
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon
ionization processes

Mauritsson, J; Johnsson, Per; Lopez, Rodrigo; Varju, Katalin; L'Huillier, Anne; Gaarde, MB;
Schafer, KJ
Published in:
Journal of Physics B: Atomic, Molecular and Optical Physics

DOI:
10.1088/0953-4075/38/13/018

2005

Link to publication

Citation for published version (APA):
Mauritsson, J., Johnsson, P., Lopez, R., Varju, K., L'Huillier, A., Gaarde, MB., & Schafer, KJ. (2005). Probing
temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes. Journal of
Physics B: Atomic, Molecular and Optical Physics, 38(13), 2265-2278. https://doi.org/10.1088/0953-
4075/38/13/018

Total number of authors:
7

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1088/0953-4075/38/13/018
https://portal.research.lu.se/en/publications/909d58fb-0219-43ef-8a51-bd465f51f012
https://doi.org/10.1088/0953-4075/38/13/018
https://doi.org/10.1088/0953-4075/38/13/018


Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon

ionization processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. B: At. Mol. Opt. Phys. 38 2265

(http://iopscience.iop.org/0953-4075/38/13/018)

Download details:

IP Address: 130.235.188.104

The article was downloaded on 05/07/2011 at 07:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/38/13
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 2265–2278 doi:10.1088/0953-4075/38/13/018

Probing temporal aspects of high-order harmonic
pulses via multi-colour, multi-photon ionization
processes

J Mauritsson1, P Johnsson2, R López-Martens2, K Varjú2, A L’Huillier2,
M B Gaarde1 and K J Schafer1

1 Department of Physics and Astronomy, Louisiana State University, Baton Rouge,
LA 70803-4001, USA
2 Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund, Sweden

E-mail: mauritsson@phys.lsu.edu

Received 21 March 2005, in final form 22 March 2005
Published 14 June 2005
Online at stacks.iop.org/JPhysB/38/2265

Abstract
High-order harmonics generated through the interaction of atoms and strong
laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV)
radiation on a femtosecond or even attosecond time-scale. In order to be a
useful experimental tool, however, this radiation has to be well characterized,
both temporally and spectrally. In this paper we discuss how multi-photon,
multi-colour ionization processes can be used to completely characterize either
individual harmonics or attosecond pulse trains. In particular, we discuss
the influence of the intensity and duration of the probe laser, and how these
parameters effect the accuracy of the XUV characterization.

1. Introduction

The production of extreme ultraviolet (XUV) radiation through high-order harmonic
generation [1] is currently a very active field of research [2]. This is because the harmonic
pulses offer unprecedented time resolution in the XUV wavelength regime, which makes them
complementary to longer pulsed synchrotron sources. The generated harmonic spectrum
consists of a comb of frequencies, separated by twice the fundamental frequency, up to a
characteristic cutoff energy [3]. On the one hand, each tooth of the comb corresponds in time
to a pulse of femtosecond (fs, 10−15 s) duration [4–6]; while on the other hand, the total comb
may correspond to a train of bursts with attosecond (as, 10−18 s) duration [7–12]. Isolated,
single attosecond pulses can be produced if the harmonic emission is confined to less than
half an optical cycle of the driving field [13]. Both individual harmonics and attosecond
pulses enable many new time-resolved experiments [14–16] and are also a useful tool to probe
electron continuum dynamics [17].
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In this paper we discuss different methods to measure the duration and the time–frequency
modulation of the harmonic emission based on photoelectron spectroscopy. The total harmonic
field, ε̃XUV(t), is a coherent sum of the individual harmonics:

ε̃XUV(t) =
∑

q

ε̃q(t) =
∑

q

Fq(t) e−i[qω1t+�q(t)], (1)

where Fq(t) is the electric field envelope of the qth harmonic, �q(t) is the harmonic phase and
ω1 is the fundamental driving frequency. When considering the time–frequency structure of
the harmonic emission, it is useful to separate the total harmonic phase �q(t) into a constant
term and a time-varying term:

�q(t) = φ0
q + φq(t), (2)

where the absolute phase φ0
q is chosen so that the temporal phase φq(t) is zero for t = 0.

