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A Simple One-Sweep Algorithm for Optimal
APP Symbol Decoding of Linear Block Codes

Thomas Johansson,Member, IEEE,
and Kamil Zigangirov,Member, IEEE

Abstract—Soft-input/soft-output symbol decoding plays a significant
role in iterative decoding. We propose a simple optimal soft-input/soft-
output symbol decoding algorithm for linear block codes which requires
one forward recursion using a trellis. For many codes the decoding
complexity is lower than previous methods, such as the algorithm by
Bahl et al. [1], and the decrease is shown at its most when decoding
Hamming codes.

Index Terms—Linear block codes, soft-output symbol decoding, trel-
lises.

I. INTRODUCTION

Recently, much interest has focused around iterative decoding (or
turbo decoding) due to the impressive simulation results presented in
[4]. The basic idea is to decode in steps, by transferring conditional
probabilities, or “soft” information, between consecutive steps. In
particular, [4] used a two-dimensional systematic feedback convolu-
tional code including a large pseudorandom interleaver, and decoded
iteratively. For an overview of iterative decoding, see [2].

A crucial part of the iterative decoding is the decoding algorithm,
taking soft inputs and delivering soft outputs for each symbol.
Such algorithms have been considered and dates back to [1]. These
algorithms are refered to as soft-input/soft-output symbol decod-
ing algorithms, or APP (a posteriori probability) symbol decoding
algorithms.

For optimal APP symbol decoding, the Bahl, Cocke, Jelinek,
Raviv algorithm applies to trellises, and hence to both convolutional
codes and linear block codes [10]. The algorithm makes one forward
and one backward recursion in the trellis, and requires storage
of approximately2KS real numbers, whereK is the number of
information bits andS is the number of states on one level in the
trellis. For a binary[N;K] linear block code, the trellis can contain
min (2K ; 2N�K) states, and for many good linear block codes this
will be the case. IfK>N � K this algorithm requires storage of
approximatelyK2N�K real numbers, and does one forward and one
backward recursion. Other optimal symbol-by-symbol APP decoding
algorithms have been proposed. In [2], several methods are proposed,
either by a straightforward implementation of the trellis, based on
[7], or using the dual code as proposed in [6] and [7]. Summing
up the results, both methods calculate the soft output byK forward
recursions on a trellis of at mostmin (2K; 2N�K) states.

Suboptimaldecoders with reduced complexity have also been
considered, most notably are the modifications of the above optimal
decoders to reduce complexity [2] and the soft-input/soft-output
Viterbi algorithm (SOVA) [3].

After the initial approach of using convolutional codes in iterative
decoding several authors have considered block codes as component
codes, for example, [2], [5]. Generally, block codes as component
codes perform better than convolutional codes for high rates and
vice versafor low rates. In [2], simulated codes give a threshold
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rate at 0:67 at bit-error rate (BER) of10�4: Furthermore, good
simulation results have been shown for very simple block codes,
such as Hamming codes, as component codes, see [2].

The purpose of this correspondence is to derive anoptimal soft-
input/soft-output symbol-decoding algorithm for linear block codes.
It will require only one forward recursion on a trellis of at most
2N�K states each with a metric as a real number. Hence in many
cases, it has a complexity that is lower than the optimal decoding
methods mentioned above. Its low complexity is shown at its most
when decoding Hamming codes, since then almost all information
calculated in the algorithm will be efficiently used. This will be
demonstrated by an example. Finally, we consider a generalization
to the nonbinary case.

II. NOTATION AND PROBLEM FORMULATION

We model our communication system as follows. A source with
alphabetI = f0; 1; � � � ; I � 1g; where the symbols are chosen
independently of each other with equal probability, feeds an encoder
which in our case is a linear block encoder. The source symbols are
divided into blocks ofK symbols, denoteduuu = (u1; u2; � � � ; uK);
and the corresponding encoded symbols, denotedvn; 1 � n � N; are
then transmitted over any memoryless noisy channel. We assume that
the symbols are modulated into analog waveforms that are sent over
the channel. Letvvv = (v1; v2; � � � ; vN) be the transmitted codeword,
vn 2 I:

On the receiver side, the output from the memoryless noisy channel
is the analog waveforms interfered with noise, and we assume
quantization of the channel output into a finite set of possible values
from the output alphabetJ = f0; 1; � � � ; J � 1g: For example, if
we have additive white Gaussian noise, this can be thought of as the
output of a bank of matched filters. We suppose that the channel is
defined by the set of transition probabilities

pij = P (jji); i = 1; 2; � � � ; I � 1; j = 1; 2; � � � ; J � 1:

The received vector, denotedrrr = (r1; r2; � � � ; rN) with rn 2 J
is hence regarded as a vector of discrete random variables. The gener-
alization to the continuous case is omitted, but it is a straightforward
procedure. Due to the memoryless channel,

P (rrrjvvv) =

N

n=1

P (rijvi): (1)

The vectorrrr is the input to the decoder of the systematic linear
block code, which is going to produce an estimate of the information
symbols, using the extra information through the parity-check sym-
bols. In our case, this estimate should be aa posteriori probability
vectorbbbn = (b

(0)
n ; b

(1)
n ; � � � ; b

(I�1)
n ) on each information symbolun

expressing the probability that thenth source symbol was actually
symboli; i = 0; 1; � � � I � 1; conditioned on all the received channel
information and the dependence within the codeword. Actually, the
algorithm to be derived will produce thea posterioriprobability for
any codeword symbol, but at this moment we are only interested in
the codeword symbols that are information symbols.

Continuing, we now consider the caseI = 2 with I = f0; 1g:
The generalization to the nonbinary case is considered in the last
section. Letvvv = (v1; v2; � � � ; vN) 2 N

2 be a codeword of an[N;K]
linear binary block codeV: Assume that the linear codeV has a
generator matrixG and that the corresponding parity-check matrix
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H is written in the form

HT =

hhh1
hhh2
...
hhhN

(2)

where

hhhn = (hn1; hn2; � � � ; hn(N�K)); 1 � n � N

andHT denotes the transpose ofH:
The information sequenceuuu = (u1; u2; � � � ; uK) is chosen from

uuu 2 K
2 , mapped byG into the codewordvvv = uuuG, and each

binary symbol is sent over the memoryless noisy channel (as analog
waveforms).

For a binary linear block code, we will now develop an APP
symbol decoding algorithm producing

P (vn = 0jrrr; vvvHT = 0) = P (vn = 0jrrr; vvv 2 V ) (3)

for eachn, i.e., producing the probability of a0 or a1, respectively,
in each position of the codeword when the receiver has the soft-
input values for each position of the received word. Hence, ifV is
systematic this gives usP (un = 0jrrr; vvvHT = 0) for n = 1; 2; � � � ; K:

III. D ERIVATION OF AN OPTIMAL SOFT-IN/SOFT-OUT

SYMBOL DECODING ALGORITHM

We start by introducing the notation

vvv[1;n] = (v1; v2; � � � ; vn); 8vvv = (v1; v2; � � � ; vN) 2
N
2

and

HT
[1;n] =

hhh1
hhh2
...
hhhn

: (4)

From this notation we define theN �K-dimentional vector

sssn = vvv[1;n]H
T
[1;n] (5)

and we callsssn thepartial syndrome. Note that the partial syndrome is
defined for any wordvvv[1;n], not nessessarily a codeword. Continuing,
we introduce the cosets of the codeV , denotedVsss, as

Vsss = fvvv: vvvHT = sssg; 8s 2 N�K
2 :

Finally, for the received vectorrrr = (r1; r2; � � � ; rN); we introduce
rrr?n by

rrr?n = (r1; � � � ; rn�1; rn+1; � � � ; rN)

i.e., rrr?n is the received vectorrrr with thenth position removed.
We start the algorithm derivation. We consider the most simple

case, namely, when all codewords area priori equiprobable, i.e.,

P (vvvjvvv 2 V ) = 2�K; 8vvv 2 V (6)

and hence also

P (vvvjvn = 0; vvv 2 V ) = 2�K+1; 8vvv 2 V; vn = 0: (7)

Note that the algorithm to be derived is easily adopted to the case
when theK independent information symbols are nonuniformly
distributed, which will be the case in iterative decoding. We will
in such a case use a slightly different metric in the trellis defined
below. Using Bayes formula we get

