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A Simple One-Sweep Algorithm for Optimal rate at0.67 at bit-error rate (BER) ofl0~*. Furthermore, good
APP Symbol Decoding of Linear Block Codes simulation results have been shown for very simple block codes,
such as Hamming codes, as component codes, see [2].
Thomas JohanssoMember, IEEE The purpose of this correspondence is to deriveoptimal soft-
and Kamil Zigangirov,Member, IEEE input/soft-output symbol-decoding algorithm for linear block codes.

It will require only one forward recursion on a trellis of at most
2N=K states each with a metric as a real number. Hence in many
Abstract—Soft-input/soft-output symbol decoding plays a significant cases, it has a complexity that is lower than the optimal decoding
role in iterative decoding. We propose a simple optimal soft-input/soft- methods mentioned above. Its low complexity is shown at its most

output symbol decoding algorithm for linear block codes which requires hen decoding Hammina codes. since then almost all information
one forward recursion using a ftrellis. For many codes the decoding w ing ing » St : :

complexity is lower than previous methods, such as the algorithm by calculated in the algorithm will be efficiently used. This will be
Bahl et al [1], and the decrease is shown at its most when decoding demonstrated by an example. Finally, we consider a generalization

Hamming codes. to the nonbinary case.

Index Terms—Linear block codes, soft-output symbol decoding, trel-

lises.
Il. NOTATION AND PROBLEM FORMULATION

We model our communication system as follows. A source with
I. INTRODUCTION alphabetZ = {0,1,---,I — 1}, where the symbols are chosen

Recently, much interest has focused around iterative decoding {@#ependently of each other with equal probability, feeds an encoder
turbo decoding) due to the impressive simulation results presentedMhich in our case is a linear block encoder. The source symbols are
[4]. The basic idea is to decode in steps, by transferring conditiorféivided into blocks of K" symbols, denoted = (ui,u2,---, ux),
probabilities, or “soft” information, between consecutive steps. iand the corresponding encoded symbols, denated < » < N, are
particular, [4] used a two-dimensional systematic feedback convollien transmitted over any memoryless noisy channel. We assume that
tional code including a large pseudorandom interleaver, and decodie@ symbols are modulated into analog waveforms that are sent over
iteratively. For an overview of iterative decoding, see [2]. the channel. Let = (v1,v2,- -+, vN) be the transmitted codeword,

A crucial part of the iterative decoding is the decoding algorithm;. € Z.
taking soft inputs and delivering soft outputs for each symbol. On the receiver side, the output from the memoryless noisy channel
Such algorithms have been considered and dates back to [1]. Thiés¢he analog waveforms interfered with noise, and we assume
algorithms are refered to as soft-input/soft-output symbol decoguantization of the channel output into a finite set of possible values
ing algorithms, or APP & posteriori probability) symbol decoding from the output alphabey” = {0,1,---,J — 1}. For example, if
algorithms. we have additive white Gaussian noise, this can be thought of as the

For optimal APP symbol decoding, the Bahl, Cocke, Jelinekputput of a bank of matched filters. We suppose that the channel is
Raviv algorithm applies to trellises, and hence to both convolutiondgfined by the set of transition probabilities
codes and linear block codes [10]. The algorithm makes one forward

and one backward recursion in the trellis, and requires storage Pi; = P(jli).  i=1.2,---.I-1, j=12,---.J-1
of approximately2k’S real numbers, wherd( is the number of ) .
information bits andS is the number of states on one level in thel "€ received vector, denoted = (ry,r2,---,7x) With r, € J

trellis. For a binany{ N, K] linear block code, the trellis can containiS hence regarded as a vector of discrete random variables. The gener-
min (25, 2V %) states, and for many good linear block codes thidlization to the continuous case is omitted, but it is a straightforward