For individual harmonics, φ0
q is only an absolute phase shift of the carrier wave, and their

time–frequency structure is determined solely by Fq(t) and φq(t). For an attosecond pulse
train (APT), however, the shape and duration of the bursts are determined by the variation of
Fq(t) and �q(t) with q, since the q dependence determines the phase-locking of the different
harmonics. Therefore, the absolute phase φ0

q determines the average shape of the bursts, while
the temporal phase, φq(t), may alter the shape from pulse to pulse in the APT [6, 18]. In order
to completely characterize the harmonic emission Fq(t), φ0

q and φq(t) have to be measured
simultaneously.

For high-order harmonic emission, the time-dependent frequency consists mainly of a
linear chirp [19]. This applies to both single harmonics [6] and attosecond pulses [8, 11]
synthesized from several harmonics. For the qth harmonic, the time-dependent frequency is
given by

ωq(t) = qω1 +
dφq(t)

dt
= qω1 + bqt + O(t2), (3)

where the chirp rate bq is used to describe the linear frequency modulation. For the attosecond
bursts, the important parameter is the variation of φ0

q with q. Defining the absolute phase
difference between consecutive harmonics as �φ0

q+1 = φ0
q − φ0

q+2, this is proportional to the
average group delay of the set of harmonics centred around the frequency (q + 1)ω1, and a
variation of �φ0

q+1 with q leads to a time-dependent frequency modulation on each attosecond
burst.

The frequency modulation of the harmonic emission is imposed by the non-trivial electron
dynamics in the generation process [20, 21]. While this has long been understood theoretically
[22], the tools needed to experimentally measure ultrashort pulses in the XUV wavelength
region have only recently been developed [4–7, 23, 24]. The experimental measurement
techniques are almost all based on photoelectron spectroscopy, most often using cross-
correlations between the unknown XUV pulse(s) and a known IR pulse. The cross-correlations
are performed in a pump–probe arrangement, and we will refer to the XUV pulses as the pump
and the dressing IR field as the probe from here on. The needed synchronization between
the pump and the probe is usually achieved by using the same IR field to both generate the
harmonics and perform the cross-correlation.

In the perturbative regime, the presence of a moderately strong IR field modifies the XUV
photoelectron spectra in two ways. First, it adds sidebands to the main XUV absorption peaks
[25–27]. These sidebands are the result of laser induced transitions from one continuum
state to another by the additional absorption or emission of an IR photon. Second, it induces
a ponderomotive shift (AC Stark shift), which increases the ionization potential, thereby
lowering the photoelectron energy of the absorption peaks. While the first effect is desirable,
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the second may introduce difficulties when extracting the XUV pulse information from the
sideband signal. Both effects depend on the IR intensity. Increasing the intensity increases
the visibility of the sidebands, making the cross-correlation measurement easier. However, it
also yields a larger ponderomotive shift, which complicates the data analysis.

In the first section of this paper, we study the case where only one harmonic contributes
to the ionization in the presence of a moderately strong IR field. We present a simple model
incorporating the two intensity effects discussed above and show how the time–frequency
structure (i.e. Fq(t) and φq(t)) of the XUV pulse can be retrieved from the energy-resolved
sideband signal. We also study the ponderomotive shift with special emphasis on the important
ratio between the durations of the XUV and IR pulses. If the same pulse that generates the
harmonics is used as a probe, the probe will inevitably be longer than the XUV pulse, due to the
non-linearity of the harmonic generation process. It is, however, possible to have an IR pulse
with a duration shorter than that of the XUV if the two pulses are manipulated independently
[6]. We show that the effect of the ponderomotive shift of the sidebands is significantly
reduced using a shorter IR probe, thereby increasing the accuracy of the measurement.

In the second section of this paper, we expand the model to include several harmonics
which can form an APT if properly synchronized. Since the harmonics are separated by 2ω1,
where ω1 is both the frequency of the fundamental pulse driving the generation and also the
frequency of the probe, each sideband will now receive contributions from two consecutive
harmonics. The different contributions to the same sideband interfere, and the sideband signal
will be modulated as a function of the time-delay, �t , between the pump and the probe.
From this modulation the absolute phase difference, �φ0

q+1 = φ0
q − φ0

q+2, between successive
harmonics at (q + 2)ω1 and qω1 can be retrieved [7]. Knowing �φ0

q+1 and the easily measured
harmonic intensities, the time structure of the harmonic emission can be reconstructed. So far,
reconstructions based on this procedure have assumed that each harmonic consists of only one
frequency (i.e. φq(t) = 0). In this case the reconstructed time structure will, therefore, only
be the average time structure of the pulses in the APT [24]. In order to accurately characterize
the total harmonic radiation, both φq(t) and φ0

q have to be measured simultaneously, together
with Fq(t). We show that one way of doing this is to combine the two methods and analyse
the time-gated energy-resolved sidebands (TIGERS).

