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Abstract

In this paper, we discuss and analyze the criteria for the existence and the
generation of surface modes in dielectric slabs with and without metallic layers
(frequency selective structures, FSS). The material parameter of the slab is in
general bianisotropic, but the examples and the numerical computations show
only isotropic materials. It is shown that there are three different categories
of resonances occurring in power transmission and power reflection in a FSS,
i.e., 1) resonances in the array, 2) surface wave excitations, and 3) onset of
grating lobes.

1 Introduction

Surface waves can have a devastating effect on the performance of a radome con-
struction if such waves are excited. The purpose of this paper is to investigate the
characteristics of these surface waves and how these waves are excited for radome
constructions.

The concept of propagators is an analysis tool that is potent enough to ana-
lyze surface waves in general supporting materials. This technique has shown great
potential [5, 10], and, moreover, the analysis is independent on any coordinate rep-
resentation. Such an presentation is vital in the understanding of the more complex
material situations, such as anisotropies and bianisotropies of the material.

We start by stating the prerequisites needed for the investigation in Section 2.
In Section 3, we investigate surface waves in a (bianisotropic) slab without any
metal screen. The slab is homogeneous w.r.t. the lateral coordinates, but can be
inhomogeneous w.r.t. the depth parameter. The generation of surface waves in a
slab with one metallic layer (screen) is investigated in Section 5, and its application
to the periodic case (FSS) is further developed in Section 6. In Section 7 some
numerical examples illustrate the results.

2 The electric and magnetic fields in the slab

We orient the coordinate system so that the normal direction to the slab is oriented
parallel to the z-axis, see Figure 1. We recall the time-harmonic (e−iωt) constitutive
relations of the general bianisotropic medium [10]:






D = ε0 {ε · E + η0ξ · H}

B =
1

c0

{ζ · E + η0µ · H}

The permittivity and the permeability of vacuum are denoted by ε0 and µ0, respec-
tively. The speed of light in vacuum is c0 = 1/

√
ε0µ0 and the intrinsic impedance of

vacuum is η0 =
√

µ0/ε0. The bianisotropic slabs may have varying material dyadics
ε, ξ, ζ, µ, as functions of depth z (and angular frequency ω), i.e., ε = ε(z) etc. The
four material dyadics, ε, ξ, ζ, µ, are dimension-less quantities. The electric and
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magnetic fields, E and H , respectively, and the electric and magnetic flux densities,
D and B, respectively, satisfy the Maxwell equations

{
∇× E = ik0c0B = ik0 {ζ · E + η0µ · H}
η0∇× H = −ik0c0η0D = −ik0 {ε · E + η0ξ · H}

where k0 = ω/c0 is the vacuum wave number.
The electric field in any stratified material can always be represented as a Fourier

transform in the lateral coordinates x and y (plane wave spectrum representation),
i.e., the electric field can be represented as

E(kt, z) =

∞∫∫

−∞

E(r)e−ikt·ρ dx dy

where
ρ = x̂x + ŷy, kt = x̂kx + ŷky

are the lateral position vector and lateral wave vector, respectively. By the Fourier
inversion formula, the inverse Fourier transform w.r.t. ρ is

E(r) =
1

4π2

∞∫∫

−∞

E(kt, z)eikt·ρ dkx dky

Notice that, in order to avoid cumbersome notation, the same letter has been used
to denote the Fourier transform of the field, E(kt, z), and the field itself, E(r), in
real space. The argument of the field shows what field is intended.

The Fourier variable kt defines two unit vectors in the x-y-plane, which consti-
tutes the natural, coordinate-free basis for decomposing vectors and dyadics in the
x-y-plane, viz.,

ê‖ =
kt

kt

, ê⊥ = J · ê‖ (2.1)

where1 J = ẑ × I3 or J ·A = ẑ ×A, which denotes a projection of a vector A onto
the x-y-plane followed by a rotation of π/2 in this plane. The non-negative number

kt =
√

k2
x + k2

y ≥ 0

is the lateral wave number. Notice that J · J = −I2. Moreover, the normal (longi-
tudinal) wave number, kz, is defined by

kz =
(
k2

0 − k2
t

)1/2
=






√

k2
0 − k2

t for kt < k0

i
√

k2
t − k2

0 for kt > k0

1Note the typographical difference between the dyadic J which denotes a rotation, and the
current density vector J . All vectors in this paper are typed in italic bold face and dyadics are
typed in roman bold face. The identity dyadic in n dimensions is denoted In.
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where the standard convention of the square root of a positive argument is intended.
With these unit vectors, ê‖ and ê⊥, the two classical classification categories of TM-
and TE-waves in an isotropic material correspond to the polarization vectors of the
electric field along {

ê‖, TM-case

ê⊥, TE-case

respectively.

2.1 Fundamental equation

All vector fields are decomposed into their transverse x-y-components and their
z-components, e.g.,

{
E(r) = Exy(r) + ẑEz(r)

E(kt, z) = Exy(kt, z) + ẑEz(kt, z)

The transverse components satisfy the fundamental equation [10], i.e.,

d

dz

(
Exy(kt, z)

η0J · Hxy(kt, z)

)

= ik0M(kt, z) ·
(

Exy(kt, z)
η0J · Hxy(kt, z)

)

(2.2)

where the linear map M(kt, z) : C
2×2 → C

2×2 depends on the material dyadics. A
detailed representation of M(kt, z) in terms of ε(z), ξ(z), ζ(z), µ(z), kt, and k0 is
given in [10].

In this paper, we adopt the notion of a decomposition of a four-dimensional
dyadic, e.g., M, into a matrix of two-dimensional dyadics, Mij, i, j = 1, 2 as

M =

(
M11 M12

M21 M22

)

From the transverse field components of the electric and the magnetic field in the
spectral domain, Exy(kt, z) and Hxy(kt, z), all other field components can be de-
termined. Specifically, the z-components of the electric and the magnetic fields are
given terms of their transverse components as [10]

(
εzz(z) ξzz(z)
ζzz(z) µzz(z)

) (
Ez(z)

η0Hz(z)

)

=

(
−εz(z) kt/k0 + ξz(z) · J

J · kt/k0 − ζz(z) µz(z) · J

)

·
(

Exy(z)
η0J · Hxy(z)

) (2.3)

2.2 Propagators

The concept of propagators is of fundamental importance for the systematic analysis
presented in this paper. The propagators have been introduced in e.g., [9, 10].
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Let z0 < z < z1. The propagator of the transverse electric and magnetic fields
is [9, 10] (

Exy(kt, z)
η0J · Hxy(kt, z)

)

= P(kt, z, z0) ·
(

Exy(kt, z0)
η0J · Hxy(kt, z0)

)

(2.4)

or in a decomposition of the four-dimensional dyadic P in four two-dimensional
dyadics as described above, we get

{
Exy(kt, z) = P11(kt, z, z0) · Exy(kt, z0) + P12(kt, z, z0) · η0J · Hxy(kt, z0)

η0J · Hxy(kt, z) = P21(kt, z, z0) · Exy(kt, z0) + P22(kt, z, z0) · η0J · Hxy(kt, z0)

For z = z0 the propagators are the identity transformation in four dimensions, I4.
The propagator P satisfy a system of ordinary differential equations (ODE). They
are [9, 10] 





d

dz
P(kt, z, z0) = ik0M(kt, z) · P(kt, z, z0)

P(z0, z0) = I4

(2.5)

where the dyadic M is the same as in (2.2).
These equations relate the fields at one position, z0, to the fields at another

position, z. In this way, they propagate the fields from one position to another.
The propagation from z0 to z can be made in one single step or in several small
ones. This property imply that the propagators show group properties in the depth
variable, i.e.,

P(z2, z0) = P(z2, z1) · P(z1, z0) (2.6)

Since it can be proved that the dyadic P(kt, z, z0) is an entire dyadic-valued func-
tion of kt, the singularities of Exy(kt, z) are the same as Exy(kt, z0) and Hxy(kt, z0).

2.3 Wave splitting

The fields inside the slab are most conveniently represented as the total transverse
electric and magnetic fields and not as the right- and left-going components of the
field. However, outside the slab, we like to identify the input and output fields of
the slab. The input fields are commonly called the incident fields and the output
fields are the reflected and transmitted fields. To find these fields, we decompose
the total fields—the wave splitting transformation.

