
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

CPU Resource Management and Noise Filtering for PID Control

Romero Segovia, Vanessa

2014

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Romero Segovia, V. (2014). CPU Resource Management and Noise Filtering for PID Control. Department of
Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7a4b94d7-ee4c-4413-9e38-8360aec74549


CPU Resource Management

and

Noise Filtering for PID Control

Vanessa Romero Segovia

Department of Automatic Control



Cover photo of El Volcan Misti, Arequipa, Perú by projectaaqp, photo-
bucket.com

PhD Thesis
ISRN LUTFD2/TFRT--1100--SE
ISBN 978-91-7473-969-5 (print)
ISBN 978-91-7473-970-1 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

cF 2014 by Vanessa Romero Segovia. All rights reserved.
Printed in Sweden.
Lund 2014



To dreams that come true far away from home





Abstract

The first part of the thesis deals with adaptive CPU resource management
for multicore platforms. The work was done as a part of the resource man-
ager component of the adaptive resource management framework imple-
mented in the European ACTORS project. The framework dynamically al-
locates CPU resources for the applications. The key element of the frame-
work is the resource manager that combines feedforward and feedback
algorithms together with reservation techniques. The resource require-
ments of the applications are provided through service level tables. Dy-
namic bandwidth allocation is performed by the resource manager which
adapts applications to changes in resource availability, and adapts the
resource allocation to changes in application requirements. The dynamic
bandwidth allocation allows to obtain real application models through the
tuning and update of the initial service level tables.
The second part of the thesis deals with the design of measurement

noise filters for PID control. The design is based on an iterative approach
to calculate the filter time constant, which requires the information in
terms of an FOTD model of the process. Tuning methods such as Lambda,
SIMC, and AMIGO are used to obtain the controller parameters. New
criteria based on the trade-offs between performance, robustness, and
attenuation of measurement noise are proposed for assessment of the
design. Simple rules for calculating the filter time constant based on the
nominal process model and the nominal controller are then derived, thus,
eliminating the need for iteration. Finally, a complete tuning procedure is
proposed. The tuning procedure accounts for the effects of filtering in the
nominal process. Hence, the added dynamics are included in the filtered
process model, which is then used to recalculate the controller tuning
parameters.

5





Acknowledgements

I consider life a book made out of different chapters which I keep writ-
ing with every daily experience. The different achievements and lessons
learned are the best way I have to close a chapter and begin a new one.
Sooner or later every chapter will be closed, but this chapter in particular
is one of those which I would like to keep with an open end.
I want to begin by thanking the Department of Automatic Control for

accepting me as one of its members and thereby opening up new vistas
of achieving my valued goal in life: To continuously strive for excellence
in the things that I like the most.
I extend my sincere thanks to my supervisor Tore for his continuous

encouragement and motivation in the things I do, helping me to make the
right decisions during the course of this work. For all the nice meetings
which lead not only to many of the results shown in the second part of this
work, but also to many nice memories that will always make me smile.
I would like to show my appreaciation to my former supervisor Karl-

Erik for believing that I could be part of the nice team in the department,
for his never ending patience and support of my ideas needed to accom-
plish the first part of this work.
Some people need a model to follow providing their life with new chal-

lenges and higher goals, and I am not an exception. I would like to thank
Karl Johan for being this model, and an endless source of inspiration. For
always keeping my feet on the ground, and confirming that learning is a
process that has no end and which I must embrace.
My work colleagues are to thank for all the nice moments shared in the

department. All my recognition and respect to the administrative staff and
the research engineers for making of the department a great environment
to work in.
I want to express my heartfelt gratitude to my dear parents in Peru

and my family for their continuous support in the pursuit of my dreams.
A particular thanks to my mother and my sister in law Violeta, without
all your support the finishing of this work would have not been possible.

7



Finally but not least, my gratitude to my beloved husband and soul
mate Patrick for leaving everything to join me in every journey that I
have been taking. To my dearest daughter Sophia, because her presence
gives me the best reasons to begin and finish my day with a smile, and
for showing me with her sweetness which are the important things in life.

Financial Support

The following are gratefully acknowledged for financial support: The
Swedish Research Council through the LCCC Linnaeus Center, the
Swedish Foundation of Strategic Research through the PICLU Center, the
European FP7 project ACTORS, and the Strategic Research Area ELLIIT.

8



Contents

Preface 13

Contributions and Publications 15

Part I Adaptive CPU Resource Management
for Multicore Platforms 19

1. Introduction 21

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Background 23

2.1 Threads versus Reservations . . . . . . . . . . . . . . . . . 24
2.2 Adaptivity in Embedded Systems . . . . . . . . . . . . . . 27
2.3 Multicores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. Resource Manager Overview 33

3.1 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Application Layer . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Scheduler Layer . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Resource Manager Layer . . . . . . . . . . . . . . . . . . . 37
3.5 Assumptions and Delimitations . . . . . . . . . . . . . . . 38

4. Resource Manager Inputs and Outputs 40

4.1 Static Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Dynamic Inputs . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Dynamic Outputs . . . . . . . . . . . . . . . . . . . . . . . 44

5. Service Level Assignment 45

5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 45
5.2 BIP Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9



Contents

6. Bandwidth Distribution 52

6.1 Distribution Policies . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Handling Infeasible Distributions . . . . . . . . . . . . . . 56
6.3 Reservation Parameters Assignment . . . . . . . . . . . . 61
6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7. Bandwidth Adaption 69

7.1 Resource Utilization Feedback . . . . . . . . . . . . . . . . 69
7.2 Achieved QoS Feedback . . . . . . . . . . . . . . . . . . . . 79
7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8. Adaption and Learning 88

8.1 Service Level Table Inaccuracy . . . . . . . . . . . . . . . . 88
8.2 Resource Allocation Beyond Service Level Specifications . 89
8.3 Service Level Table Update . . . . . . . . . . . . . . . . . . 90
8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9. Adaption towards changes in resource availability 94

9.1 Changing Resource Availability . . . . . . . . . . . . . . . 94
9.2 Changing Application Importance Values . . . . . . . . . . 95
9.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10. Application Examples 98

10.1 Video Decoder Demonstrator . . . . . . . . . . . . . . . . . 98
10.2 Video Quality Adaption Demonstrator . . . . . . . . . . . 98
10.3 Feedback Control Demonstrator . . . . . . . . . . . . . . . 99

