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Towards a New Generation of

Relay Autotuners

Josefin Berner, Karl Johan Åström, Tore Hägglund

Department of Automatic Control, Lund University, Lund,
Sweden(e-mail: josefin.berner@control.lth.se)

Abstract: The relay autotuner for PID control is based on the simple idea of investigating
process dynamics by the oscillation obtained when the PID controller is replaced by a relay
function. In this paper an asymmetric relay function is used, which provides an equation for
the static gain of the process. A method to find the normalized time delay is proposed and the
benefits of this is discussed. Ways to find low-order models from the experiment are described.
Considerations of how to choose the relay parameters are made and some examples are given.

Keywords: Autotuning, asymmetric relay, normalized time delay, parameter estimation.

1. INTRODUCTION

The relay autotuner, introduced in Åström and Hägglund
(1983), is based on the idea of finding process dynamics
from a relay oscillation and determining the parameters of
a PID controller using simple rules. In the original tuner,
the PID controller was tuned based on just the amplitude
and the period of the relay oscillation. The tuner gained
strong industrial acceptance, the main reason for this was
that it was simple to use. It was just to push a button
- no information had to be provided by the user. It was,
of course, also important that the tuning gave controllers
with acceptable performance. Another important aspect
was that the tuning procedure was short. Experiences of
the tuner are given in Hägglund and Åström (1991).

The development of the original autotuner was limited
by the computational power available at the time. The
first tuner had to be squeezed into 2 kB. Understanding of
PID tuning has also increased significantly during the last
decades, see e.g. Åström and Hägglund (2005); Vilanova
and Visioli (2012). In particular it has been shown that
more process information is required to obtain efficient
tuning rules. The amplitude and the period obtained from
a relay feedback experiment is simply not enough.

It has been shown in Åström and Hägglund (2005) that
knowledge of the normalized time delay τ (Åström and
Hägglund, 2005, p 26 ) of the process gives important qual-
itative information about tuning. For example, derivative
action has strong benefits for small τ but marginal effects
for τ close to 1. Robust PI/PID controllers can be designed
based on a first order model with time delay (FOTD),
see e.g. Sell (1995); Skogestad (2003, 2006); Åström and
Hägglund (2005). Significant improvements can however
be obtained by using a second order model with time delay
(SOTD) for processes with small τ (Åström and Hägglund,
2005, ch 7). These recent insights could be included into
the design of an improved autotuner.

This paper outlines ideas for new autotuners. When apply-
ing autotuning it is desirable to use procedures that require

short experimentation time and little a priori information.
The conventional relay autotuner uses a symmetric relay
which does not give sufficient excitation to obtain good
models. In this paper, it is suggested to use an asymmetric
relay. It provides the possibility to estimate an FOTD
model of the process. A method to quickly determine the
normalized time delay is presented. This is useful, since
knowledge of τ makes it possible to assess the benefits of
derivative action and better models. Parameter estimation
is used to obtain better models. The methods are iterative
and initial estimates are obtained from the preliminary
FOTD model. Practical issues such as choice of relay
amplitudes, relay hysteresis, convergence and noise are
discussed in Sec. 5 and examples are presented in Sec. 6.

2. ASYMMETRIC RELAY FEEDBACK

Relay feedback with the possibility to use an asymmetric
relay has been investigated earlier. In Lin et al. (2004) an
analysis of the existence and stability of limit cycles for
FOTD systems under relay feedback has been performed.
Determination of the parameters of an FOTD model from
an asymmetric relay experiment has been done in different
ways in e.g. Wang et al. (1997); Kaya and Atherton (2001);
Srinivasan and Chidambaram (2003); Liu and Gao (2008).