2. Two-colour, multi-photon photoelectron spectra

In this section we analyse the photoelectron spectra resulting from the ionization of an atom
by only one harmonic (with sufficient energy for one photon ionization) in the presence of a
moderately strong IR pulse. We start without the IR field, in which case the photoelectron
spectrum can easily be calculated from first-order time-dependent perturbation theory. Using
the dipole approximation, the amplitude of the photoelectron peak, A(ω), can be expressed
as the Fourier transform of the time-dependent XUV field, ε̃q(t), shifted by the ionization
potential, Ip, of the target atom. We use atomic units, unless otherwise stated. The amplitude
is

A(ω) =
∫ ∞

−∞
dt eiωt µ̃qgε̃q(t) eiIpt , (4)

where µ̃qg = |µ̃qg| e−iφat
q is the complex ground state-to-continuum dipole matrix element.

The characteristic atomic phase φat
q [28] does not affect the one photon absorption spectrum

since I (ω) = |A(ω)|2, but it becomes important for the multi-colour, multi-photon ionization,
described in section 3, where different quantum paths lead to the same final state.
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Figure 1. Schematic of two-colour, two-photon ionization. The presence of the IR field during
the ionization modifies the XUV photoelectron spectrum in two ways. Sidebands are added to
the main peak and the ponderomotive shift of the ionization potential decreases the final electron
energy.

The presence of an IR pulse during the ionization process alters the photoelectron
spectrum in, mainly, two ways: (1) the photoelectron peaks are shifted in energy due to
the ponderomotive increase of the ionization potential and (2) sidebands appear on both sides
of the principal peak due to the additional absorption or emission of an IR photon, as illustrated
in figure 1.

Let us first examine the effect of the IR pulse on the main absorption peak, before
introducing the sidebands. The presence of an IR field during the ionization process leads
to an increase of the effective ionization potential of the atoms [29, 30]. This effect can be
understood as upon ionization the electron must acquire sufficient energy to overcome the
ionization potential, but also have sufficient energy to quiver in the field. The quiver energy
is not supplied by the IR field but instead by the XUV photon resulting in a lower average
electron kinetic energy [26]. This can be included in the simple model (equation (4)) by
adding a time-dependent phase �P (t):

A(ω,�t) =
∫ ∞

−∞
dt eiωt µ̃qgε̃q(t) eiIpt ei�P (t−�t), (5)

where �t is the time-delay between the IR and the XUV pulses. The phase, �P (t), is given
by �P (t) = α

∫ t

−∞ dt ′IIR(t ′), where the ponderomotive coefficient α is 93.3λ2 meV TW −1

cm−2 if the wavelength is in µm. The IR probe does not necessarily have the same duration
as the XUV pulse, and the relative duration between the pulses turns out to be important when
describing the ponderomotive effect. In most experiments the IR probe is longer than the XUV
pulse in which case �P (t) will vary almost linearly across the duration of the XUV pulse. A
linear phase variation results only in an energy shift of the harmonic peak. At �t = 0 this
shift is maximized. The variation of the harmonic peak as a function of time-delay is depicted
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Figure 2. Ponderomotive shift of the main ionization peak as a function of time-delay, �t , between
the pump and the probe. The white, dashed line corresponds to the centre of the peak when no IR
pulse is present.

Figure 3. Sidebands as a function of time-delay, �t , between the pump and the probe, where the
pump has a linear chirp. The chirp on the XUV pump results in a tilt of the sideband, i.e. a linear
variation in energy as a function of time-delay.

for this pulse configuration in figure 2. If the IR pulse is shorter than the XUV pulse, most of
the ionization occurs without the presence of the IR. In this case �P (t) is best described as
a phase modulation, thereby changing the structure of the resulting peak but not significantly
its position. There are many interesting effects with regard to this reshaping of the spectrum,
but it is outside the scope of this paper and will be published elsewhere [37].

