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Abstract: With the growing popularity of audio and 
video communication services on the Internet, 
network operators, service providers and application 
developers are becoming increasingly interested in 
assuring that their services give the best possible 
experience to the users. Since real-time audio and 
video services are very sensitive to packet loss, latency 
and bandwidth variations, the performance of the 
network must be monitored in real time so that the 
service can be adapted to varying network conditions 
by mechanisms such as rate control, forward error 
correction and jitter buffer adaptation. However, in 
order to optimize a service in terms of the user’s 
experience, the subjective effect that various network 
perturbations have on the user should be taken into 
consideration in the service adaptation mechanism. In 
this paper we present a novel approach to 
performance optimization based on rate adaptation 
driven by real-time estimation of the subjective 
Quality of Experience of a videoconferencing service. 
A proof-of-concept service optimization framework 
consisting of network monitoring, quality estimation, 
rate adaptation and service optimization mechanisms 
is presented and a testbed configuration based on 
network emulation is described and used for 
evaluation. Our initial experiments show that the 
approach is viable in practice and can substantially 
improve the Quality of Experience of real-time audio-
visual services.               
 
Keywords: Quality of Experience, video communication, 
congestion control, service optimization. 
 

1 INTRODUCTION 
Audio and video communication services are typically 
very sensitive to variations in bandwidth, packet loss and 
latency. Consequently, in order for such services to work 
well in IP-based networks without a guaranteed Quality of 
Service (QoS), sophisticated end-to-end mechanisms are 
needed to monitor the network for perturbations and 
predict how a perturbation will affect the users of the 
service. Based on the monitoring of the network and the 
predicted subjective Quality of Experience (QoE), the 
service can be adapted in real time to maximize the 
quality experienced by the users. 

Whereas adaptive multimedia communication services 
have been studied for a long time [1, 2, 3], the intro-

duction of a QoE model in the adaptation process, in 
order to capture the effect of network perturbations on the 
user, is a novel concept. The rationale is that by 
considering not only the monitored network parameters 
(e.g. loss rate, latency), but also the way these parameters 
affect the user, the service optimization can be performed 
in a way that is perceptually preferable. In this paper we 
describe one such effort, wherein a videoconferencing 
service is extended with QoE prediction mechanisms for 
conversational audio and video, which is used to optimize 
the performance of the service based on the observed 
network conditions. 

Different methods and metrics are available for QoE 
estimation and prediction. One approach explored in this 
work is called Pseudo-Subjective Quality Assessment 
(PSQA) [4], which is based on a neural network that has 
been trained through subjective QoE tests. With this 
approach, the application (i.e. the videoconferencing tool) 
measures the network parameters and calls a function that 
applies the parameters to the neural network, which in 
response returns an value between 1 and 5, representing 
the Mean Opinion Score (MOS) of the test panel that 
rated similar media streams with similar network 
conditions when the neural network was trained. The 
knowledge about how human subjects will experience 
media  streams of  different  quality  is  thus  encoded in  the  
neural network. The advantage of this approach is that it 
gives a good correlation between subjective experience 
and network conditions and that it can be used in real time 
(which of course is necessary for the application 
considered here). The disadvantage is that it is time 
consuming and costly to conduct the subjective tests to 
train the neural network.  

As  the  QoE  of  media  streams  is  being  estimated,  the  
service optimization algorithm decides what can be done 
to improve the current situation, i.e. to maximize the QoE. 
If the currently estimated QoE is above a certain level, the 
proper action might be to do nothing (i.e. good enough 
quality). If the QoE is below some other (lower) threshold, 
the only reasonable thing to do might be to recommend 
the user to try again later (i.e.  too bad quality to be even 
feasible). Between the extremes, the application should 
optimize the performance by adapting to the network 
conditions experienced. The most common service 
optimization mechanisms include codec rate adaptation 
(i.e. adjusting the sending rate or transcoding rate), 
adaptive Forward Error Correction (FEC) and stream 
shaping mechanisms.  