An FOTD system could be parametrized by either
(K,T, L) or (a, b, L) as shown in (1)

P (s) =
K

1 + sT
e−sL =

b

s+ a
e−sL. (1)

The normalized time delay τ is defined as

τ =
L

L+ T
=

aL

1 + aL
, 0 ≤ τ ≤ 1. (2)

A small value of τ corresponds to a lag-dominated system
and a large value to a delay-dominated system. Notice
that processes with integral action cannot be represented
with finite values of K and T and that pure delays
cannot be represented with finite values of a and b. The
parametrization (K,T, L) is thus suitable for processes
with balanced or delay-dominated dynamics, while (a, b, L)
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Fig. 1. Outputs from an asymmetric relay feedback ex-
periment. The process output y is shown in red and
the output from the relay, u, is shown in blue. The
relay amplitudes are denoted d1 and d2 respectively.
The hysteresis of the relay is denoted h. The time
intervals ton and toff are also defined by the figure.

suits lag-dominated and balanced processes. Throughout
this paper the parametrization (K,T, L) will be used.

The asymmetric relay has the input-output relation

u(t) =

{

d1, if y(t) < −h or y(t) < h and u(t
−

) = d1

−d2, if y(t) > h or y(t) > −h and u(t
−

) = −d2

with notations explained in Fig. 1. The notation γ = d1/d2
will be used as a measure of the asymmetry level and it is
assumed that d1 > d2.

2.1 Estimating static gain K

One of the benefits of using an asymmetric relay is that
the static gain K can be derived as

K =

∫ t+tp
t

y(t)dt
∫ t+tp
t

u(t)dt
. (3)

Here tp is the period of one oscillation, so tp = ton +
toff. Equation (3) can not be used for a symmetric relay
since the denominator then becomes zero. This could also
happen for an asymmetric relay, but only in the specific
case when d1ton = d2toff. The estimation of K for the
processes in the test batch, (Åström and Hägglund, 2005,
p 227) which contains 134 processes common in industry, is
shown in Fig. 2 for some different asymmetry levels γ. The
integrating processes have been removed in this plot since
they can not be described with a finite K. All the other
processes have K = 1 and as can be seen the estimated
values stays within 10% of the true value. A close look
at the dots for a certain τ shows that the accuracy of the
estimation is increased as the asymmetry grows larger. It is
also worth noting from the frequency plots shown in Fig. 3
that the excitation for low frequencies increases with the
asymmetry level, in the symmetric case, γ = 1, there is no
excitation at all for ω = 0.

2.2 Equations for ton and toff

An advantage with the asymmetric relay is that the
normalized time delay τ can be easily estimated by looking
at the ratio between ton and toff. This is further discussed
in Sec. 3, but we can conclude that it would not be possible
for a symmetric relay since it always has ton = toff.

For an FOTD model under asymmetric relay feedback it
is straightforward to determine how ton and toff depend on
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Fig. 2. Estimation of static gain K for the processes in the
test batch, plotted against the normalized time delay
τ . The result is shown for the asymmetries γ = 1.3
(blue), γ = 1.5 (red), γ = 2 (green) and γ = 3 (black).
Other parameters used were h = 0.1 and d2 = 0.3.
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Fig. 3. Frequency spectrum of the relay oscillations for
P (s) = 1

s+1
e−s. The simulation was run for 5 periods

with h = 0.1 and d2 = 0.3. The curves correspond
to the three different relay asymmetries γ = 1 (blue),
γ = 3 (red) and γ = 5 (green).

the parameters of the relay and the process, see e.g. Lin
et al. (2004). We have

toff = T ln
ϕ− γ + η

1− η
, ton = T ln

ϕ− 1 + η

γ − η
(4)

where ϕ = (1 + γ)eL/T and η =
h

Kd2
< 1.

The upper bound on η is due to conditions for the existence
of an oscillation. If there is no hysteresis, then η = 0 and
simple expressions for the limiting cases when L/T goes
to zero or infinity can be derived. Taking limits of (4) and
using that ex ≈ 1 + x and ln(1 + x) ≈ x for small x gives

toff =

{

L (γ + 1) if L/T → 0

L if L/T → ∞

ton =

{

L (1 + 1/γ) if L/T → 0

L if L/T → ∞

. (5)

Notice that ton = toff for delay dominated processes even if
the relay is asymmetric, and that toff/ton = γ for processes
with lag dominated dynamics.