Even though the ponderomotive shift can be used to estimate the duration of the XUV pulse
[33], the emphasis in this paper is on how to use the sidebands to extract the time–frequency
structure of the XUV pulse(s). We therefore need a simple model which includes all the
sideband features that are essential for the time–frequency characterization. The amplitude of
the first-order sidebands can be calculated if the real IR field, εIR(t) = FIR(t)(eiω1t + e−iω1t ),
is added to the model

ASB(ω,�t) =
∫ ∞

−∞
dt eiωt µ̃qgε̃q(t)εIR(t − �t) eiIpt ei�P (t−�t). (6)

This is a simplified version of second-order perturbation theory. The two photons are assumed
to be absorbed at the same time and that only the lowest-order sidebands are included. The
measurable quantity is ISB(ω,�t) = |ASB(ω,�t)|2, which is illustrated in figure 3 where
ionization from the harmonic has also been included. Apart from the additional phase terms,
both the equation and the resulting time–frequency representation strongly resembles the
equation and traces used in frequency-resolved optical gating (FROG) measurements [31]
with the IR probe acting as the gate function. This type of FROG measurement, where the
pulse to be measured is cross-correlated with a reference pulse, will from here on be called
XFROG in analogy with the usual FROG nomenclature. Just as FROG traces are used to
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characterize optical pulses, the sidebands can be used to characterize the time–frequency
structure of the XUV pulse.

The sideband signal integrated over energy corresponds, in time, to the convolution of the
temporal profiles of the XUV and IR pulses. Introducing, for Gaussian pulses, r as the ratio
τIR/τq , where τIR and τq are the durations of IR and XUV pulses respectively, the full width
at half maximum of the sideband signal is given by [4]

τSB = τq

√
1 + r2. (7)

Therefore, by knowing the IR pulse duration the harmonic duration can be extracted from the
energy integrated sideband. Reducing the probe duration improves the temporal resolution,
but in the limit with the best temporal resolution, when r → 0, no spectral resolution is
possible. The choice of probe duration is, therefore, a compromise between the temporal and
spectral resolution.

The position of the sideband in energy can vary as a function of time-delay between the
two pulses for three reasons: (i) if there is a chirp on the XUV pulse, bq ; (ii) if there is a chirp
on the IR probe; or (iii) if the IR intensity is sufficiently strong to introduce a ponderomotive
shift. We are here mainly interested in the first reason, and the IR probe will therefore be
assumed not to have a chirp and to be sufficiently weak that the ponderomotive shift can be
neglected (we will later show the effects of an increased IR intensity). With these assumptions
the tilt of the sideband is only due to the chirp of the XUV pulse and the resulting slope of the
sideband (the variation of the peak energy with time) will be denoted bSB. Due to the duration
of the probe, bSB �= bq . It can be seen from equation (6) that for a given time-delay, �t ,
the sidebands are generated not mainly at the peak of the IR pulse but instead at �t/(1 + r2)

where the product Fq(t)FIR(t − �t) is maximized. Knowing the probe duration, however, it
is possible to calculate

bq = bSB[1 + r2]. (8)

In an experiment the IR pulse used as a probe has to be sufficiently strong to generate
detectable sidebands and may therefore introduce a ponderomotive shift that has to be
accounted for when the chirp rate is extracted [4]. For the sidebands, just as for the harmonic
peak, the ponderomotive shift turns out to be determined not only by the IR intensity but also
by the relative duration between the XUV and IR pulses. The sidebands are only generated
when both pulses are present, however, and so the effect of the relative durations on the
sideband position is different from the effect on the main peak. To analyse the effect of the IR
intensity and duration on the generated sidebands, we calculate the average energy of the
sideband

〈E〉 =
∫

dEE|ASB(E)|2∫
dE|ASB(E)|2 . (9)

For Gaussian pulses this can be written as the sum of two terms

〈E(�t)〉 = −Up

√
1 + r2

2 + r2
e−4 ln(2)(�t/τd )2

+
bq

1 + r2
�t, (10)

where Up is the ponderomotive shift at the peak IR intensity and τd is a characteristic decay
time given by

τd = τSB

√
1 + 2/r2. (11)