11. Conclusions 105

11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography for Part I 108

Part II Measurement Noise Filtering
for PID Controllers 113

12. Introduction 115

12.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13. Background 118

13.1 Simple Process Models . . . . . . . . . . . . . . . . . . . . 119
13.2 Controller and Filter Structures . . . . . . . . . . . . . . . 122
13.3 Control Requirements . . . . . . . . . . . . . . . . . . . . . 124
13.4 Controller Tuning Methods . . . . . . . . . . . . . . . . . . 126

14. Filtering Design Criteria 130

14.1 Measurement Noise . . . . . . . . . . . . . . . . . . . . . . 131
14.2 Effects of Filtering in the Controller . . . . . . . . . . . . 132

10



Contents

14.3 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4 Trade-off Plots . . . . . . . . . . . . . . . . . . . . . . . . . 140

15. Filtering Design: Iterative Method 142

15.1 Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . 142
15.2 Convergence Condition . . . . . . . . . . . . . . . . . . . . 143
15.3 Criteria Assessment . . . . . . . . . . . . . . . . . . . . . . 147

16. Filtering Design: Tuning Rules 168

16.1 Design Rules Based on FOTD Model . . . . . . . . . . . . 168
16.2 Design Rules Based on Controller Parameters . . . . . . . 172

17. Effect of Filtering on Process Dynamics 177

17.1 A Simple Example of Added Dynamics . . . . . . . . . . . 178
17.2 Design Rules for the Test Batch . . . . . . . . . . . . . . . 179
17.3 A Complete Tuning Procedure . . . . . . . . . . . . . . . . 181

18. Experimental Results 185

18.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . 185
18.2 Effect of Filtering . . . . . . . . . . . . . . . . . . . . . . . 186
18.3 Result for AMIGO Tuning . . . . . . . . . . . . . . . . . . 187
18.4 Result for Lambda Tuning . . . . . . . . . . . . . . . . . . 193
18.5 Result for SIMC Tuning . . . . . . . . . . . . . . . . . . . . 197
18.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 201

19. Conclusions 202

19.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
19.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bibliography for Part II 205

11





Preface

The work presented in this thesis consists of two parts. The first part
describes methods and algorithms used to achieve adaptive CPU resource
management for multicore platforms. The second part describes design of
measurement noise filters for PID controllers.
The work presented in the first part was supported by the European

FP7 project ACTORS (Adaptivity and Control of Resources for Embedded
Systems). It was inspired by the urgent needs of embedded systems to
dynamically distribute CPU resources at run time, and to automatically
adapt the distributed resources to the needs of the applications. The key
component of the architecture is the resource manager, whose main task
is to decide how the CPU resources allocation should be carried out. The
different algorithms, as well as methods presented to achieve this goal
are implemented in the resource manager.
The PID controller is by far the most common way of using feedback,

it is safe to say that more than 90% of all feedback loops are of the PID
type. The PID controller is used both as a primary controller and as a
sub controller when more sophisticated control strategies like MPC are
used. Most PID controllers are actually PI controllers, because derivative
action is difficult to tune, due to its sensitivity to measurement noise.
The controller feeds measurement noise into the system, which generates
undesired control actions that may create wear of actuators. Filtering
is therfore essential to keep the variations of the control signal within
reasonable limits.
The work presented in the second part of the thesis was performed

within the Process Industrial Centre at Lund University, PICLU, sup-
ported by the Swedish Foundation of Strategic Research, SSF. It is driven
by the idea that the design of filters for PID controllers should account for
the dynamics of the process, and for the dynamics introduced by filtering.

13





Contributions and

Publications

Part I: Adaptive CPU Resource Management for Multicore

Platforms

Contributions

The contributions by the author to the first part of this work mainly con-
cern the different algorithms implemented by the resource manager to
allocate bandwidth resources to the applications, and to adapt the allo-
cated bandwidth to the real needs of the applications. A short description
of the algorithms is given as follows:

• A feedforward algorithm that assigns service levels to applications
according to their bandwidth requirements, the QoS provided at
each service level, and their relative importance values.

• Different policies for performing the bandwidth distribution of an
application on a multicore platform.

• Bandwidth controllers that dynamically adapt the allocated CPU re-
sources based on resource utilization and/or achieved QoS feedback,
and that derive at runtime tuned models of the applications.

Publications

Årzén, K.-E., V. Romero Segovia, M. Kralmark, S. Schorr, A. Meher, and
G. Fohler (2011a). “Actors adaptive resource management demo”. In:
Proc. 3rd Workshop on Adaptive and Reconfigurable Embedded Sys-

tems, Chicago.

15



Contents

Årzén, K.-E., V. Romero Segovia, S. Schorr, and G. Fohler (2011b). “Adap-
tive resource management made real”. In: Proc. 3rd Workshop on
Adaptive and Reconfigurable Embedded Systems, Chicago.

Bini, E., G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Årzén,
V. Romero Segovia, and C. Scordino (2011). “Resource management on
multicore systems: the actors approach”. IEEE Micro 31:3, pp. 72–81.

Romero Segovia, V. (2011). Adaptive CPU Resource Management for Mul-
ticore Platforms. Licentiate Thesis ISRN LUTFD2/TFRT--3252--SE.
Department of Automatic Control, Lund University, Sweden.

Romero Segovia, V. and K.-E. Årzén (2010). “Towards adaptive resource
management of dataflow applications on multi-core platforms”. In:
Work-in-Progess Session at Euromicro Conference on Real-Time Sys-

tems.

Romero Segovia, V., K.-E. Årzén, S. Schorr, R. Guerra, G. Fohler, J. Eker,
and H. Gustafsson (2010). “Adaptive resource management framework
for mobile terminals—the ACTORS approach”. In: Proc. First Interna-
tional Workshop on Adaptive Resource Management. Stockholm, Swe-
den.

Romero Segovia, V., M. Kralmark, M. Lindberg, and K.-E. Årzén (2011).
“Processor thermal control using adaptive bandwidth resource man-
agement”. In: 18th IFAC World Congress. Milano, Italy.

The author has also contributed to the following ACTORS deliverables:

Årzén, K.-E., P. Faure, G. Fohler, M. Mattavelli, A. Neundorf, V. Romero
Segovia, and S. Schorr (2011a). D1f: interface specification. URL: http:

//www.control.lth.se/user/karlerik/Actors/M36/d1f-main.pdf.

Årzén, K.-E., V. Romero Segovia, E. Bini, J. Eker, G. Fohler, and S. Schorr
(2011b). D3a: state abstraction. URL: http://www.control.lth.se/

user/karlerik/Actors/M36/d3a-main.pdf.

Årzén, K.-E., V. Romero Segovia, M. Kralmark, A. Neundorf, S. Schorr,
and G. Fohler (2011c). D3b: resource manager. URL: http : / / www .

control.lth.se/user/karlerik/Actors/M36/d3b-main.pdf.