Wave splitting gives [9, 10]

(
Exy(kt, z)

η0J · Hxy(kt, z)

)

=

(
I2 I2

−W−1(kt) W−1(kt)

)

·
(

F +(kt, z)
F−(kt, z)

)

(2.7)

where the two-dimensional dyadic W−1 is the vacuum wave splitting dyadic

W−1(kt) = ê‖ê‖
k0

kz

+ ê⊥ê⊥
kz

k0

(2.8)
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z1z0

z

Figure 1: The geometry of the slab without screens.

Here, I2 is the identity dyadic in the x-y-plane, and ê‖(kt) and ê⊥(kt), defined in
(2.1), constitute a orthogonal basis for the lateral vectors (vectors in the x-y-plane).
The inverse of the vacuum wave splitting dyadic is

W(kt) = ê‖ê‖
kz

k0

+ ê⊥ê⊥
k0

kz

(2.9)

We also have the inverse of (2.7) [9, 10]

(
F +(kt, z)
F−(kt, z)

)

=
1

2

(
I2 −W(kt)
I2 W(kt)

)

·
(

Exy(kt, z)
η0J · Hxy(kt, z)

)

(2.10)

It is pertinent to introduce the following two four-dimensional dyadics S and S−1

defined by

S(kt) =
1

2

(
I2 −W(kt)
I2 W(kt)

)

, S−1(kt) =

(
I2 I2

−W−1(kt) W−1(kt)

)

These dyadics are used frequently in the analysis below.

3 Bianisotropic slab without metallic screens

We start the analysis of surface waves by considering a bianisotropic slab, which can
be inhomogeneous w.r.t. the depth parameter z, see Figure 1. The end points of the
slab are denoted z = z0 and z = z1, respectively.
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From (2.4) and (2.7) we get (below, we often, for convenience, omit the depen-
dence of the transverse wave vector kt)

(
Exy(z1)

η0J · Hxy(z1)

)

= P(z1, z0) ·
(

Exy(z0)
η0J · Hxy(z0)

)

= P(z1, z0) · S−1 ·
(

F +(z0)
F−(z0)

)

Moreover, from (2.10)
(

F +(z1)
F−(z1)

)

=S ·
(

Exy(z1)
η0J · Hxy(z1)

)

= S · P(z1, z0) · S−1 ·
(

F +(z0)
F−(z0)

)

=G(z1, z0) · S−1 ·
(

F +(z0)
F−(z0)

)

= T(z1, z0) ·
(

F +(z0)
F−(z0)

) (3.1)

where

G(z1, z0) = S · P(z1, z0), or






2G11 = P11 − W · P21

2G12 = P12 − W · P22

2G21 = P11 + W · P21

2G22 = P12 + W · P22

(3.2)

and

T(z1, z0) = G(z1, z0) · S−1, or






T11 = G11 − G12 · W−1

T12 = G11 + G12 · W−1

T21 = G21 − G22 · W−1

T22 = G21 + G22 · W−1

(3.3)

Especially, since P(z0, z0) = I4

T(z0, z0) = I4

The dyadics Gij and Tij, i, j = 1, 2, are all analytic, dyadic-valued functions of
kt, except for a branch point (or pole) at kt = k0ê‖.

3.1 The properties of the dyadics G and T

The group properties, (2.6), of the the propagators P imply

G(z1, z0) = G(z1, z) · P(z, z0) (3.4)

and, since P−1(z1, z0) = P(z0, z1)

(G(z1, z0))
−1 = P(z0, z1) · S−1 = S−1 · T(z0, z1)

Moreover, we have, due to the group properties, (2.6), of the the propagators P

T(z2, z1) · T(z1, z0) = S · P(z2, z1) · S−1 · S · P(z1, z0) · S−1 = T(z2, z0)

Especially, since T(z1, z1) = I4

T(z1, z0) · T(z0, z1) = I4

and
T(z1, z0) · G(z0, z) = G(z1, z0) · P(z0, z) = G(z1, z)

This latter equation implies

T(z2, z0) = G(z2, z1) · (G(z0, z1))
−1 (3.5)
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3.2 Scattering representation

Equation (3.1) gives the relation between the split fields at both ends of the slab, i.e.,
at z = z0 and z = z1. A more common representation (scattering representation) is
to relate F−(z0) and F +(z1) (output fields) in terms of F +(z0) and F−(z1) (input
fields). Since, from (3.1)

F−(z0) = T−1
22 · F−(z1) − T−1

22 · T21 · F +(z0) (3.6)

we get

F +(z1) = T11 · F +(z0) + T12 ·
(
T−1

22 · F−(z1) − T−1
22 · T21 · F +(z0)

)

or in a matrix form
(

F−(z0)
F +(z1)

)

=

(
−T−1

22 · T21 T−1
22

T11 − T12 · T−1
22 · T21 T12 · T−1

22

)

·
(

F +(z0)
F−(z1)

)

The arguments of all dyadics Tij here are Tij = Tij(z1, z0), i, j = 1, 2.
This is the desired relation between the output fields, F−(z0) and F +(z1), and

the input fields, F +(z0) and F−(z1) for a slab without any metallic screens.

3.3 Surface waves characterization—the internal fields

We proceed in our quest for a coordinate independent representation of the fields in
the slab. The surface waves are defined by the kt-values at which the electric field
(or magnetic field) is singular.

To find the kt-values at which the electric field is singular, we like to express
the transverse electric and magnetic fields inside the slab in terms of the excitations
F +(kt, z0) and F−(kt, z1), i.e.,

(
Exy(kt, z0)

η0J · Hxy(kt, z0)

)

=

(
A(kt) B(kt)
C(kt) D(kt)

)

·
(

F +(kt, z0)
F−(kt, z1)

)

(3.7)

from which we conclude that the singular values of the fields originate from the
singular kt-values of the dyadics A(kt), B(kt), C(kt), and D(kt).

From equation (3.6) we get
(

F +(z0)
F−(z0)

)

=

(
I2 0

−T−1
22 · T21 T−1

22

)

·
(

F +(z0)
F−(z1)

)

Finally, we get by (2.7)
(
A B
C D

)

=

(
I2 I2

−W−1 W−1

)

·
(

I2 0
−T−1

22 · T21 T−1
22

)

or 




A =I2 − T−1
22 · T21 = 2T−1

22 · G22 · W−1

B =T−1
22

C = − W−1 ·
(
I2 + T−1

22 · T21

)
= −2W−1 · T−1

22 · G21

D =W−1 · T−1
22

(3.8)
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The arguments of all dyadics Tij and Gij here are Tij = Tij(z1, z0) and Gij =
Gij(z1, z0), i, j = 1, 2.

The singularities are determined by the existence of a zero eigenvalue of the
following dyadic, cf. also [9]: (kt = k0ê‖ is a branch point)

T22 = G21 + G22 · W−1 =
1

2

(
P11 + W · P21 + (P12 + W · P22) · W−1

)

where all propagators have the argument (z1, z0). For each fixed direction in Fourier
kt-space (k̂t fixed), we assume that kt is singular at |kt| = ktsw(k̂t). We denote
these singular vectors by ktsw(k̂t). We assume these singular values are discrete
in the radial direction (k̂t fixed) and finite in number for each value of the wave
number k0.

Note that for a grounded slab the surface waves are determined by the zero
eigenvalues and eigenvectors of [6]

W−1 · P12(d, 0) + P22(d, 0) = 2W−1 · G22(d, 0)

3.4 The surface wave field

The form of the surface field is determined by the singular part of the field repre-
sentation in the spatial representation (3.7). The general expression for the field is
given by the inverse Fourier transform.

Exy(r) =
1

4π2

∞∫∫

−∞

T−1
22 ·

{
(T22 − T21) · F +(kt, z0) + F−(kt, z1)

}
eikt·ρ dkx dky

where we have used (3.7) and (3.8). This implies that the electric and the magnetic
parts of the surface fields are






Exysw(ρ, z0) =
i

2π

∫ 2π

0

A−1(ktsw(k̂t))

·
{
F−(ktsw(k̂t), z1) − T21(ktsw(k̂t)) · F +(ktsw(k̂t), z0)

}
eiktsw(k̂t)·ρ dk̂t

η0J · Hxysw(ρ, z0) = W−1(ktsw(k̂t)) · Exysw(ρ, z0)

(3.9)
where A−1(ktsw(k̂t)) denotes the residue of the T22 dyadic along the direction k̂t,
see (C.1).

