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Abstract
This dissertation presents the design and implementation of a new block diagram
programming language, Bloqqi, for building control systems with focus on vari-
ability. The language has been developed in collaboration with industry with the
goal of reducing engineering time and improving reuse of functionality.

When building a control system for a plant, there are typically different variants of
the same base functionality. A plant may have several variants of a tank, for exam-
ple, one variant with heating and another one without. This dissertation presents
novel language mechanisms for describing this kind of variability, based on di-
agram inheritance. For instance, Bloqqi supports specifying what features, like
heating, the base functionality can have. These specifications are then used to au-
tomatically derive smart-editing support in the form of a feature-based wizard. In
this wizard, the user can select what features the base functionality should have,
and code is generated corresponding to these features. The new language mecha-
nisms allow feature-based libraries to be created and extended in a modular way.

This dissertation presents techniques for implementing rich graphical editors with
smart editing support based on semantic analysis. A prototype compiler and graph-
ical editor have been implemented for the language, using the semantic formalism
reference attribute grammars (RAGs). RAGs allow tools to share the semantic
specifications, which makes it possible to modularly extend the compiler with sup-
port for advanced semantic feedback to the user of the graphical editor.
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Figur 1: Styrprogram för en tank i Bloqqi.

Bloqqi: nytt diagramspråk för programmering
av styrsystem
Den här avhandlingen presenterar ett nytt programmeringsspråk, Bloqqi, som gör
det lättare att skapa och återanvända styrprogram inom automation, såsom för fab-
riker. Målet är att minska ingenjörstiden det tar att bygga ett styrsystem. Särskilt
fokus för språket är variabilitet, det vill säga, hur man på ett enkelt sätt stödjer
olika varianter av samma grundfunktionalitet, exempelvis om ett styrprogram för
en tank har omrörning eller ej. Språket har utvecklats i samarbete med industrin
och företaget ABB som verkar inom automation.

Introduktion till Bloqqi
ABB har idag ett grafiskt programmeringsspråk för att bygga styrsystem, där ett
program är indelat i diagram, och varje diagram består av boxar och pilar. Boxarna
beskriver beräkningar och pilarna beskriver hur beräkningarna beror på varandra.
Bloqqi fungerar på samma sätt, men har byggt vidare och infört nya språkmekanis-
mer som stödjer variabilitet.

Ett exempeldiagram i Bloqqi visas i Figur 1, som beskriver ett styrprogram
för en tank. Tanken har stöd för fyllning, tömning, värmning och omrörning. Ex-
empelvis beskriver boxen Agitating hur omrörning sker och boxen agitate
beskriver om omrörning ska ske just nu, vilket bestäms av en operatör i fabriken.

Varianthantering
När man skapar ett styrsystem för en hel fabrik är det vanligt att det finns olika
varianter av samma grundstruktur. Exempelvis kan det finnas flera olika tankar
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Figur 2: Utvecklaren skapar styrprogram för en tank och kan välja vilken funk-
tionalitet tanken ska ha.

som fungerar ungefär likadant, till exempel några med värmning och några utan
värmning. Istället för att utvecklaren skapar ett diagram, liknande diagrammet i
Figur 1, för varje tank, så erbjuder Bloqqi möjligheten att generera delar av ett
sådant diagram automatiskt.

Bloqqi introducerar flera nya språkmekanismer för att underlätta varianthanter-
ing. Den som utvecklar ett styrsystem kan lätt välja vilken funktionalitet en grund-
struktur ska ha i ett genererat grafiskt användargränssnitt. Detta visas i Figur 2, där
styrprogrammet för en tank skapas. Här kan utvecklaren välja vilken funktionalitet
tanken ska ha, till exempel omrörning och värmning. Väljer utvecklaren valen en-
ligt figuren genereras det delar av ett diagram, motsvarande de streckade blocken i
Figur 1. Även om de nya språkmekanismerna är utvecklade i kontexten av styrsys-
tem, så kan de appliceras för andra liknande diagramspråk också.

Utvecklingsverktyg
Två utvecklingsverktyg har tagits fram för språket: en grafisk utvecklingsmiljö
(figurerna är skärmdumpar) och en kompilator som genererar exekverbar kod.
Avhandlingen presenterar hur man kan utveckla sådana verktyg med hjälp av mod-
erna datavetenskapliga tekniker. Dessa tekniker möjliggör att de båda verktygen
återanvänder samma språkspecifikationer för att effektivisera verktygsutvecklin-
gen. Teknikerna möjliggör även avancerat editeringsstöd i den grafiska utveck-
lingsmiljön för den som utvecklar styrsystem.
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1 Introduction

Domain-specific languages (DSLs) are becoming more and more important. A
DSL targets a specific application domain and has a notation that is adapted for
the domain [Hud97; Deu+00; Mer+05], usually at a higher abstraction level than
ordinary programming languages. The adapted notation makes it easier to ex-
press programs in the domain. Sometimes, this even allows people without any
programming background to write programs, making the DSL more accessible.
In contrast, a general-purpose language (GPL) targets a wide variety of domains.
Java, C, and C++ are all examples of GPLs.

There is a wide range of DSLs that target different domains, such as for graph-
ics, hardware description, databases, mathematics and automation. Example lan-
guages include VHDL for hardware description, Matlab for numerical computa-
tions, SQL for database queries, and Modelica for modeling and simulation of
physical systems [Mod12].

Several DSLs are based on the paradigm of data-flow programming. Programs
in these languages are typically expressed visually with boxes and arrows. The
boxes represent some kind of computation, like a simple addition or a complex
computation like controller logic. The arrows describe how the computations de-
pend on each other, that is, the data flow between the computations. An example
of a data-flow programming language is ABB’s ControlBuilder which is used in
automation [Con16], and which is based on the language Function Block Diagram
in the IEC-61131 standard. Other examples include Simulink from MathWorks
and LabVIEW from National Instruments.

Often when developing programs, there are different variants of the same base
functionality. For example, in the automation domain, we may have a tank reg-
ulator with different features, like with or without heating, and with or without
agitation. Each combination of features constitutes a variant, and the number of
possible variants increases exponentially with the number of features [AK09]. It is
a challenge to specify the desired variants without introducing unnecessary code
duplication and without having complex diagrams capturing all the anticipated fea-
tures. In the automation domain, there two common ways to solve this challenge:
copy-modify and parameterization. Copy-modify means that each new variant is
copied from an existing variant and changed for the desired functionality, leading
to code duplication. Parameterization means that a diagram covers all interesting
features which are turned on and off using parameters, leading to runtime overhead
and complicated diagrams, and requires all variants to be anticipated in advanced.
This dissertation tries to solve these problems with new language features that
allow modular feature-based specifications, avoiding the drawbacks of the other
approaches.

This dissertation presents the design and implementation of a data-flow lan-
guage called Bloqqi. The language includes novel language mechanisms for de-
scribing variability based on diagram inheritance. These new language mecha-
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nisms make it possible to avoid code duplication and avoid the need for anticipat-
ing all variants in complex diagrams. The language has been developed in collab-
oration with the company ABB with the goal of improving reusability within the
automation domain.

The compiler and the graphical editor for Bloqqi have been implemented using
the metacompilation system JastAdd [EH07b] and the semantic formalism refer-
ence attribute grammars [Hed00] (RAGs). RAGs allow semantic analyses to be
shared between tools, reducing code duplication, and making it possible to reuse
the semantic analyses in the editor to provide semantic feedback to the user. As an
example of semantic feedback, the editor colors arrows red that connect incompat-
ible data types. One interesting property of the language and the implementation is
that the visual syntax depends on user-defined types, and is computed using RAGs.

We will now describe the background for the new language, with focus on the
languages Modelica and ControlBuilder, which both have inspired Bloqqi. We
will then continue with an introduction to Bloqqi and an overview of the imple-
mentation for the compiler and editor. Then, the contributions of this dissertation
are presented, followed by a description of the included and related papers to this
dissertation. The iterative methodology used when developing the language mech-
anisms is then shortly described. Finally, we conclude with future directions.

2 Background

During the development of Bloqqi, we have been inspired by several languages, es-
pecially by the data-flow programming language ControlBuilder and the equation-
based language Modelica. This section gives a brief overview of ControlBuilder
and Modelica, and also describes other related languages.

The goal of ControlBuilder is to program automation systems, whereas the
goal of Modelica is to model and simulate physical systems, to understand the
dynamics of a system. Simulations can be used to test automation systems, where
the automation system controls a simulation of the physical process. Bloqqi has
the same goal as ControlBuilder: to program automation systems, but it borrows
constructs from both ControlBuilder and Modelica.

2.1 ControlBuilder

ControlBuilder is an engineering tool from ABB used within the automation do-
main to program distributed control systems (DCSs) [Con16]. The tool provides
programming languages according to the standard IEC 61131-3, and also exten-
sions to the standard to support the needs in the DCS domain. One extension
is Diagrams that extends the visual data-flow programming language Function
Block Diagram (FBD) defined by the standard IEC 61131-3. This standard defines
five programming languages, including FBD, for programmable logic controllers
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(PLCs). Both PLCs and DCSs are used for automation. Traditionally, PLCs are
used for manufacturing of items, while DCSs are used for continuous process con-
trol, for example, in chemical plants. DCSs typically have higher degree of re-
dundancy, are running continuously, which requires online updating, etc., and are
more expensive [NS07].

A DCS has many distributed controllers, and each controller can run tasks.
Each task is executed periodically with a fixed frequency. In each period, there are
three steps that are carried out. In the first step, sensor values, or values from other
tasks, are read. In the second step, the control values are computed based on the
sensor values and state values. In the last step, the computed control values are
sent to actuators to control the process.

The computation of the control values is programmed using the diagrams in the
ControlBuilder Diagram language. Like many other data-flow programming lan-
guages, ControlBuilder supports user-defined block types. A diagram in Control-
Builder can have blocks and connections between the blocks. The blocks are in-
stances of block types. A block type can be defined as another diagram, or using
structured text (similar to Pascal), or some other language. This makes it possible
to create hierarchical programs and abstracting common functionality into block
types and putting them into libraries for reuse.

Plants in the process industry typically run for a long period of time, potentially
for several years. One reason for this is that the startup time for a plant may be
quite long, like days or weeks. Also, many plants in the process industry have high
requirements on the safety for the control system. For example, in some cases, it is
required that several control systems are run in parallel for redundancy. Running
a control system for a long period of time usually requires online updating of the
software, which is supported in ControlBuilder. However, this dissertation focuses
on diagram languages, and will not consider online updates or distributed control.

Tank Regulator Example

Figure 3 shows a simple example diagram in ControlBuilder. The diagram controls
the amount of liquid in a tank. The tank has a valve that is used to fill the tank and a
pump to empty it. A diagram can have input parameters, blocks, output parameters
and connections between them that describe the data-flow. The data-flow in the
diagram is from left to right. The boolean input parameters fill and empty are to
open the valve and pump, respectively. However, the valve is only opened if there
is room for more liquid and the pump is only opened if there is enough liquid to
empty. The Le blocks (Less or Equal) compare the input values and return true if
the first input value is less or equal to the second input value. This is used when
comparing the current liquid level, measured by a sensor, with the maximum liquid
level, which is set by a human operator. The diagram contains similar logic for the
pump. The boolean output parameters filling and emptying describe the status
and say if the valve or pump actually are open and turned on, respectively.
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Figure 3: Simple tank regulator in ControlBuilder.

2.2 Modelica

Modelica is an equation-based and object-oriented language for modeling and
simulating physical systems [Mod12]. The language is community developed un-
der the organization Modelica Association. There are several tools supporting
Modelica, for instance, the commercial tool Dymola from the company Dassault
Systemes and the open source tools OpenModelica [Fri+05] and JModelica.org
[Åke+10b].

Models in Modelica are described by algebraic differential equations that are
solved by a numerical solver during simulation. Before the simulation, the Model-
ica compiler takes the Modelica model as input and removes the object-orientation
and transforms the model to a flat equation system. This equation system is then
used in the simulation. The result of the simulation is usually plotted as a graph de-
scribing how the interesting variables vary over time. The connections in Modelica
are undirected, and correspond to equations. This is in contrast to the connections
in ControlBuilder which are directed, and correspond to dataflow.

The object-oriented mechanisms in Modelica make it possible to create reusable
components, for instance, to build libraries for different domains. These mech-
anisms are also useful in structuring the models, to decompose problems into
smaller parts.

Modelica has both a visual and a textual syntax. The textual syntax is com-
plete and covers the whole language and is used as the serialization format. The
visual syntax is only partial and is mostly for users that connect existing compo-
nent types, for instance, from libraries. The library can specify how these compo-
nents are visualized using graphical annotations. These annotations are attached
to component types and describe how instances of the component types are visu-
alized. This makes it possible, for instance, to have a library for electrical circuits
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model Tank
parameter Real Area=1;
Real level;

Stream Inlet, Outlet;

equation
Area*der(level) = Inlet.volumeFlowRate + Outlet.volumeFlowRate;

end Tank;

Figure 4: Tank model in Modelica describing the liquid in a tank. (Example
adapted from [Mod00].)

with the visual notation that is standardized and used in the application domain.
Library developers, on the other hand, typically use the textual syntax since they
use more advanced language mechanisms.

Modelica has also been used for safety-related control applications [Thi15],
where the language has been restricted to be suitable for safety-related develop-
ment. For example, in the restricted version of the language, only directed con-
nections are allowed, like ControlBuilder, and algebraic loops are forbidden.

Modelica Examples

Figure 4 shows an example Modelica model describing the liquid level in a tank
[Mod00]. A Modelica model consists of two parts, the component part with model
instances and variables, and the equation part that expresses relations between
values. In the component part, the tank model declares two real variables, one
describing the area of the tank and one describing the current liquid level, which is
unknown. The tank has also an inlet and an outlet, of type Stream that is defined
elsewhere, describing the incoming and outgoing volume flow, respectively. The
equation part describes how the liquid level relates to the incoming and outgoing
volume flow. This kind of equation is called a mass balance equation, which
describes the mass of a system using the inflow and outflow. The equation uses
the built-in operator der, which is the time derivative of a given variable. This
model can be used to simulate how the liquid level varies over time and the result
is typically plotted in a graph.

Like ControlBuilder diagrams, models in Modelica are user-defined types,
which allow them to be instantiated as components in other models. For instance,
we can create a new model that has two components of the Tank model we just
defined.

Modelica’s object-orientation allows models to extend other models. For ex-
ample, the tank model can be extended to describe the temperature of the inlet
and/or outlet streams as well. Modelica introduced the inheritance mechanism re-
declare, which allows a subtype to change the type for a component defined in the
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model circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;

Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end circuit;

Figure 5: Simple electrical circuit in Modelica. Both the textual and visual syntax
are shown.

supertype. For the tank example, the new subtype can redeclare the type for the
components Inlet and Outlet to a type that includes the temperature.

Another example from [Mod00] that describes a simple electrical circuit is
shown in Figure 5, where both the textual and the visual syntax are shown. This
model contains components from the standard library and connects them using
connect statements. The connect statements provide a shorthand for relating
components and correspond to ordinary algebraic equations. What these corre-
sponding equations look like depends on what is connected.

2.3 Object-Orientation in IEC 61131-3

The latest edition of the standard IEC 61131-3 from 2013 includes object-oriented
mechanisms [Wer09]. As described earlier, this standard includes five program-
ming languages used in automation to program PLCs. In this standard, block
types are called function blocks. The new edition takes inspiration from ordinary
object-orientation languages, like Java and C++, and adds methods to function
blocks. The methods can then be overridden in subtypes. The new standard also
adds interfaces, like in Java, that consists of method declarations, which can then
be implemented by function blocks. The standard supports references to interfaces
with reference semantics, which allows references to be changed dynamically and
to be passed around. These references can be used for dynamic dispatch on meth-
ods. Bloqqi is quite different from this approach, and instead adds inheritance to
diagrams, following the approach by Modelica, including the inheritance mecha-
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nism block redeclaration. References and dynamic dispatch are not supported in
Bloqqi, and all objects are known statically.

2.4 State-Based Languages

Another way to specify behavior and control systems is to use state-based lan-
guages, based on finite state machines (FSMs). In these languages, nodes rep-
resent states and connections represent state transitions. Thus, the connections
describe control-flow rather than data-flow. There are several extensions to finite
state machines, like Statecharts by Harel [Har87], which adds, for instance, nested
states. Modelica has also introduced nested state machines [Elm+12], similar to
Statecharts, that can be used to specify and generate control systems.

An ordinary finite state machine can only be in one state at a time. There
are other languages that allows the program to be in several states at the same
time, one example is Petri nets [Pet77]. One of the languages in the IEC 61131-3
standard is Sequential Function Charts (SFC) [JT10], which is based on Petri nets.
Grafchart is a state-based language for automation that is based on both Petri nets
and Statecharts [JÅ98; The14].

2.5 Feature-Oriented Software Development

The feature-based mechanisms in Bloqqi are related to feature-oriented software
development (FOSD) [AK09], like feature diagrams [Kan+90] and feature-oriented
programming [Pre97] (FOP). The idea in FOSD is to describe a software system in
terms of what features it provides, which can be used for defining software prod-
uct lines. These features can be described in a feature model, often visualized as a
feature diagram, which has the form of a tree with mandatory, optional, and alter-
native features. The features in these models are often global for the whole system.
In contrast, the feature-based mechanisms in Bloqqi are local, and are described in
terms of block types. Our approach is more similar to FOP, which allow features
to be described in an ordinary object-oriented language. The features in FOP are
specified on the method level, whereas they are specified on the statement level
in Bloqqi. The automatically derived wizard in Bloqqi was initially inspired by
FeaturePlugin [AC04], an Eclipse plugin for feature modeling.

3 Introduction to Bloqqi

This section introduces Bloqqi, by first describing the influences from Control-
Builder and Modelica and then describing the language using a tank regulator
example. We will describe what a diagram looks like, then extend the diagram us-
ing inheritance, and finally illustrate recommendations, our novel mechanism for
feature-based programming.
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diagramtype Tank(fill: Bool, empty: Bool =>
filling: Bool, emptying: Bool) {

maxLevel: OperatorInt;

level: SensorInt;

minLevel: OperatorInt;

Le_1; Le_2;

valve: Valve;

pump: Pump;

connect(fill, valve.open);
...

}

Figure 6: Simple tank regulator in Bloqqi.

Bloqqi is a data-flow programming language with focus on automation. The
execution scheme in Bloqqi is periodic, like ControlBuilder, but without the sup-
port for distributed execution or online update. In contrast to ControlBuilder, Blo-
qqi is object-oriented, like Modelica, and allows diagrams to be extended using
inheritance. The inheritance mechanism of block redeclaration found in Modelica
is also supported in Bloqqi, but in a slightly different form. Like Modelica, Bloqqi
supports a textual syntax for the complete language, and a graphical syntax for
showing the contents of a diagram.

In contrast to ControlBuilder and Modelica, Bloqqi supports the inheritance
mechanism connection interception (Paper I & III), visual instance inlining (Paper
II), and the feature-based mechanisms wirings and recommendations (Paper III).

3.1 Tank Regulator Example

Figure 6 shows the same tank regulator in Bloqqi as we saw for ControlBuilder in
Figure 3. As we can see, the diagram has both a visual and a textual syntax.

Having defined the simple tank regulator as a diagram, we can now instantiate
it as a block in other diagrams. This is shown in Figure 7, where the diagram Main
is defined, which contains the block tank with the block type of the previously de-
fined diagram Tank. The tank is connected to the operator value blocks fill and
empty and the actuator blocks filling and emptying. The parameters defined
in Tank are shown as input and output ports on the diagram. In the editor, the user
can hover the mouse over the ports to see their name and data type (in this case,
Bool).
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diagramtype Main() {
...

tank: Tank;

...

}

Figure 7: Using the diagram Tank defined in Figure 6.

diagramtype TankTwoPumps(empty2: Bool) extends Tank {
pump2: Pump;

Or_2;

intercept emptying with Or_2.in1, Or_2.out;
...

}

Figure 8: Using the diagram Tank defined in Figure 6.

3.2 Extending the Tank

Having defined the tank regulator as a diagram, the diagram can now be extended
with new functionality using the inheritance construct in Bloqqi. In this example,
we will extend the diagram with one more pump for emptying the tank.

When a diagram S extends another diagram T , we say that S is a subtype of T
and T is a supertype of S. The subtype will inherit all parameters, blocks, and con-
nections, but can also declare new parameters, blocks and connections. The sub-
type can also specialize the behavior defined in the supertype with the mechanisms
connection interception (Paper I & III) and block redeclaration [Mod12]. Connec-
tion interception allows a connection defined in a supertype to be intercepted, that
is, the connection will go via another block. Block redeclaration allows the block
type for a block declared in a supertype to be specialized.

Figure 8 shows the diagram TankTwoPumps which extends the diagram Tank
and adds a second pump for emptying the tank. The diagram also adds an input
parameter empty2 that controls the second pump. We can see that the visualiza-
tion of the diagram shows all parameters, blocks and connections, including the
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Figure 9: Automatically derived wizard when creating a block of the diagram
Tank, which has recommendations. Optional features have hollow circles and rec-
ommended features have filled circles. There are two alternative implementation
for the valves.

inherited ones. The user cannot edit the inherited parts, and they are therefore vi-
sualized differently from the local parts.The inherited parts are visualized as grey
(like stone) with dashed lines, and the local parts are visualized as blue with solid
lines. The diagram TankTwoPumps specializes the behavior defined in the super-
type Tank by intercepting the connection to the output parameter emptying. In the
supertype, there is a connection from the block pump to the parameter emptying,
but in the subtype, the connection is replaced with two connections so that the
data-flow will go via the local block Or.

3.3 Features using Recommendations
The previous example illustrated how a diagram can be extended with more func-
tionality; but having one subtype for each supported variant will lead to a combina-
torial explosion of diagrams. The Bloqqi language also supports the feature-based
language mechanisms wirings and recommendations. These mechanisms are used
in the editor to automatically derive smart-editing support for the user, in the form
of a wizard. In the wizard, the user can select which features a block should have.

Features for the tank example include a second pump for emptying, a second
valve for filling, and heating functionality. Assuming that there are recommenda-
tions for the diagram Tank, the derived wizard is displayed when the user creates
a block of the type Tank. The derived wizard is shown in Figure 9. In this wizard,
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the user can select which features the block should have. Optional features are de-
picted with hollow circles and mandatory features are depicted with filled circles.
Sometimes there are alternatives for a feature, indicated by vertical bars. In this
case, the valve can be replaced with a more advanced valve, which can be done
for both the mandatory feature valve and the optional feature valve2. The figure
also shows the block with the selected features, which has been generated by the
editor.

The recommendations for the diagram Tank are specified as follows.

recommendation Tank {
Valve2: ValveExtension[...];

Pump2: PumpExtension[...];

Heating: HeatingExtension[...];

Agitating: AgitationExtension[...];

replaceable valve;
}

There are four optional features for Tank, each having a name and a type with
a wiring application (within the square brackets ([])). The wiring application tells
how the block is inserted into the diagram Tank, if the feature is selected. The key-
word replaceable says that the block valve defined in Tank can be specialized,
that is, redeclared to a subtype of the type for valve. In this example, the type for
valve is Valve, and there exists one subtype of Valve called AdvancedValve.
The editor will automatically find all subtypes of the type for valve and show
them as alternatives in the wizard.

One important property of recommendations is that they are specified mod-
ularly, that is, separate from the type for which they add recommendations to.
Furthermore, recommendations for a diagram can be divided into separate recom-
mendation statements. For example, the recommendations above could be split
into five different recommendation statements defined in different files. Also, al-
ternatives are added by subtyping, which are automatically found by the editor,
which makes it possible to add new alternatives modularly. The modularity aspect
of recommendations allows libraries to be extended with more recommendations
that are defined outside the library.

4 The Implementation of the Bloqqi Compiler
and Editor

Paper IV is about the implementation of the Bloqqi compiler and editor. The
tools serve different roles but share a common core. The compiler takes a Bloqqi
program as input, in the form of a file, and generates C code as output, which can
be compiled into an executable file. If the Bloqqi program contains errors, the
compiler will instead print the errors and exit. Like the compiler, the editor reads
a Bloqqi program from a file, but instead of generating code, the editor visualizes



12 Introduction

the program. All Bloqqi diagrams in this dissertation are screenshots from the
editor. In the editor, the user can then change the program interactively and store
the changed program back to the file. In order to generate code or to visualize
a diagram, many of the same analyses are needed. Thus, the specification of the
analyses are shared by both the compiler and the editor, in order to avoid duplicated
code. The editor uses these analyses to provide semantic feedback for the user.

4.1 Reference Attribute Grammars
The compiler and the editor have been implemented using the metacompilation
system JastAdd [EH07b] and the semantic formalism reference attribute gram-
mars (RAGs) [Hed00]. JastAdd takes a set of semantic specifications and gener-
ates Java code implementing these. Thus, both the compiler and the editor are Java
programs.

One big advantage of using RAGs is its support for extensibility and mod-
ularity, allowing tools to developed as modules and later extended with more
modules. This can be used, for example, to extend the tool to perform more
advanced semantic analysis or extending the language with more language fea-
tures. An example of an extensible compiler built using RAGs is the Java com-
piler ExtendJ1 which is organized by having one module for each version of
the language [EH07c]. The ExtendJ compiler has also been extended with, for
example, refactoring support [Sch+08; Sch+09] and non-null analysis [EH07a].
Another example is the JModelica.org compiler that is implemented using Jast-
Add [Åke+10a], and later extended with language mechanisms for optimization
of dynamic models as well [Åke+10b]. In a similar way as these examples, the
Bloqqi compiler and editor share a common semantic core, and the editor extends
the core with analyses useful in the editor, such as advanced editing operations.
For an introduction to RAGs, see [Hed11; FH15].

The central data structure in tools developed with JastAdd is the decorated ab-
stract syntax tree (AST). Typically, tools developed with JastAdd parse the input
files into ASTs, which are then decorated with attributes. Attributes are attached to
tree nodes and are computed node properties, defined by equations. The attributes
are computed on demand, that is, when accessed, and memoized for subsequent
accesses to avoid computing the same attribute value several times. The equations
defining the attributes are declarative, in the sense that they are free from exter-
nally observable side effects. RAGs is an extension to ordinary attribute gram-
mars by Knuth [Knu68] and adds reference attributes, allowing attributes to refer
to nodes in the tree. This makes it easy to super-impose graphs over the AST, for
instance, to describe name binding relations and data-flow graphs, which makes it
suitable for graph-based languages like Bloqqi.

A typical example of a reference attribute is from the name analysis, where
nodes representing name uses have a reference attribute called decl() that refers

1See http://extendj.org. ExtendJ was previously called JastAddJ.
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to the corresponding name declaration. Another example of a reference attribute
is the set of successors of a block, which is called succ() and declared for block
nodes in the AST. The value of this attribute is a set of references that refer to other
block nodes in the AST. The attribute value is computed based on name analysis,
since the information depends on connect statements, which refer to blocks by
name and are resolved by name analysis.

4.2 Computed Structures

There are different kinds of attributes, with distinct characteristics. One important
kind used in the compiler and editor is non-terminal attributes (NTAs) [Vog+89]
(also known as higher-order attributes). An NTA is an attribute whose value is a
new fresh subtree, defined by an equation like any other attribute. This in contrast
to ordinary subtrees in the AST, which are typically created by the parser. NTAs
make it possible to augment the AST with new structures that are computed, which
can be based on other attributes, for instance, on attributes describing the type and
name analysis.

As an example of using NTAs in the Bloqqi tools, each diagram node has an
NTA called blocks(). As we can see in Figure 8, when a diagram is visualized,
all blocks are shown, both local and inherited, but with different colors. To do this,
the editor needs to perform name and type analysis, in order to compute which
blocks to visualize. This computation is defined as the NTA blocks(), which
includes all blocks for the diagram, including the inherited ones. This attribute
is an example of a computed property that is used by both the compiler and the
editor. The compiler uses the attribute to find semantic errors and to generate C
code. The attribute is needed in the code generation to remove inheritance since
inheritance is not supported in C.

4.3 Visualizing Computed Structures

The editor is implemented as an Eclipse plugin using the Graphical Editing Frame-
work (GEF)2. This framework is based on the model-view-controller (MVC) pat-
tern. In the Bloqqi editor, we use the decorated AST as the model, and the view
objects, which are written in plain Java, describe how this model is visualized.
When a diagram is visualized, the NTA blocks() is used, together with other
NTAs describing all connections, all parameters, and so on, which all include the
inherited ones. There are also other attributes that are used in the visualization,
such as boolean properties for if a block is local or inherited, which is used to
color the block white or grey.