Årzén, K.-E., G. Fohler, V. Romero Segovia, and S. Schorr (2011d). D3c: re-
source framework. URL: http://www.control.lth.se/user/karlerik/

Actors/M36/d3c.pdf.

16



Contents

Part II: Measurement Noise Filters for PID Controllers

Contributions

The contributions by the author to the second part of this work are re-
lated to the attenuation of measurement noise for PID controllers. The
author proposes a methodology that uses a second order filter to attenu-
ate the fluctuations of the control signal due to measurement noise, and
which tuning parameter is given by the filter time constant Tf . The main
contributions are described as follows:

• Filtering design criteria for attenuation of measurement noise,
which include the Control Bandwidth ω cb, the Standard Deviation
of the Control Signal SDU, and the Noise Gain kn.

• An iterative method to calculate the filter time constant T f based
on the gain crossover frequency ω �c, wich considers the trade-offs
between performance, robustness, and measurement noise attenua-
tion.

• Simple rules derived from the results obtained from the iterative
method, which allow to find the filter time constant for common
PID tuning rules based on FOTD models.

• Simple rules to find the added dynamics in the nominal FOTDmodel
due to filter introduction, which leads to the recalculation of the
controller parameters.

Publications

Romero Segovia, V., T. Hägglund, and K. J. Åström (2013). “Noise fil-
tering in PI and PID control”. In: 2013 American Control Conference.
Washington DC, USA.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014a). “Design of
measurement noise filters for PID control”. In: IFAC World Congress.
Cape Town, South Africa.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014b). “Measure-
ment noise filtering for PID controllers”. Journal of Process Control
24:4, pp. 299–313.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014c). “Measure-
ment noise filters for common PID tuning rules”. Control Engineering
Practice. Submitted.

17





Part I

Adaptive CPU Resource

Management for Multicore

Platforms





1

Introduction

1.1 Motivation

The need for adaptivity in embedded systems is becoming more urgent
with the continuous evolution towards much richer feature sets and de-
mands for sustainability.
The European FP7 project ACTORS (Adaptivity and Control of Re-

sources for Embedded Systems) [ACTORS: Adaptivity and Control of Re-
sources in Embedded Systems 2008] has developed an adaptive CPU re-
source management framework. The framework consists of three layers:
the application, the resource manager, and the scheduler layer. The tar-
get systems of the framework are Linux-based multicore platforms and is
mainly intended for soft real-time applications.
The ideas presented in this thesis are driven by the desire to auto-

matically allocate the available CPU resources at runtime, and to adapt
the allocated resources to the real needs of the applications. This work
considers the resource manager as the key element of the ACTORS frame-
work. As a result it focuses all its efforts in the development of different
methods and algorithms for the resource manager.
The methods and algorithms described combine feedforward and feed-

back techniques. The last ones have shown to be suitable to manage the
uncertainty related to the real CPU requirements of the applications at
runtime. In this way the resource manager is able to adapt the applica-
tions to changes in resource availability, and to adapt how the resources
are distributed when the application requirements change.

1.2 Outline

The first part of this thesis is organized as follows: Chapter 2 provides the
relevant background and describes related research. Chapter 3 presents
the ACTORS framework and gives an overview of its different layers. The

21



Chapter 1. Introduction

inputs and outputs of the resource manager are explained in Chapter 4.
Chapter 5 introduces a feedforward algorithm that allows the registration
of applications and assigns the service level at which they must execute.
Chapter 6 continues with the registration process and shows different
algorithms that allow the bandwidth distribution of the registered ap-
plications. Different control strategies that perform bandwidth adaption
are shown in Chapter 7. Chapter 8 shows how the implemented control
strategies can be used to obtain a model of the application at runtime.
Adaption towards changes in resource availability and/or the changes in
the relative importance of applications with respect to others is described
in Chapter 9. A brief description of different applications that use the re-
source manager framework is shown in Chapter 10. Chapter 11 concludes
the first part of this thesis.

22



2

Background

Embedded systems play an important role in a very large proportion of
advanced products designed in the world. A surveillance camera or a cell
phone are classical examples of embedded systems in the sense that they
have limited resources in terms of memory, CPU, power consumption, etc,
but still they are highly advanced and very dynamic systems.
Different types of applications may execute in these systems. Basically

they can be distinguished based on their real-time requirements as hard
real-time applications and soft real-time applications. Hard real-time ap-
plications are those where missing one deadline may lead to a fatal failure
of the system, so temporal and functional feasibility of the system must
be preserved even in the worst case. On the other hand, for soft real-time
applications failure to meet a deadline does not necessarily lead to a fail-
ure of the system, the meeting of deadlines is desirable for performing
reasons.
Well-developed scheduling theory is available to determine whether an

application can meet all its deadlines or not. If sufficient information is
available about worst-case resource requirements, for instance worst-case
execution times (WCET), then the results from classical schedulability
theory can be applied.
Fixed Priority Scheduling with preemption is the most common

scheduling method. Tasks are assigned priorities and at every point in
time the ready task with the highest priority runs. The priorities assign-
ment can be done using Rate Monotonic Scheduling (RMS). For RMS the
tasks priorities are assigned according to their periods, the smaller the
period the higher the priority. Schedulability is guaranteed as long as the
processor utilization U is below 0.69 [Liu and Layland, 1973]. For over-
load conditions low priority tasks can suffer from starvation, while the
highest priority task has still guaranteed access to the processor. Fixed
Priority Scheduling is supported by almost all available real-time operat-
ing systems.

23



Chapter 2. Background

There are also multiple dynamic priority scheduling algorithms. In
these algorithms the priorities are determined at scheduling time. An
example of such scheduling algorithm is Earliest Deadline First (EDF).
For EDF the ready task with the earliest deadline is scheduled to run.
EDF can guarantee schedulability up to a processor utilization of 1.0 [Liu
and Layland, 1973], which means that it can fully exploit the available
processing capacity of the processor. Under overload conditions there are
no guarantees that tasks will meet their deadlines. EDF is implemented
in several research operating systems and scheduling frameworks.