 

To study the opportunities with QoE-driven service 
optimization, we have developed an experimentation and 
demonstration testbed, wherein Real-time Transport 
Protocol (RTP) audio and video streams originating from 
a videoconferencing system are sent through a network 
emulator to introduce perturbations in a controlled way. 
The prototype algorithms for QoE estimation and 
adaptation integrated in the videoconferencing tool and in 
the RTP reflector used for multipoint conferencing are 
then studied for different network conditions, and the 
performance of the optimization mechanisms is evaluated. 
Our testbed configuration also includes an external 
measurement system for verification of the network 
conditions, i.e. to make sure the network performance 
measured by the built-in probes, driving the QoE 
estimation and service optimization mechanisms, are 
correct and have the desired effect on the network. 

Initial experiments show that the mechanisms developed 
have a considerable positive impact on the perceived 
quality of videoconferencing sessions in networks with 
large fluctuations in bandwidth, latency and loss rate. 

2 MEASURING QUALITY OF 
EXPERIENCE 

Recently, the term Quality of Experience (QoE) has 
emerged to complement the traditional concept of Quality 
of Service (QoS) for assessing the quality of networked 
services. Whereas the notion of QoS only takes technical 
parameters into account, such as packet loss rate or 
latency, the concept of QoE also includes the effect these 
performance metrics have on the user of the service [5, 6].  

When assessing the experienced quality of a service, the 
available mechanisms can be broadly classified as 
objective, subjective or hybrid approaches. Objective 
methods are based on statistical or mathematical models 
for calculating how well a signal that is distorted (e.g. by 
transmission over a noisy communication channel) 
corresponds to the original. For instance, the Peak Signal 
to Noise Ratio (PSNR) is a very common objective 
quality metric for image and video communication 
services. Subjective methods, on the other hand, rely on 
having a panel of test subjects rate the perceived quality 
of media sequences in a controlled environment. 
Subjective quality is usually quantified by a value 
between one and five, representing the Mean Opinion 
Score (MOS) of the test panel. Hybrid methods, 
incorporating both objective and subjective elements, are 
typically based on utilizing some form of Machine 
Learning (ML) technique that is trained using subjective 
tests.  

Quality assessment methods can also be classified 
according to what kind of reference is available when 
doing the assessment. In Full Reference (FR) models, the 
original, undistorted media is available for comparison 
with the transmitted, distorted media. This allows for a 
detailed, offline analysis of the objective or subjective 
difference between the original (reference) signal and the 
recreated far-end signal. In No Reference (NR) models, 

there is no reference signal available to compare the 
recreated signal to. Finally, in Reduced Reference (RR) 
models, partial information about the original signal is 
available for comparison against the recreated signal. 

Although FR metrics typically give the most reliable 
results, they are inherently incompatible with the 
application of interest here, since the original media is not 
available. For such real-time control purposes as we are 
focusing on in this paper, a NR hybrid approach is the 
most suitable. 

3 SERVICE OPTIMIZATION 
FRAMEWORK 

As discussed above, the adaptive service optimization 
concept is based on continuously monitoring the network 
state to predict the QoE, i.e. the quality of the media 
experienced by the user, and then adapt the application to 
optimize the QoE. The framework we have developed to 
test the concept is based on five main components: 
 A network monitoring framework, based on probes 

measuring parameters like throughput, loss rate, 
latency and jitter 

 A QoE estimation framework for audio and video 
streams 

 A service adaptation mechanism, for maximizing the 
perceived QoE of the application for each state of the 
network 

 A video communication platform based on the 
software products Alkit Confero (videoconferencing 
end system) and Alkit Reflex (RTP reflector), wherein 
the monitoring and service optimization components 
are integrated 

 A network emulator used to introduce network 
perturbations to observe the performance of the 
service optimization and QoE estimation mechanisms. 

