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Kristin Wallentinsson from Stora Enso AB, and Anne–Marie Olsson from Innventia
AB. I would like to thank all of my colleagues from the Division of Solid Mechanics,
both former and present, whom have given me a great environment to work in. I
feel obligated to give a special thank you to Marcus Alexandersson with whom I have
spent countless hours discussing concepts of mixture theories and how these relate
to physics. A thank you should also be given to my long–term friends outside of
work who have helped me to distract my thoughts from work and keep me sane. I
express my deepest gratitude to my family whose love and support is unprecedented.
Without your help this work would not have been possible. Thank you! Finally, and
most importantly, I thank my son, Benjamin, for being exactly the person that he is.
Thank you!

Lund, September 2016

Henrik Askfelt

i





Abstract

This thesis investigates the coupling between moisture, heat, and deformation in pa-
perboard. The presented investigations are primarily conducted via macroscale con-
tinuum modeling but experimental characterisations are also made. The continuum
modeling is presented in a mixture theory framework where the paperboard is consid-
ered as a porous media composed of three immiscible phases; a network of cellulose
fibers, liquid water bound in or to the fibers, and moist air. The motion of each phase
is described and the interactions of mass, energy and momentum between the three
phases are also considered. Emphasis in the current work is to derive a thermodynam-
ically consistent model and all constitutive relations are derived with consideration to
the Clausius–Duhem inequality. The derived continuum model is used in numerical
investigations to study the response of slow, long time processes such as storing of
paperboard rolls as well as rapid processes where the board is exposed to significant
temperature changes and mechanical loads during a short period of time.

The thesis begins with an introduction where some of the characteristic properties
of paperboard are described and the basic concepts of the hybrid mixture theory
framework are explained. The main part of the thesis is then composed of four papers,
A, B, C, and D. In Paper A, a model describing the transport of mass and heat in
paperboard is developed. The model considers slow transport processes and assumes
the fiber network to be incompressible. Special focus of Paper A is to develop a model
that is able to describe the static and dynamic sorption properties of paperboard. The
derived model is used to predict the evolution of the moisture and heat distributions
in paperboard rolls in climates with a varying relative humidity. In Papers B and C,
the model derived in Paper A is further developed to handle rapid processes where
significant temperature changes are expected. Furthermore, in Papers B and C, the
assumption of an incompressible fiber network is abandoned and an orthotropic stress–
strain response with an advanced yield surface is incorporated in a large strain setting.
The model is then used to predict the response of paperboard during a transversal
sealing process. In Paper D, experimental investigations are made on the in–plane
permeability and on the static and dynamic sorption properties of paperboard. The
results from these investigations are then used together with the model developed in
Paper B and C to analyse the physics behind a blister test.
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Sammanfattning

Kartong är ett material som används flitigt inom förpackningsindustrin. En anled-
ning till att kartong har blivit ett populärt förpackningsmaterial är att det är ett
styvt material i förh̊allande till sin densitet. Denna egenskap medför att förpack-
ningar tillverkade i kartong är lätta och kan bära hög belastning. En annan anledning
att kartong används framför andra förpackningsmaterial, s̊a som exempelvis plast,
är miljöaspekten som blir allt mer viktig. Kartong är dessutom ett material som är
förh̊allandevis billigt att producera vilket är viktigt att begrunda för förpackningsin-
dustrin d̊a enorma kvantiteter förpackningar produceras varje dag.

Under tillverkningsprocessen av kartong sprejas en fiber-lösning p̊a en duk som
sedan avvattnas och torkas. P̊a grund av gravitationskrafter och en hastighetsskill-
nad mellan flödet p̊a fibermassan och duken f̊ar fibrerna i kartongen en ordnad porös
struktur. Denna struktur medför att transporten av massa, energi och rörelsemängd
i kartong är riktningsberoende. De olika transportprosesserna är dessutom kopplade
och kunskapen gällande hur kartong reagerar p̊a olika externa belastningar är ej full-
ständig. De existerande kunskapsluckorna leder till att utvecklingsprosessen av nya
förpackningar förlängs, till tillfälliga produktionsstopp och i vissa fall till problem med
de producerade förpackningarna.

Som ett steg mot att fylla de befintliga kunskapsluckorna ligger fokus i detta arbete
p̊a kopplingen mellan de olika transportprocesserna i kartong. Den teoretiska mod-
ellen som beskriver kartongen har satts upp p̊a makroskalan i ett ramverk benämnt
blandningsteorier. I detta ramverk anses kartongen kunna beskrivas som en superpos-
sition av tre faser; ett fibernätverk, vatten bundet i och p̊a fibrerna samt fuktig luft i
porutrymmet. Varje fas har en specifik rörelse och kan utbyta massa, rörelsemängd,
och energi med de andra faserna.

Fyra artiklar, A, B, C och D, är sammanbundna i denna avhandling. I samtliga
artiklar används blandningsteorier för att modellera kartong. I artikel A presen-
teras en modell som beskriver värmetransporten och fukttransporten i kartong un-
der l̊angsamma förlopp. Modell används sedan för att prediktera hur fuktdistribu-
tionen och värmedistributionen ändras i kartongrullar under förvaring i klimat med
varierande relativ fuktighet. I artiklarna B och C utökas modellen s̊a att modellen kan
hantera snabba förlopp och även beskriva stora plastiska deformationer av fibernätver-
ket. Den utökade modellen används sedan för att prediktera hur kartong beter sig
under en transversell försegling. Slutligen i artikel D presenteras experiment där i-
planet permeabiliteten och den statiska och dynamiska sorptionen i kartong undersöks.
Resultaten fr̊an dessa experiment används sedan tillsammans med modellen framtagen
i artiklarna B och C för att analysera ett blister test.
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Nomenclature

Table 1: Latin symbols

Notation Description

Aα
Inner part of the specific Helmholtz free energy of phase
α (J/kg)

Aαj
Specific Helmholtz free energy of constituent αj (J/kg)

aw Water activity (-)
b, bα, bαj

External source of entropy (J/kg/K/s)
b,bα,bαj

Specific body force vector (N/kg)
d,dα,dαj

Rate of deformation tensor (1/s)
D,DE Dissipation (J/m3/s)
e∗α, e

∗
α, eαj

Specific total internal energy (J/kg)
e, eα Inner part of the specific internal energy (J/kg)
êβα, ê

β
αj

Rate of mass transfer per unit mass density (1/s)
Fα Deformation gradient of phase α (-)
∆Hads Enthalpy of adsorption (J/kg)

îαj

Rate of momentum transfer per unit mass density
(N/kg)

Jα Determinant of the deformation gradient of phase α (-)
lα Spatial velocity gradient of phase α (1/s)
m,mα,mαj

Mass (kg)
mdry Dry mass (kg)
nα Volume fraction (-)
Nα Number of phases (-)
Nαj

Number of constituents in phase α (-)
peqgv Water vapor pressure at equilibrium (Pa)
psatgv Saturated water vapor pressure (Pa)
q,qα,qαj

Heat flux vector (J/m2/s)
Q,Qα, Qαj

External source of energy (J/kg/s)

Q̂β
α, Q̂

β
αj
, Q̂αj

Rate of energy interaction (J/kg/s)

r̂αj
Rate of mass transfer per unit mass density (1/s)

t Time (s)

T̂
β

α, T̂
β

αj
Rate of momentum transfer (N/kg)

v, vα, vαj
Volume (m3)

v,vα,vαj
Mass averaged velocity (m/s)

vα,β Seepage velocity (m/s)
W Moisture ratio (-)
wα,wαj Diffusion velocity (m/s)
x Spatial position (m)
Xα Material position related to phase α (m)
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Table 2: Greek symbols

Notation Description

η, ηα, ηαj
Inner part of the specific entropy (J/kg/K)

ηαj
Specific entropy of constituent αj (J/kg/K)

θ Absolute temperature (K)
λi Lagrangian multipliers (J/kg)
λθ
α Thermal conductivity of phase α (W/m/K)

Λ,Λα,Λαj
Entropy production (J/kg/K/s)

ρ, ρα, ραj
Intrinsic Density (kg/m3)

σ,σα,σαj
Cauchy stress tensor (Pa)

φ,φα,φαj
Entropy flux (J/m2/K/s)

χα Mapping of the motion of phase α
ωα,ω

e
s,ω

p
s (m) Spin tensor (1/s)

Ω Spatial configuration (m3)
Ω0

α Material configuration of phase α (m3)

Table 3: Abbreviations

Abbreviation Full text

CD Cross machine direction in paperboard
HMC Hygroscopic moisture content
HMT Hybrid mixture theory
MD Machine direction in paperboard
RVE Representative volume element
ZD Out–of–plane direction in paperboard
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1 Introduction

For the packaging industry, delivering package solutions for food products, protection
of the integrity of a package is of the highest priority. The package material typically
has a layered structure in the out–of–plane direction, cf., Figure 1. Paperboard oc-

Figure 1: A simplified illustration of the set–up of layers in the aseptic package material.

cupies the largest part of the package material and carries the main stiffness of the
package. Paperboard allows transport of gas and liquid and, therefore, paperboard
alone does not serve as a barrier protecting food products from ambient climates. For
this reason a thin layer of polyethylene is attached on the inside of the paperboard,
i.e., closer to the food product. Considering food products that should be stored in
rough ambient climates and for long periods of time, the additional polyethylene layer
will not suffice and a thin layer of aluminium is inserted between the polyethylene and
the paperboard. The Al–foil protects the food product against light and reduces the
transport of gas and liquid from the ambient climate even more.

Printing on a food package is typically performed on the paperboard. However, in
order to make the surface of the board smoother and improve the printing quality it
is not uncommon to add a clay coating on the outer side of the paperboard. Finally
as an additional protection from the ambient climate a thin layer of polyethylene is
attached outside the clay coating.

In order to be able to guarantee the integrity of a food package knowledge about
the different components of the package material and how they interact are of great
importance. As a step towards an increased knowledge in this area the current the-
sis treats the response of moist paperboard. In particular, the couplings between
moisture, heat and deformation in paperboard are investigated. Modeling of the clay
coating, the polyethylene, or the aluminium are not considered in this work. However,
the properties of these layers are considered when assigning boundary conditions for
the numerical simulations.

2 Characteristic properties of paperboard

2.1 General

Paperboard is a porous medium whose main components are; a network of cellulose
fibers, liquid water, and moist air. As an illustration of the porous nature of paper-
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board an x–ray tomograph image of the cross section of a paperboard is included in
Figure 2(b). The cellulose fibers have a high length to width ratio, the typical length
and width of the fibers are (1–5 mm), and (20–50 µm), respectively. As may be seen
from the tomograph image in Figure 2(b), the cellulose fibers are not solid but con-
tain a cavity. This cavity is referred to as lumen and the thickness of the surrounding
fiber wall is (2–8 µm), see also Baggerud (2004). During the manufacturing process of
paperboard, a pulp suspension of water and 0.1-1% fibers is sprayed on to a moving
web which is then dewatered, compressed, and dried, see Baggerud (2004). Due to the
gravitational forces as well as a speed difference between the suspension flow and the
web, the structure of the fiber network tend to be ordered and paperboard is consid-
ered to be an orthotropic material. The orthotropic nature of paperboard introduces
direction–dependent transports of mass, momentum, and energy. The characteris-
tic directions in paperboard are; Machine Direction (MD), Cross machine Direction
(CD), and out-of-plane direction (ZD), cf. Figure 2(a).

(a) (b)

Figure 2: a) Illustration of the characteristic directions of paperboard, b) Image of of a cross–section
of paperboard taken with the x–ray tomograph at the 4D–imaging lab, Lund University.

2.2 Moisture interaction

Liquid water may be located essentially anywhere in paperboard. Due to interactions
with the cellulose fibers the energy of liquid water changes and depending on where
in the paperboard the water is located the properties of the liquid water differ. Most
of the liquid water that is located in the lumen, or in the inter–fiber pores, (0.5–10
µm), has the same properties as “free” liquid water, i.e., water that is not affected
by the presence of a solid. However, the liquid water located in the intra–fiber pores
(5–104 Å), may have very strong bond to the solid which reduces the energy of the
water. In Papers A–D it is shown how the reduced energy affects the behaviour of
the liquid water, e.g., the pressure of the liquid water and the heat of adsorption. An
illustration of the possible locations of liquid water is provided in Figure 3.

The amount of liquid water in paperboard is here characterised by the moisture
ratio W which is defined by

W =
m−mdry

mdry

(1)
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A
B

C

Figure 3: Illustration of the possible locations of water in paperboard; A) inter–fiber pores, B)
lumen, and C) intra–fiber pores.

Here m is the mass of the paperboard and mdry is the mass of the paperboard when
it is completely dry. It may be noted that the moisture ratio is equivalent to the dry
basis moisture content, which is another quantity commonly used to characterise the
amount of moisture in paperboard and other porous media. The energy level of the
liquid water inside the board is defined by the water activity aw which describes the
escaping tendency of the water, or how tightly the water is bound. The water activity
is defined by the ratio between the equilibrium vapor pressure and the saturation
vapor pressure, i.e.,

aw =
peqgv
psatgv

, (2)

see also Bénet et al. (2012). The limiting values of the water activity are 0 and 1,
where aw → 0+ indicates that the moisture ratio goes to zero and the bounding forces
of the last water are very high. The upper limit value aw = 1 indicates that the
moisture ratio is so high that some of the water may be considered as “free” liquid
water. Typically, the water activity in a porous media is represented by sorption
isotherms. In Petterson and Stenström (2000) a review is presented where isotherms
frequently used for paperboard are discussed. The format of the sorption isotherm
will have a direct implication on the heat of adsorption and considering this aspect it
is argued, in Petterson and Stenström (2000), that the isotherm suggested by Heikkilä
1993 is best suited for calculations on paper. The Heikkilä isotherm is given by the
following format

aw = 1− exp(aaW ab + ac(θ − 273.15)W ad) (3)

where aa, ab, ac, and ad are constants that may be calibrated against experimental
sorption isotherms. A typical isotherm of the format in (3) is plotted in 4(a). The
affect on the enthalpy of adsorption is discussed in Papers A and B and the typical
effect from an isotherm of the format in (3) is shown in Figure 4(b). From this figure
it is evident that the energy needed to remove water increases significantly for lower
moisture ratios.
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(a) (b)

Figure 4: a) Typical sorption isotherm of the format provided in (3) b) Change in the enthalpy of
adsorption due to soild–liquid interactions.

The sorption isotherm measured during adsorption typically renders lower values
of moisture ratios compared to the sorption isotherms measured during desorption,
see Figure 4(a). This property is common for porous media and is known as hysteresis.
Hysteresis effects are not considered in the present thesis and the reader is referred to
e.g., Venkateswaran (1970) for more information on the subject.

The distribution of moisture inside a paperboard will influence the boards ability
to transport liquid water, dry air, and vapor. Constitutive relations describing the
liquid water seepage are derived in Papers A and B, alternative formats may also be
found in e.g., Eriksson et al. (2006); Bennethum (2012). However, in Papers A–D,
moisture ratios below the hygroscopic moisture content (HMC) are considered and
all liquid water is assumed to be bound in or to the fibers, see also Baggerud (2004).
This motivates the assumption that the liquid water has the same motion as the fiber
network and that the liquid water seepage can be approximated as zero. Note that,
this does not imply a constant moisture distribution since the moisture distribution
could change due to e.g., sorption.

In Papers A and D, the inter–fiber gas seepage is assumed to be a linear lam-
inar flow described by Darcy’s law. In Papers B and C, more significant pressure
gradients are expected and the inter–fiber gas seepage is modeled as nonlinear lam-
inar flow described by Forchheimer’s equation, see also e.g., Hassanizadeh and Gray
(1987); Bennethum and Giorgi (1997); Market (2005); Landervik and Larsson (2007).
The permeability tensor describes the seepage flow resistance and is in Papers A–D
described by an orthotropic function that depends on the current ratio of air in the
board. The paperboard is assumed to be composed of a fiber network, liquid water,
and moist air and the ratio of moist air is influenced by the ratio of liquid water in the
board. Also the inter–fiber diffusivity tensor, which describes the resistance of vapor
diffusion, is in all papers described by an orthotropic function that depends on the
current ratio of air in the board.

Furthermore, the distribution of moisture inside paperboard will influence mechan-
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ical properties of paperboard, e.g., the elastic modulus and the yield surface of the
board and the hygro–expansion of the fibers. These effects are not considered in the
present thesis and the interested reader is referred to Rigdahl et al. (1984); Linvill
and Östlund (2014); Linvill (2015); Salmén and Olsson (2016), and Östlund (2006);
Bosco et al. (2015a,b,c), respectively, for more information on these subjects.

2.3 Heat interaction

Due to the layered structure in the out–of–plane direction of paperboard, the thermal
conductivity of paperboard is typically modeled with a series flow, a parallel flow, or
a combination of the two, see also Karlsson and Stenström (2005); Baggerud (2004).
In Paper A the thermal conductivity of paperboard is modeled as a series flow in ZD
and as a parallel flow in CD, while in Papers C and D the thermal conductivity is
modeled as a parallel combination of a series flow and a parallel flow, see Figure 5.

Figure 5: Illustration of the different thermal conductivity flow types a) parallel flow, b) series
flow, c) series combination of a series flow and a parallel flow, and d) parallel combination of a series
flow and a parallel flow. The black arrows indicate the direction of the conductive heat flow.

The thermal conductivities of liquid water and moist air are both functions of the
absolute temperature whereas the thermal conductivity of cellulose fibers usually is
considered to be independent of the absolute temperature, see also Baggerud (2004);
Lucisano (2002); Lavrykov and Ramarao (2012). Assuming a parallel combination of
a series flow and a parallel flow, the thermal conductivity of paperboard in the out–
of–plane direction is plotted as a function of the absolute temperature in Figure 6(a).
As a comparison the thermal conductivities of liquid water, cellulose, and moist air
are also included in this figure. From Figure 6(a) it is noticed that moist paper should
have a higher thermal conductivity and that the moist air inside the paperboard acts
as an isolator. This reasoning agrees well with Figure 6(a) where the in–plane and
out–of–plane thermal conductivities of paperboard are plotted as functions of the sheet
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(a) (b)

Figure 6: a) Model prediction of the temperature dependency of the thermal conductivity, λθ
α,

of each phase compared with the out-of-plane thermal conductivity of paperboard with porosity
ϕ = 0.53 and W = 0.1, b) Thermal conductivity of paperboard as a function of the sheet density.

density. A more elaborate description of the thermal conductivity of paperboard is
included in Paper C, where convective and diffusive heat fluxes also are discussed.

The ability to accumulate heat in paperboard is determined by the specific heat of
the board. The specific heat of paperboard is in Papers A–D described as the sum of
the specific heats of the components of the paperboard weighted by the bulk densities
of the components. This implies that the specific heat of paperboard will increase
with a higher moisture ratio and decrease with a higher porosity. In Papers B–D,
the specific heat of the fiber network and the specific heat of the moist air are both
modeled as functions of the absolute temperature.

In Papers A, C and D, the dynamic viscosities of both the moist air and the
liquid water are modeled as functions of the absolute temperature, this effect will
influence the mass transport processes within the board. As indicated in equation (3),
the sorption between the bound water and the water vapor as well as the enthalpy
of adsorption associated with this transformation are processes that depend on the
temperature distribution.

Other properties that are influenced by the temperature distribution includes the
stiffness and the yield surface of paperboard. These dependencies are not considered
in the present thesis and the reader is referred to the work in Salmén and Back (1977);
Wallmeier et al. (2015) for more information about these subjects.

2.4 Mechanical properties

It is well known that the mechanical response of paperboard is orthotropic, see e.g.,
Stenberg (2002); Xia et al. (2002); M. Nyg̊ards et al. (2009); Borgqvist (2016). As an
illustration of the magnitude of the anisotropy, experimental data from uniaxial ten-
sion and compression tests in the in–plane directions MD, CD, and the out–of–plane
direction ZD, provided in Borgqvist (2016), are shown in Figure 7. Comparing the
uniaxial tensile tests in Figures 7(a) and 7(c), it is observed that there is a significant
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(a) (b)

(c) (d)

Figure 7: Mechanical response of paperboard from experimental data provided in Borgqvist (2016)
a) uniaxial cyclic tension in ZD, b) uniaxial cyclic compression in ZD, c) uniaxial tension in MD and
CD, and d) uniaxial compression in MD and CD. The experiments are performed in 50% relative
humidity and 296.15 K. The initial cross section area and the initial span–length of each test are
denoted A0 and l0 respectively.

difference in the load the paper is able to carry in the different directions. Consider-
ing both the compression and tensile tests for the in–plane directions MD and CD,
it is seen that the paperboard has a higher stiffness and a higher tensile strength,
but a lower failure strain in MD, compared to CD. The stress–strain curves provided
in Figure 7 describe the macroscale response of paperboard. For an investigation of
the relation between the macroscopic response of paperboard and the microscopic
properties of paperboard, e.g., stress–strain response of the cellulose fibers, the bond
strength, the compliance of bond regions, and the bond intensity the reader is referred
to Borodulina et al. (2012).

The stress–strain response of paperboard is not the focus of the present work
and the viscous effects are neglected. In the present work the macroscale continuum
model suggested in Borgqvist et al. (2014, 2015) is adopted for modeling of the stress–
strain response of the fiber network. This model is thermodynamically consistent,
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the calibration is fairly simple, and it has been shown to provide reliable results in
complex load situations such as, creasing, folding, and short span compression, see
Borgqvist et al. (2015, 2016). Additionally the model suggested by Borgqvist, views
the paperboard as a continuum and the model is based on the macroscale, which are
two necessary aspects when incorporating the model in the mixture theory framework.
An approach for including the Borgqvist model in the mixture theory framework is
provided in Papers B and C.

As discussed in the two previous Subsections 2.2 and 2.3, the mechanical stress–
strain response depends on the moisture and temperature distribution of the board.
In the same manner the moisture and temperature distributions depend on the de-
formations of the board. The plastic deformations of paperboard are dissipative and
will generate heat, see e.g., Hyll et al. (2012). As an example of how the deformation
of paperboard affects the moisture distribution it is shown in Paper C how a rapid
compression of paperboard will affect the gas pressure which in turn will influence the
sorption behaviour.

3 Mixture theory

Depending on the scale paperboard is modeled on, paperboard may be considered
as a heterogeneous or a homogeneous material, see also Mäkelä and Östlund (2003).
In the presented thesis a hybrid mixture theory, HMT, approach is adopted and
paperboard is viewed as a homogeneous continuum on the macroscale. The basic idea
of mixture theories is to view a body as a mixture of different phases and constituents.
The different components of the mixture are then allowed individual motions and
to interact with each other. These features have made mixture theories a powerful
framework to work with when modeling multiphysical processes.

Extensive reviews of the historic development of mixture theories are found in
Atkin and Crane (1976); Bowen (1976); de Boer and Ehlers (1988); de Boer (1992);
Rajagopal and Tao (1995); de Boer (2000). In the present work the hybrid mixture
theory, HMT, framework is adopted. This framework is described in Achanta et al.
(1994) as “essentially classical mixture theory applied to macroscale averaged balance
laws for phases and interfaces”. The HMT framework was first proposed as a two
scale model in Hassanizadeh and Gray (1979a,b, 1980) and was later developed to a
three scale model in Bennethum (1994); Bennethum and Cushman (1996a,b).

3.1 Kinematics framework

An extensive overview of the kinematics concerning the theory of mixtures is provided
in Bowen (1976), and in this section only a brief presentation is given.

Each spatial point x in the mixture is viewed as a superposition of Nα immiscible
phases denoted ()α. Each phase is considered to be separate continuum defined as a
homogeneous mixture of Nαj

miscible constituents denoted ()αj
. Each constituent is

also considered to be separate continuum. In Hassanizadeh and Gray (1990); Ben-
nethum and Cushman (1996a) it is shown how the interfaces between the phases also
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may be treated as separate continuum. However, in the presented work the thermo-
dynamic properties of the interfaces are only considered implicitly via the constitutive
relations that describe the interactions between the phases.

Let Xα denote the material coordinates of phase α in reference configuration Ω0
α.

The nonlinear mapping functions χα : Ω0
α × t → Ω ⊂ R3 from the different reference

configurations to the spatial configuration Ω are given by

x = χα(Xα, t) (4)

where t denotes the current time. The deformation gradients, Fα, associated with the
mappings between the material configurations Ω0

α and the spatial configuration Ω are
defined by

Fα =
∂χα(Xα, t)

∂Xα

(5)

In order to ensure that these mappings are continuous bijective, the Jacobians are
assumed to be greater than zero, i.e., Jα = det(Fα) > 0. The spatial velocity gradients
lα are additively split into two parts, the symmetric rate of deformation tensors dα

and the skew-symmetric spin tensors ωα i.e.,

lα =
Dα(Fα)

Dt
F−1

α , dα =
1

2
(lα + lTα), ωα =

1

2
(lα − lTα) (6)

Here Dα(•)/Dt denote the material time derivative with respect to the motion of
phase α, which is related to the spatial time derivative ∂(•)/∂t as follows

Dα(•)/Dt = ∂(•)/∂t+ vα · ∇(•) (7)

The volume and the mass of a representative volume element, (RVE), of the mixture
are denoted v and m and are related to their phase and constituent counterparts via

m =
∑
α

mα, mα =
∑
j

mαj
, v =

∑
α

vα (8)

All constituents of phase α are considered miscible and associated with the volume of
phase α, i.e., vαj

= vα ∀ j.
The macroscale balance laws assumed in hybrid mixture theory are derived through

averaging of microscale balance laws. During the averaging from micro- to macroscale
a new variable, the volume fraction nα, appears naturally, as

nα =
vα
v
, (9)

Throughout this work, quantities multiplied by volume fractions are denoted with a
bar, i.e., ¯(•) = nα(•). The intrinsic densities ρ, ρα, ραj

and the bulk densities ρ̄α, ρ̄αj

are given by

ρ = m/v, ρα =
mα

vα
, ραj

=
mαj

vα
, ρ̄α = nαρα, ρ̄αj

= nαραj
(10)
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With the densities defined in (10) the intensive format of (8) follows, i.e.,

ρ =
∑
α

ρ̄α, ρα =
∑
j

ραj
,

∑
α

nα = 1 (11)

The mass averaged velocities, v, and, vα, are defined as the weighted summations of
the phase velocities, vα, and constituent velocities, vαj

, respectively, i.e.,

v =
1

ρ

∑
α

ρ̄αvα vα =
1

ρ̄α

∑
j

ρ̄αj
vαj

(12)

Furthermore, definitions of diffusion velocities wα,wαj
and a relative velocity vα,β are

introduced by

wα = vα − v, wαj
= vαj

− vα, vα,β = vα − vβ (13)

As a consequence of (12) the diffusion velocities are restricted by the following sum-
mations ∑

j

ραj
wαj

= 0,
∑
α

ρ̄αwα = 0 (14)

3.2 Macroscale balance laws

In this subsection the balance laws adopted in the HMT framework are listed. For
a more elaborate description of the balance laws and the interpretations of the con-
taining variables the reader is referred to Hassanizadeh and Gray (1979a,b, 1980);
Bennethum (1994); Bennethum and Cushman (1996a,b).

Classical continuum formats of the balance of mass, the balance of linear momen-
tum, the balance of energy, and the entropy production of the mixture are given by

D(ρ)

Dt
+ ρ∇ · (v) = 0 (15a)

ρ
D(v)

Dt
−∇ · (σ)− ρb = 0 (15b)

ρ
D(e∗)

Dt
− σ : d+∇ · (q) + ρQ = 0 (15c)

ρ
D(η)

Dt
+∇ · (φ)− ρΛ− ρb = 0 (15d)

Here e∗ denotes the total internal energy, σ the Cauchy stress tensor, b the body force
vector, q the heat flux, Q the external source of energy, Λ the entropy production, η
the entropy, φ the entropy flux, and b the external source of entropy of the mixture.

Each phase and each constituent is viewed as a separate continuum governed by
balance laws corresponding to (15), but specific for the considered component. The
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balance of mass, the balance of linear momentum, the balance of energy, and the
entropy production of phase α are given by

Dα(ρ̄α)

Dt
+ ρ̄α∇ · (vα) =

∑
β ̸=α

ρ̄αê
β
α (16a)

ρ̄α
Dα(vα)

Dt
−∇ · (σ̄α)− ρ̄αbα =

∑
β ̸=α

ρ̄αT̂
β

α (16b)

ρ̄α
Dα(e

∗
α)

Dt
− σ̄α : dα +∇ · (q̄α) + ρ̄αQα =

∑
β ̸=α

ρ̄αQ̂
β
α (16c)

ρ̄α
Dα(ηα)

Dt
+∇ · (φ̄α)− ρ̄αbα − ρ̄αΛα =

∑
β ̸=α

ρ̄αη̂
β
α (16d)

Here e∗α denotes the total internal energy, σα the Cauchy stress tensor, bα the body
force vector, qα the heat flux, Qα the external source of energy, Λα the entropy
production, ηα the entropy, φα the entropy flux, and bα the external source of entropy
of phase α. Furthermore êβα describes the rate of mass gain in phase α from phase β,

T̂
β

α describes the rate of linear momentum gain in phase α from phase β, Q̂β
α describes

the rate of energy gain in phase α from phase β, and η̂βα describes the rate of entropy
gain in phase α from phase β.

The balance of mass, the balance of linear momentum, the balance of energy, and
the entropy production of constituent αj are given by

Dαj
(ρ̄αj

)

Dt
+ ρ̄αj

∇ · (vαj
) = ρ̄αj

r̂αj
+
∑
β ̸=α

ρ̄αj
êβαj

(17a)

ρ̄αj

Dαj
(vαj

)

Dt
−∇ · (σ̄αj

)− ρ̄αj
bαj

= ρ̄αj
îαj

+
∑
β ̸=α

ρ̄αj
T̂

β

αj
(17b)

ρ̄αj

Dαj
(eαj

)

Dt
− σ̄αj

: dαj
+∇ · (q̄αj

) + ρ̄αj
Qαj

= ρ̄αj
Q̂αj

+
∑
β ̸=α

ρ̄αj
Q̂β

αj
(17c)

ρ̄αj

Dαj
(ηαj

)

Dt
+∇ · (φ̄αj

)− ρ̄αj
bαj

− ρ̄αj
Λαj

=
∑
β ̸=α

ρ̄αj
η̂βαj

+ ρ̄αj
η̂αj

(17d)

where eαj
denotes the internal energy, σαj

the Cauchy stress tensor, bαj
the body

force vector, qαj
the heat flux, Qαj

the external source of energy, Λαj
the entropy pro-

duction, ηαj
the entropy, φαj

the entropy flux, and bαj
the external source of entropy

of constituent αj. Furthermore êβαj
describes the rate of mass gain in constituent αj

from phase β, r̂αj
describes the rate of mass gain in constituent αj from other con-

stituents in phase α, T̂
β

αj
describes the rate of linear momentum gain in constituent

αj from phase β, îαj
describes the rate of linear momentum gain in constituent αj

from other constituents in phase α, Q̂β
αj

describes the rate of energy gain in con-

stituent αj from phase β, Q̂αj
describes the rate of energy gain in constituent αj from
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other constituents in phase α, η̂βαj
describes the rate of entropy gain in constituent αj

from phase β, and η̂αj
describes the rate of entropy gain in constituent αj from other

constituents in phase α.
In order for (15a), (16a), and (17a) to be compatible the following constraints and

definitions are imposed∑
j

ραj
r̂αj

= 0,
∑
α

∑
β ̸=α

ρ̄αê
β
α = 0, ραê

β
α =

∑
j

ραj
êβαj

(18)

In order for (15b), (16b), and (17b) to be compatible the following constraints and
definitions are imposed

σα =
∑
j

σαj
− ραj

wαj
⊗wαj

(19a)

σ =
∑
α

σ̄α − ρ̄αj
wα ⊗wα (19b)

ραbα =
∑
j

ραj
bαj

(19c)

ρb =
∑
α

ρ̄αbα (19d)∑
j

ραj
îαj

+ ραj
r̂αj

wαj
= 0 (19e)

ραT̂
β

α =
∑
j

ραj
T̂

β

αj
+ ραj

êβαj
wαj

(19f)

∑
α

∑
β ̸=α

ρ̄αT̂
β

α + ρ̄αê
β
αwα = 0 (19g)

The total internal energy e∗ of the mixture and the total internal energy e∗α of
phase α are defined as

e∗ = e+
1

ρ

∑
α

1

2
ρ̄αwα ·wα, e∗α = eα +

1

ρα

∑
j

1

2
ραj

wαj
·wαj

(20)

where e and eα denote the inner parts or the thermal parts of the internal energies of
the mixture and of phase α, respectively, and are defined by

e =
1

ρ

∑
α

ρ̄αeα, eα =
1

ρα

∑
j

ραj
eαj

(21)

In order for (15c), (16c), and (17c) to be compatible, the following constraints and
definitions are imposed

∑
j

[
ραj

Q̂αj
+ ραj

îαj
·wαj

+ ραj
r̂αj

(eαj
+

1

2
wαj

·wαj
)

]
= 0 (22a)
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Q̂β
α =

1

ρα

∑
j

[
ραj

Q̂β
αj

+ ραj
T̂

β

αj
·wαj

+ ραj
êβαj

(eαj
− e∗α

1

2
wαj

·wαj
)

]
(22b)

∑
α

∑
β ̸=α

[
ρ̄αQ̂

β
α + ρ̄αT̂

β

α ·wα + ρ̄αê
β
α(e

∗
α +

1

2
wα ·wα)

]
= 0 (22c)

qα =
∑
j

[
qαj

− σαj
·wαj

+ ραj
wαj

(eαj
+

1

2
wαj

·wαj
)

]
(22d)

q =
∑
α

[
q̄α − σ̄α ·wα + ρ̄αwα(eα +

1

2
wα ·wα)

]
(22e)

Qα =
1

ρα

∑
j

[
ραj

Qαj
+ ραj

bαj
·wαj

)
]

(22f)

Q =
1

ρ

∑
α

[ρ̄αQα + ρ̄αbα ·wα)] (22g)

The inner part of the entropy of the mixture η and the inner part of the entropy
of phase α ηα are defined by

η =
1

ρ

∑
α

ρ̄αηα, ηα =
1

ρα

∑
j

ραj
ηαj

(23)

In the same manner the inner part of the entropy production of the mixture Λ and
the inner part of the entropy of phase α Λα are defined by

Λ =
1

ρ

∑
α

ρ̄αΛα, Λα =
1

ρα

∑
j

ραj
Λαj

(24)

Finally, in order for (15d), (16d), and (17d) to be compatible the following constraints
and definitions are imposed

φα =
∑
j

[
φαj

− ραj
ηαj

wαj

]
(25a)

φ =
∑
α

[φ̄α − ρ̄αηαwα] (25b)

bα =
1

ρα

∑
j

ραj
bαj

(25c)

b =
1

ρ

∑
α

ρ̄αbα (25d)

η̂βα =
1

ρα

∑
j

[
ραj

η̂βαj
+ ραj

eβαj
(ηαj

− ηα)
]

(25e)∑
α

∑
β ̸=α

[
ρ̄αη̂

β
α + ρ̄αê

β
αηα

]
= 0 (25f)

13



∑
j

[
ραj

η̂αj
+ ραj

r̂αj
ηαj

]
= 0 (25g)

It should be noted that when stating the balance equations in this section it
was assumed that all components were microscopically non–polar which reduces the
balance of angular momentum to the restriction of symmetric Cauchy stress tensors,
see also Hassanizadeh and Gray (1979b). For consideration of polar components see
e.g., Ehlers and Volk (1999).