Most of the visualization of a diagram is computed. In addition to inheritance,
the ports on a block are also computed. The ports correspond to the parameters in
the block type. Since the visualization of diagrams is computed, we have not found

2http://www.eclipse.org/gef/
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Figure 10: Semantic feedback when the user creates a connection. Connecting it
to a green port will not introduce any semantic errors, but connecting it to a yellow
port will introduce semantic errors.

existing visual syntax formalisms, like constraint multiset grammars [Mar94] and
graph grammars-based formalisms [Min02; Min06], suitable for defining the vi-
sual syntax of Bloqqi.

4.4 Semantic Feedback

By reusing the decorated AST as the model in the editor, we can use semantic
analysis defined for the compiler to provide semantic feedback to the user. By
extending the compiler specification, we can also define new analysis that builds
on the semantic analysis defined for the compiler, to provide even more semantic
feedback. There are two kinds of semantic feedback, one that we call permanent
semantic feedback and the second one is called transient semantic feedback, which
is only shown temporarily while the user performs an edit operation.

An example of permanent semantic feedback is when a connection that has
incompatible types is visualized and the editor colors it red. An example of tran-
sient semantic feedback is when the user creates a connection. This is shown in
Figure 10, where the user has started to create a connection from the output port
on the maxLevel block. The editor colors input ports yellow or green, depending
on if connecting to them would give semantic errors or not. Semantic errors in-
clude that the types are incompatible and that the input port does not already have
an incoming connection, since only one incoming connection is allowed for input
ports.

4.5 Integration with FMI and ControlBuilder

We have experimented with integrating the C code generated by the Bloqqi com-
piler with the standard Functional Mockup Interface [Blo+12] (FMI). This is a
standard that describes a common export format for dynamic models, which al-
lows models to be used together even if they have been exported with different
tools. For example, many Modelica compilers support exporting models as simu-
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lation binaries in the FMI format. We have used this to connect Bloqqi programs
to simulations described by Modelica models. For instance, we have run a Bloqqi
program to control a simulated tank process.

We have also experimented with integrating Bloqqi with ControlBuilder, with
two alternative approaches. One approach is to generate ControlBuilder programs
from Bloqqi programs and the other approach is to integrate the generated C code
from the Bloqqi compiler as external executables in ControlBuilder. We have used
this to run Bloqqi programs on specialized controller hardware provided by ABB.

5 Contributions

This section describes the contributions of this dissertation. Paper I-III describe the
novel language mechanisms in Bloqqi and Paper IV describes the implementation
of the compiler and editor for Bloqqi. The main contributions of this dissertation
are:

• Connection interception (Paper I & III). Connection interception is an
inheritance mechanism for block diagrams that allows subtypes to inter-
cept connections defined supertypes, making the connections go via other
blocks. Paper I introduces target interception, where the connection to be
intercepted is identified by the target of the connection. Paper III introduces
source interception, where the connection to be intercepted is identified by
the source of the connection. Source interception may replace several con-
nections, since a source port may have several outgoing connections. In
contrast, target interception only replaces one connection, since a destina-
tion port can only have one incoming connection.

• Visual instance inlining (Paper II). Visual instance inlining allows a block
to be visually inlined, replacing the block with its content. The domain
engineer can use this mechanism to make the diagrams look like how they
are drawn on paper. The editor provides editing operations for the user to
connect to the inlined block’s content. When the user connects to the content
of an inlined block, the editor will implicitly create anonymous subtypes and
use block redeclaration.

• Wirings and recommendations (Paper III). Wirings and recommenda-
tions are feature-based language mechanisms that modularly describe vari-
ability of a base structure. This is used to derive smart-editing support in the
form of a wizard, where the user can select the desired features. After the
specialized block has been created, the user can change the feature config-
uration of the block. Thus, Bloqqi supports staged configuration [Cza+04].
The modular property of the mechanisms allows libraries to be created and
extended with more features specified outside the library.
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• Prototype implementation (Paper IV). The language mechanisms have
been implemented in a prototype compiler and editor. Paper IV presents the
architecture for the tools and how they can be implemented using RAGs,
including techniques for implementing computed visual syntax and seman-
tic feedback. The paper also presents what the generated C code looks like
for Bloqqi programs. The generated C code has been used to integrate Blo-
qqi programs with FMI and ControlBuilder, to control simulated models
for testing purposes and to execute Bloqqi programs on controller hard-
ware, respectively. The implementation is released as open source under
the license Modified BSD License. The source code can be accessed at:
https://bitbucket.org/bloqqi/

6 Included Papers
The following papers are included in this dissertation.

Paper I. Niklas Fors and Görel Hedin. ”Intercepting dataflow connections in di-
agrams with inheritance”. In: IEEE Symposium on Visual Languages and
Human-Centric Computing. 2014, pp. 21-24.

This paper introduces the concept of (target) connection interception. The
paper was written before the invention of the wiring and recommendation
constructs, and instead uses multiple inheritance to model variants. The
paper describes an early version of Bloqqi, called PicoDiagram.

Paper II. Niklas Fors and Görel Hedin. ”Visual Instance Inlining and Specializa-
tion: Building Domain-Specific Diagrams from Reusable Types”. In: Pro-
ceedings of the 1st International Workshop on Real World Domain Specific
Languages. RWDSL ’16. ACM, 2016, 4:1-4:10.

This paper describes visual instance inlining.

Paper III. Niklas Fors and Görel Hedin. ”Bloqqi: Modular Feature-Based Block
Diagram Programming”. In: 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, On-
ward! 2016, Amsterdam, Netherlands, 30 October - 4 November, 2016. In
press.

This paper describes the feature-based constructs wirings and recommen-
dations. In this paper, we use composition to describe variability instead
of multiple inheritance that we used in Paper I. This paper also introduces
source interception that complements target interception described in Pa-
per I.

Paper IV. Niklas Fors. ”Implementation of the Bloqqi compiler and editor”.
Technical Report 98. LU-CS-TR:2016-252, ISSN 1404-1200. Lund Uni-
versity, 2016.
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This report describes the implementation of the Bloqqi compiler and editor,
including the architecture for the tools. The report is partially based on the
related Papers VII-IX. The work carried out for the related Papers X-XI
gave useful insights on how to specify compilers using reference attribute
grammars, which have been used in the implementation of the Bloqqi tools.

6.1 Methodology

Denning et al. [Den+89] describe the computing discipline as a combination of
three paradigms: theory, abstractions, and design [TS08]. These paradigms have
their roots in mathematics, science, and engineering, respectively. We have in this
dissertation used the design paradigm. This paradigm is about constructing a sys-
tem for a given problem, thus, constructing useful artifacts. According to Denning
et al., the steps for following the design paradigm are: 1) state requirements, 2)
state specifications, 3) design and implement the system, and 4) test the system.
These steps should be carried out in an iterative manner.

The new language mechanisms presented in this dissertation have been devel-
oped iteratively, with monthly meetings with ABB over several years, where they
presented challenges they faced. The challenges were illustrated with example
programs that were difficult to program in ControlBuilder in a reusable way. The
challenges and the examples formed the requirements for the new mechanisms.
The new mechanisms have been presented at meetings with ABB and refined many
times. During the meetings, we discussed the mechanisms, which gave useful
feedback for refining and improving the mechanisms. We also found it useful to
have both a textual and visual syntax during the discussions, to concretize what
we were talking about to increase our understanding of the mechanisms and the
examples. The mechanisms have been evaluated by a prototype implementation,
thus, we have designed and implemented the mechanisms as a proof of concept,
and tested them. Even though the mechanisms were motivated by concrete exam-
ples from ABB, we have made the mechanisms as general as possible, so that they
can be applied for other languages as well.

6.2 Contribution Statement

Niklas Fors is the main author of Papers I-III, which have been co-written with
Görel Hedin. For these papers, Niklas Fors drafted the first version of the paper
with text for all parts, which was then revised to final form together with Görel
Hedin in a close collaboration. For Paper IV, Niklas Fors is the sole author. The
overall ideas for the proposed language mechanisms presented in Papers I-III have
been jointly developed with Görel Hedin in an iterative manner, motivated by ex-
amples provided by the company ABB. Niklas Fors is the main contributor to the
design of the language mechanisms in Bloqqi capturing these ideas. Niklas Fors is
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also the main contributor of the implementation techniques described in Paper IV.
All the implementation work has been carried out by Niklas Fors.

7 Related Papers

The following papers are related, but not included, in this dissertation.

Paper V. Niklas Fors and Görel Hedin. ”Handling of layout-sensitive semantics
in a visual control language”. In: 2012 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VL/HCC 2012, Innsbruck, Austria,
September 30 - October 4, 2012. 2012, pp. 249-250.

This is the first paper about PicoDiagram. Inspired by ControlBuilder, the
execution order of the blocks depends partially on the visual layout of the
blocks, since the connections do not give a total order.

Paper VI. Niklas Fors. ”Supporting Visual Editors using Reference Attributed
Grammars”. In: Proceedings of the Doctoral Symposium of the 5th In-
ternational Conference on Software Language Engineering 2012, Dresden,
Germany, Sep 25, 2012. 2012, pp. 15-22.

This is a paper for a doctoral symposium that describes the ideas of using
RAGs to share semantic specifications between tools and use the semantic
specification in the graphical editor to provide semantic feedback.

Paper VII. Niklas Fors and Görel Hedin. ”Reusing Semantics in Visual Editors:
A Case for Reference Attribute Grammars”. In: ECEASST 58 (2013).

This paper describes in more detail the execution order of blocks that par-
tially depends on the visual layout of the blocks. To compute the execution
order, first the connections are considered, and second, the layout of the
blocks is considered, to give a total execution order. The execution order is
defined using RAGs and is used in the visual editor to give semantic feed-
back. For example, the execution order number is shown on the blocks. The
user also gets semantic feedback when moving a block, by showing in which
area the block can be moved without changing the execution order.

Paper VIII. Niklas Fors and Görel Hedin. ”Implementing Semantic Feedback in
a Diagram Editor”. In: Proceedings of the Second Workshop on Graphical
Modeling Language Development. GMLD ’13. Montpellier, France: ACM,
2013, pp. 42-50.

This paper describes more examples of semantic feedback and the imple-
mentation of it using RAGs. More specifically, the paper deals with, among
other things, diagrams that contain data-flow cycles and how these cycles are
handled using the visual layout. Later, after the publication of this paper, it
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was decided to forbid data-flow cycles in Bloqqi, and instead handle data-
flow cycles using variables defined by the user. The values of the variables
are then stored between the execution periods.

Paper IX. Niklas Fors and Görel Hedin. ”Using refactoring techniques for visual
editing of hybrid languages”. In: Proceedings of the 2013 ACM Workshop
on Refactoring Tools, WRT@SPLASH 2013, Indianapolis, IN, USA, Octo-
ber 27, 2013. 2013, pp. 17-20.

This paper describes how refactoring techniques for textual languages can
be used for implementing visual editing operations for hybrid languages,
that is, languages with both textual and visual syntax. Textual languages
have name binding rules that define how name uses are bound to name dec-
larations. These rules need to be considered when implementing editing
operations correctly.

Paper X. Niklas Fors and Görel Hedin. ”A JastAdd implementation of Oberon-
0”. In: Science of Computer Programming 114 (2015). pp. 74-84.

This paper presents the implementation of a compiler specified in JastAdd
for the language Oberon-0. The language is a small Pascal-like language
that was introduced by Niklaus Wirth for teaching compilers [Wir96]. The
paper was part of the LDTA 2011 Tool Challenge. The goal of the tool
challenge was to compare different compiler tools and techniques for the
same language.

Paper XI. Niklas Fors, Gustav Cedersjö, and Görel Hedin. ”JavaRAG: A Java
Library for Reference Attribute Grammars”. In: Proceedings of the 14th In-
ternational Conference on Modularity. MODULARITY 2015. Fort Collins,
CO, USA: ACM, 2015, pp. 55-67.

Developing a tool using JastAdd requires the tool to use the data structures
generated by JastAdd. Sometimes, this is not feasible. For example, we
may already have an existing data structure, for instance, an EMF model3,
that we want to add attributes to, or maybe we do not want to add an extra
step in the build process. To alleviate these issues, this paper presents a
library in Java called JavaRAG, which allows arbitrary data structures in
Java to be decorated with attributes. The requirement is that a spanning tree
can be formed over the data structure. JavaRAG is implemented using Java
annotations and reflection, and have no other dependencies.

3http://www.eclipse.org/modeling/emf/
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8 Conclusion

This dissertation presents the design and implementation of the feature-based data-
flow language Bloqqi.

The proposed language mechanisms in Bloqqi focus on reusability and vari-
ability. Diagrams can be extended and specialized using connection interception.
The connection to be intercepted is identified either by the source or the target
of the connection. Visual instance inlining allows blocks to be visually inlined,
visually replacing the block with its content. This enables the domain engineer
to create diagrams like how they are drawn on paper. The feature-based mecha-
nisms wirings and recommendations are used to specify variability to derive smart-
editing support in the form of a wizard, where the user can select the desired fea-
tures. Recommendations are specified in a modular way, so that they can be added
and extended for existing libraries.

The compiler and editor for Bloqqi have been implemented using the semantic
formalism reference attribute grammars, where the semantic specification is shared
by both the tools to avoid code duplication. One interesting thing with the Bloqqi
language is that the visualization of diagrams are computed, based on the semantic
analysis. For example, to visualize diagrams, inherited blocks and ports on blocks
are dependent on the semantic analysis. By reusing the semantic specification
defined for the compiler, the editor can give advanced semantic feedback to the
user for better user interaction.

The proposed language mechanisms have been tested within the automation
domain, but we think the mechanisms are useful for other data-flow programming
languages as well, which would be an interesting area of future work. It would
also be interesting to combine the mechanisms with state-based languages, like
Grafchart [JÅ98].

Bloqqi is a prototype language for experimenting with new language mecha-
nisms. Many of the features in ControlBuilder are used for building distributed
control systems, like online updating. It would be interesting to investigate how
Bloqqi can be used for distributed control. Another thing ControlBuilder supports
is user interfaces for the human operators. It would be interesting to see how these
user interfaces could be generated in combination with the language mechanisms
presented in this dissertation. Also, ControlBuilder supports control connections,
where parts of the structured data can be reversed, allowing the data to flow back-
wards along the connections. This is used to simplify diagrams and to improve
control performance [PH02].

The Functional Mockup Interface [Blo+12] (FMI) allows models defined in
different tools to be exported as Functional Mockup Units (FMUs) and used to-
gether. In this dissertation, we have integrated the generated C code by the Bloqqi
compiler with Modelica models exported as FMUs. It would be useful to export
Bloqqi programs as FMUs, so that Bloqqi programs easily can be integrated in
other tools. When several FMUs are connected, these FMUs need to be connected
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in some way, and it would be interesting to investigate if Bloqqi could be used for
connecting them (an FMU can be seen as a block with input and output).

The visual syntax of Bloqqi is computed and we have implemented the visu-
alization in the graphical editor with ordinary Java code. It would be interesting
to investigate how a more higher-level specification could be used instead. Also,
currently in the graphical editor, when a change is made by the user, the values of
all attributes are cleared and recomputed again when they are needed, for exam-
ple, when the visualization is re-rendered. To improve this, incremental evaluation
could be used [Rep82; SH12], where only attribute values that are affected by
the change are cleared. One challenge in incremental evaluation is the tradeoff
between precision and overhead.
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Intercepting Dataflow Connections in
Diagrams with Inheritance

Abstract

Control systems are often built using visual dataflow-based languages, and sup-
porting different variants may be challenging. We introduce the concept of con-
nection interception based on inheritance. This mechanism allows a diagram to
extend another diagram and intercept connections defined in the supertype, that is,
to replace it by two other connections, in order to specialize the behavior. This can
be used to create extensible libraries that support different variants.

1 Introduction

Control systems can be built using visual dataflow-based languages, such as the
Function Block Diagram in the IEC 61131-3 standard or the Control Builder from
ABB. A diagram in these languages contains input and output parameters, blocks
with ports and connections that model the dataflow between the ports and param-
eters. These diagrams are executed in a periodic manner, for example, 100 times
per second. For each period, sensor values are read to compute control signals that
are sent to actuators. The Control Builder supports visual user-defined types in
the form of diagrams, called diagram types, that can be instantiated as blocks in
other diagram types. This makes it possible to create (non-recursive) hierarchies
of blocks. An example of a diagram type is a proportional feedback controller that
can be instantiated for several uses.

Niklas Fors and Görel Hedin. ”Intercepting dataflow connections in diagrams with inheritance”. In:
IEEE Symposium on Visual Languages and Human-Centric Computing. 2014, pp. 21-24.



26 Paper I: Connection Interception

Building a control system for a plant typically involves creating several con-
trollers for different physical entities, such as tanks and engines. These controllers
can be abstracted into libraries to enable reuse of functionality between similar
entities in the same or different plants. Some entities both share similarities and
have differences, and there is a need for managing these variabilities. An example
of variants is a proportional feedback controller with or without gain scheduling,
and with or without feedforward. There are two common ways for handling vari-
ability: copy-modify and parameterization. Copy-modify means that an existing
diagram type is copied, and then modified to obtain the desired variant. This gives
the well-known “code smell” of duplicated code, with the drawbacks of code bloat
and double maintenance problems. Parameterization means that all interesting
variants are anticipated and input parameters are used to decide which functional-
ity to enable. This leads to complicated diagrams where often only a subset of the
diagram is used at runtime.

In this paper, we introduce a third way of handling variability that overcomes
the drawbacks of the copy-modify and parameterization approaches. Our approach
is based on inheritance and a new concept of connection interception that allows
a connection defined in a supertype to be replaced in a subtype by two other con-
nections.

We have implemented a prototype compiler, which generates executable C
code, and a visual editor for a language that supports diagram types, inheritance
and connection interceptions. We have defined a textual syntax for the language,
which both the compiler and visual editor use as the serialization format. The
mechanism of connection interception has been developed in collaboration with
ABB with the goal of improving reusability mechanisms in the control domain for
the process industry. We have used existing libraries to identify which problems
arise when handling variability.

The rest of the paper describes how inheritance and connection interception
works and how multiple inheritance is handled, some notes on the implementation,
and an evaluation, comparing the new approach with copy-modify and parameter-
ization. The paper ends with related work and a conclusion.

2 Connection Interception

We will use inheritance to manage variabilities, where new elements can be added
in subtypes. But only adding elements is not enough, subtypes need also the pos-
sibility to specialize the behavior. We introduce the mechanism of connection in-
terception that allows subtypes to specialize the connection behavior in dataflow-
based languages. This mechanism plays a similar role as method overriding in
object-oriented languages.

With (multiple) inheritance, a diagram type D can extend other diagram types
B1, ..., Bn, and we say that D is a subtype of B1, ..., Bn and that B1, ..., Bn are
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P

PFF extends P

Figure 1: A P-controller (P) is extended with feedforward (PFF). Black/grey/-
dashed indicates inherited elements, and blue/solid indicates elements that are
locally defined. The connection from Mul_1 to Out in P is intercepted in PFF,
causing it to go via the new Add block.

supertypes of D. The subtype and supertype relationships are transitive. The sub-
type D inherits all parameters, blocks and connections that are declared locally in
its supertypes (transitively), which means that these elements are implicitly copied
from the supertypes to the subtypes. For each supertype, all elements are only
copied once to the subtype, even if there is more than one path in the type hierar-
chy from a subtype to a supertype, i.e., corresponding to so called virtual inher-
itance in languages like C++. The subtype D can also declare new parameters,
blocks and connections. With connection interception, the subtype D can inter-
cept a connection declared in a supertype, causing the connection to go via other
blocks.

Suppose a diagram type B contains a connection from port p to port q, where
q is either an output port (parameter) of B, or an input port on a block in B. In this
case, a subtype D can intercept the connection by stating that q is intercepted by
the pair (t, s), where t and s are ports declared in B and/or D. For a block of type
D the connection (p, q) will then be replaced by the connections (p, t) and (s, q).
This way, the connection to q is specialized by one or more other blocks before
reaching q. An invariant of interception is that if a port in a diagram has incoming
data, then it will have incoming data in all subtypes, but maybe from a different
source.

As an example, Figure 1 shows two diagram types: one type that models a
proportional feedback controller (P) and a subtype that extends it with feedfor-
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diagramtype PFF(Int FFGain, Int FF) extends P {
Mul Mul_2;

Add Add_1;

connect(FFGain, Mul_2.in1);
connect(FF, Mul_2.in2);
connect(Mul_2.out, Add_1.in2);
intercept Out with Add_1.in1, Add_1.out;

}

Figure 2: Textual syntax of PFF in Figure 1

ward (PFF). The textual syntax of PFF is shown in Figure 2, and the textual syntax
of P is similar. The P controller computes the error, that is, the difference be-
tween the set point (SP) and the process value (PV), and then multiplies the error
with the proportional gain (Gain), which is sent to the output parameter Out. The
subtype PFF adds input parameters, blocks, connections and a connection inter-
ception. The latter intercepts the connection to the output parameter Out with the
pair (Add_1.in1, Add_1.out) that adds the feedforward value to Out. Other dia-
gram types may also extend P and add, for example, gain scheduling, which allows
several values for the gain.

In Figure 2, the intercepted connection is identified using only the target of
the connection (Out). This works for ports/parameters with only one incoming
connection. For ports/parameters with several incoming connections, a connection
can be identified using both the source and the target of the connection, as the
following code illustrates:

intercept Mul_1.out, Out with Add1.in1, Add1.out;

In this language, all diagram types, parameters, blocks (instances of diagram
types) and connections are defined at compile time. Since the language does not
include dynamic dispatch, the compiler can generate flattened code with no extra
runtime support needed for inheritance.

2.1 Visual Appearance

The idea behind the visual appearance is that black and grey symbolizes stone,
something old, something that you inherit and generally cannot change. For in-
tercepted connections, the two replacing connections each have a dashed black
part symbolizing the unchanged end of the connection and a blue part symbolizing
the intercepting end. The notation has been guided by the principles described by
Moody [Moo09]. For example, we use both color and texture to improve discrim-
inability between inherited and local elements. Color makes it easier to differenti-
ate between the two kinds of elements, but the coding is redundant, which allows
diagrams to be printed black-and-white without loss of information.
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X

Y1 extends X Y2 extends X

Z extends Y1, Y2

Figure 3: Both Y1 and Y2 intercept the connection between the parameters in and
out. The order in the extends clause determines in which order interceptions are
applied.

Some of the visual elements in the visual editor are computed using the se-
mantics of the language, rather than being purely syntactical. We will call these
computed visual elements. For instance, inherited blocks and connections are com-
puted, as shown in Figure 1, and visualized in another way than local elements.
Local interceptions is another example, where the resulting connections are com-
puted, and shown as having an inherited part (dashed black) and a local part (solid
blue). Computed visual elements are implemented using the semantic formalism
reference attribute grammars [Hed00], which will be discussed more below.

2.2 Linearization

Figure 1 shows an extension to the P-controller with feed forward (PFF). Another
extension may add, for example, gain scheduling (PGS). To get both feed forward
and gain scheduling, we can create a fourth type PFFGS that extends both PFF
and PGS. When combining several supertypes, the supertypes may intercept the
same connection, and we need a way to resolve such conflicts and combine those
interceptions. We do this by defining a linearization of a diagram type, which
decides in what order interceptions are added in the subtype. The linearization
corresponds to a depth-first search in the type hierarchy, starting at the node to be
linearized, where successors are visited from left to right according to the extends
clause.

This combination problem is an instance of the well-known diamond problem
in multiple inheritance, and is illustrated in Figure 3. The type Z inherits from two
other types, Y1 and Y2, that both inherit from a common supertype X, and both
Y1 and Y2 intercept the same connection in X. The order in the extends clause
in Z determines that the interception in Y1 is applied before the interception in
Y2 resulting in the linearization L(Z) = X, Y1, Y2, Z. We use this linearization to
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determine in which order the interceptions are added. First, all blocks and con-
nections are computed, both those declared locally and those inherited from su-
pertypes. Then the connections are replaced according to the interceptions in the
linearization order. This means that the interception in Y1 is performed first, and
then the interception in Y2 is performed. That is, first the connection (in, out) is
replaced with the connections (in, c.in) and (c.out, out), and then the connection
(c.out, out) is replaced with the connections (c.out, d.in) and (d.out, out). The
resulting connections are (in, c.in), (c.out, d.in) and (d.out, out), and we can see
that block c is before block d.

Formally, the type hierarchy for a diagram type d with acyclic supertypes
b1, b2, ..., bn is linearized as the following sequence:

L(d) = L(b1)⊕ L(b2)⊕ ...⊕ L(bn) , d

where

A⊕ (b, B) =

{
(A, b)⊕B if b /∈ A
A⊕B if b ∈ A

A = a1, ..., an and B = b1, ..., bm

The operator ⊕ combines two sequences. It removes duplicates and favors ele-
ments on the left-hand side.

The linearization order we have chosen is just one of many possible orders.
We think it is the most natural one, but we have no solid empirical evidence for
this claim. The order has been inspired by the language Scala, but with the order
reversed. In object-oriented languages, the linearization is used for selecting the
method implementation to invoke when there are several possibilities. In contrast,
for our visual language all interceptions are added, and the linearization order only
decides in what order this is done.

3 Implementation
We have implemented a compiler and a visual editor as a prototype for the in-
tercept mechanism. The compiler generates executable C programs. The textual
representation, as illustrated in Figure 2, is used as the serialization format for
both the compiler and the visual editor. The semantics of the language is imple-
mented using the metacompilation system JastAdd [EH07b]. JastAdd supports the
semantic formalism reference attribute grammars (RAGs) [Hed00] that extends
attribute grammars [Knu68] with reference attributes. Using RAGs, the semantics
can be implemented once and be reused and extended by different tools, in this
case the compiler and the visual editor. In both tools, the textual representation is
parsed into an abstract syntax tree (AST) and attribute values of the AST nodes
are then computed automatically by JastAdd, as defined in the RAG. Reference
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Table 1: Code cost

Intercept Copy-modify Param-PFF Param-PFFGS

P 11 11

PFF 8 19 23

PGS 8 19

PFFGS 0 27 31

Total 27 76

attributes allow an attribute value to be a reference to another AST node, meaning
that graphs can be super-imposed on the AST. This makes RAGs suitable for mod-
eling graph-like properties like name and type bindings. Other attributes represent
the resulting connections and blocks in a diagram, taking into account inheritance
and interception. The computed visual elements correspond to attributes and are
shown in the visual editor.

When adding a new block in the visual editor, the name is either given ex-
plicitly by the user, or it is generated by the editor, based on the block type and a
sequence number local to the block. To avoid name conflicts in subtypes (in the
textual syntax), the access to an inherited block is always qualified by the super-
type. For example, if a block T_1 has been added to both Y1 and Y2, the subclass
Z can access these blocks by Y1:T_1 and Y2:T_1 respectively.

4 Evaluation

Table 1 compares the three approaches of interception, copy-modify, and parame-
terization, with respect to code cost. We compute an abstract code cost per diagram
type as the sum of all local elements (parameters, blocks, connections, intercep-
tions). For the interception approach, the table shows the cost of the types P and
PFF, according to the diagrams shown in Figure 1, and for PGS and PFFGS (dia-
grams not shown). PGS extends P with gain scheduling. PFFGS extends PFF and
PGS, but without adding any further elements. The diagram types for the copy-
modify approach are similar to those for interception, but without the use of inher-
itance, that is, the elements are manually copied between diagram types, leading
to code duplication and thus higher code costs.

For the parameterization approach, two different cases are shown. In Param-
PFF, the diagram type models a P controller with or without feedforward, using
an extra input parameter EnableFF to select the variant, see Figure 4. In Param-
PFFGS, a more complex controller is modelled, allowing both feedforward and
gain scheduling to be individually enabled or disabled (diagram not shown). We
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ParameterizedPFF

Figure 4: Using the parameterization approach for PFF. The boolean parameter
EnableFF is used for enabling or disabling the feedforward functionality.

