krijgsman et al. (1S8S). A knowledge-based sys-

tem forms the natu¡al link between the idea of the con-

trol system designer as to how the system should behave,

and the mathematical description of the process. Using the

correct calculations and heuristics it sets the right param-

eters of a controller or chooses the right controller configu-
ration. An example is the choice of the different controller
configurations using the Unifred Predictive Controller, see

Soeterboek et al (10S0). Many parameters should be cho-

sen during the design phase, and a number of patameters,

related to the given system behaviour, adapted during op-

eration. Ä. ¡ule base is set up to manage this task in an

efficient way. Rules can be added when more experience of
the controller or the process has been gained. The num-

ber of rules is relatively low and to speed up the procedure

the knowledge-based system can be translated into conven-

tional software.

Learning Systems

Learning control is perhaps the most interesting point of
tangency between control and AI. There are strong similar-
ities between the learning algorithmns of ÀI systems and

adaptive control algorithms. There are also marked differ-

ences. Adaptive control systems are often more st¡uctured
and they use mo¡e apriori data. The typical learning algo-

rithms are more general and less structured. It would be

an interesting task to attempt a merger of the ideas.

3 Indirect Expert Control

Perhaps the most direct way of using a knowledge-based

system for feedback control is to realize that any controller
contains algorithms and logic. A natural separation is then
to stucture the system in algorithms and logic, possibly in
a hierarchical structure as indicated in the introduction.

At the lowest level we would then have simple control algo-
rithms of the PID type, possibly with automatic tuning and
scheduling and supervision. The heuristic knowledge ofhow
the system should be run in different modes is then imple-
mented in terms of rules. Än advantage of such a system is

that it gives a clean separation of algorithms and heuristics.
Systems of this type have also been used to prototype PID
cont¡oller with scheduling, tuning and adaptation although
the systems have been hardcoded for production.

Supervision and Tuning of PID Controllers

Most industrial control problems are today solved by PID
control. Because of the benefits of good tuning, several
attempts have been made to tune regulators automatically.
One idea based on pattern recognition was developed at
Foxboro, see Bristol (1977), Bristol and Kraus (1984) and
Kraus and Myron (194a). Ànother successful approach is

based on relay feedback, see Åström and Hägglund (1984,

r988a).

In the pattern recognition approach a PID controller
is connected to the process. The response to step changes

or disturbances is observed and the controller parameters
are adjusted, based on the response pattern. The proce-

dure mimics the procedure used by an experienced process

engineer. It requires that reasonable controller settings are
known prior to the experiment and it can be implemented
as a rule based expert system. This expert system is com-
posed of a transient analyser that determines the damping
and the frequency of the closed loop system based on a tran-
sient, and a PID designer which is a collection of empirical
tuning rules.

The relay auto.tuner is based on the idea that knowl-
edge of the ultimate frequency, i.e., the frequency whe¡e the
phase lag of the open loop is 180 degrees, the crucial infor-
mation for tuning a PID controller. The ultimate frequency
can be determined from an experiment with relay feedback.
When tuning a loop the process is first brought to steady
state operation under manual control. When tuning is de-

sired the process is then connected to relay feedback. Ä
limit cycle oscillation is then obtained. The controller set-
ting is calculated from the amplitude and the period of the
limit cycle and the controller is automatically switched to
PID control. It is practical to introduce hysteresis in the re-
lay to avoid chattering due to noise, and a feedback so that
the limit cycle oscillation is kept within specified limits.
The ultimate frequency is determined from zero crossings
and the ultimate gain from the peak amplitude of lhe os-

cillation. The measurements of separate half-periods of the
oscillation can be compared to establish that a steady state
oscillation is obtained. The only prior information that has

to be provided is the initial relay amplitude. The hysteresis
of the relay is determined by measuring the noise level.