2.1 Threads versus Reservations

Today most embedded systems are designed and implemented in a very
static fashion, assigning resources using priorities and deadlines, and
with a very large amount of testing. The fundamental problem with state-
of-the-art technologies such as threads and priorities is the lack of behav-
ioral specifications and relations with resource demands.
For advanced embedded systems third party software has come to play

an important role. However, without a proper notion of resource needs and
timing constraints, integration of real-time components from several dif-
ferent vendors into one software framework is complicated. Threads and
priorities do not compose [Lee, 2006], and even worse, priorities are global
properties, possibly causing completely unrelated software components to
interfere.
Resource reservations techniques constitute a very powerful mecha-

nism that addresses the problems described above. It enforces temporal
isolation and thereby creates groups of threads that have the properties
of the atomic thread. This removes the need to know the structure of third
party software.

Resource Reservation Techniques

In order to be able to guarantee timely behavior for real-time applica-
tions, it is necessary to shield them from other potentially misbehaving
applications. One approach is to use resource reservations to isolate tasks
from each other.
Resource reservation techniques implement temporal protection by re-

serving for each task τ i a specified amount of CPU time Qi in every in-
terval Pi. The term Qi is also called maximum budget, and Pi is called
reservation period.
There are different reservation based scheduling algorithms, for in-

stance the Constant Bandwidth Server (CBS) [Abeni and Buttazzo, 2004;
Abeni et al., 1999], which is based on EDF, the Weighted Fair Schedul-

24



2.1 Threads versus Reservations

ing [Parekh and Gallager, 1993], which has its origins in the networking
field and also the Lottery scheduling [Petrou et al., 1999], which has a
static approach to reservations.

The Constant Bandwidth Server The Constant Bandwidth Server
(CBS) is a reservation based scheduling method, which takes advantage of
dynamic priorities to properly serve aperiodic requests and better exploit
the CPU.
A CBS server S is characterized by the tuple (QS, PS), where QS is

the server maximum budget and PS is the server period. The server band-
width is denoted as U S and is the ratio QS/PS. Additionally, the server
S has two variables: a budget qS and a deadline dS.
The value qS lies between 0 and QS, it is a measure of how much of

the reserved bandwidth the server has already consumed in the current
period PS. The value dS at each instance is a measure of the priority
that the algorithm provides to the server S at each instance. It is used to
select which server should execute on the CPU at any instance of time.
Consider a set of tasks τ i consisting of a sequence of jobs Ji, j with

arrival time ri, j. Each job is assigned a dynamic deadline di, j that at any
instant is equal to the current server deadline dS. The algorithm rules
are defined as follow:

• At each instant a fixed deadline dS,k = ri, j + PS with dS,0 = 0 and a
server budget qS = QS is assigned.

• The deadline di, j of Ji, j is set to the current server deadline dS,k.
In case the server deadline is recalculated the job deadline is also
recalculated.

• Whenever a served job Ji, j executes, qS is decreased by the same
amount.

• When qS becomes 0, the server variables are updated to dS,k =
ri, j + PS and qS = QS.

• In case Ji, j+1 arrives before Ji, j has finished, then Ji, j+1 is put in a
FIFO queue.

Hard CBS A problem with the CBS algorithm is that it has a soft reser-
vation replenishment rule. This means that the algorithm guarantees that
a task or job executes at least for QS time units every PS, allowing it to
execute more if there is some idle time available. Such kind of rule does
not allow hierarchical scheduling, and is affected by some anomalies in
the schedule generated by problems like the Greedy Task [Abeni et al.,
2007] and the Short Period [Scordino, 2007].

25



Chapter 2. Background

A hard reservation [Rajkumar et al., 1998; Abeni et al., 2007; Scordino,
2007] instead is an abstraction that guarantees the reserved amount of
time to the server task or job, such that the task or job executes at most
QS units of time every PS.
Consider qri, j as the remaining computational need for the job Ji, j once

the budget is exhausted. The algorithm rules are defined as follow:

• Whenever qri, j ≥ QS, the server variables are updated to dS,k+1 =
dS,k + PS and qS = QS.

• On the other hand if qri, j < QS, the server variables are updated to
dS,k+1 = dS,k + qri, j/U S and qS = qri, j.

In general resource reservation techniques provide a more suitable
interface for allocating resources such as CPU to a number of applications.
According to this method, each application is assigned a fraction of the
platform capacity, and it runs as if it were executing alone on a less
performing virtual platform [Nesbit et al., 2008], independently of the
behavior of the other applications. In this sense, the temporal behavior
of each application is not affected by the others and can be analyzed in
isolation.
A virtual platform consists of a set of virtual processors or reserva-

tions, each of them executing a portion of an application. A virtual pro-
cessor is a uni-processor reservation characterized by a bandwidth α ≤ 1.
The parameters of the virtual processor are derived as a function of the
computational demand to meet the application deadline.

Hierarchical Scheduler

When using resource reservation techniques such as the Hard CBS, the
system can be seen as a two-level hierarchical scheduler [Lipari and Bini,
2005] with a global scheduler and local schedulers. Figure 2.1 shows the
structure of a hierarchical scheduler.
The global scheduler that is at the top level selects which application is

executed next and for how long. Thus, it assigns each application a fraction
of the total processor time distributed over the time line according to a
certain policy. The local scheduler that belongs to each application selects
which task is scheduled next.
In particular for two-level hierarchical scheduler the ready queue has

either threads or servers, and the servers in turn contain threads or
servers (for higher level schedulers).

26



2.2 Adaptivity in Embedded Systems

Figure 2.1 Hierarchical scheduler structure.

2.2 Adaptivity in Embedded Systems

The need for adaptivity in embedded systems is becoming more pressing
with the ongoing evolution towards much richer feature sets and demands
for sustainability. Knowing the exact requirements of different applica-
tions at design time is very difficult. From the application side, the re-
source requirements may change during execution. Tasks sets running
concurrently can change at design time and runtime, this could be the
result of changes in the required feature set or user installed software
when deployed. From the system side, the resource availability may also
vary at runtime. The systems can be too complex to know everything in
detail, this implies that not all software can be analyzed. As a result, the
overall load of the system is subject to significant variations, which could
degrade the performance of the entire system in an unpredictable fashion.
Designing a system for worst-case requirements is in many cases not

economically feasible, for instance in consumer electronics, mobile phones,
etc. For these systems, using the classical scheduling theory based on
worst-case assumptions, a rigid offline design and a priory guarantees
would keep resources unused for most of the time. As a consequence,
resources that are already scarce would be wasted reducing in this way
the efficiency of these systems.
In order to prevent performance and efficiency degradation, the system

must be able to react to variations in the load as well as in the availability
of resources. Adaptive real-time systems addresses these issues. Adaptive
real-time systems are able to adjust their internal strategies in response
to changes in the resource availability, and resource demands to keep the
system performance at an acceptable level.