P (vn = 0jrrr; vvv 2 V )

= P (rrrjvn = 0; vvv 2 V )
P (vn = 0jvvv 2 V )

P (rrrjvvv 2 V )
(8)

whereP (vn = 0jvvv 2 V ) = 1=2,

P (rrrjvvv 2 V ) =
vvv2V

P (rrrjvvv)P (vvvjvvv 2 V ) (9)

is the probability of receivingrrr, and finally,

P (rrrjvn = 0; vvv 2 V )

=
v =0;vvv2V

P (rrrjvvv)P (vvvjvn = 0; vvv 2 V ): (10)

The calculation ofP (vn = 0jrrr; vvv 2 V ) reduces through (8) to
calculation of two statistics,P (rrrjvvv 2 V ) andP (rrrjvn = 0; vvv 2 V ),
respectively.

For the given parity-check matrixH, consider the following length
N trellis diagram. The paths of this trellis diagram correspond to
the sequencesvvv[1;n]; n = 1; 2; � � � ; N: Paths of lengthn will come
to the same node (state)sss on leveln if they have the same partial
syndrome as defined in (5). Since all partial syndromes are(N�K)-
dimensional binary vectors, the total number of states at each level
is upper-bounded by2N�K: This trellis, introduced in [1], is known
as the syndrome trellis. Furthermore, it is a minimal trellis [9].

By definition, the metric of nodesss on leveln is

�(sss; n) =

vvv :vvv H =sss

P (rrr[1;n]jvvv[1;n]): (11)

Since

sssn = sssn�1 + vnhhhn (12)

we see that, in general, to statesss on leveln there come two edges,
one from statesss at leveln� 1 associated withvn = 0 and one from
statesss � hhhn at leveln � 1 associated withvn = 1: Calculation of
the metrics for each node at each level is then done recursively by
�(0; 0) = 1; �(sss; 0) = 0;8sss 6= 0; and then

�(sss; n) =�(sss; n� 1)P (rnjvn = 0)

+ �(sss� hhhn; n� 1)P (rnjvn = 1): (13)

Since the trellis contains all states at the last level, the algorithm above
will require slightly more computations than in a standard trellis [1],
[8], which considers only paths merging to state zero at the last level.

It is easily verified that (11) holds for all nodes using the above
calculation. From (11) it follows that

�(0; N) =

vvv:vvvH =0

P (rrrjvvv) =
vvv2V

P (rrrjvvv) (14)

and, in general,

�(sss; N) =

vvv:vvvH =sss

P (rrrjvvv) =
vvv2V

P (rrrjvvv): (15)

Consider the codeword symbolvn: Note that hhhn is the partial
syndrome caused byv[1;n] = (0; 0; 0; � � � ; 0; 1); i.e.,

hhhn = (0; 0; 0; � � � ; 0; 1) �HT
[1;n]: (16)

Introduce

P (rrr?n jvn = 0; vvv 2 V ) =
v =0;vvv2V

P (rrr?n jvvv) (17)

P (rrr?n jvn = 1; vvv 2 V ) =
v =1;vvv2V

P (rrr?n jvvv): (18)
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Fig. 1. The proposed algorithm for the binary case.

The key observation is now that the following two equations in the
two unknowns variables

P (rrr?
n
jvn = 0; vvv 2 V )

and

P (rrr?
n
jvn = 1; vvv 2 V )

respectively, hold

vvv2V

P (rrrjvvv) =P (rnjvn = 0)P (rrr?n jvn = 0; vvv 2 V )

+ P (rnjvn = 1)P (rrr?n jvn = 1; vvv 2 V ) (19)

vvv2V

P (rrrjvvv) =P (rnjvn = 1)P (rrr?n jvn = 0; vvv 2 V )

+ P (rnjvn = 0)P (rrr?n jvn = 1; vvv 2 V ): (20)

Recall that the left-hand-sides of the above two equations are given
by the metrics�(0; N) and�(hhhn; N), respectively. Hence we can
solve for one of the unknown variables and get

P (rrr?n jvn = 0; vvv 2 V )

=
P (rnjvn = 0)�(0;N)� P (rnjvn = 1)�(hhhn; N)