À system with relay auto-tuning can conveniently be
described in terms of algorithms and logic. The algorithms
will cover relay feedback, noise analysis, limit cycle analysis,
computation of PID parameter, and PID control. The logic
will cover the mode switches and the tests for switching
between the operating modes. The operation of the system
is conveniently described using a script. See Shank (1986).
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Gain Scheduling

Gain scheduling is a powerful technique to handle varia-

tions in process dynamics when there are measurable sig-

nals that correlate well with the changes in dynamics. With
automatic tuning it is easy to obtain gain schedules auto-

matically simply by having a table for diflerent operating

conditions and to save the parameters obtained when tun-
ing for different operating conditions. The implementation

of such a system can also be straightforwardly expressed

in terms of scripts, rules and algorithms. These ideas have

been incorporated in simple single loop controllers. See

Hägglund and Åström (1989).

Assessrnent of Control Performance

Àutomatic tuning and adaptation are now well established

for simple PID controllers. These controllers can be said

to automate those tuning functions normally performed by

instrument engineers, To achieve a higher level of automa-

tion it is useful to have systems that can also reason about

speciflcations and achievable performance and guides in the

selection of cont¡ollers. Eexpert systems are well suited to
the solving of these problems. Applications are discussed

in ,{ström (1988) and Åstrôm et al (1989).

Supervision of an Adaptive Controller

The key elements of an adaptive controller are a control
algorithm, a recursive parameter algorithm and a control
parameter calculation. Since an adaptive controller is more

complex than a PID controller it also requires more super-

vision. It is also natural to have a simple PII) controller as

a backup controller. The supervision of and the 4daptive
cont¡oller itself can be structured as follows:

Main Monitor Stability and control quality supervisor

Ðstimation Monitor Excitation.
Dstimates and covariances.

Drift and jumP detection.
Perturbation signal generation.

Back-up Control PID control. Àutomatic tuning.

Design Supervision Controllability and observability tests.

Specification supervisor
Scheduling Supervisor Scheduling tables. Quality test.

More details are given in Åström et al (1986) and Årzén
(r982, 1s89).

Example - Expert Control

It is n¿tural to consider a controller which consists of sev-

eral different algorithms orchestrated by an expert system

as was suggested in Åstrôm et. al. (1986) and further elab-

orated in Årzen (1988, 1989). We call such a system an eø-

pert control system. The architecture of the system is shown

in Figure 1. The system consists of several algorithms for

control and estimation, for example a PID controller, a PID
tuner, a gain scheduling table, a least squares recursive es-

timator and a pole-placement self-tuner. The system also

has other algorithms for supervision and analysis and signal

Figure 1: Block diagram of an expert control system.

generation algorithms to improve identifiability. All the al-
gorithms are coordinated by the expert system that decides

when to use a particular algorithm. The expert system ar-
chitecture separates the control algorithms from the logic

and it supplies a convenient way to interact with the sys-

tem. The architecture also forces a disciplined structure.
A. blackboard structure has been found to be very useful.
Such a system which has forward chaining and backward
chaining as well as procedural knowledge sources has been

implemented by Ärzén (1987, 1989).

It is interesting to compare an expert control sys-

tem with an auto-tuner. The systems are similar in the
sense that they both can provide reasonable parameters for
a PID regulator. Howevet, the expert control system can

also interact with the user in a much more effective way. It
can provide answers to queries like, Is the system running
normally? List all loops that have been tuned last week.

List all regulators where derivative action is used. List all
loops where dead-time compensation seems to be required.
List the 10 loops with the poorest performance. À func-
tionalily like this is certainly useful both for operators and
for instrument engineers.

Strategy Switching

Depending on the system requirements and the actual be-
havior of the system it can be very useful to change the
controller configuration. Especially in a MIMO system it
can be advantageous to reconsider the connection between
controlled variables and controller actions. Due to the mode
of operation, the production level and the properties of the
raw materials to be processed, an adaptation of the con-
trol strategy can be advantageous. ln a SISO system the
strategy switching can be related to the dynamic selection

of a control algorithm (bang-bang controller, P, PI or PID
controller). In Baars ei al (f987) an example of strategy
switching using an expert system in the temperature con-
trol system of large buldings is described.