27



Chapter 2. Background

Adaptive Resource Management

Adaptivity can be achieved using methods for managing CPU resources to-
gether with feedback techniques. The management algorithms can range
from simple such as the adaption of task parameters like the task pe-
riods, to highly sophisticated and more reliable frameworks that utilize
resource reservation techniques. The use of virtualization techniques such
as the resource reservation-based scheduling provide spatial and tempo-
ral separation of concerns and enforce dependability and predictability.
Reservations can be composed, are easier to develop and test, and pro-
vide security support, making them a good candidate to manage CPU
resources. The feedback techniques provide the means to evaluate and
counteract if necessary the consequences of the scheduling decisions made
by the management methods.
In order to be able to adapt to the current state of the resource re-

quirements of the application as well as the resource availability of the
system, the current state must be known. Thus, sensors are required to
gather information such as the CPU resource utilization, deadline misses,
etc. This information is then used to influence the operation of the system
using actuators, which can be task admission control, modification of task
weights or priorities, or modification of reservation parameters such as
the budget/bandwidth and the period. These schemes resemble a control
loop with sensors, actuators and a plant which is to be controlled.
There are a variety of approaches how to apply control theory to

scheduling [Lu et al., 1999; Palopoli et al., 2003; Abeni and Buttazzo,
1999]. Of particular interest is feedback control in combination with re-
source reservation techniques. The motivation behind this is the need to
cope with incorrect reservations, to be able to reclaim unused resources
and distribute them to more demanding tasks, and to be able to adjust to
dynamic changes in resource requirements. Hence, a monitoring mecha-
nism is needed to measure the actual demands and a feedback mechanism
is needed to perform the reservation adaptation.

2.3 Multicores

The technology improvements in the design and development of micro-
processors has always aimed at increasing their performance from one
generation to the next. Initially for single processors the tendency was to
reduce the physical size of chips, this implied an increment in the number
of transistors per chip. As a result, the clocks speeds increased producing
a dangerous level of heat dissipation across the chip [Knight, 2005].
Many techniques are used to improve single core performance . In the

early nineties performance was achieved by increasing the clock frequency.

28



2.3 Multicores

However, processor frequency has reached a limit. Other techniques in-
clude superscalar processors [Johson, 1991] that are able to issue mul-
tiple instructions concurrently. This is achieved through pipelines where
instructions are pre-fetched, split into sub-components and executed out-
of-order. The approach is suitable for many applications, however it is
inefficient for applications that contain code difficult to predict. The dif-
ferent drawbacks of these techniques, the increased available space, and
the demand for increased thread level parallelism [Quinn, 2004] for which
many applications are better suited led to the development of multicore
microprocessors.
Nowadays performance is not only synonym of higher speed, but also of

power consumption, temperature dissipation, and number of cores. Multi-
core processors are often run at slower frequencies, but have much better
performance than a single core processor. However, with increasing the
number of cores comes issues that were previously unforeseen. Some of
these issues include memory and cache coherence as well as communica-
tion between the cores.

Multicore Scheduling Algorithms

One of the large challenges of multicore systems, is that the schedul-
ing problem now consists of both mapping the tasks to a processor and
scheduling the tasks within a processor. There are still many open prob-
lems regarding the scheduling issues in multicore systems. Analyzing
multiprocessor systems is not an easy task. As pointed out by Liu [Liu,
1969]: "few of the results obtained for a single processor generalize di-
rectly to the multiple processor case: bringing in additional processors
adds a new dimension to the scheduling problem. The simple fact that a
task can use only one processor even when several processors are free at
the same time adds a surprising amount of difficulty to the scheduling of
multiple processors".
An application can be executed over a multicore platform using par-

titioned or global scheduling algorithm. For partitioned scheduling any
task of the application is bound to execute on a given core. The prob-
lem of distributing the load over the computing units is analogous to the
bin-packing problem, which is known to be NP-hard [Garey and Johnson,
1979]. There are good heuristics that are able to find acceptable solu-
tions [Burchard et al., 1995; Dhall and Liu, 1978; Lauzac et al., 2003;
López et al., 2003]. However, their efficiency is conditioned by their com-
putational complexity, which is often too high.
For global scheduling any task can execute on any core belonging to

the execution platform. This option is preferred for highly varying com-
putational requirements. With this method, there is a single system-wide

29



Chapter 2. Background

queue from which tasks are extracted and scheduled on the available pro-
cessors.

Multicore Reservations

Multicore platforms also need resource reservation techniques, according
to which the capacity of a processor can be partitioned into a set of reser-
vations. The idea behind multicore reservation is the ability to reserve
shares of a multicore platform, so that applications can run in isolation
without interfering on each other. Despite the simple formulation of the
problem, the multicore nature of the problem introduces a considerably
higher complexity than the single core version of the problem.

2.4 Linux

The Linux scheduler is a priority based scheduler that schedules tasks
based upon their static and dynamic priorities. Each time the Linux
scheduler runs, every task on the run queue is examined and its goodness
value is computed. This value results from the combination of the static
and dynamic priorities of a task. The task with the highest goodness is
chosen to run next. Ties in goodness result in the task that is closest to
the front of the queue running first.
The Linux scheduler may not be called for intervals of up to 0.4 seconds

when there are compute bound tasks running. This means that the cur-
rently running task has the CPU to itself for periods of up to 0.4 seconds,
this will also depend upon the priority of the task and whether it blocks
or not. This is convenient for throughput since there are few computation-
ally unnecessary context switches. However, this can destroy interactivity
because Linux only reschedules when a task blocks or when the dynamic
priority of the task reaches zero. As a result, under the Linux default
priority based scheduling method, long scheduling latencies can occur.

Linux Trends in Embedded Systems

Traditionally embedded operating systems have employed proprietary
software, communication protocols, operating systems and kernels for
their development. The arrival of Linux has been a major factor in chang-
ing embedded landscape. Linux provides the potential of an open multi-
vendor platform with an exploding base of software and hardware support.
The use of embedded Linux mostly for soft real-time applications but

also for hard ones, has been driven by the many benefits that it provides
with respect to traditional proprietary embedded operating systems. Em-
bedded Linux is a real-time operating system that comes with royalty-free

30



2.5 Related Works

licenses, advanced networking capabilities, a stable kernel, support base,
and the ability to modify and redistribute the source code.
Developers are able to access the source code and to incorporate it into

their products with no royalty fees. Many manufacturers are providing
their source code at no cost to engineers or other manufacturers. Such is
the case of Google with its Android software for cellular phones available
for free to handset makers and carriers who can then adapt it to suit their
own devices.
As further enhancements have been made to Linux it has quickly

gained momentum as an ideal operating system for a wide range of em-
bedded devices scaling from PDAs, all the way up to defense command
and control systems.

