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The combination of several high order harmonics can produce an attosecond pulse train, provided
that the harmonics are locked in phase to each other. We present calculations that evaluate the degree of
phase locking that is achieved in argon and neon gases interacting with an intense, 50 fs laser pulse, for
a range of macroscopic conditions. We find that phase locking depends on both the temporal and the
spatial phase behavior of the harmonics, as determined by the interplay between the intrinsic dipole
phase and the phase matching in the nonlinear medium. We show that, as a consequence of this, it is not
possible to compensate for a lack of phase locking by purely temporal phase manipulation.
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There are currently two distinct approaches to atto-
second metrology based on high harmonic generation.
The first, which aims to produce single =~ 500 as (1 as =
1 X 1078 5) pulses, uses the cutoff region of the continu-
ous harmonic spectrum generated by a few-cycle laser
pulse [1]. The second route uses many-cycle driving
pulses to generate a series of spectrally separated plateau
harmonics which are then filtered and combined [2,3]. In
this type of experiment, the degree of phase locking that
can be achieved between the superposed harmonics de-
termines whether or not an attosecond pulse train is
produced [4]. Recently, Paul ef al [5] combined the five
odd harmonics 11 through 19 generated in argon by a40 fs
laser pulse to produce a train of 250 as pulses, and even
shorter pulses could potentially be produced through the
phase locking of more harmonics. The ability to produce
shorter pulses depends crucially on the answer to two
questions: (i) Are there macroscopic conditions that fa-
cilitate the phase locking of large numbers of harmonics,
and (ii) can the individual harmonic phases be manipu-
lated to force phase locking?

Most of the discussion of attosecond pulse trains has
centered on the necessity for temporal phase locking—
the phase difference between neighboring harmonics
must be constant at any given time during the pulse [2—
6]. From the spectral point of view, this requires that all
the harmonics in the superposition have the same fre-
quency chirp. Since the harmonics are produced by the
interaction of a focused laser pulse with a three-
dimensional nonlinear medium, the phase of each har-
monic can also vary over its radial profile, leading to a
spatial chirp [7]. In order to achieve phase locking, this
spatial chirp must also be the same for all the contributing
harmonics. In this Letter, we demonstrate that a lack of
phase locking is always the result of both the temporal
and the spatial phase behavior of the harmonics. As these
are determined by the phase matching that results from
the interplay between the microscopic and the macro-
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scopic phase contributions in a given configuration, rapid
phase variations in one domain are accompanied by the
same in the other domain. We show that, as a consequence
of this, harmonics cannot be forced to phase lock simply
via manipulation of their temporal phase behavior.

To study the effects of the harmonic spatiotemporal
phase behavior on phase locking, we have carried out
three-dimensional calculations including both the single
atom and macroscopic response of rare gas atoms to an
intense, focused 810 nm laser pulse by direct numerical
integration of the time-dependent Schrédinger equation
and subsequently solving the Maxwell wave equation in
the slowly varying envelope approximation (SVEA) [8—
10]. We explore conditions similar to those presented in
[5] for argon, and their extension to the superposition of
larger numbers of harmonics in neon. We calculate the
radial profile of each harmonic at the exit of the medium,
E (r, ") = £,(r, )e'®"")_ At a given time #' during the
pulse, we construct the sub-laser-cycle time profile of the
emission from the combination of odd harmonics n
through m as

m ] 2
§ e, e w1

q=n

Ixuy(t, 1) = f’”d'”

In this equation w; is the laser frequency, and ¢ refers to
the rapid variation of the electric field within one cycle of
the laser field. In the results presented below, we have
chosen ' to be at the peak of the driving laser field and
will refer to the time profile as Ixyy(¢) [11]. This time
profile includes the effects of the spatial distribution of
the harmonics and their phases through the integration
over the radial coordinate.

In the limit where the contributing harmonics are ex-
actly phase locked and of the same strength at all radii,
Ixuv(?) is a periodic function of time with one nar-
row peak every half cycle of the laser field (see [4] for
details). The Fourier transform-limited full width at half
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maximum (FWHM) duration of each subcycle pulse is
determined by the number N of odd harmonics included
in Ixyy(?), 7w = T/2N, where T is the laser period. The
complicated single atom phase behavior, in combination
with phase matching and effects of ionization, often
results in harmonics that are not phase locked, and the
corresponding time profiles can exhibit both multiple
peaks per half cycle and structures much longer than
7y. This is illustrated in Fig. 1 where we display the
normalized time profile Ixyy(f) for two different phase-
matching configurations of the combination of ten
harmonics (7y = 135 as) generated in neon by a 50 fs
driving laser pulse. We show two different relative posi-
tions of the laser focus and the center of the gas jet. When
the laser is focused before the center of the jet, the time
profile is a train of pulses, each of duration 170 as, with an
excellent signal to noise ratio. In contrast to this, when the
laser is focused into the center of the gas jet, the time
profile has several peaks per half cycle which have
merged into very broad structures.