4 Direct Real-Time Expert Con-
trol

ln a conventional or sophisticated control system the con-
troller design is based on fundamental knowledge, described

by mathematical equations (state equations, transfer func-
tions, etc), deduced from physical laws and experimental
data. This knowledge can be divided into structural knowl-
edge (order of the process, noise characteristics, etc) and in

{
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parametrized and numerical knowledge (i.e. parameter val-
ues of the transfer function, value of the delay t'ime, etc). In
direct expert control (d.e.c.) a knowledge-based system us-

ing qualitatives replaces a controller based on fundamental
knowledge, see Figure 2. D.e.c. is based on the experience

of the operator and control engineer as well as on the obser-

vations of the process and control variables. Relationships
among variables may be known or assessed in qualitative
terms. Usually the knowledge-based system contains a mix-
ture of qualitative and fundamental knowledge. Ä d.e.c.
approach is less useful for linear systems with well known
parameters, but can be applied succesfully in those cases

where the process is highly nonlinear or hard to describe
while existing theories do not cover the analysis and design

of those systems. Because of their very nature d.e,c. sys-

tems lack conventional characteristics such as guaranteed

stability of the contol loop, consistency and desired pre-

scribed performance. Howevet, by careful supervision also
based on an expert system, acceptable control behavio¡ and

a certain amount of learning capability can be realized.

It is obvious that in d.e.c. guaranteed response times
are crucial and high demands are put on the processing

speed of the system. In industrially distributed digital con-
trol systems it is crucial that an expert system is embedded

in the original automation hierarchy. A good allocation of
tasks between the ¡eal-time monitoring and control envi-
ronment and the expert system is necessary. It is very
important that the expert system can be embedded in ¡eal-
time software.
Most of the knowledge-based systems known today have
been developed for diagnosis and classification purposes.

The main emphasis is on explanation facilities and the han-
dling of a large numbe¡ of rules and not on time-critical
behavior. In a real-time knowledge-based system (the pos-

sibility of dividing the knowledge into a multi-layer confrg-
uration is very interesting). Each layer has its own kind
of knowledge and therefore its own ¡ule base. This kind
of reasoning is called progressive reasoning. The inference
engine starts with the lowest layer. When a conclusion

is obtained in this layer, this conclusion is stored and the
t'reasoning" continues in the next upper layer. This rea-
soning/conclusion storage cycle continues upwards to the
next layers. As soon as the system is interrupted because a
time-critical action should be performed (at the sampling
time for example) the 'best' conclusion up to then is taken
and the related control action executed.

Exarnple: DXPERT-3

To make real-time experiments possible, a real-time
knowledge-based system EXPERT-3 was developed at our
laboratory. It is written in FORTH as an extension of
EXPERT-2, see Broeders (1988). It contains a backward
and forward chaining inference mechanism and a rule com-
piler to guarantee fast inferencing. The knowledge repre-
sentation is based on production rules. An agenda-driven
scheduling mechanism has been added to the backward
chaining mechanism. There are facilities to compile more
than one rule ba^se.

EXPERT-3 operates on a 68000 system (ATARI ST)
under Real-Time Forth (RTF) which is a small comprehen-
sive development environment for the design, implemen-
tation, testing and debugging of microsystems. RTF of-
fers multi-tasking; synchronization and communication be-

tween tasks can be performed bv the use of semaphores
and queues. The real-time facilities include timer and de-
lay statements.

The controller consists of five hierarchically ordered
layers. The first three layers classify the the process in an
area of the phase plane, spanned by the error signal and
its first difference. Experiments were perforrned with dif-
ferent shapes of the ¿reas dividing the phase plane. The
best results were obtained by using elliptically shaped ar-
eas. Successively the system is classilìed by:
- the signs of the error and its first difference (first layer, 4

rules)
- the size of the error (second layer, 6 rules)
- the size of the difference of the error ( l,hird layer, 2 rules)
resulting in 48 areas in the phase plane.