2.5 Related Works

This section presents some of the projects as well as different research
topics related to the ACTORS project and consequently to this work.

The MATRIX Project

The Matrix [Rizvanovic et al., 2007; Rizvanovic and Fohler, 2007] project
has developed a QoS framework for real-time resource management of
streaming applications on heterogeneous systems. The Matrix is a con-
cept to abstract from having detailed technical data at the middleware
interface. Instead of having technical data referring to QoS parameters
like: bandwidth, latency and delay, it only has discrete portions that refer
to levels of quality. The underlying middleware must interpret these val-
ues and map them on technical relevant QoS parameters or service levels,
which are small in number such as high, medium, low.

The FRESCOR Project

The European Frescor [Cucinotta et al., 2008] project has developed a
framework for real-time embedded systems based on contracts. The ap-
proach integrates advanced flexible scheduling techniques provided by the
AQuoSA [AQuoSA: Adaptive Quality of Service Architecture 2005] sched-
uler directly into an embedded systems design methodology. The target
platform is single core processor. The bandwidth adaptation is layered
on top of a soft CBS server. It is achieved by creating a contract model
that specifies which are the application requirements with respect to the
flexible use of the processing resources in the system. The contract also
considers the resources that must be guaranteed if the component is to
be installed into the system, and how the system can distribute any spare
capacity to achieve the highest usage of the available resources.

31



Chapter 2. Background

Other Adaptive QoS Frameworks

Comprehensive work on application-aware QoS adaptation is reported in
[Kassler et al., 2003; Li and Nahrstedt, 1999]. Both approaches separate
between the adaptations on the system and application levels. Architec-
tures like [Kassler et al., 2003] give an overall management system for
end-to-end QoS, covering all aspects from user QoS policies to network
handovers. While in [Kassler et al., 2003] the application adjustment is
actively controlled by a middle-ware control framework, in [Li and Nahrst-
edt, 1999] this process is left to the application itself, based on requests
from the underlying system.
Classical control theory has been examined for QoS adaptation. [Li

and Nahrstedt, 2001] shows how an application can be controlled by a
task control model. The method presented in [Stankovic et al., 2001] uses
control theory to continuously adapt system behavior to varying resources.
However, a continuous adaptation maximizes the global quality of the
system but it also causes large complexity of the optimization problem.
Instead, we propose adaptive QoS provision based on a finite number of
discrete quality levels.
The variable-bandwidth servers proposed in [Craciunas et al., 2009]

integrate directly the adaptation into the bandwidth servers. Resource
reservations can be provided also using other techniques than bandwidth
servers. One possibility is to use hypervisors [Heiser, 2008], or to use
resource management middleware or resource kernels [Rajkumar et al.,
1998]. Resource reservations are also partly supported by the mainline
Linux completely fair scheduler or CFS.
Adaptivity with respect to changes in requirements can also be pro-

vided using other techniques. One example is the elastic task schedul-
ing [Buttazzo et al., 2002], where tasks are treated as springs that can
be compressed in order to maintain schedulability in spite of changes in
task rate. Another possibility is to support mode changes through differ-
ent types of mode change protocols [Real and Crespo, 2004]. A problem
with this is that the task set parameters must be known both before and
after the change.

32



3

Resource Manager Overview

3.1 Overall Structure

In ACTORS the main focus was automatic allocation of available CPU
resources to applications not only at design time, but also at runtime,
based on the demands of the applications as well as the current state
of the system. In order to do this, ACTOR proposes a software architec-
ture [Bini et al., 2011] consisting of three layers: the application layer,
the scheduler layer, and the resource manager layer. Figure 3.1 shows
the overall structure of the ACTORS software architecture. The resource
manager is a key component in the architecture that collects information
from the other layers through interfaces, and makes decisions based on
this information and the current state of the system.

Figure 3.1 Overall structure of the ACTORS software architecture.

33



Chapter 3. Resource Manager Overview

3.2 Application Layer

The ACTORS application layer will typically contain a mixture of different
application types. These applications will have different characteristics
and real-time requirements. Some applications will be implemented in
the dataflow language CAL whereas others use conventional techniques.
In general, it is assumed that the applications can provide support for

resource and quality adaption. This implies that an application supports
one or several service levels, where the application consumes different
amount of resources at each service level. Applications supporting sev-
eral service levels are also known as adaptive applications. On the other
hand, applications which support only one service level are known as
non-adaptive applications.
Applications which register and work together with the resource man-

ager are defined as ACTORS-aware applications, these applications can
be adaptive or non-adaptive. Applications which do not provide any infor-
mation to the resource manager are defined as ACTORS-unaware appli-
cations, these applications are non-adaptive.

CAL Applications

A CAL application is an application written in CAL [Eker and Janneck,
2003], which is a dataflow and actor-oriented language. An actor is a
modular component that encapsulates its own state, and interacts with
other actors through input and output ports. This interaction with other
actors is carried out asynchronously by consuming (reading) input to-
kens, and producing (writing) output tokens. The output port of an actor
is connected via a FIFO buffer to the input port of another actor. The
computations within an actor are performed through firings, or actions
which include consumption of tokens, modification of internal state, and
production of tokens. A CAL network or network of actors is obtained by
connecting actor input and output ports. Figure 3.2 illustrates the struc-
ture of a CAL application.
A CAL network can correspond to a synchronous data flow (SDF)

model [Lee and Messerschmitt, 1987], or a dynamic data flow (DDF)
model [Lee and Parks, 1995]. For the first type of network the number of
tokens consumed and produced during each firing is constant, making it
possible to determine the firing order statically.
ACTORS distinguishes between dynamic and static CAL applications.

In general dynamic CAL applications correspond to most multimedia
streaming applications, where the execution is highly data-dependent.
This makes it impossible to schedule the network statically. Static CAL
applications contains actions with constant token consumption and pro-
duction rates, for instance a feedback control application. In this case the

34



3.2 Application Layer

Figure 3.2 CAL application.

data flow graph can be translated into a static precedence relation.
The execution of a CAL application is governed by the CAL run-time

system. The run-time system consists of two parts, the actor activator
and the run-time dispatcher. The actor activator activates actors as input
data becomes available by marking them as ready for execution. The dis-
patcher repeatedly selects an active actor in a round-robin fashion and
then executes it until completion.
The run-time system assumes that the actor network is statically par-

titioned. For each partition there is a thread that performs the actor
activation and dispatching.
The run-time is not only responsible for the execution of the CAL ac-

tors within applications, but also of the system actors. A system actor is
an actor that is implemented directly in C. The purpose of these actors is
to provide a means for communication between the CAL application and
the external environment. System actors are used for input-output com-
munication, for access to the system clock, and for communication with
the resource manager. Normally each system actor has its own thread.