With K known from (3), equation (4) can be solved for the
remaining parameters T and L. However this can not be
done analytically and in order to solve them numerically
appropriate initial guesses are needed.

3. ESTIMATING THE NORMALIZED TIME DELAY

The normalized time delay τ has been proven to be an
important parameter in the tuning of PID controllers
(Åström and Hägglund, 2005, ch 7). A way to rapidly
determine the normalized time delay is therefore of sig-
nificant value, since it provides information on how to
continue the autotuning procedure.

It turns out that asymmetric relay feedback offers an
effective way of estimating τ . As shown in (5) a lag-



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

toff/ton

τ

Fig. 4. τ as a function of toff/ton for η = 1/3 and the
asymmetry levels γ = 5 (green), γ = 3 (red) and
γ = 1.5 (blue). The dots are the different processes
in the test batch, the solid lines are second order
polynomials fitted to the data and the dashed lines
are the theoretical curves for FOTD processes.

dominated FOTD system will get toff/ton ≈ γ while a
delay-dominated FOTD system will get toff/ton ≈ 1 if
η = 0. The dependence between τ and the ratio toff/ton
for an FOTD system is shown in the dashed lines in Fig. 4
for some different asymmetry levels. Here η 6= 0, but as
long as η is not too close to its upper bound, the limits are
only slightly modified compared to (5).

Somewhat surprisingly other process types also seem to
more or less follow this relation. In addition to the the-
oretical FOTD curves Fig. 4 also shows data for the test
batch together with second order polynomials fitted to the
data. As can be seen in the figure the other process types
also follow the limits in (5). For delay-dominated processes
(τ ≈ 1) the times become symmetrical, toff/ton = 1, while
for lag-dominated processes the times instead reflect the
asymmetry of the relay amplitudes toff/ton = γ, no matter
the structure of the process.

By measuring the time intervals ton and toff and using the
fitted polynomial, for the relay amplitudes that are used in
the experiment, an easy way to estimate τ is achieved. The
errors in τ when using the fitted polynomial are shown in
Fig. 5. It can be seen that almost all processes in the batch
stays within 0.1 of the correct value, and that the median
errors are about 0.02, by using this estimation method
with these choices of η and γ. The achieved results are
accurate enough to use τ for classifying the process and
decide on what, if any, additional steps that need to be
taken by the autotuner algorithm.

4. MODELING

After a few relay switches K and τ can be estimated. With
this information different choices on how to continue the
autotuning procedure can be made. There is a possibility
to calculate the parameters of an FOTD model directly
from the relay feedback equations, this is described in Sec.
4.1. Another option is to use the parameter estimation
method in Sec. 4.2 which uses all the experiment data. This
approach is less sensitive to noise and could also be used
to estimate higher order models. One alternative is also
to use the information about τ to change the experiment
setup, this is discussed in Sec. 4.3.
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Fig. 5. Boxplots of the absolute errors when using the fitted
polynomial instead of the real τ -values on the process
batch. The three different asymmetry levels have the
median errors 0.026, 0.013 and 0.024 respectively.

4.1 Calculate FOTD directly

The FOTD model has three parameters that needs to be
found,K, T and L. With asymmetric relay feedbackK can
be calculated from (3). The parameters T and L could be
found in a number of different ways. From the estimated
τ the definition (2) is used to get the ratio L/T ,

L/T =
τ

1− τ
. (6)

This gives ϕ and from (4) T can then be calculated as

T =
toff

ln

(

ϕ− γ + η

1− η

) =
ton

ln

(

ϕ− 1 + η

γ − η

) . (7)

When T is found L is known from (6). The equality in (7)
is only true if there are no disturbances and ton and toff are
measured correctly. In real experiments T can be estimated
by taking the mean value of these two expressions.