Each layer classifies the system and calculal,es a proper con-
trol action. Then the next layer is initiated and the con-
clusion about the control signal is overruled as soon this
layer comes to a conclusion and has calculated the related
control signal. In the areas far from the origin, this will be
the maximum or mìnimum control signal U^o" ot U*;n or
a fraction of U^n" or U*¡.; in the areas near to the origin,
the control action is calculated by:

ulkl : 6r"¡¡ - 1l + (PU*i" I 1(U^o, - U^i*))

The weighing factors a, p arrd 1 are different for the several
areas (0 I a < 1, o S p <l and 0 < -/ < 1).

The areas we use are elliptical shapes around the origin of
the phase plane. They c¡oss the Âe(/c) = 0 axis in fixed
points, while the radius on the e(/c) : 0 axis can be var-
ied by a factor p, where p : 1 means a circle. When this
factor is very large the phase plane is almost completely
filled by the outer areas, so the process is controlled using
maximum and minimum output signals. The variation of p
is obtained by some heuristic rules which express that the
maximum or minimum controller output must be used for
large setpoint changes.
Note that the controller actions could be compared to a
proportional * reset action in the neighborhood of the ori-
gin of the phase plane. When the distance to the origin is
large the controller is simila¡ to bang-bang control.
The overall aim of our controller is to bring the system
to the origin of the phase plane in a cautious way with-
out any overshoot. To realize this goal a fourth layer has
been implemented. This layer is based on what is called
a Model Reference Expert Controller (MREC). When the
system enters a new area in the phase plane a first-order
model refence trajectory is calculated (a straight line to the
origin from the point reached by the system at the given
sampling instant). Ä one sampling time ahead prediction is
made of the next point in the phase plane along this refer-
ence trajectory. The position of this point is influenced by
the time constant of the reference model and the sampling
period and can be set by the control engineer or a supervi-
sory controller. Älso a one sampling time ahead prediction
is made of the next point of the actual system, based on a

linear or quadratic extrapolation. The prediction error be-
tween the predicted reference trajectory and the predicted
trajectory of the actual system serves as the basis for the
calculation of the control signal. The angle iÞ between the
two trajectories is used to realize MREC. Some simple rules
were implemented, such as: when iÞ > 0 the control signal
is increased and when iÞ < 0 the control signal is decreased,
depending on the length of the error vecto¡. 
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Figure 2: Block diagram of a direct real-time expert control system

Only ihe rule sets that belong to areas at a distance

not too close to the origin will use this kind of MREC knowl-

edge. Other rule sets contain specialized knowledge such as:

how the d.e.c. should act as a regulating controller. In this

case it is important to keep the controlled process as close

as possible to the origin, instead of steering it fast and se-

cure to the origin. Thus, in the areas surrounding the origin
MREC is not useful.

The task of the fifth layer is to supervise the per-

formance of the lower layers. For example, observing the

trajectory in the phase plane during the very first samples,

allows the determination of whether the controlled system

is a "fast" or a t'slow" system and provides useful knowl-

edge about the choice of the reference model time constant.

These conclusions have a speciñc effect on the performance

of the lower layers; e.g. in the case of a "fast" process, they

start calculating the control signals in a more cautious way.

Änother example of the influence of the supervisor on the

lower level knowledge layers is the adaptation of boundaries

used to classify the controlled system in the phase plane.

The third function of this layer is to recognize the entry of
the steady state area in the phase plane. In this case, the

fourth knowledge layer is switched off and all boundaries,

a's, B's and 1's that are used in the first three layers are

dec¡eased by a scaling factor. In eflect, the whole phase

plane zooms in on the steady state area positioned around

the origin. This zoom function should ensure a zero steady

sl,al,e error.

The forward chaining mechanism is used for the rea-

soning in the first four layers while the backward chaining

mechanism is used in the fifth layer. Observing the knowl-

edge trees in these layers, it can be shown that this is the

fastest way to achieve a solution for the respective layers.

Än agenda control algorithm within the backward chain-

ing inference engine not only assures that the most likely
to be concluded hypothesis will be investigated as soon a.s

possible (heuristic search), and that the most important
hypothesis will be searched for flrst, but also that the hy-
potheses which can never be proved at a speciflc moment

are not investigated. To achieve this last possibility, meta-

knowledge has been added to the fifth layer.