3.3 Independent and dependent variables

Depending on what phenomena a model is suppose to capture, a model could be set
up on the mixture level, on the phase level, or on the constituent level. Considering
a model set up on the constituent level the system of equations will be made up of
6·Nα · Nαj

governing equations (17), where each phase is considered to be made up
of the same number of constituents, i.e., Nαj

. The unknown variables appearing in
these equations are collected in a set U given by

U = {nα, ραj
,vαj

,bαj
, eαj

,σαj
,qαj

, Qαj
,Λαj

, ηαj
,φαj

, bαj

êβαj
, r̂αj

, T̂
β

αj
, îαj

, Q̂β
αj
, Q̂αj

, η̂βαj
, η̂αj

} (26)

As shown in the proceeding subsections these variables are constrained, however the
number of unknown still exceeds the number of equations. For this reason a subset of
U is considered as independent variables, i.e., variables that can not be described by
other independent variables, while the variables in the remaining subset are considered
dependent, or constitutive variables, which are fully defined by the independent vari-
ables. In a closed systems of equations, the number of independent variables should
be equal to the number of governing equations and constitutive relations should be
provided for all constitutive variables.

3.4 Constitutive relations

Derivation of suitable formats of the constitutive relations is not trivial and in attempt
to ease this work the following two assumptions are commonly made.

1) Entropy flux proportional to the heat flux

The entropy fluxes and the external sources of entropy are assumed to be proportional
to the heat fluxes and the external heat sources, respectively, see also Coleman and
Noll (1963); Hassanizadeh and Gray (1979b); Bennethum (1994), i.e.,

bαj
=

Qαj

θαj

, φαj
=

qαj

θαj

(27)
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2) Local thermal equilibrium

For any given time t and any spatial point x the same absolute temperature is assumed
for all phases and constituents, i.e.,

θαj
(t,x) = θα(t,x) = θ(t,x) (28)

This assumption is commonly referred to as the assumption of a, local thermal equi-
librium, and should not be confused with the assumption of an isothermal state.

3.4.1 Dissipation inequality

In order to derive a thermodynamically consistent model the Clausius-Duhem inequal-
ity is considered for the mixture, i.e.,

ρΛ =
∑
α

∑
j

ρ̄αj
Λαj

≥ 0 (29)

The Clausius-Duhem inequality is a statement of the second law of thermodynamics
and should hold for all parts of the body and for all times, see also Coleman and
Noll (1963). The absolute temperature θ is always greater to or equal to zero and the
dissipated energy from the system is defined by

D = θρΛ =
∑
α

∑
j

θρ̄αj
Λαj

≥ 0 (30)

Insertion of (17d), (17c), and (27) into (30) and making use of the constraints in
Subsection 3.2 the dissipation inequality may be rewritten as

D =
∑
α

{
− ρ̄α

(
Dα(Aα)

Dt
+ ηα

Dα(θ)

Dt

)
− ∇(θ)

θ
·
[
q̄α +

∑
j

(
σ̄αj

·wαj
− ρ̄αj

wαj
(Aαj

+
1

2
wαj

·wαj
)

)]
+

(
σ̄α +

∑
j

ρ̄αj
wαj

⊗wαj

)
: dα

+
∑
j

(
σ̄αj

− ρ̄αj
Aαj

I

)
: (∇⊗wαj

)

−
∑
j

(
∇(Aαj

ρ̄αj
) +

∑
β ̸=α

ρ̄αj
(T̂

β

αj
+ îαj

)

)
·wαj

−
∑
β ̸=α

ρ̄α

(
T̂

β

α ·wα + êβα(Aα +
1

2
wα ·wα)

)
−
∑
j

∑
β ̸=α

[ρ̄αj
êβαj

+ ρ̄αj
r̂αj

]
1

2
wαj

·wαj

}
≥ 0 (31)
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In this expression the Helmholtz potential Aαj
of constituent αj and the inner part of

the Helmholtz potential Aα of phase α were introduced as

Aαj
= eαj

− θηαj
, Aα =

1

ρ

∑
j

ρjAαj
(32)

In order to guarantee that the constitutive relations do not contradict any of the
balance laws, Liu’s Lagrange multiplier method is adopted, Liu (1972). Adopting the
Liu’s Lagrange multiplier method the balance laws may be weakly enforced through
an expansion of the dissipation inequality, according to

DE = D +
∑
i

λiri ≥ 0 (33)

where λi denotes a Lagrange multiplier that is energy conjugated with restriction ri.
Deriving a thermodynamically consistent model, all constitutive relations must be
chosen such that the expanded dissipation inequality (33) is unconditionally fulfilled.
This is not very restrictive and the optional constitutive relations are still many.
Having a structured procedure for how to exploit the dissipation inequality is therefore
of great assistance when suggesting suitable constitutive relations. The procedure
adopted in the present thesis follows that presented in e.g., Sullivan (2013).

3.5 Adopting a HMT approach to model paperboard

A crucial step, when adopting a HMT framework to model a multiphysical process,
is the decomposition of the mixture into phases and constituents. This choice is not
trivial and will depend on microscopic structure of the material, and also on what
processes the model should be able to capture. Considering paperboard, a fairly
general decomposition is shown in Figure 8.

Phases

Mixture

Constituents

Paperboard

Fiber 

network

Dry ber Intra- ber

pore water

Inter- ber

pore water

Gas

Water vapor Dry airPure water Chemical 

additive

Figure 8: Illustration of an optional two scale decomposition of paperboard.

With the decomposition in Figure 8 it would be possible to model the difference in
energy levels between the intra–fiber water and the water in the lumen and the inter–
fiber pores that was discussed in Subsection 2.2. Furthermore the sorption properties

16



could be separated into adsorbtion/desorption (mass exchange between the intra–fiber
pore water and the water vapor), evaporation/condensation (mass exchange between
the pure water in the inter–fiber pores and the water vapor) and absorbtion (mass
exchange between the intra–fiber pore water and pure water in the inter–fiber pores).
The effect of chemical additives in the inter–fiber pore water could also be investigated.

In the presented thesis, the effect of chemical additives is not investigated and this
constituent is not included. Furthermore, the presented thesis treats moisture ratios
below the HMC and all liquid water is considered to be bound in or to the fibers. The
liquid water may still be viewed as a a combination of the intra–fiber pore water and
the inter–fiber pore water as suggested in Figure 8, however to simplify the model the
liquid water may also be viewed as a separate phase describing the averaged properties
of both these components. In Papers A–D the simplified approach is adopted and the
decomposition of paperboard assumed in all papers is depicted in Figure 9.

Phases

Mixture

Constituents

Paperboard

Dry ber 

network
Bound

water

Gas

Water vapor Dry air

Figure 9: Decomposition of paperboard assumed in the present thesis.

The benefits of choosing the decomposition in Figure 9 compared to that in Fig-
ure 8 is that the system of equations governing the response of the paperboard is
reduced significantly. However, evidently the fewer components also limits the pro-
cesses the model is able to describe. A consequence of the simplified decomposition
is that no separation is made between the adsorption/desorption and the condensa-
tion/evaporation i.e., in Papers A–D the mass exchange between the bound water
and the water vapor describes the average of both the adsorption/desorption and the
condensation/evaporation.

4 Numerical examples

In order to illustrate the benefits of modeling paperboard in a HMT framework, the
derived models have been used to predict the response of paperboard during three
different loading conditions.
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4.1 Storing of paperboard rolls

The properties of paperboard are highly affected by moisture, see Section 2.2. For the
packaging industry it is therefore very important to know and control the moisture
ratio of the paperboard used in production. In Paper A, the transports of mass and
energy are investigated for paperboard rolls during storing in a climate with a varying
relative humidity. The geometry of the assumed paperboard roll is shown in Figure
10(a) and due to the rotational symmetry of the roll the computational domain is
reduced to the 2D plane shown in Figure 10(b).

(a) (b)

Figure 10: Graphic representation of the modeled section of a paperboard roll

Initially the roll is assumed to be in equilibrium with the ambient climate and
when the simulation starts the relative humidity of the ambient climate is ramped
up from 50% to 80%. The predicted moisture distributions in the radial and axial
directions are shown in Figures 11(a) and 11(b), respectively.

(a) (b)

Figure 11: a) Simulated moisture profile in radial direction at z = 0 and b) axial moisture profile
at r = rcore, at different times for a paperbaord roll subjected to a relative humidity ramp 50% to
80%
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From Figure 11 it is observed that the paperboard roll has obtained a non–
homogeneous moisture distribution. This information is important since this will
imply that the different layers paperboard from the roll will have different properties.

In Figure 12(a) the development of the local relative humidity inside the board
is shown. It is noticed that the moisture ratio does not follow the sorption isotherm
which means that the mass exchange between the bound water and the water vapor
is dynamic. The driving force of the mass exchange is shown in 12(b), where it is
observed that the driving force increase as the ambient relative humidity increase and
then decrease when the ambient relative humidity is held constant.

(a) (b)

Figure 12: a) Development of local relative humidity at the boundary at z = 0, r = router and
b) chemical potential difference plotted against time, at the same position for a paperboard roll
subjected to a relative humidity ramp 50% to 80%

4.2 Transversal sealing

In Paper C, numerical simulations of the transversal sealing of a food package are
considered. This is a complex process and the simulated sealing presented in Paper C
is simplified. In the simplified sealing, focus is on investigating the response of moist
paperboard during a simultaneous compression and heating. The idealized sealing
considered is depicted in Figure 13(a). Due to the symmetry the computational
domain is reduced to the area enclosed by the dashed lines.
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(a) (b)

Figure 13: a) Illustration of the problem setup where the dashed lines indicate the computational
domain, b) labeling of the boundary decomposition of the computational domain.

The boundary conditions considered during the simulations are given by; symmetry
conditions on Lbl ,Lbr , and Lr, constant primary variables on Ll, Newton cooling and
no mass flux through Lul

and Lur . Furthermore the temperature on Lbr is ramped up
from 298.15 K to 548.15 K and Lur is compressed 40% of the boards initial thickness.
Different simulation times and initial moisture ratios are considered. The distributions
of the absolute temperature, the water vapor pressure, the out–of–plane stresses, and
the volume specific change in liquid mass for a simulation with the initial moisture
ratio W 0 = 0.1 and the total simulation time t = 0.1 s are shown in Figure 14.
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Figure 14: Predicted distributions in a board with the initial moisture ratio W 0 = 0.1 after a local
compression of 40% and heating of 250 K in 0.1 seconds.
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The results obtained from the idealized sealing simulations show that the simulta-
neous heating and compression of the paperboard will result in a non–homogeneous
moisture distribution. From Figures 14(c) and 14(d) it is observed that the drying
area is very local and that it is followed by an condensation front where the moisture
ratio actually is increased. The compression of the board results in out–of–plane com-
pression stresses, see Figure 14(e), however it will also contribute to an increased gas
pressure. In Figure 14(f) it is observed that the combined effect of the compression,
the increased temperature, and the drying will actually result in out–of–plane tension
stresses that are in the same order of magnitude as the out–of–plane failure stress of
paperboard.

4.3 Blister test

In Paper D, numerical and experimental investigations of a blister test are made. The
blister test is a non–standardized test method to test the quality of aseptic package
materials. The main idea of a blister test is to expose an aseptic package material with
hot air jet and measure the time until the package material experiences an internal
failure. The internal failure will cause the surface of the package material to elevate.
An illustration of the experimental set up of a blister test is shown in Figure 15.

Hot air gun

Pressure 

chamber

Test piece

holder

Photoelectric

sensor

(a)

Pressure chamber

(b)

Figure 15: a) Illustration of the experimental blister test setup b) Zoom in on the test piece holder.

Simulation results of the evolution of the out–of–plane stress distributions are
shown in Figure 16. Three different ambient climates were investigated where the
board initially was in equilibrium with the ambient climate. In these simulations the
package material was described as a layered structure with paperboard as the main
component. On top of the paperboard one layer of LDPE and one layer of aluminium
were added. The focus in Paper D was, however, on the response of the paperboard
and the purpose of the LDPE and aluminium layers was merely to provide more
realistic boundary conditions for the paperboard. The stress levels in these layers are
therefore not of interest in this work and these layer have been given the value zero
in Figure 16.
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(a) φ∞ = 0.10, t=1.12 s (b) φ∞ = 0.10, t=3.28 s (c) φ∞ = 0.10, t=8 s

(d) φ∞ = 0.50, t=1.12 s (e) φ∞ = 0.50, t=3.28 s (f) φ∞ = 0.50, t=8 s

(g) φ∞ = 0.80, t=1.12 s (h) φ∞ = 0.80, t=3.28 s (i) φ∞ = 0.80, t=8 s

Figure 16: Predicted distributions of the out–of–plane stresses σ(zd) = e(zd) · σ · e(zd) for a)-c)
RH=10, d)-f) RH=50, and g)-i) RH=80. The md and zd axis are shown in mm.

The out–of–plane tension stresses observed in Figure 16 are a consequence of an
increased gas pressure inside the paperboard. The pressure increase partly stems
from the explicit dependence on temperature in the ideal gas law, but is also highly
influenced by the mass exchange between the bound water and the water vapor. In
Figure 16, it is observed that the hight of the blisters differs depending on the initial
moisture ratio of the board. The difference in heights is a consequence of different rates
of mass exchange between bound water and water vapor as well as the difference in
saturation. Considering the magnitude of the out–of–plane tension stress distributions
in Figure 16 it is concluded that the paperboard will experience an elastic stress–strain
response during the blister test.
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5 Future work

The model presented in this thesis is derived in a hybrid mixture theory framework.
One of the benefits of adopting a mixture theory framework is that it provides con-
stitutive relations for several complex physical phenomena within the paperboard.
However, a consequence of introducing these constitutive relations is that the calibra-
tion of the model becomes tedious. Many of the processes are coupled and the process
of calibration is not always trivial. In the authors opinion, the main focus of future
work should be aimed towards calibration of the provided model.

Another area that also should be considered in the future work is to include the
explicit dependencies of moisture and heat in the stress–strain response. In addition
the viscous nature of paperboard should also be included in the stress–strain response.

23



6 Summary of the papers

Paper A: In Paper A, a model describing the transport of moisture and heat in pa-
perboard is developed. The model is derived in a hybrid mixture theory framework
and considers the board to be composed of three immiscible phases; a network of
cellulose fibers, liquid water bound in or to the fibers, and moist air in the inter–fiber
pores. The model considers the dynamic mass exchange between the bound water
and the water vapor and assumes that the transport processes are relatively slow. In
Paper A it is also shown how the derived model may be used to predict the evolutions
of the moisture and heat distributions in paperboard rolls during storing in climates
with a varying relative humidity.

Paper B: In Paper B, the response of moist paperboard exposed to significant tem-
perature and pressure changes during a short period of time is investigated. In such
an environment considerable gas pressure gradients are expected and the inter–fiber
gas seepage is considered as nonlinear laminar flow. The model derived in Paper A,
is therefore extended to incorporate nonlinear transport processes. In Paper B, the
model presented in Paper A is also modified to include plastic deformations in a large
strain setting.

Paper C: The system of equations derived in Paper B is, in Paper C, closed by
providing explicit formats for all constitutive relations. All constitutive relations are
considered to be orthotropic and depend on the current ratios of moisture and air in
the board. In Paper C it is also shown how an advanced orthotropic elasto–plastic
stress–strain model may be included in the generic framework derived in Paper B.
The complete model presented in Paper C is used to simulate the response of moist
paperboard during a transversal sealing process.

Paper D: In Paper D, experimental investigations are made of the static and dynamic
desorption as well as the in–plane permeability. The model developed in Papers A,
B, and C is adopted and the in–plane permeability as well as the static and dynamic
sorption properties are recalibrated. The model is used to analyse the response of
paperboard during a blister test. The blister test is also investigated experimentally.
The analyses of the model and the experimental investigations are compared and
it is concluded that the initiation of a blister is caused primarily due to melting of
the polyethylene adhesion while expansion of the blister is primarily governed by the
moisture distribution in the board.
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Abstract

Mixture theory is used to derive a triphasic model to describe processes in
paperboard consisting of solid fiber, bound water and gas. The gas is viewed as
a miscible mix of the two constituents dry air and water vapor. The governing
equations are mass conservation laws for bound water, dry air, water vapor
and mixture energy balance. Constitutive relations are found by exploiting
the macroscale dissipation inequality. Resulting constitutive equations include
Fickian diffusion of water vapor and dry air, Darcian flow for gas and Fourier
heat conduction for the mixture. Mass exchange between bound water and
water vapor due to adsorption/desorption is driven by the difference in chemical
potential. The interaction function is based on equilibrium considerations for
the bound water–water vapor system. From the description of the sorption
isotherm, expressions for net isosteric heat and free energy related to water–fiber
interaction are derived. The resulting thermodynamically consistent model is
used to simulate moisture and heat dynamics for paperboard rolls. Simulation
results are presented for a paperboard roll with anisotropic material properties
subjected to a change in ambient relative humidity from 50% to 80%.
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Nomenclature

Latin Symbols

aw Water activity (-).
adir Parameter for intrinsic permeability in material

direction dir (-).
A Sorption isotherm parameter (J/mol).
Aα, Aαj

Specific Helmholtz free energy (J/kg).
bα, bαj

Specific body force (N/kg).
B Sorption isotherm parameter (-).
cvα, c

v
αj

Isochoric heat capacity (J/kg-K).

C Sorption isotherm parameter (J/kg).
dα Rate of deformation (1/s).
D, D∗, Dn1, Dn2, Dd Rate of energy dissipation per unit volume

(W/m3).
Dαj

Diffusivity tensor (s).
êβα, ê

β
αj

Rate parameter for mass gain from phase β
(1/s).

Êαj
Rate parameter for energy gain from other con-
stituents in α (J/kg-s).

f Specific free energy related to water–fiber inter-
action (J/kg).

Gα Specific Gibbs free energy (J/kg).
hα, hαj

Specific enthalpy (J/kg).
H Roll width (m).

îαj
Rate of gain of linear momentum (m/s2).

I Identity matrix (-).
K Thermal conductivity tensor (W/m-K).
K

p
β,α Intrinsic permeability tensor (m3-s/kg).

kser, kpar, kα Thermal conductivity (W/m-K).
Li Boundary segment i (m).
Mgj Molar mass (kg/mol).
dm, dmα, dmαj

Mass of component in REV (kg).
n̄ Outward normal (-).
nα Volume fraction (-).
pα, pαj

Pressure (N/m2)
peqgv Equilibrium vapor pressure (N/m2).
psatgv

Saturation vapor pressure (N/m2).
qngv , q

n
ga

Boundary combined mass flux (kg/m2-s)
qnθ Boundary heat flux (W/m2)
qα, qαj

Heat flux (W/m2).

q̃ Combined heat flux (W/m2).

Q̂β
αj

Rate parameter for energy gain from phase β
(W/kg).
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r Spatial coordinate (m).
rα, rαj

External heat source (W/kg).
r̂αj

Rate of mass gain from other constituents in α
(1/s).

rcore, router Paperboard roll radius (m).
R Universal gas constant (J/mol-K).

T̂
β

α, T̂
β

αj
Rate parameter for gain of linear momentum
from phase β (m/s2).

t, tr Time (s).
uα, uαj

Specific internal energy (J/kg).
dv, dvα Volume of components in REV (m3).
v, vα, vαj

Velocity (m/s).
vβ,α Velocity of β relative to α (m/s).
wα, wαj

Diffusive velocity (m/s).
W Moisture ratio (-).
z Spatial coordinate (m).

Greek Symbols

ζ Rate coefficient for mass transfer (kg-s/m5).
ηα, ηαj

Specific entropy (J/kg-K).
θ Absolute temperature (K).
λα, λαj

Lagrangian multiplier (J/kg).
Λw Lagrangian multiplier (J/kg).
µα, µαj

Specific chemical potential (J/kg).
µ̄α, µ̄αj

Dynamic viscosity (Pa-s)
ρ, ρα, ραj

Intrinsic density (kg/m3).
σα, σαj

Stress (N/m2).
τ̂α, τ̂αj

Total rate of gain of linear momentum per unit volume
(N/m3).

φ Relative humidity (-).
ωi Arbitrary weight function (-).
Ωs Solid phase domain (m2).
∂Ωs Boundary of solid phase domain (m).

Superscripts and Subscripts

(•)o State without interactions.
(•)∗ Fixed reference state.
(•)α Property of phase α.
(•)αj

Property of constituent j in phase α.
(•)∞ Property of ambient atmosphere
(•)0 Property at initial state
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1 Introduction

Due to its relatively low cost and accessibility paperboard has numerous engineering
applications including the use as base material in food containers. Chemically and
mechanically treated wood fibres are the main components in paperboard. Self bond-
ing of the fibers upon water removal in manufacturing creates a porous fiber network.
The nature of the wood fibers results in a high affinity towards water. Interactions
between water molecules and fibers effect the structure, strength and stiffness of the
fiber network. Changes in mechanical properties influence the processability of the
board. Spatial variations of moisture and temperature throughout a board result in
locally different response to load and may compromise the package quality. Too low
moisture increases risk of crack formation and too high moisture effects creasing and
folding operations negatively.

At normal atmospheric conditions the pores are filled with moist air and no con-
tinuous water phase is present. In the hygroscopic region water molecules are tightly
bonded to the fibers. The high degree of interaction changes the physical properties of
water and the hygroscopic water behaves different from free water (Baggerud, 2004).
Equilibrium moisture sorption isotherms relate the amount of equilibrium hygroscopic
water (moisture) to the relative humidity and temperature of the surrounding. Ad-
sorbing water to fibers releases heat greater than the heat released if the vapor would
condense but not interact with fibers. The heat above the latent heat is referred to
as net isosteric heat of sorption.

Paperboard is considered to be orthotropic where the symmetry directions are
machine direction (MD), cross–machine direction (CD) and thickness direction (ZD).
Board manufacturing results in fiber orientation predominantly in the plane MD–CD
where fiber alignment is favored in MD causing a high degree of anisotropy.

Paper and paperboard models including diffusional transport of vapor and liquid as
well as sorption dynamics in an isothermal setting are found in works by Bandyopad-
hyay et al. (2000, 2002). Simultaneous heat and mass transport during sorption in
paper sheets has been addressed by Foss et al. (2003) and Zapata et al. (2013). Karls-
son and Stenström (2005) developed models for coupled heat and moisture problems
for paperboard drying applications. Baggerud (2004) and Östlund (2006) extended
the paper drying models to include out of plane shrinkage.

Models for thermo–hydro–mechanical problems in other porous media applications
including mass exchange have been derived by numerous authors, e.g., Graf (2008);
Schrefler (2002); Sullivan (2013); Jussila (2007) developed general thermodynamically
consistent models with focus on geological materials and applications. Ristinmaa
et al. (2011) presented a mixture theory based thermoelasto–plastic model including
flow and mass exchange with aim towards biomechanical, concrete and wood type
materials.

In this work hybrid mixture theory (HMT) is adopted to model features of the
porous nature of paperboard. The theory was developed by Achanta et al. (1994),
Bennethum and Cushman (1996a,b) Hassanizadeh and Gray (1979a,b) where, instead
of upscaling constitutive relations to macroscale, constitutive relations are obtained
directly by exploiting the macroscale entropy inequality, in the sense of Coleman
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and Noll (1963). HMT has been successfully used to model coupled deformation
and transport processes in a variety of materials and processes including: swelling
biopolymers for drug delivery (Weinstein et al., 2008), drying of foods (Takhar, 2011,
2014), (Bensal et al., 2014) and clay soils (Bennethum et al., 1997).

The aim of the present paper is to create a thermodynamically consistent model
including fluid flow and sorption effects in a fibrous material. A purely macroscopic
approach excluding microscopic features is presented in this work. The triphasic
description of paperboard includes fiber, bound water and gas, where the gas is con-
sidered to be a miscible mix of water vapor and dry air. The phase interfaces are not
explicitly accounted for but will be implicitly included in the constitutive relations
related to the interaction between phases. Constitutive relations derived in the model
resemble the classical results where Fick’s law is used for intraphase diffusion, Darcy’s
law for gas seepage and Fourier’s law for heat conduction. The anisotropic transport
properties are accounted for in the constitutive relations for diffusion, seepage and
heat conduction.

The triphasic paperboard model is used to analyse the response of a roll exerted to
different ambient climates, defined by gas pressure, relative humidity and temperature.
Moisture penetration, temperature variation and sorption dynamics are investigated
for a paperboard roll subjected to a change in ambient relative humidity.

2 Preliminaries

In mixture theory, when up–scaling from micro to macro scale, information about the
geometrical configuration is replaced by the macroscopic quantity: volume fraction.
Let α denote phases and αj denote constituents j in phase α. The volume fraction of
a phase α is then denoted by nα and defined as

nα =
dvα
dv

, (1)

where dvα is the volume of phase α and dv is the elemental volume of the representative
elementary volume (REV). The volume fractions are constrained by the relationship

∑

α

nα = 1, (2)

which states that all phases together occupy the whole REV. The constituents of a
phase are assumed to be miscible, hence they are associated with the same volume
as the phase. The intrinsic density of a component is defined as the mass of the
component in the REV divided by the volume it occupies of the REV. The following
definitions are used

ρ =
dm

dv
, ρα =

dmα

dvα
, ραj

=
dmαj

dvα
, (3)

where dm, dmα and dmαj
are the mass of REV, mass of phase α in REV and mass

of constituent j in REV, respectively. As a consequence the following relations hold

ρα =
∑

j

ραj
, ρ =

∑

α

nαρα. (4)
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Let vαj
denote the velocity of constituent j in phase α relative to some frame of

reference. The velocity of phase α relative to the same reference frame is given as
the mass averaged velocity of its constituents. Equivalently the barycentric velocity
of the combination of all phases is introduced, i.e.,

v =
1

ρ

∑

α

nαραvα, vα =
1

ρα

∑

j

ραj
vαj

. (5)

It is advantageous to separate the species diffusion and seepage. For this purpose
relative velocities are introduced as

wα = vα − v, wαj
= vαj

− vα, vα,β = vα − vβ , β 6= α, (6)

where wαj
,wα are termed diffusion velocities and vα,β is termed seepage velocity. As

a consequence of the velocity definitions the following relations must hold

∑

j

ραj
wαj

= 0,
∑

α

ραwα = 0. (7)

The material time derivative with respect to a phase and the material time derivative
with respect to a constituent are defined as

Dα(•)

Dt
=

∂(•)

∂t
+ vα · ∇(•),

Dαj
(•)

Dt
=

∂(•)

∂t
+ vαj

· ∇(•), (8)

where (•) is any scalar or tensorial quantity.

2.1 General equations

Each component of the mixture is associated with a corresponding set of field equa-
tions. The available field equations are balances of mass, linear momentum and energy,
(cf. Bennethum and Cushman, 1996a, 2002a,b). For constituents the following field
equations are assumed

Dαj
(nαραj

)

Dt
+ nαραj

∇ · vαj
=

∑

β 6=α

nαραj
êβαj

+ nαραj
r̂αj

, (9)

nαραj

Dαj
(vαj

)

Dt
= ∇ · (nασαj

) + nαραj
bαj

+
∑

β 6=α

nαραT̂
β

αj
+ nαραj

îαj
, (10)

nαραj

Dαj
(uαj

)

Dt
= nασαj

: ∇(vαj
)−∇ · (nαqαj

) + nαραj
rαj

(11)

+
∑

β 6=α

nαραj
Q̂β

αj
+ nαραj

Êαj
,

where σαj
is the constituent Cauchy stress tensor and nαραj

bαj
is the body force

vector acting on the constituent. Balance of angular momentum is omitted assuming
the material is non–polar (Hassanizadeh and Gray, 1979b). In the balance of energy
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uαj
is the specific internal energy, qαj

is the partial heat flux vector and rαj
the

external heat source of constituent j. The quantities with hat denote interaction
terms, specifically nαραj

êβαj
is the rate of mass gain of constituent j in α from β, i.e it

represents the inter–phase mass transfer. The term nαραj
r̂αj

is the rate of mass gain
of constituent j in α from all other constituents in the same phase (intra–phase mass
transfer). The mass gain of phase α from β is defined as

∑

β 6=α

nαραê
β
α =

∑

j

∑

β 6=α

nαραj
êβαj

. (12)

The rate of gain of linear momentum from interaction with other constituents in the

same phase is given by nαραj
îαj

and nαραj
T̂

β

αj
is the rate of gain of linear momentum

from interaction with the constituent of phase β. The gain of linear momentum for
interaction between phases, the body force acting on a phase and the phase stress are
defined by (cf. Bennethum and Cushman, 1996a)

nαραT̂
β

α =
∑

j

nαραj
(T̂

β

αj
+ êβαj

wαj
), (13)

nαραbα =
∑

j

nαραj
bαj

, (14)

nασα =
∑

j

(nασαj
− nαραj

wαj
⊗wαj

). (15)

The two remaining quantities with a hat present in the balance of energy are, nαραj
Êαj

is the rate of energy gain from other constituents in α, and nαραj
Q̂β

αj
is the rate of

gain of energy of constituent j in phase α from phase β. With the above definitions
the balances of mass and linear momentum for phases are given as

Dα(nαρα)

Dt
+ nαρα∇ · vα =

∑

β 6=α

nαραê
β
α, (16)

nαρα
Dα(vα)

Dt
= ∇ · (nασα) + nαραbα +

∑

β 6=α

nαραT̂
β

α. (17)

The natural primary variable associated with the balance of mass is the density, for
the linear momentum balance the velocity and for the energy equation the temper-
ature. The extra unknowns must be addressed by additional constitutive assump-
tions in order to close the system of equations. The dissipation inequality for a
multiphase system with constituents has been derived by Bennethum and Cushman
(2002b) by combining the entropy inequality and the energy equation and introduc-
ing the Helmholtz free energy. The format of the inequality presented here disregards
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electrostatic effects (cf. Ristinmaa et al., 2011)

D =
∑

α

{

− nαρα

(Dα(Aα)

Dt
+ ηα

Dα(θ)

Dt

)

−
[

nαqα +
∑

j

[

nασαj
·wαj

− nαραj
wαj

1

2
wαj

·wαj
− nαραj

Aαj
wαj

]

]

·
1

θ
∇(θ)

+ (nασα +
∑

j

nαραj
wαj

⊗wαj
) : dα

+
∑

j

(nασαj
− nαραj

Aαj
I) : (∇⊗wαj

)

+
∑

j

[

−∇(nαραj
Aαj

)− nαραj
îαj

−
∑

β 6=α

nαραj
T̂

β

αj

]

·wαj

−
∑

j

[

nαραj
r̂α +

∑

β 6=α

nαραj
êβαj

]1

2
wαj

·wαj

−
∑

β 6=α

nαραê
β
α(Aα +

1

2
wα ·wα)−

∑

β 6=α

nαραT̂
β

αwα

}

≥ 0, (18)

where the rate of deformation dα is the symmetric part of ∇(vα) and qα the phase
heat flux. In the above inequality it is assumed that local thermal equilibrium prevails,
meaning that for a spatial point all phases and constituents have the same temperature
θ. The introduction of the specific Helmholtz free energy is made by means of Legendre
transformation, i.e.,

Aαj
= uαj

− ηαj
θ, (19)

where ηαj
denotes the entropy of constituent j in phase α. Moreover the specific

Helmholtz free energy and entropy for a phase are defined by

nαραAα =
∑

j

nαραj
Aαj

, nαραηα =
∑

j

nαραj
ηαj

. (20)

3 Triphasic model with mass exchange

The phases considered are solid (s), bound water (l), and gas (g). Fig. 1 illustrates
how the paperboard is separated into phases which are smeared out and superimposed
at macroscale to form a continuum. Of particular interest is the transport of water
molecules which motivates us to further separate the gas into a water vapor (gv) and
dry air (ga), i.e., gas is a homogeneous mixture of water vapor and dry air, hence
both constituents are considered to simultaneously occupy the total gas volume of the
REV. For this purpose let us define

α = {s, l, g}, gj = {gv, ga}. (21)
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Figure 1: Schematic representation of separation of the REV into phases that are smeared out by
means of volume averaging and at the macroscale are viewed as superimposed phases to create a
mixture continuum

The focus of this work is on the transport phenomena within paperboard where the
moisture contents are relatively low (below the fiber saturation point). At low mois-
ture contents the water–fiber interactions are strong and the bound water phase (l)
will thus have properties different from water outside the material. The diffusive vapor
and moisture transport as well as heat transport through convection and conduction
in paperboard rolls in storage are considered slow. The slow nature of the processes
motivates certain simplifications. It is assumed that inertial terms are negligible com-
pared to other terms in the linear momentum balance equations. The influence of
gravitational forces on the transport are considered negligible. No chemical reactions
take place within the gas phase and mass is only exchanged between bound water
and its vapor, the solid fiber and dry air components are assumed inert. Moisture
sorption hysteresis is for simplicity not considered in this work. The solid fiber will
serve as a frame of reference to which the motions of the other species are compared.
Solid deformation is of minor importance in the application considered in this work.
Therefore the solid is assumed rigid and incompressible. The bound water is assumed
intrinsically incompressible, which together with (2) are used as closure conditions.
Furthermore the pores are assumed to be continuously connected.