Table 2: Runtime cost

Intercept Copy-modify Param-PFF Param-PFFGS

P 11 11 23 31

PFF 19 19 23 31

PGS 19 19 31

PFFGS 27 27 31

can see that the code cost for the intercept solution is the lowest (27). We also
see that the code cost goes up rapidly for the copy-modify approach, when the
number of variants increases (76). For the parameterized approach, we see that
all interesting variants need to be anticipated in advance. Thus, when a simple P
controller is needed, we need to instantiate a more complex one and disable the
undesired functionality.

In Table 2 an abstract runtime cost is shown for instances of type P, PFF, PGS,
and PFFGS. The runtime cost is computed by summing all the instance’s elements
(parameters, blocks, connections, interceptions), including the inherited ones. We
can see that the runtime cost increases with the number of variants for the pa-
rameterization approach, and a simple P has a runtime cost of 31 in the PFFGS
parameterized case, compared to 11 for the intercept and copy-modify approaches.

The tables illustrate the drawbacks of copy-modify and parameterization. Copy-
modify leads to code duplication, and parameterization leads to extra runtime costs
and requires that all interesting variants are anticipated. The interception approach
avoids these drawbacks. It gives both the lowest code cost and the lowest runtime
cost, and furthermore enables extensible libraries. A possible drawback of the in-
terception approach is that the language becomes more complicated, affecting both
the language user and the language developer.
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5 Related Work
The focus of our work is on visual dataflow-based languages, where data is moved
along a connection from the producer to the consumer.

Similar work has been done for Simulink [KM07], where connections can
be intercepted. However, only single inheritance is supported and correspond-
ing blocks are instantiated by the editor when they are created. The latter means
that if a block type change, all blocks of that type need to be updated, which is
done manually using an editor command.

Modelica is a language for modeling and simulating complex systems [Mod16].
The language is equation-based and object-oriented. Systems are described by dif-
ferential equations and connections correspond to equations rather than dataflow.
Modelica supports multiple inheritance and redeclaration that allows a block to
be replaced in a subtype, where the type of the replacing block must be a subtype
of the original block’s type. Redeclaration is complementary to interception, and
would be interesting to add to our dataflow-based language.

Ptolemy II is an actor-based language that supports inheritance [Lee+09], where
language constructs that correspond to blocks and connections can be added in
subtypes. The language also supports ports with multiple incoming connections.
Ptolemy II has, however, no support for connection interception and cannot handle
the example shown in Figure 1.

There has also been work on inheritance for languages based on control-flow
graphs, such as Activity diagrams [SP05] and Statecharts [Sim+02]. In these lan-
guages, connections correspond to state transitions rather than dataflow. However,
interception maintains flow of data to in-ports for all subtypes, which is not rele-
vant for control-flow graphs.

Parameterization in this paper refers to using input parameters for variabil-
ity. Another approach is to have language support for parameterization, for ex-
ample preprocessed annotations, in order to statically determine which variants to
use [CA05]. This approach can lower the runtime overhead of the parameterized
approach, but still requires that all variants are anticipated in advance.

6 Conclusion
We have introduced the concept of connection interception based on inheritance
to support variability in dataflow-based languages. Connection interception allows
a subtype to replace a connection declared in a supertype with two other connec-
tions. The specialized behavior maintains the invariant that the original target port
still has incoming data. This mechanism has low runtime costs, it avoids code du-
plication and it enables extensible libraries. We have shown how inheritance and
connection interception can be visualized, and how conflicts due to multiple inher-
itance can be handled. Furthermore, we have constructed an editor and compiler
for a prototype language supporting these concepts, to illustrate the ideas.
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PAPER II

Visual Instance Inlining and
Specialization – Building

Domain-Specific Diagrams from
Reusable Types

Abstract
Block diagram languages are often used for physical modeling and automation,
where end users are domain engineers that instantiate block types and wire them
together. Abstraction mechanisms in these languages allow specialists to build ad-
vanced reusable domain-specific libraries. However, this brings a tension between
supporting reusability and making the language simple to comprehend for domain
engineers. We propose a technique for relieving this tension by supporting visual
instance inlining and smart editing mechanisms based on instance specialization.
The new technique allows end users to visually edit and comprehend diagrams in
terms of domain blocks only, while the underlying program makes use of reusable
library types.

1 Introduction
Block diagrams are used in many domains, such as modeling, simulation and
automation. A block diagram consists of blocks and connections between the
blocks that model the data flow. Example languages include proprietary ones,
such as LabView from National Instruments and ControlBuilder from ABB, and
community-developed languages, such as Modelica and SysML. Many of these

Niklas Fors and Görel Hedin. ”Visual Instance Inlining and Specialization: Building Domain-Specific
Diagrams from Reusable Types”. In: Proceedings of the 1st International Workshop on Real World
Domain Specific Languages. RWDSL ’16. ACM, 2016, 4:1-4:10.
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languages support user-defined types, where a block can be defined by another
block diagram, making it possible to create hierarchical structures. These hierar-
chies allow users to manage complexity by organizing programs at different lev-
els of detail, making each abstraction level easier to comprehend [Moo09]. User-
defined types also allow commonly used functionality to be factored out and reused
many times, making it possible to create libraries that capture common function-
ality.

However, these two objectives, comprehension and reusability, may sometimes
be conflicting. Typically, the end user of the language is a domain engineer who
does not necessarily have much knowledge of programming abstraction mecha-
nisms. He/she wishes to interact only with blocks that make sense in terms of the
domain, typically corresponding to physical components such as valves, motors,
controllers, and the like, and does not wish to see blocks whose existence is only
motivated by reuse. At the same time, it is very important that specialists can
construct reusable block libraries for different domains, to allow engineers to effi-
ciently build working models. Furthermore, it is often the case that local libraries
are built and modified for a particular application, such as the automation of a par-
ticular factory plant. Copying and changing sample models is therefore not a good
alternative, since modifications to the local libraries would then not have any effect
on existing diagrams. We have previously experienced this reuse/comprehensibil-
ity conflict when we worked on supporting variability in block diagrams.

In this paper, we introduce a technique for resolving this conflict between do-
main comprehensibility and the need for reusable libraries. In particular, we in-
troduce a mechanism for visual instance inlining, and smart editing mechanisms
based on instance specialization that allow connections in such visually inlined
diagrams to be edited.

A visually inlined block is visually replaced by the content of the block, in a
transitive manner. This allows the user to view and edit diagrams without having
to understand the types introduced for reusability, and thereby increase diagram
comprehension. Note that this kind of inlining is about visual appearance, rather
than execution performance. The proposed inlining mechanism is different from
a Fisheye view for hierarchical models [Fur86; Fre+14; Rei+08; Rei+07], which
creates a bounding box around the inlined blocks. Instead, we allow the inlined
blocks to be moved around in the diagram without any restrictions.

Visual inlining does not lead to copying code in the underlying program. In-
stead, the underlying program retains its structure with reuse-motivated blocks.
Thus, changes to library types will have effect on all existing programs that use
them, whether the instances are inlined or not, which is important for code main-
tenance.

In the underlying program, connections go only between blocks at the same
level, i.e., between blocks that are siblings in the code. To allow the user to create
connections between any blocks in the visually inlined view, we introduce smart
editing mechanisms that automatically introduce ports on intermediate blocks as
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needed.
Our underlying diagram language makes use of advanced abstraction mecha-

nisms for diagrams, with inheritance, anonymous subtypes, interception of con-
nections [FH14], and block redeclaration [Mod10]. Inheritance allows a diagram
type S to be extended to another diagram subtype T , meaning that all blocks and
connections in S are implicitly copied to T . Such a subtype can be anonymous,
given at the declaration of a block. Interception allows a connection in S to be
intercepted in T , redirecting the dataflow through a subnet of blocks in T . Block
redeclaration allows T to specialize blocks declared in S.

We use these mechanisms to represent connections that the user creates be-
tween blocks at different levels, creating anonymous subtypes for the involved
blocks.

The new language mechanisms have been developed in collaboration with the
ABB company1. The goal of the collaboration has been to improve reusability for
block diagram languages in the domain of process industry automation. We have
implemented the proposed language mechanisms in a prototype language called
Bloqqi. The language has both a textual and a visual syntax, and we have imple-
mented both a compiler and a visual editor for the language. The compiler gener-
ates C code that can be compiled to executable programs for controlling industrial
processes.

The outline of this paper is the following. We will first describe the Bloqqi
language including a motivating example (Section 2), and then make the following
contributions:

• Visual instance inlining. A mechanism that visually inlines instances of
reusable block types to increase diagram comprehension. (Section 3)

• Smart connections. Smart editing support that allows the user to connect
to the content of the inlined block by automatically specializing the block in
the underlying program. (Section 4)

• Implementation. We have implemented compilation and editor support for
the new mechanisms using the metacompilation system JastAdd [EH07b],
which supports Reference attribute grammars [Hed00], and we describe the
implementation techniques used. (Section 5)

We end the paper by discussing related work (Section 6) and wrap up with a
conclusion (Section 7).

2 The Bloqqi Language
We have developed a visual data-flow language called Bloqqi to experiment with
language constructs for building control systems. The focus has been on reusabil-

1http://www.abb.com
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Initialize memory
for each clock tick do
Read inputs
Compute outputs
Update memory

end

Figure 1: The execution scheme for programs in Bloqqi.

ity and supporting variability for such systems. The constructs in Bloqqi are, how-
ever, not limited to the control languages, but could be applied for other data-flow
languages as well.

Bloqqi programs are executed periodically, for example 10 times per second.
This execution scheme is called sample-driven execution, see Figure 1 [Ben+03].
In each period, sensor values are read (inputs), and which are used to compute
control signals (outputs) that are sent to actuators. As can be seen in Figure 1,
diagrams may also have states (memory) that are stored between the periods. As
an example, a PID controller2 may use the error (the difference between the set
point and the process value) from previous periods to improve the control signal.

Bloqqi has been developed in collaboration with the company ABB, with monthly
meetings over several years. ABB has their own visual data-flow language, Control-
Builder, that is used to build control systems for the process industry. Bloqqi
has been influenced by ControlBuilder, and uses a similar sample-driven execu-
tion scheme, and similar visual data-flow diagrams. In contrast to ControlBuilder,
Bloqqi uses diagram inheritance and subtyping. For this part, Bloqqi is influ-
enced by Modelica, and uses a redeclaration mechanism similar to that in Model-
ica [Mod10]. However, Modelica is different in many other aspects. It uses equa-
tional diagrams with undirected connections, rather than data-flow diagrams, and
it supports differential equations and is primarily used for simulation of physical
processes rather than for controlling them.

2.1 Motivating Example

We will now motivate visual instance inlining with a simple example from the
control domain. A typical controller solution is to connect two PID controllers in
a master-slave configuration, where the control signal from the master is used as
the set point for the slave. This way, better control performance can be achieved in
many situations [ÅH06]. Figure 2 shows an example diagram for such a setup. To
model this, two instances of a reusable type ControllerPart is used: a master
and a slave. However, the ControllerPart type is an abstraction introduced
just to support reusability, and the control engineer would rather like to see the

2proportional–integral–derivative controller
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diagramtype Cascade {
setPoint: OperatorValue;

master: ControllerPart;

slave: ControllerPart;

analogOut: AnalogOut;

connect(setPoint.out, master.SP);
connect(master.CV, slave.SP);
connect(slave.CV, analogOut.in);

}

Figure 2: Visual and textual representation for a simple cascade control loop with
a master and a slave controller. The set point is set by the operator.

diagramtype Cascade {
...

inline master: ControllerPart;

inline slave: ControllerPart;

...

}

Figure 3: Inlining the controller blocks in Figure 2. The analog input blocks are
moved to the left part of the diagram.

diagram shown in Figure 3, where the two ControllerPart instances (blocks)
have been visually inlined, showing also their analog input parameters.

Note that inlining all blocks is seldom desired. For example, it would typically
not be relevant for the control engineer to see the inner structure of the PID block,
in case it also has a sub structure of blocks. It is therefore important to support
selective inlining.

In Bloqqi, each visual diagram has an underlying textual program from which
the diagram is rendered, and which is used when serializing diagrams. When the
user opens a file in the editor, the file is parsed into an abstract syntax tree (AST).
The AST is decorated with computed attributes that, for example, take into account
visual instance inlining. This structure is then used to render the diagram. When
the user makes a change in the diagram, the editor changes the AST accordingly
and the diagram is updated. The user can serialize the AST back to the file by
performing a save operation.
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diagramtype ControllerPart(SP: Int => CV: Int) {
analogIn: AnalogIn;

PID: PID;

connect(SP, PID.SP);
connect(analogIn.out, PID.PV);
connect(PID.CV, CV);

}

Figure 4: Consists of one input parameter SP (set point), two blocks, and one
output parameter CV (control value).

To support selective visual inlining, blocks can be declared with the modifier
inline, as shown in Figure 3. In the diagram view of this code, the master and
slave blocks have been replaced with the content of the type ControllerPart,
that is, with the two blocks analogIn and PID. This way, the analogIn blocks are
both at the same visual level as the setPoint block, and can be visually aligned
with it, just like in a diagram that a control engineer would draw by hand.

The inlined blocks and connections, depicted by dashed lines in the editor, can
be moved around, but can otherwise not be modified. Editing the blue parts of
the diagram results in the underlying textual code to be updated (and vice versa—
editing the text causes the diagram to be updated).

The definition of ControllerPart is shown in Figure 4. This diagram con-
sists of both parameters and blocks. The parameters are shown as ports when the
diagram is instantiated as a block, as can be seen on the master and slave blocks
in Figure 2. Note that when the blocks are inlined, like in Figure 3, the parameters
are removed and their connections are unified with the corresponding connections
at the outer level.

2.2 Inheritance

Bloqqi is based on inheritance, where a diagram T can be extend another diagram
S. This means that all parameters, blocks and connections in S are also in T (tran-
sitively). We say that T is a subtype of S and S is a supertype of T . In ordinary
object-oriented languages, a subtype can override a method defined in a supertype.
However, since Bloqqi does not have methods, other inheritance mechanisms are
available: a subtype can intercept connections defined in a supertype [FH14] and
redeclare blocks defined in a supertype [Mod10]. Later in this paper, we will de-
scribe how the user can connect to inlined blocks, and this is based on inheritance.
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diagramtype FilterControllerPart extends ControllerPart {
filter: Filter;

intercept PID.PV with filter.in, filter.out;
}

Figure 5: Extends diagram ControllerPart. Intercepts the connection to the
block PID with a block filter.

diagramtype FilterCascade extends Cascade {
redeclare master: FilterControllerPart;
redeclare slave: FilterControllerPart;

}

Figure 6: Extends diagram Cascade. Redeclares the blocks master and slave,
resulting in extra filter blocks.

As an example of inheritance, consider the diagram FilterControllerPart
in Figure 5 that extends the diagram ControllerPart. The new diagram adds
noise filtering on the sensor value. This is achieved by intercepting the connection
to the second port on the PID block, meaning that the value from analogIn will
now go through the filter before reaching the PID block. Inherited blocks are
depicted as grey in the visual syntax. Like inlined blocks, they can be moved
around, but not modified.

Block redeclaration is illustrated in Figure 6. Here, FilterCascade extends
Cascade and specializes the blocks master and slave by redeclaring them to the
type FilterControllerPart, adding noise filtering to the sensors in both the
master and slave. A block defined in a supertype can be redeclared in a subtype.
The requirement is that the new block type is a subtype of the old block type, and
which is true for this example. In the visual representation, we can see that two
filter blocks are added, since the new block type also contains one extra filter
block.

In the previous example in Figure 6, the blocks master and slave were rede-
clared to an existing named subtype. It is also possible to define anonymous sub-
types and to redeclare blocks to anonymous subtypes. Instead of redeclaring the
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diagramtype FilterCascade2 extends Cascade {
redeclare master: ControllerPart {
filter: Filter;

intercept PID.PV with filter.in, filter.out;
};

redeclare slave: ControllerPart {
filter: Filter;

intercept PID.PV with filter.in, filter.out;
};

}

Figure 7: Redeclares master and slave to anonymous subtypes of
ControllerPart (highlighted), in contrast to a named subtype as in Figure 6.
The two diagrams are behaviourally equivalent.

blocks master and slave to FilterControllerPart, we can redeclare them
to anonymous subtypes of ControllerPart and add the filter in the anonymous
subtype. This is done in Figure 7 and this diagram is behaviourally equivalent to
the diagram in Figure 6. In this example, only one block and one interception is
added, but it is also possible to add parameters in an anonymous subtype, which
we will use later in this paper to allow the user to connect to the content of inlined
blocks.

3 Visual Instance Inlining

We will now describe visual instance inlining in more detail. The rationale for
visual instance inlining is that some parts of the type structure may be created
to support reusability, and is not optimal for diagram comprehension. The goal
of visual instance inlining is to improve diagram comprehension and at the same
time retain the type structure, and thus retaining the reusability aspect.

Visual instance inlining means that an instance (block) is replaced by its con-
tents in the editor view. This brings a number of issues to resolve: How should
connections to inlined blocks be handled? What kind of interaction is allowed with
the inlined block content? How should the inlined block components be named?
Can the content of an inlined block be transitively inlined? Are there restrictions
on what can be inlined? We will now deal with these questions.

3.1 Connections to Inlined Blocks

The content of a block is defined by its diagram type. As mentioned earlier, pa-
rameters in the diagram type are displayed as ports on the block. When inlining
the block, the ports/parameters are removed, and if there is a connection to the port
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diagramtype Main {
analogIn: AnalogIn;

actuators: Actuators;

connect(analogIn.out,
actuators.in);

}

diagramtype Actuators(in: Int){
analogOut: AnalogOut;

analogOut2: AnalogOut;

connect(in, analogOut.in);
connect(in, analogOut2.in);

}

diagramtype Main {
analogIn: AnalogIn;

inline actuators: Actuators;
connect(analogIn.out,

actuators.in);

}

Figure 8: The diagram Main consists of two blocks, analogIn and actuators.
When the block actuators in Main is inlined (highlighted), there will be two
connections from the block analogIn.

and a connection from its corresponding parameter inside the inlined block, these
two connections are replaced by one connection.

An example of this can be seen in Figure 3. Here, the connection from setPoint
to master in Cascade before inlining (Figure 2) and the connection from SP to
PID in ControllerPart (Figure 4) is replaced with one connection from setPoint
to PID, when the block master is inlined in diagram Cascade.

An input parameter may, in general, have n outgoing connections (n ≥ 0). If
there is a connection to the corresponding inport port on the block, then the con-
nection to the port will be replaced with n connections when the block is inlined.
This is illustrated in Figure 8, where the diagram Main consists of two blocks,
analogIn and actuators. The diagram of the latter block consists in turn of two
actuators, analogOut and analogOut2. There is also one connection from the
block analogIn to actuators in Main. If we inline the block actuators, then
there will be two connections from analogIn, one connection to each AnalogOut
block. Output parameters/ports are handled analogously.
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Figure 9: Selecting an inlined blocks highlights the blocks that have been inlined
by the same block.

3.2 Interacting with Inlined Blocks

All inlined blocks are depicted as white rectangles with dashed borders in the
visual syntax. The inlined blocks can be moved freely without any restrictions as
illustrated in Figure 3. However, the content of the inlined blocks (connections and
blocks) cannot be removed or modified, since this would correspond to editing the
type of the inlined block. If such changes are desired, the user would have to bring
up that type into the editor.

It is, however, possible to interact with the complete inlined block, to remove
it or to make it not inlined, i.e., replacing the inlined content with the block with
ports. Such interaction corresponds to editing the diagram, for example removing
the master block from the Cascade diagram, or removing the inline modifier
on the block. It is also possible to add connections to the inner blocks that come
into view when a block is inlined, as will be discussed in Section 4.

3.3 Naming Inlined Content

When a block is inlined, the editor will show the local names of the inner blocks
by default. For example, in Figure 3, the names that are displayed are analogIn
and PID, which are not unique names in the context of Main. A control engineer
would normally prefer this default view, since it is apparent from the connection
structure which block is which, and more detailed names would take up precious
screen space and clutter the view. However, if the user desires, the editor can also
show unique names that are inferred by how the blocks are inlined. For exam-
ple, the full name of the blocks in Main are master$analogIn, master$PID,
slave$analogIn and slave$PID.

As an additional interactive aid, to differentiate content coming from different
inlined blocks, the user can select a block in the editor and the editor will then
highlight all blocks that originate from the same inlined block. This is shown in
Figure 9, where one of the PID blocks has been selected. The editor has visually
highlighted both the PID and its related analogIn, since both belong to the same
inlined block (master).
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diagramtype TwoCascades {
inline cascade: Cascade;

inline cascade2: Cascade;

}

Figure 10: Transitive inlining. This diagram consists of two blocks of the type
Cascade (Figure 3) and which are inlined. Since Cascade also contains inlined
blocks, the blocks analogIn and PID are inlined in two steps.

3.4 Transitivity

If a block is marked using the modifier inline, this means that it is has been
decided that its contents are more meaningful to see than the block itself. It is
therefore natural that visual inlining is transitive. Thus, if a block is inlined and the
content of the block also contains blocks that are inlined, then blocks are inlined
in more than one step. This is shown in diagram TwoCascades in Figure 10,
where two blocks of the diagram Cascade (Figure 3) are inlined. The diagram
Cascade in turn inlines the blocks master and slave, resulting in that the blocks
analogIn and PID in TwoCascades are inlined in two steps, thus, illustrating that
inlining is transitive.

There are, however, two cases when a block marked as inline is actually not
visually inlined. The first is when the block does not contain any inner blocks.
Visually inlining it would then result in the block being removed altogether from
view. The other case is when a diagram type T contains (directly or transitively)
a block of the same type T . This is a compile time error, and is detected by the
compiler as such. In this case, visual inlining is inhibited since it would result in
an endless recursion.

3.5 Alternative Solution: Bounding Box

As explained earlier, the content of a visually inlined block can be moved around
freely. An alternative solution would be to have a bounding box around the block
that is inlined. This is a common way of supporting visual inlining in interactive
editors (for example, see [Sch+14]) and is illustrated in Figure 11. Here, both the
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Figure 11: Bounding box, an alternative inlining technqiue. Compare to Figure 3.

blocks master and slave have a bounding box around the inlined content. This
kind of visual inline can be useful to be able to see many levels at the same time,
and thus has another purpose than our inlining. Our purpose is that the control
engineer should be able to see diagrams that look just like the ones usually drawn
in that domain, e.g., like the ones shown in control textbooks. Furthermore, often,
the end diagrams are printed and used for reference for a running plant, and it is
important to be able to make full use of all available layout space. Being able to
move the inlined content in an unrestricted way is therefore very important. An
example was shown in Figure 3 where the analogIn blocks were visually aligned
with the setPoint block.

4 Instance Specialization
When the user edits a diagram with a visually inlined block, he/she may wish to
create connections to content blocks, i.e. to blocks in the inlined content. However,
in order to not break encapsulation, such connections must go via parameters of
the inlined block.

We solve this by instance specialization: An instance can be specialized by
adding an anonymous subtype to its declaration, and adding parameters and con-
nections to that subtype. The editor automatically adds the subtype, parameters,
and connections, as the user creates cross-level connections to content blocks.
When the user modifies these connections, the anonymous subtype is modified
accordingly. This way, visual edits in the diagram are represented by local edits in
the corresponding diagram code. We illustrate the mechanism through a series of
increasingly complex examples.

4.1 Existing Parameters
The simplest case for connecting to the content of an inlined block is when the
content is already accessible through existing parameters. As an example, consider
the diagram Cascade in Figure 3. For this diagram, the user may, for example,
want to use the value from PID block that orignates from the slave block to a
second actuator. To do this, the user first adds the block analogOut2 representing
the actuator and then creates a connection from the output port on the PID block
to the newly created block. This can be seen in Figure 12. When the user adds
the connection, the editor detects that the output from the PID block in the dia-
gram ControllerPart (Figure 4) is connected to the output parameter CV, and
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diagramtype Cascade {
...

analogOut2: AnalogOut;

...

connect(slave.CV, analogOut2.in);
}

Figure 12: First, the block analogOut2 is added to the diagram Cascade (Fig-
ure 3) and then the user connects the second PID to the newly created block. The
editor infers that the output of the PID block is the same as the output port CV on
the slave block.

then the editor simply adds a connection from the CV port on the slave block to
the newly created block. Thus, the editor adds a connection from slave.CV to
analogOut2.in.

4.2 Implicitly Creating Anonymous Subtypes

A slightly more complex example is when the user would like to create a connec-
tion from a port on a content block that is not connected to any output parameter
of the inlined block. In this case, the editor first creates an anonymous subtype for
the inlined block, unless it already has one, and then adds parameters and connec-
tions in that subtype, in order to then be able to add the connection in the edited
diagram.

For example, in diagram FilterCascade in Figure 6, the user may want to
connect directly from the filter block to a second actuator analogOut2. This
is shown in Figure 13. Since the output from the filter block is not directly
accessible, an anonymous subtype of FilterControllerPart is automatically
created by the editor. The anonymous subtype makes the value from the filter
block accessible by adding an output parameter. Thus, the anonymous subtype
contains one output parameter filterout and one connection from the filter
block to the new output parameter. Then, a connection is created in Filter-
Cascade: from the newly created parameter filterout on the slave block to
the analogOut2 block.

In Figure 13, the type of the slave block was a named type, and the editor
therefore created an anonymous subtype. However, in diagram FilterCascade-
Anonymous (Figure 7), both the blocks master and slave already have an anony-
mous type. If this is the case, the editor only adds parameters and connections
when the user connects to the content of such a block. This is shown in Figure 14,
where one parameter and one connection are added to the existing anonymous type
(highlighted).
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diagramtype FilterCascade extends Cascade {
redeclare master: FilterControllerPart;
redeclare slave:
FilterControllerPart (=> filterout: Int) {
connect(filter.out, filterout);

};

analogOut2: AnalogOut;

connect(slave.filterout, analogOut2.in);
}

Figure 13: The user has added the blue parts of the diagram: the block
analogOut2 and the connection to it from one of the filters. The additions
cause the editor to change the underlying code. For the new connection the editor
adds (highlighted): 1) An anonymous subtype to the inlined slave block, with a
new parameter filterout, and a connection to it from the filter. 2) A connec-
tion from filterout to analogOut2.

diagramtype FilterCascadeAnonymous extends Cascade {
redeclare master: ControllerPart {
filter: Filter;

intercept PID.PV with filter.in, filter.out;
};

redeclare slave: ControllerPart (=> filterout: Int) {
filter: Filter;

intercept PID.PV with filter.in, filter.out;
connect(filter.out, filterout);

};

analogOut2: AnalogOut;

connect(slave.filterout , analogOut2.in);
}

Figure 14: Connecting from filter to analogOut2, as in Figure 13. In this ex-
ample, however, the slave block already has an anonymous type, and in this case,
the editor only adds one parameter and one connection to the existing anonymous
type.
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diagramtype InliningFilterCascade {
inline filterCascade: FilterCascade;

analogOut2: AnalogOut;

}

Figure 15: A diagram consisting of a block of FilterCascade that is inlined and
an actuator block.

diagramtype InliningFilterCascade {
inline filterCascade: FilterCascade (=> slaveout: Int) {
redeclare slave: super (=> filterout: Int) {
connect(filter.out, filterout);

};

connect(slave.filterout, slaveout);
};

analogOut2: AnalogOut;

connect(filterCascade.slaveout, analogOut2.in);
}

Figure 16: Connecting the second filter block to the analogOut2 block makes
the editor to implicitly create two anonymous subtypes (highlighted) that connect
the value from the filter block to the analogOut2 block.

4.3 Transitive Inlining

As described in the previous section, inlining can be transitive. For example, in
Figure 15, the diagram InliningFilterCascade consists of two blocks: filter-
Cascade of type FilterCascade (Figure 6) and analogOut2. The block filter-
Cascade is inlined, resulting in that the blocks analogIn, filter and PID are
inlined in two steps. If the user wants to connect from the output on one of the
filter blocks, then the editor needs to take into account the transitivity of inlin-
ing.

Figure 16 shows the result of when the second filter block is connected
to the analogOut2 block. We can see that two anonymous subtypes are cre-
ated, one for the filterCascade block and one for the slave block residing
inside the filterCascade block. The value from the filter block is connected
through parameters and connections in two steps, flowing through the two anony-
mous types, ending as an output parameter of the filterCascade block.
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diagramtype A {
block: Block;

}

diagramtype B extends A {
redeclare block: Block { ... };

}

diagramtype C extends B {
redeclare block: super { ... };

}

Figure 17: Redeclaring the block block in two steps. The keyword super is used
in C to redeclare the block to an anonymous subtype of the anonymous subtype
declared in B.