3.1 QoE Estimation and Prediction 
For adaptation purposes, an accurate no-reference QoE 
model is needed in order to obtain estimations in real time. 
Our QoE estimation framework is based on the use of 
PSQA, which is a parametric methodology for estimating 
perceived quality. It works by mapping network- and 
application-layer parameters having an effect on quality 
to subjective scores. The parameters used as input to the 
estimator are: 
 Codec, bitrate 
 FEC 
 Packet loss rate 
 Temporal distribution of losses (mean loss burst size) 
 One-way delay 
 Jitter 

The mapping from the parameters to the subjective scores 
is done by training a Random Neural Network (RNN) to 
learn the relationship between the input parameters and 
the subjective quality. A subset of input parameter 



 

combinations is carefully selected, a subjective 
assessment campaign conducted for each of them in an 
emulated network, and the MOS values recorded for each 
combination. Once the RNN is trained with the results 
from the subjective assessment, it can give good 
estimations not only for the parameter combinations used 
in the subjective test, but also for other parameter 
combinations within the range of parameters used in the 
training. The use of a trained RNN for MOS estimation is 
computationally trivial and gives very high correlation 
with subjective scores. 

It should be noted that, because the quality value resulting 
from the RNN corresponds to the actual user experience, 
the quality of the original signal (i.e. codec, bitrate) has an 
effect on the MOS values. In practice, MOS values of 5 
cannot be achieved and MOS above 4 is considered toll-
quality.  

3.2 Audiovisual Service Optimization 
The service optimization algorithm is implemented in the 
videoconferencing end system. It works by continuously 
feeding data from the network monitoring component into 
the PSQA algorithm, which returns a MOS-like score of 
the estimated quality. Currently, this is done only for the 
audio streams received. The estimated audio quality is 
then used as a trigger for the actual optimization 
algorithm, which is implemented both in the sender side 
of the end system and in the RTP packet reflector. This is 
to allow the same mechanism to be employed both when a 
reflector is used and when there is no reflector (i.e. point-
to-point or multicast sessions.) Many different adaptation 
events can be envisioned in response to QoE changes. The 
currently implemented actions are to trigger rate 
adaptation for the video streams received by the end 
system and to trigger a modality change from audio/video 
to audio only (and vice versa). The events are triggered 
when the score returned by the PSQA algorithm passes 
two threshold levels.  

When the calculated MOS decreases below 3, the 
bandwidth adaptation mechanism in the reflector (or in 
the sender if no reflector is used) is triggered. This is done 
using RTP Control Protocol (RTCP) packets containing 
the monitored loss rate and throughput values, which 
makes the bandwidth adaptation algorithm reduce the rate 
of  the  video  stream.  The  fact  that  the  QoE  estimation  of  
the audio stream is used to trigger an adaptation event 
related to the video streams might seem strange at first, 
but the rationale for this is that in most videoconferencing 
situations, the cause of audio quality degradation is in fact 
the video consuming too much of the available bandwidth, 
leading to packet loss both in the audio and video streams. 
In other words, degradation in audio quality usually 
indicates degradation in video quality as well. By having 
the video bandwidth reduced, the audio stream quality is 
improved. Since the bandwidth of video streams is 
usually much higher than the audio bandwidth, only a 
slight reduction in video bandwidth can make a big 
difference in terms of audio quality. Moreover, video 
codecs typically provide greater opportunity to trade 

bandwidth for quality, compared to audio codecs. Video 
streams are hence more suited for rate adaptation.  

If the available bandwidth in a videoconferencing session 
gets below a certain level, the only viable approach in 
order to be able to continue the conference at all, is to 
simply drop the video and continue using audio only. This 
quite radical measure is triggered when the MOS 
calculated by the PSQA algorithm goes down to 1 (the 
lowest level, corresponding to more or less unusable 
quality). This signals to the sender of the media streams 
(or reflector) to stop sending video.  When the estimated 
quality increases to the value 3 again, the video is re-
enabled, in rate-controlled mode. When the MOS reaches 
4, the rate adaptation is disabled after a configurable hold-
down time. 