The electric field at an arbitrary position in the slab is obtained from the field
at z = z0 by the use of the propagators, (2.4)





Exysw(ρ, z) =
i

2π

∫ 2π

0

(
P11(ktsw(k̂t), z, z0) + P12(ktsw(k̂t), z, z0) · W−1(ktsw(k̂t))

)

· A−1(ktsw(k̂t)) ·
{
F−(ktsw(k̂t), z1) − T21(ktsw(k̂t)) · F +(ktsw(k̂t), z0)

}

· eiktsw(k̂t)·ρ dk̂t

(3.10)
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Notice that these surface waves cannot be excited by an incident plane wave, since
the surface wave always has a transverse wave number that satisfies |ktsw| ≥ k0, i.e.,
the wave is evanescent outside the slab. The incident plane wave, however, must be
a propagating wave satisfying |kt| ≤ k0, and, therefore, the exciting fields F +(kt, z0)
and F−(kt, z1) have only support in this region. A source, e.g., a dipole or a periodic
metallic pattern (FSS), which has a broader plane wave spectrum can be used to
excite the surface wave.

3.5 ODE for the dyadic T

It is possible to find an ODE for the dyadic T. This is valuable in the computations
of the residues of the field. To proceed, denote

T(z) = S · P(z, z0) · S−1

with initial value
T(z0) = I4

We note that

T22 =
1

2

(
P11 + W · P21 + (P12 + W · P22) · W−1

)
=

1

2

(
I2 W

)
· P ·

(
I2

W−1

)

By the use of (2.5)

d

dz
P(z, z0) = ik0M(z) · P(z, z0)

we get
d

dz
T(z) = ik0S · M(z) · P(z, z0) · S−1

which implies

d

dz
T(z) = ik0S · M(z) · S−1 · T(z) = ik0C(z) · T(z)

Here the two-dimensional components Cij, i, j = 1, 2, of the four-dimensional dyadic
C are related as






2C11 =
(
M11 − M12 · W−1

)
− W ·

(
M21 − M22 · W−1

)

2C12 =
(
M11 + M12 · W−1

)
− W ·

(
M21 + M22 · W−1

)

2C21 =
(
M11 − M12 · W−1

)
+ W ·

(
M21 − M22 · W−1

)

2C22 =
(
M11 + M12 · W−1

)
+ W ·

(
M21 + M22 · W−1

)

The surface waves are determined by the transverse wave numbers ktsw(k̂t) that
satisfy 





d

dz
T(ktsw, z) = ik0C(ktsw, z) · T(ktsw, z)

T(ktsw, z0) = I4

T22(ktsw, z1) singular
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3.6 Onset of the surface field

The onset of the surface field is characterized by a transversal wave number |kt| = k0.
Therefore, the condition for the onset of a surface mode is the existence of zero
eigenvalue of T22(kt = k0, d, 0). Due to the behavior of the splitting dyadic W
for arguments close to kt = k0, see (2.8) and (2.9), we get the following necessary
condition of the onset (arguments |kt| = k0)

ê⊥ (ê⊥ · P21) +
(
P12 · ê‖

)
ê‖ + ê⊥

(
ê⊥ · P22 · ê‖

)
ê‖ = 0 (3.11)

4 Examples

Before proceeding to a geometry with metal screens in Section 5, we illustrate the
theory in Section 3 with a few examples.

4.1 Inhomogeneous, isotropic material

The isotropic case is the most important case in radome applications, and in this
section we specialize to this material class. The material parameters in this class of
material are characterized by the relative permittivity ε(z) and the relative perme-
ability µ(z). The longitudinal components of the fields in an isotropic material are
related to the transverse components of the fields as, see (2.3)






Ez(z) =
kt · η0J · Hxy(z)

k0ε(z)

η0Hz(z) =
J · kt · Exy(z)

k0µ(z)

In a isotropic material the propagators is diagonal in the basis {ê‖, ê⊥}, i.e.,

{
Pij(z1, z0) = PTM

ij (z1, z0)ê‖ê‖ + PTE
ij (z1, z0)ê⊥ê⊥

Tij(z1, z0) = TTM
ij (z1, z0)ê‖ê‖ + TTE

ij (z1, z0)ê⊥ê⊥
i, j = 1, 2

where the Tij-components, i, j = 1, 2, are expressed in the propagator components
Pij-components, i, j = 1, 2, as (see (2.8) and (2.9))






2TTM
21 = PTM

11 +
kz

k0

PTM
21 − k0

kz

PTM
12 − PTM

22

2TTE
21 = PTE

11 +
k0

kz

PTE
21 − kz

k0

PTE
12 − PTE

22

and 




2TTM
22 = PTM

11 +
kz

k0

PTM
21 +

k0

kz

PTM
12 + PTM

22

2TTE
22 = PTE

11 +
k0

kz

PTE
21 +

kz

k0

PTE
12 + PTE

22

(4.1)
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The ODE for the propagators in the TM-case are [6]






d

dz
PTM

11 = ik0

(
k2

t

k2
0ε(z)

− µ(z)

)

PTM
21

d

dz
PTM

21 = −ik0ε(z)PTM
11

{
PTM

11 (z1, z1) = 1

PTM
21 (z1, z1) = 0

and 




d

dz
PTM

12 = ik0

(
k2

t

k2
0ε(z)

− µ(z)

)

PTM
22

d

dz
PTM

22 = −ik0ε(z)PTM
12

{
PTM

12 (z1, z1) = 0

PTM
22 (z1, z1) = 1

Note that the equations are identical, but the initial conditions differ.
For the other polarization, ⊥-polarization, we obtain the TE-case, which also

splits in two non-coupling sets of first order ordinary differential equations.






d

dz
PTE

11 = −ik0µ(z)PTE
21

d

dz
PTE

21 = ik0

(
k2

t

k2
0µ(z)

− ε(z)

)

PTE
11

{
PTE

11 (z1, z1) = 1

PTE
21 (z1, z1) = 0

and 




d

dz
PTE

12 = −ik0µ(z)PTE
22

d

dz
PTE

22 = ik0

(
k2

t

k2
0µ(z)

− ε(z)

)

PTE
12

{
PTE

12 (z1, z1) = 0

PTE
22 (z1, z1) = 1

Again, the equations are identical, but the initial conditions differ.
The general behavior of these solutions are found by diagonalizing the matrices.

Also the high frequency behavior is possible to find, see e.g., [11].

4.1.1 Onset of surface waves

For an isotropic material, the singular values, ktsw, are independent of the direction
k̂t, and the kt-value for onset satisfies kt = k0, or stated differently kz = 0 at this
frequency. Therefore, the condition for the onset of a surface mode, TTM, TE

22 (kt =
k0, d, 0) = 0, is different for the TM- and the TE-cases. At onset, due to (4.1), a
necessary condition is {

PTM
12 (kt = k0, z1, z0) = 0

PTE
21 (kt = k0, z1, z0) = 0

which also is consistent with the general expression for the onset of surface waves in
(3.11). These conditions are the general conditions for the onset of a surface wave
if the isotropic material is inhomogeneous w.r.t. the depth parameter z.
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4.2 Homogeneous, isotropic material

If the isotropic material is homogeneous, then all systems are analytically solvable.
This case is found in the literature, e.g., [1], but employing a different method.