4.4 Super in Redeclare

We can see in Figure 16 that the inner block slave is redeclared to super {
... }. In Bloqqi, super is a keyword that can be used inside the type part of a
redeclare statement. The meaning of super is that an anonymous subtype will
be created that is a subtype of the type for the block that is redeclared. This is
needed when redeclaring an anonymous subtype to another anonymous subtype,
since redeclare requires that a block is redeclared to a subtype of the type for the
existing block.

The need for supporting super in redeclare is illustrated in Figure 17. Here,
the block block is redeclared in two steps, first in diagram B and then in dia-
gram C. The diagram B creates an anonymous subtype of Block, and to create an
anonymous subtype of the anonymous subtype in B, the super keyword is used in
diagram C.

4.5 Editing the anonymous type

Sometimes, it may be desirable to add local blocks and connections to an inlined
block, or to redeclare an existing component to a more specialized type. This can
be done by bringing up the anonymous subtype in an editor window, and add or
edit the local parts there.

5 Implementation

We have implemented a compiler and a visual editor for the Bloqqi language.
The semantics has been defined using the metacompilation tool JastAdd [EH07b]
which is based on Reference Attribute Grammars [Hed00]. JastAdd allows the
semantics to be defined once and to be used both in the compiler and the visual
editor. It makes it easy to reuse the semantic specifications between several tools,
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avoiding double maintenance. The interaction parts of the editor have been imple-
mented using the Eclipse Graphical Framework (GEF). All the diagrams shown in
this paper are screenshots from our tool.

The serialization format for Bloqqi is the textual syntax. The compiler reads
the textual syntax and outputs C code or possible compile-time errors. The visual
editor also reads the textual syntax but instead visualizes the program and lets the
user interact with it and change it. When the user saves the program in the editor,
the program is serialized using a pretty printer.

Both the compiler and the visual editor parses the textual syntax into an ab-
stract syntax tree (AST). This tree is decorated with attributes using Reference
attribute grammars (RAGs) [Hed00], an extension to Attribute grammars (AGs)
[Knu68] that adds reference attributes. This extension makes it possible to super-
impose graphs on the AST, making RAGs suitable for representing graph-based
languages like Bloqqi. A typical example of reference attributes is name bind-
ing, where the tree node representing the use of a name has a reference attribute
pointing to the tree node representing the declaration of the name. Attributes are
attached to tree nodes and are computed node properties defined by equations.
These equations are declarative in the sense that they are free from externally visi-
ble side effects. In effect, the equations form a complex function from the AST to
the attribute values. The attributes are demand-driven, meaning that they are only
computed when they are requested and cached for subsequent accesses. When a
diagram is modified in the editor, these caches are then cleared.

Most of the complex computations in the compiler and editor are done using
attributes. The compiler then uses attributes to show compile-time errors or to gen-
erate C code. The editor uses attributes for rendering the diagrams, for computing
smart interaction support, and for showing compile-time errors. GEF is based on
the Model-view-controller (MVC) pattern and we use the decorated AST as the
model.

5.1 Inlined Blocks as Non-Terminal Attributes

The rendered diagram has a quite different structure from the corresponding un-
derlying code: it shows inherited blocks and connections, and it shows the content
of the inlined blocks. To compute a suitable representation of it, we use Non-
terminal attributes (NTAs) [Vog+89]. An NTA is an attribute whose value is a
subtree defined by an equation, rather than constructed by the parser like ordinary
subtrees. For each node in the AST that represents a diagram, we define two NTAs:
blocks() and connections() that represent its visible parts.

The blocks() attribute is the computed set of blocks for the diagram, taking
into account inlining and inheritance. For example, consider the diagram Simple
in Figure 18, which consists of two blocks: setPoint and master. The latter
block is inlined. A simplified AST for this diagram is shown in Figure 19. We can
see that the node representing the diagram Simple has two children, one ordinary
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diagramtype Simple {
setPoint: OperatorValue;

inline master: ControllerPart;

connect(setPoint.out, master.SP);
}

Figure 18: A simple diagram consisting of two blocks and one connection.

Program

Diagram
Simple

List

Block
setPoint

Block
master

List

Block
setPoint

Block
master$analogIn

Block
master$PID

blocks()

...

Figure 19: Simplified AST for the diagram Simple in Figure 18. The diagram
node has an NTA blocks() that is the computed set of blocks considering inlining
and inheritance.

child representing the list of local block declarations and the other child is the
NTA blocks(). The NTA contains all three blocks that are seen in Figure 18.
The names for the inlined blocks are prefixed with master$ to get unique names.
The attribute blocks() is used by the editor when a diagram is rendered.

The AST in Figure 19 is highly simplified, and the real implementation has
many more children and attributes. For example, each block node has a child
representing the type of the block and two NTAs representing the input and output
ports. The value of these two NTAs are computed based on the parameters of the
type for the block. In turn, a port node has an attribute that is the set of incoming
or outgoing connections for that port, and is used by the editor for rendering the
connections between the ports.

In analogy to the blocks() NTA of the diagram node, the connections()
attribute of the diagram node contains a computed set of connections considering
inlining and inheritance. For this example, this attribute contains two connections:
one from setPoint.out to master$PID.SP and one from master$analogIn.
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out to master$PID.PV. These connection nodes have reference attributes that
point to the corresponding blocks in the NTA blocks() that they refer to, for
example, the master$PID block.

In Section 4, we described how the user can connect to the content of inlined
blocks. This is an example of a smart editing operation where the editor uses
attributes to compute how to change the AST. This add-connection operation is
broken down in several steps. The first step is adding anonymous types, the sec-
ond step is adding parameters and connections, and the third step is adding the
outermost connection. Steps one and two are not always needed, and depend on
the program.

In each of these steps, attributes are used for computing how to change the
AST. After each step, the AST is modified, and all cached attributes are then
cleared. In principle, it would be possible to compute the change in one step,
but this would lead to a more complex specification, since the steps are dependent
on each other.

The clearing of cached attributes after each modification to the AST could lead
to problems with scalability when editing large programs. However, the caching
demand evaluation counters this problem, and we have run the editor with dia-
grams of 500 blocks and connections, and interaction is still perceived as immedi-
ate.

5.2 Layout

The user can freely move around blocks, and we store the block coordinates as
annotations in the textual representation. Connections are rendered using a simple
manhattan algorithm, breaking on the middle of the connection if needed, so data
about connection layout does not need to be stored. Allowing more advanced
connection layout would, however, yield a better layout.

For a newly created subtype or inlined block, we use automatic layout, and
we also provide automatic layout as an explicit command. The tool we use for
automatic layout is called KLay [Sch+14], which is specialized for block diagrams
with ports on the blocks. Currently, we only make use of their automatic layout of
the blocks. Allowing more advanced layout of the connections, as well as using
KLay for automatic computation of such layout, is a matter of future investigation.

6 Related Work

A related concept to visual instance inlining presented in this paper is the Fisheye
view [Fur86], which is a technique for showing local and global information at the
same time. The user has a focus point and local information to that point is shown
in greater detail compared to the global context information that is shown in less
detail. The Fisheye view has been used for hierarchical models where composite
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nodes can be expanded with a bounding box around the content [Fre+14; Rei+08;
Rei+07], allowing the content only to be moved within the box. In contrast, visual
instance inlining allows the content blocks to be moved freely without any restric-
tions. Also, in many of the examples that use the Fisheye view use models that
are hierarchical but without any types. In constrast, we do inlining on instances of
diagram types. Our approach also includes ways for allowing the user to access
values from the content blocks, where the editor automatically creates anonymous
subtypes, parameters and connections.

Several block diagram languages support user-defined types, and one way to
generate code is to flatten the programs [Lub+09], that is, replacing all composite
blocks (instances of user-defined types) with the content of the blocks transitively.
This results in a program with only atomic blocks. Visual inlining is similar to
flattening in that ports and parameters are removed. But in visual inlining, they
are removed only from view, and they remain in the code. Other ways visual
inlining differs from flattening is that it is specified on a subset of the blocks, and
not all blocks, and that the goal is to improve diagram comprehension rather than
generating code. ([Lub+09] suggests an alternative code generation approach than
flattening to support separate compilation.)

Bloqqi is inspired in several ways by the language Modelica [Mod10]. How-
ever, there are also many fundamental differences between the languages. In par-
ticular, Modelica is an equation-based simulation language with undirected con-
nections between blocks, whereas Bloqqi is a data-flow based control language,
with directed connections between blocks.

The redeclare construct in Bloqqi has been inspired by a similar construct
in Modelica, but which is written in a slightly different way, as exemplified in Fig-
ure 20. When declaring a Modelica block, like c in the example, the local blocks
can be redeclared to be of more specific subtypes. This is called modifications in
Modelica terminology. This can be seen as introducing an anonymous subtype to
the original type of the local block, but with a different syntax.

A modification can be done in several steps at once, like in the following Mod-
elica snippet.

a: A(b(c(redeclare d: DPrime)))

Here, the inner block d is redeclared. This is possible to express in Bloqqi as
well, but with the introduction of several anonymous subtypes. Another difference
is that Bloqqi allows new blocks and connections to be declared in the anonymous
subtype, which is not allowed in Modelica.

To generate simulation code for a Modelica model, the model is typically first
flattened, removing all object-oriented structures and resulting in a large set of
differential equations. The Modelica compiler JModelica.org is also implemented
using JastAdd, and uses NTAs to implement the flattening [Åke+10a]. Our ap-
proach of using NTAs for implementing the visual inlining has some similarities
to this approach.
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diagramtype ControlLoop {
c: Cascade(redeclare master: FilterControllerPart ,

redeclare slave: FilterControllerPart);
...

}

diagramtype FilterCascade
extends Cascade(redeclare master: FilterControllerPart ,

redeclare slave: FilterControllerPart){
...

}

Figure 20: Redeclare in Modelica. Diagram ControlLoop redeclares the inner
content of the block c of type Cascade. Diagram FilterCascade extends a
subtype of Cascade where the blocks master and slave are redeclared.

Another inspiration from Modelica is that Bloqqi has both a textual and a visual
syntax. Like in Modelica, the textual syntax is complete, whereas the visual syntax
is only partial, supporting the construction of diagrams from predefined library
types. For both languages, the textual syntax is typically used by specialists to
create reusable libraries, whereas the visual syntax is used by domain engineers,
to create concrete models. A complete textual syntax has many advantages. It
allows the compiler and the semantics to be developed without the support for
complex user interaction. It also makes it easy to add new test cases, just add new
text files. Furthermore, it allows general purpose development tools, like version
control tools, to be used. Another example of an implementation of a language
with both textual and visual syntax is van Rest’s work on behavior trees [Res+13].

7 Conclusions

In this paper we have introduced visual instance inlining with smart editing support
for typed block diagrams. This technique allows reusable block libraries to be
supported, while allowing domain engineers to view and edit diagrams in a natural
way, in terms of the domain blocks they would draw on paper, i.e., without having
to view types that only have to do with reusability.

With visual instance inlining, a block type instance is replaced visually by its
content, and the content parts can be freely moved around, without being restricted
by a bounding box, and connections can be added to the content parts. In the
underlying program, the inlined block is represented as an anonymous subtype
of the original block type. Added connections to content parts are represented
by ports and connections in the anonymous subtype. Since the type structure is
retained in the program, changes to the library block types will affect all block
type instances, even if they are inlined and connections to the inlined parts have
been added.
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As a feasibility study, we have implemented a compiler and a visual editor
supporting visual instance inlining and implemented smart editing support in the
editor.

There are several ways to continue this work. One is to be able to define
diagram types as inlined, and not only individual blocks. Each block of such a
type would then be visually inlined.

Another useful thing would be to support additional context-dependent names
to be set on inlined block content. Currently, the inlined parts are labelled with
the local name declared in the inlined type, e.g., PID in our examples. A control
engineer would often like to see a name corresponding to a global physical entity,
e.g., PID354, corresponding to that particular PID component in a factory plant.
Such names could also be represented in the anonymous subtypes of the inlined
instances.

It would also be useful to introduce access restriction constructs, to be able to
limit which content blocks the user can access values from.
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Bloqqi: Modular Feature-Based Block
Diagram Programming

Abstract

Automation programming is typically done using blocks and dataflow connec-
tions, in diagram languages that support user-defined block types. Often, these
types are intended to be instantiated and connected to other blocks in common
patterns, corresponding to anticipated variability. We present the new language
mechanisms of wirings and recommendations that allow these intentions to be en-
coded as features in libraries. A wiring describes how a given block is typically
connected to other blocks, and a recommendation describes where such a wiring
is typically applied as a feature. This allows feature-based wizards to be generated
for user-defined libraries, making it easy to construct applications that make use
of the encoded patterns.

1 Introduction

Block diagrams, with blocks and connections, are common in modeling, simu-
lation, and automation programming. Example languages include both propri-
etary languages like LabView from National Instruments, Simulink from Math-
Works, and ControlBuilder from ABB, as well as open community-developed lan-
guages like Modelica [Mod12], and SysML [Sys15]. Typically, the connections

Niklas Fors and Görel Hedin. ”Bloqqi: Modular Feature-Based Block Diagram Programming”. In:
2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2016, Amsterdam, Netherlands, 30 October - 4 November, 2016. In press.
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are directed and describe dataflow between the blocks.1 These languages typically
support user-defined blocks to encourage hierarchical decomposition and the con-
struction of reusable libraries, for example for controllers, motors, valves, tanks,
pumps, etc. The content of a block can be defined by an inner block diagram,
or using some other notation, like structured text2. These user-defined blocks are
usually intended to be combined in specific predefined ways. For example, in Pro-
portional Integral Derivative (PID) control, there are many different ways in which
a basic controller block can be combined with other blocks to improve control.
Examples include support for feed-forward, gain scheduling, cascade control with
master-slave controllers, override control, etc. [ÅH06]. While any such combina-
tion can be coded up as wired blocks, the problem is that libraries of components
do not encode the intended variability, so the domain engineer will need to manu-
ally select and wire all individual components, which is both time-consuming and
error-prone. In process automation, this is an important problem, as programming
a control system for an industrial plant is a very large engineering effort.

One possible work-around is to provide a number of preconfigured block types
in the library, one for each combination of features. However, this leads code du-
plication and to an exponential number of block types in the library, making it
impractical. Another more practical but still insufficient work-around is to provide
parameterized block types, that contain support for all features, but where the ac-
tual features used are selected by extra input parameters. However, this leads to
diagrams that are very complex to understand and use, and where only a subset of
the functionality is actually used at runtime. Furthermore, all variability needs to
be anticipated in advance with this solution.

In this paper, we provide a solution to this problem by allowing the variability
to be explicitly encoded, making it easy for the domain engineer to select the
desired features, and resulting in simple diagrams that only contain the desired
functionality. Furthermore, the encoding is modular, so all features do not have
to be anticipated when constructing a library: additional features can be added in
separate library modules, and the resulting diagrams can be edited to add special
features that are not in any library at all.

In our solution, we propose the novel language constructs of wirings that de-
scribe how blocks are typically connected, and recommendations that describe
where such wirings are typically applied. A given block could be inserted at many
different places in a particular block diagram, but often, it is advantageous to insert
it at a specific place, serving the role of a feature that the diagram can include or
not. An example could be a controller diagram that includes a feed-forward block
or not. If the feed-forward block is included, it is intended to be inserted in a spe-
cific way. A wiring defines how a particular block, like the feed-forward block,

1Modelica is an exception in this respect, as it uses undirected connections that correspond to equa-
tions.

2Structured text is one of the languages in the IEC 61131 standard for programmable logic con-
trollers.
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should be connected in a diagram. A recommendation for a diagram defines where
in the diagram a particular wiring is intended to be inserted.

The recommendations can be used to create smart editing support in the form
of a feature-based wizard. The wizard can be automatically derived, and the user
can use it to select or change the desired combination of features for a particular
diagram. These mechanisms do not hinder the user in making other modifications,
or in wiring together blocks in unanticipated ways. However, being able to capture
anticipated variability this way can simplify and speed up program construction
substantially, by allowing common patterns to be applied very quickly.

The new mechanisms are general programming constructs, applicable to data-
flow block diagram programming, supporting the construction of modular exten-
sible libraries for different domains. The modularity is very important as it allows
libraries, and therefore the derived wizards, to be extended with new patterns of
interest for a given application domain or even for an individual plant.

The language mechanisms proposed in this paper are based on diagram inher-
itance: a subtype can extend a supertype diagram with additional connections and
blocks, and can also specialize the behavior in the supertype, in analogy to method
overriding in object-oriented languages. In particular, specialization is supported
by connection interception [FH14] and block redeclaration [Mod12]. Connection
interception allows the subtype to intercept connections defined in the supertype,
that is, to reroute the connection to go via another block or subnet. Block redecla-
ration allows the subtype to replace the type of a block defined in the supertype by
a more specialized type.

As a proof of concept, we have implemented the proposed language mech-
anisms, recommendations and wirings, in an experimental data-flow based lan-
guage, Bloqqi, used for programming automation control systems. Bloqqi has
both textual and visual syntax. We have implemented a compiler and a visual ed-
itor for the language that is released as open source.3 The mechanisms have been
developed in collaboration with ABB Control Technologies, with the goal of im-
proving reusability mechanisms in the control domain for the process industry. We
have been collaborating with ABB for almost four years with monthly meetings.
The language has been designed iteratively using their feedback as input and has
been inspired by their examples.

Like typical control systems, programs in Bloqqi are executed periodically, for
example, 10 or 100 times per second. Sensor values are read in the beginning of the
period, and are used to compute output values that are sent to actuators to control
the process. This is illustrated in Figure 1. The control program may also have
states that are stored between the periods. For instance, integrating controllers
may use old sensor values to improve the control signal.

Before continuing with a motivating example (Section 2) and a discussion of
the Bloqqi language (Section 3), we will first summarize the main contributions of
this paper. They are:

3https://bitbucket.org/bloqqi
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Figure 1: Periodic execution. All steps are performed in each period.

• Wirings. A new language mechanism that describes how blocks of a user-
defined type can be inserted and connected (Section 4).

• Recommendations. A new language mechanism that modularly describes
where a wiring is recommended to be applied, serving the role of an optional
feature (Section 5).

• Recommendation composition. An explanation of how recommendations
can be used together with subtyping to automatically compute hierarchical
feature wizards, and how feature interactions can be automatically discov-
ered and modularly resolved (Section 6).

• Source interception. A generalization that allows interceptions to be ap-
plied not only at the target of a connection, but also at the source (Sec-
tion 6.3).

• Editing support. Editing support for feature-based programming, to cre-
ate recommendations by example, and to support staged configuration (Sec-
tion 7).

• Evaluation. We have implemented the new mechanisms, and show that our
approach requires much less effort in constructing diagram variants, com-
pared to manual editing (Section 8).

We end with a discussion of related work (Section 9) and a concluding discus-
sion (Section 10).

2 Motivating Example
A basic PID controller periodically reads a sensor value and computes an actuator
value (using the history of sensor values) in order to control a system towards a set
point, i.e., a desired value. For real systems, there are many different variants on
this basic structure.

As a motivating example, we will consider controlling the temperature of a
fluid in a tank, by using steam that is let in through a valve. When the valve is
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SteamHeating

Figure 2: Diagram for temperature control using steam. Solid parts are created
manually. Dashed parts via the wizard.

opened, the effect of heating will depend on the current steam pressure, which in
turn may vary substantially since the steam may be used elsewhere in the factory,
for example, to heat other tanks.

This is a classic example of when cascade control is needed, i.e., where two
controllers are connected in a master-slave configuration [ÅH06]. The master con-
troller reads the current temperature to compute how much steam is needed. The
slave controller uses this value as its set point, and reads the current steam pressure
to compute how much to open the valve in order to obtain that amount of steam.

A Bloqqi diagram for temperature control using steam is shown in Figure 2.
There are two sensors, temperature and pressure, one actuator, valveOpening,
and two values that can be set by the human operator: operatorSP for setting the
desired temperature, and operatorGF to set a suitable gain factor for the master
controller, controlling how fast to heat. All these blocks are implemented using
primitives to communicate with the sensors, actuators, and operator interface.

The rightmost controller (the slave) takes the output of the leftmost cont-
roller (the master) as its set point. Further embellishments include filters on
both controller inputs, an extra input port on the master controller to receive the
gain factor, and an override filter before sending the signal to the valveOpening
actuator, to protect the valve from opening too much which might damage the
equipment.

Without our new language constructs, the user would construct the control
program from scratch in the visual editor, by instantiating existing block types for
different kinds of filters and controllers, creating specialized types as necessary,
and explicitly wiring the components together. However, this requires a lot of de-
tailed knowledge of many different block types, and knowledge of how they are
intended to be combined. Instead, we provide the possibility of embedding this
knowledge into library types from which a wizard can be automatically generated,
allowing the user to simply select the desired parts. These parts are then automat-
ically inserted in the correct way into the program, wired together, and combined
in the right order.

In this example, the wizard is used to create the control logic (dashed). This
is done by creating an instance of Loop (a library block type), and selecting ap-
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Figure 3: Wizard for creating a control loop.

propriate features in the wizard. The sensors, actuators, and the operator-set value
blocks (solid), are created manually, as in a usual block diagram editor.

Figure 3 shows the wizard for Loop. The possible selections are shown in a
structure similar to a feature diagram with mandatory, optional, and alternative
parts [Kan+90]. Black circles correspond to mandatory parts, white to optional
parts, and vertical bars are used for showing alternatives. In this case, the master
part is mandatory, whereas the slave part is optional. Both the master and slave
parts have a controller and an optional filter. The controllers have optional
feedForward and gain parts. Furthermore, there is an optional override part
for which there are two alternatives: FixedOverride and TunableOverride. A
corresponding feature model for the Loop type is shown in Figure 4. By selecting
the parts as shown in Figure 3, the dashed parts of the diagram in Figure 2 are
created, complete with all the internal wiring (dashed arrows). The user completes
the diagram by connecting the sensors, actuators and operator values to the con-
trol logic (blue solid arrows). The example illustrates how a user can construct a
complex diagram very quickly and easily, just by selecting features in the wizard,
and without having to remember what block types to use and how to wire them
together.

The diagram in Figure 2 is an interactive view of an underlying control pro-
gram, and all details in this program are not immediately visible, but can be ac-
cessed by interactive means. For example, the names of ports can be viewed by
hovering over the ports, and the type and content of a block can be viewed by
double-clicking on the block.
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Figure 4: Corresponding feature model for the type Loop in Figure 3.

The dashed parts of the diagram is actually an instance of an anonymous sub-
type of the block type Loop, but which is automatically inlined to show interesting
parts of the inner structure. For the Loop type, the library developer has chosen
to expose the controllers and the filters. However, the selected gain component is
shown only as an extra port on the master controller, and the corresponding block
is visible only if the user double-clicks on the master block to show its interior
components. This ability to selectively do visual inlining is important because it
allows the final diagrams to look like manually drawn diagrams, where the impor-
tant components are visible, rather than reflecting the reusability-based type struc-
ture which is usually not of interest to the end users (domain engineers) [FH16b].

The library is constructed with novel language constructs that allow new fea-
tures to be added modularly, and which will then automatically turn up in the
wizards. The technique is general, and modeling a control loop is just an example.
Another example could be to model an engine with one or more motors, different
alternatives for start-up and shut-down logic, etc.

3 The Bloqqi Language
To be able to experiment with our new language constructs for variability, we
have developed the language Bloqqi. Bloqqi has blocks and directed connections
inspired by ABB’s Control Builder tool which in turn builds on Function Block
Diagrams in the IEC 61131 standard. Additionally, Bloqqi has block type inher-
itance and redeclaration inspired by mechanisms in Modelica [Mod12]. Bloqqi
furthermore supports connection interception, where a connection in a supertype
can be intercepted and rerouted through a block subnet [FH14].4 Similar to Mod-
elica, Bloqqi has both a textual syntax that covers the complete language and a
visual syntax that covers block configuration.

4[FH14] describes an earlier version of Bloqqi, then called PicoDiagram.
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Loop

diagramtype Loop(SP: Int, PV: Int => CV: Int) {
master: ControllerPart;

connect(SP, master.SP);
connect(PV, master.PV);
connect(master, CV);

}

Figure 5: Visual and textual representation of a basic control loop with input pa-
rameters SP and PV (left of =>), output parameter CV (right of =>), and containing
a master controller part. Connections are used for sending the SP and PV values
to the master, and its output to CV.

In this section, we will introduce the basic language constructs in Bloqqi, and
discuss how inheritance, redeclaration, and connection interception can be used to
encode a variant as a subtype. The subsequent sections will then introduce the new
language mechanisms of wirings and recommendations that allow variants to be
optionally applied and combined.

Bloqqi computations can be programmed using diagrams, describing the re-
lation between input and output values. A diagram consists of input parameters,
blocks, output parameters, and connections between these entities. Connections
are directed, forming a partial directed graph that describes data-flow. A diagram
is also a block type, and can be instantiated in another diagram as a block, leading
to hierarchical structures. The input and output parameters of the block type will
then be shown as input and output ports on the block.

Figure 5 shows an example diagram in both visual and textual syntax. The
diagram describes the basic structure of the type Loop that was specialized in sec-
tion 2. The diagram computes the control value (CV) by sending the set point (SP)
and the process value (PV) to the master part (master) that contains a controller.
The block master has the type ControllerPart, which is also defined by a dia-
gram, similar to Loop. The input and output parameters of ControllerPart are
shown as input and output ports on the block master. Thus, the interface of the
block is dependent on its type.

3.1 Inheritance

Bloqqi supports inheritance, where a diagram type S can extend another diagram
type T . We say that S is a subtype of T and that T is a supertype of S. The
subtype inherits all parameters, blocks and connections that are declared locally in
its supertypes (transitively), which means that these elements are implicitly copied
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SlaveLoop extends Loop

diagramtype SlaveLoop(slavePV: Int) extends Loop {
slave: ControllerPart;

intercept CV with slave.SP, slave.CV;
connect(slavePV, slave.PV);

}

Figure 6: The type Loop is extended with a slave controller part. Inherited
elements are dashed/black/grey and local elements are solid/blue.

from the supertypes to the subtypes. The subtype can also declare new parameters,
blocks and connections, and specialize existing elements. Since a subtype can
declare new parameters, the interface of the subtype can be larger (contain more
parameters) compared to its supertype.

Ordinary object-oriented programming languages support dynamic allocation
and references to objects with static and dynamic types. In contrast, Bloqqi (like
Modelica) supports only static allocation of blocks, and there are no reference
variables. Therefore, the types of all blocks are known statically, and the compiler
can report all type and flow errors.

3.2 Interception: Specializing Connections

A diagram subtype can specialize the behaviour of its supertype using connection
interception [FH14]. A connection interception allows a connection defined in a
supertype to be intercepted, that is, to reroute it to go via another block or network
of blocks. In effect, the intercepted connection is replaced by two new connections.
This way, a connection can be specialized.

The connection that is intercepted can be identified by either the source or the
target of the connection, which we call source interception and target intercep-
tion, respectively. This is a generalization of the previous work, where only target
interception is presented. Source interception is described in Section 6.3.

For example, Figure 6 shows a new subtype of Loop from Figure 5, which adds
a slave controller part. The connection to the output parameter CV (control value)
defined in the supertype is intercepted, that is, the connection will go through the
new slave block. The connection is identified by the target of the connection,
thus the interception is a target interception. The slave contains a controller that
uses the output from the master controller as its set point, and together with an
additional sensor value, decides what control value to actually output.
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3.3 Redeclare: Specializing Blocks

Another way for the subtype to specialize the behaviour of its supertype is by
redeclaring blocks, similar to how this is done in Modelica [Mod12]. A subtype
can redeclare an inherited block of type T , to be of a type S, where S is a subtype
of T .

For example, assume that there is a type FilterControllerPart that is a
subtype of ControllerPart, and which filters the process value before sending
it to the controller. We can then create a new subtype of Loop from Figure 5
that redeclares the block master to the specialized type, as the following code
illustrates:

diagramtype FilterLoop() extends Loop {
redeclare master: FilterControllerPart;

}

As the examples in this section have shown, inheritance and composition can
be used for specifying different variants of diagram types by introducing subtypes.
For example, SlaveLoop and FilterLoop can be seen as variants on Loop. How-
ever, if all possible variants would be predefined in library classes, this would lead
to combinatorial explosion. If instead only basic types, like Loop, were available
in the library, the domain engineer would need to explicitly add a number of de-
tailed elements, like blocks, parameters, connections, and intercepts, in order to
create a specific variant. To support a better way of defining and using variants,
we introduce the new constructs of wirings and recommendations, as described in
the following sections.