Legacy Applications

A legacy applications is an ACTORS-unaware application. This means
that it is not necessary for the application to modify its internal behavior
based on which service level that it executes under, and hence its resource
consumption.
The current way of executing a legacy application is through the use

of a wrapper. The wrapper enables the resource manager to handle a
legacy application as an application with one or several service levels and
one virtual processor. The wrapper periodically checks if any application
threads have been created or deleted and adds or removes those from the
virtual processor.

35



Chapter 3. Resource Manager Overview

3.3 Scheduler Layer

The scheduler is the kernel component which schedules and allocates
resources to each process according to a scheduling policy or algorithm.
As one of the important parts of the kernel, its main job is to divide the
CPU resources among all active processes on the system.
In order to fit the requirements specified by the ACTORS architec-

ture, the scheduling algorithm needs to implement a resource reservation
mechanism [Mercer et al., 1993; Lipari and Scordino, 2006] for CPU time
resources.
According to the resource reservation mechanism, each application is

assigned a fraction of the platform capacity, and it runs as if it were exe-
cuting alone on a slower virtual platform (see Figure 3.1), independently
of the behavior of other applications. A virtual platform consists of a set of
virtual processors, each executing a part of an application. A virtual pro-
cessor is parametrized through a budget Qi and a period Pi. In this way,
the tasks associated with the virtual processor execute for an amount of
time equal to Qi every period Pi.

SCHED_EDF

SCHED_EDF [Manica et al., 2010] is a new real-time scheduling algorithm
that has been developed within the ACTORS project. It is a hierarchical
partitioned EDF scheduler for Linux where SCHED_EDF tasks are executed
at the highest level, and ordinary Linux tasks at the secondary level. This
means, that ordinary tasks may only execute if there is no SCHED_EDF

tasks that want to execute.
The SCHED_EDF provides support for reservations or virtual processors

through the use of hard CBS (Constant Bandwidth Server). A virtual
processor may contain one or several SCHED_EDF tasks.
Some of the characteristics of SCHED_EDF are:

• SCHED_EDF allows the creation of virtual processors for periodic and
non periodic process.

• SCHED_EDF permits the modification of virtual processors parame-
ters.

• SCHED_EDF provides support for multicore platforms.

• SCHED_EDF has a system call that allows to specify in which core the
process should execute.

• SCHED_EDF reports the resource usage per virtual processor to user
space.

36



3.4 Resource Manager Layer

• SCHED_EDF allows the migration of virtual processors between cores
at runtime.

The last characteristic allows monitoring the resource usage of the
threads executing within a virtual processor. This information can be used
by the resource manager in order to redistribute the CPU resource among
the applications if necessary.

3.4 Resource Manager Layer

The resource manager constitutes the main part of the ACTORS architec-
ture. It is a user space application, which decides how the CPU resources
of the system should be distributed among the applications. The resource
manager interacts with both the application and the scheduler layer at
run-time, this interaction allows it to gather information from the running
applications as well as from new applications that would like to execute
on the system, and to be aware of the current state of the system.
The resource manager communicates with the applications using a

D-Bus [D-Bus] interface, which is a message bus system that enables
applications on a computer to talk to each other. In the case of the sched-
uler, the resource manager communicates using the control groups API
of Linux. Here, the control groups provide a mechanism for aggregating
partitioned sets of tasks, and all their future children, into hierarchical
groups with specialized behavior.
The main tasks of the resource manager are to accept applications

that want to execute on the system, to provide CPU resources to these
applications, to monitor the behavior of the applications over time, and
to dynamically change the resources allocated during registration based
on the current state of the system, and the performance criteria of the
system. This is the so called resource adaptation.
Figure 3.3 shows in more detail the structure of the ACTORS archi-

tecture. Here, the resource manager has two main components, a global
supervisor, and several bandwidth controllers. The supervisor implements
feedforward algorithms which allow the acceptance, or registration, of ap-
plications. The bandwidth controllers implement a feedback algorithm,
which monitors the resource consumption of the running applications,
and dynamically redistributes the resources if necessary. A detailed de-
scription of these two components will be done in Chapters 5, 6 and 7.

Resource Manager Implementation

The resource manager is implemented in C++. It consists of two threads
which themselves are SCHED_EDF tasks executing within a fixed-size vir-
tual processor within core 0. The resource manager communicates with

37



Chapter 3. Resource Manager Overview

Figure 3.3 ACTORS software architecture

the applications through a D-Bus interface and with the underlying
SCHED_EDF using the control groups API of Linux. The first thread han-
dles incoming D-Bus messages containing information provided by the
applications. The second thread periodically samples the virtual proces-
sors, measures the resource consumption, and invokes the bandwidth con-
trollers.

3.5 Assumptions and Delimitations

The current version of the resource manager makes a number of assump-
tions and have several limitations. These are summarized below.

Homogeneous Platform: The resource manager assumes that the exe-
cution platform is homogeneous, that is, all cores are identical and that
it does not matter on which core that a virtual processor executes. In re-
ality this assumption rarely holds. Also, in a system where the cores are
identical, it is common that the cores share L2 caches pairwise. This is for
example the case for x86-based multicore architectures. A consequence of
this is that if we have two virtual processors with a large amount of com-
munication between them it is likely that the performance, for instance,
throughput, would be better if they are mapped to two physical cores that
share cache. This is, however, currently not supported by the resource
manager.

Single Resource Management: The current version of the resource

38



3.5 Assumptions and Delimitations

manager only manages the amount of CPU time allocated to the applica-
tions, that is, a single resource. Realistic applications also require access
to other resources than the CPU, for example memory. However, in some
sense the CPU is the most important resource, since if a resource does
not receive CPU time it will not need any other resource.

Temporal isolation: The SCHED_EDF operating system supports tempo-
ral isolation through the use of constant bandwidth servers. However,
SCHED_EDF currently does not support reservation-aware synchronization
protocols, for instance, bandwidth ceiling protocols [Lamastra et al., 2001].
Thus, temporal isolation is not guaranteed for threads that communicate
with other threads, Synchronization is currently implemented using or-
dinary POSIX mutex locks. One example of this is the mutual exclusion
synchronization required for the FIFO buffers in the CAL dataflow appli-
cations.