To systematically study the influence of the macro-
scopic conditions on the attosecond time profile, we use
Ixuv(?) to define a measure of how well phase locked a
number of harmonics are. We calculate the ratio 7y, be-
tween how much radiation is emitted within 7y and all
the radiation emitted during one half cycle:

_ fTN dt Ixyv(?)
fT/z dt Ixyy (1)’

We then normalize 7y, to y,=(y, —27y/T)/
(0.775 — 275/T), where 0.775 is the ratio one would get
from a Fourier transform-limited pulse. This means that
if the harmonics are perfectly phase locked ¥, equals
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FIG. 1. Normalized time profiles of the combination of the
odd harmonics 41 through 59 generated in neon by a 50 fs
driving laser pulse with peak intensity 6 X 10'* W/cm?. The
laser beam is loosely focused into a 1 mm gas jet in which the
pressure is 5 Torr, with a confocal parameter b = 10 mm. We
show two different relative positions zy of the laser focus and
the center of the gas jet, zo = —0.45b (solid line) and zo = 0
(dotted line).
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one, and v, is zero if Iyyy(?) is a constant. v, has rele-
vance for experiments since it measures the concentration
of energy in a short time-interval 7y during each half
cycle, thus probing whether a train of attosecond pulses
has been produced.

In Fig. 2, we plot v, as a function of z,. We first study
conditions very similar to those described in [5]. We
combine the odd harmonics 11 through 19 (N =5, 7y =
270 as) generated in argon by a 50 fs laser pulse with a
peak intensity of 2.5 X 10'* W/cm?. The confocal pa-
rameter of the laser beam is » = 35 mm, and the pressure
in the 10 mm gas jet is 10 Torr. Evidently, there is good
phase locking for a range of focus positions close to
—b/2. We find very good agreement with the experimen-
tal results; in particular, when z; is close to —0.4b the
FWHM of each pulse in the time profile is 270 as (com-
pared to an estimated 250 as in the experiment).

Also shown in Fig. 2 is a calculation of the phase
locking of ten harmonics in neon using the same parame-
ters as in Fig. 1, which could lead to the production of
135 as pulses. Again, good phase locking can be achieved
over a range of z; close to —b/2, i.e., when the laser is
focused approximately one Rayleigh length before the
center of the gas jet. We have found this to be true even
when combining other harmonics (for example, 19-27 in
argon, 41-49 in neon, 51-59 in neon) and/or using
slightly different intensities and pressures. Our results
thus seem to indicate that there are generic macroscopic
conditions that, in general, lead to good phase locking. We
find that it is important that all the superposed harmonics
belong to the plateau region, where their phase behavior
with respect to the laser intensity is similar. For example,
in Fig. 2, the 59th harmonic in neon enters the cutoff
region of the harmonic spectrum when zy = —0.43b
which leads to the rapid drop of v, for zy < —b/2. It is
also typical that phase locking is poor when z; is close to
and larger than zero [12].
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FIG. 2. Measure of phase locking as a function of the relative
position z, of the laser focus and the center of the gas jet. v, is
shown for the odd harmonics 41-59 in neon (black circles),
and 11-19 in argon (white circles).
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We now turn to the question of measuring and manipu-
lating the harmonic phases. Since it is not yet possible to
experimentally measure Ixyy(#), an indirect probe of
phase locking was used in [5], where the (radially and
temporally averaged) phase difference between adjacent
harmonics was measured. In Fig. 3, we illustrate a similar
measure for the time profiles shown in Fig. 1. We define
the radially averaged phase difference A¢,,; between
neighboring harmonics g and g + 2 as

f rdr[¢q+2(r) - ¢q(r)]gq+2(r)€q(r)
[ rdrE 5 (r)E,(r) '

That mqﬂ provides a useful measure of the temporal
coherence can be appreciated by comparing Figs. 1 and 3.
The phase differences in the zy =0 case vary sig-
nificantly from pair to pair, whereas they vary much
less when z, = —0.45b. The approximately linear varia-
tion of the phase difference in the latter case corre-
sponds to a quadratic variation of the spectral phase of
the superposition of harmonics. Such a linear chirp is
in general destructive for phase locking, and it is only
because it is small in this case that the harmonics still
phase lock.
It is worth stressing that a constant phase difference
A¢ 1 does not guarantee phase locking. The spatial
distortion of the harmonic wave fronts, which is not
accounted for in a radially averaged phase measurement,
can have a profound effect on the attosecond pulse train
structure. A simple example of this is the superposition of
harmonics with constant phases and only pairwise spatial
overlap. This would still yield the same type of signal as
measured in [5]; however, the lack of spatial overlap
between all the harmonics gives rise to very broad peaks
in the time profile.