Based on the expected physical behavior of the system the Helmholtz free energy
functions are postulated to have the following dependencies

As = As(θ), (22a)

Al = Al(θ, nl) = Ao
l (θ) + f(θ, nl), (22b)

Agv = Agv(θ, ρgv), (22c)

Aga = Aga(θ, ρga), (22d)

where the bound water free energy is additively split into a non–interacting part Ao
l

and a water–fiber interaction f . Incorporation of dependency on bound water volume
fraction (nl) indicates that the specific water potential is influenced by the amount of
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water present (cf. Fremond and Nicolas, 1990; Jussila, 2007). The function f is related
to the influence of sorption as it accounts for the change in free energy due to water–
fiber interaction. In absence of hysteresis the sorption isotherm yield a unique relation
between the moisture ratio, temperature and humidity at equilibrium. It is therefore
motivated to assume that the equilibrium interface surface areas are functions of the
same state variables as the sorption isotherm. Consequently the effect the interfaces
have on the system can be considered lumped into the interaction part f of the bound
water potential. It is assumed that neither the solid nor the gas are influenced by the
presence of other phases. For later purposes let m̂v denote the rate of evaporation
defined as

m̂v = ngρgv ê
l
gv

= −nlρlê
g
l (23)

and τ̂ gv , τ̂ ga , τ̂ g, τ̂ l denote total momentum transfer

τ̂ gv = ngρgv [îgv + (T̂
s

gv
+ T̂

l

gv
)], (24a)

τ̂ ga = ngρgv [îga + (T̂
s

ga
+ T̂

l

ga
)], (24b)

τ̂ g = ngρg(T̂
s

g + T̂
l

g), (24c)

τ̂ l = nlρl(T̂
s

l + T̂
g

l ). (24d)

The combined heat flux q̃ is defined as

q̃ =
∑

α

nαqα. (25)

3.1 Dissipation inequality for triphasic paperboard

The dissipation inequality (18) is modified to incorporate the interdependency of
variables by adding balances of mass for the mixture species (9), (16) and the gradient
of condition (7) (cf. Bennethum et al., 2000) by means of Liu’s Lagrange multiplier
method (Liu, 1972). The mass balances are written to follow the solid phase (note that
the material time derivative of the solid phase is identical to the partial derivative with
respect to time since the solid phase velocity is assumed to be zero). The expanded
dissipation inequality is given by

D∗ = D + λl

{

ρl
Ds(nl)

Dt
+ nlρlI : dl + ρl∇(nl) · v

l,s + m̂v

}

+ λgv

{

ng

Ds(ρgv)

Dt
− ρgv

Ds(nl)

Dt
+∇(ngρgv) ·wgv +∇(ngρgv) · v

g,s

+ ngρgvI : dg + ngρgv∇⊗wgv − m̂v

}

+ λga

{

ng

Ds(ρga)

Dt
− ρga

Ds(nl)

Dt
+∇(ngρga) ·wga +∇(ngρga) · v

g,s

+ ngρgaI : dg + ngρga∇⊗wga

}

+Λw :
{

∇(ngρgv)⊗wgv + ngρgv∇⊗wgv +∇(ngρga)⊗wga

+ ngρga∇⊗wga

}

≥ 0. (26)
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Further, the expanded dissipation (D∗) is separated into three parts

D∗ = Dn1 +Dn2 +Dd ≥ 0, (27)

where it is assumed that each part fulfills the inequality. In Dn1 and Dn2 each curly
bracket is independent of the corresponding coefficient, hence to unconditionally sat-
isfy the dissipation inequality the expressions inside curly brackets must be zero. The
first part Dn1 is given as

Dn1 =
Ds(θ)

Dt

{

− nsρs

(∂As

∂θ
+ ηs

)

− nlρl

(∂Al

∂θ
+ ηl

)

− ngρgv

(∂Agv

∂θ
+ ηgv

)

− ngρga

(∂Aga

∂θ
+ ηga

)}

= 0. (28)

It is assumed that each parenthesis is zero which provides definitions of the entropies
of each phase and constituent, i.e.,

ηs = −
∂As

∂θ
, ηl = −

∂Al

∂θ
, ηgv = −

∂Agv

∂θ
, ηga = −

∂Aga

∂θ
. (29)

The second part Dn2 of (27) is given by

Dn2 = dg :
{

ngσg + ngρgvλgvI + ngρgaλgaI + ngρgvwgv ⊗wgv + ngρgawga ⊗wga

}

+ dl :
{

nlσl + nlρlλlI
}

+∇⊗wgv :
{

ngσgv − ngρgvAgvI + ngρgvλgvI +Λwngρgv

}

+∇⊗wga :
{

ngσga − ngρgaAgaI + ngρgaλgaI +Λwngρga

}

+
Ds(ρgv)

Dt

{

ngλgv − ngρg
∂Ag

∂ρgv

}

+
Ds(ρga)

Dt

{

ngλga − ngρg
∂Ag

∂ρga

}

+
Ds(nl)

Dt

{

ρlλl − ρgvλgv − ρgaλga − nlρl
∂Al

∂nl

}

= 0. (30)

From the assumption that each curly bracket is independent of its coefficient the
expressions inside curly brackets are zero. Elimination of the Lagrangian multipliers
and using (15), (20), provides the constitutive relations for the pressures (for more
details, see Appendix A)

pgv = (ρgv)
2∂Agv

∂ρgv
, pga = (ρga)

2∂Aga

∂ρga
, pg = pgv + pga, pl = pg + nlρl

∂Al

∂nl

, (31)
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where phase and constituent stresses are σα = −pαI, σαj
= −pαj

I. The third part
Dd of (27) is given by

Dd = −
1

θ
∇(θ) ·

{

q̃ + ngσgv ·wgv + ngσga ·wga − ngρgvwgv(Agv +
1

2
wgv ·wgv)

− ngρgawga(Aga +
1

2
wga ·wga)

}

−wgv ·
{

∇(ngρgvAgv) + τ̂ gv − λgv∇(ngρgv)−Λw · ∇(ngρgv)
}

−wga ·
{

∇(ngρgaAga) + τ̂ ga − λga∇(ngρga)−Λw · ∇(ngρga)
}

+ vl,s ·
{

− nlρl∇(Al)− nlρlηl∇(θ)− τ̂ l + λlρl∇(nl)
}

+ vg,s ·
{

− ngρg∇(Ag)− ngρgηg∇(θ)− τ̂ g + λgv∇(ngρgv) + λga∇(ngρga)
}

− m̂v

{

Ag + λgv − Al − λl −
1

2

(

wgv ·wgv + vl,s · vl,s − vg,s · vg,s
)}

≥ 0. (32)

Assuming the contribution from energy transport via diffusive mass flux to be negli-
gible, the combined heat flux may be written as

q̃ = −K · ∇(θ), (33)

where the thermal conductivity tensor K is positive definite, which ensure that the
first term of (32) is non–negative.

Elimination of the interaction terms τ̂ l, τ̂ g, τ̂ gv , τ̂ ga in brackets two to five is done
by means of linear momentum equations (10), (17) and definitions (24), which then
is used to derive the following relations (details are found in Appendix B)

vg,s = −
Kp

g,s

µ̄g

· [ng∇(pg)− ngρgbg], (34a)

vl,s = −
K

p
l,s

µ̄l

· [nl∇(pl) + nlρl
∂Al

∂nl

∇(nl)− nlρlbl], (34b)

wgv = −Dgv · [∇(µgv)− bgv ], (34c)

wga = −Dga · [∇(µga)− bga], (34d)

where Kp
g,s, K

p
l,s, Dgv andDga are positive definite tensors, µ̄g and µ̄l are respectively

the dynamic viscosity of gas and bound water. Furthermore the chemical potentials
are given as

µgv = Agv +
pgv
ρgv

, µga = Aga +
pga
ρga

, µl = Al +
pl
ρl
. (35)

Relations (34a,b) and (34c,d) are recognized as Darcy type laws for seepage flow and
Fick type laws for diffusive flux, respectively. Assuming the quadratic velocity terms
in the last bracket of (32) to be negligible we obtain a relation for mass transfer
between bound water and water vapor as

m̂v = ζ [µl − µgv ], (36)

where ζ is a non–negative scalar.
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3.2 Reduced set of balance equations

With the aim to model moisture and temperature distribution the general governing
equations are reduced to four simplified governing equations namely, water vapor
mass balance, dry air mass balance, bound water mass balance and energy balance
(see Appendix C):

Water vapor mass balance

ng

Ds(ρgv)

Dt
− ρgv

Ds(nl)

Dt
+∇ · (ngρgvwgv) +∇ · (ngρgvv

g,s)− m̂v = 0, (37)

Dry air mass balance

ng

Ds(ρga)

Dt
− ρga

Ds(nl)

Dt
−∇ · (ngρgvwgv) +∇ · (ngρgav

g,s) = 0, (38)

Bound water mass balance

ρl
Ds(nl)

Dt
+ m̂v = 0, (39)

Energy balance

(nsρs
∂us

∂θ
+ nlρl

∂ul

∂θ
+ ngρgv

∂ugv

∂θ
+ ngρga

∂uga

∂θ
)
Ds(θ)

Dt
+ ngugv

Ds(ρgv)

Dt

+ nguga

Ds(ρga)

Dt
− (ρgvugv + ρgauga − ρlul − nlρl

∂ul

∂nl

)
Ds(nl)

Dt

+∇ · (q̃ + ng(ρgvugv + pgv + ρgauga + pga)v
g,s) = 0, (40)

where the material derivative of the solid phase is equivalent to the partial deriva-
tive since the solid phase velocity is assumed to be zero. In the above formulation
the bound water is assumed to be bonded to the solid fiber such that its motion is
negligible.

4 Modelling processes in paperboard

The Helmholtz free energy function for the solid As is postulated to be able to model
storage of heat at a constant heat capacity. The bound water energy is chosen to
model incompressible water, with constant heat capacity, extended with a water–fiber
interaction term. For the gas species the format is chosen to capture that of a perfect
gas (ideal gas with constant heat capacity). To solve the system for the unknowns
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θ, ρgv , ρga, nl the following functional forms of Helmholtz free energy are used

As(θ) = −cvs [θ ln
( θ

θ∗
)

− (θ − θ∗)]− η∗sθ + u∗
s, (41a)

Al(θ, nl) = −cvl [θ ln
( θ

θ∗
)

− (θ − θ∗)] + f(θ, nl)− η∗l θ + u∗
l , (41b)

Agv(θ, ρgv) = −cvgv [θ ln
( θ

θ∗
)

− (θ − θ∗)] +
Rθ

Mgv

ln
(ρgv
ρ∗gv

)

− η∗gvθ + u∗
gv
, (41c)

Aga(θ, ρga) = −cvga [θ ln
( θ

θ∗
)

− (θ − θ∗)] +
Rθ

Mga

ln
(ρga
ρ∗ga

)

− η∗gaθ + u∗
ga
, (41d)

where cvαj
and cvα are isochoric heat capacities, Mgj is the molar mass of constituent

αj and R is the universal gas constant. Quantities denoted with the superscript (•)∗

denote a reference state. The reference state is chosen as a state at 25◦C and 1 atm
pressure in equilibrium without any water–fiber interactions. Corresponding reference
densities are obtained from the ideal gas law

pgj = ρgj
Rθ

Mgj

, (42)

which follows from (31). The parameter u∗
s does not enter the equations and may

be chosen arbitrarily. Table 1 specify the given reference state. The necessary con-
stitutive relations to close the system of equations are summarized in Table 2. The
constitutive parameters are found in Table 3 and Table 4.

The permeability tensor is orthotropic and fitted to experimental data using a
Kozeny–Carman type model (Masoodi and Pillai, 2010)

Kp,dir
g,s = Kdir

0

(ng

n0
g

)adir (1− n0
g)

(1− ng)
, (43)

where the superscript dir indicates which material direction the intrinsic permeability
is taken (MD,CD or ZD). The gas viscosity µ̄g is estimated in the same sense as in
Pont et al. (2011) by weighting of constituent viscosities

µ̄g = µ̄gv + (µ̄ga − µ̄gv)(pga/pg)
0.608. (44)

In machine direction (MD) and in cross–machine direction (CD) the thermal conduc-
tivity is approximated by kpar and in thickness direction (ZD) by kser, where

kpar = nlkl + nsks + ngkg, kser =
1

nl/kl + ns/ks + ng/kg
. (45)

A combined serial and parallel description has also been used to model paperboard
(e.g. Karlsson and Stenström, 2005; Baggerud, 2004).

The remaining part to be specified is the function f(θ, nl) in the Helmholtz free
energy for the bound water. It will be shown that the choice of f is directly coupled
to the sorption isotherm and the net isosteric heat of sorption.

14



Table 1: Reference state, 25◦C and 1 atm gas pressure (Cengel and Boles, 2007)

Parameter Unit Value

Absolute temperature (θ∗) K 298.15

Pressure – vapor (p∗gv) Pa 3.169 × 103

Pressure – bound water (p∗l ) Pa 1.013 × 105

Entropy – vapor (η∗gv) J/kg-K 8.557 × 103

Entropy – dry air (η∗ga) J/kg-K 6.866 × 103

Entropy – bound water (η∗l ) J/kg-K 3.672 × 102

Internal energy – vapor (u∗gv = h∗gv −Rθ∗/Mgv) J/kg 2.409 × 106

Internal energy – dry air (u∗ga = h∗ga −Rθ∗/Mga) J/kg 2.130 × 105

Internal energy – bound water (u∗l = h∗l − p∗l /ρl) J/kg 1.047 × 105

Table 2: Constitutive relations

Quantity Relation Equation

Diffusive velocity – vapor (wgv) wgv = −Dgv · ∇(µgv) Eq.(34c)

Seepage velocity – gas (vg,s) vg,s = −
K

p

g,s

µ̄g
· ng∇(pg) Eq.(34a)

Heat flux (q̃) q̃ = −K · ∇(θ) Eq.(33)

Rate of mass gain of vapor (m̂v) m̂v = ζ Rθ
Mgv

ln(
psatgv

aw

pgv
) Eq.(36)

Volume fraction – gas (ng) ng = 1− nl − ns Eq.(2)

Gas pressure (pg) pg = pgv + pga Eq.(15)

Pressure – constituent (pαj
) pαj

= ραj

Rθ
Mαj

, αj = {gv , ga} Eq. (42)

Chemical potential – vapor (µgv) µgv = Agv +
pgv
ρgv

Eq.(35)

Internal energy – constituent (uαj
) uαj

= Aαj
+ηαj

θ, αj = {gv , ga} Eq.(19)

Internal energy – phase (uα) uα = Aα + ηαθ, α = {s, l} Eq. (19)+(20)

Entropy – constituent (ηαj
) ηαj

= −
∂Aαj

∂θ
, αj = {gv , ga} Eq.(29)

Internal energy – phase (ηα) ηα = −∂Aα

∂θ
, α = {s, l} Eq.(29)

4.1 Mass transfer between bound water and water vapor

The equilibrium vapor pressure of water inside the porous medium is lower than the
corresponding vapor pressure over a flat interface due to the interaction. The ratio of
equilibrium vapor pressure inside the porous media (peqgv) and that over a flat liquid
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Table 3: Constitutive parameters and constants

Parameter Unit Value

Heat capacity water (cvl ) J/kg-K 4.180 ×103

Heat capacity vapor (cvgv) J/kg-K 1.399 ×103

Heat capacity dry air (cvga) J/kg-K 0.718 ×103

Heat capacity fiber (cvs) J/kg-K 1.200 ×103

Universal gas constant (R) J/mol-K 8.314

Molar mass water (Mgv) kg/mol 1.802 ×10−2

Molar mass dry air (Mga) kg/mol 2.896 ×10−2

Liquid density (ρl) kg/m3 1.000 ×103

Fiber density (ρs) kg/m3 1.500 ×103

Vapor diffusivity (Dgv) s

-ZD component 3.79 × 10−10 · θ−1

-CD component 2.09 × 10−8 · θ−1

Gas permeability (Kp
g,s) m2

-ZD component 6.759 × 10−14 · n4.18
g /(1− ng)

-CD component 6.183 × 10−13 · n2.20
g /(1− ng)

Gas viscosity (µ̄g) Pa-s µ̄gv + (µ̄ga − µ̄gv)(pga/pg)
0.608

Vapor viscosity (µ̄gv) Pa-s −7.92 × 10−7 + 3.53 × 10−8 · θ

Dry air viscosity (µ̄ga) Pa-s 5.90×10−6+3.52×10−8 ·θ+2.2×10−11 ·θ2

Heat conductivity (K) W/m-K

-ZD component 1/(ns/0.2 + nl/0.6 + ng/0.025)

-CD component 0.2 · ns + 0.6 · nl + 0.025 · ng

Saturation vapor pressure (psatgv ) Pa 3169 ·exp(−5.03 · ln(θ)−6792/θ+51.43)

Mass transfer rate coefficient (ζ) kg-s/m5 2.7× 10−7

surface (psatgv
) is defined as the water activity

aw =
peqgv
psatgv

. (46)

In a dynamic case the local partial pressure is not equal to its saturation pressure and
thus not directly related to the equilibrium activity aw. The relation between activity,
moisture and temperature is described by a sorption isotherm, which is in general

16



depending on the history, i.e, it has a hysteretic behavior. However, for simplicity
this is omitted in this work, thus aw = aw(θ, nl). The constitution of the macroscale
activity aw implicitly account for the presence of interfaces.

4.1.1 Determining sorption free energy from equilibrium requirements

In deriving (36) it is assumed that at equilibrium m̂v = 0. Consequently it is found
that at equilibrium the chemical potential of water in adsorbed state and vapor state
is identical µl = µgv . Along the equilibrium path the change in potential must be
identical, i.e, dµl = dµgv . Integration from an equilibrium state corresponding to free
water to an equilibrium state including water–fiber interaction at the same tempera-
ture yields

µl − µo
l = µgv − µo

gv
. (47)

Recalling definition (35) the chemical potential may be rewritten as

µl − µo
l = Al −Ao

l +
pl − pol

ρl
. (48)

Insertion of (22b) and (31), and using that at the flat interface the water pressure pol
is identical to the gas pressure pog where |pg − pog| ≪ |nl

∂f

∂nl
|, hence

µl − µo
l =

∂(nlf)

∂nl

. (49)

The difference in chemical potential of the gas is obtained from Legendre transforma-
tion (35) which with utilization of the ideal gas law (42) and the definition of activity
(46) provide

µgv − µo
gv

=
Rθ

Mgv

ln(aw). (50)

Combining (47), (49), (50) provides a relation between f and the activity aw

Rθ

Mgv

ln(aw) =
∂(nlf)

∂nl

. (51)

4.1.2 Net isosteric heat of sorption

When water molecules transfer from a gaseous state to a bound state there is a release
of energy. The heat recovered is referred to as latent heat of water. Adsorption to a
surface is an exothermic reaction which due to the strong interaction releases more
heat than pure condensation. The heat in excess of the latent heat is the net isosteric
heat of adsorption ho

l − hl, where hl is the enthalpy for water including interaction
whilst ho

l is the enthalpy of water without the presence of solid. The enthalpy is given
by the Legendre transformation

hl = Gl + ηlθ, (52)

where Gl is the specific Gibbs free energy of bound water. The bound water phase only
has one constituent, thus Gl = µl. Taking the difference of the current equilibrium
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state and the reference state, recalling the relation for entropy (29), it is found that
the net isosteric heat of adsorption is described by

ho
l − hl = θ

∂f

∂θ
−

∂(nlf)

∂nl

. (53)

Physically it is required that ho
l−hl is a positive quantity hence an arbitrary description

of the isotherm cannot be used to guarantee this condition. As a consequence of
the coupling the functional form of aw determines the heat of sorption which limits
the useful isotherm functions when combined heat and mass transport problems are
addressed. This issue was discussed for isotherms for paper materials by Petterson
and Stenström (2000). The net isosteric heat enters the energy balance (40) implicitly
as internal energy ul which is associated with hl via Legendre transformation ul =
hl − pl/ρl. The requirement on ul to obtain exothermic adsorption is addressed in
Appendix D.

4.1.3 Specific choice of sorption isotherm

To describe the sorption isotherm a Chung–Pfost format is adopted, which is a model
with two parameters including explicit temperature dependence (cf. Chirife and Igle-
sias, 1978). The model allows the general sigmoidal shape of the isotherm to be
captured. The sorption isotherm is described by the function

aw = exp
(

−
A

Rθ
exp(−BW )

)

, (54)

where A and B are model parameters. Chirife and Iglesias (1978) point out that
A and B are in general temperature dependent. However, since the temperature
changes considered here are small it is assumed that the temperature dependence of
the parameters is negligible. The moisture ratio W is related to the bound water
volume fraction via

W =
nlρl
nsρs

, (55)

The function f is calculated from (51) for the specific choice of sorption isotherm aw,
and integration provides

f =
1

W

( A

BMgv

exp(−BW ) + C(θ)
)

. (56)

The quantity C is not present in aw and regardless how it is chosen it will not effect
the sorption isotherm, only the net isosteric heat of sorption. The net isosteric heat
of sorption becomes

ho
l − hl =

A

Mgv

exp(−BW ) +
θ

W

∂C

∂θ
. (57)

Model predictions in the region of interest are shown in Fig. 2(a) and 2(b). The
model parameters are found in Table 4.
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(a) (b)

Figure 2: a Adsorption isotherm fitted to experimental data for a Kraft paperboard and b isosteric
heat fitted to experimental data for Kraft linerboard (Cleland et al., 2007)

Table 4: Sorption related properties

Parameter Unit Value Equation

Sorption function (f) J/kg 1
W
( A
BMgv

exp(−BW ) + C) Eq.(56)

-Water activity (aw) - exp(− A
Rθ

exp(−BW )) Eq.(54)

-Net iso. heat of sorption (hol − hl) J/kg A
Mgv

exp(−BW ) + θ
W

∂C
∂θ

Eq.(57)

- Model parameter A J/mol 6.232 × 103

- Model parameter B - 20.56

- Model parameter C J/kg 43.87 · θ

4.2 Sorption kinetics

For water vapor considered as an ideal gas the chemical potential is given by

µgv = µo
gv
+

Rθ

Mgv

ln
pgv
psatgv

. (58)

The chemical potential at the state µo
gv

represents the chemical potential of vapor in
equilibrium with liquid water over a flat interface at temperature θ. The bound water
chemical potential in the porous medium is given by the chemical potential of the
water vapor in equilibrium with the bound water, cf. eq.(47),

µl = µgv(p
eq
gv
) = µo

gv
+

Rθ

Mgv

ln
peqgv
psatgv

, (59)
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where µl was chosen to have the same reference state. Combining (36), (46), (58) and
(59) provides an expression for the rate of mass exchange

m̂v = ζ
Rθ

Mgv

ln
psatgv

aw

pgv
. (60)

The driving force is the logarithmic deviation of the current vapor pressure from the
vapor pressure at equilibrium in the presence of water–fiber interactions. A similar
relation was derived in Bénet et al. (2009). It follows that pgv > awp

sat
gv

→ m̂v < 0
and pgv < awp

sat
gv

→ m̂v > 0.
The mass transfer relation is logarithmic and differs from the more common linear

relation (first order reaction kinetics) (e.g. Foss et al., 2003; Zapata et al., 2013; Nyman
et al., 2006). The coefficient ζ is estimated from an experiment using a laboratory
paper sheet where it is assumed that the supply of vapor is sufficient such that the
process dynamics is dominated by the rate of adsorption. A step change in relative
humidity from 50% to 89%, with surrounding temperature of 23◦C, induces a driving
force for sorption. The heat transport is considered to be fast relative to the adsorption
dynamics, thus the system is isothermal despite the release of adsorption heat. Fig.
3 displays experimental data and simulated model data obtained by use of (55), (39)
and (60).

Figure 3: Dynamic adsorption measurements and simulation assuming homogeneous vapor and
temperature fields for a relative humidity step from 50% to 89% at 23◦C

5 Simulation of paperboard in storage

A finite element formulation is adopted for the coupled system of equations. The
basis for the derivation of the finite element formulation is the weak formulation of
the governing equations, which is obtained by multiplying (37)–(40) with arbitrary
weight functions (ωi) and integrating over the domain spanned by the solid phase (Ωs)
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as well as using the Gauss divergence theorem. The following is obtained
∫

Ωs

ωρgv

(

ng

Ds(ρgv)

Dt
− ρgv

Ds(nl)

Dt
− m̂v

)

rdS −

∫

Ωs

∇(ωρgv
) · ngρgv [wgv + vg,s]rdS

+

∫

∂Ωs

ωρgv
qngvrdL = 0, (61a)

∫

Ωs

ωρga

(

ng

Ds(ρga)

Dt
− ρga

Ds(nl)

Dt

)

rdS −

∫

Ωs

∇(ωρga
) · [−ngρgvwgv + ngρgav

g,s]rdS

+

∫

∂Ωs

ωρga
qngardL = 0, (61b)

∫

Ωs

ωnl

(

ρl
Ds(nl)

Dt
+ m̂v

)

rdS = 0, (61c)

∫

Ωs

ωθ

(

C̃
Ds(θ)

Dt
+ ngugv

Ds(ρgv)

Dt
+ nguga

Ds(ρga)

Dt
− Ũ

Ds(nl)

Dt

)

rdS

−

∫

Ωs

∇(ωθ) · [q̃ + H̃vg,s]rdS +

∫

∂Ωs

ωθq
n
θ rdL = 0, (61d)

where ∂Ωs is the boundary of Ωs. The boundary flux terms are given by

qngv = n̄ · ngρgv [wgv + vg,s], (62a)

qnga = n̄ · [−ngρgvwgv + ngρgav
g,s], (62b)

qnθ = n̄ · [q̃ + H̃vg,s]. (62c)

where n̄ is the outward normal to the boundary. Note that there is no flux term in the
mass balance of bound water. Additionally the following notations were introduced:
C̃ = nsρs

∂us

∂θ
+ nlρl

∂ul

∂θ
+ ngρgv

∂ugv

∂θ
+ ngρga

∂uga

∂θ
, Ũ = ρgvugv + ρgauga − ρlul − nlρl

∂ul

∂nl
,

H̃ = ng(ρgvugv + pgv + ρgauga + pga). Four–node isoparametric quadrilateral element
with bilinear interpolations are used in the spatial discretization of all fields. The
discrete problem is solved monolithically using a backward Euler time integration
scheme with primary variables θ, ρgv , ρga, nl.

The model is used to simulate the material response of a paperboard roll subjected
to different ambient climates, which are characterized by surrounding temperature,
relative humidity and gas pressure. The relative humidity φ is defined as

φ =
pgv
psatgv

. (63)

The geometry used in the simulation is shown in Fig. 4. The roll radii are rcore = 0.088
m, router = 0.505 m and the width of the roll is H = 0.63 m. Solid volume fraction for
the particular roll is set to ns = 0.48. Cylinder coordinates are adopted and due to
rotational symmetry a cross–section in the ZD–CD–plane is used as the computational
domain.

Time dependent Dirichlet boundary conditions are used for the temperature, vapor
density and dry air density on the boundary towards the ambient atmosphere. The
inner boundary (core) is assumed to be isolated and impermeable such that all degrees
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Table 5: Initial conditions for a paperboard roll and ambient climate

Parameter Value

Initial ambient atmosphere

Gas pressure (pg0,∞) (N/m2) 1.013× 103

Relative humidity (φ0,∞) (-) 0.5

Absolute temperature (θ0,∞) (K) 298.15 (25◦)

Initial conditions in roll

Vapor density (ρgv0) (kg/m
3) 0.0115

Dry air density (ρga0) (kg/m
3) 1.1653

Bound water volume fraction (nl0) (-) 0.0473

Absolute temperature (θ0) (K) 298.15 (25◦)

of freedom have zero flux, i.e. Neumann conditions. A mesh 100 × 60 elements
in r and z direction, respectively is used. The mesh density close to the external
boundary is higher (80 elements in 0.025 m in r–direction and 55 elements in 0.065
m in z–direction).

Table 6: Boundary conditions for a paperboard roll subjected to a change in ambient relative
humidity

Equation L1 L2

Water vapor mass balance qngv = 0 ρgv(t) =
Mgv

Rθ0,∞
psatgv (θ0,∞)φ∞(t)

Dry air mass balance qnga = 0 ρga(t) =
Mga

Rθ0,∞

(

pg0,∞ − psatgv
(θ0,∞)φ∞(t)

)

Energy balance qnθ = 0 θ = θ0,∞

5.1 Paperboard roll response to change in ambient relative

humidity

A gradual change in relative humidity from 50% to 80% is applied over a time of 4
hours (tr) to the boundary such that the temperature and overall gas pressure of the
surrounding are fixed at 25◦ C and 1 atm. Only the composition of the surrounding
air is changed. Initially the body is in equilibrium with the surrounding state (initial
state and boundary conditions are given in Table 5 and Table 6, respectively). The
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(a) (b)

Figure 4: Graphic representation of the modelled section of a paperboard roll

change in relative humidity with time is given by

{

φ∞(t) = φ0,∞ + [φ∞(t = tr)− φ0,∞](t/tr)
2, t ≤ tr,

φ∞(t) = φ∞(t = tr), t > tr,
(64)

where tr is the time the ramp ends. A change in vapor concentration in the surrounding
induces a driving force for diffusion and as the local vapor concentration is increased
a driving force for sorption is created. The moisture penetration is significantly larger
in the radial direction compared to the axial direction, cf. Fig. 5. This is an effect
mainly attributed to the higher vapor diffusivity in the axial direction (CD). In the
radial direction (ZD) the sorption kinetics is fast compared to the diffusion resulting
in a small reaction region and steep moisture profile. The diffusivity is significantly
faster in the transversal direction yielding a wider reaction region. However due to
the large diffusion distances the problem is still diffusion dominated at the current
rate of sorption determined by the constitutive coefficient ζ .

Initially the adsorption will take place close to the boundary. However when
the boundary region approaches the equilibrium moisture content the reaction region
propagates inwards. The width of this region is related to the ratio of diffusivity,
diffusion distances and mass transfer coefficient. For high diffusivity relative to the
mass transfer coefficient the region will penetrate deeply and sorption will take place
throughout the body. Fig. 6 shows the development of the driving force ∆µ = µl−µgv

in radial and axial direction. For fast sorption kinetics the profile will be steep and
propagate slowly inwards as the vapor reacts locally until equilibrium is reached.

Although there is a release of heat due to sorption the final temperature is virtually
the same and the sorption isotherms are thus almost the same for the initial and for
the final state. The progression of the local relative humidity at the boundary node
towards the surroundings at the symmetry line z = 0 towards equilibrium is illustrated
in Fig. 7(a). It is apparent that the transfer stops upon reaching the equilibrium
isotherm. For the same position it is seen that the driving force for mass transfer is
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largest right after the ramp when the deviation from the isotherm is maximum and
then approaches zero asymptotically with time Fig. 7(b).

(a) (b)

Figure 5: a Simulated moisture profile in radial direction at z = 0 and b axial moisture profile at
r = rcore, at different times for a paperbaord roll subjected to a relative humidity ramp 50% to 80%

(a) (b)

Figure 6: The difference in chemical potentials of bound water and vapor for different times in
storage of a paperbaord roll subjected to a relative humidity change from 50% to 80%, a Radial
direction at z = 0 and b Axial direction at r = rcore

6 Conclusions

In this work a macroscopic three phase model is derived to describe transport and
mass exchange processes in paperboard. The phases considered are solid fiber, liquid
water and pore gas. The gas phase comprises of dry air and water vapor. Governing
equations are obtained through simplification of the general field equations: mass
conservation, linear momentum and energy conservation, established in the hybrid
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(a) (b)

Figure 7: a Development of local relative humidity at the boundary at z = 0 and b chemical
potential difference plotted against time, at the same position for a paperboard roll subjected to a
relative humidity ramp 50% to 80%

mixture theory framework (cf. Bennethum and Cushman, 1996a). The description of
the system is based on appropriate choices of Helmholtz free energy expressions and
systematic treatment of the dissipation inequality. Constitutive relations for fluid flow,
diffusion, heat conduction and mass exchange between bound water and water vapor
are obtained from the dissipation inequality. Fiber–water interaction is incorporated
by the bound water free energy dependence on bound water volume fraction. A
logarithmic mass transfer relation with the ratio of vapor pressure to equilibrium vapor
pressure as driving force is derived from chemical potentials under the assumption
that vapor behaves as an ideal gas. A Chung–Pfost type sorption isotherm, with
assumed temperature independent model parameters, provides a satisfactory fit to
experimental data for the activity and the net isosteric heat of sorption.

Utilizing the derived model it is possible to predict the transient response of a pa-
perboard roll subjected to a change in the ambient atmosphere. Effects of anisotropy
in transport parameters are readily observed on the moisture profile development
governed mainly by diffusion and moisture sorption dynamics. Simulations also show
that the driving force for sorption varies more in axial direction compared to radial
direction due to anisotropy in transport parameters. The ratio of diffusivity to the
kinetic mass transfer coefficient determines the width of the reaction region.