P (rnjvn = 0)2 � P (rnjvn = 1)2
(21)

if

P (rnjvn = 0) 6= P (rnjvn = 1):

Furthermore, note thatP (vvvjvvv 2 V ) = 2�K andP (vvvjvn = 0; vvv 2 V )
= 2�K+1: Therefore, (8)–(10) imply

P (vn = 0jrrr; vvv 2 V ) =
v =0;vvv2V

P (rrrjvvv)2�K+1 � 1
2

vvv2V

P (rrrjvvv)2�K

=
v =0;vvv2V

P (rrrjvvv)

�(0; N)
(22)

and since

v =0;vvv2V

P (rrrjvvv) = P (rrr?n jvn = 0; vvv 2 V ) � P (rnjvn = 0) (23)

we finally get

P (vn = 0jrrr; vvv 2 V )

=
P (rnjvn = 0)

P (rnjvn = 1)
�

P (rnjvn = 0)

P (rnjvn = 1)
�
�(hhhn; N)

�(0; N)

P (rnjvn = 0)

P (rnjvn = 1)

2

� 1

=

P (rnjvn = 0)

P (rnjvn = 1)
�
�(hhhn; N)

�(0; N)

P (rnjvn = 0)

P (rnjvn = 1)
�
P (rnjvn = 1)

P (rnjvn = 0)

: (24)

If

P (rnjvn = 0) = P (rnjvn = 1)

we have to getP (vn = 0jrrr; vvv 2 V ) through another method. A
nice observation is that ifP (rnjvn = 0) = P (rnjvn = 1), this
position will give no information, and hence we can just remove
it, and build a modified trellis on the otherN � 1 positions. In
practice, not only the case of the exact equality ofP (rnjvn = 0)
andP (rnjvn = 1) will be a problem, but also the case where the
absolute value of their difference is so small that the precision of
calculating (24) on a computer is too low. A possible way to solve
this would be to choose some threshold such that positions with
jP (rnjvn = 0)�P (rnjvn = 1)j below this threshold are not treated
in the standard way. Instead, one can permute the codeword positions
so that all these bad positions, sayL, are placed at the end of the
codeword. If, for exampleL = 1 it is then enough to additionally
store�(hhhN ; N � 1) in order to calculateP (vN = 0jrrr; vvv 2 V ): The
caseL> 1 will require some more overhead, but will occur very
rarely.

This completes the derivation ofP (vn = 0jrrr; vvv 2 V ) and the
algorithm can now be described as in Fig. 1.

The algorithm needs one list of size2N�K and the number of
operations is in the order ofN2N�K: The algorithm resembles soft
decoding of block codes using a trellis of maximal size (unexpur-
gated) [8].

We compare the performance with other optimal algorithms. These
optimal algorithms [6], [2], [5], have different complexity depending
on the code. Algorithms described in [2] sum up the situation for
binary linear block codes as follows. ForK>N �K, the algorithm
of Bahl et al. [1] applied to block codes with a trellis of maximal
size requires storage ofN2N�K real values and uses both forward
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Fig. 2. The proposed algorithm applied to a[7; 4; 3] Hamming code.

and backward recursion. Following the ideas of Battailet al. [7] the
soft output of all the information bits is calculated withK forward
recursions in a trellis that needs to be slightly modified for each
recursion. In [6] and [2] the calculation is done using the dual code,
which is an alternative requiringK forward recursions in a trellis of
size at most2N�K :

The proposed algorithm requires only2N�K stored values, i.e.,
storage of one level in the trellis, and uses only one forward recursion.
Hence, for some codes, the storage space is approximately a factor
N lower than than the algorithm of Bahlet al. and the number of
operations is approximately a factor2 lower. Comparing with the
other algorithms mentioned above, the storage space is about the same
but the number of operations is approximately a factorK lower for
the proposed algorithm.