To summarize, it can be stated that this supervisory layer

does not provide a control signal but helps the lower level

layers (and itself) to perform their job in a better way. It
contains a number of heuristic rules based on general sys-

tem behavior, provided by the operator and control engi-

neer in order to enable a choice between different strategies

and to set pararrre{,ets in the lower level layers of the d.e.c.

system.

To give an idea of the response time of this system

we carried out many experiments. The absolute minimal
sample time for d.e.c. with EXPERT-3 on the ÀTÄRI-ST
is 55 ms. The system requires 430 ms to assure a response

matching a first-order trajectory and a zero steady state

error for processes that have time constants greater than
2 seconds. The fifth knowledge layer adds about 50 ms

to the calculation time. We performed the same type of
experiments on ¡eal-time systems using the commercially
available expert shell NEXPDRT embedded in our real-time
environment MUSIC on a VÄX-staiion. This combination
is an excellent tool for the prototyping of dedicated ex-

pert systems. À much higher performance in terms of real-
time reaction time could be obtained by implementing the
final rule-based system in the conveniional programming

language C.

Currently, we are investigating pro-cesses controlled
by a d.e.c. system with non-uniform sampling. While linear
digital control design is based on uniforrn sampling there is

no reason for uniform sampling in a d.e.c. system. That
means adaptive sampling, based on the measured state of
the system, can be used by applying some heuristic rules.

It is also possible to use predicted error signals to inlluence
the parameters of the given control laws or to introduce
additional terms in this control law, introducing a kind of
derivative action in the d.e.c.

Figure 3 gives the results of an experiment with a

second-order nonlinear system controlled by this direct ex-
pert controller, The process

¡r(s) =tro;drær)

is preceded by a dead zone from -3 io 3. ln spite of this
nonlinearity the process is controlled in an acceptable way,

without having any exact information about the system
(unknown order, time constants, gain and no knowledge
about the existence and type of the nonlineairity) ; only
l,he sample period is chosen beforehand.
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Figure 3: Experiments using EXPERT-3 to control a sec-

ond order nonlinear plant 
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For some difficult control tasks it has proven very difficult
to follow the conventional path of modeling and control de-

sign. The main reason for the failure is that the processes

are poorly understood. In spite of this it has been demon-

strated that human operators are able to control the plants
well when they wish to do so. Because the operation is

manual there is, however, a significant variation in perfor-

mance in time and between different shifts of operators. A
typical example of this is control of cement kilns, whose dy-
namics are typically nonlinear and multivariable with long
process delays. A different approach to control design has

been developed for this class of problem, it is based on the
idea of trying to make an automatic system that imitates
the actions of the operator. The difference between conven-

tional control and this approach is illustrated in Figure 4.

In the conventional approach, the tuning effort consists of
modifying both the model of the plant and the controller;

- in the operator modeling a.pproach the controller is a direct
modeling of the operator's decision processes. Successful

applications of control based on operator modeling applied
to cement kiln control have been reported by F.L. Smith
in Denmark (Holmblad and Ostergaard, 1982) and by Blue
Cirle Cement in fhe UK (Haspel et al, 1987). The Dan-
ish approach is called fuzzy control and the UK approach
linguistic control.

Fuzzy Control

The idea of ftzzy sets is due to Zadeh (1965). The first
control applications are described in Mamdami (1974). A
system for controlling a cement kiln based on fuzzy con-

trol is described in Holmbland and Ostergaard (1982). The
key idea is to make a crude quantization of the variables
e.g. into five levels uery low, low, about right, high and very

high. ilhe fuzzy controller then calculates the output us-

ing fuzzy logic. This fuzzy variable is then mapped into
a real variable, reprcscnting the quantizcd change in con-

trol signal, which is fed to an integrator which drives the
control signal. The resulting controller may be viewed as

a multivariable, nonlinear integrating controller where the
nonlinea¡ function is represented by logic. It has proven
very easy to develop the required logic from prior data,
operator expetiences and minimal experimentation.

Fuzzy control has recently received a signilìcan[
amount of interest because the calculations required lend

Refine operator

themselves very well to parallel computing. Chips for fuzzy
control have been developed both in USÄ and Japan.