A Determining pressure relations

Assuming that the constitutive variables in curly brackets in (30) are not functions

of its energy conjugated coefficient i.e., dg, dl, ∇⊗ wgv
, ∇ ⊗ wga

, Ds(ρgv )
Dt

, Ds(ρga )
Dt

and Ds(nl)
Dt

, provide that the expressions inside the curly brackets are zero in order to
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satisfy the dissipation inequality. Therefore it is possible to write

− pg + ρgvλgv + ρgaλga = 0, (65a)

λl −
pl
ρl

= 0, (65b)

(−
pgv
ρgv

− Agv + λgv)I +Λw = 0, (65c)

(−
pga
ρga

−Aga + λga)I +Λw = 0, (65d)

λgv = ρg
∂Ag

∂ρgv
, (65e)

λga = ρg
∂Ag

∂ρga
, (65f)

ρlλl − ρgvλgv − ρgaλga − nlρl
∂Al

∂nl

= 0, (65g)

where the deviatoric part of the fluid stress tensors as well as the second order terms
are neglected. Inserting (65b), (65c), (65d) into the definition of phase stress (15)
subjected to the same assumptions yield

Λw = AgI. (66)

Inserting (65e), (65f), (66) into (65c) and (65d) and utilizing that ρgAg(θ, ρgv , ρga) =
ρgvAgv(θ, ρgv) + ρgaAga(θ, ρga) enable us to write the partial pressures as

pgv = (ρgv)
2∂Agv

∂ρgv
, pga = (ρga)

2∂Aga

∂ρga
. (67)

Combination of (65a), (65b) and (65g) result in

pl = pg + nlρl
∂Al

∂nl

. (68)

B Derivations of expressions for seepage and dif-

fusion velocities

Recall terms two to five in (32). Assuming that each term give non–negative dissipa-
tion the following is obtained

−wgv ·
{

∇(ngρgvAgv) + τ̂ gv − λgv∇(ngρgv)−Λw · ∇(ngρgv)
}

≥ 0, (69a)

−wga ·
{

∇(ngρgaAga) + τ̂ ga − λga∇(ngρga)−Λw · ∇(ngρga)
}

≥ 0, (69b)

vl,s ·
{

− nlρl∇(Al)− nlρlηl∇(θ)− τ̂ l + λlρl∇(nl)
}

≥ 0, (69c)

vg,s ·
{

− ngρg∇(Ag)− ngρgηg∇(θ)− τ̂ g + λgv∇(ngρgv) + λga∇(ngρga)
}

≥ 0. (69d)
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The linear momentum balances (10) and (17) written for the paperboard components
with negligible inertial terms and non–deviatoric stresses are

−∇(ngpgv) + τ̂ gv + ngρgvbgv = 0, (70a)

−∇(ngpga) + τ̂ ga + ngρgabga = 0, (70b)

−∇(ngpg) + τ̂ g + ngρgbg = 0, (70c)

−∇(nlpl) + τ̂ l + nlρlbl = 0, (70d)

where definitions (24) were used. Inserting (70c)–(70d) into (69c)–(69d) and expand-
ing the gradients, recalling the dependencies of Helmholtz free energy in (41) and the
definitions of entropy in (29) as well as equations (65b), (65e) and (65f), provide after
simplifications

vl,s ·
{

− nlρl
∂Al

∂nl

∇(nl)− nl∇(pl) + nlρlbl

}

≥ 0, (71a)

vg,s ·
{

(

ρgvρg
∂Ag

∂ρgv
+ ρgaρg

∂Ag

∂ρga
− pg

)

∇(ng)− ng∇(pg) + ngρgbg

}

≥ 0. (71b)

From (65a) it is seen that the first term in (71b) vanish. One possible way to satisfy
the dissipation inequality is

vl,s = −
K

p
l,s

µ̄l

· [nl∇(pl) + nlρl
∂Al

∂nl

∇(nl)− nlρlbl], (72a)

vg,s = −
Kp

g,s

µ̄g

· [ng∇(pg)− ngρgbg], (72b)

where
K

p

l,s

µ̄l
and

K
p

g,s

µ̄g
are positive definite tensors. Insertion of (70a) and (70b) into

(69a) and (69b) as

−wgv ·
{

∇(ngρgv [Agv +
pgv
ρgv

])− ngρgvbgv − (λgvI +Λw) · ∇(ngρgv)
}

≥ 0, (73a)

−wga ·
{

∇(ngρga [Aga +
pga
ρga

])− ngρgabga − (λgaI +Λw) · ∇(ngρga)
}

≥ 0. (73b)

Insertion of (65c), (65d) and (66) into (73a) and (73b) result in

−wgv ·
{

ngρgv∇(Agv +
pgv
ρgv

)− ngρgvbgv

}

≥ 0, (74a)

−wga ·
{

ngρga∇(Aga +
pga
ρga

)− ngρgabga

}

≥ 0. (74b)

One possible way to satisfy the dissipation inequality is the choice

wgv = −Dgv · [∇(µgv)− bgv ], (75a)

wga = −Dga · [∇(µga)− bga], (75b)

where µgv = Agv +
pgv
ρgv

, µga = Aga +
pga
ρga

and Dgv , Dga are positive definite tensors.
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C Derivation of the energy balance

Combining the energy balances (11) for all component of the system (s, l, gv, ga) and
eliminating the terms nαραj

Êαj
and nαραj

Q̂β
αj

with summation constraints, that arise
if the interfaces are assumed to not have any thermodynamic properties (e.g. no mass)
(cf. Bennethum and Cushman, 1996a), provide

nsρs
Ds(us)

Dt
+ nlρl

Ds(ul)

Dt
+ ngρgv

Ds(uga)

Dt
+ ngρga

Ds(uga)

Dt
=

− ngρgv∇(ugv) · v
g,s − ngρga∇(ugv) · v

g,s + ugv∇ · (ngρgvwgv) + uga∇ · (ngρgawga)

−∇ · (ngpgv
g,s)−∇ · (q̃)− m̂v(ugv − ul). (76)

Here the material time derivative is taken to follow the solid phase. The bound water
velocity (vl,s) and second order velocity terms are neglected. No external sources
(rαj

, rα) are present and gravity is omitted. The terms involving diffusive velocities
are eliminated with the help of the balances of mass for vapor (37) and dry air (38)
and the rate of evaporation is eliminated using the bound water balance of mass (39)

ugv∇(ngρgvwgv) = −ugv

Ds(ngρgv)

Dt
+ ugvm̂v − ugv∇ · (ngρgvv

g,s), (77a)

uga∇(ngρgawga) = −uga

Ds(ngρga)

Dt
− uga∇ · (ngρgav

g,s), (77b)

ulm̂v = −ρlul

Ds(nl)

Dt
. (77c)

Insertion of (77a), (77b) and (77c) into (76) result in

nsρs
Ds(us)

Dt
+ nlρl

Ds(ul)

Dt
+ ngρgv

Ds(uga)

Dt
+ ngρga

Ds(uga)

Dt
+ ngugv

Ds(ρgv)

Dt

+ nguga

Ds(ρga)

Dt
+∇ · (q̂ + (ngρgvugv + ngρgauga + ngpg)v

g,s)

+ ρlul

Ds(nl)

Dt
+ ρgvugv

Ds(ng)

Dt
+ ρgauga

Ds(ng)

Dt
= 0, (78)

For a rigid incompressible solid ns = n0
s hence the time derivative of (2) becomes

Ds(ng)

Dt
= −

Ds(ng)

Dt
. (79)

Further, with Helmholtz free energies given by (41) the dependencies of the internal
energies are

ugv = ugv(θ), uga = uga(θ), us = us(θ), ul = ul(θ, nl). (80)

Utilizing the results from (79) and (80) the energy balance (78) may be written as

(nsρs
∂us

∂θ
+ nlρl

∂ul

∂θ
+ ngρgv

∂ugv

∂θ
+ ngρga

∂uga

∂θ
)
Ds(θ)

Dt
+ ngugv

Ds(ρgv)

Dt

+ nguga

Ds(ρga)

Dt
− (ρgvugv + ρgauga − ρlul − nlρl

∂ul

∂nl

)
Ds(nl)

Dt

+∇ · (q̃ + ng(ρgvugv + pgv + ρgauga + pga)v
g,s) = 0. (81)
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D Requirement of exothermic adsorption

With insertion of the mass balances (37), (38), (39) the energy equation (40) may be
written for a homogeneous state (the gradient terms disappear) as

∂θ

∂t
= −

ũ

c̃
m̂v, (82)

where

ũ = (ugv − uo
l ) + (uo

l − ul) +W
∂(uo

l − ul)

∂W
, (83)

c̃ = nsρsc
v
s + nlρlc

v
l + ngρgvc

v
gv
+ ngρgac

v
ga
. (84)

The first parenthesis is the internal energy change for evaporation of free water

ugv − uo
l = (cvgv − cvl )(θ − θ∗) + (u∗

gv
− u∗

l ), (85)

which is positive in the expected temperature range. The second term is related to the
function f via Legendre transformations. For an adsorption process m̂v < 0 provide
that the temperature will increase due to the reaction if ũ > 0.

The specific format of the internal energy of sorption is related to the choice of
isotherm description. For a format of the sorption isotherm according to

aw = exp
(

−
A

Rθ
γ(W )

)

, (86)

the internal energy change associated with the solid–liquid interactions become

(uo
l − ul) +W

∂(uo
l − ul)

∂W
=

1

W

A

Rθ
γ(W ). (87)

Specifically for the Chung–Pfost type isotherm γ(W ) = exp(−BW ), a sufficient con-
dition for an exothermic adsorption is A > 0.
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Abstract

A theory to describe deforming moist paperboard in environments where both
temperature and pressure change significantly during a short period of time is
presented. Paperboard is viewed as an orthotropic triphasic porous medium
consisting of fibers, bound water and moist air. Furthermore, the moist air is
considered as a mixture of two miscible gases, namely dry air and water vapor.
A two–scale hybrid mixture theory is adopted in a large strain setting and
balances of mass, linear momentum, and energy are presented on the macroscale.
Constitutive relations are derived on the macroscale through exploitation of the
dissipation inequality. Mass exchange between bound water and water vapor is
included as a dynamic process. Mass transportation processes include chemical
potential driven diffusion and nonlinear seepage flow. The elasto–plastic stress–
strain response of the fiber network is described by assuming a multiplicative
split of the deformation gradient associated with the motion of the fiber network.
The dynamics related to the mass exchange between bound water and water
vapor is illustrated by changes of pressure, relative humidity, moisture ratio,
and rate of evaporation during rapid heating of a moist paperboard.
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1 Introduction

Paperboard is a porous medium consisting of three species: fibers, air and water.
Fibers contain a cavity, called lumen, and have the approximate dimensions: length
(1–5 mm), width (20–50 µm), fiber wall thickness (2–8 µm), cf. Baggerud (2004).
Due to the paperboard making process, the board possesses a layered structure in
the thickness direction and in the plane of the board a majority of the fibres tend to
be aligned in one direction. The fiber alignment causes the paperboard to behave as
an orthotropic material with three characteristic directions, Machine Direction (MD)
and Cross machine Direction (CD), in the plane which constitutes the board, and the
out–of–plane direction (ZD) which is a normal to this plane, cf. Figure 1(a).

(a)

A
B

C

(b)

Figure 1: a Illustration of the characteristic directions of paperboard and b illustration of the
possible locations of water in paperboard A) inter–fiber pores, B) lumen, and C) intra–fiber pores.

Water may be present in the inter–fiber pores, (0.5–10 µm), in the lumen, or in
the intra–fiber pores, (5–104 Å), which are located in the fiber walls cf. Figure 1(b).
The properties of the liquid water differ depending on where the water is located. A
majority of the water in the lumen and in the inter–fiber pores has the same properties
as free water whereas water in the intra–fiber pores renders a reduced vapor pressure
and an increased heat of adsorption due to interactions with fibers, cf. Baggerud
(2004). The moisture distribution in a paperboard has a direct influence on the
properties of the paperboard e.g. elastic modulus Rigdahl et al. (1984) and transport
resistivities Karlsson and Stenström (2005); Linvill (2015). The moisture distribution
in a paperboard also has indirect consequences e.g. an affect on the pressure in
the inter–fiber pores during temperature changes and the heat development during
evaporation and condensation.

Considering the food packaging industry, which uses paperboard as their main
packaging material, paperboard is exposed to many extreme environments where the
moisture induced changes on the paper properties are known to cause problems. To
be able to avoid these problems a better understanding is needed of how the moisture
distribution in a board will change in different environments and also of how a known
moisture distribution will affect the properties of a board, both directly and indi-
rectly. In order to fulfil this need, a model capturing the coupling between moisture,
temperature and deformations in paperboard is required.

Considering isothermal conditions and constant moisture content the stress–strain
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response of paperboard has been modelled in a large strain setting by e.g. Borgqvist
et al. (2015); Xia et al. (2002); Harrysson and Ristinmaa (2008). In these works, to
capture the locally evolving mechanical anisotropy of paperboard local characteristic
directions, i.e. structural tensors, are introduced following the framework outlined in
Spencer (1984); Boehler (1987).

Models addressing a transient moisture–temperature interaction, without consid-
ering the stress–strain response, have been described in e.g. Karlsson and Stenström
(2005); Zapata et al. (2013); Alexandersson et al. (2016). In Zapata et al. (2013) paper-
board is modelled as a two phase system. The evaporation is postulated to be a linear
function of the sorption isotherm. The heat release from evaporation is addressed by
including the isosteric heat in the balance of energy. In addition to the evaporation
the moisture distribution is assumed to be affected by a Fickian inter–fiber vapor
diffusion with a constant anisotropic diffusivity. In Karlsson and Stenström (2005)
a thriphasic model is presented where the moisture distribution is determined by a
combined mass flux (including both vapor diffusion and gas bulk flow), liquid water
diffusion and evaporation. The evaporation is postulated to follow Stefans equation.
The isosteric heat is included in the energy balance and the constitutive parameters
describing the kinetics of the transportation phenomena are considered to depend on
the composition of the board. Alexandersson et al. Alexandersson et al. (2016) adopts
a hybrid mixture theory, HMT, and presents a model where the constitutive functions
are derived in a thermodynamically consistent manner. The moisture distribution is
determined by a combined mass flux in the inter–fiber pore space and evaporation.
Adopting a HMT framework Alexandersson et al. Alexandersson et al. (2016) are
able to derive general formats of the diffusion and the evaporation which are found to
be driven by chemical potentials.

The aim of the presented article is to derive a model that is able to predict the
response of deforming moist paperboard in environments where both temperature
and pressure change significantly during a short period of time. The theory of mix-
tures is a class of methods that has been proven successful in describing this type of
multi–physical problems. For the development of the theory of mixtures the reader is
referred to Truesdell and Toupin (1960); Bowen (1976); Kelly (1964); Müller (1968);
Green and Naghdi (1967); Ingram and Eringen (1967); Rajagopal and Tao (1995) and
for extensive reviews of the historic development Bowen (1976); Rajagopal and Tao
(1995); Atkin and Crane (1976); de Boer and Ehlers (1988); de Boer (1992, 2000).

A difficulty within the theory of mixtures is related to solving initial and boundary
value problems. This stems from the fact that the mixture is viewed as a superposition
of different continua and each continua is related to its own boundary/initial condition,
whereas the considered problem usually only provides common boundary/initial con-
ditions for the hole mixture. This aspect is considered in Rajagopal and Tao (1995);
Rajagopal et al. (1986) and will not be further elaborated in the present paper. To
illustrate the capabilities of the developed theory, numerical examples that considers
the dynamics related to the mass exchange between the bound water and the water
vapor during a rapid heating of paperboard are provided.
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2 Preliminaries

The present section provides a brief presentation of the kinematics concerning the
theory of mixtures, for a more extensive overview cf. Bowen (1976). Adopting a
mixture theoretical approach each point in a body is viewed as a superposition of
phases ()α where each phase is assumed to be composed of a number of miscible
constituents ()αj

. HMT also provides possibilities for including interfaces between
phases, cf. e.g. Bennethum and Cushman (1996a); Hassanizadeh and Gray (1990),
however, in the present study interfaces are only considered implicitly via constitutive
relations. The motion of a phase is defined by a nonlinear map χα : Ω0

α×T → Ω ⊂ R
3,

x = χα(Xα, t) (1)

where Xα denotes the location of phase α in the reference configuration Ω0
α. The

deformation gradient, Fα, associated with the motion of each phase is given by

Fα =
∂χα(Xα, t)

∂Xα
(2)

The spatial velocity gradient lα is additively split into a symmetric rate of deformation
tensor dα and the skew–symmetric spin tensor ωα according to

lα =
Dα(Fα)

Dt
F−1

α , dα =
1

2
(lα + lTα), ωα =

1

2
(lα − lTα) (3)

Let v and m define the volume and mass of an RVE, (representative volume element),
v and m are then related to their phase and constituent counterparts via

m =
∑

α

mα, mα =
∑

j

mαj
, v =

∑

α

vα (4)

All constituents are considered miscible meaning that all constituents αj within a
phase α are associated with the same volume as the phase, i.e vαj

= vα ∀ j.
The macroscale balance laws assumed in mixture theory are derived through aver-

aging of microscale balance laws Hassanizadeh and Gray (1979). During the averaging
from micro to macroscale a new variable, volume fraction, appears naturally as

nα =
vα
v

(5)

From the summation of phase volumes in (4) it is concluded that
∑

α nα = 1 must be
fulfilled, a constraint known as the saturation condition. Throughout the rest of this
exposition, properties multiplied with a volume fraction are denoted with a bar, i.e.,
¯(•) = nα(•). As an example the intrinsic densities ρ, ρα, ραj

and bulk densities ρ̄α, ρ̄αj

are given by

ρ =
m

v
, ρα =

mα

vα
, ραj

=
mαj

vα
, ρ̄α = nαρα, ρ̄αj

= nαραj
(6)
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Mass averaged velocities v and vα are defined as weighted summations of phase ve-
locities vα and constituent velocities vαj

respectively, i.e.

v =
1

ρ

∑

α

ρ̄αvα vα =
1

ρ̄α

∑

j

ρ̄αj
vαj

(7)

Furthermore definitions for diffusion velocities wα,wαj
and a relative velocity vα,β are

introduced as

wα = vα − v, wαj
= vαj

− vα, vα,β = vα − vβ (8)

Combining the definitions of mass average velocities in (7) with (8), the following
summation constraints for the diffusion velocities appear

∑

α

ρ̄αwα = 0,
∑

j

ρ̄αj
wαj

= 0 (9)

3 Balance laws

Paperboard is viewed as being composed of three phases, a solid phase ()s representing
the fiber network, a liquid phase ()l representing bound water, and a gas phase ()g
representing moist air in the inter–fiber pores. The gas phase is viewed as a mixture
of two miscible constituents, dry air ()gd and water vapor ()gv . Macroscale balance
laws provided in Bennethum (1994); Bowen (1982) are used as a starting point for
derivation of a system of equations governing the response of paperboard. To obtain
a format where the solid phase is the frame of reference, the material time derivatives
following phase α and constituent αj , (j = d, v) are rewritten according to

Dα(•)

Dt
=

Ds(•)

Dt
+ vα,s · ∇(•) (10a)

Dαj
(•)

Dt
=

Ds(•)

Dt
+ vα,s · ∇(•) +wαj

· ∇(•) (10b)

where the nabla operator ∇ is defined as a spatial gradient operator. With transitions
(10) the balance laws provided in Bennethum (1994) are presented for the assumed
composition of phases and constituents.

Balance of mass

Ds(ρ̄s)

Dt
+ ρ̄s∇ · (vs) = ρ̄s(ê

l
s + êgs) (11a)

Ds(ρ̄l)

Dt
+∇ · (ρ̄lvl,s) + ρ̄l∇ · (vs) = ρ̄l(ê

s
l + êgl ) (11b)

Ds(ρ̄gj)

Dt
+∇ · (Jgj) + ρ̄gj∇ · (vs) = ρ̄gj (ê

s
gj
+ êlgj + r̂gj) (11c)
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Here Jgj = ρ̄gjwgj + ρ̄gjvg,s denotes the combined mass flux of constituent gj. More-
over, êβgj accounts for the rate of mass transferred to constituent gj from phase β and
r̂gj the rate of mass transferred to constituent gj from other constituents within the
gas phase due to chemical reaction. The mass interaction terms are constrained via

∑

j=d,v

ρgj r̂gj = 0,
∑

α=s,l,g

∑

β 6=α

ρ̄αê
β
α = 0, ρg ê

β
g =

∑

j=d,v

ρgj ê
β
gj

(12)

Balance of linear momentum

ρ̄s
Ds(vs)

Dt
−∇ · (σ̄s)− ρ̄sbs = ρ̄s(T̂

g

s + T̂
l

s) (13a)

ρ̄l
Ds(vl)

Dt
+ vl,s · dl −∇ · (σ̄l)− ρ̄lbl = ρ̄l(T̂

s

l + T̂
g

l ) (13b)

ρ̄gj
Ds(vgj)

Dt
+ Jgj · (∇⊗ vgj )−∇ · (σ̄gj )− ρ̄gjbgj = ρ̄gj îgj + ρ̄gj(T̂

s

gj
+ T̂

l

gj
) (13c)

Here îαj
,T̂

β

αj
and T̂

β

α account for all momentum interactions between constituents
within phase α, between constituent αj and phase β, and between phase α and phase
β, respectively. The momentum interaction terms are constrained via

∑

α=s,l,g

∑

β 6=α

ρ̄α(T̂
β

α + êβαvα) = 0,
∑

j=d,v

ρgj (̂igj + r̂gjwgj ) = 0 (14)

where

ρgT̂
β

g =
∑

j=d,v

ρgj(T̂
β

gj
+ êβgjwgj) (15)

Furthermore, in (13), bα,bgj denote body forces and σα,σgj the Cauchy stress tensors
for specific phases and constituents, respectively. Summation rules for these quantities
are given by

ρgbg =
∑

j=d,v

ρgjbgj , σg =
∑

j=d,v

(σgj − ρgjwgj ⊗wgj ) (16)

Balance of energy

Energy equations may be set up for each phase and constituent together with con-
straints on energy interaction variables. A local thermal equilibrium is assumed and,
consequently, only one equation is needed to describe the transportation of energy.
Performing a summation over the balance of energy equations of all phases and con-
stituents present, making use of the constraints on energy interaction variables, pre-
sented in Bennethum (1994), and replacing all linear momentum interaction terms via
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(13) will render the following format of the balance of energy of the mixture

∑

α=s,l

ρ̄α
Ds(eα)

Dt
+
∑

j=v,d

ρ̄gj
Ds(egj)

Dt
− el∇ · (ρ̄lvl,s)−

∑

j=v,d

egj∇ · (Jgj)− σ : ds

+

(

ρ̄l
Ds(vl)

Dt
+ vl,s · dl

)

· vl,s

+
∑

j=v,d

(

ρ̄gj
Ds(vgj)

Dt
+ Jgj · (∇⊗ vgj)

)

·
Jgj

ρ̄gj

+∇ · (q)− ρQ + ρb ·ws +
∑

α=s,l,g

∑

β 6=α

ρ̄αê
β
α(eα +

1

2
vα,s · vα,s)

+
∑

β=s,l

∑

j=v,d

ρ̄gj ê
β
gj
(egj − eg +wgj · vg,s +

1

2
wgj ·wgj)

+
∑

j=v,d

ρ̄gj r̂gj(egj +wgj · vg,s +
1

2
wgj ·wgj) = 0 (17)

where eα and eαj
denote the specific internal energies and Q an intrinsic heat source.

Moreover, σ denotes the total Cauchy stress tensor, b the body force of the mixture,
and q a combined heat flux vector which are defined as

σ = σ̄s + σ̄l + σ̄gd + σ̄gv (18a)

q = qb +
∑

j=d,v

[σ̄gj ·wgj − ρ̄gjwgj(egj +
1

2
wgj ·wgj)]

+ (elI−
σl

ρl
)ρ̄lvl,s +

∑

j

(egjI−
σgj

ρgj
)Jgj (18b)

ρb =
∑

α=s,l,g

ρ̄αbα (18c)

where qb =
∑

α=s,l,g q̄α and I denotes a second order identity tensor. The specific
energy eg and the heat flux qg of the gas phase relate to their constituent counterparts
via

ρgeg =
∑

j=d,v

ρgjegj + EK
gj

(19a)

qg =
∑

j=d,v

[qgj
− σgj ·wgj + ρgjwgj(egj +

1

2
wgj ·wgj))] (19b)

where EK
gj

= ρgj
1
2
wgj ·wgj is related to the kinetic energy of constituent gj.

4 Dissipation inequality

A thermodynamically consistent model is derived where macroscale constitutive re-
lations are found through exploitation of the dissipation inequality. Following Ben-
nethum and Cushman (1996b) the format of the macroscale dissipation inequality D
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is given by

D =
∑

α

{

− ρ̄α

(

Dα(Aα)

Dt
+ ηα

Dα(θ)

Dt

)

−
∇(θ)

θ
·

[

q̄α +
∑

j

(

σ̄αj
·wαj

− ρ̄αj
wαj

(Aαj
+

1

2
wαj

·wαj
)

)]

+

(

σ̄α +
∑

j

ρ̄αj
wαj

⊗wαj

)

: dα

+
∑

j

(

σ̄αj
− ρ̄αj

Aαj
I

)

: (∇⊗wαj
)

−
∑

j

(

∇(Aαj
ρ̄αj

) +
∑

β 6=α

ρ̄αj
(T̂

β

αj
+ îαj

)

)

·wαj

−
∑

β 6=α

ρ̄α

(

T̂
β

α ·wα + êβα(Aα +
1

2
wα ·wα)

)

−
∑

j

∑

β 6=α

[ρ̄αj
êβαj

+ ρ̄αj
r̂αj

]
1

2
wαj

·wαj

}

≥ 0 (20)

where θ denotes the absolute temperature, Aαj
the Helmholtz potential of constituent

αj, and Aα the inner part of the Helmholtz potential of phase α, i.e.,

ραAα =
∑

j

ραj
Aαj

(21)

5 Constitutive functions

To be able to predict significant inelastic deformations a multiplicative split of the de-
formation gradient of the solid phase is performed, i.e Fs = Fe

sF
p
s cf. Borgqvist et al.

(2015); Harrysson and Ristinmaa (2008); Ristinmaa et al. (2011) for modelling of pa-
perboard and Ehlers (1991, 1992) for porous media. Deformation caused by swelling
is assumed negligible and the two deformation gradients appearing in the multiplica-
tive split are associated with elastic deformations, Fe

s, and plastic deformations, Fp
s.

From the multiplicative split of the deformation gradient follows an additive split of
the spatial velocity gradient ls according to

ls = les + lps, les =
Ds(F

e
s)

Dt
(Fe

s)
−1, lps = Fe

s

Ds(F
p
s)

Dt
(Fp

s)
−1(Fe

s)
−1 (22)

Both the elastic and the plastic part of the spatial velocity gradient are further split
into symmetric de

s,d
p
s and skew–symmetric parts ωe

s,ω
p
s according to (3). The intrinsic

density of the solid phase is assumed constant, ρs = ρ0s, and the behaviour of the solid
phase is here defined by the independent variables θ,Fe

s, and κk
s where {κ1

s, .., κ
n
s}

denote (n) internal variables associated with the plastic response.
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The amount of liquid water in the board is characterised by the moisture ratio
W = (m −mdry)/mdry where mdry denotes the dry weight of the board. Neglecting
the mass of the gas phase the moisture ratio is approximated by

W =
ρ̄l
ρ̄s

(23)

The moisture ratio is assumed to be within the maximum hygroscopic moisture con-
tent, HMC, which is defined as the equilibrium moisture content extrapolated to 100%
relative humidity. Within the HMC region all water is considered bound, cf. Bag-
gerud (2004), and the behaviour of the liquid water is here assumed to be defined by
the independent variables ρl, θ, and W . Both gas constituents are assumed to behave
as ideal gases and the behaviour of the gas constituents are considered to be defined
by ρgv, ρgd, and θ.

Based on the above the dependencies of the Helmholtz potentials for the phases
and constituents are given by

As(θ,F
e
s, κ

(k)
s ), Al(θ, ρl,

1

W
), Agj (θ, ρgj) (24)

Comparing with classical thermodynamics the free energies in (24) are given addi-
tional dependencies which introduce ambiguities in thermodynamic quantities such as
pressure, entropy, chemical potential, etc. Gray and Miller (2007). For this purpose
definitions of pressures and chemical potentials are included in A.

The only species assumed to be present in more than one phase is water and,
assuming no chemical reactions to occur, mass will only be transformed through ad-
sorption/desorption between the water vapor and the bound water, i.e.

êls = êgs = êsgd = êsg = êsl = êlgd = r̂gj = 0, (25a)

ρ̄lê
g
l + ρ̄gê

l
g = 0, ρ̄g ê

l
g = ρ̄gv ê

l
gv (25b)

For convenience the notation of the rate of evaporation is changed such that m̂ = ρ̄g ê
l
g

is used throughout the rest of the text.
Ensuring that the derived constitutive functions do not contradict any of the bal-

ance laws, Liu’s Lagrange multiplier method, Liu (1972), is adopted to enforce the
balance of mass equations (11), cf. e.g. Bennethum and Cushman (1996b); Ristinmaa
et al. (2011). Moreover, Liu’s Lagrange multiplier method is also used to enforce the
gradient of constraint (9) since it turns out that viewing the gradients of both diffusion
velocities as independent variables results in appealing expressions for the constituent
stress tensors, cf. e.g. Ristinmaa et al. (2011). Adopting Liu’s Lagrange multiplier

9



the dissipation inequality is expanded into

DE = D + λs

(

ρs
Ds(ns)

Dt
+ ρ̄sds : I

)

+ λl

(

Ds(ρ̄l)

Dt
+∇(ρ̄l) · vl,s + ρ̄ldl : I+ m̂

)

+
∑

j=d,v

λgj

(

Ds(ρ̄gj )

Dt
+∇(ρ̄gj) · (vg,s +wgj)

+ ρ̄gj (I : (∇⊗wgj) + I : dg)

)

− λgvm̂

+ λw
g :

(

∑

j=d,v

∇⊗ (ρ̄gjwgj)

)

≥ 0 (26)

where D is defined in (20) and λs, λl, λgj ,λw denote Lagrangian multipliers.
The expanded dissipation inequality in (26) is split into four addends

DE =Dz +Ds +Dy +Dp ≥ 0 (27)

where Dz + Ds + Dy defines the dissipation associated to transportation of mass,
heat and elastic deformations and Dp defines the dissipation associated with plastic
deformations of the fiber network.

5.1 Exploitation of Dz

The first addend appearing in (27), Dz, is defined by

Dz =−
∑

α=s,l,g

[

ρ̄α

(

∂(Aα)

∂θ
+ ηα

)(

Ds(θ)

Dt
+∇(θ) · vα,s

)]

+

(

ρsλs +
nlp

s
l

ns
−
∑

j=d,v

ρgjλgj

)

Ds(ns)

Dt

+

(

nlλl − ρ̄l
∂Al

∂ρl
−

nlp
s
l

ρl

)

Ds(ρl)

Dt

+
∑

j=d,v

(

λgjng − ρ̄g
∂Ag

∂ρgj

)

Ds(ρgj )

Dt
≥ 0 (28)

where a liquid–solid interaction pressure psl has been introduced as

psl = ρlW
∂Al

∂W
(29)

The material time derivatives appearing in Dz may take any sign and in order for the
dissipation inequality to be unconditionally fulfilled the following constitutive relations
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appear

ηα = −
∂Aα

∂θ
, ηgj = −

∂Agj

∂θ
(30a)

λgj = ρg
∂Ag

∂ρgj
, λlρl = ptl + psl , λsρs = ptg −

nlp
s
l

ns
(30b)

The superscript (•)t is used as a notation for the thermodynamic pressures (90) in
order to distinguish these from the physical pressures (91). Relations (30a) are well
known relations between Helmholtz free energy and the entropy. From (30b) it is
found that the Lagrangian multipliers λgj , λl, λs are all related to pressures. For
future calculations the expression for λgj is rewritten by use of expressions (21), (24)
and (90) as

λgj = Agj +
ptgj
ρgj

−Ag (31)

5.2 Exploitation of Ds

The second addend in (27) is further split into three parts Ds = Dσ +Dt +Dθ such
that Dσ is exploited to find expressions for the stress tensors, Dt is exploited to find
expressions for the linear momentum interaction terms and Dθ is exploited in order
to find an expression for the heat flux.

Stress tensors

The dissipation related to the stress tensors, Dσ, is given by

Dσ =

(

σ̄s + ρ̄sλsI− σ̄eff
s

)

: ds +

(

σ̄l + ρ̄lλlI

)

: dl

+

(

σ̄g +
∑

j=d,v

ρ̄gjwgj ⊗wgj +
∑

j=d,v

ρ̄gjλgjI

)

: dg

+
∑

j=d,v

(

σ̄gj − ρ̄gjAgjI+ ρ̄gj(λgjI+ λw
g )

)

: (∇⊗wgj) ≥ 0 (32)

in which the effective Cauchy stress tensor σ̄eff
s of the solid phase is given by

σ̄eff
s = J−1

s Peff
s FeT

s , Peff
s = n0

sρ
0
s

∂As

∂Fe
s

(33)

Here Peff
s defines the effective first Piola–Kirchhoff stress tensor of the solid phase

and Js = det(Fs). Assuming all explicit viscous effects to be negligible, i.e., viscous
effects are only considered implicitly via drag forces, the following expressions for the
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stress tensors appear

σ̄s = σ̄eff − λsρ̄sI (34a)

σ̄l = −λlρ̄lI (34b)

σ̄g = −
∑

j=d,v

(ρ̄gjwgj ⊗wgj + ngp
t
gj
) (34c)

σ̄gj = −ngp
t
gj
I+ ρ̄gj (AgI− λw

g ) (34d)

where expressions (34c) and (34d) are simplified through insertion of (31). Comparing
(30b) and (34a) it is noted that λsρs appears as a pressure acting on the solid which
is given as a weighted sum of the fluid pressures. Considering the definition of the
physical pressure (91), expression (34b) states that the Lagrangian multiplier λl is
proportional to the physical pressure of the liquid water

ρlλl = pl (35)

Comparing this expression with the second equality in (30b) it is observed that the
physical pressure of the liquid water will change due to interaction with the solid
according to

pl = ptl + psl (36)

It is emphasised that psl does not describe a particular phenomena, such as e.g. cap-
illary pressure, but should instead be viewed as a macroscopic average of microscopic
interactions between the fiber network and the liquid water. Making use of the sum-
mation of (16), (34c) and (34d) the Lagrangian multiplier λw

g is given by

λw
g = AgI (37)

which reduces expression (34d) to

σgj =− ptgjI (38)

Considering the definition of the physical pressure (91) it is found that the thermo-
dynamic pressure ptgj equals the physical pressure pgj for the gas constituents, i.e.

pgj = ptgj (39)

To sum up this subsection, the derived expressions of the stress tensors of all species
and the total stress tensor σ are given by

σ̄s = σ̄eff
s −

∑

j=d,v

(nspgj − nlp
s
l )I (40a)

σ̄l = −nl(p
t
l + psl )I (40b)

σ̄gj = −ngpgjI (40c)

σ = σ̄eff
s − [nlp

t
l + (1− nl)

∑

j=d,v

pgj ]I (40d)
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The dissipation associated with the linear momentum interaction terms is provided
in Dt which is given by

Dt =

[

−∇(Agv ρ̄gv) +∇(ρ̄gv) · (λgvI+ λw
g )

+

(

∇(Agd ρ̄gd)−∇(ρ̄gd) · (λgdI+ λw
g )

)

ρgv
ρgd

+ τ̂ 1

]

·wgv

+

(

λl∇(ρ̄l)− ρ̄l∇(θ)(
∂Al

∂θ
+ ηl)− ρ̄l

∂Al

∂ρl
∇(ρl)− ρ̄l

∂Al

∂W
∇(W )− τ̂ 2

)

· vl,s

+
∑

j=d,v

(

λgj∇(ρ̄gj)− ρ̄g(
∂Ag

∂θ
+ ηg)∇(θ)− ρ̄g

∂Ag

∂ρgj
∇(ρgj)− τ̂ 3

)

· vg,s ≥ 0 (41)

where the linear momentum interaction terms are collected into three parameters
τ̂ 1, τ̂ 2 and τ̂ 3 as

τ̂ 1 =
∑

β=s,l

ρ̄gv

(

T̂
β

gd
− T̂

β

gv + îgd − îgv

)

= ∇ · (σ̄gv)−
ρgv
ρgd

∇ · (σ̄gd) + ρ̄gv(bgv − bgd) (42a)

τ̂ 2 =
∑

β=s,g

ρ̄lT̂
β

l = −∇ · (σ̄l)− ρ̄lbl (42b)

τ̂ 3 =
∑

β=s,l

∑

j=d,v

ρ̄gjT̂
β

gj
= −

∑

j=d,v

∇ · (σ̄gj)− ρ̄gbg (42c)

To obtain the second equality signs in (42), linear momentum equations (13b) and
(13c) are used together with definition (16a) and all fluid inertial terms are assumed
negligible.