IV. A N EXAMPLE OF DECODING OF HAMMING CODES

To fully illustrate the decoding algorithm and to show that the
reduced complexity is at its most when decoding Hamming codes,
we give an example. Assume that we want to decode a[7; 4; 3]
Hamming code given by the parity-check matrix (in transposed form)

H
T =

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

:

We assume that the first four symbols ofv are information symbols,
i.e., the encoder is systematic. Consider a4-ary output DMC with
transition probabilitiesP (rnjvn) given by the following table:

vnnrn 0 1 2 3

0 0:5 0:3 0:15 0:05
1 0:05 0:15 0:3 0:5

Assume that the received vector is

rrr = (1; 0; 1; 0; 2; 0; 0):

We note that the closest codeword is(0000000). Fig. 2 illustrates
Steps 1 and 2 in the decoding algorithm by giving values for
�(sss; n); n = 0; � � � ; N having eight entries of real numbers at each
level.

Using Step 3 we finally get the soft-output values by

P (u1 = 0jrrr; vvv 2 V ) =

P (r1jv1 = 0)

P (r1jv1 = 1)
�

�(001;7)

�(000;7)

P (r1jv1 = 0)

P (r1jv1 = 1)
�

P (r1jv1 = 1)

P (r1jv1 = 0)

=

0:3

0:15
�

0:00081

0:00112
0:3

0:15
�

0:15

0:3

= 0:85502

etc., and performing all calculations in Step 3 gives the soft output
vector

(0:85502;0:94965; 0:85502;0:90909;0:78067;0:90909;0:93763):

V. GENERALIZATION TO THE NONBINARY CASE

The derivation from Section III generalizes straightforwardly to the
nonbinary case. In this section we present the result and comment
shortly on this.

For alphabetI of size I > 2 we recall the enumeration of the
elements byI = f0; 1; � � � ; I � 1g: Assume that(I;+; �) form a
ring. An information sequenceuuu 2 IK is chosen uniformly and
mapped into a codewordvvv; vvv 2 V such thatvvvHT = 0:

Using the notation introduced in Section II, the output should be
a a posterioriprobability vectorbbbn = (b

(0)
n ; b

(1)
n ; � � � ; b

(I�1)
n ); where

b
(i)
n = P (un = ijrrr; vvv 2 V ) for each codeword symbol.

To statesss, wheresss 2 IN�K , on leveln there are nowI incoming
edges, one from statesss at leveln � 1 associated withvn = 0, one
from statesss � hhhn at leveln � 1 associated withvn = 1; � � � ; and,
finally, one from statesss� (I � 1) �hhhn at leveln� 1 associated with
vn = I � 1: Calculation of the metrics for each node at each level
is as before done recursively by�(0; 0) = 1; �(sss; 0) = 0;8sss 6= 0;
and then

�(sss; n) =

I�1

i=0

�(sss� i � hhhn; n� 1)P (rnjvn = i): (25)

Recall that in general

�(sss; N) =

vvv:vvvH =sss

P (rrrjvvv) =
vvv2V

P (rrrjvvv): (26)

Now the followingI equations in theI unknown variables

P (rrr?n jvn = i; vvv 2 V ) =
v =i;vvv2V

P (rrr?n jvvv); i = 0; 1; � � � ; I�1

hold.

vvv2V

P (rrrjvvv) =

I�1

i=0

P (rnjvn = i)
v =j�i;vvv2V

P (rrr?n jvvv);

j = 0; 1; � � � ; I � 1: (27)
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Fig. 3. The proposed algorithm for the nonbinary case.

The left-hand-sides of the aboveI equations are given by the metrics
�(j � hhhn; N) respectively forj = 0; 1; � � � ; I � 1:

Define the matrixMMMn by (28) at the bottom of this page.
Rewriting (27) in matrix form

�(0 � hhhn; N)
�(1 � hhhn; N)

...
�((I � 1) � hhhn; N)

=MMMn

P (rrr?
n
jvn = 0; vvv 2 V )

P (rrr?
n
jvn = 1; vvv 2 V )

...
P (rrr?

n
jvn = I � 1; vvv 2 V )

(29)

and solving forP (rrrjvn = i; vvv 2 V ); 0 � i � I � 1; we get

P (rrr?
n
jvn = 0; vvv 2 V )

P (rrr?
n
jvn = 1; vvv 2 V )

...
P (rrr?

n
jvn = I � 1; vvv 2 V )

=MMM
�1

n

�(0 � hhhn; N)
�(1 � hhhn; N)

...
�((I � 1) � hhhn; N)

(30)

for MMMn nonsingular. IfMMMn is singular, we can do as described in
Section III. Finally, we can calculateP (vn = ijrrr; vvv 2 V ): The
complete algorithm can be described as in Fig. 3.