There are several interesting things to notice here: (1) the harmonic chirp enters the equation
in the second term, corrected for the relative duration, as described previously; (2) the

ponderomotive shift is reduced with decreasing IR duration (the
√

1+r2

2+r2 factor) and (3) the
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Figure 4. A comparison between the sideband spectra for three different time-delays obtained by
solving the TDSE (symbols) and using the simplified model (lines). Both the IR pulse and the
XUV pulse had a Gaussian pulse shape with a duration of 10.2 fs FWHM and the IR intensity was
1012 W cm−2.

characteristic decay time τd increases as r decreases so that the sideband merely shifts while
the shape remains more or less unaffected for small values of r (experimental demonstration of
this was recently published in [6]). This means that in the limit of a very short probe the chirp
rate of the harmonic can be extracted directly from the experimental data. It should be noted
that even though the ponderomotive shift is reduced, the effect on the sideband position is such
that the separation between two sidebands remains 2ω1 and that the absorption and emission
of an IR photon from two consecutive harmonics still yield the same final sideband energy.
The advantages of using an IR probe that is shorter than the XUV pulse to be measured are:

(i) the duration of the XUV pulse can be determined more accurately (equation (7));
(ii) the chirp rate of the XUV pulse can be determined more accurately (equation (8));

(iii) the distortion of the sideband due to the ponderomotive shift is reduced (equation (10)).

The results presented above are based on perturbation theory. In order to confirm the
validity of these results, we solve the time-dependent Schrödinger equation (TDSE) for the
two-colour, multi-photon ionization. We do this by numerical integration within the single
active electron approximation [34], using a pseudo-potential [35] to describe xenon. In figure 4
we compare the modelled sideband with the results from the TDSE calculation for three
different time-delays. The agreement is very satisfactory, in particular the positions of the
peaks agree very well (within a few per cent) when comparing the two calculations.

3. Multi-colour, multi-photon photoelectron spectra

In this section we expand the model described above, to take several harmonics into account
simultaneously. We also demonstrate how the complete time structure of the harmonic
emission can be reconstructed from measurements of the photoelectron spectra as a function
of time-delay between the harmonics and the IR probe. The IR intensity used should not be too
high, and a good rule of thumb is that the strengths of the sidebands should never exceed 50%
of that of the principal peaks [39]. In this case each sideband is generated with contributions
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Figure 5. Schematic of three-colour, two-photon ionization. When two harmonics contribute to
the ionization process, the intervening sideband is generated through two different ionization paths.
These two paths interfere, which results in a modulation of the sideband intensity as a function of
pump–probe delay.

from two consecutive harmonics (see figure 5), and higher-order sidebands can be neglected.
Assuming that the IR intensity is kept sufficiently low, it is therefore enough to include only
two harmonics in the model, since the total photoelectron spectrum can then be concatenated
from these results.

The sideband spectrum containing contributions from two consecutive harmonics can be
calculated using equation (6) if µ̃qgε̃q(t) is replaced by µ̃qgε̃q(t) + µ̃q+2gε̃q+2(t), i.e.

ASB(δωq,�t) =
∫ ∞

−∞
dt eiδωq t [µ̃qgε̃q(t) + µ̃q+2gε̃q+2(t)]εIR(t − �t), (12)

where the ponderomotive shift has been left out and δωq = ω − (q + 1)ω1, thereby centring
the sideband around δωq = 0. Equation (12) can be used for arbitrarily shaped pulses, but we
will still assume that the probe is transform limited. It is well known that the intensity of the
sideband, which is given by ISB = |ASB|2, will be modulated as a function of pump–probe
delay when the sideband is generated from two harmonics and that the relative phase between
the harmonics can be extracted from this modulation [7, 24]. The modulation of the sideband
intensity is the result of interference between the two ionization paths, and if the two harmonics
that contribute to the sideband have no chirp (or, as we will argue, if they have the same chirp
rate) the modulated part is given by

ISB(�t) ∝ cos
(
2ω1�t − �φ0

q+1 − �φat
q+1

)
, (13)

where �φ0
q+1 = φ0

q − φ0
q+2 is the relative phase between the contributing harmonics and

�φat
q+1 = φat

q − φat
q+2 is the difference in the characteristic atomic phases of the two

ionization pathways [28]. Assuming that the atomic dipole phase can be calculated accurately
[38, 39], the relative phase between the harmonics can be extracted from this modulation [7].
This description, however, assumes that the two harmonics have the same time-dependent
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frequency modulation, φ(t), which is usually not the case [6]. If consecutive harmonics have
different frequency modulations, the timing between the pulses in the resulting APT will vary
across the train [18]. In order to use an attosecond train in an experiment, knowledge of the
pulse-to-pulse timing is crucial.