Inserting (30), (31), (35) and (37) together with summation (21) into (41) the
following constitutive relations appear

τ̂ 1 =−∇(ρ̄gdAgd)
ρgv
ρgd

+ (Agd +
pgd
ρgd

)∇(ρ̄gd)
ρgv
ρgd

+∇(ρ̄gvAgv)− (Agv +
pgv
ρgv

)∇(ρ̄gv) + τ̂ π
1 (43a)

τ̂ 2 =(pl − psl )∇(nl)−
W

ns
∇(ns) + τ̂ π

2 (43b)

τ̂ 3 =
∑

j=d,v

pgj∇(ng) + τ̂ π
3 (43c)

where τ̂ π
i defines the dissipative part of τ̂ i. For future reasoning, the momentum

interactions τ̂ 2 and τ̂ 3 are interpreted as interfacial drag forces Hassanizadeh and
Gray (1987); Bennethum and Giorgi (1997); Ehlers (1992).
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Inter–fiber vapor diffusion

Expression (43a) may be rewritten as

τ̂ 1 =∇(ngpgd)
ρgv
ρgd

−∇(ngpgv) + ρ̄gv∇(Agv +
pgv
ρgv

− Agd −
pgd
ρgd

) + τ̂ π
1 (44)

Considering the chemical potentials of the gas constituents, which are defined in (93),

µgj = Agj +
pgj
ρgj

(45)

allows equation (44) to be written as

τ̂ 1 =∇(ngpgd)
ρgv
ρgd

−∇(ngpgv) + ρ̄gv∇(µgv − µgd) + τ̂
π
1 (46)

The nonequilibrium part of τ̂ 1 is assumed to be linear in wgv , i.e.

τ̂ π
1 = Rgv ·wgv (47)

Enforcing Rgv to be a positive definite second order tensor will together with (46)
ensure that the first addend in (41) always is greater or equal to zero. Inserting
(47) into (46) and setting this expression equal to (42a) the vapor diffusion in the
inter–fiber pores is given by

−
Rgv

ρ̄gv
·wgv =∇(µgv − µgd) + bgv − bgd (48)

With this expression the inter–fiber dry air diffusion wgd is defined via (9).

Inter–fiber seepage

The present paper aims at predicting the response of paperboard in environments
where significant temperature and pressure gradients may be present. The presence
of significant pressure gradients increases the seepage velocities which in turn renders
an increased bulk flow resistance. The increased bulk flow resistance is a consequence
of an increase in the drag which is quadratic in the seepage velocity cf. Joseph
et al. (1982). Expressions of the interfacial drag forces which are quadratic in the
seepage velocity are derived in Srinivasan and Rajagopal (2014) using the hypothesis
of maximization of the rate of entropy production and in Hassanizadeh and Gray
(1987); Bennethum and Cushman (1996c) by assuming τ̂ π to consist of finite–order
polynomials with coefficients allowed to depend on the invariants of the independent
variables. Following the work of Hassanizadeh and Gray (1987); Bennethum and
Cushman (1996c) the interfacial drag forces τ̂ π

2 and τ̂ π
3 are modelled by

τ̂ π
2 = −Rl,s · vl,s − Fl,s · vl,s (49a)

τ̂ π
3 = −Rg,s · vg,s − Fg,s · vg,s (49b)
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whereRl,s andRg,s are resistivity tensors related to small pressure heads (Darcy flow).
The corrector tensors Fl,s and Fg,s compensate for the increased bulk flow resistance
at higher pressure heads and are assumed to be defined as the resistivities Rα,s scaled
with the Forchheimer numbers Foα according to

Fα,s = FoαRα,s, Foα =
ραβα,skα,s

µD
α

|vα,s| (50)

where µD
α denotes the dynamic viscosity, βα,s [m

−1] is referred to as the Forchheimer
correction coefficient, and kα,s [m2] the intrinsic permeability parameter. Enforcing
Rl,s and Rg,s to be positive definite second order tensors will together with (43b) and
(43c) ensure that the last two rows of Dt are greater or equal to zero. A Forchheimer
type of equations, describing nonlinear anisotropic seepage flows, is retrieved by in-
serting (49) into (43b), (43c) and setting these expressions equal to (42b),(42c), i.e.

(1 + Fol)Rl,s · vl,s = −nl∇(pl)− psl∇(nl)−
W

ns
∇(ns) + ρ̄lbl (51a)

(1 + Fog)Rg,s · vg,s = −ng∇(pgv + pgd) + ρ̄gbg (51b)

The hydraulic pressure drop and the body forces appearing in (51) are both included
in the standard Darcy law. The term psl∇(nl) appearing in the liquid–solid seepage
drives bound water to flow from regions with more water towards regions with less
water, Bennethum et al. (1997).

Heat flux

The last addend of Ds relates to dissipation associated with conductive heat flux and
is given by

Dθ =−
∇(θ)

θ
·

[

qb +
∑

j=d,v

(

σ̄gj ·wgj −wgj (ρ̄gjAgj + ĒK
gj
)

)]

≥ 0 (52)

From this the following constitutive relation appear

qb =−
∑

j=d,v

[

σ̄gj ·wgj −wgj(ρ̄gjAgj + ĒK
gj
)

]

+ (qb)π (53)

Assuming (qb)π to be linear in ∇(θ) will render a Fourier type of relation for the heat
flux as

(qb)π = −Kθ · ∇(θ) (54)

where Kθ defines an effective conductivity tensor which accounts for the thermal
resistivities of all phases. Enforcing Kθ to be a positive definite second order tensor,
expressions (53) and (54) ensure that Dθ ≥ 0. Inserting (53) and (54) in (18b) the
total heat flux q is expressed as

q = qconv + qcond + qdiff (55)
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where qconv denotes the convective heat flux related to energy transported via seepage
flows, qdiff denotes the diffusive heat flux related to the energy transported via mass
diffusion within the gas phase and qcond denotes the conductive heat flux related to
energy transport via molecular interaction. The partial heat fluxes are given by

qconv = ρ̄lhlvl,s +
∑

j=d,v

ρ̄gjhgjvg,s (56a)

qcond = −Kθ · ∇(θ) (56b)

qdiff =
∑

j=d,v

ρ̄gjµgjwgj (56c)

A similar expression for the diffusive heat flux is found in Grasley et al. (2011). In the
expression of the convective heat flux, hl and hgj denote the fluid enthalpies which
are defined by

hl = Al + ηlθ +
pl
ρl
, hgj = Agj + ηgjθ +

pgj
ρgj

(57)

5.3 Exploitation of Dy

The dissipation associated with evaporation/condensation and the evolution of the
liquid volume fraction is collected in Dy and takes the following format

Dy =(Al + λl −Ag − λgv −∆m̂
v )m̂

+

(

ρlλl − ρlW
∂Al

∂W
−
∑

j=d,v

ρgjλgj

)

Ds(nl)

Dt
≥ 0 (58)

Here all second order velocity terms appearing as energy conjugated with the rate of
evaporation are lumped together in ∆m̂

v .

Evaporation/condensation

The rate of evaporation is assumed to be linear in its energy conjugated term. From
(58) it follows that

m̂ =km̂(Al + λl − Ag − λgv −∆m̂
v ) (59)

where km̂ defines an internal mass transfer coefficient whose inverse relates to both
the resistance for water to evaporate/condensate and the internal area. Enforcing
km̂ ≥ 0 ensures that the first row in Dy is greater or equal to zero. Inserting the
derived expression for the Lagrangian multipliers defined in (30b) and (31), neglecting
all second order velocity terms, and making use of the definitions of the chemical
potentials (93), the rate of evaporation is given by

m̂ = km̂(µl − µgv) (60)
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Standard expressions for these chemical potentials are found in e.g. J.C. Bénet et al.
(2012); DeVoe (2012),

µl =µf
l +Rgvθln(aw) (61a)

µgv =µ0
gv(θ) +Rgvθln(

pgv
p0

) (61b)

where µ0
gv denotes the chemical potential of the water vapor measured at the standard

pressure p0 =1 atm, and µf
l denotes the chemical potential of “free” liquid water, cf.

Grasley et al. (2011), at an equilibrium state where water is in equilibrium with a
vapor saturated gas phase, i.e.

µf
l = µgv(θ, p

sat
gv ) (62)

The terminology “free” is here used to indicate a state where the liquid water is not
affected by interactions with a solid. Interactions between fibers and liquid water
reduces the energy of the water and within the HMC–region this is quantified with
the water activity. The water activity indicates how tightly water is bound to a

solid and is defined by aw =
peqgv
psatgv

, cf. J.C. Bénet et al. (2012), where peqgv denotes

the equilibrium vapor pressure inside the porous media and psatgv the saturated vapor
pressure. Furthermore Rgv denotes the specific gas constant of water vapor. If the
expressions of chemical potentials in (61) are inserted into (60) it is found that the rate
of evaporation is driven by the ratio between the equilibrium vapor pressure awp

sat
gv

inside the board and the current vapor pressure pgv inside the board according to

m̂ = km̂Rgvθln(
awp

sat
gv

pgv
) (63)

Standard expressions for chemical potentials in (61) are used together with the defini-
tions of the chemical potentials (92) and (93) to render a relation between Helmholtz
free energy Al of the bound water and the free energy Af

l of water in a “free” state.
This results in

Af
l (θ, ρl) = µf

l −
ptl
ρl

(64a)

Al(θ, ρl,
1

W
) = µl −

ptl + psl
ρl

(64b)

Al = Af
l −

psl
ρl

+Rgvθln(aw) (64c)

Using (29) to replace the liquid–solid interaction pressure in (64c) renders a differential
equation in Al. The following expression for Helmholtz free energy of the liquid water
is then obtained

Al(θ, ρl,
1

W
) = Af

l (θ, ρl) +
Rgvθ

W

∫

ln(aw)dW +
1

W
C(θ) (65)

Here C(θ) denotes an arbitrary function which is defined through knowledge about
Al at specific moisture ratios.
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Evolution of nl

All balance of mass equations may be considered to have two primary variables, a
volume fraction and an intrinsic density. This is known as the closure problem and
arises as a consequence of loosing microscopic information during the averaging taking
place when macroscopic balance laws are derived cf. e.g. Bennethum and Cushman
(1996b). Two common approaches to treat this problem is to either derive a constitu-
tive function for the evolution of the volume fraction, Bowen (1982); Bennethum et al.
(2000, 1997) or to consider the intrinsic density to be constant, Hassanizadeh (1986);
Ehlers (1992). In the present paper the intrinsic density of the solid is assumed con-
stant and a constitutive law is proposed for the evolution of the liquid volume fraction
which is assumed to be linear in its energy conjugated term. From (58) it follows that

Ds(nl)

Dt
=rnl

(

pl −
∑

j=d,v

pgj − psl

)

(66)

Enforcing rnl
≥ 0 ensures that the second row of Dy is greater or equal to zero.

Defining knl
= r−1

nl
allows expression (66) to be rearranged into a dynamic expression

for the liquid–solid interaction pressure as

psl = pl −
∑

j=d,v

pgj − knl

Ds(nl)

Dt
(67)

The above relation reveals that the interaction pressure is affected by the rate of
which the liquid volume fraction changes. This is similar to the common relation
where the dynamic part of the interaction pressure is given by the time derivative of
the saturation cf. e.g. Hassanizadeh and Gray (1990). Comparing (67) with (36) it
is found that the thermodynamic pressures of the fluids relate via

ptl =
∑

j=d,v

pgj + knl

Ds(nl)

Dt
(68)

At an equilibrium state where Ds(nl)
Dt

= 0 and pg =
∑

j=d,v pgj , relations (67) and (68)
reduces into

psl = pl − pg (69a)

ptl =
∑

j=d,v

pgj (69b)

The first relation (69a) states that the liquid–solid interaction pressure equals a pres-
sure jump between the liquid phase and the gas phase at equilibrium. It should,
however, be emphasized that the pressures used in this article are postulated on the
macroscale implying that the terminology pressure jump is not used as a interface
property but as a notion of the difference in the macroscopic pressures. The second
relation (69b) implies that the thermodynamic pressure of the liquid phase equals
the sum of the thermodynamic pressures of the gas constituents at equilibrium, i.e.
Dalton’s law.
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5.4 Exploitation of Dp

The remaining addend Dp of the dissipation inequality is related to plastic deforma-
tions of the fibrous network and is given by

Dp = σ̄eff
s : dp

s −

n
∑

k=1

1

Js
K̄(k)

s

Ds(κ
(k)
s )

Dt
≥ 0 (70)

The hardening parameters, K̄
(k)
s , are introduced as

K̄(k)
s = n0

sρ
0
s

∂As

∂κ
(k)
s

(71)

where n0
s and ρ0s denotes the initial solid volume fraction and intrinsic density respec-

tively. To obtain a plastic evolution described with respect to the effective Kirchhoff
stress tensor, τ̄ eff

s = Jsσ̄
eff
s , Dp is multiplied with Js > 0,

DpJs = τ̄ eff
s : dp

s −
n
∑

k=1

K̄(k)
s

Ds(κ
(k)
s )

Dt
≥ 0 (72)

Expression (72) motivates a yield surface defined by f(τ̄ eff
s ,n(k), K̄

(k)
s ) where n(k)

define director vectors which allows for an anisotropic plastic response, cf. Spencer
(1984); Boehler (1987). Assuming associated plasticity, evolution laws for the plastic

rate of deformation dp
s and for the internal variables κ

(k)
s are given by

dp
s = λ̇p

∂f

∂τ̄ eff
s

,
Ds(κ

(k)
s )

Dt
= −λ̇p

∂f

∂K̄
(k)
s

(73)

Here λ̇p is a Lagrangian multiplier fulfilling the Kuhn–Tucker conditions, λ̇p ≥ 0, λ̇pf =
0 and for elastic responses λ̇p = 0.

6 Summarizing the derived model

In this section the balance equations presented in section 3 and the constitutive rela-
tions derived in section 5 are summarized into a closed set of equations. The retrieved
system of equations is considered to govern the response of a deforming moist paper-
board in environments where both temperature and pressure may change significantly
during a short period of time. In the present work, focus is on the response of pa-
perboard with a moisture ratio within the HMC region where all water is considered
bound and it is assumed that the motion of the bound water follows that of the fiber
network, i.e. vl,s = 0. Moreover it is assumed that the potentials As, A

f
l and Agj are

known as well as the yield surface f .
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6.1 Transportation of mass

The transportation of mass in the board is related to the balance of mass equations
(11). The intrinsic density of the solid phase is assumed constant and assuming, in
addition, the mass of the solid phase to be constant provides a relation between the
porosity 1− ns and the volume change Js of the board, defined by

ns = n0
sJ

−1
s (74)

The remaining balance of mass equations defines the first three governing equations
and are provided by

Ds(ρ̄l)

Dt
+ ρ̄l∇ · (vs) + m̂ = 0 (75a)

ρgd
Ds(ng)

Dt
+

ρ̄gd
pgd

Ds(pgd)

Dt
−

ρ̄gd
θ

Ds(θ)

Dt
+∇ · (Jgd) + ρ̄gd∇ · (vs) = 0 (75b)

ρgv
Ds(ng)

Dt
+

ρ̄gv
pgv

Ds(pgv)

Dt
−

ρ̄gv
θ

Ds(θ)

Dt
+∇ · (Jgv) + ρ̄gv∇ · (vs)− m̂ = 0 (75c)

Equations (75) naturally relates to the primary variables ρl, pgd and pgv respectively.
In addition, using that the thermodynamic pressures and the physical pressures are
equal for the gas constituents, pressure and density are related via the ideal gas law
pgj = Rgjρgjθ. The combined mass fluxes Jgj = ρ̄gj (wgj + vg,s) and the rate of
evaporation m̂ are defined by

(

1 +
ρgβg,skg,s

µD
g

|vg,s|

)

Rg,s · vg,s = −ng∇(pgv + pgd) + ρ̄gbg (76a)

Rgv

ρ̄gv
·wgv = −∇(µgv − µgd)− bgv + bgd (76b)

m̂ = km̂Rgvθln

(

psatgv aw

pgv

)

(76c)

where chemical potentials µgj are defined in (45). Specific formats for psatgv and aw are
discussed in the next section. Furthermore, the evolution law for the volume fraction
nl is given by

Ds(nl)

Dt
= rnl

(

pl −
∑

j=d,v

pgj − psl

)

(77)

where the liquid–solid interaction pressure psl is defined in (29). Note that ns is given
by (74) and ng is obtained from the saturation condition.

6.2 Mechanical response

The balance of linear momentum of the solid phase is used to determine the mechanical
response of the paperboard and the linear momentum transfer parameters appearing
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in (13a) are therefore replaced via (14). Neglecting all macroscopic fluid inertial terms
and making use of definitions (16a), (18c) and (18a) the balance of linear momentum
of the solid phase is provided by

ρ̄s
Ds(vs)

Dt
−∇ · (σ)− ρb+ m̂(vg,s +wgv) = 0 (78)

where the total Cauchy stress tensor is defined by

σ = σ̄eff
s − [

∑

j=d,v

pgj + nlknl

Ds(nl)

Dt
]I (79)

The effective Cauchy stress tensor of the solid phase, σ̄eff
s , is provided by (33) and to

derive the plastic part of the deformation, use is made of the following evolution laws

dp
s = λ̇p

∂f

∂τ̄ eff
,

Dsκ
(k)
s

Dt
= −λ̇p

∂f

∂K̄
(k)
s

(80)

The primary variable associated with (78) is the solid displacement vector us.

6.3 Transportation of energy

The balance of energy equation presented in (17) is reformulated in B and reduced to

cp
Ds(θ)

Dt
+

(

ptl −
∂ptl
∂θ

θ

)

nl

ρl

Ds(ρl)

Dt
− nlknl

(

Ds(nl)

Dt

)2

− ρQ

+ ρb ·ws +∇ · (q)−
∑

j

hgj∇ · (Jgj) + m̂∆Hads = 0 (81)

The primary variable associated with (81) is the absolute temperature θ. The ther-
modynamic pressure, ptl , is obtained from (90) and total heat flux q and the total heat
capacity cp are defined by

q =
∑

j=d,v

ρ̄gjhgjvg,s −Kθ · ∇(θ) +
∑

j=d,v

ρ̄gjµgjwgj (82a)

cp = ρ̄sc
p
s + ρ̄lc

p
l + ρ̄gvc

p
gv + ρ̄gdc

p
gd

(82b)

where the enthalpies hgj are defined in (57). The expression for the enthalpy of
adsorption ∆Hads is derived in B as

∆Hads = hgv − hf
l +Rgvθ

2∂(ln(aw))

∂θ
(83)

where the enthalpy, hf
l , and the entropy, ηfl , of the “free” liquid water are given by

hf
l = Af

l + ηfl θ +
ptl
ρl
, ηfl = −

∂Af
l

∂θ
(84)
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7 Dynamic mass exchange between liquid water

and water vapor

As an illustration of the importance of including a dynamic phase change between
bound water and water vapor, and at the same time introduce some of the unknown
functions discussed in previous sections, a rapid increase in temperature is considered.
A board with the initial moisture ratio W 0 is heated from θ0 = 296◦ K to θmax = 438◦

K in 1 s and then held at the elevated temperature for 105 s. In order to single out the
effect of the mass exchange, the board is considered to be in a homogeneous state and
deformations and mass fluxes are neglected. Further, intrinsic densities of the solid
and liquid phases are given by ρs =1 500 kg·m−3, ρl =1 000 kg·m−3, respectively, and
the solid volume fraction is given by ns = 0.43. Both gas constituents are assumed to
behave as ideal gases pgj = ρgjRgjθ where the specific gas constituents are given by
Rgd = 287.058 J·kg−1·K−1 and Rgv = 461.5 J·kg−1·K−1. With these assumptions the
system of equations presented in section 6 reduce to three differential equations given
by

Ds(nl)

Dt
+

m̂

ρl
= 0 (85a)

Ds(nl)

Dt
−

ng

pgd

Ds(pgd)

Dt
+

ng

pgd

Ds(θ)

Dt
= 0 (85b)

Ds(nl)

Dt
−

ng

pgv

Ds(pgv)

Dt
+

ng

pgv

Ds(θ)

Dt
+

m̂

ρgv
= 0 (85c)

The dynamic mass exchange is governed by the rate of evaporation, given in (76c) as

m̂ = km̂Rgvθln

(

psatgv aw

pgv

)

(86)

Here km̂ is assumed to be constant km̂ = 2.7× 10−7 kg·s/m5, cf. Alexandersson et al.
(2016). The water activity, denoted aw, is an indicator of how tightly water is bound
in a medium and psatgv denotes the saturation vapor pressure which is assumed to follow
the Antoine relation

psatgv = 133.322× 10(8.07131−1730.63/(θ−39.574)) [Pa] (87)

The equilibrium vapor pressure inside the board is given by peqgv = awp
sat
gv and (86)

implies that depending on whether the vapor pressure is above or below its equilibrium
state, adsorption or desorption will occur. The water activity in a porous media is
commonly defined by sorption isotherms. Some of the more frequently used isotherms
for paperboard are reviewed by Stenström and Petterson Petterson and Stenström
(2000). Considering the properties of the isosteric heat of adsorption Stenström and
Petterson argue that an isotherm suggested by Heikkilä 1993 is suited for calculations
on paper. The isotherm assumed in the present study is similar to the Heikkilä
isotherm and given by

aw = 1− exp(−84W 1.9 − 0.2(θ − 273.15)W 1.2) (88)
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Experimental adsorption, desorption data and the fitted isotherm are shown in Figure
2(a) and the corresponding difference ∆Hads−∆Hvap, cf. 102, is shown together with
experimental data in Figure 2(b), experimental data are taken from Cleland et al.
(2007).

(a) (b)

Figure 2: a Sorption isotherm in (88) fitted to experimental adsorption and desorption curves. b

∆Hads −∆Hvap fitted against experimental data for Kraft linerboard Cleland et al. (2007).

The system of differential equations in (85) are solved using the Matlab ode15s

solver with the initial conditions: n0
l = W 0ρ̄s/ρl, p

0
g = 1 atm, p0gv = aw(W

0, θ0)psatgv (θ
0),

p0gd = p0g − p0gv , W
0 ∈ {0.001, 0.01, 0.1, 0.2, 0.3}. In Figure 3(a) the dynamic evolution

of the relative humidity ϕ = pgv/p
sat
gv inside the board is illustrated by plotting the dif-

ference between the equilibrium relative humidity, ϕeq = aw, and the current relative
humidity ϕ. It is observed that the difference aw − ϕ increase while the temperature
increases, t ≤ 1 s, and when the temperature is held constant, ϕ evolves towards
an equilibrium value aw(W, θmax). From Figure 3(a) it is also noted that the initial
moisture ratio has a significant influence on the time it takes to reach an equilibrium
state. This property is also seen in Figure 3(b) where the rate of evaporation m̂ is
shown.
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(a) (b)

Figure 3: a Evolution of the difference aw −ϕ over 106 s and b evolution of the rate of evaporation
m̂ over 15 s .

In Figure 4(a) the evolution of the pressure gap pgapg = pg − poutg between the
pressure inside the board pg and the ambient pressure poutg = 1 atm is shown. The
initial jump pgapg (t = 1s) ≈ 0.05 MPa is caused by the explicit dependence on the ab-
solute temperature in the ideal gas laws. The remaining increase in pressure is due by
evaporation which also is visualised in Figure 4(b) where the change in moisture ratio
W 0 −W is shown. Considering the higher initial moisture ratios W 0 ∈ {0.1, 0.2, 0.3}
the gas pressure reaches a magnitude above 0.36 MPa which is in the range of the
out–of–plane failure stress of paperboard, cf. Stenberg (2003).

(a) (b)

Figure 4: a Simulated gas pressure evolution due to a significant temperature change and b simu-
lated drying of the paperboard .
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8 Conclusions

A two scale mixture theoretical framework is adopted to derive a model able to de-
scribe deformation and complex transportation processes within paperboard. Specific
interest is on the response of paperboard in environments where significant temper-
ature and pressure changes are expected during a short period of time. The derived
model describes transient heat and moisture transport coupled with the stress–strain
response in a large strain setting. Paperboard is viewed as a triphasic medium con-
sisting of a solid phase representing the fiber network, a liquid phase representing
bound water and a gas phase representing moist air. The model is derived under
the assumption of local thermal equilibrium and that the interfaces do not contain
any thermodynamic properties. The model assumes a relatively low moisture ratio,
within the HMC region, such that free energy of the liquid water is reduced due to
interaction with the fiber network. The dynamic mass exchange between bound water
and water vapor is then investigated through a rapid heating of moist paperboard. It
is found that the initial moisture ratio may have a significant effect on the response
of the board. The effects of changing the initial moisture ratio are seen in e.g. the gas
pressure evolution and the time it takes for the board to reach a state of equilibrium.
In a forthcoming publication, results related to presence of mass flux and deformations
will be reported.

A Thermodynamic quantities

Assuming general expressions for Helmholtz free energies Aα = Aα(θ, ραj
, x

(l)
α ), Aαj

=

Aαj
(θ, ραj

, x
(l)
αj ), the generalized forces, X

(l)
α , X

(l)
αj , energy conjugated with x

(l)
α and x

(l)
αj

are defined as

X(l)
α =

∂Aα

∂x
(l)
α

∣

∣

∣

∣

θ,ραj
,x

(k)
α (k 6=l)

, X(l)
αj

=
∂Aαj

∂x
(l)
αj

∣

∣

∣

∣

θ,ραj
,x

(k)
αj

(k 6=l)

(89)

In the present work the terminology thermodynamic pressures is used for the thermo-
dynamic quantities defined via

ptα =
∑

j

ραραj

∂Aα

∂ραj

∣

∣

∣

∣

θ,ραk
(k 6=j),x

(l)
α

, ptαj
= ρ2αj

∂Aαj

∂ραj

∣

∣

∣

∣

θ,x
(l)
αj

(90)

The term physical pressure will be used to refer to pressures proportional to the trace
of the stress tensors,

pα = −
tr(σα)

3
, pαj = −

tr(σαj
)

3
(91)

Here the chemical potential µα of a single species phase is defined as the Gibbs po-
tential and the chemical potential µαj

of constituent αj in a multi species phase is
defined as the term energy conjugated with the concentration of the constituent, i.e.,

µα =
∂(ραAα)

∂ρα

∣

∣

∣

∣

θ,x
(l)
α

−
∑

l

x(l)
α X(l)

α , µαj
=

∂(ραAα)

∂ραj

∣

∣

∣

∣

θ,ραk
(k 6=j),x

(l)
α

(92)
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With the dependencies of Helmholtz free energies stated in (24) the chemical potentials
for the gas constituents and the liquid phase become

µgj =
∂(ρgAg)

∂ρgj

∣

∣

∣

∣

θ,ρgk (k 6=j)

, µl = Al +
ptl
ρl

+W
∂Al

∂W

∣

∣

∣

∣

θ,ρl

(93)

B Derivation of the heat equation

Assuming vl,s = 0, imposing the restricted mass transformations (25), and neglecting
second order velocity terms and all macroscopic fluid inertial forces, the balance of
energy (17) reduces to

ρ̄s
Ds(es)

Dt
+ ρ̄l

Ds(el)

Dt
+
∑

j=d,v

ρ̄gj
Ds(egj )

Dt
− σ : ds +∇ · (q)− ρQ

+ ρb ·ws −
∑

j=d,v

egj∇ · (Jgj) + m̂(egv − el) = 0 (94)

Using Legendre transformations eαj
= Aαj

+ ηαj
θ, the derived entropy relation, (30a)

and the assumed dependencies of Helmholtz free energies (24), the material time
derivatives of the internal energies may be expressed by

ρ̄s
Ds(es)

Dt
= ρ̄sc

v
s

Ds(θ)

Dt
+ σ̄eff

s : de
s +
∑

k

1

Js

K̄(k)
s

Ds(κ
(k))

Dt
(95a)

ρ̄l
Ds(el)

Dt
= ρ̄lc

v
l

Ds(θ)

Dt
+

(

ptl −
∂ptl
∂θ

θ

)

nl

ρl

Ds(ρl)

Dt
+

(

psl −
∂psl
∂θ

θ

)

nl

W

Ds(W )

Dt
(95b)

ρ̄gj
Ds(egj)

Dt
= ρ̄gjc

v
gj

Ds(θ)

Dt
(95c)

where cv denotes the specific heat measured at constant volume. The material time
derivative of the moisture ratio is rewritten by expanding the derivative into the
independent variables nl, ns, ρl and then replacing the material time derivatives of
nl, ns with their corresponding mass balances such that

Ds(W )

Dt
= −m̂

W

ρ̄l
(96)

Inserting (95) and (96) into (94) allows the energy balance to be rewritten as

cv
Ds(θ)

Dt
+∆p

e + [nlp
t
l + (1− nl)

∑

j=d,v

pgj ]∇ · (vs)− ρQ

+ ρb ·ws +

(

ptl −
∂ptl
∂θ

θ

)

nl

ρl

Ds(ρl)

Dt
+∇ · (q)−

∑

j=d,v

egj∇ · (Jgj )

+ m̂

(

egv − el −
psl
ρl

+
θ

ρl

∂psl
∂θ

)

= 0 (97)
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where the total heat capacity was introduced cv = ρ̄sc
v
s+ρ̄lc

v
l +
∑

j ρ̄gjc
v
gj
and (40d) was

used to eliminate the σ̄eff
s : de

s contribution from (95a). In (97) the heat generated

by plastic response is collected in ∆p
e = −σ : dp

s +
∑

k
1
Js
K̄(k)Ds(κ(k))

Dt
. In the presented

model it is assumed that the contribution from ∆p
e is sufficiently small and will be

neglected. From expression (64c) it follows that

θ

ρl

∂psl
∂θ

−
psl
ρl

= Al + ηlθ −Af
l − ηfl θ +Rgvθ

2∂(ln(aw))

∂θ
(98)

where the entropies are defined via (30a). Furthermore the balance of mass equations
(74) and (75) are used to replace nα∇ · (vs) according to

[nlp
t
l + (ns + ng)

∑

j=d,v

pgj ]∇ · (vs) = −ptl

(

nl

ρl

Ds(ρl)

Dt
−

Ds(nl)

Dt

)

+ m̂

(

pgv
ρgv

−
ptl
ρl

)

−
∑

j=d,v

pgj

[

Ds(ns)

Dt
+

Ds(ng)

Dt
−

ng

pgj

Ds(pgj)

Dt
−

ng

θ

Ds(θ)

Dt
−

1

ρgj
∇ · (Jgj )

]

(99)

The terms including a material time derivative of a volume fraction are rewritten
using the saturation condition and the derived relation between the thermodynamic
pressures of the fluids (68) as

∑

j=d,v

pgj

[

Ds(ns)

Dt
+

Ds(ng)

Dt

]

+ ptl
Ds(nl)

Dt
= −nlknl

(

Ds(nl)

Dt

)2

(100)

Inserting (98),(99) and (100) in (97) the heat equation appears in the following format

cp
Ds(θ)

Dt
+

(

ptl −
∂ptl
∂θ

θ

)

nl

ρl

Ds(ρl)

Dt
− nlknl

(

Ds(nl)

Dt

)2

− ρQ

+ ρb ·ws +∇ · (q)−
∑

j

hgj∇ · (Jgj ) + m̂∆Hads = 0 (101)

where cp = cv +
∑

j ρ̄gjRgj . In this expression the specific enthalpy of adsorption
∆Hads is defined as the term energy conjugated with the rate of evaporation

∆Hads = ∆Hvap +Rgvθ
2∂(ln(aw))

∂θ
(102)

where the specific enthalpy of evaporation ∆Hvap = hgv − hf
l is introduced.
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Abstract

The response of moist paperboard exposed to extensive compression and heat-
ing in short periods of time is investigated. A generic framework describing this
response, in a thermodynamically consistent manner, has been derived previ-
ously. The present paper provides explicit formats of the necessary constitutive
relations specific to moist paperboard exposed to extensive compression and
heating in short periods of time. The transient transports of mass, momentum
and energy, as well as specific interaction terms are considered for orthotropic
paperboard. The elasto-plastic response is taken into account in a large strain
setting. The exchange of mass between the water bound in or to the fibers and
the water vapor during the sealing is also considered. Simulations of an ideal-
ized sealing of two sheets of paperboard are performed and the predicted dis-
tributions of temperature, vapor pressure, out-of-plane stress and Forchheimer
number are studied. The discussion related to the results from the simulations
provides a deeper insight to how the different transport processes will affect
the paperboard and how these are coupled. The closed system of equations,
including the explicit formats of constitutive relations, provided in this paper
makes it possible to set up suitable experiments for validation of the model.
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1 Introduction

Paperboard may be considered as a material composed of a solid phase, defined by
a dry fiber network, a liquid phase, defined by both liquid water bound in or to the
fiber network and “free” liquid water that does not interact with the fiber network,
and a gas phase which may be regarded as a mixture of two miscible constituents,
namely water vapor and dry air. The presence of water in paperboard has a great
influence on the response of the board. The amount of liquid water in the board
is characterized by the moisture ratio, which is defined as the fraction between the
mass of the liquid water and the mass of the dry fiber network. Neglecting the
mass of the moist air inside the board the moisture ratio is equivalent to the dry
basis moisture content. In the present paper, moisture ratios below the maximum
hygroscopic moisture content (HMC) are considered and all liquid water is assumed
to be bound in or to the fiber network, see reference Baggerud (2004). Due to the
manufacturing process, paperboard may be considered to be an orthotropic material,
a property that introduces direction-dependent transports of mass, momentum, and
energy. The characteristic directions in paperboard are: Machine Direction (MD),
Cross machine Direction (CD), and out-of-plane direction (ZD), cf. Figure 1.

ZD

MD

CD

Figure 1: The characteristic directions of paperboard.