will be the case. Ik >N — K this algorithm requires storage of Procedure. Due to the memoryless channel,
approximatelyk'2” ~* real numbers, and does one forward and one N
back\(vard recursion. Other optimal symbol-by-symbol APP decoding P(rlv) = H P(ri|v). 1)
algorithms have been proposed. In [2], several methods are proposed, ol
either by a straightforward implementation of the trellis, based on
[7], or using the dual code as proposed in [6] and [7]. Summing The vectorr is the input to the decoder of the systematic linear
up the results, both methods calculate the soft outpukbforward block code, which is going to produce an estimate of the information
recursions on a trellis of at mosiin (2,2 ™) states. symbols, using the extra information through the parity-check sym-
Suboptimal decoders with reduced complexity have also bedppls. In our case, this estimate should ba posteriori probability
considered, most notably are the modifications of the above optinvactord,, = @, 60, -~ 571) on each information symbal,,
decoders to reduce complexity [2] and the soft-input/soft-outpexpressing the probability that theth source symbol was actually
Viterbi algorithm (SOVA) [3]. symboli, i = 0,1,---I — 1, conditioned on all the received channel
After the initial approach of using convolutional codes in iterativéhformation and the dependence within the codeword. Actually, the
decoding several authors have considered block codes as compoatgwrithm to be derived will produce the posteriori probability for
codes, for example, [2], [5]. Generally, block codes as componetity codeword symbol, but at this moment we are only interested in
codes perform better than convolutional codes for high rates aif¢ codeword symbols that are information symbols.
vice versafor low rates. In [2], simulated codes give a threshold Continuing, we now consider the cage= 2 with 7 = {0,1}.
The generalization to the nonbinary case is considered in the last
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H is written in the form where P(v,, = Olv € V) = 1/2,
hq Z
ho P(rlveV) = P(rlv)P(vjv e V) 9
g = 2) v
hy is the probability of receiving:, and finally,
where P(rlon = 0,0 € V)
ho = (hat, hn2se - hyv—ry), - 1<n <N = Y P(rlo)P(v|lo, =0vEV). (10)
and H” denotes the transpose &F. v =0,0EV
The information sequence = (u1,us,---,ux) IS chosen from

[ The calculation ofP(v,, = 0O|r,v € V) reduces through (8) to

u € F5;, mapped byG into the codewordv = u(G, and each . o , . o -
binary symbol is sent over the memoryless noisy channel (as anaf@écmat'on of two statisticsP(r[v € V) and P(r|v, = 0,v € V),

espectively.
waveforms). 4 . . . .
For a binary linear block code, we will now develop an APP For the given parity-check matrii, consider the following length

: . : N trellis diagram. The paths of this trellis diagram correspond to
symbol decoding algorlthrn producing the sequences;; ,;,n = 1,2,---, N. Paths of lengthn will come
P(v, =0lr,vH" =0)=P(v, =0|r,v V) (3) to the same node (state)on leveln if they have the same partial
syndrome as defined in (5). Since all partial syndromeg &re I )-
fimensional binary vectors, the total number of states at each level
is upper-bounded bg™~*. This trellis, introduced in [1], is known
as the syndrome trellis. Furthermore, it is a minimal trellis [9].

By definition, the metric of node on leveln is

for eachn, i.e., producing the probability of @ or a1, respectively,
in each position of the codeword when the receiver has the s
input values for each position of the received word. Hencé ifs
systematic this gives B(u,, = O|r,vH” =0)forn =1,2,..., K.

I1l. DERIVATION OF AN OPTIMAL SOFT-IN/SOFT-OUT
1(8,n) = P(rr v n)- 11
SyMBOL DECODING ALGORITHM ! Z (rmlvrs,n) (1)

VL B, =

We start by introducing the notation

V[, = (vi,v2,+,up), Yo = (vy,v2, -, 0N) € [FST Since
and 8, = 8,1+ 'Unhn (12)
hy we see that, in general, to stateon leveln there come two edges,
gL o= h> 4) one from states at leveln — 1 associated with,, = 0 and one from
(1.m] S states — h,, at leveln — 1 associated with, = 1. Calculation of
h., the metrics for each node at each level is then done recursively by

. ) i o . (0,0) = 1, u(8,0) = 0, ,
From this notation we define th&% — I-dimentional vector 1(0,0) -#(8,0) = 0,Vs # 0, and then
8, = »u[l.’n]]—[[lly,n] (5) w(s,n) =u(s,n — 1)P(rp|v, =0)

and we calls,, the partial syndromeNote that the partial syndrome is + (8 = ho,n = 1) P(rafvn =1). 13)

defined for any word; ,;, not nessessarily a codeword. Continuing

we introduce the cosets of the colie denotedV,, as Since the trellis contains all states at the last level, the algorithm above

’ o will require slightly more computations than in a standard trellis [1],
Ve = {v: vH' = s}, vs € Fy R [8], which considers only paths merging to state zero at the last level.
It is easily verified that (11) holds for all nodes using the above

rFILnat!g’ for the recelved vectar = {ri,rs,:,rx), We introduce calculation. From (11) it follows that
P = (Fiye s Fat Pty TN pO,N)y= > P(rle)=Y_ P(rfo) (14)
v = veV
i.e., 7+ is the received vectar with the nth position removed. nr=o c
We start the algorithm derivation. We consider the most simpénd, in general,
case, namely, when all codewords areriori equiprobable, i.e.,
Popev)=27%, weVv ®) po Ny = 3 Plrv)= ; P(rv). (15)
vivH 1l =g vEVs

and hence also ) ) )
Consider the codeword symbai,. Note that h, is the partial

P(vlv, =0,v € V) =27+, Vo € V.un =0.  (7)  syndrome caused a1, = (0,0,0,---,0,1), i.e.,