4 Wirings

A wiring describes how blocks of a certain type are intended to be inserted into
a diagram. For example, in Figure 6, we can see that an interception and a con-
nection is used for connecting the new slave block. With wirings, we can move
these two flow statements to a wiring declaration for the ControllerPart type.
We can then apply the wiring to insert the slave block in a simpler way, without
having to explicitly wire it into the diagram.

4.1 Wiring Declaration

A wiring declaration for a type T has a number of formal parameters and a num-
ber of flow statements. The formal parameters refer to connection points in the
diagram that applies the wiring, and they each have a type and a data-flow direc-
tion (input or output). The flow statements describe connections and interceptions
involving these formal parameters and ports on T . In the current Bloqqi imple-
mentation there can be at most one wiring declaration for each block type.
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For example, the type ControllerPart used in Figure 6 has the following
interface:

diagramtype ControllerPart(SP: Int, PV: Int => CV: Int){
...

}

and the wiring for ControllerPart can then be defined as follows:

wiring ControllerPart[=>c: Int, p: Int] {
intercept c with ControllerPart.SP, ControllerPart.CV;
connect(p, ControllerPart.PV);

}

This means that when the wiring is applied, a block of type ControllerPart
is added at a specific location in a diagram (indicated by the parameters c and
p), at which the flow statements (the interception and the connection) are added.
The parameter c has output direction (indicated by =>), meaning that it should
be bound to an actual parameter that is at the target end of a connection, and can
therefore be intercepted. The parameter p has input direction (which is the default),
meaning that it can be used as the source of connections.

4.2 Wiring Application

A wiring application can be used to add a block, including all its wiring, at a given
location. The location is indicated by passing actual parameters to the wiring.
For example, instead of defining SlaveLoop as was done in Figure 6, we can
equivalently define it in the following simpler way:

diagramtype SlaveLoop(slavePV: Int) extends Loop {
slave: ControllerPart[CV, slavePV];

}

In applying a wiring, like above, the actual parameters are bound to the formal
parameters. Thus, the following wiring application

slave: ControllerPart[CV, slavePV];

is equivalent to

slave: ControllerPart;

intercept CV with slave.SP, slave.CV;
connect(slavePV, slave.PV);

Note that it is possible to apply a wiring in several different places, even within
the same diagram.

Note also that both wirings and the application of them is optional. Even if
a wiring is defined, it is not necessary to use it to add a block. For example, the
following code will add a block of type ControllerPart without applying the
wiring:
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slave: ControllerPart;

The user will then have to explicitly add the wiring in order to connect the
block to the surrounding network.

4.3 Declaring Parameters in Wiring Parameters

Sometimes, we need to add parameters to the enclosing type of the wiring appli-
cation. An example is the type Loop that we have seen before. It is possible to
declare a parameter at the same time as applying a wiring, as the following code
illustrates, which is again equivalent to the definition in Figure 6.

diagramtype SlaveLoop() extends Loop {
slave: ControllerPart[CV, slavePV: Int];

}

Here, the input parameter slavePV of SlaveLoop is declared in the wiring
application instead of in the diagram type header. We can see that slavePV is a
parameter declaration because it has a type. We can see that it is an input param-
eter rather than an output parameter, because it lacks the => modifier. An output
parameter would be declared as =>Name: Type.

Wirings are intended to be used in libraries, together with recommendations
which will be described in the next section.

5 Recommendations

A recommendation describes how a diagram type can be specialized with optional
functionality. These recommendations will then be used to derive wizards, like
the one in Figure 3. The wizards are used for creating specialized types for a
particular situation, selecting the desired features to be included. For example, a
recommendation can suggest that a slave controller part can be added to the type
Loop in Figure 5. This can be described as follows:

recommendation Loop {
slave: ControllerPart[CV, slavePV: Int];

}

A recommendation consists of the name of a diagram type (Loop in this case)
and recommended features, each expressed as a wiring application. We refer to
the block, slave in the above example, as a feature, and we say that slave is
a recommended feature for type Loop. From this recommendation, together with
other recommendations for this type, we can automatically derive a wizard for
creating specializations of the type Loop. Figure 7 shows the derived wizard,
where the optional slave feature is shown together with an optional override
feature (added with another recommendation), and the mandatory feature master.
The latter feature is mandatory since it is declared in Loop, whereas the others
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Figure 7: Automatically derived wizard for the type Loop, based on recommenda-
tions. Using this wizard, a new block can be created with the desired functionality.

are just recommended options. The wizard in Figure 7 is the same as the one in
Figure 3, but where the suboptions are not yet opened.

Instead of creating one library type for each possible combination: one plain
loop, one with the slave feature only, one with the override feature only, and
one with both features, it is sufficient to have a single type Loop in the library. To
create a Loop block, say loop, the domain engineer can select in the wizard which
of the features to include. The type of loop will then be a generated anonymous
subtype of Loop, containing the selected features:

loop: Loop { slave: ControllerPart[CV, slavePV: Int];};

This is equivalent to first defining an explicit subtype, e.g., SlaveLoop, as
before, and then instantiating it:

diagramtype SlaveLoop() extends Loop {
slave: ControllerPart[CV, slavePV: Int];

}

loop: SlaveLoop;

By letting the domain engineer do this choice, the relevant types can be con-
structed on a demand basis rather than having to predefine all possible combina-
tions, which would have led to combinatorial explosion.

Note that in an application, there might be a need for several loops that have
the same set of features. Instead of selecting the features for each of those loop
instances, it is possible to give the generated loop subtype a name, and then instan-
tiate it multiple times.

5.1 Modular Recommendations
There can be several recommendations for the same diagram type, defined inde-
pendently in different library modules. This allows domain library developers to
add recommendations to general library types, without having to modify the gen-
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eral libraries. When a wizard is requested for specializing a type, all recommenda-
tions will be collected for the type and the wizard is automatically derived based
on this information. For example, the recommendation for override, as shown in
Figure 7, can be defined separately from the slave recommendation as follows:

recommendation Loop {
override: Override[CV];

}

5.2 Alternative Features

Given a recommended feature f: F[...] for a type T, the wizard for T may
include several alternatives for f. An alternative is added by simply creating a
new subtype of F. This subtype will then be shown as an alternative in the wizard.
Using subtyping for defining alternatives allows them to be defined modularly: an
existing library can be extended with new feature alternatives without touching the
library.

Note that while mandatory and optional features correspond to block names,
alternative features correspond to (sub-)type names. For example, in the feature di-
agram in Figure 4, the alternative features FixedOverride and TunableOverride
are type names, whereas the other features are mandatory or optional features, in-
dicated by block names.

Bloqqi supports alternatives with or without new parameters, alternative wirings
for subtypes, and default alternatives.

Simple Alternative

A simple alternative is a new subtype that does not introduce any new parameters.
Consider again the recommended feature override for Loop:

recommendation Loop {
override: Override[CV]

}

We can add a new alternative for override simply by adding a subtype to
Override as the following code illustrates.

diagramtype FixedOverride() extends Override {
...

}

The new subtype FixedOverride makes sure that the control value does not
exceed a predefined threshold. The subtype will be shown as an alternative for
override in the derived wizard for Loop.
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Figure 8: Recommended features for Loop. The feature override has three
alternatives, with one default choice.

Figure 9: Unconnected inner parameters can be exposed as outer parameters.

Alternative with Extra Parameters

A subtype may introduce extra parameters. For example, the following subtype
for Override introduces an extra input parameter:

diagramtype TuneableOverride(limit:Int) extends Override{
...

}

The new subtype TuneableOverride makes sure that the control value does
not exceed a threshold defined by the input parameter limit. The subtype will
appear in the wizard as another alternative for override, as shown in Figure 8.

Since the override recommendation uses the wiring for Override, it does
not cover the new parameter introduced in the subtype. If nothing more is done,
the new parameter will be hidden inside the new loop block, with no connections
to/from it. There are several ways of dealing with this. The wizard will detect
which parameters are not covered by the wiring, and allow the user to expose them
as parameters on the created block. This means that a new parameter is created
for the specialized type, and it is connected to the extra subtype parameter of the
feature.

The mechanism is illustrated in Figure 9, which shows how the user can select
to expose the limit parameter after selecting the TuneableOverride alternative
in the wizard of Figure 8. This results in the following loop block with an extra
parameter overridelimit which is connected to the limit of the Tuneable-
Override feature:

loop: Loop (overridelimit: Int) {
override: TunableOverride[CV];

connect(overridelimit , override.limit);
};

This way, the new loop block gets an extra parameter through which the user
can connect some other value to set the override’s limit.
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Alternative Wiring

If a subtype for a feature introduces new parameters, it is possible to automatically
expose them and wire them by introducing a wiring for the subtype, and adding a
recommendation that uses the new wiring. The new recommendation should have
the same feature name as the original feature, and because of the subtype relation,
the two recommendations are identified as alternatives.

For TuneableOverride the following wiring could be added:

wiring TuneableOverride[=>CV: Int, limit: Int] {
...

}

We can then define a new recommendation that will always expose the param-
eter:

recommendation Loop {
override: TuneableOverride[CV, limit: Int];

}

By using the same feature name as before (override), and because Tuneable-
Override is a subtype of Override, the two recommendations will be identified
as alternatives for the override feature. Note that it is also possible to add a rec-
ommendation for TuneableOverride with a different feature name. It will then
appear in the wizard as another independent feature.

Default Alternative

It is useful to be able to have a default alternative for a feature. Normally, the
common supertype of all alternatives is automatically chosen as the default, which
was done in Figure 8. However, abstract types are not shown as alternatives at all,
so if the common supertype is abstract, it is useful to define the default explicitly
instead. This is what has been done in Figure 2. There, Override is an abstract
type, and the FixedOverride is specified as the default in the recommendation,
as follows:

recommendation Loop {
override: Override[CV] default FixedOverride;

}

5.3 Specializing Mandatory Features

So far, we have described how alternatives to optional features can be added to
a wizard using subtyping. We will now describe how alternatives to mandatory
features can be added.

Whereas an optional feature is a feature declared in a recommendation, a
mandatory feature is a block that is declared in a type. As discussed in Section 3.3,
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Figure 10: Wizard recommendations for Loop. The block master is
replaceable and is specialized to an existing subtype of ControllerPart.

the type of an existing block can be specialized by using the redeclare construct.
By declaring a mandatory feature as replaceable in a recommendation, subtypes
of the declared feature type will be shown in the wizard, allowing a user to replace
the existing feature with a more specialized type.

One variation of the Loop is that the master part can be replaced by a more
specialized type. This is specified by adding a recommendation for it to be re-
placeable:

recommendation Loop {
replaceable master;

}

Suppose ControllerPart has a subtype FilterControllerPart, which
filters the process value. In creating a new specialization of Loop, the wizard
shows the opportunity of replacing master with FilterControllerPart, as
shown in Figure 10. This generates the following declaration of the block loop,
as an anonymous subtype of Loop:

loop: Loop {

redeclare master: FilterControllerPart;
}

The replaceable blocks correspond to mandatory features that have a default
type that can be replaced. The wizard can thus support both mandatory and op-
tional features.

The replaceable construct comes from Modelica [Mod12], where it is used
for defining which blocks are allowed to be redeclared in subtypes. In contrast, all
blocks in Bloqqi can be redeclared, and the replaceable construct is only used
in recommendations, in order to guide the wizard.

5.4 Inheriting Recommendations

Recommendations are not inherited by default. The reason is that the subtype
might implement some of the optional features defined for its supertype, and per-
haps in an alternative way than described in the recommendations. This could be
done to support special cases not common enough to be part of the general rec-
ommendations in a library. However, another common case could be to create a
subtype that adds behavior orthogonal to the recommendations of its supertype. In
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this case it is possible to explicity let the subtype inherit all the recommendations
for its supertype as follows:

recommendation T extends super;

This means that the recommendations for the diagram type T will include the
recommendations from its supertype, transitively. That is, if the supertype of T
also includes recommendations from its supertype, then these recommendations
will also be included in the recommendations for T.

6 Combining Recommendations
We will now discuss more complex examples where recommendations are com-
bined to give a hierarchy of features, what happens when different features are
applied at the same place in a diagram, how source interception works when fea-
tures are combined, and how hierarchical features can be visually inlined to expose
the parts of most interest.

6.1 Hierarchical Recommendations
The type of a feature may itself have recommendations. In the previous example,
we specialized a mandatory feature to an existing subtype. Another way to special-
ize a feature (whether mandatory or optional) is to select some of the recommended
features for its declared type. If these features in turn have recommendations or
subtypes, they can in turn be selected, and so on. This leads to a hierarchy of
recommendations.

Consider again Loop’s mandatory block

master: ControllerPart;

The type ControllerPart contains the mandatory feature controller:
Controller, and, due to a recommendation, an optional feature filter. (The
filter filters the process value before sending it to the controller block.) The
controller feature is declared as replaceable in a recommendation, so it can be
specialized. In recommendations, two optional features of Controller are de-
fined: feedForward, and gain. This gives the hierarchical wizard shown in Fig-
ure 11. In the wizard, the features filter and gain have been selected, resulting
in the following generated code:

loop: Loop {

redeclare master: ControllerPart {
filter: Filter[controller.PV];

redeclare controller: Controller {
gain: Gain[sub.out, GF: Int];

};

};

};
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Figure 11: Wizard recommendations for Loop. The block master is specialized
to a new anonymous subtype of ControllerPart that has support for propor-
tional gain.

Figure 12: Exposure of inner unconnected parameter GF.

Here, the type of master is redeclared to an anonymous subtype Controller-
Part { ... }. The anonymous subtype includes the filter feature and rede-
clares the block controller. The controller block is redeclared to an anony-
mous subtype of Controller and includes the feature gain.

The example illustrates hierarchical recommendations, i.e., the user selects
one feature, and then additional subfeatures of that feature. Note that the subfea-
tures are only shown if the main mandatory feature (controller in this case) is
declared as replaceable in a recommendation. For optional features, subfeatures
are always shown.

As described earlier, the wizard can infer which parameters that are not covered
by the wirings, and allow the user to expose them as outer parameters. Exposing
a parameter of a subfeature down the hierarchy will expose it all the way up to
the currently constructed block, i.e., to the loop in this case. In this example, the
controller feature has an input parameter GF not covered by the wiring, and
the user has selected to expose it, see Figure 12. This results in the generated
code shown in Figure 13, where additional parameters and connections have been
generated, connecting GF from the inner controller feature, all the way to a
parameter on loop.

6.2 Ordering Recommendations

If several recommendations are applied that intercept the same port, the order of
application is significant, and may affect the meaning. This is an example of fea-
ture interaction.
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loop: Loop (masterGF: Int) {
redeclare master: ControllerPart (controllerGF: Int) {
filter: Filter[controller.PV];

redeclare controller: Controller {
gain: Gain[sub.out, GF: Int];

};

connect(controllerGF, controller.GF);
};

connect(masterGF, master.controllerGF);
};

Figure 13: Generated code when making the parameter master.controller.GF
(Figure 12) accessible as an outer parameter (highlighted).

Figure 14: Specialization of Loop. The slave and override features intercept the
same parameter (CV), however, the slave is applied before override, resulting in its
inlined controller appearing before the override block.

Recall the definition of Loop that contains a master block (Figure 5). Addi-
tional common features of control loops include a slave part and an override filter.

Applying both these features in a new specialization will intercept the same
parameter CV, and the order in which the features are applied is thus significant.
In practice, we always want to apply the slave before the override, as shown in
Figure 14, since it is the actual output to the process that we want to put a threshold
on, not the set point of the slave controller.

To achieve the desired ordering, a recommendation can explicitly order fea-
tures using before statements:

recommendation Loop {
slave before override;

}

A statement f1 before f2 specifies that the feature f1will be applied before
f2, if both are added in a new specialization.

The compiler analyzes all recommendations to find out in what order to apply
them. If two recommendations intercept the same port and are not ordered using
before, then the compiler will report an error, to indicate the feature interaction.
To resolve the problem, a new recommendation can be added that uses before to
specify an explicit order.
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Thus, all recommendations that intercept the same port need to be totally or-
dered using before statements. The ordering obtained by before statements is
transitive. Hence, if a is declared to be before b and b is declared to be before
c, then a is implicitly before c as well. Cycles are not allowed, and should they
occur, the compiler reports an error.

By automatically identifying conflicts, two recommendations can be developed
in parallel, independently from each other, and when they are combined, conflicts
are reported and can then be solved explicitly and modularly.

While the ordering needs to be complete for all interceptions on the same port,
the before statements need only give a partial order of all the features that can
be applied for a given type: the order of application is irrelevant if they do not
intercept the same port. Nevertheless, a total order of application is desirable,
in order to generate normalized code when selecting features in the wizard. To
achieve this, a total application order is computed by using alphabetic order for
features not ordered by before statements.

6.3 Source Interception

As mentioned earlier, an interception can be done either at the source or at the
target of a connection. Distinguishing between source and target interception has
advantages when combining features.

First, we can note that if two recommendations intercept the same connection,
but one uses source interception and the other uses target interception, they are
implicitly ordered, and no before statement is needed.

Source interception has an additional advantage in that it applies to all outgoing
connections from that port. In contrast, a target interception can only apply to one
connection since an input port can have at most one incoming connection. The
difference between source and target interception is illustrated in the following
example.

Consider two recommended features, one feature f that source intercepts port
p on a block s and another feature g that uses the value from the same port p (by
adding a connection). When both these features are selected, the second feature g
will automatically use the value from f , and not the original value from the block
s. This is because the first feature f uses source interception, which is applied for
all outgoing connections from the port p, including the connection for feature g.
This is illustrated in Figure 15.

If f had instead used target interception, g would have used the original value
from s, as shown in Figure 16.

Target interception thus places the interception right before the value enters
a target port, whereas source interception places it right after the value leaves a
source port, i.e., before being distributed through connections to other blocks. For
the control loop library in Figure 3, the gain feature uses source interception, so
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Figure 15: Base diagram extended with two features, f and g, where f uses source
interception on the output port on block s. When the features f and g are com-
bined, feature g will use the value from f, and not the value from block s.

Figure 16: Same as Figure 15, but where feature f uses target interception instead
of source interception, resulting in that feature g will use the value from the block
s.

that all other components will use the amplified input value instead of the raw input
value. However, all other interceptions in that library are target interceptions.

In the editor, the user can interactively add source and target interceptions to
a diagram, and the editor then generates a corresponding intercept statement. The
textual syntax for source interception is similar to target interception, but with
the extra keyword source. This is illustrated in the following code that source
intercepts port out on block s.

intercept source s.out with b.in, b.out;

6.4 Visual Instance Inlining

The default visual view of a diagram shows the blocks declared at the top level
of the diagram, but not their contents. However, it is often the case that a domain
engineer would like to see a more flat view showing some but not all blocks in the
complete hierarchy. This way, the most interesting blocks can be shown, giving
a view similar to that which would be drawn manually, or to those appearing in
textbooks on automatic control. To support this, it is possible in Bloqqi to visually
inline a block [FH16b]. For a block that is visually inlined, the contents of the
block are displayed in the diagram, instead of displaying the block itself.

As an example, consider the SteamHeating diagram from Figure 2 and its
corresponding block composition hierarchy in Figure 17. In this case, the loop,
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SteamHeating

operatorSP

temperature

operatorGF

pressure

loop / / i n l i n e d
master / / i n l i n e d
filter

controller

gain

slave / / i n l i n e d
filter

controller

override

valveOpening

Figure 17: Block composition hierarchy for the SteamHeating in Figure 2, indi-
cating which blocks are visually inlined.

master, and slave blocks are inlined, but not the controller blocks, so the
gain block inside the master controller is not visible in the diagram. This way,
the diagram shows the structure that is most important, and it is similar to a typical
cascade control diagram from a textbook.

A block is inlined by adding a modifier inline to its declaration:

inline block: BlockType;

It is also possible for the user of the editor to manually select a block and
inline it, which will add the inline modifier to the declaration of the selected
block. When designing a library of block types and recommendations, it can be
anticipated what blocks should typically be inlined. For the example in Figure 2,
the loop block was interactively created, and also interactively inlined. However,
the master and slave blocks are inlined because the library declared them as
inlined in the Loop type and in the Loop recommendation:

diagramtype Loop(...) {
inline master: ControllerPart;

}

...

recommendation Loop {
inline slave: ControllerPart[CV];

}

When the user edits a diagram with inlined blocks in it, the addition of what
looks like a single connection in the diagram may actually correspond to adding
several connections and sometimes extra parameters to the inlined blocks in the
underlying textual version of the program. These additions are done automatically
by the editor.
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In Figure 2, the master (the leftmost controller) is augmented with one
extra parameter GF since it includes the feature gain. In the editor, the user can
connect the operator value operatorGF to the parameter GF, even if the block is
inlined in two steps. When this happens the editor will detect if the parameter GF is
already directly accessible as an outer parameter on the new Loop specialization.
If this is the case, a connection is added to the outer parameter. If the parameter
GF is not directly accessible, then the editor will automatically create parameters
and connections in the anonymous subtypes in order to connect operatorGF to
the parameter GF. This is similar to when inner parameters are exposed as outer
parameters during specialization creation (see Figure 13).

7 Editing Support

The editor has additional editing support to make it easier to work with recommen-
dations. In particular, the editor supports creating recommendations by example
as well as staged configuration [Cza+04].

7.1 Creating Recommendations By Example

So far, we have described the textual representation for how to specify recommen-
dations. In practice, we have found that it is often simpler to create the recom-
mendations by example than to write them down as text. To support this, the user
creates a temporary subtype, and visually adds desired blocks and connections.
The subtype can then be extracted to a recommendation using an editor operation.

For example, suppose we want to add a recommended feature f for a type T.
We can do this by creating a temporary subtype of T, and adding blocks to it, and
connecting them to existing elements inherited from T. To extract the subtype to
a new recommended feature f, the editor generates a new type F, a wiring dec-
laration for F, and a recommendation for T. The new type F will contain all the
local blocks and local connections between them. The wiring for F will capture
the remaining connections as parameters and connections between the parameters
to the local blocks of F. Finally, the recommendation will declare the feature f,
and apply the wiring to encode how the feature is to be connected to the relevant
elements of T:

recommendation T {
f: F[...];

}

Once this is done, the temporary subtype is no longer needed. Note that the
generated wiring F[...] can be used for defining features also for other types
than T, and even for other features of T by applying it at a different place in T.
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7.2 Staged Configuration

As we have seen, the derived wizard can be used to create specializations of a type
with the desired features. The editor also supports wizard state inferencing, so that
the wizards can be used for editing existing blocks, and not just generating them.
This is very important for practical use, and allows staged configuration [Cza+04],
where users specialize blocks in several steps.

For example, the control loop in Figure 2 has filters on both the input to the
master and slave controller. After the creation of this block, we may later realize
that these filters are unnecessary and should be removed. The user can then select
the control loop in the editor and open the wizard again, where all previously
selected features are inferred and automatically shown as selected. The user can
then deselect the filter features and apply the changes.

When the user wants to change the specialization of a block, the editor will
match the content of the block with recommendations to infer which features that
are selected. As described earlier, when a new block b is created and specialized
of type T using the wizard, the editor will automatically create an anonymous
subtype of T . This anonymous subtype is the block type for b and contains the
selected features. When the user requests changing the specialization for the block
b, the editor will compare the content of the anonymous subtype with the recom-
mendations for T , in a hierarchical manner. If the anonymous subtype contains a
block with a name and a block type that matches a recommendation for T , then
this block is considered as a feature that has previously been selected, and will be
shown as selected in the wizard.

As described earlier, when a new specialization is created, inner parameters
can be exposed as outer parameters. This is also inferred by the editor when the
wizard for editing specializations is shown. Thus, previously exposed parameters
will show up as already exposed in the wizard as well. This is implemented by
analyzing the data-flow between the inner parameters and the outer parameters.

8 Evaluation

As a proof of concept, we have implemented the new language constructs and the
wizard support, extending our Bloqqi tools which include a compiler and a visual
editor. All the screenshots in this paper are from our tools, and all the examples
given are runnable code. To evaluate the language constructs, we provide a com-
parison between using the feature wizard as compared to manually constructing
the corresponding block diagrams.

8.1 Implementation

The Bloqqi compiler and editor share a core implementation of the language, de-
veloped using reference attribute grammars (RAGs) [Hed00], using the metacom-
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pilation system JastAdd [EH07b].
The core implementation includes a parser, and RAG computations for static

semantics like name resolution, type checking, and direction checking of the con-
nected ports and parameters. To support the new language constructs, additional
semantic checking was added, for example, to check that wiring applications are
done with ports of the correct type and direction, that there is sufficient ordering
of recommended features, as was discussed in Section 5, etc.

The compiler extends the core with RAG modules for C-code generation. The
visual editor extends the core with RAG modules that compute the visual ren-
dering of diagrams, combining the type and supertype definitions of each block.
There are many computed properties in the visual presentation: the number of
input and output ports on a specific block, the rendering of inherited and local in-
formation in a diagram, etc. The actual rendering is done using GEF (Graphical
Eclipse Framework). To support the wizards, RAG modules were added that use
the static semantics to compute the wizard content, and with computations of how
to generate and insert the Bloqqi code corresponding to selections in the wizard.

We have executed Bloqqi programs on both specific controller hardware and
together with simulated models. The models simulated have been specified as
Modelica models and exported as executable simulations using the Functional
Mockup Interface standard [Blo+12]. Thus, in Figure 1, we replaced the Real
World with a simulation of the real world. We did this by specifying the inputs
and outputs for the control program to be the outputs and inputs from the simula-
tion.

8.2 Comparison
The examples in this paper are downscaled examples of how feature-based block
libraries can be constructed and used. To get an impression of the advantages,
we provide a comparison between constructing a small control system using the
wizard, as compared to constructing it manually, i.e., creating the blocks and con-
nections one by one.

The diagram in Figure 2 includes 5 environmental blocks and connections, i.e.,
blocks that communicate with the environment (sensors, actuators, operator), and
a number of blocks and connections representing the control loop. The control
loop logic is created by selecting 5 features in the wizard5. This corresponds to 14
manual editing operations (adding blocks, parameters, subtypes, connections, and
interceptions). Table 1 compares the selections with corresponding manual editing
operations for three examples: none means no selections were made in the wizard,
i.e., only the basic loop logic is used, e is the example in Figure 2 and Figure 3,
and all means doing as many selections as possible in the wizard.

The table shows how the advantage of using the wizard grows with the com-
plexity of the design. It is important to note that selecting features in the wizard is

5FixedOverride is selected as default and therefore counted together with override
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Control loop library
Environmental Select Editing

blocks features operations
Wnone 3 0 1
Mnone 3 0 1

We 5 5 1
Me 5 0 14

Wall 11 9 1
Mall 11 0 31

Table 1: Comparison of effort to create a control loop diagram using the wizard
in Figure 3 (W) and creating it manually (M). Compares three different variants of
the diagram: none for selecting no optional features, i.e., only using a plain master
controller, e for the SteamHeating example in Figure 2, and all for selecting all
features. Note that an editing operation involves much more effort than a feature
selection operation.

Control loop library
#Types #Recommendations

Wizard 9 9
Explicit types 223 -

Table 2: Number of types and recommendations for the control loop wizard in
Figure 3 as compared to having one explicit type for each variant.

much easier than to do an editing operation. Selecting a feature is done with one
click, and requires only expertise in control systems concepts, whereas each edit-
ing operation involves several interactive steps (e.g., several clicks), and further-
more requires much more cognitive effort in locating the block types to instantiate,
and deciding on how to do the wiring. We therefore expect the effort for building
the control logic to be much lower for the wizard solution. Future user studies
could be done to confirm this.