For a homogeneous, isotropic material, the propagators are (d = z1 − z0) [9, 10]






P11(z1, z0) = I2 cos (k0κd)

P12(z1, z0) = − i

κ
sin (k0κd)

{
κ2

ε
ê‖ê‖ + µê⊥ê⊥

}

P21(z1, z0) = − i

κ
sin (k0κd)

{

εê‖ê‖ +
κ2

µ
ê⊥ê⊥

}

P22(z1, z0) = I2 cos (k0κd)

where κ2 = εµ − k2
t /k

2
0. We also have, see (2.8) and (2.9)

W(kt) =
kz

k0

ê‖ê‖ +
k0

kz

ê⊥ê⊥, W−1(kt) =
k0

kz

ê‖ê‖ +
kz

k0

ê⊥ê⊥

which implies






2TTM
22 = 2 cos (k0κd) − kz

k0

iε

κ
sin (k0κd) − k0

kz

iκ

ε
sin (k0κd)

2TTE
22 = 2 cos (k0κd) − k0

kz

iκ

µ
sin (k0κd) − kz

k0

iµ

κ
sin (k0κd)

Denote x = ktsw/k0 > 0. Then κ2 = εµ − x2 and kz/k0 = i
√

x2 − 1 and the
conditions for a surface wave become






ε

κ

√
x2 − 1 tan (k0κd) − κ

ε
√

x2 − 1
tan (k0κd) + 2 = 0, TM-case

µ

κ

√
x2 − 1 tan (k0κd) − κ

µ
√

x2 − 1
tan (k0κd) + 2 = 0, TE-case

The onset is explicitly given by

k0d =
2nπ

2
√

εµ − 1
, n = 1, 2, 3, 4, . . .

To compare with the solution obtained with other methods, we rewrite the equa-
tions in terms of half of the arguments in the trigonometric functions. We get






(
tan (k0κd/2) − ε

κ

√
x2 − 1

) (

tan (k0κd/2) +
κ

ε
√

x2 − 1

)

= 0, TM-case

(
tan (k0κd/2) − µ

κ

√
x2 − 1

) (

tan (k0κd/2) +
κ

µ
√

x2 − 1

)

= 0, TE-case
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with solutions (only solutions x > 0 are sought)






tan (k0κd/2) =
ε
√

x2 − 1

κ
=

ε
√

εµ − 1 − κ2

κ
, even TM-case

cot (k0κd/2) = −ε
√

x2 − 1

κ
= −ε

√
εµ − 1 − κ2

κ
, odd TM-case

tan (k0κd/2) =
µ
√

x2 − 1

κ
=

µ
√

εµ − 1 − κ2

κ
, even TE-case

cot (k0κd/2) = −µ
√

x2 − 1

κ
= −µ

√
εµ − 1 − κ2

κ
, odd TE-case

(4.2)

which agree with the well known results obtained by other methods [1]. The quan-
titative behavior of the solutions of these equations can be seen graphically. To this
end, introduce the variables

{
u = k0κd/2 = k0

√
εµ − x2d/2

v = k0

√
x2 − 1d/2

and (4.2) becomes





v =
u tan u

ε
, even TM-case

v = −u cot u

ε
, odd TM-case

v =
u tan u

µ
, even TE-case

v = −u cot u

µ
, odd TE-case

(4.3)

We plot these functions in a u-v-diagram and observe that the variables u and v
are connected by

u2 + v2 = k2
0(εµ − 1)d2/4 (4.4)

which is a circle in the u-v-plane with radius k0

√
εµ − 1d/2. Two illustrations, see

Figures 2 and 3, illustrate the existence of a surface wave for the discrete x-values
(x > 0) at the intersections between the curves in (4.3) and the circles in (4.4)
determined by the frequency and the thickness of the slab.

The dispersion curves relate the frequency of the surface wave and the trans-
verse wave number of the surface wave. An example of such a calculation for a
homogeneous, isotropic material is shown in Figures 4–6.

4.2.1 The electric field and its symmetries

In this section we investigate the relation between the surface waves obtained above
and the surface waves in the presence of a ground plane. These latter waves are also
investigated in Ref. 6.
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π

2
π

3π

2
2π

5π

2

u tan u

ε

v

u

TM0

TM2

TM4

TM0

Figure 2: Geometrical characterization of even TM-modes for ε = 2 and µ = 1.
The surface modes are determined by the x-values at the intersections of the curve
v = u tan u/ε and the circle in (4.4). The radius of the circle is k0

√
εµ − 1d/2.

To determine the electric field of the surface field, see (3.9), we need to compute
P11(kt, z, z0) + P12(kt, z, z0) · W−1(kt). This is readily done by observing that

P11(kt, z, z0) + P12(kt, z, z0) · W−1(kt)

= I2 cos (k0κ(z − z0)) −
i

κ
sin (k0κ(z − z0))

{
κ2

ε

k0

kz

ê‖ê‖ + µ
kz

k0

ê⊥ê⊥

}

If we evaluate at the midpoint of the slab zm = (z0 + z1)/2, we obtain

P11(kt, zm, z0) + P12(kt, zm, z0) · W−1(kt)

= I2 cos (k0κd/2) − i

κ
sin (k0κd/2)

{
κ2

ε

k0

kz

ê‖ê‖ + µ
kz

k0

ê⊥ê⊥

}

= cos (k0κd/2)

(

I2 −
i

κ
tan (k0κd/2)

{
κ2

ε

1

i
√

x2 − 1
ê‖ê‖ + µi

√
x2 − 1ê⊥ê⊥

})

The characteristic equations in (4.2) imply for the even TM-case

(
P11(kt, zm, z0) + P12(kt, zm, z0) · W−1(kt)

)
· ê‖ = 0

and for the odd TE-case

(
P11(kt, zm, z0) + P12(kt, zm, z0) · W−1(kt)

)
· ê⊥ = 0
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Figure 3: Geometrical characterization of odd TM-modes for ε = 2 and µ = 1.
The surface modes are determined by the x-values at the intersections of the curve
v = −u cot u/ε and the circle in (4.4). The radius of the circle is k0

√
εµ − 1d/2.

From (3.9) and (3.10), we get

Exysw(r)
∣
∣
z=zm

=
(
P11(ktsw, zm, z0) + P12(ktsw, zm, z0) · W−1(ktsw)

)
· Exysw(ρ, z0)

which implies {
Exysw(r)

∣
∣
z=zm

· ê‖ = 0, even TM-case

Exysw(r)
∣
∣
z=zm

· ê⊥ = 0, odd TE-case

since in the TM-case the electric field is polarized along the ê‖-direction and in the
TE-case perpendicular to this direction. Therefore, the even TM-case and the odd
TE-case give the surface waves for a grounded slab of half the thickness. The onset
frequencies are determined by

k0d/2 =
2nπ

2
√

εµ − 1
, n = 0, 1, 2, 3, . . . , even TM-case

and

k0d/2 =
(2n + 1)π

2
√

εµ − 1
, n = 0, 1, 2, 3, . . . , odd TE-case

respectively.

4.3 Uniaxial material

The permittivity dyadic of the uniaxial medium can be written as

ε = ε1 (I3 − ûû) + ε2ûû
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Figure 4: The normalized frequency k0d = ωd/c0 as a function of the normalized
wave number ktd of the surface mode. The figure shows the dispersion curves for an
isotropic profile ε = 4 and µ = 1. The k0d-values for the onset of the different modes
for the profile are: TE1 = TM1 = 1.81, TE2 = TM2 = 3.63, TE3 = TM3 = 5.44,
TE4 = TM4 = 7.26, and TE5 = TM5 = 9.07. The solid lines show the TM-modes
and the dashed lines the TE-modes.

where the unit vector û defines an optical axis in the material. The single-slab
propagator for a homogeneous, non-magnetic, uniaxial slab with the optical axis in
the û = ẑ-direction is given by [9]






P11(z1, z0) = ê‖ê‖ cos(k0dλ−) + ê⊥ê⊥ cos(k0dλ+)

P12(z1, z0) = −iê‖ê‖
λ−
ε1

sin(k0dλ−) − iê⊥ê⊥
1

λ+

sin(k0dλ+)

P21(z1, z0) = −iê‖ê‖
ε1

λ−
sin(k0dλ−) − iê⊥ê⊥λ+ sin(k0dλ+)

P22(z1, z0) = ê‖ê‖ cos(k0dλ−) + ê⊥ê⊥ cos(k0dλ+)

where the four eigenvalues of M, ±λ± are all distinct; specifically

λ2
+ = ε1 −

k2
t

k2
0

, λ2
− = ε1 −

k2
t

k2
0

ε1

ε2
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Figure 5: The normalized wave number ktd of the surface wave as a function of the
normalized frequency k0d of the TM0-mode for an isotropic profile ε = 4 and µ = 1.