Note that the algorithm to be derived is easily adopted to the case

— I
when the K’ independent information symbols are nonuniformly h.. =(0,0,0,---,0,1) - Hpy ). (16)
distributed, which will be the case in iterative decoding. We Wi|, troduce
in such a case use a slightly different metric in the trellis defined
below. Using Bayes formula we get P(rﬂr —0veV)= Z P(rﬂu) 17)
P(v, =0lr,veV) vp=0,vEV
= Plrj. =0we )T =0 ET) g Plrylen =LveVy= 37 Pl (9)

P(r|'v € ‘f) v =1,V
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Input: P(ri|vy), P(ra|va),..., P(rnlun).
1. Initialize ©(0,0) = 1, u(s,0) = 0,Vs # 0,s € FY ¥
2. For n=1,...,N update

u(s,n) = p(s,n — DP(rplvy = 0) + p(s + hy,n — 1) P(rpfv, = 1).

3. Forn=1,...,N, set

P(rnjun=0) _ u(ha,N)
Plralun=1) u(0,N)
P(rplun=0) _ P(rnlvn=1)
Plrnlun=1) P(rnvn=0)

P(v, =0lr,veV)=

if P(ralvg = 0) # Plrplua = 1).

Output: P(vy =0|r,v € V},P(uy =0|r,v € V),...,P(uy =0|r,v € V).

Fig. 1. The proposed algorithm for the binary case.

The key observation is now that the following two equations in thee finally get
two unknowns variables
P(v, =0r,veV)

P(rylv, =00 €V) P(ralva =0)  j(ha,N)
and _ Plralvn =0) P(raJvn =1)  p(0,N)
Pirilon =1 V) Plralon =1) (Plralva =0\ _|
P(ry|v, = 1)
respectively, hold P(rp|vn =0)  p(hn. N)
, ] P(rolvn =1) (0, N)
S Plrfo) = Plrafon = OP(rE [0, = 0,0 € V) = Plralin =0)_ Plraloa =1 @

veEV -
P(ro|v, =1)  P(rp|v, =0)
+ P('rn|vn = I)P(Tih!n =1lv¢€E ‘7) (19) | ( |

S P(rlv) = P(ralva = DP(rylv, =0, € V) o
e, P(rolvn = 0) = P(rafon = 1)
+ P(rn|vn = 0)P(ry|v, =1,v € V). (20) we have to getP(v, = O|r,v € V) through another method. A
nice observation is that i’(r,|vn, = 0) = P(r,|v, = 1), this
Recall that the left-hand-sides of the above two equations are giyawsition will give no information, and hence we can just remove
by the metricsu(0, N) and p(h,, N), respectively. Hence we canit, and build a modified trellis on the othe¥ — 1 positions. In

solve for one of the unknown variables and get practice, not only the case of the exact equalityR{f, |v, = 0)
and P(r,|v, = 1) will be a problem, but also the case where the
P(rﬂpn =0,veV) absolute value of their difference is so small that the precision of
_ P(rp|vn =0)p(0,N) — P(rp|vn = L)pu(hn, N) 21) calculating (24) on a computer is too low. A possible way to solve

this would be to choose some threshold such that positions with
|P(rs|vn = 0) — P(r,.|v., = 1)| below this threshold are not treated
if in the standard way. Instead, one can permute the codeword positions
P(ro|vn = 0) # P(ra|v. = 1). so that all these bad positions, say are placed at the end of the
) codeword. If, for exampld. = 1 it is then enough to additionally
Furthermore, note thaP(vly € V) =27" and P(v|v, =0,v € V) storey(hx, N — 1) in order to calculate®(vy = Olr,v € V). The