3.3 Rate Adaptation 
The rate adaptation mechanism is implemented both in 
the  end  system  and  in  the  RTP  reflector.  By  having  the  
adaptation mechanism in the reflector, the downstream 
rates from the reflector can be adapted to different 
bandwidth levels for heterogeneous network 
configurations. The upstream rate (to the reflector, or 
when no reflector is used) is controlled by the sender. The 
rate adaptation algorithm is basically the same in both 
cases: the frame rate of the video is adjusted to match a 
bandwidth limit which is determined by RTCP Receiver 
Reports (RR) of actual throughput, as measured by each 
receiver. At the reflector, this is done by intelligent frame 
dropping. At the sender, it is done by configuring the 
codec’s target bitrate. 

The components of the rate control mechanism is 
illustrated schematically in Figure 1 for a hypothetical 
scenario with one sender (S) and three heterogeneous 
receivers (Ri) interconnected by a reflector (R). (In a real 
scenario, all end systems would typically be both senders 
and receivers.) The rate control components are illustrated 
by circles in the figure, whereas the RTP stream 
monitoring components (measuring loss rate and 
throughput) are represented by triangles.  

 
Figure 1: Schematical illustration of the rate control 

components implemented in the sender (S) and reflector (R). 
The downstream rates from the reflector are determined from 

the RTCP Receiver Reports from the receivers (Ri). 

The advantage of adjusting the frame rate instead of some 
other video codec parameter, such as the quantization 



 

level which is commonly used for codec rate adaptation, 
is that it can be done at the reflector without the need for 
transcoding. For the sender side rate controller, more 
elaborate codec parameter adjustments could be 
preferable. The main disadvantage of frame rate 
adaptation is that the burstiness of the resultant stream 
increases, which can cause problems in networks with 
low bandwidth links and small router buffers. In this case, 
a stream shaping mechanism (token bucket or similar) can 
be applied after the rate adaptation to smooth out the 
frames.  

The RTP streams received by the end systems are 
monitored to measure throughput and packet loss rate. 
These performance metrics are reported back to the 
reflector in RTCP RR packets. The reflector monitors the 
reports, and as soon as packet loss is detected, the 
bandwidth limit of the corresponding RTP stream is 
adjusted to the actual throughput reported in the RTCP 
packet. To effectuate the rate control, the reflector 
selectively drops packets in order to keep the downstream 
rate below the bandwidth limit that the receiver reported 
when it first experienced loss. By selectively we mean 
that the reflector drops full frames, dropping P-frames 
before I-frames, instead of dropping random packets and 
the current bandwidth usage is re-evaluated on I-frame 
boundaries. 

The reflector keeps the bandwidth limit until it receives a 
new RTCP RR packet with updated loss rate and 
throughput values. If there is still loss, the bandwidth is 
set to what is reported by the receiver, if there is no loss 
the bandwidth is kept at the current rate. 

When there has been a lossless period for about 10 
seconds following a loss event, the bandwidth limit is 
increased by 5 percent to probe for available bandwidth. 
After yet another period with no loss, the bandwidth is 
increased another 5 percent. Hence, the algorithm is 
driven by the receiver reports and typically the algorithm 
adapts rapidly to worsening conditions and rather slowly 
to improved conditions. We have so far seen that a too 
optimistic approach to increase the rate usually ends up 
with an overestimation of the available bandwidth, 
resulting in congestion and a poor performance with 
respect to perceived user experience. 

The upstream adaptation algorithm, i.e. limiting the 
stream from the sender to the reflector, is more or less 
done in the same way, but with the reflector measuring 
throughput and loss rate and sending RTCP RR packets to 
the rate controller in the sender. 