We proceed by computing

2T22 =P11 + W · P21 + (P12 + W · P22) · W−1

=ê‖ê‖ cos(k0dλ−) + ê⊥ê⊥ cos(k0dλ+)

− i
kz

k0

ê‖ê‖
ε1

λ−
sin(k0dλ−) − i

k0

kz

ê⊥ê⊥λ+ sin(k0dλ+)

− i
k0

kz

ê‖ê‖
λ−
ε1

sin(k0dλ−) − i
kz

k0

ê⊥ê⊥
1

λ+

sin(k0dλ+)

which leads to an analysis that is similar to the one developed in Section 4.2.

5 Slab with one screen

We proceed our analysis by adding one metal screen to the slab at z = z1, where
the end points of the slab are z0 and z2, see Figure 7. The location of the screen can
be arbitrary within the slab, z0 ≤ z1 ≤ z2. At this stage the metal screen has finite
extent. In Section 6 the extension to the periodic metallic screen (FSS) is made.

From equations (2.4) and (2.7) we get
(

Exy(z1)
η0J · Hxy(z

−
1 )

)

= P(z1, z0) · S−1 ·
(

F +(z0)
F−(z0)

)

(5.1)

where the left hand side of the metallic screen is denoted z−1 . Notice that the
transverse electric field, Exy(z1), is continuous over the metallic screen, since it is
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Figure 6: The normalized wave number ktd of the surface wave as a function of the
normalized frequency k0d of the TM0-mode for an isotropic profile ε = 3 and µ = 1.

continuous outside the metallic screen and zero on the metal. Therefore, we do not
have to distinguish which side of the screen the transverse electric field is evaluated.

Moreover, from equations (2.10) and (2.4)

(
F +(z2)
F−(z2)

)

=S · P(z2, z1) ·
(

Exy(z1)
η0J · Hxy(z

+
1 )

)

=S · P(z2, z1) ·
(

Exy(z1)
η0JS(z1) + η0J · Hxy(z

−
1 )

)

where the right hand side of the metallic screen is denoted z+
1 . The surface current

density JS(z1) is defined in the usual way as the discontinuity in the transverse
magnetic field, i.e.,

JS(z1) = J · Hxy(z
+
1 ) − J · Hxy(z

−
1 )

We rewrite by the use of (5.1)

(
F +(z2)
F−(z2)

)

=S · P(z2, z1) · P(z1, z0) · S−1 ·
(

F +(z0)
F−(z0)

)

+ S · P(z2, z1) ·
(

0
η0JS(z1)

)

=T(z2, z0) ·
(

F +(z0)
F−(z0)

)

+ G(z2, z1) ·
(

0
η0JS(z1)

)
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Figure 7: The geometry of the slab with one screen.

where T and G is defined in (3.3) and (3.2), respectively (the case with no screen
present). In two-dimensional dyadics, we rewrite this relation as






F +(z2) = T11(z2, z0) · F +(z0) + T12(z2, z0) · F−(z0) + G12(z2, z1) · η0JS(z1)

F−(z0) = T−1
22 (z2, z0) · F−(z2) − T−1

22 (z2, z0) · T21(z2, z0) · F +(z0)

− T−1
22 (z2, z0) · G22(z2, z1) · η0JS(z1)

(5.2)
The goal is to express the fields at z0 in terms of the excitations F +(z0), F−(z2),

and JS(z1), i.e.,

(
Exy(z0)

η0J · Hxy(z0)

)

=

(
A B
C D

)

·
(

F +(z0)
F−(z2)

)

+

(
a · η0JS(z1)
b · η0JS(z1)

)

(5.3)

We proceed by finding the two-dimensional dyadics A, B, C, D, a, and b. These
dyadics are obtained from (2.7)

(
Exy(z0)

η0J · Hxy(z0)

)

= S−1 ·
(

F +(z0)
F−(z0)

)

and (5.2). We get

(
Exy(z0)

η0J · Hxy(z0)

)

=S−1 ·
(

I2 0
−T−1

22 (z2, z0) · T21(z2, z0) T−1
22 (z2, z0)

)

·
(

F +(z0)
F−(z2)

)

+ S−1 ·
(

0
−T−1

22 (z2, z0) · G22(z2, z1) · η0JS(z1)

)
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from which we identify






A = I2 − T−1
22 (z2, z0) · T21(z2, z0) = 2T−1

22 (z2, z0) · G22(z2, z0) · W−1

B = T−1
22 (z2, z0)

C = −W−1 − W−1 · T−1
22 (z2, z0) · T21(z2, z0) = −2W−1 · T−1

22 (z2, z0) · G21(z2, z0)

D = W−1 · T−1
22 (z2, z0)

(5.4)
and {

a = −T−1
22 (z2, z0) · G22(z2, z1)

b = −W−1 · T−1
22 (z2, z0) · G22(z2, z1)

(5.5)

We see that the dyadics A, B, C, and D are identical to the ones in (3.8). Moreover,
the result is identical to the one found in Ref. 5. This latter statement is harder to
see, and it is proven in detail in Appendix A.

In conclusion, we see that the possible singularities of the electric or the magnetic
fields, Exy(z0) and Hxy(z0), in (5.3) occur at kt, where kt are determined by:

1. Possible zero eigenvalues of the two-dimensional dyadic T22(z2, z0). These
singularities correspond to surface waves in the entire supporting slab and
are determined by the ktsw-value (k̂t fixed) for which detT22(z2, z0) = 0.
This condition is identical to the condition of surface waves in the absence of
metallic screen that was investigated in Section 3.

2. Possible singularities of the surface current density JS(z1). These singularities
depend on the shape of the metal pattern and the size of the unit cell as well
as the dimensions and the material parameters of the supporting slab.

6 Periodic materials—FSS

In this section, we investigate the case when the screen at z = z1 is a periodically
repeated pattern, and the incident field is a plane wave incident from left with a wave
vector ki. The case of incident field from the right is obtained by superposition.

We denote the unit cell by U , its area AU = |a × b| = ab sin φ0, and the metal-
lic parts in the unit cell by Sσ, see Figure 8. The components of ki in the x-
and y-directions are denoted by ki

x and ki
y, respectively, i.e., ki

t = x̂ki
x + ŷki

y, and

the spherical angles of ki are denoted θi ∈ [0, π/2) (polar angle) and φi ∈ [0, 2π)
(azimuth angle), i.e., ki = k0(x̂ sin θi cos φi + ŷ sin θi sin φi + ẑ cos θi).

The Floquet wave vectors ktmn are defined as

ktmn = 2π

(

−m
ẑ × b

ẑ · (a × b)
+ n

ẑ × a

ẑ · (a × b)

)

+ ki
t, m, n ∈ Z (6.1)

Notice that k00 = ki
t. For the special geometry in Figure 8, where a = x̂a and b =

x̂b cos φ0+ŷb sin φ0, we arrive the result presented in [7], namely ktmn = x̂αm+ŷβmn
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Figure 8: The unit cell U (patch case) generated by a and b with lengths a = |a|
and b = |b|.

with 




αm =
2πm

a
+ ki

x

βmn =
2πn

b sin φ0

− 2πm

a
cot φ0 + ki

y

m, n ∈ Z

The length of the Floquet vector ktmn is

|ktmn|2 =

(
2πm

a
+ k0 sin θi cos φi

)2

+

(
2πn

b sin φ0

− 2πm

a
cot φ0 + k0 sin θi sin φi

)2

We also introduce the corresponding z-component of the Floquet wave vector
kzmn.

k±
mn = ktmn ± ẑkzmn, m, n ∈ Z

where

kzmn =
(
k2

0 − |ktmn|2
)1/2

=






√

k2
0 − |ktmn|2 for |ktmn| ≤ k0

i

√

|ktmn|2 − k2
0 for |ktmn| > k0

Note that ki
z = kz00.
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6.1 Onset of grating lobes

The condition for propagating grating lobes is (kzmn is real)

|ktmn| ≤ k0, m, n ∈ Z

or
(

2πm

k0a
+ sin θi cos φi

)2

+

(
2πn

k0b sin φ0

− 2πm

k0a
cot φ0 + sin θi sin φi

)2

≤ 1

This grating lobe propagates in the direction (spherical angles θgr, φgr) determined
by 





sin θgr cos φgr =
2πm

k0a
+ sin θi cos φi

sin θgr sin φgr =
2πn

k0b sin φ0

− 2πm

k0a
cot φ0 + sin θi sin φi

We observe that, for very high frequencies, all grating lobes radiates with a trans-
verse wave number kt that is identical to the transverse wave number of the direction
of the incident wave ki

t.
The onset of a grating lobe is determined by the k0 value that satisfies (m, n ∈ Z)

(
2πm

k0a
+ sin θi cos φi

)2

+

(
2πn

k0b sin φ0

− 2πm

k0a
cot φ0 + sin θi sin φi

)2

= 1 (6.2)

The frequencies for the onset of the grating lobes, fgr, are then determined by

fgr =
k0c0

2π

The onset of the grating lobes are independent of the dimensions and the material
parameters of the supporting slab.