4.2 Parameter estimation methods

With the increased computing power available today we
can also consider estimating the parameters directly. Let
(um, ym) be the input output data obtained from a relay
experiment of length tm, and let P (s) be the transfer
function of the process model with parameters p. The
output generated by P (s) with the input um is y. The
parameters p can then be obtained by minimizing the
quadratic loss function

J(p) =
1

2

∫ tm

0

(y(t)− ym(t)))2dt =
1

2

∫ tm

0

e(t)2dt. (8)

Optimization can be executed by computing the gradient
Jp and the Hessian Jpp given by

Jp =

∫ tm

0

yp(t)e(t)dt, (9)

Jpp =

∫ tm

0

yp(t)y
T
p (t)dt+

∫ tm

0

ypp(t)e(t)dt. (10)

The sensitivity derivatives yp and ypp can be computed

efficiently, see Åström and Bohlin (1965). A good approx-
imation of the Hessian is obtained by dropping the second
term in (10). Newton’s method can then be used to obtain
the parameters that minimize J(p). The initial parameters
required by Newton’s method can be obtained from the
approximate fitting described in Sec. 4.1.

As an example we consider modeling of the system P (s) =
(s + 1)−4. The upper plot in Fig. 6 shows the results
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Fig. 6. Parameter estimation for P (s) = (s+ 1)−4. In the
upper plot an FOTD model has been fitted to the
data, in the middle plot an SOTD model has been
fitted. The lower plot shows the input signal from the
relay, with parameters given in Sec. 6.

when fitting an FOTD model to the data from a relay
experiment. The minimal loss function is J = 4.9·10−3 and
the estimated parameters are K = 1.113, L = 1.736, T =
3.511. The figure shows that the FOTD model fits the data
reasonably well. An SOTD model on the form

P (s) =
K

(1 + sT )2
e−sL

which only has three parameters was also fitted to the
data. The initial parameters for this model were the same
as for the FOTD model except that Tstart was halved.
The SOTD model gives a better fit, see the middle plot
in Fig. 6, with J = 7.4 · 10−4. The SOTD parameters are
K = 1.020, L = 1.008, T = 1.648. Notice that L is smaller
than for the FOTD model and T is approximately half
the size as for the FOTD model. The condition number of
Jpp is 80 which indicates that the excitation is reasonable.
Attempting to fit models with more parameters gives
Hessians with much larger condition numbers. To fit
models with more parameters it is thus necessary to make
additional experiments with more excitation.

4.3 Use knowledge of τ to modify the experiment

Controller tuning could be improved if the information
given from τ is considered. Depending on τ the choice of
whether to use a PI controller or a PID controller can be
made. This makes it possible to adjust the experiment to
get a model better suited for the controller type chosen. A
model that a PID controller should be tuned for needs to
be accurate in a higher frequency interval than a model
that should be used for PI tuning. There are different
ways the relay experiment could be modified to change
the excitation to the wanted frequencies. Fig. 3 shows that
the excitation changes a little by changing the asymmetry
level of the relay. Other methods to move the excitation
is e.g., to change the hysteresis, add an integrator in the
feedback loop, use a Two-Channel Relay like Friman and
Waller (1997), use the method described in Soltesz and
Hägglund (2011) or to use a chirp signal.

For large τ an FOTDmodel is a good approximation, while
a τ < 0.5 indicates that a higher order model might be
needed for tuning purposes (Åström and Hägglund, 2005,
ch 7). How to get this model is something that needs to be
investigated. One possibility is to use the parameter esti-
mation methods mentioned earlier with appropriate initial
guesses and experiment data with improved excitation.