P(ra|v, =0)2 — P(ry|v, = 1)2

= 27 +1, Therefore, (8)—(10) imply casel > 1 will require some more overhead, but will occur very
. rarely.
Z P(rlv)2="+t . 4 This completes the derivation dP(v, = O|r,v € V) and the
Plvn = Ofr,v € V) = 220V algorithm can now be described as in Fig. 1.
> P(rv)2-X The algorithm needs one list of siz' =" and the number of
veV operations is in the order a¥2" %, The algorithm resembles soft
Z P(r|v) decoding of block codes using a trellis of maximal size (unexpur-
_ on=0weV - gated) [8].
- W (22) We compare the performance with other optimal algorithms. These

optimal algorithms [6], [2], [5], have different complexity depending
and since on the code. Algorithms described in [2] sum up the situation for
binary linear block codes as follows. Far > N — K, the algorithm
> P(rlv) = P(ri|va = 0,v € V) - P(ralen = 0) (23) of Bahl et al. [1] applied to block codes with a trellis of maximal
om0, 0EV size requires storage 6¥2"V~ real values and uses both forward
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L ol + [ 2 | 3 4 1 s 1 6 | 7 |
000 {| 1| 0.300 | 0.1500 | 0.04612 | 0.02306 | 0.00383 | 0.00211 | 0.00112
001 0.00124 | 0.00255 | 0.00140 | 0.00081
010 0.00079 | 0.00383 | 0.00210 | 0.00112

s 011 0.150 | 0.0750 | 0.02475 | 0.01238 | 0.00255 | 0.00140 | 0.00081
100 0.00124 | 0.00710 | 0.00366 | 0.00188
101 0.0150 | 0.01575 | 0.00788 | 0.00155 | 0.00098 | 0.00067
110 0.0075 | 0.02475 | 0.01238 | 0.00209 | 0.00140 | 0.00081
111 0.00231 | 0.00406 | 0.00210 | 0.00112

Fig. 2. The proposed algorithm applied to[a 4, 3] Hamming code.

and backward recursion. Following the ideas of Battaial. [7] the Using Step 3 we finally get the soft-output values by
soft output of all the information bits is calculated witti forward .

. . . . i P(?‘] |’U1 = 0) /L(OOL l)
recursions in a trellis that needs to be slightly modified for each Plrlor =1 1(000.7)
recursion. In [6] and [2] the calculation is done using the dual code,  P(u; = Olr,v € V) = (rifos=1) p(000,

which is an alternative requiring’ forward recursions in a trellis of P(rilvr =0) _ P(rifn =1)

size at mos™~F, P(rilvi=1) P(ri|vr =0)
The proposed algorithm requires ority’ ~* stored values, i.e., 0.3 0.00081

storage of one level in the trellis, and uses only one forward recursion. =015 0.00112 _ g g5502

Hence, for some codes, the storage space is approximately a factor 0-{ _ 015

N lower than than the algorithm of Balet al. and the number of 0.15 0.3

operations is approximately a factérlower. Comparing with the etc., and performing all calculations in Step 3 gives the soft output
other algorithms mentioned above, the storage space is about the seewtor

but the number of operations is approximately a fadtotower for _
the proposed algorithm. (0.85502,0.94965, 0.85502,0.90909, 0.78067, 0.90909,0.93763).

V. GENERALIZATION TO THE NONBINARY CASE

IV. AN ExaMPLE OF DECODING OF HAMMING CODES The derivation from Section 11l generalizes straightforwardly to the

To fully illustrate the decoding algorithm and to show that th@onbinary case. In this section we present the result and comment
reduced complexity is at its most when decoding Hamming codeshortly on this.
we give an example. Assume that we want to decodg,d, 3] For alphabetZ of size I >2 we recall the enumeration of the
Hamming code given by the parity-check matrix (in transposed forre)ements byZ = {0,1,---,1 — 1}. Assume thatZ,+,-) form a
ring. An information sequenca € 7% is chosen uniformly and
mapped into a codeword, » € V such thawH”™ = 0.

Using the notation introduced in Section I, the output should be
a a posterioriprobability vectorb,, = B 680 o b)Y where
by = P(u, = ilr,v € V) for each codeword symbol.

To states, wheres € 7V~ on leveln there are now incoming
edges, one from state at leveln — 1 associated withy,, = 0, one
from states — h,, at leveln — 1 associated with,,, = 1,---, and,
finally, one from state — (I — 1) - h,, at leveln — 1 associated with

. . . v, = I — 1. Calculation of the metrics for each node at each level
We assume that the first four symbols:ofre information symbols, is as pefore done recursively By0,0) = 1, u(s,0) = 0,Vs % 0,

i.e., the encoder is systematic. Considet-ary output DMC with g1 then
transition probabilitiesP(r,|v, ) given by the following table:

—_ O R = O -
—_ OO RO -

I—1
ui(s,n) = Z;L(s —i-ho,n—1)P(r,|v, =1). (25)
Uy \ T 0 1 2 3 =0
Recall that in general