When the user creates a block instance by using the wizard, the particular
feature selection is used to automatically compute the (anonymous) type for the
block instance declaration. An alternative to using feature wizards would be to
create one explicit type for each variant in advance. For the wizard in Figure 3,
this would lead to 223 types, see Table 2. The total number of types includes
the component types Controller, Filter, etc., and subtracting them gives 216,
which is the number of variants. Having one type for each variant is not practical,
but the comparison illustrates how fast the number of variants grow, even for a
example that is quite small.
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Tank library
Environmental Select Editing

blocks features operations
Wnone 4 0 1
Mnone 4 0 1

We 8 4 1
Me 8 0 42

Wall 10 6 1
Mall 10 0 50

Table 3: Comparison of effort to create a tank diagram using the wizard (W) and
creating it manually (M). none corresponds to selecting no optional features, e to
the example in Figure 18, and all to selecting all features.

Tank library
#Types #Recommendations

Wizard 4 6
Explicit types 48 -

Table 4: Number of types and recommendations for the tank library wizard in
Figure 18 as compared to having one explicit type for each variant.

As an additional example, we have implemented a library for controlling the
liquid level in a tank with a pump and a valve, and with optional features for
heating, agitating, and for adding extra pumps and valves, as well as selecting
between different types of valves. The heating feature may be implemented as
steam heating, similar to the one in Figure 2. The result, measured in the same
way as for the control loop library, is shown in Table 3 and Table 4. Again, we
see that the effort of creating a diagram is much lower when using the wizard than
when constructing it manually. The wizard for the library and the diagram for an
example variant is shown in Figure 18.

9 Related Work

9.1 Variability Support for Diagram Languages

There are several diagram languages that have some kind of support for variability.
Simulink is a popular block diagram language with some built-in support for

handling variability [WM13]. It supports conditional blocks which are executed
conditionally, and model variant blocks which conditionally select a block from a
set of variants. In contrast to our approach, this approach does not handle wirings,
and all variants have to be anticipated in advance.
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Figure 18: Tank specialized with agitation, heating, and a second valve and con-
nected to environmental blocks (solid).
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[Die+14] present a textual domain specific language for defining blocks with
variants in Simulink. An example is a sum block that sums the input for different
structures, such as scalars and matrices. The variants of a block are specified with
imperative code with additional constraints given in a subset of OCL. Again, all
variants need to be anticipated in advance.

[Hab+13] add delta modeling to Simulink to handle variability. In delta mod-
eling, a set of deltas are specified relative to a base model. A delta may contain ad-
ditions, removals, and modifications of blocks and connections. A variant is then
created by selecting a set of deltas that are applied in a linear order on the base
model. Deltas may have order constraints that describe how they can be applied,
for example, that one delta is required to be applied before another delta, or that
one delta requires another delta. Deltas are more flexible than recommendations
in that they allow removals and arbitrary modifications. However, this also makes
them less composable. In many other ways, deltas are much less flexible than our
approach: they are specified relative to a base model, whereas our wirings can be
applied at several locations, even within the same block. Deltas do not support ex-
plicit interception, but need to model such modifications using explicit connection
removals and additions, and has no automatic detection of interfering intercepts as
in our approach. The deltas are patch-based rather than type based, making them
more low level to work with. There is no support for feature-selection wizards or
modular additions to wizards, like in our approach.

Other examples of variability for diagrams include variant support for UML
activity and class models [CA05] and for SysML [Tru10], but these also require
all variants to be anticipated in advance.

As mentioned, Bloqqi has been substantially influenced by Modelica [Mod12],
a language used for modeling and simulating physical systems. Important in-
fluences include the use of combined textual and visual syntax, and the use of
object-oriented subtyping for blocks with connections. Bloqqi’s redeclare and
replaceable constructs were also heavily inspired by Modelica. However, the
languages have different purposes, and there are otherwise more differences than
similarities. In particular, Modelica is an equational language with undirected
connections, solved symbolically or numerically during simulation. In contrast,
Bloqqi’s connections are directed, corresponding to data-flow directed execution.
The wirings and recommendations are designed for data-flow based languages,
where connections are directed. It would be interesting to investigate if and how
they could be adapted to equation-based languages such as Modelica.

9.2 Inheritance

In earlier work [FH14], we introduced the interception construct, and then used
multiple inheritance to combine features into a desired variant. While this is a
possible way to modularize and reuse components, it has several drawbacks. First,
it uses the inheritance construct for two different things: composing features and
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specializing blocks. This makes it difficult to make use of it in a wizard, as the
wizard does not know which use of inheritance is intended for what. It also goes
against the general object-oriented principle of favoring composition over inher-
itance, as described, for example, by [Gam+94]. Second, by using a subtype to
define a feature, it needs to wire the feature in a given inherited context. In con-
trast, the wiring construct introduced in this paper allows a feature to be applied in
several different contexts, even within the same diagram.

Multiple inheritance using traits [Sch+03] has a similar problem, in that they
cannot be applied at several different places in the same type (diagram), which
wirings can.

9.3 Aspects

Aspect-oriented programming [Kic+01] (AOP) allows crosscutting concerns to be
defined in a modular way. Both recommendations and wirings have similarities
with inter-type declarations in AspectJ, in that they allow declarations about exist-
ing types to be added modularly. However, in contrast to AOP, recommendations
and wiring declarations do not change the behavior of existing types. Wirings just
declare how a block is typically instantiated, and recommendations just recom-
mend new (anonymous) subtypes to be created with a desired behavior.

Another important difference is that AOP usually works on methods, like ad-
vice, which is code that is running after or before a method and is defined modu-
larly in an aspect. Wirings and recommendations on the other hand allows func-
tionality to be added inside diagrams, that is, at the statement level, rather at the
method level.

9.4 Feature Models

Our derived wizards have similarities to feature models [Kan+90], a technique for
describing variability. A feature model has the form of a tree, often depicted as a
feature diagram, with features represented by tree nodes. The parent/child relation
can be of different kinds:

optional: The child feature may be selected.

mandatory: The child feature must be selected.

alternative: There is a set of child features of which exactly one must be selected
(exclusive-or).

Some feature systems also include an inclusive-or kind, where one or more child
features must be selected. Many feature model systems additionally support var-
ious kinds of constraints. For example, requires/excludes cross-tree constraints,
cardinalities on features [Cza+05], or general propositional formulas [Bat05].
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We have been inspired by the feature diagram syntax, and wizards for feature
diagrams [CA05], to present the choices in our wizards. Figure 4 shows an ex-
ample of drawing one of our wizards as a feature diagram. However, while it is
possible to draw the wizard structure this way, there are several important differ-
ences from feature models. In particular, feature models model a set of global
features, and each feature occurs only once in the tree. They are typically used in
product lines, to describe at a global level which features a product includes. In
contrast, we have one feature diagram per block type, and our features are local
to a context, so a feature can occur in several places in the tree. For example,
both the slave and the master feature have a local filter and controller feature. In
fact, we can create recursive feature structures. For example, we could create a
type T that has an optional feature of type T. The wizard expands dynamically, as
the user opens features to see the sub-features, so the tool can handle this, even if
the complete feature diagram would be infinite. Our wizard structure is thus like
an ordinary context-free grammar, whereas feature models are typically restricted
to tree grammars, with each nonterminal occurring only in the right-hand side of
one production [Bat05]. In contrast to most feature models, we do not use any
constraints that restrict the choices more than the tree structure does. This could,
however, be an interesting topic to investigate.

An important difference from ordinary feature models is that recommendations
allow our feature models to be constructed modularly. For example, we saw in
Section 5 how the subtype FixedOverride could be added, and will extend the
wizard/feature model, without the need to touch the code defining the override
feature.

9.5 Feature-Oriented Programming

[Pre97] introduced the notion of Feature-oriented programming (FOP), and ap-
plied it to Java. FOP is related to feature modeling described above, but takes a
more technical approach by adding first-class language support for features in a
programming language. In this approach, the features are specified in a similar
way as classes, with methods and fields, but can be combined together. To handle
feature interaction, it is possible to define lifters between two features. A lifter is
a piece of code that describes how the two features interact with each other and is
defined outside the features. Apart from being designed for a programming lan-
guage rather than a diagram language, Prehofer’s FOP differs from Bloqqi in that
it works at the method level rather than at the statement level, and it has no support
for selecting features in a wizard.

Both FOP and feature modeling are part of the paradigm of Feature-oriented
software development (FOSD) [AK09], which focuses on building large-scale
software systems with the use of features, typically with the goal of constructing
software product lines.
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10 Conclusion

We have introduced the new language constructs of wirings and recommendations
for block diagram languages to support the description of intended variability. We
have shown how these constructs can be used to automatically generate smart edit-
ing support, in the form of wizards that suggest features for diagram types, aiding
domain engineers in doing visual configuration of automation systems.

An important property of the new language constructs is that they support mod-
ular and extensible definition of variability: variability of diagram types can be
defined separately from the libraries defining the diagram types. This is achieved
partly by the recommendation construct that allows new recommendations to be
added to existing diagram types, and partly by subtyping of diagram types, auto-
matically extending all relevant recommendations.

Another important property of recommendations is that they are composable:
recommended features that intercept the same connection are automatically identi-
fied, and can, if needed, be ordered explicitly by additional recommendations. This
allows independently developed libraries or library extensions to be composed.

We have evaluated the new language constructs by implementing a proof-of-
concept compiler and visual editor for them. We have also evaluated the constructs
by comparing the effort of creating diagrams using the wizard, as compared to
creating them manually, concluding that using the wizard takes much less effort.

It turns out that recommendations have many similarities with feature models
which also aim at supporting variability. An important difference is that whereas
feature models are often aimed at global features of a product, recommendations
are aimed at local features within a hierarchical configuration, and with modularity
and composability as key concerns.

10.1 Future Directions

Although our focus has been on the application area of automatic control sys-
tems, the presented language constructs are general, and could be used for any
language that has diagram types with blocks and directed connections. For ex-
ample, it could be interesting to investigate how the constructs could be applied
to languages based on Petri nets [Mur89] or state charts [Har87]. Within the au-
tomation domain there is, for example, the Grafchart language which focuses on
supervisory control [JÅ98], and which combines features from both Petri nets and
Statecharts. Other interesting application areas could be simulation and stream
processing where data-flow programming is common. For block languages with
undirected connections, like Modelica, the notions of source and target intercep-
tion would be irrelevant, but the idea of modularly expressing features in the form
of wired blocks might be interesting to investigate.
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Other ideas from feature models could be investigated, possibly using them to
enhance our experimental language. Examples include require and exclude state-
ments, to express dependencies between different features.

It could be investigated how to use our proposed mechanisms for feature-
oriented programming at a detailed algorithmic level. We have made experiments
with programming a PID controller in Bloqqi, expressing the I and D parts as op-
tional features of the algorithm. To apply a similar idea to general algorithmic
code, generalizations would be needed, for example, to handle algorithmic loops.

The Bloqqi implementation is just a proof-of-concept prototype intended for
experimenting with language constructs, and there are several ways to further ex-
tend and generalize both the language and its implementation. One direction is to
support execution of multiple distributed diagrams, running with individual sam-
pling speeds. Another direction is to extend the language with support for control
connections: structured data where some elements can be reversed, allowing data
to flow backwards along connections. This allows certain control diagrams to
be substantially simplified, and improving control performance [PH02]. Finally,
larger case studies should be performed.
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Implementation of the Bloqqi compiler
and editor

1 Introduction

Data-flow languages are commonly used in a variety of domains, such as au-
tomation, modeling, image processing, etc. They are used both in industry and
in academia, and examples include Simulink from MathWorks, LabVIEW from
National Instruments, ControlBuilder from ABB, and Function Block Diagrams
in the IEC-61131 standard. Typically, programs are expressed visually as dia-
grams with blocks and connections between the blocks that describe the data-flow.
Many data-flow languages support user-defined block types, where a block is an
instance of a block type. A block type can be defined as another diagram, making
it possible to create hierarchical programs, or it can be defined externally or by
an algorithmic function. User-defined block types facilitate reuse of functionality
and allow libraries to be created. They also encourage program decomposition
into manageable and understandable program units.

Although user-defined block types aid the creation of libraries, they do not
support creating different variants of the same basic structure in a good way. For
example, for a controller library, the user sometimes would like the controller
to have gain scheduling functionality and sometimes not. Using ordinary user-
defined block types, this can be solved in two ways, either by having one block
that supports all features that can be turned on and off using parameters, or by
having one block for each variant. The first technique means that all variants need
to be anticipated and leads to complicated diagrams and runtime overhead. The
second technique works only for a small number of variants and leads to duplicated
code.

Niklas Fors. ”Implementation of the Bloqqi compiler and editor”. Technical Report 98.
LU-CS-TR:2016-252, ISSN 1404-1200. Lund University, 2016.
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Bloqqi is a data-flow language with language constructs that allows variants to
be created of the same basic structure, which avoids the drawbacks of the previous
techniques. The language is based on user-defined block types which are defined
as diagrams with diagram inheritance. The inheritance mechanisms connection in-
terception [FH14] and block redeclaration [Mod12] allow diagram behavior to be
specialized, similar to virtual methods in ordinary object-oriented programming.
In addition to this, Bloqqi has feature-oriented language constructs for describing
variants and which are used by the editor to automatically derive smart editing sup-
port in the form of wizards. The user can then use the wizard for feature selection
when creating a block.

Bloqqi has been developed in collaboration with the company ABB in the
automation domain, in the context of process industry. The focus has been on
reusability and how to describe variability within the language. The language has
been inspired by the automation language ControlBuilder from ABB [Con16] and
the simulation and modeling language Modelica [Mod12]. Like in ControlBuilder,
the execution scheme in Bloqqi is periodic, where a program is executed a num-
ber of times per second. Many of the language constructs in Bloqqi are novel and
general for data-flow languages, and not only applicable in the automation domain.

We have implemented a compiler and a graphical editor for the Bloqqi lan-
guage. The compiler generates C code that can be compiled to executable binaries
and the editor visualizes programs and allows the user to change them. Bloqqi has
both a textual and a visual syntax, and the textual syntax is used as a serialization
format when programs are stored on file.

This report describes how the compiler and the editor have been implemented
using the metacompilation system JastAdd [EH07b] and the semantic formalism
reference attribute grammars [Hed00]. The semantic specification is specified once
and used in both the compiler and the editor, for generating code or visualizing
diagrams. The semantic analysis is needed for visualizing diagrams, since the
visualized content of a diagram is computed, based on, for example, user-defined
block types, inheritance and visual instance inlining. When the user changes a
diagram in the editor, the editor maps the changes in the computed structure back
to the source program.

This report is structured as follows. Section 2 introduces Bloqqi using an ex-
ample. Section 3 describes the overall architecture for the compiler and the editor.
Section 4 gives background for JastAdd and reference attribute grammars. Sec-
tion 5 and Section 6 describe the implementation of the compiler and the editor,
respectively. Section 7 explains how code generation is done in the compiler, and
how Bloqqi programs can be integrated with simulated models using the Function
Mockup Interface (FMI) [Blo+12] and integration with ABB controllers. Section 8
discusses some of the implementation design choices. Section 9 presents related
work. Finally, Section 10 concludes the report.
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2 Introduction to Bloqqi

This section introduces Bloqqi using the textbook definition of a proportional-
integral-derivative (PID) controller [ÅM12]. These controllers are commonly used
in industry1. A PID-controller consists of three parts: the proportional part, the
integral part, and the derivative part. The integral and derivative parts can be seen
as extensions, or features, to a P-controller. With these extensions, the following
variants can be created: P, PI, PD, PID. This section will first show what a P-
controller looks like, then extend this base structure using inheritance to a PI-
controller. We will then describe how all the four variants can be described using
the feature-based language mechanisms wirings and recommendations, where the
user can select what variant to use in an automatically derived wizard [FH16a].

A P-controller computes the control signal based on the current error, that is,
the difference between the reference value and the measured value. The control
signal u(t) for a P-controller can be described as follows [ÅM12].

u(t) = Kpe(t) (1)

Here, e(t) is the error at time t. The coefficient Kp describes how much the
error should be amplified in the control signal.

A PI-controller adds an integrator term that takes into account the history of
the error as well. The control signal for a PI-controller can be described as fol-
lows [ÅM12].

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ (2)

The coefficients Kp and Ki describe how much the proportional part and the
integral part should be taken into account in the control signal.

Using the above definition of a P-controller, we can now model it as a diagram
in Bloqqi. A diagram can have input parameters, blocks, state variables, output
parameters and connections between them. Figure 1 shows the diagram P for the
P-controller, where both the textual and the visual syntax is shown. The diagram
has three input parameters: the reference value (r), the measured value (y) and
the proportional coefficient (kP). The error is computed by taking the difference
between reference value and the measured value. The control value is exposed as
an output parameter (u) and computed by multiplying the error with the coefficient.
The diagram makes use of the standard blocks Sub for subtraction and Mul for
multiplication. The subtraction block has been given the explicit name e (for the
control error) to make the diagram easier to read and extend. The connections
describe how the data flows in the diagram, from the source of the connection to
the target of the connection (arrow head), thus, the data-flow is directed.

1With some extensions to the textbook definition, which will not be covered in this section
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diagramtype P(r: Int, y: Int, kP: Int => u: Int) {
e: Sub;

Mul_1;

connect(r, e.in1);
connect(y, e.in2);
connect(e.out, Mul_1.in1);
connect(kP, Mul_1.in2);
connect(Mul_1.out, u);

}

Figure 1: P-controller in Bloqqi.

diagramtype Main {
ref1: OperatorValue;

sensor1: Sensor;

p1: P;

actuator1: Actuator;

...

connect(ref1.out, p1.r);
...

}

Figure 2: A diagram that uses the P-controller defined in Figure 1.

Programs in Bloqqi are executed in a periodic manner, for example, 10 times
per second. In each period, sensor values are read, which are used together with
state variables to compute control signals. After each period, the control signals
are sent to actuators that affect the physical system, for example, to open or close
a valve in a tank. In each period, all blocks are executed and executed in an order
that does not violate the data-flow order. Thus, if block a produces data for block
b, then block a will execute before b.

Having defined the P-controller as a diagram, we can now use it in another
diagram as a block, which illustrates user-defined block types. Figure 2 shows
how the P-controller is instantiated as two blocks, p1 and p2, in the diagram Main.
These two blocks are then connected to operator values, sensors, and actuators. An
operator value is like a sensor, but the value is set by a human operator in the plant.
When a diagram is instantiated as a block, the input parameters are shown as input
ports (left side) and output parameters are shown as output ports (right side) on the
block. The ports can then be connected using connections. For example, there is a
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diagramtype Acc
(in: Int => out: Int) {

var state: Int;
add: Add;

connect(in, add.in1);
connect(state, add.in2);
connect(add.out, out);
connect(add.out, state);

}

Figure 3: Accumulator implemented using state variable (state).

connection to the input port r on the block p1.
The execution of a diagram depends on sensor values, but also on state values

that may be embedded inside other blocks. The P-controller does not use any state
variables, but the PI-controller does, in order to store the history of the error. We
will show this in the next section.

2.1 Diagram Inheritance

Bloqqi supports inheritance between diagrams, that is, a diagram S can extend
another diagram T . This means that all parameters, blocks, state variables, and
connections in T are also in S, in a transitive manner. We say that S is a sub-
type of T and T is a supertype of S. A subtype can add new parameters, blocks,
state variables and connections, and it can also specialize the behavior defined
in the supertype by using connection interception [FH14] and block redeclara-
tion [Mod12]. Connection interception allows a subtype to intercept a connection
defined in a supertype to instead go via a local block. Block redeclaration allows
a subtype to redeclare (specialize) the type of a block defined in a supertype.

We can use these mechanisms to implement the PI-controller as an extension
of the P-controller, instead of as a separate diagram type. The PI-controller adds
an integrator part that is added to the control value (the output parameter u). In
computerized control, the integrator can be approximated as an accumulator of
the error [ÅW96]. An accumulator is a block that has an internal state and that is
incremented with the input value at each period. The internal state is implemented
as a state variable (has prefix var) that is stored between the execution periods.
Figure 3 shows how the diagram Acc is implemented.

Figure 4 shows the diagram PI, which extends the diagram P. Inherited parts
are visualized as grey/dashed (grey as in stone, and which cannot be changed)
and local parts as blue/solid. An input parameter is added for the integral coef-
ficient (kI)2. The accumulator block (acc) is incremented each period with the
error value. The accumulated value is then multiplied with the coefficient and

2The sampling time is included in the integral coefficient.
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diagramtype PI(kI: Int) extends P {
acc: Acc;

Mul_2;

Add_1;

connect(e.out, acc.in);
connect(kI, Mul_2.in1);
connect(acc.out, Mul_2.in2);
connect(Mul_2.out, Add_1.in1);
intercept u with Add_1.in2, Add_1.out;

}

Figure 4: A diagram describing a PI-controller by extending the diagram P defined
in Figure 1.

added to the control value. The new term is added to the control value by inter-
cepting the connection to u defined in the supertype, so that the connection now
will go through the local Add block.

Having defined the subtype PI of type P, we can now replace blocks of type P
with type PI using block redeclaration, if we want a PI-controller instead of a P-
controller. For example, we can create a subtype of Main and redeclare the blocks
p1 and p2 to the type PI, as the following code illustrates.

diagramtype SubMain() extends Main {
redeclare p1: PI;
redeclare p2: PI;
...

}

The inheritance mechanism redeclare requires that the new block type (PI)
is a subtype of the old block type (P). The subtype PI adds the input parameter
kI, so we need to connect the new corresponding ports as well. For example, by
adding two more operator value blocks and connect them to the new ports.

2.2 Sensors and actuators

In addition to state variables (var), Bloqqi also supports communication variables
that are used to communicate with the environment, modelling sensors and ac-
tuators. A communication variable has either the dataflow direction input or
output. Sensors use input variables and actuators use output variables. These
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Figure 5: A PID-controller block is created using an automatically derived wizard
based on recommendations.

communication variables are used to implement the block types OperatorValue,
Sensor and Actuator that are used in diagram Main (Figure 2).

2.3 Recommendations

The previous example used inheritance to model two variants of a controller, but
Bloqqi also supports the feature-based language constructs recommendations and
wirings [FH16a]. This allows variants of the same base structure to be specified
and the user can select which variant to use. The base structure is defined as a
diagram and recommendations define recommended features for the base structure.
For the controller example, the P-controller is the base structure, and the integral
part and the derivative part are recommended features. Recommended features are
specified as blocks and include information about how these blocks are connected
into the base structure. The editor then uses the recommendations to automatically
derive smart-editing support in the form of a wizard, which lists all recommended
features for a given diagram. When a user creates a block of a diagram with
recommendations, the user can specialize the block using the wizard.

For example, assume that the P-controller defined in Figure 1 has two recom-
mended features, one for the integral part and one for the derivative part. When
the user creates a block of the P diagram, a wizard is shown with available fea-
tures that can be selected. If both features are selected, a PID-controller is created,
and which is illustrated in Figure 5, where both the wizard and the PID-block are
shown. Using this wizard, several controller variants can be created from the same
base structure: P, PI, PD and PID. In this case, the number of variants is only four,
but when the number of features increase, the number of variants grow exponen-
tially.

The following code shows how the recommendations for the diagram P are
specified.
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recommendation P {
D: DPart[e.out, kD: Int, u];
I: IPart[e.out, kI: Int, u];
I before D;

}

The diagram P has two recommended features, D and I, which are of block
types DPart and IPart, respectively. The type DPart implements the derivative
part and the type IPart implements the integral part. The code within the square
brackets ([]) describes how the features are connected into the P diagram, if they
are selected. We can see that both features use the error value e and that they affect
the control signal u. Exactly how this is done is defined as a wiring in the block
type (which is not shown). In this case, both the wirings specify that the parameter
u will be intercepted. Since both features intercept the same output parameter,
the application of the interceptions need to be ordered if both are selected. The
statement before tells that if both D and I are selected, then I is applied before D.

Recommendations are modular: the code for the recommendations for diagram
P above can be split into three different recommendation statements. This allows
libraries to be created with recommendations that are extended with more features
defined by the user, which are specified as recommendations outside the library.

A feature may also have alternatives, for example, there may be several im-
plementations of the integral functionality which have different characteristics.
Alternatives are specified as subtypes. Thus, to add an alternative to the I feature,
a subtype to IPart needs to be created. The wizard will then collect all subtypes
for a feature and list them as alternatives.

The wizard shows features hierarchically. This means that if a block is created
of a diagram with recommendations and this diagram has blocks with recommen-
dations, then the features for the inner blocks will be shown in the wizard as well.
See [FH16a] for more information about the hierarchical property of recommen-
dations.

2.4 Visual Instance Inlining

User-defined block types allow common functionality to be abstracted into block
types to increase reuse, but sometimes the abstractions make the diagrams harder
to understand. Bloqqi allows a block that is an instance of another diagram to
be visually inlined [FH16b], meaning that the block is visually replaced with the
content of the block type. This is shown in Figure 6, where the block controller
in Figure 5 has been inlined, and with some additional blocks. The inlined blocks
are white with dashed black borders. Inlined blocks are allowed to be moved freely
without any restrictions, making it possible for the user to align the blocks in a way
that she wants. The user can also create connections to and from the inlined blocks,
in which case the editor will implicitly create parameters and connections.
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Figure 6: The block in Figure 5 is visually inlined (white/dashed).

2.5 Functions and External Procedures

Bloqqi does not only support user-defined block types as diagrams, but block types
can also be defined as algorithmic code or as external procedures. The standard
blocks in Bloqqi, like Add and Sub, are defined as algorithmic functions, and
which are free from side effects. For example, the function Div for division is
implemented as follows.

function Div(Int in1, Int in2 => Int out) {
if (in2 != 0) {
out = in1 / in2;

} else {
out = 0;

}

}

Algorithmic functions are easily mapped to ordinary programming languages
like C.

Algorithmic code can be defined externally, using an external procedure dec-
laration. The external procedure is implemented using a C function that is linked
together with the generated C code for the diagram. For example, we can define
an external procedure that prints an integer as follows.

external Print(in: Int);

3 Overall architecture

The Bloqqi compiler and editor use a common semantic analysis that is specified
once and reused by both the tools. The compiler generates C code that can be
compiled to execute Bloqqi programs. The editor renders Bloqqi programs visu-
ally and allows the user to change them. Both these computations are based on the
same semantic specification.

Bloqqi programs are stored on file using a textual syntax defined by a context-
free grammar. Both the compiler and the editor load Bloqqi programs in the same
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(a) Compiler architecture.
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(b) Editor architecture.

Figure 7: Architecture overview for the Bloqqi compiler and editor.

way, by first parsing the textual syntax of the program, and then analyzing the
parsed structure in order to report errors, generate C code or render diagrams vi-
sually. When the user changes a program in the editor and saves the change, the
editor will serialize the program back to file again using the textual syntax.

Figure 7 shows the overall architecture for the compiler and the editor. The
figure shows that the compiler is generated by the metacompilation tool JastAdd
[EH07b] together with a scanner and parser generator, called JFlex and Beaver.
The semantic analysis is specified in JastAdd and the syntactical analysis is spec-
ified using the scanner and parser generators. JastAdd represents programs as
abstract syntax trees (ASTs) and the output of JastAdd is Java classes representing
the ASTs. The parser then constructs ASTs by creating instances of the generated
Java classes. We will in later sections describe what semantic specifications look
like in JastAdd.

The figure also shows that the compiler is used by the editor, since many of
the semantic analyses done in the compiler are also useful in the editor. Examples
include rendering of diagrams and showing of error messages. In addition to the
compiler analyses, the editor includes advanced editing operations and additional
semantic analysis only used in the editor, which both are defined using JastAdd.
The editor also includes plain Java code to, for example, implement the visualiza-
tion in terms of shapes or colors and implement the interaction with the user.

The editor uses the Graphical Editing Framework (GEF)3, which is an Eclipse
framework for building graphical editors. This means that the Bloqqi editor runs
within Eclipse as a plugin. GEF uses the design pattern Model-View-Controller,
where the model can be any model defined as Java classes. For the Bloqqi editor,
the model is the AST defined by JastAdd, and the view describes how the AST is
visualized.

3https://eclipse.org/gef/
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Compiler SLOC
Abstract grammar 124
Frontend

Scanner specification 99
Parser specification 447
Semantic specification (JastAdd) 3314

Backend (JastAdd) 1203
Main program (Java) 580
Total 5767

Editor SLOC
Editing operations (JastAdd) 1088
Java 7482
Total 8570

Table 1: Source lines of code (SLOC) for the Bloqqi compiler and editor.