The purely mechanical quasi-static stress–strain response of paperboard has been
modeled in, e.g., Xia et al. (2002); Harrysson and Ristinmaa (2008), where the invari-
ance properties discussed in Boehler (1987) are adopted and where local characteristic
directions are introduced in the form of director vectors which are assumed to evolve
with the deformation of the board. The model presented in Xia et al. (2002) describes
the in-plane stress response of paperboard as elasto-plastic and the out-of-plane stress
response as elastic, limiting the applications of the model to predominant in-plane
loading. A more general model of the stress–strain response of paperboard is pro-
posed in Borgqvist et al. (2014) and later extended in Borgqvist et al. (2015) to also
include elasto-plastic out-of-plane response. To model the out-of-plane plastic re-
sponse, the yield surface presented in Xia et al. (2002) is enhanced with six additional
sub-surfaces associated with the stress response in the out-of-plane direction. The
explicit dependencies of moisture and temperature on the stress–strain response of
the fiber network are not considered in the present paper and the model suggested
in Borgqvist et al. (2015) is adopted. The reader is referred to the work in Salmén
and Back (1980); Linvill and Östlund (2014) for more information on the explicit
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dependencies of moisture and temperature on the mechanical response of paperboard.
High velocity gas flow through paper hand sheets has been studied in Modak et al.

(2009) by assuming a nonlinear laminar flow described by the Forchheimer equation.
The viscous and microscopic inertial resistances of hand sheets are investigated and
the microscopic inertial losses are found to contribute more than 50% of the pressure
loss. Liquid water transport through paper-like material have been studied in Ma-
soodi and Pillai (2010); Masoodi et al. (2011), where the swelling of the fiber matrix
is included via an additional sink term in the balance of mass equation and it is shown
that the model is able to predict the wicking experimentally produced in Wiryana and
Berg (1991). Intra–fiber and inter–fiber moisture diffusion in bleached kraft board are
investigated in Bandyopadhyay et al. (2000) and a model is derived which is able
to predict the transient moisture content during a change in the ambient humidity.
Transient heat transport in paperboard has been studied in, e.g., Lavrykov and Ra-
marao (2012), where the out-of-plane thermal conductivity and the specific heat of
commercial copy paper sheets are investigated. It is shown that both a series–parallel
model and a lumped parameter model may be used to predict the density dependence
of the out-of-plane thermal conductivity of copy paper sheets.

The coupled mass and heat transport in paper has been studied in, e.g., Alexan-
dersson et al. (2016), where a hybrid mixture theory (HMT) framework is adopted
to derive a model predicting the response of paperboard rolls during a change in the
ambient humidity. In Zapata et al. (2013), balance laws, derived in Bachmat and
Bear (1986a,b), for transport in porous media are adopted and the evolution of the
moisture and temperature distributions in printing and copying paper are analysed
during printing. A three phase model describing the moisture, temperature and pres-
sure distributions during a drying phase in the production process of cardboard has
been derived in Karlsson and Stenström (2005a), and validated against experimental
data in Karlsson and Stenström (2005b).

In order to better understand the response of paperboard to folding and filling
processes, a generic framework has been developed in Askfelt et al. (2016) that de-
scribes the transient transport of heat and moisture in deforming paperboard. The
balance laws presented in Askfelt et al. (2016) are derived from a HMT framework
Hassanizadeh and Gray (1979a,b), and considers the balance of mass, the balance of
linear momentum, the balance of energy of all components of the paperboard.

In the current paper specific constitutive relations valid for moist paperboard are
derived. A brief presentation of the governing balance laws is given in Section 3.
After this introduction, it is shown, in Section 4, how the stress–strain response model
described in Borgqvist et al. (2015) may be incorporated in the framework. Explicit
formats of the constitutive relations specific for paperboard in environments similar
to those present during the folding and filling process of a food package are derived
in Sections 5, 6 and 7. Having retrieved a complete set of constitutive relations,
simulations of an idealised sealing are presented and discussed in Section 8.
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2 Preliminaries

A hybrid mixture theory approach is adopted. Each spatial point in the board is
viewed as a superposition of phases ()α, α ∈ {s, l, g}, with the notation ()s for solid,
()l for bound water, and ()g for gas. The gas phase is considered as a mixture of the
two miscible constituents, namely dry air ()gd and water vapor ()gv . HMT provides
possibilities for explicitly including interfaces between the phases, cf. e.g., Bennethum
and Cushman (1996); Hassanizadeh and Gray (1990), however, in the present study,
these interfaces are only considered implicitly via the constitutive relations describing
the interactions between the phases. The motion of a phase is defined by a nonlinear
map χα : Ω0

α × t → Ω ⊂ R
3,

x = χα(Xα, t) (1)

where Xα denotes the location of phase α in the reference configuration, Ω0
α, and x

is the position in the deformed configuration, Ω, at time, t, which is simultaneously
occupied by all phases and constituents. The deformation gradient, Fα, associated
with the motion of each phase is given by

Fα =
∂χα(Xα, t)

∂Xα

(2)

In order to ensure a continuous bijective mapping, the Jacobian is assumed to be
greater than zero, i.e., Jα = det(Fα) > 0. The spatial velocity gradient lα is additively
split into the symmetric rate of deformation tensor dα and the skew-symmetric spin
tensor ωα according to

lα =
Dα(Fα)

Dt
F−1

α , dα =
1

2
(lα + lTα), ωα =

1

2
(lα − lTα) (3)

where Dα(•)/Dt denotes the material time derivative with respect to the motion of
phase α. Let v andm denote the volume and mass of a representative volume element,
(RVE). Then v and m are related to their phase and constituent counterparts via

m =
∑

α

mα, mα =
∑

j

mαj
, v =

∑

α

vα (4)

All constituents are considered miscible, meaning that all constituents αj within a
phase α are associated with the same volume as the phase, i.e., vαj

= vα ∀ j.
The macroscale balance laws assumed in hybrid mixture theory are derived through

averaging of microscale balance laws Hassanizadeh and Gray (1979a). During the
averaging from micro- to macroscale a new variable, the volume fraction nα, appears
naturally, as

nα =
vα
v
,

∑

α

nα = 1 (5)

where (5b) is a consequence of (4c) known as the saturation condition. Throughout
the rest of this paper quantities multiplied by volume fractions are denoted with a bar,
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i.e., ¯(•)α = nα(•). As an example, the intrinsic densities ρα, ραj
and bulk densities

ρ̄α, ρ̄αj
are given by

ρα =
mα

vα
, ραj

=
mαj

vα
, ρ̄α = nαρα, ρ̄αj

= nαραj
(6)

The mixture density is defined by ρ = m/v. The mass averaged velocities v and vα

are defined as the weighted summations of the phase velocities vα and constituent
velocities vαj

, respectively, i.e.,

v =
1

ρ

∑

α

ρ̄αvα vα =
1

ρ̄α

∑

j

ρ̄αj
vαj

(7)

Furthermore, definitions of diffusion velocities wα,wαj
and a relative velocity vα,β are

introduced by

wα = vα − v, wαj
= vαj

− vα, vα,β = vα − vβ (8)

3 Balance laws

In Askfelt et al. (2016) a framework is derived aimed at predicting the response of
moist paperboard in environments where significant temperature and pressure changes
are expected in short periods of time. The derivations are made in a thermodynam-
ically consistent manner using a two-scale hybrid mixture theory framework. The
interfaces between the phases are not considered explicitly and at a given spatial po-
sition, all phases and constituents are assumed to have the same temperature. The
solid phase is chosen as a reference phase and balance laws are expressed with respect
to the motion of the fiber network. The intrinsic density of the solid phase is assumed
constant, for modeling of a varying intrinsic solid density cf. Larsson et al. (2004).
The system of equations derived in Askfelt et al. (2016) is summarized below under
the assumption that the body forces associated with the gas constituents are negligible
and all liquid water is bound in or to the fibers, so that no relative velocity between
these two phases is present.

3.1 Balance of mass

The porosity is defined as φ = 1−ns where ns denotes the solid volume fraction which
is given by

ns =
n0
s

Js
(9)

The superscript (•)0 indicates the value of a quantity in the undeformed reference
configuration, Ω0

s. Assuming both gas constituents to behave as ideal gases, the
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balance of mass equations for the fluids are given by

Ds(ρ̄l)

Dt
+ ρ̄l∇ · (vs) + m̂ = 0 (10a)

ρgd
Ds(ng)

Dt
+

ρ̄gd
pgd

Ds(pgd)

Dt
−

ρ̄gd
θ

Ds(θ)

Dt
+∇ · (Jgd) + ρ̄gd∇ · (vs) = 0 (10b)

ρgv
Ds(ng)

Dt
+

ρ̄gv
pgv

Ds(pgv)

Dt
−

ρ̄gv
θ

Ds(θ)

Dt
+∇ · (Jgv) + ρ̄gv∇ · (vs)− m̂ = 0 (10c)

where θ denotes the absolute temperature. Moreover pgd and pgv denote the gas
pressures of dry air and water vapor respectively and m̂ the rate of evaporation, all
presented in Section 5. The combined mass fluxes are denoted Jgj = ρ̄gj (wgj + vg,s)
and include inter–fiber seepage, vg,s, as well as inter–fiber diffusion, wgj . Both seepage
and diffusive flow are discussed in Section 6.

3.2 Balance of momentum

For the considered application, the macroscopic inertial forces are negligible, and the
balance of linear momentum of the solid phase is given by

−∇ · (σ)− ρb+ m̂(vg,s +wgv) = 0 (11)

where b denotes the body force tensor and σ the total Cauchy stress tensor. Assuming
that the rate at which the liquid volume fraction changes has a negligible effect on
the total Cauchy stress tensor yields a Terzaghi format of total Cauchy stress tensor,
see reference Askfelt et al. (2016), i.e.,

σ = σ̄
eff
s − pgI (12)

where I denotes the second order identity tensor and the pressure of the moist air pg
is described by Dalton’s law, i.e., pg = pgd + pgv . The effective Cauchy stress tensor
of the solid phase, σ̄eff

s , characterizes the stress–strain response of the fiber network
and will be further elaborated in Section 4 together with plastic deformations.

3.3 Balance of Energy

Assuming no intrinsic heat source is present and the term including the quadratic
time derivative of nl to have a negligible influence on the heat in the board reduces
the balance of energy, see reference Askfelt et al. (2016), to

cp
Ds(θ)

Dt
+ ρb ·ws +∇ · (q)−

∑

j=d,v

hgj∇ · (Jgj ) + m̂∆Hads = 0 (13)

where cp and q denote the total heat capacity per unit volume and the total heat
flux respectively, which are both discussed in Section 7. Furthermore, hgj denotes
the specific enthalpy of constituent gj and ∆Hads the enthalpy of adsorption both
provided in Section 5.
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4 Constitutive relation for the solid fiber

To be able to predict significant inelastic deformations, a multiplicative split of the
deformation gradient of the solid phase is performed, i.e., Fs = Fe

sF
p
s, where Fe

s

is associated with elastic deformations and Fp
s with plastic deformations, see also

Ristinmaa et al. (2011); Harrysson and Ristinmaa (2008); Borgqvist et al. (2015).
Hygro–expansion of the cellulose fibers is not considered in this work, i.e., swelling due
to moisture uptake is not included. From the multiplicative split of the deformation
gradient there follows an additive split of the spatial velocity gradient ls according to

ls = les + lps, les =
Ds(F

e
s)

Dt
(Fe

s)
−1, lps = Fe

s

Ds(F
p
s)

Dt
(Fp

s)
−1(Fe

s)
−1 (14)

Both the elastic and the plastic part of the spatial velocity gradient are further
split into symmetric de

s,d
p
s and skew-symmetric parts ω

e
s,ω

p
s according to (3). The

purely mechanical model for paperboard described in Borgqvist et al. (2015) is, below,
adopted in a hybrid mixture theory setting.

4.1 Anisotropy

Paperboard is viewed as an orthotropic material locally characterized by three direc-
tor vectors ν(1),ν(2),ν(3), cf. Harrysson and Ristinmaa (2008); Borgqvist et al. (2014,
2015). In the material configuration, these director vectors are aligned with the char-
acteristic directions of the paperboard, MD, CD and ZD, and are all of unit length,
i.e., (ν(1))0 = e(md), (ν(2))0 = e(cd), (ν(3))0 = e(zd), cf. Figure 1. An isoclinic inter-
mediate configuration is assumed, for more information see Harrysson and Ristinmaa
(2007), and the director vectors are assumed to evolve with the elastic part of the
deformation gradient according to

ν
(1) = Fe

s(ν
(1))0, ν

(2) = Fe
s(ν

(2))0, ν
(3) = Je

sF
e−T
s (ν(3))0 (15)

where Je
s = det(Fe

s). Based on the above, three structural tensors, one related to each
direction, are defined according to

m(1) = ν
(1) ⊗ ν

(1), m(2) = ν
(2) ⊗ ν

(2), m(3) = ν
(3) ⊗ ν

(3) (16)

4.2 Elastic response

Following Borgqvist et al. (2015), an additive split is assumed for the Helmholtz free
energy of the solid phase, i.e.,

As(θ,b
e
s,m

(i), κ(k)
s ) = Aθ

s(θ) + Aip
s (b

e
s,m

(i)) + Aop
s (be

s,m
(i)) + Ap

s(κ
(k)
s ) (17)

where be
s = Fe

sF
eT
s is the elastic Finger tensor and Aip

s and Aop
s describe the in-plane

and out-of-plane elastic behaviour respectively. The plastic behaviour is characterized
by Ap

s and the accumulation of heat in the fiber network is characterized by Aθ
s, which

is provided in (54a). For the specific forms of Aip
s , A

op
s , and Ap

s, the reader is referred
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to Borgqvist et al. (2015). The elastic part of the deformation gradient relates the
effective Cauchy stress tensor to the effective first Piola Kirchhoff stress tensor, Peff

s ,
via

σ̄
eff
s = J−1

s Peff
s FeT

s , Peff
s = n0

sρ
0
s

∂As

∂Fe
s

(18)

Inserting (17) in (18) yields an expression for the effective Cauchy stress tensor given
by

σ̄
eff
s =

n0
s

nr
s

1

Js

(

P1m
(1) + P2m

(2) + P3m
(3) + P4I+ P5(J

e
s )

−2be
sm

(3)be
s

)

(19)

where Pi are the invariants provided in Borgqvist et al. (2015). Increasing the initial
density of the paperboard increases the stiffness of the board, see reference Alava and

Niskanen (2006), and in order to incorporate this, a scaling n0
s

nr
s
is introduced, where

nr
s indicates a reference value of the initial solid volume fraction from Borgqvist et al.

(2015) where n0
s = nr

s = 0.5253.

4.3 Plastic response

The plastic behaviour is characterized by a yield function, f , given by

f(τ̄ eff ,n
(k)
sub, K̄

(k)
s ) =

12
∑

ν=1

Hy(ν)

(

τ̄ eff : n
(ν)
sub

τ (ν)

)2ky

− 1 (20)

where the effective Kirchhoff stress tensor is denoted by τ̄
eff
s = Jsσ̄

eff
s and ky = 3.

The superscript (ν) appearing in (20) refers to the twelve sub-surfaces of the yield
function, where six are related to the in-plane and six are related to the out-of-plane
plastic response. The normal, n

(ν)
sub, to each yield plane is defined by

n
(ν)
sub =

3
∑

i=1

3
∑

j=1

N
(ν)
ij ν

(i) ⊗ ν
(j)|ν(i)|−1|ν(j)|−1 (21)

where the yield surface coefficients N
(ν)
ij are determined via

√

(n
(ν)
sub)

0 : I = 1. The

stress quantities τ (ν), defining the distance in the stress space from the origin to each
yield plane, are given by

τ (ν) = (τ (ν))0 + K̄(ν)
s (22)

where the hardening functions, K̄
(ν)
s , are functions of the the internal variables, κ(ν),

and defined by

K̄(ν)
s =











n0
s

nr
s
aν ln(bνκ

(ν)
s + 1) for ν ∈ {1, 2, 3, 6}

n0
s

nr
s
aνκ

(ν)
s for ν = 7

0 otherwise.

(23)
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The initial distances (τ (ν))0 and the hardening parameters, aν and bν as well as N
(ν)
ij

are provided in Borgqvist et al. (2015). The function Hy(ν), appearing in the yield
function, acts as a switch function, indicating whether a yield plane is active, Hy(ν) = 1
if τ̄ eff : n

(ν)
sub > 0, otherwise Hy(ν) = 0 i.e., if the yield plane is inactive. With the

yield function defined in (20) the plastic flow rate dp
s and the evolution of the plastic

internal variables are given by

dp
s = λ̇p

∂f

∂τ̄ eff
= 2kyλ̇p

12
∑

ν=1

Hy(ν) (τ̄ eff : n
(ν)
sub)

2ky−1

(τ ν)2ky
sym(n

(ν)
sub) (24a)

Ds(κ
(ν)
s )

Dt
= −λ̇p

∂f

∂K̄
(ν)
s

= 2kyλ̇pH
y(ν) (τ̄ eff : n

(ν)
sub)

2ky

(τ (ν))2ky+1
(24b)

In order to obtain a realistic shear response, an Eulerian plastic spin ω
p is needed and

in Borgqvist et al. (2015) the plastic spin ω
p is assumed to take the form

ω
p = 2kyλ̇p

12
∑

ν=1

Hy(ν) (τ̄ eff : n
(ν)
sub)

2ky−1

(τ ν)2ky
skew(n

(ν)
sub) (25)

The mechanical model presented in this section has been calibrated against uniaxial
tension and compression tests. The experimental data and model predictions, using
the full set of equations provided in Section 4, of the tension in MD, CD and ZD as
well as the out-of-plane cyclic compression are shown in Figure 2.

5 Constitutive relations for the gas constituents

and the bound water

The considered gas constituents are assumed to behave as ideal gases and the following
format of the specific Helmholtz free energy Agj of gas constituent gj is used

Agj(θ, ρgj ) = Aθ
gj
(θ) +Rgjθln(

ρgj
ρ∗gj

) + h∗

gj
−

p∗gj
ρ∗gj

− η∗gjθ (26)

where Aθ
gj
characterizes the ability of the gas constituents to accumulate heat, provided

in (54). The specific entropies and enthalpies of the gas constituents are denoted ηgj
and hgj respectively. The superscript (•)

∗ is used to indicate thermodynamic reference
values which are taken from an equilibrium state and provided in Table 1. From (26)
it follows that the partial pressures for the dry air and water vapor are given by the
ideal gas law, i.e., pgj = Rgjθρgj , where Rgj is the specific gas constant. The Helmholtz
free energy of the bound water is given by

Al(θ, ρl,W ) = Af
l (θ, ρl) +

Rgvθ

W

∫

ln(aw)dW (27)

where Af
l denotes the specific Helmholtz free energy of the “free” liquid water and the

moisture ratio W is defined via

W = ρ̄l/ρ̄s (28)
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(a) (b)

(c)

Figure 2: Calibration of the purely mechanical response of paperboard to experimental data pro-
vided in Borgqvist et al. (2015) a) uniaxial tension in ZD, b) uniaxial cyclic compression in ZD, c)
uniaxial tension in MD and CD. The initial in-plane length in direction ip is denoted Lip

The Helmholtz free energy of the “free” liquid water is described by

Af
l (θ, ρl) = Afθ

l (θ) +

∫

ptl(θ, ρl)

ρl
dρl + (hf

l )
∗ −

(ptl)
∗

ρ∗l
− (ηfl )

∗θ (29)

where Afθ
l characterizes the ability of the “free” liquid water to accumulate heat, pro-

vided in (54), and ptl denotes the thermodynamic pressure of the liquid water, see
Askfelt et al. (2016). The specific entropy and enthalpy of the “free” liquid water are
denoted by ηfl and hf

l respectively. The terminology “free” is here used to indicate a
state where the liquid water is not affected by the presence of other phases. Inter-
actions between the fibers and the liquid water reduce the energy of the water, and
within the HMC region this is quantified by the water activity aw and described by
the second term in (27). The water activity indicates how tightly bound water is to

the solid, and is defined by aw =
peqgv
psatgv

, see Bénet et al. (2012), where peqgv denotes the

equilibrium vapor pressure inside the porous medium and psatgv the saturated vapor
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pressure. In Askfelt et al. (2016) it is shown that the fraction peqgv/pgv is the driving
force for the rate of evaporation m̂ which is given by

m̂ = km̂Rgvθln

(

psatgv aw

pgv

)

(30)

where km̂ is the rate coefficient, here taken as km̂ = 2.7×10−7 kg·s·m−5. An expression
for the water activity aw is provided in Askfelt et al. (2016) and the saturation vapor
pressure psatgv is assumed to be described by the Antoine relation,

aw = 1− e(−84W 1.9
−0.2(θ−273.15)W 1.2) (31a)

psatgv = 133.322× 10(8.07131−1730.63/(θ−39.574)) [Pa] (31b)

The enthalpy of adsorption is provided as

∆Hads = hgv − hf
l +Rgvθ

2∂ln(aw)

∂θ
(32)

Transformations between the Helmholtz free energy and the specific enthalpies and
entropies are given by

ηgj = −
∂Agj

∂θ
, ηfl = −

∂Af
l

∂θ
(33a)

hgj = Agj + ηgjθ +
pgj
ρgj

hf
l = Af

l + ηfl θ +
ptl
ρl

(33b)

Table 1: Reference values A.Çengel and Boles (2007)

Notation Dimension value

θ∗ K 298.15
(ptl)

∗ Pa 101.3× 103

p∗gv Pa 3.1698× 103

p∗gd Pa (ptl)
∗ − p∗gv

ρ∗gj kg/m3 p∗gj/(Rgjθ
∗)

h∗

gv kJ/kg 2 546.5
h∗

gd
kJ/kg 298.586

(hf
l )

∗ kJ/kg 104.83
η∗gv kJ/kg/K 8.5567
η∗gd kJ/kg/K 6.866

(ηfl )
∗ kJ/kg/K 0.3672
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6 Transport of mass

6.1 Inter–fiber gas seepage

Aiming to derive a model applicable to nonlinear anisotropic gas seepage flow, a three-
dimensional Forchheimer equation is suggested for the gas–solid seepage,

(1 + Fo)Rg,s · vg,s = −ng∇(pg) (34)

where Fo is the dimensionless Forchheimer number, given by

Fo =
ρgβg,skg,s

µD
g

|vg,s| (35)

The intrinsic permeability parameter is given by kg,s ≥ 0 and the anisotropic gas
flow resistivity is defined by a positive definite second order tensor Rg,s. Both Rg,s

and kg,s are associated with linear laminar gas–solid seepage flow, i.e., Darcy flow,
and the Forchheimer correction coefficient βg,s compensates for the increased flow
resistance appearing at higher pressure heads. The Forchheimer correction coefficient
βg,s is a property of the porous medium. The reader is referred to Lopez-Hernandez
et al. (2004) for a review of some of the more familiar empirical models estimating
this correction coefficient. In the present study, the model suggested by Geertsma is
adopted, i.e.,

βg,s =
0.005

k0.5
g,sn

5.5
g

[m−1] (36)

The dynamic viscosity of the binary gas is denoted µD
g and modeled as a weighted

average of the dynamic viscosities of the two gas constituents, see reference Pont et al.
(2011),

µD
g = µD

gv + (µD
gd
− µD

gv)(pgd/pg)
0.608 (37a)

µD
gv = −7.92× 10−7 + 3.53× 10−8θ [Pa · s] (37b)

µD
gd

= 5.91× 10−6 + 3.52× 10−8θ + 2.22× 10−11θ2 [Pa · s] (37c)

The resistivity, Rg,s, is inversely proportional to the anisotropic intrinsic permeability
tensor Kg,s via

R−1
g,s =

Kg,s

µD
g n

2
g

(38)

The gas-flow resistivity in paperboard is direction dependent, and changes with the
porosity and degree of saturation Sw = nl/φ. These aspects are considered in the
following expression of the intrinsic permeability tensor,

Kg,s = kg,s
∑

id=md,cd,zd

(K
(id)
P )r

(

ng

nr
g

)a
(id)
P
(

1− nr
g

1− ng

)

e(id) ⊗ e(id) (39)

A calibration of expression (39) to experimental data is shown in Figure 3. From the
calibration, an intrinsic permeability parameter of kg,s = 33 × 10−14 m2 is retrieved

and an anisotropy defined by K
(id)
g,s = e(id) ·Kg,s · e

(id) is presented in Table 2.
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Figure 3: Intrinsic permeability in MD, CD and ZD of paperboard, K
(id)
g,s = e(id) · Kg,s · e(id).

Calibrated to experimental data of kraft paperboard.

Table 2: Intrinsic permeability K
(id)
g,s

Direction Value [m2]

K
(md)
g,s 105× 10−14n2.4

g /(1− ng)

K
(cd)
g,s 72× 10−14n2.4

g /(1− ng)

K
(zd)
g,s 6× 10−14n4

g/(1− ng)

6.2 Inter–fiber diffusion

Assuming a linear relation between the inter–fiber vapor diffusion and the gradient
of the relative chemical potential, µgv − µgd, not to be confused with the dynamic
viscosities in (37), allows the following expression of the inter–fiber vapor diffusion,

(Deff
gv )−1 ·wgv =−∇(µgv − µgd) (40)

The chemical potential of the gas constituent gj is defined in Askfelt et al. (2016) as

µgj = Agj +
pgj
ρgj

(41)

where the Agj are defined in (26). The directional dependency of the effective diffu-

sivity tensor Deff
gv is modeled via

Deff
gv =

∑

id=md,cd,zd

(Deff
gv )(id)e(id) ⊗ e(id) (42)

A relation between Deff
gv and the diffusion coefficients DF

gv for concentration driven
diffusion, Fick’s law, has been investigated in Sullivan (2013), where the following
relation is provided,

(Deff
gv )(id) =

1

Rgvθ
(DF

gv)
(id) (43)
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Furthermore, the effective diffusion coefficient (DF
gv)

(id) may be related to the “free
space vapor diffusion” coefficient Dgv , see also Akanni and Evans (1987); Massman
(1998), via

(DF
gv)

(id) =
ng

τ̃ (id)
Dgv , where Dgv =

prg
pg

(

θ

θr

)5/3

Dr
gv (44)

Reference values prg = 101.325 kPa, θr = 298.15 K and Dr
gv = 2.58× 10−5 m2·s−1 are

given in, Pont et al. (2011). The in-plane and out-of-plane tortuosities τ̃ (ip) and τ̃ (zd)

are presented in Ramarao and Ramaswamy (2004) as

τ̃ (md) = τ̃ (cd) = τ̃ (ip) = 5.2858 · e(−2.2837ng), τ̃ (zd) = 30.037 · e(−5.2873ng) (45)

7 Transport of energy

7.1 Heat flux

The total heat flux vector q appearing in the energy balance equation is defined as
the sum of a convective part qconv describing the energy transported via inter–fiber
gas seepage, a diffusive part qdiff related to the energy transported via inter–fiber
diffusion, and a conductive part qcond related to the energy transport via molecular
interaction. The heat fluxes associated with the transport of mass, i.e., qconv and
qdiff , are defined as

qconv =
∑

j=d,v

ρ̄gjhgjvg,s, qdiff =
∑

j=d,v

ρ̄gjµgjwgj (46)

and the conductive part qcond is described by Fourier’s law:

qcond = −Kθ∇(θ) (47)

whereKθ defines an effective conductivity tensor whose inverse describes the combined
resistivity of the conductive energy transport from all phases. The conductive energy
flux in paperboard is direction dependent and Kθ is modeled as

Kθ =
∑

id=md,cd,zd

K
(id)
θ e(id) ⊗ e(id) (48)

The effective thermal conductivity of paperboard is usually modeled by viewing the
board as a composite structure. The conductivity K

(id)
θ in each direction is then

assumed to be a combination of a series conductivity Kser
θ and a parallel conduc-

tivity Kpar
θ , see also Baggerud (2004); Lavrykov and Ramarao (2012); Karlsson and

Stenström (2005a), i.e.,

K
(id)
θ = a

(id)
θ Kser

θ + (1− a
(id)
θ )Kpar

θ , Kser
θ =

1
∑

α nα(λθ
α)

−1
, Kpar

θ =
∑

α

nαλ
θ
α (49)
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where a
(id)
θ is a calibration parameter which describes the percentage of series flow

in direction (id) and λθ
α denotes the thermal conductivity of phase α, which in the

present study is assumed to be isotropic for all phases. As argued in, Baggerud (2004);
Lavrykov and Ramarao (2012); Lucisano (2002), the thermal conductivity of the fiber
network λθ

s is assumed to be independent of the temperature and the value of λθ
s is

taken as that of cellulose, λθ = 0.335 W·m−1·K−1, Reardon et al. (1999). The thermal
conductivity of the gas mixture λθ

g is modeled by the format presented in Bird et al.
(2007), i.e.,

λθ
g =

xgdλ
θ
gd

xgd + xgvΦvd
+

xgvλ
θ
gv

xgv + xgdΦdv
(50a)

Φij = 8−1/2(1 +MgiM
−1
gj

)−1/2(1 + (µD
gi
/µD

gj
)1/2(MgjM

−1
gi

)1/4)2 (50b)

xgv = ρgvM
−1
gv (ρgvM

−1
gv + ρgdM

−1
gd

)−1, xgd = 1− xgv (50c)

where Mgj and xgj denote the molar weight and the mole fraction of constituent gj.
The dynamic viscosity µD

gj
is defined in (37) and Φij is a dimensionless quantity. The

thermal conductivities of the two gas constituents and the thermal conductivity of the
liquid water are modeled by

λθ
gj
= aλgj + bλgjθ + cλgjθ

2, λθ
l = aλl + bλl θ + cλl θ

2 (51)

where the material parameters of the thermal conductivities are provided in Table 3

Table 3: Thermal conductivity parameters

Phase/constituent aλ [W·m−1·K−1] bλ [W·m−1·K−2] cλ [W·m−1·K−3]

Liquid −0.9 8.39× 10−3 −1.12× 10−5

Dry air 6.7× 10−3 65× 10−6 0
Vapor −9.7× 10−3 94.7× 10−6 0

The model for the thermal conductivity of the liquid phase is taken from Ramires
et al. (1995) and only valid in the interval 274 K ≤ θ ≤ 370 K. For temperatures
over 370 K, the thermal conductivity of liquid water is modeled as a constant, i.e.,
λθ
l (θ >370 K)=λθ

l (370 K).
In order to find suitable values for aidθ , the model is calibrated against the exper-

imental data presented in Punton (1985). From the calibration one finds azdθ = 0.75,
i.e., 75% of the out-of-plane flow may be assumed to be series flow. Furthermore
amd
θ = acdθ = 0.05 is chosen, i.e., 5% of the in-plane flow is modeled as a series flow.

With these choices, the thermal conductivity of paperboard is plotted as a function of
the sheet density in Figure 4(a) and the thermal conductivity of each phase is plotted
as functions of the absolute temperature in Figure 4(b). Figure 4(b) reveals that the
gas phase acts as an isolator, reducing the energy transport within the board, which
agrees well with Figure 4(a) where it is observed that a higher sheet density results in
a higher thermal conductivity. In Figure 4(b) it is also seen that, assuming the solid

15



(a) (b)

Figure 4: a) Thermal conductivity, K
(id)
θ = e(id) · Kθ · e(id), of paperboard as a function of the

sheet density, b) Model prediction of the temperature dependency of the thermal conductivity, λθ
α,

of each phase compared with the out-of-plane thermal conductivity of paperboard with ns = 0.42
and W = 0.1.

volume fraction ns to be constant, an increased moisture ratio should increase the
thermal conductivity of the board since the thermal conductivity of liquid is greater
than the thermal conductivity of moist air i.e., λθ

l > λθ
g.

7.2 Heat capacity

The total heat capacity per unit volume, cp, appearing in the balance of energy, (13),
is defined by

cp = ρ̄sc
p
s + ρ̄lc

p
l + ρ̄gvc

p
gv + ρ̄gdc

p
gd

(52)

The energy of the bound water is reduced due to interactions with the fibres, which
affects cpl . In the present article this influence is neglected and cpl is assumed to take
the same value as the specific heat of “free” water. Furthermore, the term including
the integrated thermodynamic pressure of the liquid water in (29) is assumed not to
affect the specific heat, and the specific heats are written as

cps = −
∂2Aθ

s

∂θ2
θ, cpl = −

∂2Afθ
l

∂θ2
θ, cpgj = −

∂2Aθ
gj

∂θ2
θ +Rgj (53)

where the parts of the Helmholtz free energies that characterize the ability to accu-
mulate heat are modeled in the following form:

Aθ
s = −

bcs
2
(θ − θ∗)2 − acs

[

θln

(

θ

θ∗

)

− (θ − θ∗)

]

(54a)

Afθ
l = −

bcl
2
(θ − θ∗)2 − acl

[

θln

(

θ

θ∗

)

− (θ − θ∗)

]

(54b)

Aθ
gj
= −

bc
v

gj

2
(θ − θ∗)2 − ac

v

gj

[

θln

(

θ

θ∗

)

− (θ − θ∗)

]

(54c)
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With these free energies, the specific heats are given by

cps = acs + bcsθ, cpl = acl + bcl θ, cpgj = ac
p

gj
+ bc

p

gj
θ (55a)

where the material parameters of the specific heats of all phases and constituents are
given in Table 4.

Table 4: Specific heat parameters

Phase/constituent ac
p

[J·kg−1·K−1] bc
p

[J·kg−1·K−2]

Solid -78.5 4.5
Liquid 4 200 0
Dry air 963.735 0.1455
Vapor 1 727 0.48

8 Numerical simulation of an idealized sealing of

two sheets of paperboard

Simulations were carried out in order to investigate the response of paperboard in
conditions similar to those present during a local sealing of two sheets of paperboard.
The setup of the idealized sealing considered is illustrated in Figure 5(a). In the
idealized sealing, two sheets of paperboard are pressed together by compression tools,
marked with gray boxes, and in order to get the sheets to stick together after the
sealing, a polymer is melted between them. The effect of the heat transferred from

(a) (b)

Figure 5: a) Illustration of the problem setup where the dashed lines indicate the computational
domain, b) boundary conditions, given in Table 5, imposed on the computational domain.

the polymer to the paperboard is simulated by a local heat source stretched over the
same md-coordinates as the compression tools act and placed between the sheets. The
sheets and the compression tools are wide in CD and the idealized sealing is viewed as
a 2D problem (with coordinates denoted md and zd) where plane strain is assumed to
prevail. Due to symmetry, the computational domain is reduced to the area enclosed
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by the black dashed line in Figure 5(a). The ambient climate is given by the absolute
temperature θ∞ = 298.15 K and the binary gas pressure p∞g =101 325 Pa.