0 0.5 0.3 0.15 0.05
vl T=s vEV,
Assume that the received vector is Now the following I equations in thd unknown variables
P(rplv, =i,veV) = Z P(ry|v), i=0,1,---,I—1
r =(1,0,1,0,2,0,0). on=i,0EV

hold.
We note that the closest codeword (i#00000). Fig. 2 illustrates -1
Steps 1 and 2 in the decoding algorithm by giving values for Y P(rlv) =Y Pralva=i) > P(r,|v),
u(s,n),n =0,---,N having eight entries of real numbers at each€V; &, i=0
level. j=0,1,---,I=1. (27)

Uy =j—i,wEV
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Input: P(rplv, =1), 1<n<N,

2. Forn=1,..., N update
I-1
i=0
3. Forn=1,...,N, set

P(rilv, =0,veV)
P(rifv, =1, veV)

if M,, nonsingular. Then set

0<i<I-—1

1. Initialize 4(0,0) = 1, u(s,0) = 0,Vs # 0,s € IV K.

u(s,n) = pu(s —i-hy,n—1)P(ralv, = ).

P(rilv,=1-1,veV)

P(rilv, =4,v € V)P(r,lv, = 9)

/‘L(O . hﬂvN)
/‘L(l : th)

#((I —1) - hg, N)

=M1

n

Py, =ir,ve V)=

where P(r}{v, = i) can be found from above.

Iu(0, N) '

Output: P(v, =¢r,veV), 1<n<N, 0<:i<I-1
Fig. 3. The proposed algorithm for the nonbinary case.
The left-hand-sides of the abovesquations are given by the metrics VI. CONCLUSIONS

u(j - hyn, N) respectively forj = 0,1,---, I — 1.
Define the matrixM,, by (28) at the bottom of this page.
Rewriting (27) in matrix form

#(0-h,,N)
w(1- by, N)

P(rijv. =00 €V)
P(rﬂ’vn =lLveV)

= n

w((I—=1) h,,N) Prilv,=T—-1veV)

(29)
and solving forP(r|v, =i,v € V),0 < ¢ < T — 1, we get
P(fri‘hvn =0,veV) w(0-h,, N)
P(r,ﬂvn =lLveV) » pw(1-h,, N)
Pirtlon=T—-1,0€V) pw((I=1)h,, N)
(30)

A new simple optimal soft-input/soft-output symbol decoding
algorithm for linear block codes which requires one forward recursion
using the trellis of size2¥ =% has been presented and its low
complexity demonstrated. The fact that when decoding Hamming
codes, all the collected information is used in the last step leads us
to believe that the algorithm is optimal or close to optimal regarding
the complexity of decoding for the special case of Hamming codes.

Furthermore, decoding Hamming codes also showed the low
complexity at its most, both regarding storage and the number
of operations. For example, the Baht al. algorithm would for
a Hamming code of lengtk™” % — 1 require storage space of
approximately2*¥=5) words of storage, whereas the proposed
algorithm would only nee@™~" words of storage space and still
it requires approximately a fact@ less operations. This is due to
the fact that it only does one forward recursion. For the nonbinary
case and maximum-distance-separable codes, the algorithm will be
better than the Bahdt al. algorithm, since the trellis for such codes

for M,, nonsingular. IfM,, is singular, we can do as described idS maximal [11]. Finally, we want to point out the possibility to

Section IIl. Finally, we can calculat®(v, = i|r.v € V). The modify the proposed algorithm so that it applies to the dual code,

complete algorithm can be described as in Fig. 3. using the approach introduced by Hartmann and Rudolph [6] and
Note the fact that we considered a ring structurCaand the code later used by many authors, see for example [2]. This will provide

V. An important aspect of the above algorithm for the nonbinary ca38 efficient solution for the cage< n — k. and applies to codes like

is that it can be applied to binary nonlinear codes that are linear ofge Simplex code and first-order Reed-Muller code, which are the

Z (or some other ring). This includes Kerdock codes, Preparédfal codes of the Hamming code and the extended Hamming code,

codes, etc., which have better minimum distance than any lindggpectively. More details on this as well as computer simulations
binary code. using the proposed algorithm can be found in [12].

P(7'n,|vn = 0) P(rn|vn = 1) P(7‘n,|l,‘n =71 - 1)
P(ry|v, = =1) P(r,|v, =0) P(rp|v, =1-2),
M, = . . (28)

Plrp|lvn ==I+1) Plranlvn=-I+2) P(ralv, =0),
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