The onset of the grating lobes can be visualized graphically in the u-v-plane,
defined by {

u = sin θ cos φ

v = sin θ sin φ

The visible space (0 ≤ θ ≤ π, 0 ≤ φ < 2π) is the interior of the unit circle in this
space and the incident direction corresponds to a point (ui, vi) inside the unit circle,
defined by (see also Figure 9)

{
ui = − sin θi cos φi

vi = − sin θi sin φi

Moreover, in the u-v-plane each Floquet mode is associated with a point (um, vmn)
defined by 





um =
2πm

k0a

vmn =
2πn

k0b sin φ0

− 2πm

k0a
cot φ0
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u

v

2

(ui, vi)

1

(um, vmn)

Rmn

1

2

3

Increasing frequency

Excitation of surface wave

Onset of grating lobe

Figure 9: The geometrical interpretation of the onset of the grating lobes and the
excitation of the surface waves.

Notice that, as the frequency increases (k0 increases), this point moves along a line
through the origin, see also Figure 9. With this notation, the distance Rmn between
the point (um, vmn) and (ui, vi) is

Rmn =

√

(um − ui)
2 + (vmn − vi)

2

The onset of the grating lobe occurs at the frequency when the distance Rmn becomes
one, i.e., intersects the unit circle centered around (ui, vi).

6.2 Surface waves

We now address the excitation of surface waves in a periodic structure like a fre-
quency selective structure, that is excited by an incident plane wave.

A necessary condition for the excitation of a (periodic) surface mode is

ktsw(k̂t) = ktmn, for some index values m, n

where ktsw are determined by the zero eigenvalues of T22 for a given k0 (k̂t fixed),
material parameters, and geometry of the slab. If this condition is not met, no
excitation of the surface wave is possible. Physically, this condition means that the
Floquet mode with transverse wave number ktmn acts as a source of the surface
wave with transverse wave number ktsw. If the polarization of the Floquet mode
and the polarization of the surface wave overlap the surface wave can be excited.
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6.2.1 Isotropic material

Provided the dielectric slab is an isotropic material, the transverse wave numbers
have to satisfy

ktmn = |ktsw|ê‖ = ktswê‖

for some m, n-value, i.e.,





ktsw

k0

cos φsw =
2πm

k0a
+ sin θi cos φi

ktsw

k0

sin φsw =
2πn

k0b sin φ0

− 2πm

k0a
cot φ0 + sin θi sin φi

which implies

(
ktsw

k0

)2

=

(
2πm

k0a
+ sin θi cos φi

)2

+

(
2πn

k0b sin φ0

− 2πm

k0a
cot φ0 + sin θi sin φi

)2

or in the notation of Section 6.1
(

ktsw

k0

)2

= (um − ui)
2 + (vmn − vi)

2 (6.3)

For each value of m, n, this equation determines the frequency of excitation of a
surface wave, provided the surface wave can be excited due to polarization effects.
Since ktsw/k0 > 1, see Figures 4–6, this will occur at a frequency that is smaller than
the corresponding onset of the grating lobe, see Figure 9. Notice also the distinction
between the onset of a surface wave and the excitation of a surface wave. These
occur at two different frequencies.

6.3 Resonances in the FSS

The resonances in the periodic metallic pattern are determined by solving an integral
equation. This is most conveniently done by employing the Galerkin’s method [4].
In this section, we give a brief overview of the basic equations in this method for
the patch case. For a more detailed description, we refer to [5].

Applying Floquet’s theorem [3] to the induced surface current density at the
screens, JS(ρ, z1) = J ·

(
H(ρ, z+

1 ) − H(ρ, z−1 )
)
, which is non-zero on the metallic

parts, Sσ, and zero elsewhere on the plane z = z1, gives

JS(ρ, z1) =
1

AU

∞∑

m,n=−∞
JS|U(ktmn, z1)e

iktmn·ρ, ρ ∈ R
2

where the lateral wave numbers ktmn are given by equation (6.1), and the coefficient
JS|U(ktmn, z1) is the lateral Fourier transform of JS(ρ, z1) restricted to the unit cell
U and evaluated at ktmn, i.e.,

JS|U(ktmn, z1) =

∫∫

U

JS(ρ, z1)e
−iktmn·ρdxdy
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Notice that this quantity is identical to the Fourier coefficient of the periodic func-
tion JS(ρ, z1)e

−iki
t·ρ. The symbol |U is used here and below to emphasize that

the quantity is a lateral Fourier transform of an aperiodic quantity with support
in the unit cell U and to distinguish between JS(kt, z1) and JS|U(ktmn, z1). The
connection between the lateral Fourier transforms of the surface current densities,
JS(kt, z1), and its restriction to the unit cell, JS|U(ktmn, z1), is

JS(kt, z1) =
4π2

AU

∞∑

m,n=−∞
JS|U(ktmn, z1)δ(kt − ktmn) (6.4)

This connection can now be used in the results in the previous sections.
Similarly, applying Floquet’s theorem to the lateral electric field at the screen,

Exy(ρ, z1), yields

Exy(ρ, z1) =
1

AU

∞∑

m,n=−∞
Exy|U(ktmn, z1)e

iktmn·ρ

where the coefficient Exy|U(ktmn, z1) is the lateral Fourier transform of Exy(ρ, z1)
restricted to the unit cell U and evaluated at ktmn, i.e.,

Exy|U(ktmn, z1) =

∫∫

U

Exy(ρ, z1)e
−iktmn·ρdxdy

Consequently, the lateral Fourier transforms of the lateral electric fields are

Exy(kt, z1) =
4π2

AU

∞∑

m,n=−∞
Exy|U(ktmn, z1)δ(kt − ktmn) (6.5)

The equations (6.4) and (6.5) are substituted into the relation (5.3), which is
first propagated to the screen position at z = z1. For an excitation from the left, we
have the following relation between the transverse electric field at the screen, the
surface current density on the screen, and the excitation from the left.

Exy|U(kmn, z1) = α(kmn) · η0JS|U(kmn, z1) − AUβ(k00) · F +(k00, z0)δm0δn0 (6.6)

where the α- and β-dyadics are combinations of the dyadics A, B, C, D, a, and
b, defined in (5.4) and (5.5), respectively, and the propagator dyadics. See also
Appendix A for additional details.