The number of source lines of code (SLOC) for the compiler and editor are
shown in Table 1, which have been measured with the tool cloc4. The compiler
is divided into two parts: the frontend and the backend. The syntactical and se-
mantic analyses are performed in the frontend, and the backend is responsible for
pretty printing and generating C code. The abstract grammar defines the AST
structure. As described earlier, the editor reuses the compiler, but adds additional
JastAdd specifications for editing operations and also Java code that describes the
visualization, user interaction, etc.

4 Reference Attribute Grammars

The semantics for the compiler and the editor are specified in the metacompilation
tool JastAdd [EH07b] with the declarative semantic formalism Reference Attribute
Grammars (RAGs) [Hed00]. One strength of RAGs is specifying the semantics of
software languages in a modular and extensible way. RAGs have previously been
used to specify compilers for complex languages like Java [EH07c] and Model-
ica [Mod12; Åke+10b]. The Java compiler first supported version 4 and was later
extended with support for Java 5, 6, 7 and 8, where each extension is specified as
a separate module that extends the previous modules [ÖH13; Hog14]. The Java
compiler has also been extended with other kinds of analysis, for example, data-
flow analysis [Söd+13] and refactoring support [Sch+08; Sch+09; SM10]. The
Modelica compiler JModelica.org has also been extended in a modular way, with
language constructs for model optimization [Hed+10]. This exemplifies that RAGs

4https://github.com/AlDanial/cloc
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is a powerful semantic formalism useful for specifying extensible tools for com-
plex software languages.

Reference attribute grammars [Hed00] is an extension to Attribute grammars
(AGs) by Knuth [Knu68]. Attribute grammars decorate trees with attributes that
are computed properties of nodes in a tree. These attributes are defined declar-
atively by directed equations. The left-hand side of an equation is an attribute,
and the right-hand side is an expression over the attributed AST for computing
the value of the left-hand side attribute. The expression must be free from ex-
ternally observable side effects. Thus, computing the value of the same attribute
several times will yield the same value. In JastAdd, the attributes are computed on-
demand, that is, the attributes are computed when they are accessed, and cached
for subsequent accesses so that each attribute value is computed at most once.

RAGs adds reference attributes to AGs, allowing the value of an attribute to
refer to other tree nodes. This makes it possible to super-impose graphs over the
tree and to more easily express non-local dependencies, such as that the type of
a name use is the same as the type of the corresponding name declaration, which
is usually a distant node. A RAG is specified in an object-oriented manner using
inheritance for node types and where equations can be overridden, like virtual
methods. A typical example of reference attributes is the name binding relation,
which can be expressed as a reference attribute decl on the use node and that refers
to the corresponding declaration node. Another example in the Bloqqi compiler is
the data-flow graph in a diagram.

JastAdd is a metacompilation system based on aspect-orientation and RAGs
[HM03; EH07b]. The central data structure in JastAdd is the abstract syntax tree
(AST), which is decorated with attributes. ASTs are defined by an abstract gram-
mar, which describes the structure of the AST in an object-oriented way. The
attributes are defined in static aspects in terms of the abstract grammar. Static as-
pects allow related attributes to be grouped together. For example, we can have one
aspect for all attributes concerning name analysis and another aspect for attributes
that support editor operations.

From an abstract grammar specification and an attribute specification, JastAdd
generates Java code, where each node type in the abstract grammar is translated to
a Java class and each attribute is translated to a method in the corresponding class.
JastAdd does not support parsing. Instead, any parser can be used as long as it
can create objects of the generated Java classes. For the Bloqqi compiler, we have
used the scanner generator JFlex5 and the parser generator Beaver6, both allowing
arbitrary Java code to be specified as semantic actions.

5http://jflex.de/
6http://beaver.sourceforge.net/
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diagram MyDiagram {
a;

b;

c;

connect(a, b);
connect(b, c);

}

(a) Textual representation

a b c

(b) Visual representation

Figure 8: An example program in PicoBloqqi

〈program〉 ::= 〈diagram〉*

〈diagram〉 ::= ’diagram’ 〈id〉 ’{’ 〈stmt〉* ’}’

〈stmt〉 ::= 〈block〉 | 〈connection〉

〈block〉 ::= 〈id〉 ’;’

〈connection〉 ::= ’connect’ ’(’ 〈id〉 ’,’ 〈id〉 ’)’ ’;’

Figure 9: Context-free grammar for PicoBloqqi. Kleene star (*) means zero or
more.

4.1 PicoBloqqi

RAGs and JastAdd will be introduced for a simplified variant of Bloqqi called
PicoBloqqi. A program in PicoBloqqi consists of diagrams, which in turn consist
of blocks and connections between the blocks that describe the data-flow. An
example program is shown in Figure 8. As we can see, the language has both a
textual and a visual syntax. The blocks implicitly have one input port (on the left
side in the visual syntax) and one output port (on the right side). The statement
connect(a, b) has two parts: a is the source and b is the target. The source
implicitly refers to the output port on the block referenced by a and the target
implicitly refers to the target port on b, as we can see in Figure 8b. PicoBloqqi
does not support user-defined block types.

A context-free grammar (CFG) expressed in EBNF for the PicoBloqqi lan-
guage is shown in Figure 9. A program consists of zero or more diagrams. A
diagram starts with the keyword diagram followed by an identifier and then state-
ments surrounded by curly braces. A statement can be either a block or a connec-
tion. A block has an identifier. A connection uses the keyword connect followed
by the source and the target specified as identifiers. The CFG only specifies the
concrete textual syntax of the language, and to analyze a program with JastAdd,
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Program ::= Diagram*;
Diagram ::= <Name:String> Stmt*;
abstract Stmt;
Block : Stmt ::= <ID:String>;
Connection : Stmt ::= Source:VarUse Target:VarUse;
VarUse ::= <ID:String>;

Figure 10: Abstract grammar for PicoBloqqi.

public class Program extends ASTNode {
public List<Diagram> getDiagrams();

}

public class Diagram extends ASTNode {
public String getName();
public List<Stmt> getBlocks();

}

public abstract class Stmt extends ASTNode {
}

public class Block extends Stmt {
public String getID();

}

Figure 11: Part of API for generated Java classes from Figure 10.

we need to create an abstract grammar as well and a parser that transforms the
textual syntax into an AST according to the abstract grammar.

The abstract grammar for PicoBloqqi is shown in Figure 10. Each rule in the
abstract grammar defines an AST class, where the left-hand side is the name of
the class and the right-hand side describes the children and the tokens (the latter
enclosed by <>) for the class. For example, the AST class Program consists of
zero or more diagrams. Tokens and children can be named using colon (:), where
the left-hand side is the name and the right hand-side is the type. For example, the
class Diagram has one token called Name of type String. When a child is spec-
ified without an explicit name, the name will implicitly be the same as the type.
The production for stmt in the CFG contains an alternative, and this production is
translated to an abstract class Stmt with two subclasses Block and Connection
in the abstract grammar. JastAdd supports arbitrary inheritance levels as long it
is single inheritance. This is useful, for example, when modelling expressions,
where we can have an abstract superclass Expr, and another abstract superclass
BinExpr that extends Expr, and then concrete subclasses like AddExpr that ex-
tends BinExpr. Multilevel inheritance allows more code reuse since common
code can be moved to the right level in the inheritance chain.

From the abstract grammar in Figure 10, JastAdd generates Java classes, and
part of the API for the generated classes is shown in Figure 11, where some getter
methods are shown. We can see that Kleene star (*) is translated to a method with
List as return type (and the method name ending with s). JastAdd also generates
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Program

Diagram
MyDiagram

Block
a

Block
b

Connection

VarUse
a

VarUse
b

decl() decl()

Figure 12: Simple AST. The VarUse nodes have a reference attribute decl that
refer to their declarations.

aspect NameAnalysisDecl {
/ / Dec la ra t ions
syn Block VarUse.decl();

/ / Equations
eq VarUse.decl() = lookup(getID());

}

Figure 13: Attribute decl.

other kinds of methods, for example, setter methods that are used by the parser
during the construction of the AST. All generated classes are subtypes to the class
ASTNode, which can be used to specify attributes and methods that are valid for
all nodes.

Defining Static Semantics using Attributes

We can now analyze programs by defining the semantics using attributes over
ASTs. For example, we can define an attribute for name uses that describes the
name binding relation, so that each VarUse node has an attribute decl that refers
to its declaration. This is illustrated in Figure 12, which consists of one diagram
with two blocks and one connection. The value of the decl attribute for the two
VarUse nodes are shown in the figure as dashed lines.

The attribute decl is specified in Figure 13, and consists of two parts, first the
attribute declaration and then the attribute equation. The attribute is declared as
a synthesized attribute (using the keyword syn) with the type Block on VarUse
nodes with the attribute name decl. A synthesized attribute means that the equa-
tion is defined by the node itself. The equation can then use information from
the node, thus, tokens, children and other attributes declared on the node. In this
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example, we define the equation to use another attribute lookup and we pass the
token ID as parameter. Thus, the right-hand side of the equal sign (=) specifies how
the value of the attribute is computed. The decl attribute is a reference attribute,
since the value is a reference to another AST node (the type is Block).

Since we use the attribute lookup in the equation for decl, the lookup at-
tribute is also declared on VarUse. The lookup attribute will search for a Block
node that matches the parameter name. Since we are looking for Block nodes,
the equation for lookup attribute needs to be defined by a node that has access
to Block nodes. In this case, Diagram nodes have access to Block nodes, so the
Diagram node can ask its children if they declare the name in question. Thus,
the lookup attribute is declared on VarUse nodes, but the equation is defined by
a Diagram node. When we want the equation for an attribute to be defined by
an ancestor node in the tree, we can use inherited attributes7 (using the keyword
inh). We declare the inherited attribute lookup (line 3) and the equation for it
(line 8-9) in Figure 14. The equation simply delegates to a synthesized attribute
localLookup passing the same parameter. Equations for inherited attributes have
the form eq T.getC().a() = ..., where T is the node type defining the equa-
tion, C is the child of T for which the equation is valid (it is possible to have
different equations for different children), and a is the name of the attribute.

The equation for the synthesized attribute localLookup simply traverses the
statement list in order to find out which of the statements that declares the given
name, using the synthesized attribute declares declared on Stmt. Synthesized
attributes are similar to virtual methods: each subtype can have its own equation
defining the attribute. This allows an equation for the attribute declares to be
defined on each subtype of Stmt (including Stmt). On lines 20-22, one equation
is defined for Block and another one is defined for Connection. The equation for
Block simply compares the given name with the value of the token ID and returns
itself if they match.

Figure 15 illustrates how the attribute decl is computed for the VarUse node
with the identifier b. For synthesized attributes, the attribute and the equation are
depicted together. For the inherited attribute lookup, the attribute declaration and
the equation are depicted separately. We can see that all attributes except decl are
parameterized and that the parameter b is passed around. The computation for the
VarUse with the identifier a is similar, but with the parameter a instead and the
search will stop at the first Block node, since it declares the name a.

To summarize how attributes work, we declare attributes on tree nodes that de-
scribe node properties. The attributes are defined by equations. The equations are
free from externally observable side-effects (we can compute the equation several
times and get the same result). Where the equation is defined depends on the at-
tribute kind. For synthesized attributes, the equation is defined by the node itself.
For inherited attributes, the equation is defined by an ancestor in the tree.

7Not to be confused with inheritance in object-orientation
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1 aspect NameAnalysisLookup {
2 / / Dec la ra t ions
3 inh Block VarUse.lookup(String name);
4 syn Block Diagram.localLookup(String name);
5 syn Block Stmt.declares(String name);
6
7 / / Equations
8 eq Diagram.getStmt().lookup(String name)
9 = localLookup(name);

10
11 eq Diagram.localLookup(String name) {
12 for (Stmt s: getStmts()) {
13 if (s.declares(name) != null) {
14 return s.declares(name);
15 }

16 }

17 return null;
18 }

19
20 eq Block.declares(String name)
21 = getID().equals(name) ? this : null;
22 eq Connection.declares(String name) = null;
23 }

Figure 14: Attribute lookup.

Program

Diagram
MyDiagram

Block Block Connection

VarUse
a

VarUse
b

inh lookup(’b’)

decl()

eq lookup(’b’)

localLookup(’b’)

declares(’b’) declares(’b’)

Figure 15: Illustrates how the attribute decl is computed for the rightmost
VarUse node.
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Non-Terminal Attributes

There are other kinds of attributes than synthesized and inherited attributes. We
will now describe non-terminal attributes (NTAs) [Vog+89], which are also known
as higher-order attributes. NTAs are used heavily in the Bloqqi compiler and edi-
tor. An NTA is an attribute whose value is a subtree that can itself have attributes,
and defined by an equation like any other attribute. In contrast to normal refer-
ence attributes, the equation on the right-hand side for an NTA must return a fresh
subtree.

For example, we can use an NTA to represent undeclared names. The name
analysis in Figure 14 uses the value null to represent when a block is not found.
Instead of using the value null, we can use the Null Object pattern [Woo97] for
undeclared names, and declare an NTA that represents the null object. This can be
specified as follows.

syn nta Block Program.unknownBlock() = new UnknownBlock("unknown");

Here, we declare the synthesized NTA unknownBlock on the root node, that is,
on the type Program, so that the NTA can be shared by the whole tree. The equa-
tion creates an object of the type UnknownBlock, which is a subtype of Block,
and is specified as follows in the abstract grammar.

UnknownBlock : Block;

We use a subtype so that we can have different equations for undeclared names
and declared names for other attributes, which is often useful during semantic
analysis. What remains is to change the name analysis in Figure 14 to use the new
NTA. Since it is defined on the root node, we can declare an inherited attribute
on all nodes that gives access to the NTA, and whose equation is defined by the
root node. The inherited attribute can then be used in the equations in the name
analysis. This will lead to that the value of the decl attribute will refer to the
unknownBlock() NTA value for all name uses that cannot be resolved.

NTAs are thus useful for representing undeclared names. Other use cases are
representing predefined names and predefined types. These examples do not de-
pend on information in the tree. However, the equations for NTAs may use other
attributes, and thus, the NTAs are also very useful for augmenting the AST with
new subtrees that depend on computed information. Examples in the Bloqqi com-
piler include an attribute that describes the list of all blocks for a diagram, includ-
ing the inherited ones.

Other Attributes

JastAdd supports more kinds of attributes than the ones already discussed. Collec-
tion attributes [Boy96; Mag+09] and circular attributes [Far86; MH07] are two
attribute kinds that are useful and that are used in the Bloqqi compiler.



Paper IV: Implementation 113

1 aspect Errors {
2 coll TreeSet<String> Program.errors();
3
4 VarUse contributes "Block \"" + getID() + "\" is not declared"
5 when decl() != null
6 to Program.errors();
7 }

Figure 16: Collection attribute errors and a contribution rule.

A collection attribute is declared on a node, and the value is defined by con-
tributions that are collected and combined together. For example, the set of all
errors in a program can be defined as a collection attribute on the Program node,
and each kind of error is then defined as a contribution rule. This can be seen in
Figure 16. First, we declare the collection attribute errors on Program as a set
of strings (line 2). Then, we define a contribution rule that reports if a VarUse
node uses a name that is not declared. When a collection attribute is accessed,
the evaluation engine will traverse the tree and look for contributions, and if they
match, they will be added to the collection attribute.

A circular attribute is an attribute whose value may depend on itself. For ex-
ample, in a graph of nodes, we can have an attribute that represents the set of
reachable nodes from a node. Computing this set for a node may be circular, since
graphs can contain cycles. This issue can be solved by declaring the attribute as
circular, which will make the attribute engine to solve the equation system us-
ing fix-point iteration. A circular attribute is well-defined if the domain of the
attributes involved in the cycle can be arranged in a lattice of finite height and all
equations involved are monotonic functions.

For more information about RAGs, see [Hed11; FH15].

5 The Bloqqi Compiler

The Bloqqi compiler analyzes programs syntactically and semantically to report
errors and generate code. The compiler specification is divided into two parts, the
frontend and the backend, both defined by a set of aspects. Most of the semantic
analysis is done in the frontend, and is reused in the backend to generate code. The
frontend includes, for example, aspects for name analysis and type analysis.

The name analysis is implemented in a similar fashion as the previous sec-
tion described, with a reference attribute decl() on identifier nodes that refer to
the corresponding declaration. The actual search for the declaration follows the
lookup pattern described earlier, but taking inheritance into account. Since Blo-
qqi supports user-defined block types, the compiler does name lookup for types as
well, which follows the same lookup pattern.
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diagramtype Main() {
t: T;

}

diagramtype T
(in: Int => out: Int) {

}
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Figure 17: The ports for a block are computed based on the parameters in the type
of the block. The ports are represented in the compiler as the NTAs inPorts()
and outPorts().

5.1 Computed Structures

The compiler makes extensive use of computed structures in the form of non-
terminal attributes (NTAs).

As described in Section 2, the parameters in a diagram will show up as ports
when the diagram is instantiated as a block. Since the ports depend on the block
type, they are computed based on the type analysis, and modelled as NTAs. Each
block has two NTAs, inPorts() and outPorts(), which is the list of input ports
and the list of output ports, respectively. These attributes are illustrated in Fig-
ure 17, where the diagram Main has one block t of type T. This block will then
have the NTAs inPorts() and outPorts() that reflect the parameters in the type
T, and the ports will have a reference to their corresponding parameter declaration.
The NTAs are defined as follows.

syn nta List<InPort> Block.inPorts() = type().createInPorts();
syn nta List<OutPort> Block.outPorts() = type().createOutPorts();

Thus, the equation asks the type for a list of input ports and output ports using
the methods createInPorts() and createOutPorts(). These methods must
return a fresh subtree, since a diagram can be instantiated as many blocks, and
each block needs to have its own list of input ports and output ports. Then each
InPort and OutPort node have attributes describing the dataflow, that is, the
incoming and outgoing connections. These attributes are, for example, used to
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check that input ports only have one incoming connection, to check type errors,
and to generate code.

The example in Figure 17 is very simple and does not make use of inheritance.
When a diagram S extends another diagram T , then all parameters, blocks and
connections in T are also in S. Thus, if T defines a block b, then there are two
versions of this block, one in T and one in S, which may have different data-flow.
For example, S may add a connection from block b to a local block. This is also
modelled as NTAs in the compiler. Thus, each diagram has an NTA blocks()
for its blocks taking into account inheritance. Then each block in blocks() has
the NTAs inPorts() and outPorts(), as described earlier. Similar to the com-
puted ports, the computed blocks have references back to the declared block. Each
diagram also has NTAs for the input parameters, output parameters and the con-
nections.

The equations for the attributes blocks() and connections() take inheri-
tance into account, and will include the blocks and connections defined in a su-
pertype. These attributes also consider the mechanisms of block redeclaration and
connection interception. Block redeclaration will change the type of a block de-
fined in a supertype, which is reflected in the equation for blocks(). Connection
interception will replace one connection defined in a supertype with two new con-
nections, and the two new connections will be in the attribute connections().

In addition to inheritance, the attributes blocks() and connections() will
also consider visual inlining, and expand an inlined block with its content, in a
transitive manner. Like with inheritance, the computed blocks will have references
to the blocks that are inlined and expanded, which may be several blocks since
inlining is transitive. These attributes are then used for editing operations in the
editor.

5.2 Semantic Analysis
The compiler performs several semantic analyses to find compile time errors be-
fore generating code, and some of them are discussed below.

Block Type Analysis. The type of a block may refer to another diagram, an al-
gorithmic function or an external procedure. If the block type refers to a
primitive type, like an Int, or to a structured type (similar to structs in C), a
type error is reported. When a block is redeclared, the compiler will check
that the new block type is a subtype of the previous type. Redeclare only
works when the block type is a diagram, since inheritance is only supported
for diagrams.

Data Type Analysis. The types that describe the data are called data types, and
they are different from block types, although the same name space is used.
Data types are explicitly attached to parameters and variables, and implicitly
attached to literals. A data type may be either a primitive type or a structured
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type, otherwise a type error is reported. Note that a diagram is not a valid
data type, which means that diagrams are not allowed to be passed around
as data. Nor does the language support references to diagrams, or any other
block type. The compiler will also check that the data types of the end points
of connections and interceptions are type compatible. An end point may be
attached to an anchor, like a parameter, a port or a variable.

Direction Analysis. Since the data-flow is directed, it is important that the end
points of connections and interceptions follow the data-flow rules for Blo-
qqi. The source of a connection may only refer to an anchor that is a source
anchor, and the target of a connection may only refer to a target anchor.
Source anchors include input parameters and output ports on blocks, and tar-
get anchors include output parameters and input ports on blocks. Variables
are also anchors, and there are different rules depending of what kind of
variable. State variables are both source and target anchors, input variables
are source anchors, and output variables are target anchor. The compiler
checks that these restrictions are not violated.

Unique Input Analysis. For a target anchor, like an output parameter and an in-
put port on a block, the number of incoming connections should be either
zero or one. However, when generating code, the number of incoming con-
nections to output parameters and input ports on blocks should be equal to
one, since default values are currently not supported for parameters. This is
only checked when generating code, and not in the editor, since otherwise
too many errors would be reported during the development of a program.

Finite Block Structure Analysis. It is a compile-time error to have recursion in
user-defined block types, since it would lead to infinite structures. An exam-
ple is a diagram consisting of a block of the same block type as the diagram
itself. The compiler does reachability analysis over the block types to de-
tect circular type definitions, and if found, reports an error. The reachability
analysis is defined using circular attributes, so that each diagram has an at-
tribute defining the set of reachable block types from that diagram. The
value of the attribute is defined as a set so that the blocks involved in a cir-
cular block type definition can be highlighted as red in the editor.

Data-Flow Cycles Analysis. It is a compile-time error if the data-flow graph in a
diagram contains cycles. To analyze this, the compiler represents the blocks
as nodes and the connections as edges in a graph. The compiler then uses
this graph to detect cycles using reachability analysis, similar to the analysis
for circular block types. Note that state variables are not represented in
the graph, which means that cycles can be broken by introducing a state
variable in a data-flow cycle. However, this will delay the value from the
state variable by one execution period.
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Circular Inheritance Analysis. Since diagram inheritance is supported, the com-
piler needs to check that the inheritance chain is not circular. As an example,
diagram A extends diagram B and B extends A, leading to a cycle. This is de-
tected by the compiler and is again implemented using circular attributes,
but in this case, the attribute value is of boolean type, only saying if there is
a cycle or not.

6 The Bloqqi Editor
The editor is implemented as an Eclipse plugin using the Graphical Editing Frame-
work (GEF) in Eclipse. GEF is based on the model-view-controller (MVC) pat-
tern, where the model can be any arbitrary Java objects. The Bloqqi editor reuses
the attributed AST from the compiler as the model, with some additional attributes
and methods that are specifically defined for the editor, like editing operations for
changing the AST. Since JastAdd generates ordinary Java classes and translates
attributes to methods, the AST can easily be used in GEF. The view part of the
editor describes how the diagrams are visualized, like shapes, colors, etc. The
controller part describes the interaction with the user and how the interaction af-
fects the AST, like adding a new block or intercepting a connection. The editor
also includes advanced editing support in form of a wizard for feature selection.

When a file is opened in the editor, the editor reads the file by parsing it into an
AST that is decorated with attributes. The attributes are then used to visualize the
diagram. When the user saves the diagram, it is serialized back to the file using
the pretty printer defined for the compiler.

6.1 Visualizing Computed Structures
The visualization of a diagram requires semantic analysis, since the content of
a diagram is computed. For example, the blocks and connections in a diagram
depends on inheritance. Also, the number of input ports and output ports a block
has depends on the block type. In addition to this, visual inlining needs to be
considered.

As described earlier, the compiler already computes these structures as NTAs.
So instead of reimplementing these computations in the editor as well, we reuse
these NTAs in the editor. For example, the attributes blocks() and connections()
are used when a diagram is visualized.

In addition to the computed structures, the editor needs some computed prop-
erties, such as if a block is inherited or local, or if a connection is intercepted with
two new connections. These computed properties are then used in the visualiza-
tion. For example, a block that is local is visualized as blue with solid lines and an
inherited block is visualized as grey with dashed lines.

When a file is opened, the decorated AST is mapped to data structures required
by the MVC pattern in GEF. Thus, the editor will create controller objects for the
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Figure 18: Semantic feedback when a connection is created. Connecting to a
green port will not introduce any semantic errors. The mouse hovers over the port
on the Mul block, and the editor shows the port name and type.

interesting nodes in the decorated AST (from the editor perspective). The con-
troller objects describe the interaction with the user, and also how the view objects
are created. The controller and the view objects have the form of a tree, match-
ing the form of the AST. A controller object knows both about the corresponding
view object and the node in the AST, and uses attributes in the AST node to set
properties in the view object, such as if a block is local or inherited.

6.2 Semantic Feedback

Since all attributes defined in the compiler are accessible in the editor, we can reuse
them for more than visualization. In particular, we can use attributes for giving
semantic feedback. There are two kinds of semantic feedback, permanent and
transient semantic feedback. Examples of permanent semantic feedback include
connections that have type errors or are involved in a data-flow cycle, and which
are colored red. Transient semantic feedback is typically given by the editor while
the user is editing a diagram.

One example of transient semantic feedback is when creating a new connection
or when intercepting a connection. A connection is type correct if the types of the
connection end points are type compatible. When a connection is created, the
user first points out the source end point, then the target end point. When the
user is about to point the target end point, the editor will give semantic feedback
by coloring the ports, either yellow or green. Green ports mean that connecting
to this port will not introduce any new semantic errors, and yellow means that a
semantic error will be introduced. Furthermore, during connection creation, the
editor will color those input ports yellow that already have one or more incoming
connection. This is illustrated in Figure 18.

Another example of transient semantic feedback is to show the name and data
type of a block port when the user hovers with the mouse over it. This is also shown
in Figure 18. These port properties depend on the block type, and the feedback is
implemented using attributes already defined in the compiler.
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6.3 Name Bindings
Since the visualization of a diagram is computed, changes in diagrams made by
the user need to be mapped back by the editor to the source AST. For example,
connections are visualized as arrows between two ports, but they are represented
in the source AST as two qualified names that are resolved by the name analysis.
Thus, when an endpoint of a connection is defined by the user clicking on a port
p on block b, a qualified name b.p is created that will be part of the connection,
for instance, connect(b.p, ...). When the user clicks on the port, the editor
asks the corresponding port node in the AST how it can be accessed using the
method access, and a qualified name is returned. This technique is similar to the
technique for refactoring presented by Max Schäfer [Sch+08; FH13], see related
work for details (Section 9).

The same block name could be declared both in a subtype and a supertype,
representing two different blocks. To disambiguate the access, the name can be
qualified. For example, consider a block b in type T and a subtype S of T, then
block b can be accessed as T::b in S. Note that the user sees all blocks and can
distinguish between them simply by clicking on them, and does not have to be
aware of how the disambiguation is done textually. When a connection is created
to a block declared in a supertype, the editor will automatically qualify it with the
supertype to avoid future name conflicts. It is, however, a compile-time error to
declare two blocks with the same name in the same diagram type.

Some block names are not interesting for the user, for example, the name of an
addition block. When a simple block, like an addition, is created, the editor will
automatically create a locally unique name for it. The name will be on the form
T_number, where T is the type of the block and number is an integer number that
is generated by the editor, for example, Add_1.

6.4 Preserving Name Bindings
When a declaration is introduced or renamed, it is important that the editor pre-
serves existing name bindings. This is challenging when names can be shadowed,
like with block names in combination with inheritance. Here, introducing a new
declaration could shadow declarations in supertypes, and the name bindings of
existing accesses could change if no special action was taken.

Consider the example in Figure 19, where the type B accesses the block b
declared in the supertype A. Thus, there is a name binding between the access
of the block and the declaration of the block, and it is important that this name
binding is preserved when the user changes the diagram. In this example, there are
two kinds of changes that may affect the name binding. One way is to introduce a
new block in B also called b, and another way is to rename the existing block b2
to b.

The editor preserves name bindings by rewriting the source program to use
fully qualified names for name uses that access blocks declared in a supertype.
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diagramtype A {
b: ...;

}

diagramtype B extends A {
b2: ...;

connect(b.out, b2.in);
}

Figure 19: In the compiler, the accesses are fully qualified, and the access to
b.out is rewritten to A::b.out.