An example of photoelectron spectra at different time-delays, calculated using the strong
field approximation [40], are shown on the left side of figure 6 for a realistic pulse train. Most
of the sidebands show a pronounced tilt, i.e. the position of their peak energy varies with
probe delay. From this tilt, the average chirp rate of the two contributing harmonics can be
extracted, using the technique described in the previous section. To completely reconstruct
the attosecond pulse train, however, we need the individual chirp rates, which requires that the
difference in chirp rates between consecutive harmonics also can be measured.

Fortunately, the modulation of the sideband intensity is altered by the difference in chirp
rates, which provides a means to measure this difference. This modulation varies as a function
of both time (delay) and energy, but sufficient information is contained in one line-out per
sideband, and from here on we will only consider the modulation at one energy per sideband,
at δωq = 0. The total time–frequency representation of the sideband is derived in appendix for
pulses with Gaussian envelopes. The physical origin of the change in sideband modulation can
be understood as follows. When the chirp rates of the two harmonics are different, different
IR frequencies are needed at different time-delays to reach the central energy of the sideband.
With different IR frequencies used to generate the central part of the sideband, the periodicity
of the modulation will vary with time-delay.

The change in the periodicity of the sideband modulation with probe delay can be
accounted for if a time-dependent phase term, given by −β�bq+1

�t2

2 , is added to equation (13).
�bq+1 is the sought for difference in chirp rates, and β �= 1 is a result of the non-zero probe
duration. β approaches 1 when the probe duration approaches 0. In the experimentally
common limit where the bandwidth needed to account for the chirp rate is small compared to
the bandwidth needed to account for the duration (i.e. [bq/(2A)]2 	 1, where A = 2 ln 2

τ 2
XUV

+ 2 ln 2
τ 2

IR
)

β can be written as β = [1/(1 + r2)]2. This access to �bq+1 provides a sufficient means to
retrieve the individual chirp rates of the two harmonics from their common sideband.

Unfortunately, an additional phase correction also needs to be added to equation (13)
in order to accurately describe the effect of the difference in chirp rates, namely −�φcorr

q+1 =
− 1

2

[
arctan

( bq

2A

) − arctan
( bq+2

2A

)]
. This phase term introduces an overall phase shift of the

sideband modulation and needs, just like the atomic dipole phase, to be accounted for if the
time structure is to be reconstructed correctly. The magnitude of this correction decreases
with decreasing probe duration. The final expression for the modulated part of the sideband
signal at δωq = 0 reads

ISB(�t) ∝ cos

(
2ω1�t − �φ0

q+1 − �φat
q+1 − �φcorr

q+1 − β�bq+1
�t2

2

)
. (14)

This equation has a structure similar to the SPIDER equation ([32]) and the same algorithm
that is used to retrieve the spectral phase in a SPIDER measurement can be used to extract
�bq+1, thereby making the phase retrieval very fast and robust. The time-independent phase
difference, �φ0

q+1, can still be retrieved using the same procedure as is used when the harmonics
are assumed to have the same chirp rates.

An example of a reconstruction using TIGERS is shown in figure 6 for a realistic pulse
train. The chirp rates of harmonics 13 through 23 generated in argon by a 20 fs, 800 nm IR pulse
with an intensity of 1.5 × 1014 W cm−2 are calculated using the strong field approximation.
The strong field approximation is also used to calculate the photoelectron spectra at different
time-delays when these harmonics are used to ionize argon in the presence of an IR field.
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Figure 6. Reconstruction of an attosecond pulse train. To the left the calculated delay-dependent
photoelectron spectrum from argon is shown for harmonics 13 to 23 and an IR probe of 5 fs
duration. The sidebands exhibit a tilt like in figure 3, here increasing with order, but also a
modulation due to the interference between pathways. To the right the pulse train reconstructed
using the method described in the text is shown. The insets show magnified parts of the time
structure in the beginning, the centre, and the end of the train respectively. In the insets the solid
line shows the true time structure, the circles show the result of the reconstruction and the dashed
line shows the result of a reconstruction where the harmonic chirp has been ignored.