Linguistic Control

The lingusitic controller is also a constituent of a nonlinear
controller with integral action. The controlle¡ is a nonlinear
function which gives the changes in control as a function of
measurements and command signals. The nonlinear func-
tion is described in terms of rules like:

If the temperature of the fu¡nace is a little high
and the combustion gas oxygen level is on the low
side, then reduce the kiln fuel rate by a small
amount.

This description clearly indicates a crude quantization of
the state and the control variables. The approach is there-
fore also called linguistic control. A more concise de-
scription of the rule above is:

IF kiln temperature high and 02 low THEN
*5% feed and 0% fuel

A system called LINKman (Haspel et. al. 198?) has been
developed which makes it very easy to implement the sys-
tem. The system also runs efficiently. In contrast with a
normal expert system, the system lacks the power of expla-
nation.

Experiences

Fuzzy control and linguistic control are very similar. Expe-
rience from several installations indicates that it is possible
to mimic the actions of good operators using rules. In prac-
tice, the operator's knowledge is also combined wiih the
knowledge of process engineers, process designers and R&I)
departments into a coherent strategy. Signiflcant perfor-
mance increases have been noticed. It is claimed that they
derive from using the same strategy consistently. The devi-
ations due to delay and the overreaction of human operators
to disturbances and perturbations due to shift changes are
avoided. Compared to PID control, the major difference
is that the control strategy obtained is nonlinea¡ and mul-
tivariable. The rule based systems are also claimed to be
easy to commission. 
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Figure 4: A comparison between a) conventional control and b) control based on modeling of the operator
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6 Learning Systerns

It has been a longstanding goal of control engineers to de-

velop control systems that can learn more and more about
the process and its environment as they operate. De-

vices for automatic tuning and adaptive controllers (Åström
1988) are simple examples of such systems. Much higher
levels of learning do, however, occur in biological systems.

The way biological systems are controlled and the

learning abilities of rational living beings, based upon ex-
perience and observations, has always fascinated control
engineers and researchers in Ärtiflcial Intelligence. In most

cases, the control and learning behavior seems not to be

based on fundamental knowledge, but is build up by per-

forming many experiments and applying the gained knowl-
edge to speed up lea¡ned actions or to react in a rather simi-
lar way in comparable circumstances. This behaviour stim-
ulated the research on neural networks, describing in a cer-

tain sense the functioning of the brains of rational beings.

Control engineers are, however, not primarily interested in
a possible description of the internal structure of the infor-
mation processing of the brain. They are mainly interested
in algorithms that, using a simple black box model, de-

scribe reasonably well some of the learning capabilities of
the brain.

Neural Networks

Both fuzzy control and linguistic control can be described

as nonlinear functions which compute the changes in the
control signals. The structure is thus a nonlinear integrat-
ing controller. The nonlinear function is de¡ived from the
knowledge of operators and process engineers. Ä neural
.netwo¡k. is an alternative way of.implementing the system,

This has the advantage that the nonlinear function can be

learned automatically from the actions of an experienced
operator. Early attempts in this direction are the exper-

iments with A.daline by Widrow (1963) and BOXDS by

Chambers and Michie (t0os).

A Learning Fuzzy Controller

Another way to introduce learning in a îuzzy controlle¡ will
now be discussed.

At Delft University, a system has been developed

which uses a pattern recognition mechanism and fuzzy de-

cision making, see Van Der Rhee (1988). The fuzzy sys-

tem uses a data structure built up with cells. The data is

sto¡ed in cells representing the input and output data at
one sampling period; it is represented as a 2-tuple (u¡,g¡)
of a single-input single-output process at time t : kT, T is

the sample time.

The system is used in two phases:

o Ä learning phase, in which the knowledge about the
system is learned and stored in a data structure (a
data base of stored input and output data).

¡ Än application phase, in which this knowledge is used

by retrieving data from the data st¡ucture.

The search algorithm used to fìnd the correct data in the
proposed data structure substantiately determines the suc-
cesful application of the system. The data structure is or-
ganized according to two types of relations:

o Relations in time: with the 2-tuples (u¡,y¡), k :
0, 1,..., n, these relations represent information about
the process behavior (time responses).

r Relations in signal magnitudes representing the infor-
mation about similar (parts of) responses.