JastAdd supports rewrites [EH04] that allow AST nodes to be conditionally rewrit-
ten. A rewrite rule is specified for an AST class and consists of a rewrite condition
and an expression for the new node. The rewrite is activated on demand, that is,
when the node is accessed for the first time and the rewrite condition evaluates to
true. Both the rewrite condition and rewrite expression may use attributes, and in
this case, attributes from the name analysis and type analysis are used. For the
example in Figure 19, the access to b.out is rewritten to A::b.out. Having fully
qualified names makes it easy to implement rename and operations for adding new
blocks. Shadowing is only permitted for blocks, and is not allowed, for instance,
for parameters and types. When the diagram is saved and stored to file, the pretty
printer will simplify accesses by removing the type qualifier if the block can be
accessed without it.

6.5 Updating the view

When the user changes a diagram, the editor maps the change to the AST. As de-
scribed earlier, attributes are computed when needed and cached for subsequent
accesses to improve performance. Since the AST is changed (structure or tokens
may have changed), cached attribute values may become inconsistent, and all at-
tribute caches are therefore cleared. Then the AST tells the editor that a change
has occurred using the Observer pattern and the editor responds to this by updating
the view. When the view is updated, the diagram is revisualized and the attributes
needed are recomputed. Clearing all attributes may lead to costly recomputations,
an issue we discuss in further detail in Section 8.4.

6.6 Layout

The user can move blocks around freely and change the size of them. The coordi-
nates and the sizes for the blocks are stored as annotations in the same file as the
diagram. The layout is often used by users as a secondary notation that encodes
information and makes the diagram more readable [Moo09]. The graphical infor-
mation is only used in the editor and will not affect the meaning of the diagram,
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thus, the compiler will just ignore this information. When a diagram is opened,
the editor will do automatic layout if the diagram lacks coordinates. The user can
also enforce the editor to do automatic layout as an editing operation.

We use the tool KLay [Sch+14] for automatic layout, which has specialized
layout algorithms for data-flow diagrams. KLay will also layout the connections,
but currently, the editor does not store coordinates for the connections. Instead,
the editor use Manhattan layout to layout the connection between two endpoints,
which will possibly visually break the connection in the middle. By adding coor-
dinates for connections, more advanced automatic layout could be used, yielding
even better results.

7 Code Generation

Bloqqi programs can be executed by first generating C code using the Bloqqi com-
piler, then compile the generated C code using a C compiler, and finally run the
compiled C code.

The execution scheme is periodic, for example, a program is executed 10 or
100 times per second. There is one execution entry point for each program, and
currently, that is the diagram type with the name Main. The execution scheme is
illustrated in the following C code.

Main_STATE state = ...;
while (...) {
read_sensor_values(&state);

Main(&state);

send_to_actuators(&state);

sleep();

}

First, state variables are initialized, which are stored between the periods. Then
in each period, first sensor values are read, then the control values are computed
based on state variables and sensor values, and finally the control values are sent to
actuators. The task of the code generation is to generate code for the Main function
from the corresponding diagram type (and all diagram types it uses, transitively).

The code generation has been implemented as inter-type methods [Kic+01;
EH07b], which are imperative Java methods that are defined in aspects, like at-
tributes. Inter-type methods may have side effects and can use attributes. The
inter-type methods for the code generation traverse the AST and use attributes to
compute what C code to generate. This is a common pattern for code generation
when using RAGs; attributes specified for the frontend are reused by the backend
when generating code. For example, when generating code for a diagram type,
the attribute blocks() is used, which includes all blocks, both local and inher-
ited blocks, thus flattening the diagram inheritance. Also, each port on a block
has attributes describing the ingoing and outgoing connections, which are used to
translate connections to C code. In addition to the attributes defined in the fron-
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diagramtype Inc(in: Int=>out: Int);

diagramtype Main() {
inc: Inc;

print: Print;

connect(2, inc.in);
connect(inc.out, print.in);

}

(a) Bloqqi code

typedef struct {
Int out;

} Inc_RES;

Inc_RES Inc(Int in);

void Main(Main_STATE* _state){
Inc_RES inc = Inc(2);
Print(inc.out);

}

(b) Generated C code

Figure 20: A simple Bloqqi program is translated to C code. The definition of
diagram type Inc has been left out.

tend, some additional attributes are defined specifically for the code generation.
For example, an attribute is defined to compute if a diagram type contains state
variables directly or indirectly, this by checking if the types of the blocks contain
state variables, in a transitive manner.

7.1 Simple Code Generation Scheme

The basic code generation scheme is translating all diagram types to functions,
and all blocks to function calls and storing the results in local variables. The
connections between the blocks describe the data-flow, and thus the dependencies
between the blocks constrains in which order the blocks can be executed. For
example, when there is a connection from a block A to a block B, then A needs to
be executed before B, and the result of executing A is used when executing B.

The data-flow is a partial order, thus, for most diagrams, there are many ways to
execute the same diagram. The Bloqqi compiler creates a total execution order by
using the data-flow together with the block declaration order in the diagram type.
This causes the blocks for the same diagram to always be executed in the same
order, thus, the execution order is deterministic. Having a deterministic execution
order is useful when debugging programs. For example, while debugging, we may
use an external function that prints values for debugging purposes.

The data-flow in Bloqqi is acyclic. If a diagram contains data-flow cycles, a
compile-time error is reported. However, the user can break data-flow cycles by
explicitly introducing variables.

Figure 20 shows how a simple Bloqqi program is translated to C code. The
diagram type Main will print out the value 3 in each period. Note that no state
variables or sensor values are used in this example. The Main diagram consists of
two blocks: the block inc that increments the input value by one and the block
print that prints out the value. These two blocks are translated to two function
calls. We can see that the block inc is executed before the block print, since
inc produces data to print. We can also see that the function calls contain actual
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parameters that match the incoming connections for the corresponding block. For
example, the literal 2 is connected to the block inc. Since diagram types can have
several output parameters, and thus several return values, a struct containing the
return values is generated for each diagram type with at least one output parameter.
In this example, the struct Inc_RES has been generated for the diagram type Inc.
A local variable of this struct is then used to store the result from the function call
to Inc, so that the value can be used in the call to Print. The function Main has
an implicit parameter _state that is used to store variables between the periods,
and which will be described next.

For a diagram type S that extends another diagram type T, then when generat-
ing code for S, the content of T is copied to S, in a transitive manner. Thus, the
subtype relation is not directly visible in the generated code. This is possible since
Bloqqi does not support references or dynamic dispatch. Instead all types can be
determined statically by the compiler. Anonymous subtypes are translated to cor-
responding top-level diagram types with generated names that are unique to avoid
name conflicts.

7.2 Variables

Bloqqi supports variables that can be used to store values between periods. The
code generation handles variables by generating structs representing the variables
and passing around pointers to values of these structs as implicit function parame-
ters. We have already seen the implicit state variable in the Main function.

Figure 21a shows an example Bloqqi program that makes use of variables.
The Main diagram consists of one accumulator block and one block that prints
the accumulated value. The accumulator block has an internal state variable that
is increased each period with the value of the input parameter. In this case, the
accumulator will in each period increase the value by 1. Thus, when executing this
program, the output will be the sequence of numbers starting from 1, that is, 1, 2, 3,
etc. The diagram type Acc implementing the accumulator consists of one variable
state and one addition block. Every time a block of this type is executed, the
value of the variable state is added together with the input parameter in. The
result of the addition is stored in the variable state again and is exposed as the
output parameter out. The visual representation of the diagram type Acc can be
seen in Figure 3.

The generated C code for Figure 21a is shown in Figure 21b. The variable in-
side Acc is represented with the struct Acc_STATE. Since Main has an accumulator
block, the state struct for Main consists of a field acc with the type Acc_STATE. If,
for example, Main instead had two accumulators, then the state struct would have
two fields with the type Acc_STATE. When the function Acc is called, the field
acc is passed as an implicit parameter. In general, the state structs are generated
by flattening out the blocks that directly or indirectly contain variables. Structs
correspond to diagrams and field names correspond to block names.
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diagramtype Main() {
acc: Acc;

print: Print;

connect(1, acc.in);
connect(acc.out, print.in);

}

diagramtype Acc
(in: Int => out: Int) {

var state: Int;
add: Add;

connect(in, add.in1);
connect(state, add.in2);
connect(add.out, out);
connect(add.out, state);

}

(a) Bloqqi code

typedef struct {
Int state;

} Acc_STATE;

typedef struct {
Acc_STATE acc;

} Main_STATE;

void Main(Main_STATE* _state) {
Acc_RES acc = Acc(1, &_state->acc);
Print(acc.out);

}

Acc_RES Acc

(Int in, Acc_STATE* _state) {
Add_RES add = Add(in, _state->state);
_state->state = add.out;
Acc_RES _result;

_result.out = add.out;
return _result;

}

(b) Generated C code

Figure 21: A Bloqqi program that contains a variable.
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diagramtype Main {
sensor: Sensor;

actuator: Actuator;

connect(sensor.out, actuator.in);
}

diagramtype Sensor(=> out: Int) {
input value: Int;
connect(value, out);

}

diagramtype Actuator(in: Int) {
output value: Int;
connect(in, value);

}

(a) Bloqqi program

typedef struct {
Int value;

} Sensor_STATE;

typedef struct {
Int value;

} Actuator_STATE;

typedef struct {
Sensor_STATE sensor;

Actuator_STATE actuator;

} Main_STATE;

(b) Generated struct

Figure 22: A diagram describing a sensor uses an input variable to communicate
with the environment.

7.3 Communication Variables

As described in Section 2.2, Bloqqi also supports communication variables that
are used to communicate with the environment.

Figure 22a shows an example program that uses an input variable and an
output variable, encapsulated in the diagram types Sensor and Actuator, re-
spectively. These diagram types are then used in the diagram Main. In the gen-
erated code, the input and output variables will be in the same struct as state
variables. For this example, the generated struct can be seen in Figure 22b.
Using this struct, we can now write a program that lets the Bloqqi program
communicate with the environment, as follows.

Main_STATE state = ...;
while (...) {
state.sensor.value = sensor_read();
Main(&state);

actuator_write(state.actuator.value);

sleep();

}

7.4 FMI Integration

Testing a control system before deployment is a useful technique to reduce the
risk of unexpected behavior in the real setting. To test the control system, the real
setting needs to be modelled and simulated in some way. Modelica [Mod12] is a
good choice when the real setting can be described by differential algebraic equa-
tions. The Functional Mockup Interface (FMI) is a standard that allows dynamic
models from different tools to be used together [Blo+12], and which is supported
by many Modelica tools. Thus, Modelica models can be exported as simulation
executables, called Functional Mockup Units (FMUs). FMUs can be used to simu-
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late the real setting and be used together with Bloqqi programs. The FMU consists
of binaries to simulate the models and XML files describing the models, and may
also contain the source code in C for the binaries.

The FMI standard has two ways that models from different tools can be used
together: model exchange and co-simulation. Model exchange can be seen as
white box. When several model-exchange FMUs are used together, they make
up an equation system that is solved as one system with one numerical solver,
external to the FMUs. A co-simulation FMU, on the other hand, can be seen as a
black box with input and output, and contains an internal numerical solver. When
several co-simulation FMUs are used together, they are solved independently and
communicate with each other at discrete communication points. The program that
connects several FMUs and manages the communication is called the master. The
master can then tell an FMU to simulate for a given time. Co-simulation fits well
with testing Bloqqi programs. This is because a control system communicates
at discrete points in time with the environment by using sensors and actuators,
and we want the simulated model to be solved independently and to only interact
periodically with the Bloqqi program.

Tank example

We have experimented with FMI and Bloqqi by modelling a tank in Modelica
and a tank regulator in Bloqqi. The model has been exported as a co-simulation
FMU using the Modelica compiler JModelica.org [Åke+10b]. The master program
has been written in C, which communicates both with the FMU and the Bloqqi
program. We have used the C library FMILibrary8 to access the FMU.

The tank contains some kind of liquid. It has one input valve that can be
opened to fill the tank and one output valve to empty the tank. The tank also has
one sensor to measure the current liquid level. The tank regulator uses the level
sensor to decide when to open and close the valves, in order to achieve a given set
point level. The Bloqqi program will first fill the tank to the liquid level 1.8 meters
and stay there for some time, and then empty it to 0.2 meters liquid. The result of
running the Bloqqi program with the simulated model is plotted in Figure 23a.

The tank model in Modelica is shown in Figure 23b, which has been adapted
from an example in [Fri10]. The model consists of variables and equations. Some
of the variables are constant and some vary over time. When the input valve is
open, the inflow of liquid is constant (5 liters/s). When the output valve is open,
the outflow depends on the pressure, and thus on the current liquid level and the
area of the output valve (5cm∗5cm). The liquid level is expressed as a mass bal-
ance equation, that is, expressed in terms of how much liquid that is entering or
leaving the tank. The input variables upperValveOpen and lowerValveOpen
specify if the valves are open (value above 0.0). The values of these variables
can be changed during simulation, and the variables act as actuators that are set

8http://www.jmodelica.org/FMILibrary
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(a) Simulation results

model Tank
Real inFlow(unit="m3/s") = 0.005;
Real area(unit="m2") = 0.5*0.5;
Real outArea(unit="m2") = 0.05*0.05;

Real level(start=0, unit="m");
Real qInFlow(unit="m3/s");
Real qOutFlow(unit="m3/s");

input Real upperValveOpen;
input Real lowerValveOpen;

equation
der(level) = (qInFlow-qOutFlow)/area;
qInFlow =
if upperValveOpen > 0.0 then
inFlow

else 0.0;
qOutFlow =
if lowerValveOpen > 0.0 then
(outArea*sqrt(2*9.82*level))

else 0.0;
end Tank;

(b) Tank model in Modelica

Figure 23: Using a FMU to simulate a tank and a tank regulator in Bloqqi.
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(a) Illustration

while (tcur < tend) {
/ / Read sensor values
state.tank.levelSensor.value

= get_real(fmu, "level");

/ / Run tank r e g u l a t o r
Main(&state);

/ / Send to ac tua to rs
set_real(fmu, "upperValveOpen",

state.tank.upperValve.open);

set_real(fmu, "lowerValveOpen",

state.tank.lowerValve.open);

/ / Run FMU f o r one second
do_step(fmu, tcur, 1.0);

/ / Increase cu r ren t t ime wi th 1
tcur += 1.0;

}

(b) C code

Figure 24: Master program for the tank example.

by the tank regulator. The actual inflow (qInFlow) and outflow (qOutFlow) are
described in terms of the input variables.

The master program is illustrated in Figure 24a. The Bloqqi program is re-
trieving the current liquid level, computing if the valves should be open or closed
and sending this information to the FMU, and then the FMU is running for some
time to simulate the tank. The C code for the master program is illustrated in Fig-
ure 24b. The C variable state contains the variables representing the sensors and
actuators in the Bloqqi program. First the tank regulator is run and then the FMU
is run for 1 second in simulated time. Thus, the tank regulator is simulated to run
once every second and is assumed to take zero time.

In this example, the master program is written in C, and it connects the Bloqqi
program with the FMU. It would also be possible to generate FMUs for Bloqqi
programs, allowing Bloqqi programs to be imported to any tool that supports FMI
import. For example, it would then be possible to import a Bloqqi as a block in
Simulink using the FMI toolbox9. However, there is a difference between dynamic
models that are described by equations like in Modelica and the programs in Blo-
qqi, since the equations in Modelica are typically continuous and the variables vary
continuously over time, but the values in Bloqqi are computed at discrete points in
time.

9http://www.modelon.com/products/fmi-tools/fmi-toolbox-for-matlabsimulink/
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7.5 ABB ControlBuilder Integration

We have experimented with integrating Bloqqi programs with ABB ControlBuilder
[Con16], in two alternative ways. First, Bloqqi programs can be exported in the
XML-format used in ControlBuilder, which allows Bloqqi programs to be im-
ported to ControlBuilder. Second, we have integrated the C code that the Bloqqi
compiler generates with programs defined in ControlBuilder, in an experimental
version of it, removing the extra step of importing the program. The Control-
Builder integration has been defined in a separate module that extends the Bloqqi
compiler, and which contains around 300 lines of JastAdd code and around 60
lines of Java code.

We have also experimented with running Bloqqi programs on controller hard-
ware from ABB, called AC 800M controllers, which can be seen in Figure 25.
ControlBuilder can deploy programs on controller hardware, like AC 800M. When
the program is running on the hardware, the values that are computed in the pro-
gram can be seen in ControlBuilder, for instance, for debugging. We have been
able to see what values the Bloqqi programs computed in ControlBuilder while the
programs were running.

8 Discussion

During the development of Bloqqi and its tools, we made some design choices
which are discussed in this section.

8.1 Texual Syntax

Bloqqi has already from the start had a textual syntax that is complete for the
language and that is used as the serialization format. The visual syntax is only
partial and not all language features are supported by the editor. We believe that
the textual syntax has been helpful, for example, when developing the language,
but also since it makes the programs more concise and it allows existing text-based
tools to be used.

Developing A New Language

When developing a new language, it is useful to experiment with different lan-
guage constructs in an iterative manner. Developing a graphical editor, including
determining how constructs are visualized and how the user interacts with the pro-
gram, requires much effort. Typically, during the development of new language
constructs, we developed them gradually, starting with a problem we tried to solve
and discussions about how to solve it. After reaching some conclusions, we tried
out the ideas by implementing the new language constructs in the compiler, by
first defining the textual syntax for them and then the semantic analysis. After the
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Figure 25: We have performed test runs of Bloqqi programs on AC 800M con-
trollers by ABB. The controller was not connected to any physical process, but we
were able to see the values computed by the Bloqqi program by using the Control-
Builder software.
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new constructs were implemented in the compiler, we implemented them in the
editor, by first defining the visualization for them, and then the user interaction.
Typically, the diagrams were changed textually during the development when only
the visualization had been implemented.

With a textual syntax and a compiler, it is easy to write test cases, in the form
of input (the program) and output, where the output can be an error message or the
output when executing the program. Before implementing the language constructs
in the editor, the semantic analysis was tested thoroughly in the compiler. This
way, the implementation in the editor could focus on only the visualization and
the user interaction.

During the discussions about new language constructs, we often used both tex-
tual notation and visual notation to better understand each other. Not that these
notations used in the discussions became final in the language, but it made the
communication easier. The visual notation is useful to describe graph-based struc-
tures, like the data-flow. The data-flow is difficult to understand from only looking
at the connect statements. Examples of when we used only the textual notation
include when we discussed how to specify recommendations, and still there is no
visual notation for specifying them. It is hard to exactly define when visual no-
tation is useful and when textual notation is useful, but we have found them both
valuable.

Serialization

In some way, we need to serialize the programs so that we can store them. There
are alternatives to having a custom textual syntax. One alternative is to store the
diagrams in a binary serialization format like Java serialization. Another is to
use a general textual serialization format like the Human-Usable Textual Nota-
tion [OMG04] (HUTN). We believe that programs should be stored textually, and
not binary, so that programs can be created and changed with ordinary text editors.
Having a textual syntax also allows existing text-based tools to be used, such as
version-control systems and text-based merge tools.

The question is then if the serialization format should be automatically derived
or custom made. A benefit of using a custom textual syntax is that it is more
concise and readable, and more adapted for the domain. A drawback is that it
requires more implementation effort.

Having a serialization format that is directly derived from the abstract gram-
mar or meta-model makes stored programs more fragile, since changing the meta-
model will break the compatibility with existing programs. Having a custom tex-
tual syntax allows the internal representation to be changed without any backward
compatibility issues. One example of a fragile serialization technique is to refer
to nodes in lists using node indices, which makes a local reordering change in one
file unnecessarily affect other files that refer to the changed node.
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8.2 Simple Prototype Language

The Bloqqi language is a prototype language, and during the development of a
prototype language, we believe that one should strive to make the language as
simple as possible, by reducing the number of nice-to-have features. One example
of a language feature in the Bloqqi language that was introduced because it was
nice to have is the simplification of block accesses, which is illustrated with the
following code.

diagramtype Main {
a: T;

b: T;

connect(a, b);
}

Here, the block type T is assumed to have one input parameter and one output
parameter, with the names in and out, respectively. However, in the connect
statements, only the block names are used, a and b. This is valid in Bloqqi, since
there is only one input parameter and only one output parameter in T, thus, the
accesses will implicitly refer to the ports corresponding to these parameters. This
is implemented using rewrites, so that the access a is rewritten to a.out and the
access b is rewritten to b.in. This language feature was introduced in the early
days of Bloqqi and has not yet been removed, because many test cases use the
feature. In retrospect, it would be better if this feature was never introduced, since
it only makes the compiler implementation more difficult.

8.3 The Choice of Editor Framework

The graphical editor is implemented using the Graphical Editing Framework (GEF)
in Eclipse. During the development of the editor, we evaluated and tested different
graphical editor frameworks.

There are several frameworks built on top of GEF, for example, Graphiti10

and GMF11. These frameworks try to make it easier to create graphical editors,
since GEF requires much boilerplate code and has a steep learning curve. One
requirement that we had was that we wanted to use the JastAdd AST as the model,
thus, the framework should support arbitrary Java objects as the model. The GMF
framework requires the model to be an EMF model, defined by an EMF meta-
model12. It would be possible to use JastEMF [Bür+11], a tool that enables se-
mantics to be defined over EMF models with the use of JastAdd, but this adds
an additional generation step. Also, EMF models have higher memory footprint
than JastAdd models. Furthermore, we could not find any straight-forward way in
GMF for supporting the computed structures that we needed in Bloqqi.

10https://eclipse.org/graphiti/
11https://eclipse.org/modeling/gmp/
12https://eclipse.org/modeling/emf/
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We tested the Graphiti framework, which removes boilerplate and makes it
easy for creating graphical editors for simple languages. However, creating an
editor using Graphiti for a more complicated language and features not anticipated
by the frameworks developers, leads to writing GEF code. Because of this, we
chose to use GEF directly instead, since it offers more flexibility. One observation
is that if one wants to create a novel language with new features, it is better to
chose a framework with a high degree of flexibility, since there is otherwise a risk
of the framework being too limiting.

Other approaches to creating graphical editors is to define the visual syntax
using a formal visual grammar. However, there is no standard way of doing
this, like context-free grammars for textual languages. Approaches have been
suggested that use constraint multiset grammars [Mar94] and graph grammars
[Min02; Min06]. These approaches generate visual parsers that take a diagram
and determine whether it is syntactically correct or not. One benefit of this is that
it allows free-hand editing, making it possible to temporarily have diagrams that
are syntactically incorrect. In comparison, the Bloqqi editor is a syntax-directed
editor, but the visual syntax for Bloqqi is rather simple and does not restrict the
user very much.

The challenge with these formal approaches is to model the computed visual
syntax of Bloqqi. For example, the ports on a block are computed based on the
block type, which in turn depend on inheritance since subtypes can have new pa-
rameters, and the blocks are computed based on inheritance. Thus, the visual
syntax in Bloqqi is dependent on the semantics. To check if a diagram is valid
visually (for example, how many ports a block has), the semantics needs to be an-
alyzed first. Free-hand editing would allow the user to add more ports to a block
than the block type has parameters, which does not make sense.

8.4 Incremental Evaluation

As described in Section 6, the editor flushes all attribute caches whenever a dia-
gram is changed, and the attributes are recomputed again when they are needed.
We have run the editor with diagrams of 500 blocks and connections, and we per-
ceived the interaction as immediate. However, flushing all attribute caches for each
change could be problematic for large programs.

Performance can be improved by adding incremental evaluation [SH12], which
reduces the number of attribute caches that are flushed. This can be done by track-
ing the dependencies between the attributes dynamically during the attribute eval-
uation, and then use this dependency information to limit the flushing to attributes
that are affected by the change. The dependency tracking can be implemented
with different levels of granularity, where the tradeoff is between precision and
performance overhead.

We have experimented with very a coarse level granularity, where the program
is divided into two parts, the user code and the library code. It is possible to write
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the compiler attributes in such a way that the library code is not dependent on the
user code. When a change is made, the attribute computations for the library code
are not flushed, only the attributes for the user code. We believe that this is a good
tradeoff in many cases, since most code will be in libraries, which is not changed
during a normal editing session. However, it is part of future work to study this
idea in more detail.

9 Related Work

We will now relate the implementation of the Bloqqi compiler and editor to pre-
vious work on using attribute grammars in visual editors, or editors with semantic
feedback.

Schmidt et. al. [SK03] have also used attribute grammars to implement struc-
tured editors for visual languages. However, they focus on general and predefined
visual patterns, such as lists, graphs, tables and line connections, which can be
reused by different visual languages. The user can refine these patterns and also
create new visual patterns. Similar to our approach, they use an abstract syntax
tree as the central data structure. The task for the language developer is then to
reuse and assign visual patterns to tree nodes, which describe how the nodes are
visualized. The visual patterns can be specialized using attribute equations, such
as, defining the size of list nodes or how much padding there is between nodes.
However, their attribute grammars do not support reference attributes, and they do
not support visualization of computed structures, which the Bloqqi language and
editor are heavily based on.

Schäfer et. al. [Sch+08; Sch+09; SM10] have used RAGs to implement refac-
toring for Java, like renaming and extract method. Especially relevant for this
report is the presented renaming technique. The authors introduce the concept of
an access function, which is the inverse of the lookup function. The lookup func-
tion is like the lookup attribute, described earlier in this report. A lookup function
takes a program point and an access node, and gives back the corresponding dec-
laration, if found. The access function on the other hand takes a program point and
a declaration and gives back an access node, that can be used to access the given
declaration at the given program point. The access function may introduce qual-
ified names, like adding the qualifier this in the returned access node to resolve
name conflicts. Schäfer et. al. also observed that the invariant of preserving name
bindings is useful when specifying and implementing renaming. If the invariant
is violated during a rename operation, the rename is aborted and all changes are
undone. The technique for the access function is implemented in the Bloqqi editor
for renaming, but is also used when creating and editing connections. A difference
is that the AST in Bloqqi is rewritten to always use fully qualified names, in order
to avoid name collisions and issues with shadowing.



Paper IV: Implementation 135

Another related compiler is the JModelica.org compiler by Åkesson et. al.
[Åke+10b], which is also implemented using RAGs and JastAdd [Åke+10a]. Sim-
ilar to Bloqqi, Modelica is object-oriented with inheritance between models. The
task for the Modelica compiler is to take a Modelica program and transform it into
one equation system, this by removing the object-orientation and flattening the ob-
jects. Central to the JModelica.org compiler are also NTAs that are used to flatten
the object structure.

There are other attribute systems than JastAdd that supports RAGs. Notable
examples include Silver [VW+10], Kiama[Slo+13], RACR [Bür15], and JavaRAG
[For+15]. Silver is similar to JastAdd in that it has its own specification language
and generates code, however, it is based on functional programming rather than
object-orientation like JastAdd. Kiama, RACR and JavaRAG on the other hand
are libraries: Kiama in Scala, RACR in Scheme and JavaRAG in Java. This makes
it easier to integrate attribute grammar with existing data structures.

10 Conclusions

We have in this report described how the compiler and the graphical editor for
the data-flow language Bloqqi have been implemented. The Bloqqi language has
many advanced language features that have been specified using the semantic for-
malism reference attribute grammars, which represents programs as abstract syn-
tax trees that are decorated with computed node properties called attributes. The
semantic specification is specified once and is reused by both the compiler end the
editor, avoiding double maintenance. The visualization of a diagram is computed
based on the semantic analysis, for example, blocks are inherited and the ports on
a block depend on the block type. These computed properties of the visualizations
match well with how attributes work, and the editor uses mostly the attributes to
visualize a diagram.

We have also presented how Bloqqi programs are executed, by describing what
C code that is generated from Bloqqi programs. Using the code generation, Bloqqi
programs have been used together with simulated models specified in Modelica
and integrated using the functional mockup interface (FMI). This way, we have
been able to test Bloqqi on realistic examples, without having to integrate with
real world systems.

Future work includes both extensions to the language, and improvement of
the implementation techniques. An example of an interesting language extension
would be to add support for control connections, where part of the structured data
can be reversed, allowing the data to flow backwards along the connection. This is
used to simplify diagrams and improve control performance [PH02]. We have used
Bloqqi programs together with Modelica models exported using FMI, but it would
also be valuable to export Bloqqi programs using FMI so that Bloqqi programs can
be used in other tools. An example of interesting future work for the editor is to
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experiment with incremental evaluation of the attributes, allowing more efficient
attribute evaluation when diagrams are edited [SH12]. It would also be interesting
to investigate how the computed visual syntax could be specified using a more
higher-level specification, compared to plain Java that the editor uses today.
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