5. PRACTICAL CONSIDERATIONS

There are two different situations worth separating when
it comes to the use of the autotuner. Apart from the use of
autotuning for industrial controllers, a new application has
also appeared recently. When large systems are explored
by simulation there is often the need to keep certain
variables at prescribed levels. This can be accomplished
by PID control and autotuning can be useful for finding
suitable controller parameters. This application is different
from the typical process control problem since there are
no difficulties with measurement noise and much greater
freedom in experimentation. Different aspects of how to
choose the autotuner parameters, depending on situation,
will be described shortly in this section.

5.1 Noise and choice of hysteresis

The first step of an autotuning procedure is to measure the
noise level of the signal. The hysteresis can then be chosen
to be about 2-3 times the noise level. If the noise level is
too large the signals need to be filtered before starting
the relay experiment, otherwise the output amplitudes
required for the experiment will be too large. In the noise-
free simulation environment the hysteresis could be chosen
arbitrarily. In the simulations in this paper the hysteresis
h = 0.1 has been used.

5.2 Convergence of limit cycles

If an FOTD system has a limit cycle it will converge to
it after the first switch of the relay, see Lin et al. (2004).
However, for other processes or if noise is added it is not
certain that the limit cycle will be reached that fast. One
parameter to consider in the relay experiment is therefore
to decide when convergence to the limit cycle has been
achieved. One method is to compare the time one period
take, tp, with the time the previous period took, t∗p. If the
difference between the period times is lower than a certain
threshold ǫ, i.e.,

∣

∣

∣

∣

tp − t∗p
t∗p

∣

∣

∣

∣

≤ ǫ (11)

the system is considered to have reached the limit cycle.

The convergence times of the simulations for the batch was
investigated for ǫ = [0.005, 0.01, 0.05]. The results showed
that a few processes needed 3 periods to converge for
ǫ = 0.005 while most had converged in 2.5 or 2 periods. If
ǫ was increased to 0.01 all processes had converged within
2.5 periods while with ǫ = 0.05 all processes had converged
within 2 periods. The resulting values of toff/ton achieved
with ǫ = 0.01 lied within 0.25% from the ones achieved
with ǫ = 0.005. With ǫ = 0.05 the results deviated at most
1.15% from the values achieved with ǫ = 0.005.
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5.3 Relay amplitudes

The question of how to choose the relay amplitudes is
subject to some different aspects. It is necessary that
1/η = Kd2/h > 1 for the output to reach above the
hysteresis and create oscillations. In Fig. 7 the accuracy of
the estimated τ is shown for some different values of 1/η.
It can be seen that you actually need some margin in this
ratio to get a good estimation of τ . When the hysteresis
is small enough in comparison to the relay amplitude,
1/η ≥ 10, the accuracy stays more or less constant.

The asymmetry level γ, i.e. the ratio between d1 and d2 is
also something to consider. The results in Sec. 2.1 indicates
that as high asymmetry as possible should be chosen to get
good low-frequency excitation and good estimates of K.

By using a large ratio for 1/η and a high γ the results
shown are more accurate. If the autotuner is to be used
in simulation environments you could therefore use high
values. However, if you are to use the autotuner on real
processes in an industrial setup it is important not to
deviate too much from the setpoint and you are therefore
forced to keep these values low even if the performance is
somewhat worse. In this paper the values have been set to
1/η = 3 and γ = 1.5, these choices were made with the
industrial case in mind.

6. EXAMPLES

To investigate the accuracy of the achieved models we look
at the following processes that have also been explored by
other methods in (Åström and Hägglund, 2005, p247-251)

P1(s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)

P2(s) =
1

(s+ 1)4

P3(s) =
1

(0.05s+ 1)2
e−s

. (12)

P1 has lag-dominated dynamics, P2 is balanced and P3 is
delay-dominated.

By using the relay method, τ and the FOTD parameters
K,T, L are achieved as described in Sec. 4.1. PI controllers
are calculated according to the AMIGO rules in Åström
and Hägglund (2005). The model and controller parame-
ters are listed in Table 1. The parameters used in the relay
experiments are ǫ = 0.01, h = 0.1, η = 1/3 and γ = 1.5.