The current density JS(ρ, z1) can be expanded with arbitrary precision in a
pertinent complete set of entire domain or local basis functions jp(ρ) (supported on
the patches), i.e.,

JS(ρ, z1) =
∑

p∈χ

Cpjp(ρ), ρ ∈ U

where χ is a set of indices (countable set) and the scalars Cp are the unknown
expansion coefficients. It suffices to define the basis functions jp(ρ) in the unit cell
U . The lateral Fourier transform of this expansion is

JS|U(kmn, z1) =
∑

p∈χ

Cpjp(kmn)
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where

jp(kmn) =

∫∫

U

jp(ρ, z)e−ikmn·ρdxdy, p ∈ χ

We assume that an appropriate set of weight functions wp(ρ) (supported on the
patch) has been defined. In the Galerkin’s method the functions jp(ρ) are used.
The lateral Fourier transform of the weight functions wp(ρ) is defined as

wp(kmn) =

∫∫

U

wp(ρ)e−ikmn·ρdxdy

We introduce the following identity, which follows from the boundary condition
of the transverse electric field on the screen and the support of the weight functions
(the two vectors in the integrand have disjoint support in the unit cell)

∫∫

U

wp(ρ)∗ · Exy(ρ, z1) dx dy = 0, p ∈ χ

and apply the Parseval theorem for Fourier series to this identity. This gives

∞∑

m,n=−∞
wp(kmn)∗ · Exy|U(kmn, z1) = 0, p ∈ χ

in which equation (6.6) can be substituted and a system of equations for the unknown
Cp is obtained. Specifically, (p ∈ χ)

∞∑

m,n=−∞
wp(kmn)∗ · α(kmn) · η0

∑

q∈χ

Cqjq(kmn) = AUwp(k00)
∗ · β(k00) · F +(k00, z0)

If χ is an infinite set of indices, the above equation is an infinite system of linear
equations for the unknown current coefficients Cq. We assume that if this infinite
system is truncated, the solution to the truncated system approximates the exact
solution. An excellent treatment of the convergence properties of the Galerkin’s
method (and other projection methods) is found in [4]. When the linear system is
truncated, it can be written as

AC = b

where A is a square matrix, C is a vector containing the unknown coefficients Cq,
and b is a known vector. Specifically, the matrix elements are

Apq = η0

∞∑

m,n=−∞
wp(kmn)∗ · α(kmn) · jq(kmn) p, q ∈ χ

and the right-hand entries are

bp = AUwp(k00)
∗ · β(k00) · F +(k00, z0), p ∈ χ
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Figure 10: The reflection and transmission coefficients, i.e., the radiated power
in the kt00 direction, for a skewed array of dipoles in the parallel (TE) and the
perpendicular (TM) polarizations. The onset of the two first grating lobes occurs at
21.27 GHz (m = −2, n = −1) and 22.13 GHz (m = −1, n = 0), and the onset of the
first non-zero surface wave (TE1) occurs at 173 GHz. In Figure 11, the frequency
interval between 19–24 GHz is shown in detail.

7 Numerical illustrations

Three different types of resonances can occur in the reflection and transmission
data for a FSS as a function of frequency. These resonance effects have similarities
with the type of phenomena (scan blindness) that occur in phased arrays of printed
dipoles [8]. These types of resonances are:

1. Possible zero eigenvalues of the two-dimensional dyadic T22(z2, z0). For a
lossy slab these are in general complex-valued. These singularities correspond
to surface waves in the entire supporting slab and are determined by the
ktsw-values for which detT22(z2, z0) = 0 (k̂t fixed). Notice that this type
of resonance is independent of the FSS and depends only on the material
parameters and the dimensions of the supporting slab.

2. Possible resonances of the surface current density JS(z1). This type of reso-
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Figure 11: The reflection coefficient for a skewed array of dipoles in the parallel
(TM) polarization. The geometry of the FSS and the supporting slab is given in
Figure 10. The onset of the two first grating lobes occur at 21.27 GHz (m = −2,
n = −1) and 22.13 GHz (m = −1, n = 0).

nance depends on the FSS pattern, the material parameters, and the dimen-
sions of the supporting slab.

3. The onset of a grating lobe initiates a disturbance in the transmission data.
Notice that this type of resonance (disturbance) is independent the material
parameters and the dimensions of the supporting slab, and depends only on
the size and shape of the unit cell U .

We illustrate the occurrence of these resonances in a series of examples. In the
first example, the first non-zero surface wave (TE1) occurs at a frequency that is
much larger than the onset of the first grating lobe. The geometry and the reflection
and transmission data are shown in Figure 10. The onset of the two first grating
lobes occurs at 21.27 GHz (m = −2, n = −1) and 22.13 GHz (m = −1, n = 0), and
the onset of the first non-zero surface wave occurs at 173 GHz (TE1), which is far
outside the frequency ranged in the figure. The resonance behavior in the frequency
range 19–24 GHz is shown in detail in Figure 11. We notice the occurrence of
two pairs of resonances (one is very weak), which correspond to the excitation of a
surface wave, satisfying (6.3), and the onset of the grating lobes, satisfying (6.2).
The excitation of the surface mode TM0 is made first at a frequency of 21.22 GHz
by the grating lobe with indices (m, n) = (−2,−1), and a second excitation of the
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Figure 12: The reflection coefficient for the parallel polarization (TM-case) for an
array of gangbuster elements (type 3) that supports several surface waves in the
frequency interval depicted. The onset of the first two grating lobes occurs at 10.25
GHz (m = −1, n = 0) and 14.43 GHz (m = 0, n = −1). The excitation of the
surface modes occurs at 7.37, 8.82, 10,23, 11.63 GHz for the TM0-modes, see also
Figure 13, and for the TM1-modes the excitation is at 8.76, 10.40, 11.43, 12.91 GHz,
see also Figure 14. The excitation of the TM1-modes are marked with solid arrows.
The excitation of the surface modes occurs at 8.27, 9.88, 11.05, 12.54 GHz for the
TE1-modes, which are marked with dashed arrows, see also Figure 15.
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Figure 13: The geometrical interpretation of the onset of the grating lobes and the
excitation of the surface waves for a TM0-mode in Figure 12. The solid dot in the
center of the circle marks the direction of the incident field, i.e., (ui, vi).

same surface mode is made at a frequency of 22.04 GHz by the grating lobe with
indices (m, n) = (−1, 0).

The second example is shown in Figures 12–16. The slab is in this example has
a much thicker substrate, and, therefore, the surface wave are generated at a much
lower frequency. In fact, lower than the frequency of the first grating lobe. The
onset of the first two grating lobes occurs at 10.25 GHz (m = −1, n = 0) and 14.43
GHz (m = 0, n = −1), and the onset of the first two non-zero surface wave occurs
at 4.42 GHz (TE1) and 8.83 GHz (TM1). The azimuthal direction of the incident
wave coincides with the direction of the dipoles. This implies that only excitations
of surface waves are possible in the TM-case, see Figure 12. The situation is here
very complex and several Floquet modes and surface waves interact in a complex
way. The excitation of the surface mode TM0 is made first at a frequency of 7.37
GHz by the grating lobe with indices (m, n) = (−1, 0), and a second excitation of
the same surface mode is made at a frequency of 8.82 GHz by the grating lobe with
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Figure 14: The geometrical interpretation of the onset of the grating lobes and the
excitation of the surface waves for a TM1-mode in Figure 12. The solid dot in the
center of the circle marks the direction of the incident field, i.e., (ui, vi).

indices (m, n) = (0,−1). Several other excitations occur and the situation becomes
extremely complex at frequencies above 10 GHz. In the perpendicular polarization
(TE-case), no surface waves are excited, see Figure 16, due to the polarization of the
incident wave. The reflection pattern is now as of a simple, homogenous dielectric
slab without FSS.

8 Conclusions

We have seen that in the absence of a metal screen, i.e., a pure dielectric slab, no
surface waves can be excited by an incident plane wave. An incident source with a
wider plane wave spectrum is needed to excite the surface wave. In the presence of a
FSS, this condition is met, if the Floquet wave vector coincides with the transverse



32

-2 -1 1 2

-2

-1

1

2

14.43

10.25

14.91

18.96

8.27

11.05

12.54
9.88

Figure 15: The geometrical interpretation of the onset of the grating lobes and the
excitation of the surface waves for a TE1-mode in Figure 12. The solid dot in the
center of the circle marks the direction of the incident field, i.e., (ui, vi).

wave vector of the surface wave, i.e.,

ktsw(k̂t) = ktmn

for some index values m and n. In practice, the FSS is not infinite in its extent and
the spectrum is continuous instead of discrete, so this condition is relaxed. Losses in
the material also weakens the effect of surface waves. We can also conclude that the
presence of surface waves below the frequencies of the onset of the grating lobes is
devastating for the radome construction, and the importance of densely packed FSS
elements, as well as keeping the substrate thin, is vital for a successful construction.

9 Acknowledgements

The work reported in this paper is supported by a grant from the Defense Materiel
Administration (FMV), which is gratefully acknowledged. The author likes to ac-



33

5 10 15 20

-25

-20

-15

-10

-5

0

dB

20
m

m

30 mm

FSS

18 mm 

ε = 3

20 mm

6 mm 

θ = 30◦

φ = arctan 1/3

GHz
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the frequency interval depicted. The onset of the first two grating lobes occurs at
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respectively. Note that the surface waves are not excited in this case.
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Appendix A Comparison with TEAT-7099

Our aim in this appendix is to find a relation between the electric field at the screen
and the surface current density on the screen, i.e.,

Exy(z1) = α · F +(z0) + β · F−(z2) + γ · η0JS(z1)

and we like to identify the two-dimension dyadics α, β, and γ and to compare the
result with the corresponding result in [5], which is repeated in Appendix A.1 for
convenience.