The manipulation of phase locking is even more prob-
lematic than its measurement, because of the close con-
nection between the spatial and temporal phase behaviors

Apyiy = 3)

Average phase difference (radians)

4T 43 45 47 49 51 53 55 57 %9
Average Frequency (units of ®,)

FIG. 3. Radially averaged phase difference, as defined in

Eq. (3), between pairs of odd harmonics 41-59 in neon. The

configurations zg = —0.45b and z; = 0 are shown with black
circles and white circles, respectively.
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of the harmonics. The possibility of imposing phase lock-
ing has been raised by Paul et al [5], who speculate that
their method for the measurement of harmonic phase
differences could be used to subsequently properly phase
all of the harmonics generated in a gas cell, yielding
subpulses as short as 10 as. To study this suggestion, we
return again to the two time profiles shown in Fig. 1. In
Fig. 4, we plot their radial dependence, i.e., we plot the
nearfield profile multiplied by the radial coordinate r,
which is the integrand of Eq. (1). In the good phase-
locking case (7, = —b/2), the radial profile of the super-
position is very regular and the harmonics phase lock
simultaneously at all contributing radii. In the poor
phase-locking case (zy = 0), the radial profile of the
superposition is very irregular with contributions from
several different radii [13]. The harmonics do not phase
lock at any radius, and the time profiles at different radii
peak at different times. In order to induce phase locking,
it would be necessary to compensate a different spectral
phase at each radial position. Thus, a purely temporal
manipulation of the harmonic phases cannot lead to phase
locking in this case.

We have systematically tested the proposition that
compensating the radially averaged phase difference
between harmonics is insufficient to force phase locking
by simulating such a temporal manipulation numerically.
We have done a series of calculations in neon for various
focusing conditions where we compensated for the
radially averaged phases of the harmonics (as would be
measured in an experiment that probes the time-
dependent harmonic frequencies [14]). Calculating 7,
and comparing to the uncompensated cases, we find
no improvement on the phase-locking measure shown
in Fig. 2.

t (W)

Time (as)

FIG. 4. Radial distribution of the time profile of the combi-
nation of the odd harmonics 41-59 in neon [integrand in
Eq. (1)] for the two focusing positions (a) zo = —0.45b, and
(b) 0 = 0.
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The physics behind the failure of purely temporal
manipulation of the harmonic phases can be understood
via the intensity dependence of the harmonic generation
process. When a superposition of several harmonics is not
phase locked in time at some radius, it is because different
harmonics exhibit different intensity-dependent behav-
iors as they propagate through the nonlinear medium.
This leads directly to the fact that the harmonics have
different radial phase behaviors through the radial varia-
tion of the driving laser intensity. Ultimately, this is
because phase matching has not imposed a systematic
phase behavior by, for example, preferring a specific
single atom phase dependence over all others [4,15].
Thus, it is a general feature of harmonic generation that
the imposition of phase locking is complicated by spatial
effects which are inevitable when temporal phase locking
is lacking to begin with.

By this same argument, when the radial profile of a
superposition of several harmonics is well behaved, it is
likely that they are phase locked. We therefore expect that
phase-matching configurations which give nice radial
profiles for the individual harmonics when focusing
into the center of the gas jet (as measured in the experi-
ment of Nisoli ez al. [16]) are more likely to result in phase
locking for z; = O than the configuration discussed above
[5]. Our results have been obtained using the SVEA [8,10]
and therefore do not necessarily generalize to few-cycle
driving pulses [1,17,18]. Even beyond the SVEA, how-
ever, strongly distorted radial profiles signify different
phase matching of the harmonic radiation at different
radii, which is problematic for subfemtosecond pulse
generation.

In summary, we have studied attosecond pulse train
generation via the phase locking of several high order
harmonics in argon and neon gases. We find a range of
conditions in which the production of attosecond pulse
trains is robust. In these conditions, both the temporal and
the spatial phase coherence between the superposed har-
monics is high, as expected. We have demonstrated that a
full description of phase locking must take account of the
spatial as well as the temporal phase variations of the
harmonics. In particular, we have shown that to induce
phase locking it is not sufficient to measure and subse-
quently compensate the spatially averaged temporal
phase of each harmonic.
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