During the sealing, the response of the boards is defined by three balance of mass
equations (10), one balance of linear momentum equation (11), and one balance of
energy equation (13). For the considered application, the intrinsic density ρl of the
liquid water is assumed to be constant and the body force b is considered negligible.
The primary variables are chosen as P = {nl, pgd, pgv ,us, θ} which naturally relate
to different governing equations. The governing balance equations are multiplied by
arbitrary weight functions ωnl

, ωpgd
, ωpgv , ωus

, ωθ and integrated over the spatial
domain spanned by the solid phase, Ωs. Making use of the Gauss divergence theorem
the corresponding weak formulations are obtained, as follows

Balance of mass

∫

Ωs

ωnl

(

ρl
Ds(nl)

Dt
+ ρ̄l∇ · (vs) + m̂

)

dA = 0 (56a)

∫

Ωs

ωpgd

(

ρgd
Ds(ng)

Dt
+

ρ̄gd
pgd

Ds(pgd)

Dt
−

ρ̄gd
θ

Ds(θ)

Dt
+ ρ̄gd∇ · (vs)

)

dA

−

∫

Ωs

∇(ωpgd
) · JgddA+

∫

∂Ωs

ωpgd
qgddL = 0 (56b)

∫

Ωs

ωpgv

(

ρgv
Ds(ng)

Dt
+

ρ̄gv
pgv

Ds(pgv)

Dt
−

ρ̄gv
θ

Ds(θ)

Dt
+ ρ̄gv∇ · (vs)− m̂

)

dA

−

∫

Ωs

∇(ωpgv ) · JgvdA+

∫

∂Ωs

ωpgv qgvdL = 0 (56c)

Balance of linear momentum

∫

Ωs

ωus
· m̂(vg,s +wgv)dA+

∫

Ωs

∇(ωus
) : σdA−

∫

∂Ωs

(ωus
· t) dL = 0 (57)

Balance of energy

∫

Ωs

ωθ

(

cp
Ds(θ)

Dt
−
∑

j

hgj∇ · (Jgj) + m̂∆Hads

)

dA−

∫

Ωs

∇(ωθ) · qdA

+

∫

∂Ωs

ωθqθdL = 0 (58)

where the mass fluxes qgj = Jgj · n, the momentum flux t = σ · n, and the heat
flux qθ = q · n through a boundary with the normal n have been introduced. The
boundary conditions imposed on ∂Ωs are decomposed into six parts, Li, in Figure 5(b).
The effect of the heat source and the compression are applied as Dirichlet boundary
conditions over Lbr and Lur

, respectively, which both stretch 0.5 cm in from the right
boundary. Both Dirichlet boundary conditions are ramped up over the time th, for
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temperature θ(t) = θ0 + ∆θ t
th

where ∆θ = 250 K. In order to reduce local stress
concentrations in the transition region between the compressed and non-compressed
areas, the displacements are ramped up spatially as well:

uzd(t,md) =







[{1− (mdre −md)/(mdre −mdrs)}0.9 + 0.1]umax
zd

t
th

x ≤ mdre

umax
zd

t
th

where umax
zd = −0.4 · 400 µm md > mdre

(59)

The start and end coordinates of the spatial displacement ramp are given by mdrs =
mdmax − 5× 10−3 m and mdre = mdmax − 3× 10−3 m respectively. Each sheet is 400
µm thick and, in order to avoid dealing with convective boundary conditions within
the board, sufficiently long sheets are modeled; here the width of the computational
domain is chosen to be 0.2 m, so that umd, pgd, pgv and θ are assumed constant on the
left boundary Ll. The sheets are assumed to be laminated on the sides in contact with
the ambient climate and no mass transport occurs through the boundaries Lul

or Lur
.

As no mass is transported through Lul
or Lur

, only the conductive part of the heat
flux is present through these boundaries. The conductive heat flux through Lul

,Lur
is

modeled with Newton convection qθ = αθ(θ − θ∞) where the heat transfer coefficient
αθ = 5 W·m−2·K−1 is assumed. Symmetry boundary conditions are assumed on
Lbl,Lbr and Lr and a summary of the boundary conditions is provided in Table 5.
During the simulations, the effect of changing the initial moisture ratio W 0 and the

Table 5: Boundary conditions

Ll Lul
Lur

Lr, Lbl Lbr

θ = θ0 qθ = αθ(θ − θ∞) qθ = αθ(θ − θ∞) qθ = 0 θ = θ(t)

umd = 0 t = [0 − p∞g ]T uzd(t,md) u · n = 0 uzd = 0

pgv = p0gv qgv = 0 qgv = 0 qgv = 0 qgv = 0

pgd = p0gd qgd = 0 qgd = 0 qgd = 0 qgd = 0

time of the simulation th were investigated. The initial values for all simulations are
presented in Table 6.

8.1 Discretization

The coupled problem (56)–(58) is solved by adopting a mixed Finite Element Method
(FEM) with discrete approximation spaces for all primary variables. The liquid vol-
ume fraction nl, the absolute temperature θ, and the partial pressures pgd and pgv
are spatially discretized using bilinear shape functions. The total stress tensor, σ, is
modeled with a Terzaghi format, cf. (12), which suggest that the displacements us

should have a higher order interpolation than the pressure interpolations, motivating
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Table 6: Initial values

Parameter Unit Initial value

ρ0s kg·m−3 1 500
ρ0l kg·m−3 1 000
θ0 K 298.15
p0g Pa 101 325
p0gv Pa aw(W

0, θ0)psatgv (θ
0)

p0gd Pa p0g − p0gv
n0
s - 0.42

n0
l - n0

sρsW
0/ρl

n0
g - 1− n0

s − n0
l

a spatially discretization of u with quadratic serendipity shape functions. The contin-
uous spatial domain Ωs is therefore approximated with a discrete domain Ωd

s defined
as a union of quadrilateral Taylor–Hood elements (Q8P4) which satisfy the discrete
inf–sup condition LBB, see also Market (2005). The weight functions are discretized
via Galerkin’s method.

The first order time derivatives are discretized via an implicit Euler scheme:

Ds(P(md, zd, t))

Dt
=

P(md, zd, t)− P(md, zd, t− dt)

dt
(60)

The resulting nonlinear problem was solved by adopting a monolithic Newton–
Raphson method. Simulations are executed in an in–house Fortran code.

8.2 Results

Due to the high width to thickness ratio of the computational domain, the results will
be presented for the subdomain defined by Ωd

sub = {(md, zd) ∈ Ωd
s : md ≥ 0.18 m}.

The predicted 2D distributions of temperature, vapor pressure, out-of-plane stresses,
and Forchheimer number, as well as the mass exchange between the bound water and
the water vapor are presented in Figure 6, at t = th, for a reference simulation where
(th,W 0) = (0.1 s, 0.1). Comparisons with simulations where th ∈ {0.1 s, 1 s, 10 s},
W 0 ∈ {0.01, 0.1, 0.2} are provided in Figures 7 and 8, where the mean out-of-plane
values of the distributions are presented over the md-coordinates of the subdomain,
Ωd

sub.
From the distributions provided in Figure 6 it is seen that the board does not reach

a stationary state and it is clear that transient transports of mass, momentum and
energy are of importance when simulating the sealing of two sheets of paperboard. A
distinct local increase in vapor pressure is observed in the area around the applied
heat source. The significant increase and its local nature is partly due to the explicit
temperature dependence of the vapor pressure and the compression of the binary
gas, but also due to secondary effects, such as evaporation and the inter–fiber vapor
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Figure 6: Predicted distributions in a board with the initial moisture ratio W 0 = 0.1 after a local
compression of 40% and heating of 250 K in 0.1 seconds.

diffusion which drives the vapor towards the heated area. Depending on the relation
between the equilibrium vapor pressure peqgv = psatgv aw and the vapor pressure pgv ,
evaporation or condensation occurs inside the board, cf. (30). The mass exchange
between the bound water and the water vapor in the board is presented in Figure 6(c).
The mass exchange is here illustrated by the elementwise volume specific change in
liquid mass (∆ml)e/v

0
e , where v0e denotes the initial volume of element e and (∆ml)e

the change in liquid mass in element e, which is calculated by

(∆ml)e = (ml)e − (m0
l )e = −

∫ t

0

[
∫

Ωd
e

m̂dv

]

dt (61)

From Figure 6(c) it is observed that evaporation has occurred in the area around the
heat source, which is due to the equilibrium vapor pressure’s being higher than the
actual vapor pressure in this area. This is confirmed by estimating the equilibrium
vapor pressure in this area as peqgv ≈ psatgv (θ =540 K) ≈ 5.5 MPa, which greatly exceeds
the partial pressures seen in Figure 6(b). In Figure 6(d), the mass exchange is shown
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once more. However, in this figure, the scale is changed so that only areas where
the liquid mass has increased are shown. It is observed that the area where bound
water has evaporated is followed by a condensation front. This condensation front is
a consequence of the vapor pressure front’s moving with a higher speed than the heat
front, resulting in pgv > psatgv aw.

Extrapolating the out-of-plane compression curve in Figure 2(b) to a compression
of 40% gives an out-of-plane stress with a magnitude of −30 MPa, which is within the
same range as the predicted value in Figure 6(e), where σ(zd) = e(zd) ·σ ·e(zd) is shown.
The tension stress distribution is presented by changing the scale in Figure 6(e), so
that only tension stresses are shown in Figure 6(f). The maximum out-of-plane tension
reaches an order of magnitude of approximately 0.1 MPa, which is below the tension
failure strength in ZD at σ(zd) ≈ 0.36 MPa, cf. Stenberg (2003), and it is concluded
that the pressure does not cause failure in the board for the considered simulation.
However, two comments should be made in regard to the stress distribution. First,
the adhesion between the board and the laminate has a lower failure strength than
the board, and the stress levels in Figure 6(f) should be compared with the failure
strength of the adhesion when performing a risk estimation. Second, due to the high
levels of stress, the board experiences a plastic response in the compressed region and
the plastic responce is determined by the yield surface provided in Borgqvist et al.
(2015) which does not include an explicit temperature or moisture dependence. In
Wallmeier et al. (2015); Salmen and Back (1977) it is argued that the stress–strain
response, including the yield surface, does have explicit temperature and moisture
dependences and including such effects could alter the stress distribution provided
here.

The inter–fiber gas–solid seepage is described as a nonlinear laminar flow, cf. (34),
where the nonlinear part, FoRg,svg,s, corresponds to Fo/(1 + Fo)% of the pressure
gradient. The fraction Fo/(1+Fo) is the inverse of the friction factor which describes
the ratio of the total energy to the kinetic energy loss, see also Modak et al. (2009).
Considering a 10% nonlinear effect to be an indication that a nonlinear flow relation
is needed gives a critical Forchheimer number of F c

o ≈ 0.11. In order to present the
areas where a nonlinear flow relation is critical, the Forchheimer number Fo is shown in
Figure 6(g) where it should be noted that the scale is changed so that the highest value
shown is F c

o . From the distribution it is seen that the Forchheimer number does exceed
the critical value in the compressed area and it is concluded that a nonlinear seepage
flow model is needed for an accurate description. The distributions shown in Figure 6
are retrieved from a simulation with a spatial discretization containing 3540 elements,
10 elements in the out–of–plane direction. The same simulation was also performed
with a finer mesh, containing 5746 elements. The distributions retrieved from the
simulation with the finer mesh matched the distributions in Figure 6. The effect of
changing the time th and the initial moisture ratio W 0 is illustrated by showing the
mean out-of-plane value of (∆ml)e/v

0
e and pgv in Figure 7 and σ(zd) and Fo in Figure

8. The effect of compressing the board is also shown in these figures by plotting the
distributions together with the corresponding distributions from simulations where
the board is not compressed (red curves). From Figure 7 it is concluded that the time
th has a significant influence on the drying of the board. It is also seen that the area
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(a) th = 0.1 s (b) th = 0.1 s

(c) th = 1 s (d) th = 1 s

(e) th = 10 s (f) th = 10 s

Figure 7: Mean value in ZD of (∆ml)e/v
0
e , a, c, e and pgv , b, d, f presented forW 0 ∈ {0.01 0.1 0.2}.

In a, b th = 0.1 s, c, d th = 1 s and e, f th = 10 s. Red curves indicates simulations without
compression and black curves indicates simulations with compression.

where evaporation appears is followed by a condensation front, which also is visible
in Figure 6(d). The energy related to the binding between the bound water and the
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(a) th = 0.1 s (b) th = 0.1 s

(c) th = 1 s (d) th = 1 s

(e) th = 10 s (f) th = 10 s

Figure 8: Mean value in ZD of σ(zd), a, c, e and Fo, b, d, f presented for W 0 ∈ {0.01 0.1 0.2}. In a,
b th = 0.1 s, c, d th = 1 s and e, f th = 10 s. Red curves indicates simulations without compression
and black curves indicates simulations with compression.

fibers increases with a decreasing moisture ratio, implying that more energy is needed
for evaporation at lower W . This aspect is seen in Figure 7 where simulations with
W 0 = 0.01 have more condensation and less evaporation. Focusing on the heated
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area, it is, however, seen that W 0 = 0.1 results in more evaporation than W 0 = 0.2,
which is a consequence of the higher vapor pressure for W 0 = 0.2 shown in the figures
to the right.

It is also observed that simultaneously compressing and heating the paperboard
reduces the evaporation and increases the condensation in comparison with a board
that is only heated, which is a consequence of the increased vapor pressure caused by
the compression. In the right column in Figure 7, the vapor pressure distributions
for different W 0 and th are shown. From these figures it is observed that boards with
a higher initial moisture ratio will experience higher vapor pressures in the inter–
fiber pores. Outside the heated area a clear jump in the vapor pressure is visible for
different W 0, which is a consequence of the higher degree of saturation’s reducing the
permeability and the volume the evaporated water may occupy. Comparing the vapor
pressure distributions with the change in liquid mass, it is concluded that the wider
condensation area for greater th is caused by a wider area of elevated vapor pressure.
From the vapor pressures distributions for different th it is reasoned that the primary
cause for the vapor pressure increases for smaller th is compression, while for greater
th the primary cause is evaporation.

Considering the out-of-plane stress distributions in Figure 8 it is observed how,
due to the compression of the board, gas is pressed out of the compressed area and
the gas pressure outside the compressed area is increased for th = 0.1 s and th = 1 s.
However, for th = 10 s the opposite effect is seen. Compared with the mass exchange
in Figure 7(e), the compression of the board has reduced the evaporation in the heated
area, implying that a lower vapor pressure could be the reason. However, from Figure
7(f), it is observed that the vapor pressure in the area in question is not affected by the
compression. The most probable reason for the lower gas pressure in the compressed
board is the reduction in the gas volume fraction due to the compression, which
decreases the permeability considerably and results in a more local pressure build-up.
The reason why this is not seen in the shorter times is that the pressure increases
more rapidly for shorter times due to the compression and slower for greater th due
to evaporation, as discussed previously. In Figure 8(e) the effect of the increased
saturation, discussed previously, is seen by the jump in the stress levels further from
the compression area.

The distribution of the mean out-of-plane value of the Forchheimer number is
shown in Figure 8, right column. In these figures the critical Forchheimer number is
marked with a blue striped and dotted line. It is observed that the nonlinear seepage
flow description becomes more important for higher W 0. This is a consequence of
the reduced permeability due to the reduced gas volume fraction. For simulations
without compression, it is seen that the average Forchheimer number has an order
of magnitude of F av

o ≈ 10−4, which would mean a nonlinear effect of approximately
10−2%, and it is concluded that the inter–fiber seepage may be considered as a linear
laminar flow for these simulations.
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9 Conclusions

Paperboard is viewed as a composition of fibers, water bound in or to the fibers,
and moist air. The orthotropic elasto-plastic stress–strain model of paperboard has
been coupled with a transient moisture and heat transport in hybrid mixture theory
framework. The derived model includes e.g., the evolution of the porosity, large plastic
deformations, evaporation/condensation, inter–fiber seepage and vapor diffusion, the
combined heat flux, and energy losses/gains associated with the mentioned processes.
The anisotropic nature of paperboard is taken into account in the transport of mass,
momentum, and energy. The derived model is implemented in a finite element setting
and the response of moist paperboard during an idealized sealing is predicted. The
model is able to capture the transient transport of mass, energy, and momentum
as well as interactions between these. For instance, simulations show that due to the
nonhomogeneous distributions of vapor pressure and temperature, evaporation as well
as condensation occurs within the board. It is also shown how a simultaneous heating
and compressing of the board affects the transport of mass such that the inter–fiber gas
pressure increases locally which introduces considerable out-of-plane tension stresses
in the board. The coupled model is able to represent the nonlinear response during
out–of–plane compression. An investigation of the distribution of the Forchheimer
number shows that a Forchheimer type of inter–fiber seepage is needed in order to
predict an accurate flow for higher initial moisture ratios and shorter heating phases.
However, for initial moisture ratios less than W 0 = 0.1 a Darcy type of inter–fiber
seepage would be sufficient.
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E. Linvill, S. Östlund, The Combined Effects of Moisture and Temperature on the
Mechanical Response of Paper, Experimental Mechanics 54 (2014) 1329–1341.

A. Modak, S. S. Takagaki, S. Ramaswamy, Integral Flow Parameters and Material
Characteristics Analysis in Through Air Drying: Part I, Drying Technology 27
(2009) 672–684.

R. Masoodi, K. M. Pillai, Darcy’s Law-Based Model for Wicking in Paper-Like
Swelling Porous Media, AIChE Journal 56 (2010) 2257–2267.

R. Masoodi, H. Tan, K. M. Pillai, Numerical Simulation of Liquid Absorption in
Paper-Like Swelling Porous Media, AIChE Journal 58 (8) (2011) 2536–2544.

S. Wiryana, J. Berg, The transport of water in wet-formed networks of cellulose fibers
and powdered superabsorbent, Wood and Fiber Science 23 (1991) 457–464.

A. Bandyopadhyay, H. Radhakrishnan, B. V. Ramarao, S. G. Chatterjee, Moisture
Sorption Response of Paper Subjected to Ramp Humidity Changes: Modeling and
Experiments, Industrial and Engineering Chemistry Research 39 (2000) 219–226.

S. A. Lavrykov, B. V. Ramarao, Thermal Properties of Copy Paper Sheets, Drying
Technology 30 (2012) 197–311.

M. Alexandersson, H. Askfelt, M. Ristinmaa, Triphasic Model of Heat and Moisture
Transport with Internal Mass Exchange in Paperboard, Transport in Porous Media
112 (2016) 381–408.

P. A. M. Zapata, M. Fransen, J. T. Boonkkamp, L. Saes, Coupled heat and moisture
transport in paper with application to a warm print surface, Applied Mathematical
Modelling 37 (2013) 7273–7286.

Y. Bachmat, J. Bear, Macroscopic Modelling of Transport Phenomena in Porous
Media. 1: The Continuum Approach, Transport in Porous Media 1 (1986a) 213–
240.

Y. Bachmat, J. Bear, Macroscopic Modelling of Transport Phenomena in Porous
Media. 2: Applications to Mass, Momentum and Energy Transport, Transport in
Porous Media 1 (1986b) 241–269.

27



M. Karlsson, S. Stenström, Static and Dynamic Modeling of Carboard Drying Part
1: Theoretical Model, Drying Technology 23 (2005a) 143–163.

M. Karlsson, S. Stenström, Static and Dynamic Modeling of Carboard Drying Part
2: Simulations and Experimental Results, Drying Technology 23 (2005b) 143–163.

H. Askfelt, M. Alexandersson, M. Ristinmaa, Transient transport of heat, mass and
momentum in paperboard including dynamic phase change of water, International
Journal of Engineering Science 109 (2016) 131–144.

M. Hassanizadeh, W. G. Gray, General conservation equations for multi-phase sys-
tems: 1. Averaging procedure, Advances in Water Resources 2 (1979a) 54–72.

M. Hassanizadeh, W. G. Gray, General conservation equations for multi-phase sys-
tems: 2. Mass, momenta, energy, and entropy equations, Advances in Water Re-
sources 2 (1979b) 191–203.

L. S. Bennethum, J. H. Cushman, Multiscale, hybrid mixture theory for swelling
systems-I: Balance Laws, International Journal of Engineering Science 34 (1996)
125–145.

S. M. Hassanizadeh, W. G. Gray, Mechanics and thermodynamics of multiphase flow
in porous media including interphase boundaries, Advances in Water Resources
13 (4) (1990) 169–186.

R. Larsson, M. Wysocki, S. Toll, Process-modeling of composites using two-phase
porous media theory, European Journal of Mechanics A/Solids 23 (2004) 15–36.

M. Ristinmaa, N. S. Ottosen, B. Johannesson, Mixture theory for a thermoelasto-
plastic porous solid considering fluid flow and internal mass exchange, International
Journal of Engineering Science 49 (2011) 1185–1203.

M. Harrysson, M. Ristinmaa, Description of evolving anisotropy at large strains, Me-
chanics of Materials 39 (2007) 267–282.

M. Alava, K. Niskanen, The physics of paper, Reports on Progress in Physics 69 (3)
(2006) 669–723.
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Abstract

In the presented paper experimental and numerical analyses are made of the
failure due to blister formation in moist packaging material when exposed to
excessive heating. The basic concept of the experimental analysis is to expose
a package material to a hot air jet and measure the time until the material
experience internal failure. For the numerical analysis, a triphasic macroscale
hybrid mixture theory approach is adopted. The in–plane permeability and the
static and dynamic sorption properties of the paperboard are believed to have
significant influences on the blister formation. For this reason in–plane perme-
ability experiments and sorption experiments are performed to retrieve proper
constitutive coefficients for the numerical simulations. Results from numerical
simulations are compared with the experimental tests in order to better un-
derstand the physics behind the forming of a blister. The results indicate that
the blister formation primarily depends on the in–plane permeability and the
sorption properties of the paperboard as well as the properties of the adhesion
between the paperboard and the Al-foil.
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1 Introduction

Package material used for storing of food products typically has a layered structure in
the out–of–plane direction (ZD). Depending on the product the package is meant to
protect and the climates that the product will be stored in different layers are included.
One class of package material denoted aseptic package material is depicted in Figure
1(a). The main part of the aseptic package material is comprised of paperboard which
carries the main stiffness of the package material. On the inside of the paperboard,
i.e., on the side of the board that is in contact with the food product, two thin layers;
one of polyethylene and one of Al–foil exists. The Al–foil acts as a barrier, protecting
the food product from light as well as the transport of gas and liquid from the ambient
climate. The Al–foil is attached to the paperboard with an adhesive, for an elaborate
description of this adhesive the reader is referred to e.g., Hallbäck et al. (2014). In
order to make the outward surface of the package material smoother and improve the
printing quality of the package, it is common to add a clay coating on this surface.
Outside the clay coating an additional layer of polyethylene exists which protects
the paperboard from the ambient climate. With the layers of polyethylene and Al–
foil, the out–of–plane direction of the aseptic package material may be considered as
impermeable in many applications.

During the filling and folding process, a package material is exposed to excessive
heating in a short period of time. As the package material is heated the liquid water
bound in and to the fibers will desorb/evaporate and increase the inter–fiber gas
pressure. At the same time the increased temperature will reduce the strength of
the adhesion between the paperboard and the Al–foil. In a worst case scenario the
increased temperature might lead to failure in the adhesion which will have an negative
impact on the integrity of the product. As the adhesion fails a bubble will appear
between the Al–foil and the paperboard, cf., Figure 1(b), these bubbles are referred
to as blisters.

(a) (b)

Figure 1: a) Illustration of the layers of the aseptic package material, b) Illustration of the blister
arising after the package material has been locally exposed to a hot air jet.

Post mortem dissections of the package material, after a blister formation, have
shown an accumulation of moisture in the blisters and it is believed that the blisters
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are caused primarily due to desorption and evaporation, i.e., mass exchange between
water bound in or to the fibers and the inter–fiber water vapor. This hypothesis
may also be strengthen by the simulations presented in Askfelt and Ristinmaa (2016)
where a significant increase in vapor pressure is seen when a laminated paperboard is
heated 250 K in 10 s. The magnitude of the vapor pressure depends on the magnitude
of the rate of the mass exchange. A common approach to model the mass exchange
between the bound water and the water vapor is to assume chemical equilibrium i.e.,
an instantaneous phase change governed by the sorption isotherm. However, for the
considered application where excessive amounts of heat are added in a short period
of time, this assumption is not sufficient.

The dynamic phase change between bound water and water vapor has been mod-
eled in e.g., Zapata et al. (2013); Foss et al. (2003); Bandyopadhyay et al. (2000)
as driven by the difference between the current concentration of the bound water
and the equilibrium value of the concentration of the bound water, and in Askfelt
and Ristinmaa (2016); Benet and Jouanna (1982); Benet et al. (2009); Alexandersson
et al. (2016) as driven by the difference in chemical potential between the bound water
and the water vapor. For a numerical comparison between the two methods and two
additional variants, see e.g., Trautz et al. (2015). In the present work the dynamic
mass change is considered to be driven by the difference in chemical potential between
the bound water and the water vapor.

In this work a blister test is used to measure the blister times of a package material
in different climates. The main idea of the blister test is to expose a sample of
moist package material with a hot air jet and measure the time until a blister has
developed and grown to a certain size, this time is referred to as the blister time. These
measurements are then compared with numerical simulations obtained by use of the
model developed in Askfelt and Ristinmaa (2016); Askfelt et al. (2016) which describes
the coupled transport of mass, momentum and energy in moist paperboard. This
model is derived in a hybrid mixture theory (HMT) framework and a brief summary of
the kinematic framework of HMT and of the model developed in Askfelt and Ristinmaa
(2016); Askfelt et al. (2016) is provided in Section 2. For a more elaborate description
of HMT the reader is referred to Hassanizadeh and Gray (1979a,b, 1980). The in–
plane permeability and the static and dynamic sorption properties are believed to
have a significant influence of the development of a blister and these properties are
evaluated for the considered paperboard in Sections 3.2 and 3.1. The experimental
blister test is presented in Section 4 and the numerical analysis is included in Section
5.

2 Preliminaries

2.1 Kinematic framework

In the mixture theory framework each spatial point x, of the body, is viewed as a
superposition of Nα immiscible phases α. Each phase α is then viewed as a homoge-
neous mixture of Nαj

miscible constituents αj. Every phase and every constituent is
viewed as a continuum governed by balance laws specific for that component. In addi-
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tion each component is allowed to have a separate motion described by the nonlinear
mapping χα : Ω0

α × t → Ω ⊂ R
3

x = χα(Xα, t) (1)

where t denotes the time and Xα is the position of phase α in the reference configura-
tion of phase α, i.e., Ω0

α. It may be noted that also the interfaces between the different
phases can be treated as separate continuum within HMT, see e.g., Hassanizadeh and
Gray (1990); Bennethum and Cushman (1996). In the present work, these interfaces
are only considered implicitly via the constitutive relations. The deformation gradient
Fα associated with the motion of phase α is defined by

Fα =
∂(χα(Xα, t))

∂Xα

(2)

where Dα(•)/Dt denotes the material time derivative following phase α. In order to
ensure a continuous bijective mapping, the Jacobian is assumed to be greater than
zero, i.e., Jα = det(Fα) > 0.

The volume and the mass of constituent αj of a representative volume element,
RVE, are denoted vαj

and mαj
respectively. All constituents within a phase are

considered miscible implying that they are all associated with the same volume, i.e.,
vαj

= vα. The volume v and the mass m of the mixture are given by

m =
∑

α

mα, mα =
∑

j

mαj
, v =

∑

α

vα (3)

The macroscale balance laws assumed in hybrid mixture theory are derived through
averaging of microscale balance laws, see e.g., Hassanizadeh and Gray (1979a). During
the averaging from micro- to macroscale a new variable, the volume fraction nα,
appears naturally, as

nα =
vα
v
,

∑

α

nα = 1 (4)

where (4b) is a consequence of (3c) known as the saturation condition. Throughout
the rest of this paper, the product between a volume fraction and another quantity
will be denoted with a bar, i.e., ¯(•)α = nα(•). The intrinsic densities of the mixture,
phase α, and constituent αj are defined as

ρ =
m

v
, ρα =

mα

vα
, ραj

=
mαj

vα
(5)

The mass averaged velocities of the mixture, v, and phase α, vα, are related to the
constituent velocities, vαj

, in the following manner

ρv =
∑

α

nαραvα, ραvα =
∑

j

ραj
vαj

(6)
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For implementation reasons it is preferable to choose a reference phase which is fol-
lowed during the simulations and describe the motions of the other components with
relative motions. Here, the solid phase is selected as the reference phase and the mo-
tion of the other components are described by the diffusion velocities wαj

= vαj
−vα

and the seepage velocities vα,s = vα − vs. It should be noted that due to (6), the
diffusion velocities wαj

will be constrained via the following summation

∑

j

ραj
wαj

= 0 (7)

The spatial velocity gradient lα, is additively split into a rate of deformation tensor
dα and a skew-symmetric spin tensor ωα defined by

lα = ∇(vα), dα =
1

2
(lα + lTα), ω =

1

2
(lα − lTα) (8)

2.2 Governing equations

A system of equation governing the response of moist paperboard when exposed to
extensive compression and heating in a short period of time has been developed in
Askfelt and Ristinmaa (2016); Askfelt et al. (2016). A short summary of this model
is presented in this subsection.

Paperboard is an orthotropic material with the three material directions denoted
by; machine direction (MD), cross machine direction (CD), and out–of–plane direc-
tions (ZD). For the considered application, moisture ratios are below the hygroscopic
moisture content (HMC) and the paperboard is assumed to be composed three phases:
solid (•)s, liquid (•)l, and gas (•)g. The solid phase represents the network of cellulose
fibers, the liquid phase represents the liquid water bound in or to the fibers and the
gas phase represents moist air which is considered to be a homogeneous mixture of
the two miscible gas constituents; dry air (•)gd and water vapor (•)gv . The intrinsic
density and the mass of the solid phase are assumed constant and the balance of mass
of the solid phase is reduced to

Ds(ns)

Dt
+ ns∇ · (vs) = 0 ⇔ ns = n0

s/Js (9)

where the superscript (•)0 indicates an initial value, see also Landervik and Larsson
(2007). The governing equations are given by three balance of mass equations, one
balance of linear momentum, and one balance of energy. The balance of mass for the
bound water, the dry air and the water vapor are given by

ρl
Ds(nl)

Dt
+ ρ̄l∇ · (vs) + m̂ = 0 (10a)

ρgd
Ds(ng)

Dt
+

ρ̄gd
pgd

Ds(pgd)

Dt
−

ρ̄gd
θ

Ds(θ)

Dt
+∇ · (Jgd) + ρ̄gd∇ · (vs) = 0 (10b)

ρgv
Ds(ng)

Dt
+

ρ̄gv
pgv

Ds(pgv)

Dt
−

ρ̄gv
θ

Ds(θ)

Dt
+∇ · (Jgv) + ρ̄gv∇ · (vs)− m̂ = 0 (10c)

5



where θ denotes the absolute temperature and the bound water seepage, vl,s, was
assumed negligible. The intrinsic density of the bound water is assumed constant
ρl = 1000 kg/m3 and both gas constituents are assumed to behave as ideal gases, i.e.,
the pressures of the gas constituents are given by pgj = ρgjRgjθ where Rgj denotes the
specific gas constant of constituent gj . The combined mass flux Jgj = ρ̄gj(wgj + vg,s)
includes both the inter–fiber diffusion wgj and the inter–fiber gas seepage vg,s. Body
forces and macroscopic inertial forces are assumed to be negligible and the relative
velocities are given by

vg,s = −
Kg,s

µD
gj
n2
g

∇(pg), wgv = −Deff
gv ∇(µgv − µgd), wgd = −

ρgv
ρgd

wgv (11)

where µgj and µD
gj

denote the chemical potential and the dynamic viscosity, respec-
tively, of constituent gj. The gas pressure is given by Dalton’s law, i.e., pg = pgd +pgv .
The intrinsic gas permeability tensor is denoted, Kg,s and the water vapor diffusivity
tensor is denoted Deff

gv . Both Kg,s and Deff
gv are orthotropic tensors with the values

K
(id)
g,s and (Deff

gv )(id) in direction id ∈ {md, cd, zd}. As mentioned in the introduction,

the in–plane permeabilities, K
(md)
g,s and K

(cd)
g,s , are believed to be of significant influ-

ence for the development of a blister and for this reason, these properties are carefully
recalibrated in Section 3.2.

The dynamic phase change between the bound water and the water vapor is de-
scribed by the rate of evaporation m̂ which is given by

m̂ = km̂Rgvθln

(

psatgv aw

pgv

)

(12)

where aw, km̂ and psatgv denotes the water activity, the rate of evaporation coefficient,
and the saturation vapor pressure, respectively. In the HMC region the mass exchange
between bound water and water vapor is caused by both desorption, (mass exchange
between intra–fiber pore water and water vapor) and evaporation (mass exchange
between inter–fiber pore water and water vapor). In the present work no distinction
is made between these two locations of water and the terminology rate of evaporation
is used to describe the rate of the total mass exchange between the bound water and
the water vapor. The water activity and the rate of evaporation coefficient will be
elaborated further in Section 3.1 and the saturation vapor pressure is modeled with
an Antoine relation i.e., psatgv = 133.322× 10(8.07131−1730.63/(θ−39.574)) Pa.

The balance of linear momentum is given by

−∇ · (σ) + m̂(vg,s +wgv) = 0 (13)

where the total Cauchy stress tensor σ is described by a Terzaghi format, i.e., σ =
σ̄

eff
s − pgI. The effective Cauchy stress tensor of the solid phase σ̄

eff
s describes the

stress–strain response of the fiber network. Thermal and hygroscopic expansions are
neglected in the present analysis and the effective stress tensor is modeled by the
theory outlined in Borgqvist et al. (2015). The format of the effective stress tensor is
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given by

σ̄
eff
s =

n0
s

nr
s

1

Js

(

P1m
(1) + P2m

(2) + P3m
(3) + P4I+ P5(Js)

−2bsm
(3)bs

)

(14)

where bs = FsF
T
s is the Finger tensor, m(ν) denotes a structure tensor, and Pi are

invariants, see Borgqvist et al. (2015). In (14), the effective Cauchy stress tensor is
scaled by the ratio between the initial solid volume fraction n0

s and the reference solid
volume fraction nr

s = 0.5253.
Given a specific spatial point x all phases and constituents are assumed to have a

common absolute temperature θ and the balance of energy governing the evolution of
θ is given by

cp
Ds(θ)

Dt
+∇ · (q)−

∑

j=d,v

hgj∇ · (Jgj ) + m̂∆Hads = 0 (15)

The heat capacity cp and the enthalpy of adsorption ∆Hads are defined by

∆Hads = hgv − hf
l +Rgvθ

2∂ln(aw)

∂θ
(16)

cp = ρ̄sc
p
s + ρ̄lc

p
l + ρ̄gvc

p
gv + ρ̄gdc

p
gd

(17)

where hgv and hf
l denote the enthalpies of the water vapor and the “free” liquid water.