Àn item (Z-tuple) stored in the data struct,u¡e is called a
basic cell. Of course, other types of cells can be used to
store data in a different way.

The learning phase is used to store input and output
data in the data structure, activating the process by a well-
suited learning signal. A number of responses of different
length can be stored in the data structure. No actions are
performed to check the consistency or the redundancy of
the responses stored in the data structure. Äctually there
is no processing of data during the learning phase.

During the application phase a nurnber of algorithms
can be applied to the data of a process stored in the data
structure during the learning phase. Ät this moment the
system can be used as a predictor and as a controller. Both
algorithms evaluate time responses in the data structure:
pattern recognition methods are used to compare responses

stored in the data structure with the actual behavior of the
process based on fuzzy reasoning,

A search algorithm is used to find the relevant data
in the data structure in a particular situation. It is obvious
that the efficiency of the search algorithm determines the
minimum sampling time of the fuzzy system.
When we look at possible industrial application of this sys-

tem we must think of systems that are very hard to model in
a mathematical way. The process may not vary too much
in time. At this moment the application as a fuzzy con-
troller takes too much time to be useful in the majority
of real-time applications. Research is going on in order to
improve the efficiency of the method through findeing a
different way to store and retrieve information through ef-
flcient hashing schemes and by defrning other cell concepts
(meta-cells) which can contain more information through
compressing parts of the responses.

Albus Cerebellar Model Articulation Con-
troller

The algorithm treated in this section is a very simple rep-
resentative of a neural network, called CMÄC (Cerebellar
Model Articulation Controller), and was proposed by .A,lbus

(1975). It is based on ideas about the possible functioning
of a particular area of the brain called the cerebellum, which
area controls the trained movements of the muscles. The
application of CMACs are described by Miller (1987), Betz
(1988), Handelman (r08a) and Vlothuizen (1988).
The method is based on a table lookup technique, differ-
ent from a classical table lookup. The algorithm produces
output values related by this iable to multiple input vari-
ables. When the CMAC is used as a modeling device it
predicts the output of the process based on previous pro-
cess inputs and outputs, called the input state. When the

Ç
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CMAC is used as a controller an adequate process input
signal should be produced. Depending on the input values
fed to the CMÄC seve¡al table locations are selected and
an output value is obtained by a summation of of all values

stored in the selected table locations. The main problem is

how the table should be filled in and build up.
When we first look at one input the following procedure is

performed: the value of the input is quantized using a num-
ber of "quantizing functions". Each quantizing function
maps the input value in exactly one address of an associ-

ated table. By applying a number of quantizing functions,
each with a small offset in the active range of the input
values, two effects will be produced: several addresses in
the table will be selected in parallel (situated in completely
different locations) and the resolution of the input variable
will be enhanced.

If there are several inputs to the CMAC (i.e. inputs
and outputs of a process at different sampling instances)
each input is quantized by a number of quantizing func-
tions. Thus, each input produces a number of addresses in
the associated table. When we look at all possible combina-
tions of quantized input variables, the size of the necessary
memory could be very high and is related to the number of
inputs, N, the numbe¡ of quantizing functions, K, and the
number of addresses produced by the quantizing function,
a.
The memory space needed comprises KQN addresses.