To accomplish this, we propagate the field from the edge, z = z0, to the screen,
z = z1, i.e.,

Exy(z1) = P11(z1, z0) · Exy(z0) + P12(z1, z0) · η0J · Hxy(z0)

Now using (5.3) we identify






α = P11(z1, z0) · A + P12(z1, z0) · C
β = P11(z1, z0) · B + P12(z1, z0) · D
γ = P11(z1, z0) · a + P12(z1, z0) · b

which we, using (5.4) and (5.5), rewrite as






α = P11(z1, z0) − P12(z1, z0) · W−1

−
(
P11(z1, z0) + P12(z1, z0) · W−1

)
· T−1

22 (z2, z0) · T21(z2, z0)

β =
(
P11(z1, z0) + P12(z1, z0) · W−1

)
· T−1

22 (z2, z0)

γ = −
(
P11(z1, z0) + P12(z1, z0) · W−1

)
· T−1

22 (z2, z0) · G22(z2, z1)

We now prove that these dyadics are equivalent to the results obtained in [5].
Use (3.4) and (3.5) to get

G(z2, z0) = G(z2, z1) · P(z1, z0)

T(z2, z0) = G(z2, z1) · (G(z0, z1))
−1

It is convenient to introduce a special symbol to the dyadic G(z0, z1) and its inverse.

{
g = G(z0, z1)

h = (G(z0, z1))
−1

In this notation, we get

T22(z2, z0) = G21(z2, z1) · h12 + G22(z2, z1) · h22
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which we rewrite as, see Appendix B

T22(z2, z0) =
(
−G21(z2, z1) + G22(z2, z1) · g−1

12 · g11

)
·
(
g22 · g−1

12 · g11 − g21

)−1

=G22(z2, z1) ·
(
−G−1

22 (z2, z1) · G21(z2, z1) + g−1
12 · g11

)

·
(
g22 · g−1

12 · g11 − g21

)−1

We get

T22(z2, z0) = G22(z2, z1) · A11 ·
(
g22 · g−1

12 · g11 − g21

)−1

where
A11 = −G−1

22 (z2, z1) · G21(z2, z1) + g−1
12 · g11

and, see Appendix B

T−1
22 (z2, z0) =

(
g22 · g−1

12 · g11 − g21

)
· A−1

11 · G−1
22 (z2, z1)

= − (h12)
−1 · A−1

11 · G−1
22 (z2, z1)

We therefore get

γ =
(
P11(z1, z0) + P12(z1, z0) · W−1

)
· (h12)

−1 · A−1
11

The factor

P11(z1, z0) + P12(z1, z0) · W−1 =
(
P(z1, z0) · S−1

)

12
=

(
(S · P(z0, z1))

−1)

12
= h12

Thus
γ = A−1

11

which is identical to the result in [5].
Similarly, we get

β = −γ · G−1
22 (z2, z1) = −A−1

11 · G−1
22 (z2, z1)

which also is identical to the result in [5].
The last dyadic is different. We have

α =P11(z1, z0) − P12(z1, z0) · W−1

−
(
P11(z1, z0) + P12(z1, z0) · W−1

)
· T−1

22 (z2, z0) · T21(z2, z0)

From above, we have

T−1
22 (z2, z0) = − (h12)

−1 · A−1
11 · G−1

22 (z2, z1)

and
P11(z1, z0) + P12(z1, z0) · W−1 = h12

Similarly, we get
P11(z1, z0) − P12(z1, z0) · W−1 = h11
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This implies
α = h11 + A−1

11 · G−1
22 (z2, z1) · T21(z2, z0)

Now use
T21(z2, z0) = G21(z2, z1) · h11 + G22(z2, z1) · h21

which we rewrite as, see Appendix B

T21(z2, z0) =
(
G21(z2, z1) · g−1

21 · g22 − G22(z2, z1)
)
·
(
g11 · g−1

21 · g22 − g12

)−1

and

α =
{
g−1

21 · g22 + A−1
11 · G−1

22 (z2, z1) ·
(
G21(z2, z1) · g−1

21 · g22 − G22(z2, z1)
)}

·
(
g11 · g−1

21 · g22 − g12

)−1

=
{
g−1

21 · g22 + A−1
11 ·

(
G−1

22 (z2, z1) · G21(z2, z1) − g−1
22 · g21

)
· g−1

21 · g22

}

· g−1
22 ·

(
g−1

12 · g11 · g−1
21 − g−1

22

)−1 · g−1
12

We simplify further

α =
{
I2 + A−1

11 ·
(
G−1

22 (z2, z1) · G21(z2, z1) − g−1
22 · g21

)}

·
(
g−1

12 · g11 − g−1
22 · g21

)−1 · g−1
12

=
{
I2 + A−1

11 ·
(
−A11 − g−1

22 · g21 + g−1
12 · g11

)}

·
(
g−1

12 · g11 − g−1
22 · g21

)−1 · g−1
12

= − A−1
11 ·

(
g−1

22 · g21 − g−1
12 · g11

)
·
(
g−1

12 · g11 − g−1
22 · g21

)−1 · g−1
12

The final result is
α = A−1

11 · G−1
12 (z0, z1)

which completes the proof of equivalence between the results obtained in this paper
and the results of [5].

A.1 The results in TEAT-7099

From [5], we get

η0JS(kt, z1) = A11(kt) · Exy(kt, z1) + A10(kt) · F +(kt, z0) + A12(kt) · F−(kt, z2)

where 




A11 = − G−1
22 (z2, z1) · G21(z2, z1) + G−1

12 (z0, z1) · G11(z0, z1)

A12 =G−1
22 (z2, z1)

A10 = − G−1
12 (z0, z1)

Exy(kt, z1) = B11(kt) · η0JS(kt, z1) − B10(kt) · F +(kt, z0) − B12(kt) · F−(kt, z2)

where 




B11 = A−1
11

B10 = B11 · A10

B12 = B11 · A12
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Possible surface modes: {
G12(z0, z1) = 0

G12(z2, z1) = 0

Appendix B Inverse of four-dimensional dyadic

Let

P =

(
A11 A12

A21 A22

)

be a four-dimensional dyadic expressed in terms of four two-dimensional dyadics
Aij, i, j = 1, 2. Denote the inverse of P as

P−1 =

(
B11 B12

B21 B22

)

We get
{

A11 · B11 + A12 · B21 = I2

A21 · B11 + A22 · B21 = 0

{
A11 · B12 + A12 · B22 = 0

A21 · B12 + A22 · B22 = I2

with solutions





B11 = A−1
21 · A22 ·

(
A11 · A−1

21 · A22 − A12

)−1

B12 = −
(
A22 · A−1

12 · A11 − A21

)−1

B21 = −
(
A11 · A−1

21 · A22 − A12

)−1

B22 = A−1
12 · A11 ·

(
A22 · A−1

12 · A11 − A21

)−1

Appendix C Singular matrices

Assume that the n-dimensional dyadic A(k) depends analytically on a parameter k
in a neighborhood to k = ks. The singular value decomposition of the matrix is [2]

A(k) = U(k) · D(k) · V†(k)

where U(k) and V(k) are unitary n-dimensional dyadics and D(k) is a diagonal
dyadic with the singular values σm(k) as entries in the diagonal. These dyadics
depend analytically on a parameter k in a neighborhood to k = ks. The inverse
therefore is

A−1(k) = V(k) · D−1(k) · U†(k)

If the singular values σm(k) have a power series expansion

σm(k) = σm(ks) + σ′
m(ks)(k − ks) + . . . , m = 1, . . . , n

in a neighborhood to k = ks, and where both {σm(ks), σ
′
m(ks)} 
= {0, 0} for all

m = 1, . . . , n. The inverse then has the form

A−1(k) = A1(k − ks)
−1 + A0 + . . . (C.1)

If A−1 
= 0 then A has zero eigenvalues.
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