The duration of the IR probe is 5 fs and the harmonic durations are 10 fs, which gives r = 1
2

and (bq/2A)2 does not exceed 0.16 for any of the harmonics. From the tilt in energy of the
sidebands as a function of pump–probe delay, the averaged chirp rates of the harmonics are
extracted. They get increasingly more negative with increasing harmonic order. �φq+1 and
�bq+1 are calculated from line-outs at δωq = 0 for each sideband. The change in the chirp
rate from one harmonic to the next leads in the time-domain to a variation of the periodicity of
the pulses in the train [6]. This effect is overlooked if the harmonic chirp rates are ignored in
the reconstruction (dashed line on top of figure 6), but accurately accounted for using TIGERS
(solid line and circles on top of figure 6).

In most cases the phase correction factors in equation (14) are rather small, even though
probe pulses longer than the individual harmonic pulses are frequently used, since the chirp
rates of consecutive harmonics usually vary only slowly with the harmonic order. It is
therefore a good approximation to use equation (13) when measuring the duration of the
pulses in an APT. However, if these techniques are to be used, for instance, to measure the
small contributions from the atomic phases [39], the additional corrections have to be known
and accounted for. Also, if one wants to tailor the attosecond pulse trains using, for instance,
chirped XUV optics, the corrections may very well be important.

4. Conclusions

In this paper we have summarized the multi-photon, multi-colour photoelectron spectroscopy
techniques used to characterize the time–frequency structure of ultrashort XUV pulses
produced by high-order harmonic generation. We have demonstrated the advantages of using
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a probe pulse that is shorter than the XUV pulse to be measured (or shorter than the individual
harmonics that produce the APT). An analytic expression has been derived for the total time–
frequency representation of a sideband generated from two consecutive harmonics. Based
on this expression, it has been shown that it is possible to accurately characterize individual
harmonics even when the sideband used originates from two different harmonics, and that it
is possible to completely reconstruct the entire temporal structure of the APT.
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Appendix. Derivation and definitions

The time–frequency representation of a sideband generated with contributions from two
harmonics can be calculated numerically for arbitrary pulse shapes, but the underlying physics
is easier to understand if we can derive an analytic expression. Assuming that the contributing
harmonics and the IR probe have Gaussian envelopes, it is possible to derive such an expression.
We furthermore assume that the IR probe has a transform limited pulse duration and that
the frequency modulation of the harmonics can be described as linear chirps. With these
assumptions the four fields used in the derivation can be expressed as



ε̃q(t) = exp(−aXUVt2) exp
(−iqω1t − iφ0

q − ibq
t2

2

)
ε̃q+2(t) = exp(−aXUVt2) exp

(−i(q + 2)ω1t − iφ0
q+2 − ibq+2

t2

2

)
ε̃+

IR(t) = exp(−aIRt2) exp(−iω1t)

ε̃−
IR(t) = exp(−aIRt2) exp(+iω1t)

(A.1)

where aXUV = 2 ln 2
τ 2

XUV
, aIR = 2 ln 2

τ 2
IR

. The IR field, εIR = ε̃+
IR + ε̃−

IR, is real, but the use of

complex notation distinguishes between the absorption of an additional IR photon, ε̃+
IR, and

the stimulated emission of one, ε̃−
IR.

The following definitions are used in the derivation:


A = aXUV + aIR

K = √
π e−aIR�t2

φcorr
j = 1

2 arctan
( bj

2A

)
W−1

j = 4
√

A2 +
b2

j

4

Mj(ω,�t) = |µjg|Wj exp
(
W 4

j

( aIR�tωbj

2 − ω2A
4 + Aa2

IR�t2
))

Qj(ω) = W 4
j ω2bj/8

Sj (ω,�t) = W 4
j aIRAω�t

(A.2)

where the indices j label the harmonics.
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We are interested in finding an expression for the (q + 1) th sideband and will assume that
the IR intensity is so low that it is sufficient to include only the two harmonics with frequencies
qω1 and (q + 2)ω1, from here on labelled 0 and 2 respectively. Using perturbation theory, the
amplitude of the sideband can be expressed as