Given the rate control algorithm described above, there is 
of  course  a  set  of  parameters  that  are  of  interest  to  
experiment with. Firstly, how often should the receiver 
reports ideally be sent? At least for the case when the 
receiver detects nonzero packet loss it should be reported 
as  quickly  as  possible.  However,  too  often  would  be  a  
waste of bandwidth, without improving responsiveness. 
Secondly, should the reflector use the reported effective 
throughput as the limit for the sending rate or should it 
possibly use a bandwidth slightly below the reported 

bandwidth? Thirdly, how often should the probing for 
available bandwidth take place and at what rate should it 
be increased? We are currently investigating these issues 
in order to optimize the performance. 

Another open research issue is how the available 
bandwidth should be shared between multiple streams. 
This question is very interesting since there are many 
possible ways to allocate the available bandwidth to the 
streams. One of the more obvious solutions would be to 
use a bandwidth “fairness” algorithm where each stream's 
allocated bandwidth is in direct proportion to the original 
stream's bandwidth. Another approach would be to add 
information about who is currently speaking and allocate 
more bandwidth to that stream, since it could somehow be 
considered more important. 

4 TESTBED CONFIGURATION 
A testbed for experimentation and demonstration with the 
QoE-driven rate adaptation has been established, as 
depicted in Figure 2. In this set-up, one computer, labeled 
Demo System 1 in the figure, sends real-time audio and 
video streams through an RTP reflector to three video 
receivers labeled Demo System 2, Demo System 3 and 
Demo System 4 respectively. A network emulator is 
positioned between the RTP reflector and two of the 
video receivers to simulate different network conditions, 
while one of the receivers (Demo System 2) is unaffected 
by the perturbations introduced. This gives the 
opportunity to study how the QoE optimization can be 
performed in the RTP reflector independently for a set of 
heterogeneous receivers, enabling different quality levels 
for the receivers based on their downstream bandwidths. 
The external monitoring system and QoE estimation 
visualization, shown in the top part of Figure 2, are used 
to verify and visualize the actual network conditions and 
the QoE as estimated based on the monitoring. The 
external monitoring systems tap into the network at any 
place of interest, typically before and after the network 
emulator, as indicated in the figure.  

Service optimizations mechanisms implemented in the 
end systems (demo systems) and in the RTP reflector can 
be demonstrated by showing the performance with and 
without the mechanisms, for the emulated network 
conditions. 

 

 
Figure 2: Testbed for QoE-driven service optimization 

 



 

4.1 Network Emulation 
The purpose of using a network emulator in the testbed is 
to create a variety of network conditions in a controlled 
manner. Our intention is to analyse the performance of 
our service optimization framework under controlled 
conditions. Once the framework is fully deployed, testing 
the  system in  a  real  network  is  going to  be  an  important  
next step. However, the operating point of a network at 
any given time is a non-trivial combination of a number 
of different factors, making the overall behaviour non-
deterministic. In order to fine-tune our video bandwidth 
adaptation algorithm, we need to observe its behaviour as 
we change essential network parameters like bandwidth, 
delay, and packet loss rate in a repeatable way. In other 
words, a network emulator provides us with the fully 
deterministic network we need for our tests. 

In order to have repeatable network emulation in our 
testbed, we use KauNet 2.0 [7], a software tool developed 
at Karlstad University. KauNet actually extends another 
network emulation software, Dummynet [8], which is a 
standard  tool  on  FreeBSD  and  Mac  OS  X.  KauNet  
provides its users with many configuration possibilities, 
such as bandwidth, delay, packet loss, packet reordering, 
bit errors, or any combination of these. Pattern files are 
generated in advance to define the desired network 
behaviour on a per-packet or per-millisecond basis. 
KauNet processes these pattern files to emulate the 
network conditions. Using the pattern files, KauNet is 
even capable of emulating temporal changes in the 
network conditions, such as an increase or decrease in 
bandwidth or delay over time. 