The models are compared with the true processes that
have PI controllers with parameters kp and ki based on

the MIGO design method (Åström and Hägglund, 2005,
p247-250). These parameters are listed for the nominal
models in Table 1. As an additional comparison the FOTD
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Fig. 8. Gain curves of the ”gang of four” for the system
obtained with a controller designed for the true pro-
cess (full red lines) and the controller obtained by the
experiment (dashed blue lines). The upper plots are
for P1, the middle ones for P2 and the lower for P3.

Table 1. Model and controller parameters

K T L τ kp ki
Relay 0.999 1.115 0.073 0.062 4.59 8.36

P1 Step 1 1.04 0.075
Nominal 0.067 3.56 5.39

Relay 0.966 2.993 1.77 0.372 0.36 0.13
P2 Step 1 2.90 1.42

Nominal 0.33 0.43 0.18

Relay 1.006 0.078 1.03 0.929 0.17 0.46
P3 Step 1 0.093 1.01

Nominal 0.92 0.17 0.42

parameters obtained with the step response method are
also listed in the table. Fig. 8 illustrates the gain curves
of the ”gang of four”, consisting of S = 1/(1 + PC),
T = PCS, PS and CS, where P and C are the transfer
functions of the process and the controller. Fig. 9 shows
the responses to a unit step load disturbance applied at
the process input. Measures of robustness and performance
given by the maximum sensitivity MS and the Integrated
Absolute Error IAE are listed in Table 2.

The results show that the FOTD parameters obtained
with the relay experiment are close to the ones obtained
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Fig. 9. Responses to a unit step load disturbance for the
system obtained with a controller designed for the
nominal process (full red line) and the one obtained
from the relay experiment (dashed blue line).The
upper plots are for P1, the middle ones for P2 and the
lower for P3. For P2 the results for PID controllers
derived for the true model (black) and an estimated
SOTD model (dashed green) are also shown.

Table 2. Performance and robustness measures

P1 P2 P3

Relay Nom. Relay Nom. Relay Nom.

IAE 0.120 0.186 7.714 5.615 2.159 2.341
MS 1.398 1.293 1.256 1.367 1.436 1.388

with the step response method. In Fig. 8 it is seen that
controllers based on the approximated models give similar
gain curves as the MIGO design for the true models,
especially for the delay-dominated process. Looking at the
figures and Table 2 it is concluded that the controllers
designed for the approximate models have a slightly worse
robustness but better performance than the ones designed
for the true processes for P1 and P3, while the opposite is
true for P2.

For P2 we have also used the parameter estimation from
Sec. 4.2 to get an SOTD model for which we have com-
puted PID controller parameters from the formulas in
(Åström and Hägglund, 2005, pp 247-251). This gives
kp = 1.129, ki = 0.517 and kd = 1.232 which compare
favourable with those obtained by MIGO for the true
process model kp = 1.440, ki = 0.536 and kd = 1.19. The
green curve in the middle plot in Fig. 9 shows the time
responses for the PID controller calculated for the SOTD
model and can be compared to the black curve that shows
the PID controller based on the true process. The figure
shows that the performance obtained by fitting an SOTD
model to the relay experiment gives practically the same
result as when applying the MIGO design method to the
true process. The figure also shows the benefits of using
PID control and a more complex model for this process.

7. CONCLUSION

In this paper we have outlined ideas for new relay au-
totuners. A method to find the normalized time delay τ
from an asymmetric relay feedback experiment has been

proposed. With early knowledge about τ an autotuner
could modify its experiment in order to find a process
model and controller tuning better suited for its purposes.
The examples shows that an FOTD model derived directly
from the relay experiment works good, but by using the
information from τ the belief is that the performance
could be improved. Some practical considerations on how
to choose the experiment parameters were also discussed.
However, the effects noise and disturbances have on the
estimations need to be further investigated.
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