When we call this memory the virtual memory we have
to map this virtual memory to a much smaller memory,
called physical memory, by a number of transformations.
It is clear that the reduction in memory can lead to what
is called collisions, i.e. several different inputs are mapped
to the same memo¡y location. To minimize the probabil-
ity ol collisions between distant input values, a uniform
and pseudo-random mapping should be used. The map-
ping must be deterministic because the same input value
must always select the same memory locations. Ättention
has to be paid to the problem of finding such a mapping
(hashing scheme), see Venema (1989). The effect of a col-
lision depends on the number of memory locations which
are corunon for two different inputs. Note that collisions
between nearby input values will not deteriorate the behav-
ior of the CMAC very much. Ä.fter restricting the number
of memory locations to a manageable proportion, we fo-
cus out attention on the last step in the algorithm: the
generation of the output value of the CM¡\C. The output
due to a given input vector is generated by summing the
weights sto¡ed in the assigned physical memory locations.
The number of weights depends on the number of quan-
tizing functions and dete¡mines the generalization effect of
the CMAC. When a CMAC is used as a modeling device,
the CMz\C should first learn about the process by looking
at the process in- and outputs. In the learning phase the
weights are updated by comparing the output of the CMÂC
with the real output of the process. Only a limited num-
ber of points have to be learned by the CMÀC due to the
generalization effect. Because nearby inputs influence each
other, not all possible points have to be learned. Interpo-
lation between two learned points is used if the distance
is equal to the number of quantizing functions. Figure 5

shows the result of an example using CMÀC to predict the
output of a second-order process. After a certain learning
period the output of the process is predicted very well. Suc-
cessively the input signal to the process, the process output
and the output predicted by CMÄC are shown.

To use CMAC as a controller of a dynamic process it should
be noted that it does not exhibit memory for former input
values. Therefore, the dimension of the input vector should
be chosen high enough. Initially CMÀC can be learned,
while the process is controlled in a more or less conven-
tional way. CMAC observes the response of the process
and the inputs applied. If similar behavior is desired in the
future, CMA.C will remember what input signal should be
applied to the process. After a certain period of training,
CMAC can control the system, although it might keep on
learning for further improvements or be able to respond to
changes in the process.

It is interesting to nole the analogy to the way movements
are learned by the brain. Initially, move¡nent is jerkv and
slow and needs the full attention of the brain. After train-
ing, movements are controlled subconsciously by the cere-
bellum in a kind of play-back mode. ,A.fter a learning phase

which could be short if the right parameters are chosen

I Venema], a very fast method for predicting output sig-
nals or producing process input signals is obtained due to
the table lookup principle. CMÄC is capable of control-
ling nonlinear processes and processes which are difficult to
model with a speed independent of the complexity of the
process. A. problem is the validity of the table lookup. lf
some of the parameters of the process change, the stored
information which is not explicitely related to the process
parameters can not be adapted immediately, while the in-
formation about the process, due to the mapping proce-
dure, is spread all over the table. Therefore questions arise
as to the validity of data, although by a so-called learning
factor continuous updaling of the table can be performed.

7 Conclusions

In this paper an attempt has been made to review some
of the current attempts to introduce ideas from artificial
intelligence into feedback control systems. Expert systems
seems well suited for the supervison of dillerent control al-
gorithms They offer a good way to structure the systems in
such a way that the supervison logic is well separated from
the control algorithms. There are also interesting possibli-
ties to introduce knowledge as to when a particular control
algorithm can be applied in the feedback system, hence of-
fering control systems with a higher level of automation.
A key difficulty which has not been solved properly is the
finding of suitable mechanisms for reasoning about time.

Knowledge-based and intelligent systems can be
used for direct and indirect cont¡ol. In the latter case they
are able to control unknown, nonlinear or time-varying sys-
tems provided that they are supervised. À supervisory layer
is necessary to guarantee the stability and consistency of
the control system. The most useful features of Learning
Systems are the speed of operation and the possibility to
control non-linear processes and processes that are difficult
to model. Ä combination with knowledge-based systems
can be used to ameliorate the system behavior by checking
the consistency of gathered information and tuning some
of the learning parameters of the learning system. Intelli-
gent systems will penetrate into all levels ol a multi-layered
information and control system. Provisions should be con-
sidered to pass on adequate information between the differ-
ent levels of automation and to translate this info¡mation
to key paramete¡s relevant to the given levels. Finally, it
should be stated that intelligent control is a very promising



Figure 5: CMAC as a predictor

and challenging field of research, however, in many cãses a

well-tuned conventional or adaptive controller will perform
satisfactorily and should not be replaced by a more sophis-

ticated, intelligent controller as long as there is no evidence

that this is necessary because of the possibilities of serious
malfunctioning under certain conditions.
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