In our testbed, KauNet runs on Linux on a desktop PC 
with two network interfaces. In the network topology 
depicted in Figure 2, this node corresponds to a network 
link between the RTP reflector and the switch connected 
to two of the receivers in the demo system. This 
configuration enables KauNet to act as a transparent node 
between two nodes in the network and to introduce delay, 
loss, and change of bandwidth as defined by the user. 

5 PERFORMANCE EVALUATION 
The testbed described in section 4 has been used to verify 
how our novel QoE-driven audiovisual service 
optimization framework can improve the quality of video 
communication and conferencing sessions. For the results 
presented here, a configuration with a single sender and a 
single receiver of audio and video streams is chosen for 
simplicity. In the general case, multiple senders and 
receivers can be present. 

In  the  performance  plot  shown  in  Figure  3,  the  MOS  
calculated by the receiving end system is plotted together 
with the packet loss rate for the audio stream. Figure 4 
shows  the  bandwidth  of  the  audio  and  video  streams  as  
measured by the same receiver. As can be seen in the 
figures, the media streams are initially received without 
loss, at their full transmitted rate (about 1.1 Mbps for 
video and 32 kbps for audio). The estimated audio quality 
is 4 (good quality). After about 3 seconds into the 

experiment, a bandwidth limitation of 500 kbps is 
introduced by the network emulator. This can be seen to 
drastically reduce the throughput of video (as expected), 
while the loss rate increases to about 5%, and in response 
the estimated audio quality drops to 3. This triggers the 
video rate adaptation in the reflector, which initially 
reduces the video bandwidth to around 200 kbps and then 
stabilizes around 400 kbps, leaving enough bandwidth for 
the audio stream to recover. 

After about 10 seconds, the network emulator is 
reconfigured with a bandwidth restriction of 50 kbps. This 
can be clearly seen to increase the packet loss rate 
dramatically, to over 80% loss, since the rate adaptation 
mechanism is unable to reduce the video bandwidth 
enough, resulting in an estimated audio quality measure 
of 1. This triggers the modality change event, whereby the 
video stream is dropped altogether by the reflector, which 
makes the audio quality recover to the highest level 
attainable in practice (4), as the packet loss rate vanishes. 

 

 
Figure 3: Packet loss rate and MOS 

 

 
Figure 4: Audio and video bandwidth 

 

Finally, after about 20 seconds, the bandwidth restriction 
is removed in the emulator, which in combination with 
the expiration of a 5 second hold-down timer causes the 
video to be re-enabled and the rate adaptation can be seen 
to start increasing the video bandwidth. The rate increase 
is done in small increments, to avoid driving the network 
to congestion when probing for available bandwidth. This 
will lead to a slow convergence to the optimal bandwidth 
level, when recovering from a low level (i.e. when going 
from bad network conditions to good). This part of the 
rate adaptation algorithm needs to be further developed 
with a more aggressive decision mechanism, although still 



 

careful enough not to congest the network immediately 
and not cause oscillation between on-off states for video.    

6 CONCLUSIONS AND FUTURE WORK 
In this paper we have presented a proof-of-concept 
implementation of QoE-driven audiovisual service 
optimization. The concept is based on conducting 
subjective tests with a video communication tool in a 
controlled network environment, where network 
perturbations are introduced and user response recorded 
to train the neural network. The subjective QoE can then 
be estimated in real time by the video communication 
service by feeding network monitoring data into the 
neural network, resulting in a MOS-like score quantifying 
the QoE. 

The QoE estimation of our current prototype uses audio 
quality estimations to drive the video rate adaptation 
algorithm of the service and to trigger modality changes 
from audio/video to audio only. Our initial experiments 
show that the novel approach with QoE-driven real-time 
adaptation and quality optimization of audiovisual 
communication services is feasible in practice and can 
improve the subjective experience of future systems and 
services.  

As future work, we are going to incorporate video quality 
estimations into the video rate adaptation system. We also 
intend to improve the adaptation algorithm according to 
performance evaluation results that we obtain from 
discrete event simulations where we can experiment 
further with various network scenarios complementing the 
testbed we designed.  
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