The total heat flux q = qcond + qconv + qdiff describes the net heat flux due to the
conductive flux qcond, the convective flux qconv, and the diffusive flux qdiff which are
given by

qcond = −Kθ∇(θ), qconv = ρ̄ghgvg,s, qdiff =
∑

j=d,v

ρ̄gjµgjwgj (18a)

where the inner part of the enthalpy of the gas phase is defined by ρghg =
∑

j=d,v ρgjhgj .
Explicit formats of the specific heats, cpα, the thermal conductivity tensor Kθ, and the
inter–fiber water vapor diffusivity tensor Deff

gv as well as the thermodynamic poten-

tials µgj and hgj for the gas constituents and hf
l for the“free” liquid water are provided

in Askfelt and Ristinmaa (2016).

3 Experimental characterizations

Two single–ply boards with different densities were considered. The grammage g
(mass per unit square meter) and the thickness d(zd) of each paperboard were deter-
mined according to ISO 536:2012 and ISO 534:1988, respectively, see Table 1.

3.1 Static and the dynamic sorption properties

A Q5000 SA dynamic vapor sorption analyser from TA instruments was used to
determine the static and the dynamic sorption properties of the paperboard. Only
one density, ρ = 786 kg/m3 was considered in these tests.
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Table 1: Grammage, thickness, and density of the considered paperboards.

Grammage g [kg/m2] Thickness d(zd) [µm] Density ρ [kg/m3]

0.316 402 786

0.223 265.3 839

Procedure

The static and the dynamic sorption properties of the paperboard were investigated
for three different temperatures θ ∈ {303.15 K, 323.15 K, 333.15 K} and a relative
humidity interval of RH=90% → 0%. Circular samples with a diameter of 5 mm
were punched out and placed in a quartz pan which was inserted to the Q5000 SA
dynamic vapor sorption analyser. Before each measurement the sorption analyser was
equilibrated at the chosen temperature and RH=0. When the measurement started
the samples were first conditioned at RH=90% for 300 min such that the samples reach
an equilibrium state with the ambient climate inside the sorption analyser. After 300
min at RH=90%, a jump was made in the relative humidity to RH=70%, were it
was kept constant for 200 min. The same procedure was then repeated at RH=50%,
RH=30% and RH=0%, with the exception that at RH=0% the time climate was held
fixed for 300 min. During the experiments the mass m of the samples were measured
every 30 seconds and the final mass, i.e., after 300 min at RH=0%, was assumed to
be equal to the dry mass of the sample, mdry.

Results

The water activity aw describes the energy level of the bound water inside the paper-
board and is defined as the ratio between the equilibrium water vapor pressure peqgv
and the saturation water vapor pressure, i.e.,

aw =
peqgv
psatgv

(19)

At equilibrium the water activity is equal to the ambient relative humidity ϕ∞ and
the equilibrium values of the moisture ratio W = (m − mdry)/mdry for the different
ϕ∞ were used to calibrate the water activity aw(W, θ) of the bound water. The
water activity is commonly also referred to as the sorption isotherm and the form of
aw(W, θ) should be chosen carefully as it has direct implications on the enthalpy of
adsorption, see (16). An extensive review of common formats of the water activity
used for paperboard is found in Petterson and Stenström (2000) where the authors
argue that an isotherm suggested by Heikkilä 1993 is best suited for calculations on
paper. The isotherm assumed in the present study is similar to the Heikkilä isotherm
and given by

aw = 1− exp(aaW ab + ac(θ − 273.15)W ad) (20)
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This format of aw was calibrated against the equilibrium values of the moisture ratio
for the different RH and the different θ. The calibrated model is shown in Figure
2(a) and the effect on the enthalpy of adsorption is shown in Figure 2(b) where the
difference between the enthalpy of adsorption, ∆Hads, and the enthalpy of evaporation,
∆Hvap, is shown. The parameters retrieved from the calibration are given by aa =
−59.72, ab = 1.7, ac = −0.237 1/K, and ad = 1.31. From the water activity (20) the

(a) (b)

Figure 2: a) Water activity in (20) calibrated to experimental sorption data b) Change in enthalpy
of adsorption due to the interaction between the fiber network and the liquid water.

equilibrium moisture ratio at θ = 296.15 K and RH=50% is determined as W=0.063.
Using this together with the density of the paperboard ρ = 786 kg/m3 the initial
volume fractions are estimated

n0
s =

ρ

ρs(0.063 + 1)
= 0.493, n0

l =
0.063n0

sρs
ρl

= 0.0466, n0
g = 1− n0

s − n0
l = 0.46

(21)

When calculating the initial volume fraction of the liquid water, in (21), it was assumed
that the mass of the gas phase is negligible, such that the moisture ratio is given by

W =
ρ̄l
ρ̄s

(22)

The rate of evaporation coefficient km̂ depend on the moisture ratio, the absolute
temperature, and the nature of the porous medium, see Ouedraogo et al. (2013), and
will here be calibrated to fit the evolution of the moisture ratio for each step in RH
and for each temperature. When calibrating km̂(θ,W ), two assumptions are made.
First, it is assumed that the phase change from the bound water to the water vapor is
a much slower process than the combined mass flux Jgv and the local relative humidity
ϕloc = pgv/p

sat
gv is assumed to be in equilibrium with the ambient relative humidity

ϕ∞ instantaneously. Second, it is assumed that the deformation of the paperboard is
negligible during these sorption experiments, i.e, ∇· (vs) ≈ 0. The rate of evaporation
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coefficient km̂ is then calibrated against the evolution of the moisture ratio given by

Ds(W )

Dt
=

W

nlρl

Ds(nlρl)

Dt
−

W

nsρs

Ds(nsρs)

Dt
= −km̂(θ,W )

Rgvθ

n0
sρ

0
s

ln

(

aw(θ,W )

ϕ∞

)

(23)

where (9), (10a), and (12) were used.
For a porous medium, the rate of evaporation coefficient km̂ typically has a bell

shaped dependence on the moisture ratio, see also Benet et al. (2009); Ouedraogo
et al. (2013); Bénet and Jouanna (1982). The reduced rate at higher moisture ratios is
explained by the reduced interfacial area between the liquid water and the water vapor,
see Ouedraogo et al. (2013). The present paper considers relatively low moisture ratios
and the decreasing rate at higher moisture ratios is not included. The temperature
dependence of km̂ is assumed to follow a Arrhenius type equation and the following
format of km̂ is suggested,

km̂ = kaW kbexp(kc(W + kd)k
e

)exp(kf/θ) (24)

The calibrated rate of evaporation parameters are given by ka = 0.4 kg·s/m5, kb =
0.3, kc = −0.0039, kd = 0.071, ke = −2.9, and kf = −3500 K. The predicted moisture
ratio evolutions retrieved from (23), (20), and (24) are included in Figure 3 together
with the experimental measurements. In Figure 4, the rate of evaporation coefficient in
(24) is plotted against the moisture ratio W for three different absolute temperatures
θ = 303.15 K, θ = 323.15 K, and θ = 333.15 K.

3.2 Determination of the in–plane gas permeability

The in–plane gas permeability of the paperboard was determined by an L & W Air

Permeance Tester, low range – Code 168.

Preparation of samples

Sheets of the paperboard were conditioned in the relative humidity RH=50% and
the absolute temperature θ =296.15 K according to ISO 187. After conditioning a
desktop pouch laminator (Photonex - 235 ) was use to laminate both sides of the
sheets with a polymer which, in the in-plane permeability test, may be considered to
be impermeable. Twenty samples of the size 10 X 10 cm were punched out. Each
sample contained two parallel slits placed symmetrically of a distance dRCK = 20 mm
apart, see Figure 5(a). The width and length of each slit were tRCK

slit = 2 mm and
lRCK
slit = 50 mm respectively. Plastic tape was attached over each slit, one piece on
each side, in order to prevent air to flow straight through the slits, see Figure 5(b).
The intended gas flow direction is indicated with black arrows in both figures and out
of the 20 samples that were punched out, 10 samples had a flow direction in MD and
10 samples a flow direction in CD.

Procedure

All test were performed in the same environment as the samples were conditioned,
i.e., RH=50% and θ =296.15 K. The L & W Air Permeance Tester, low range – Code
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(a) (b)

(c)

Figure 3: Moisture ratio evolutions resulting from jumps in RH, from top to bottom curves:
RH=90% → RH=70%, RH=70% → RH=50%, RH=50% → RH=30%, and RH=30% → RH=0%.
a) θ = 303.15 K, b) θ = 323.15 K, and c) θ = 333.15 K.

Figure 4: Calibrated rate of evaporation coefficient km̂ plotted against the moisture ratio W for
different temperatures.

168 was used to measure the air permeance (mean air flow rate through unit area
under unit pressure difference in unit time) through the samples. The air permeance
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(a) (b)

Figure 5: Illustration of the samples used in the in–plane permeability tests, a) seen from above b)
seen from the side.

tester was adjusted to obtain a pressure difference of ∆pRCK
g = 20 kPa between the

two surfaces of the sample. The pressure difference was preserved during the tests
and the apparent air–permeance PRCK [m/Pa/s] leaving the sample was registered.

Results

The intrinsic in–plane permeability, K
(id)
g,s , in direction id ∈ {md, cd} is determined

via Darcy’s law, (11a), i.e.,

K(id)
g,s =

PRCKAlwd
RCK

lRCK
slit dzd

(25)

where Alw = 50 cm2 is the measuring area of the air permeance tester. The in–
plane permeability tests were made on both paperboards with the different densities,
ρ = 786 kg/m3 and ρ = 839 kg/m3, corresponding to ng = 0.46 and ng = 0.42,
respectively, following the derivations in (21). In order to fit the experimental data
the calibration of the permeability suggested in Askfelt and Ristinmaa (2016) had to
be slightly adjusted. The calibration is shown in Figure 6 and given by

K(md) = 80× 10−14n1.8
g /(1− ng) [m2] (26a)

K(cd) = 46× 10−14n1.4
g /(1− ng) [m2] (26b)

K(zd) = 6× 10−14n4
g/(1− ng) [m2] (26c)

No new experimental tests were made on the out–of–plane gas permeability and the
intrinsic permeability in ZD is modeled by the format provided in Askfelt and Ristin-
maa (2016).

4 Experimental procedure of the blister tester

The essence of the blister test is to locally expose the package material to a hot air
jet and measure the time needed for a blister to form and grow to a specific size, this
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Figure 6: Calibration of the intrinsic permeability, K
(id)
g,s , in MD and CD. Black marking: experi-

mental data provided in Askfelt and Ristinmaa (2016). Red marking: new experimental data.

time is referred to as the blister time. A blister is defined as a local elevation of the
surface of the board, see Figure 1(b). As indicated in Figure 1(b), the appearance
of a blister is assumed to be due to some local failure in the adhesion between the
Al–foil and the paperboard. The package material evaluated in the blister test was
made with the single–ply paperboard with the density ρ = 786 kg/m3, see Table 1.

4.1 Preparation of samples

Sixty samples of dimensions 90 mm × 80 mm ( MD × CD ) were cut out of the
package material and conditioned in three different climates, 20 samples in each cli-
mate. The considered climates were defined by the absolute temperature θ= 299.15
K and the relative humidities, RH=10%, RH=50%, and RH=80%, respectively, and
all blister tests were also performed in the same environment as the samples were
conditioned. In order to apply an accurate temperature distribution during the nu-
merical simulations, thermocouples were used to measure the temperature evolution
on the surfaces of 12 samples for each climate. Defining origin of the samples in the
upper left corner, the positions of the thermocouples were given by, T1=(MD=40
mm, CD = 10 mm), T2=(MD=40 mm, CD = 20 mm), T3=(MD=40 mm, CD = 30
mm), and T4=(MD=40 mm, CD = 40 mm), see Figure 9(a). With these positions,
the thermocouple at T4 was positioned right beneath the centre of the hot air jet.
For each climate, three samples were prepared with thermocouples on positions T2
and T4 and three samples were prepared with thermocouples on positions T1 and T3
on the aluminium side. In addition three samples were prepared with thermocouples
on positions T2 and T4 and three samples were prepared with thermocouples on po-
sitions T1 and T3 on the opposite side, i.e., on the clay coating side. Alumel and
chromel thermocouples with a diameter of 12.7 µm were used. The thermocouples
were attached to the surfaces with a 25.4 µm thick Kapton tape and connected to a
logger with the logging rate 10 000 samples per second.
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4.2 Procedure

An illustration of the experimental set–up of a blister test is shown in Figure 7. An
electronically–controlled hot air gun, (Steinel HG 2000E ) is used to heat the pressure
chamber. On the bottom of the pressure chamber, a small hole exists, see Figure 7(b).
During the heating of the pressure chamber, and also in between the blister tests, this
hole was closed by an air regulator. The samples, of the aseptic package material,
were placed with the aluminium side up, in the test piece holder located beneath the
pressure chamber. The blister test started when the air regulator was moved allowing
the stream of hot air to locally heat the sample. The air regulator was coupled to a
electronic timer (kübler codix 524 ) which started when the air regulator was moved
and stopped when a photoelectric sensor detected a blister on the package material.
The time registered by the electronic timer is referred to as the blister time and this
time was registered for each sample. In addition to the standard blister detection
method, i.e., the photoelectric sensor, the samples were also filmed with a high speed
camera during the blister tests.

Hot air gun

Pressure 

chamber

Test piece

holder

Photoelectric

sensor

(a)

Pressure chamber

(b)

Figure 7: a) Illustration of the experimental blister test setup b) Zoom in on the test piece holder.

4.3 Analysis of the experimental results

The mean blister times and the standard deviations of blister times for the climates;
RH=50% and RH=80% are shown in Figure 8. Unfortunately the photoelectric sen-
sor did not register the blisters, at the tests performed, at the relative humidity of
RH=10%. It is believed that this error is caused by the curving of the samples when
conditioned at the low relative humidity. The videos of the blister tests were analysed
and the time to the initiation of the blisters were registered for all samples. During
the analysis of the videos it was observed that, soon after the air lock was removed,
a small irregular elevation appeared in the Al–foil, then the blister initiated from the
centre of this elevation. Note that the blister initiation time is here defined as when
a bubble starts to appear and not when the irregular elevation appears. The mean
blister initiation times as well as the standard deviations of these are also included in
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Figure 8. Comparing the blister initiation times and the blister times for the different

Figure 8: Mean values and standard deviations of the blister initiations times determined from the
video analysis and the blister times registered during the blister test.

climates it is seen that the blister initiation times are rather similar for the different
climates while the blister times has a more pronounced variation between the different
climates. These results indicate that the initiation of a blister is more related to the
temperature while the growing of a blister is more related to the moisture ratio of the
board. This hypotheses is strengthened by the moisture ratio dependence in the rate
of evaporation coefficient, see Equation (24) and Figure 4, indicating that the blisters
will grow faster at higher moisture ratios.

The evolutions of the absolute temperature at positions T1, T2, T3, and T4 regis-
tered by the thermocouples on the surface closest to the pressure chamber are shown
in Figure 9. The adhesive between the Al–foil and the paperboard is assumed to
consist of low density polyethylene (LDPE) which has a typical melting point around
376.15 K, dos Santos et al. (2013). In Figure 8 it is observed that the melting tem-
perature of LDPE is reached at t ≈ 1.1 s for position T4, at t ≈ 3.3 s for position
T3, and for positions T2 and T1 the melting temperature is not reached within the
first 7 s of the blister test. Comparing this with the blister initiation time, i.e., t ≈
3.3 s, it is noted that the blister will initiate when the radius of the molten LDPE has
reached approximately 1 cm, i.e., the distance between T4 and T3. However, locally
the LDPE starts to melt approximately 2 s before the initiation of the blister and
this is probably the reason for the irregular elevation observed a priory to the blister
initiation in the video analysis.

5 Numerical simulation of the blister test

For simplicity only a two–dimensional segment of the package material is considered in
the numerical simulations. The segment is indicated with a green line in Figure 9(a).
The computational domain Ω is spanned by the axis emd and ezd, see Figure 10, and
the spatial positions are defined by coordinates md and zd, respectively. The width
and thickness of Ω0 are 4 cm and 400 µm, respectively. In the numerical simulations
the failure of the LDPE adhesion is modeled by the void volume fraction φ. The

15



xxxx
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40 mm

80 mm
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Centre of the

hot air jet

(a) (b)

Figure 9: a) Illustration of the positions of the thermocouples. b) Temperatures retrieved from the
thermocouples at positions T1, T2, T3, and T4 at the aluminium side. The black curves show the
temperatures, at positions T1, T2, T3, and T4, used as Dirichlet boundary conditions, θhs, in the
numerical simulations, see (32).

Figure 10: Illustration of the Computational domain Ω.

void space is occupied by moist air and the top three rows of elements are modeled
as two phase media, i.e., the model outlined in Section 2 without the bound water.
The solid phase, in the top row of elements, is modeled as a mixture of aluminium
and LDPE, denoted ()mix, and the solid phase in the following two rows is modeled
as LDPE, denoted ()pe. The Cauchy stress tensors, the thermal conductivity tensors,
the specific heats, the intrinsic permeability tensors, and the tortuosity tensors in the
top three layers are given by

σ = σ
eff
x − pgI (27a)

Kθ =
(

(1− φ)λθ
pe + φλθ

g

)

I (27b)

cp = (1− φ)ρpec
p
pe + φcpg (27c)

Kg,x = (4× 10−18 + φ× 10−13)I m2 (27d)

τ̃ = 60exp(−5.5φ)I (27e)
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where x ∈ {mix, pe} and ρpe = 950 kg/m3. Note that Dirichlet boundary conditions
are applied on the aluminium and therefore dictates the temperature in the aluminium.
The effective stress tensors of ()mix and ()pe are modeled with isotropic Neo-Hookean
models, i.e.,

σ
eff
pe = Kpeln(Jpe)I+ 2J−2/3

pe Gpe

(

bpe −
(bpe : I)

3
I

)

(28a)

σ
eff
mix = Kmixln(Jmix)I+ 2J

−2/3
mix Gmix

(

bmix −
(bmix : I)

3
I

)

(28b)

whereKmix = SalKal+(1−Sal)Kpe, Gmix = SalGal+(1−Sal)Gpe, and Sal = 0.1 denotes
the ratio between aluminium and LDPE in the elements connected to the upper
boundary. The Poisson’s ratios of aluminium and LDPE are given by νal = 0.334 and
νpe = 0.3, respectively. The Young’s modulus of the aluminium is calibrated against
the experimental data provided in McLellan and Ishikawa (1987) and modeled by
Eal = 7× 1010 − 4× 1010(θ− 273). Furthermore, the shear modulus Gpe of the LDPE
is a functions of the absolute temperature, see e.g., Korin (2009), and modeled by

Gpe = exp(10exp(−1(θ/100− 2.7)4) + 3× 10−5(θ − 373)2 − 0.029θ + 17) + 100 Pa
(29)

where the significant stiffness reduction takes place during the melting of the LDPE.
The thermal conductivity, λpe, and the specific heat, cppe, of the LDPE are modeled as
functions of the absolute temperature and calibrated against the experimental data
provided in dos Santos et al. (2013),

λθ
pe =− 3.63 · 10−8θ3 + 5.235 · 10−5θ2 − 2.474 · 10−2θ + 3.99

+ 0.15exp
(

−15 · 10−4(θ − 376.15)2
)

W/m/K (30a)

cppe =3080exp
(

−0.005(θ − 376.15)2
)

− 2600 + 11.6θ

+ 1600exp
(

−0.0003(θ − 340)2
)

J/kg/K (30b)

Formats of the specific heat cpg and the thermal conductivity λθ
g, of the gas phase are

provided in Askfelt and Ristinmaa (2016). The specific heat in (30b) includes a peak
at the melting temperature of LDPE, which describes the enthalpy of fusion, i.e., the
energy needed for the phase change from solid to molten LDPE.

5.1 Boundary and initial conditions

The mass fluxes qgj , the momentum flux t, and the heat flux qθ through the upper
boundary, Lu, the right boundary, Lr, the bottom boundary, Lb, and the left boundary,
Ll, are defined by

qgj = Jgj · n, t = σ · n, qθ = q · n (31)

where n denotes the unit normal perpendicular to the surface through which the
flux act, see Figure 10. Numerical simulations were run in three different ambient
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climates, set to match the climates for the experimental blister tests. When analysing
the data from the thermocouples it was noticed that the package material had an initial
temperature of 304.15 K which indicate that some heat radiated from the pressure
chamber even when the air regulator was closed. For this reason the three climates,
assumed in the numerical simulations, were defined by the absolute temperature θ∞ =
304.15 K, the gas pressure p∞g =1 atm, and the relative humidities ϕ∞ ∈ {0.1, 0.5, 0.8}.
The paperboard is assumed to be in equilibrium with the ambient climate at time t = 0
s for all simulation, i.e., θ0 = θ∞, p0gv = ϕ∞psatgv (θ

∞), p0gd = p∞g −p0gv . Furthermore, the
same initial volume is assumed in all three climates, implying that n0

s = 0.493 for all
simulations. The initial moisture ratios are determined from the water activity (20)
and the initial volume fractions n0

l and n0
g are calculated via (4b) and (22). Initial

moisture ratios and volume fractions for the different climates are collected in Table
2.

Table 2: Initial values

RH [-] W 0 [-] n0
l [-] n0

g [-]

10 0.0197 0.0146 0.4924

50 0.063 0.0466 0.46

80 0.1068 0.079 0.428

The effect of the heat convection from the pressure chamber and the heat con-
duction in the AL–foil is implemented via Dirichlet boundary conditions on Lu. The
temperature function on the upper surface is modeled as

θhs(md, t) = ahs(md)ln(bhs(md)t+ 1) + chs(md)t+ θ∞ (32)

where explicit formats of ahs(md), bhs(md), and chs(md) are provided in Table 3. The

Table 3: Dirichlet heat source parameters

Parameter Unit Value

ahs(md) K 7exp(42[md–0.01])–3

bhs(md) 1/s 0.7exp(100[md–0.01])+2

chs(dm) K/s 663md5.8 exp(–500(md–0.346)3)+3

predicted temperature, in positions T1, T2, T3, and T4 are shown in Figure 9.
Symmetry conditions are assumed on Lr. Due to the polyethylene and the Al–foil

no mass is assumed to flow out from Lu or Lb. The conductive heat flux through,
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Lb, is described by Newton cooling, i.e., qθ = αθ(θ − θ∞). Newton convection is also
assumed on both the temperature flux qθ and the mass fluxes qgj through Ll. For
the considered application the contributions from the diffusion on these boundary
fluxes are assumed negligible, i.e., the mass flux through Ll is approximated as qgj =
ρ̄gjvg,s · n = ρ̄gjβg(p

∞

g − pg) and the total heat flux through Ll is approximated as
qθ = qcond ·n+qconv ·n ≈ αθ(θ−θ∞)+ ρ̄ghgβg(p

∞

g −pg) ≈ γθ(θ−θ∞). The convection
coefficients αθ, βθ, and γθ are functions of the ambient air flow. In the present work a
simplification is made and the convection coefficients are chosen as αθ = 5 W/m2/K,
βθ = 6×10−8 m/Pa/s, and γθ = 10W/m2/K. A summation of all boundary conditions
is presented in Table 4 where the notations t(id) and u(id) defines the traction and the
displacement, respectively, in direction id.

Table 4: Boundary conditions applied on the computational domain Ω, shown in Figure 10.

Ll Lu Lr Lb

qθ = γθ(θ − θ∞) θ = θhs(md, t) qθ = 0 qθ = αθ(θ − θ∞)

t(md) = p∞g , u(zd) = 0 t(md) = 0, t(zd) = −p∞g u(md) = 0, t(zd) = 0 t(md) = 0, u(zd) = 0

qgj = ρ̄gjβg(p
∞

g − pg) qgj = 0 qgj = 0 qgj = 0

5.2 Discretization

The governing equations defined in (10), (13), and (15) constitutes a coupled problem
with the primary variables given by; the displacements u, the bound water volume
fraction nl, the absolute temperature θ, and the partial pressures pgd and pgv . The
coupled set of equations, presented in Section 2, is solved by adopting the Finite El-
ement Method (FEM) with discrete approximation spaces for all primary variables.
Galerkin’s method is adopted and the spatial discretization is made with Taylor–Hood
elements (Q8P4) where the displacements, u are discretized with quadratic serendip-
ity shape functions whereas the remaining primary variables, θ, pgd, pgv , and nl are
discretized with bilinear shape functions. First order time derivatives are discretized
via an implicit Euler scheme and the resulting nonlinear problem was solved by adopt-
ing a monolithic Newton–Raphson method. Numerical simulations are executed in an
in–house Fortran code.

5.3 Results

Evolutions of the predicted out–of–plane stress distributions for the different ambient
climates are shown in Figure 11. The LDPE and aluminium layers are included in the
simulation with the only purpose of providing more realistic boundary conditions for
the paperboard. The predicted stresses levels in these layers are not the focus of this
paper and are therefore assigned the value zero in Figure 11.
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(a) ϕ∞ = 0.10, t=1.12 s (b) ϕ∞ = 0.10, t=3.28 s (c) ϕ∞ = 0.10, t=8 s

(d) ϕ∞ = 0.50, t=1.12 s (e) ϕ∞ = 0.50, t=3.28 s (f) ϕ∞ = 0.50, t=8 s

(g) ϕ∞ = 0.80, t=1.12 s (h) ϕ∞ = 0.80, t=3.28 s (i) ϕ∞ = 0.80, t=8 s

Figure 11: Predicted distributions of the out–of–plane stresses σ(zd) = e(zd) · σ · e(zd) for a)-c)
RH=10%, d)-f) RH=50%, and g)-i) RH=80%. The md and zd axis are shown in mm.

In the out–of–plane stress distributions of the paperboard, a moving stress concen-
tration peak is observed. This peak is an indication of the radii of the molten LDPE.
It is observed that the radii of the molten LDPE grows as the blister test progress.
In Figures 11(a), 11(d), and 11(g) the distributions at time t = 1.12 s are shown, i.e.,
the approximate time when the LDPE was assumed to melt, see Section 4. In these
figures the stress peaks are very close to the right boundary meaning that the radii
of the molten LDPE is very small and it is concluded that the simulations are able
to capture the initial melting of the LDPE fairly well. The out–of–plane stress distri-
butions at the approximate blister initiation time t ≈ 3.3, (retrieved from the video
analysis in Section 4), are shown in Figures 11(b), 11(e), and 11(h). In these figures
it is observed that the surfaces has started to elevate, however, for the simulations
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in RH=10% a less pronounced elevation is seen. This agrees with the results from
the video analysis of the blister tests, where it was found that the initiation of a blis-
ter took longer time for RH=10% compared to the blister tests performed in higher
RH. In Figures 11(c), 11(f), and 11(i), the out–of–plane stress distributions at time
t = 8 s are shown. In these figures considerable surface elevations are observed. The
stress peaks are located at approximately the same distance from the right boundary,
however, there is a significant difference in the elevation of the surfaces.

The out–of–plane tension stresses of paperboard are considered to be elastic up
to stress levels around 0.36 MPa, see e.g., Stenberg (2003); Borgqvist et al. (2015).
Comparing this value with the magnitudes of the stress peaks in Figure 11 it is con-
cluded that the response of the fiber network is well within the elastic region during
a blister test and the development of a blister is not related to out–of–plane failure in
the paperboard.

In Figure 12 the predicted evolutions of the inter–fiber water vapor pressure dis-
tributions are shown for the three climates. As for the stress distributions, the vapor
pressure distributions in the aluminium and LDPE layers are not the focus of this
paper and are therefore, in Figure 12, given the value of the initial water vapor pres-
sure. Comparing the difference in the inter–fiber water vapor pressure between the
different climates it is observed that the absolute difference is growing during the blis-
ter test. At time t = 8 the pressure difference between the different climates is very
pronounced and it is concluded that there is a clear correlation between the blister
expansion and the inter–fiber water vapor pressure. Note that the radii of the blisters
are approximately the same and that the correlation between the inter–fiber water
vapor pressure and the blister expansion is in reference to the “hight” of the blisters.
There is a noticeable vapor pressure gradient in MD and there are at least four rea-
sons for this. First the temperature distribution has a similar sharp gradient and the
vapor pressure has an explicit dependence on the absolute temperature, see Section
2. Second, the inter–fiber vapor diffusion drives the vapor towards the heated area.
Third, the sorption rates are much higher in the heated area cf. Equations (12) and
(24), Figure 4, and Table 2. Fourth, the permeability of the inter–fiber gas seepage is
reduced for the higher RH due to the reduced volume fraction, ng, in the board, cf.
Equation (26) and Figure 6.

The drying of the paperboard is, in the presented work, illustrated via the ratio
between the current volume of the bound water and the initial volume of the bound
water, i.e., vl/v

0
l . This ratio is retrieved from the following expression

vl
v0l

=
nlJs

n0
l

(33)

The distributions of vl/v
0
l are shown in Figure 13 for the three climates and the times

t=1.12 s, t=3.28 s, and t=8 s. From these figures it is concluded that the drying
patterns in the different climates are rather similar. The percentage volume decrease
is less for the simulation in RH=10% which is expected since the final water during
the drying has higher bonding strength.

The evolution of the maximum out–of–plane stress during the blister tests are, for
the different climates, shown in Figure 14(a). It is noticed that the different maximum
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(a) ϕ∞ = 0.10, t=1.12 s (b) ϕ∞ = 0.10, t=3.28 s (c) ϕ∞ = 0.10, t=8 s

(d) ϕ∞ = 0.50, t=1.12 s (e) ϕ∞ = 0.50, t=3.28 s (f) ϕ∞ = 0.50, t=8 s

(g) ϕ∞ = 0.80, t=1.12 s (h) ϕ∞ = 0.80, t=3.28 s (i) ϕ∞ = 0.80, t=8 s

Figure 12: Predicted distributions of the water vapor pressure for a)-c) RH=10%, d)-f) RH=50%,
and g)-i) RH=80%. The md and zd axis are shown in mm.

out–of–plane stresses are rather similar up to t ≈ 1.1 s where the LDPE starts to melt.
It is also observed that for all tree climates a out–of–plane stress relaxation takes place
as the LDPE melts. For the climates with higher RH the maximum out–of–plane
stress then increase again. However, for the simulation in RH=10% the stress level
does not reach the same stress level after the LDPE has molten. In Figure 14(b) the
evolution of the maximum water vapor pressure is shown. From this figure it is clear
that inter–fiber water vapor pressure is not affected in the same distinct manner as
the out–of–plane stresses by the melting of the LDPE.

An additional illustration of the evolution of the blisters is given in Figure 15(a)
where the out–of–plane displacements of the paperboard are shown for all three cli-
mates at the times t = 1.12 s, t = 3.28 s, and t = 8 s. From this figure the different
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(a) ϕ∞ = 0.10, t=1.12 s (b) ϕ∞ = 0.10, t=3.28 s (c) ϕ∞ = 0.10, t=8 s

(d) ϕ∞ = 0.50, t=1.12 s (e) ϕ∞ = 0.50, t=3.28 s (f) ϕ∞ = 0.50, t=8 s

(g) ϕ∞ = 0.80, t=1.12 s (h) ϕ∞ = 0.80, t=3.28 s (i) ϕ∞ = 0.80, t=8 s

Figure 13: Predicted distributions of the ratio vl/v
0
l for a)-c) RH=10%, d)-f) RH=50%, and g)-i)

RH=80%. The md and zd axis are shown in mm.

expansion rates of the blisters are visible. Figure 15(a) also indicate that the radii of
the blisters in the different climates are the same and that it is only the elevation of
the blisters that differ. In Figure 15(a) the blisters at time t = 1.12 s are zoomed in.
In this figure it is seen that the sizes of the blisters are quite similar at t = 1.12 s, i.e.,
at the approximate blister initiation time.

Finally a comparison between the experimental and the numerical temperature
evolutions at positions T1, T2, T3, and T4 on the clay coating side is made in Figure
16. It is observed that the numerical simulations are able to capture the temperature
evolutions fairly well. Comparing the temperature evolutions between the different
climates it is found that more heat has transported through the package material for
the lower RH which might seam counter intuitive since the wet paperboard should
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(a) (b)

Figure 14: a) Evolution of the maximum out–of–plane stress during the blister test, b) evolution
of the maximum inter–fiber water vapor pressure during the blister test.

(a) (b)

Figure 15: a) Development of the normalized out–of–plane displacements for the different climates
during the blister tests b) normalized out–of–plane displacements for the different climates at t = 1.12
s.

transport heat better than the dry paperboard, see also Askfelt and Ristinmaa (2016).
The reason for the reduced heat transport for the higher RH is the formation of the
blister. As the blister grows the specific heat and the thermal conductivity of the two
phase medium, in the top three layers, approaches those of moist air, see also (27), and
the moist air acts as an isolator. In Figure 16(a) it is observed that the temperature
at T4 is overestimated in the numerical simulation. This indicates that the blister has
not grown enough and that the two phase medium describing the LDPE and AL–foil
layers is too stiff.

To conclude this section, the numerical simulations indicate that the development
of a blister is primarily caused by two processes. The initiation of a blister is mostly
related to the melting of the LDPE adhesion, while the speed and magnitude of the
elevation of the blister is mainly a consequence of the sorption properties. These

24



(a) ϕ∞ = 0.10 (b) ϕ∞ = 0.50

(c) ϕ∞ = 0.80

Figure 16: Temperature evolutions at positions T1, T2, T3, and T4 on the clay coating side obtained
from the experiments (*) and from the numerical simulations (—) in the climates a) RH=10%, b)
RH=50%, and b) RH=80%.

findings agrees well with those found from the experimental analyses in Section 4
where similar conclusions were drawn.

6 Conclusions

In this paper, experimental and numerical analyses of blister formation in moist pack-
aging material exposed to excessive heating are performed. Both the experimental
and the numerical analyses indicate that the development of a blister is primarily
caused by two processes. The first one being the melting of the LDPE adhesion,
which will depend on the applied heat. The second one being the increase in the
inter–fiber gas pressure which will depend on the temperature, the in–plane perme-
ability, and the dynamic mass exchange from liquid water bound in or to the fibers to
the inter–fiber water vapor. Via an experimental investigation, it is also shown that
both the static and dynamic sorption processes are functions of the temperature and
the moisture ratio of the board. Furthermore, it is shown that numerical simulations
are able to capture the decreased transport of heat which arises due to the formation
of the blister.
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content. Is the local equilibrium assumption still appropriate?, Journal of Hydrology
492 (2013) 117–127.
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