ASB(ω,�t) =
∫ ∞

−∞
dt eiωt [µ̃0gε̃0(t) + µ̃2gε̃2(t)]εIR(t − �t), (A.3)

where the ponderomotive shift and the ionization potential have been left out for simplicity.
By replacing ω with the frequency difference δωq = ω − (q + 1)ω1 and using the definitions
for the fields (A.1), equation (A.3) can be written as

ASB(δωq,�t) =
∫ ∞

−∞
dt eiδωq tei(q+1)ω1t

{
µ̃0gε̃0(t)ε̃

+
IR(t − �t) + µ̃2gε̃2(t)ε̃

−
IR(t − �t)

}
(A.4)

= e−aIR�t2
∫ ∞

−∞
dt eiδωq te2aIR�t ·t−At2

{
µ̃0g exp

(
−i

[
φ0

0 + b0
t2

2
− ω1�t

])

+ µ̃2g exp

(
−i

[
φ0

2 + b2
t2

2
+ ω1�t

])}
(A.5)

= e−aIR�t2
∫ ∞

−∞
dt

{
µ̃0g exp

(−i
[
φ0

0 − ω1�t
]) · exp

(
−

[
A + i

b0

2

]
t2

+ i[δωq − 2iaIR�t]t

)
+ µ̃2g exp

(−i
[
φ0

2 + ω1�t
])

× exp

(
−

[
A + i

b2

2

]
t2 + i[δωq − 2iaIR�t]t

)}
. (A.6)

Integration leads to

ASB(δωq,�t) = e−aIR�t2

{
µ̃0g exp

(−i
[
φ0

0 − ω1�t
]) ·

√
π

A + i b0
2

× exp

(
− (δωq − 2iaIR�t)2

4
(
A + i b0

2

)
)

+ µ̃2g exp
(−i

[
φ0

2 + ω1�t
])

×
√

π

A + i b2
2

· exp

(
− (δωq − 2iaIR�t)2

4
(
A + i b2

2

)
)}

, (A.7)

which can be further simplified by using√
1

A + ibj/2
= Wj × e−iφcorr

j (A.8)

and some more definitions from (A.2) to give

ASB(δωq,�t) = K

{
µ0gW0 exp

(−iφcorr
0

)
exp

(
−W 4

0

4
(A − ib0/2)(δωq − 2ia�t)2

)
× exp(i(ω1�t − φ0)) + µ2gW2 exp

(−iφcorr
2

)
× exp

(
−W 4

2

4
(A − ib2/2)(δωq − 2ia�t)2

)
exp(−i(ω1�t + φ2))

}
. (A.9)
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With some algebra and a few more definitions from (A.2), this expression can be further
rewritten as

ASB(δωq,�t) = K
{
M0 exp

(−iφat
0

)
exp

(−iφcorr
0

)
exp

(
i
(
ω1�t − φ0 − W 4

0 a2b0�t2/2
))

× exp(i(Q0 + S0)) + M2 exp
(−φat

2

)
exp

(−iφcorr
2

)
× exp

(
i
(−ω1�t − φ2 − W 4

2 a2b0�t2/2
))

exp(i(Q2 + S2))
}
. (A.10)

From this expression the intensity of the sideband, which is given by

ISB(δωq,�t) = ASB × A∗
SB, (A.11)

can be calculated. The final expression for the time–frequency representation of the sideband
is

ISB(δωq,�t) = K2

{
M2

0 + M2
2 + 2M0M2 cos

(
2ω1�t − �φ1 − �φat

1 − �φcorr
1

− a2�t2

2

[
W 4

0 b0 − W 4
2 b2

]
+ �Q1 + �S1

)}
, (A.12)

where all differences are defined as

�X1 = X0 − X2. (A.13)

Many of the terms in equation (A.12) are needed to describe the total time–energy structure
of the sideband, and the equation is significantly simplified if it is only evaluated for δωq = 0,
in which case the modulation of the sideband intensity is given by

ISB(δωq,�t) ∝ cos

(
2ω1�t − �φ1 − �φat

1 − �φcorr
1 − a2�t2

2

[
W 4

0 b0 − W 4
2 b2

])
. (A.14)

This equation still includes sufficient information to retrieve �b1 since the different chirp rates
are included in the derivation.
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