Note the fact that we considered a ring structure onI and the code
V: An important aspect of the above algorithm for the nonbinary case
is that it can be applied to binary nonlinear codes that are linear over
Z4 (or some other ring). This includes Kerdock codes, Preparata
codes, etc., which have better minimum distance than any linear
binary code.

VI. CONCLUSIONS

A new simple optimal soft-input/soft-output symbol decoding
algorithm for linear block codes which requires one forward recursion
using the trellis of size2N�K has been presented and its low
complexity demonstrated. The fact that when decoding Hamming
codes, all the collected information is used in the last step leads us
to believe that the algorithm is optimal or close to optimal regarding
the complexity of decoding for the special case of Hamming codes.

Furthermore, decoding Hamming codes also showed the low
complexity at its most, both regarding storage and the number
of operations. For example, the Bahlet al. algorithm would for
a Hamming code of length2N�K � 1 require storage space of
approximately22(N�K) words of storage, whereas the proposed
algorithm would only need2N�K words of storage space and still
it requires approximately a factor2 less operations. This is due to
the fact that it only does one forward recursion. For the nonbinary
case and maximum-distance-separable codes, the algorithm will be
better than the Bahlet al. algorithm, since the trellis for such codes
is maximal [11]. Finally, we want to point out the possibility to
modify the proposed algorithm so that it applies to the dual code,
using the approach introduced by Hartmann and Rudolph [6] and
later used by many authors, see for example [2]. This will provide
an efficient solution for the casek<n� k; and applies to codes like
the Simplex code and first-order Reed–Muller code, which are the
dual codes of the Hamming code and the extended Hamming code,
respectively. More details on this as well as computer simulations
using the proposed algorithm can be found in [12].

MMMn =

P (rnjvn = 0) P (rnjvn = 1) � � � P (rnjvn = I � 1);
P (rnjvn = �1) P (rnjvn = 0) � � � P (rnjvn = I � 2);

. . .
P (rnjvn = �I + 1) P (rnjvn = �I + 2) � � � P (rnjvn = 0);

: (28)
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Abstract—The classical Viterbi algorithm (ML sequence estimation)
can be computed using a forward-backward structure, similar to that of
the classical hidden Markov model forward-backward algorithm (MAP
state estimation). This similarity is exploited to develop a hybrid algo-
rithm which provides a mathematical connection between ML sequence
estimation and MAP state estimation.

Index Terms—Forward-backward algorithms, hidden Markov models,
HMM’s, sequence, soft outputs, state estimation, Viterbi algorithm.

I. INTRODUCTION

The basic filter theory for hidden Markov models was first pre-
sented by Baum and his colleagues in a series of papers in the late
1960’s and early 1970’s [1]–[5]. These papers developed statistical
estimation algorithms for a discrete-time Markovian process observed
in noise. The model structure became known as a hidden Markov
model (HMM) and since the mid-1980’s has become increasingly
popular in many engineering applications (e.g., signal and speech
processing). In the field of communications, the typical application
is one where the signal statistics are knowna priori and the goal
is to estimate the transmitted state sequence from observed data.
There are two natural measures of the most probable state sequence
transmitted. First, at each separate time, one may consider the states
which are individually most likely. This is equivalent to estimating
the maximuma posteriori probability (MAP) (sometimes known
as minimum variance or conditional mean) state estimates. These
estimates can be determined using the HMM forward-backward
algorithm (HFBA) [7]. Conversely, one may consider the most likely
state sequence over all the data. This is equivalent to computing the
maximum-likelihood (ML) state sequence for the full data stream.
This estimate can be determined using the Viterbi algorithm (VA) [7].

In 1974, Bahlet al. [8] explored the use of MAP estimation in
decoding linear block and convolutional codes in order to minimize
the symbol- (or bit-) error rate. They concluded that the increased
computational complexity of MAP estimation was not warranted as
the performance of the VA and the MAP estimators were effec-
tively identical in the applications they considered. More recently,
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