Best Effort Scheduling: Although the resource management framework
can be used also for control applications as will be described in Chapter 10
is has primarily been developed for multimedia application which com-
monly have soft real-time requirements and are focused on maximizing
the throughput. The underlying operating system, that is, Linux together
with SCHED_EDF is not altogether well-specified. A consequence of this is
that the scheduling approach adopted is best effort scheduling.

39



4

Resource Manager Inputs

and Outputs

The communication between the different layers of the ACTORS architec-
ture is based on interfaces between the layers. The information flowing
through these interfaces has different characteristics, but in general one
can distinguish between static and dynamic information. Considering that
the resource manager is the key element of the architecture, it also con-
stitutes the pivot from where the information flows in or out to the other
layers.

4.1 Static Inputs

Static inputs include information which is not considered to change during
runtime, or at least not very often. This information is mainly provided
by the application at registration time, and the developer at system start
time.

Service Level Table

In order to be able to run or execute in the ACTORS software archi-
tecture, every application must register with the resource manager. The
registration allows the resource manager to be aware of the resource re-
quirements, quality of service, and structure of the applications running
on the system. These particular characteristics of each application are
described in the service level table.
The service level table provides information about the different service

levels supported by the applications. Additionally it specifies the resource
requirements and the quality of service that can be expected at each
service level.
All the values in the service level table are expressed as integer values.

The service level index is a number that can take any value beginning

40



4.1 Static Inputs

Table 4.1 Service level table of application A1

Application SL QoS [%] BW [%] Granularity [µs] BWD [%]
A1 0 100 200 50 [50, 50, 50, 50]

1 80 144 90 [36, 36, 36, 36]
2 50 112 120 [28, 28, 28, 28]
3 30 64 250 [16, 16, 16, 16]
x 1 4 100000 [1, 1, 1, 1]

from 0, where 0 corresponds to the highest service level. The quality of
service or QoS, takes values between 0 and 100. It corresponds to the QoS
that can be expected at a certain service level. The resource requirements
are specified as a tuple consisting of two parameters: the bandwidth, and
the time granularity. The bandwidth is an indicator of the amount of
resources required by an application, but it is not enough to capture all
of the time properties of an application. These properties can be included
in the service level table through the time granularity value. This value
provides the time horizon within which the resources are needed. The
time granularity is expressed in micro seconds [µs].
The service level table may include information about how the total

bandwidth should be distributed among the individual virtual processors
of the application for each service level. These values are also known as the
bandwidth distribution or BWD. The bandwidth distribution values may
be absolute or relative. If it is relative then the bandwidth distribution
values for each service level sums to 100, whereas if it is absolute then it
sums to the total bandwidth.
Additionally to the service levels supported by each application, an

extra service level is automatically added to all applications when they
register. This service level is know as the extra service level or x. The
resource requirements at this service level are the lowest that can be
assigned during registration. The functionality of this service level will
be explained in Chapter 5.
Table 4.1 shows the service level table for an application named A1.

The table contains the service level index (SL), the quality of service
(QoS), the bandwidth (BW), the time granularity, and the bandwidth
distribution (BWD). In the table at service level 0 the application A1
provides a QoS of 100%. The total bandwidth required and the granularity
at this service level correspond to 200% and 50µs respectively. The total
bandwidth is evenly split among the four virtual processors that contain
the application tasks, this is expressed by the bandwidth distribution
values.
The values defined in the service level table of each application, except

for the extra service level x, are specified by the application developer, and

41



Chapter 4. Resource Manager Inputs and Outputs

Table 4.2 Importance table

Application Importance

mplayer 100
tetris 75
firefox 10

can be seen as an initial model of the application. How certain or trustful
these values are is something that can be evaluated by the different algo-
rithms implemented by the resource manager first after the application
has been executing for some period of time.

Importance Values

The application importance specifies the relative importance or priority
of an application with respect to others. The importance values only play
a role when the system is overloaded, that is, when it is not possible for
all registered applications to execute at their highest service level.
The importance is expressed as a non-negative integer value and it

is specified by the system developer. In case the value is not explicitly
specified which is the most common case, the resource manager provides
a default importance value of 10.
Table 4.2 shows an example of an importance table, which has three

applications. The highest value represents the highest importance.
The importance values are provided in a file that is read by the re-

source manager during start up.

Number of Virtual Processors

The number of virtual processors is a value provided implicitly through
the bandwidth distribution. For the resource manager this value is an
indicator of the topology of the application. The number can be greater
than the number of online physical cores of the system.

Thread Groups

In addition to the service level table each application also needs to pro-
vide information about how many thread groups it consists of, and which
threads that belong to these groups. Each thread group will eventually
be executing within a separate virtual processor.

4.2 Dynamic Inputs

Dynamic inputs includes online information about the state of the allo-
cated resources, that is, how they are being used, and about the level

42



4.2 Dynamic Inputs

of satisfaction obtained with the allocated resources. This information is
provided by the scheduler and the application layers.

Used Budget

The used budget value is the cumulative budget used by the threads in
each of the virtual processors of an application since its creation. This
value is measured in nano seconds.

Exhaustion Percentage

The exhaustion percentage value is the cumulative number of server pe-
riods that the virtual processor budget has been completely consumed. A
high value indicates that the application was throttled by the CBS server
and that it is likely that is requires more bandwidth.

Cumulative Period

The cumulative period value represents the total number of server peri-
ods fully elapsed, that is, the number of times that the deadline of the
reservation has been postponed.
Together the used budget, the exhaustion percentage, and the cumula-

tive period, provide information about the state of the resources allocated
to each application, that is how they are being used by the application.
The used budget, the exhaustion percentage, and the cumulative pe-

riod values are provided by the scheduler layer, and are read periodically
by the resource manager, with a sampling period that is a multiple of the
period of each running application.

Happiness

The happiness value represents the level of satisfaction, or the per-
ceived quality, obtained with the allocated resources at a specific service
level. The value is provided to the resource manager only by applications
which implement mechanisms that monitor their quality, and determine
whether it corresponds to what can be expected for the current service
level.
For simplicity the happiness value is a binary value, that is, it can only

take one of two values, 0 which means that the application is not able to
provide the quality of service promised at the current service level, and
1 otherwise. Unless the application reports that it is unhappy with the
allocated resources, the resource manager assumes that the application
is happy.

43



Chapter 4. Resource Manager Inputs and Outputs

4.3 Dynamic Outputs

Dynamic outputs include online parameters produced by the resource
manager, which are provided to the application and the scheduler layer.

Assigned Service Level

The assigned service level value is used to inform an application at which
service level it must execute.
The assigned service level value of each running application is gener-

ated by the resource manager, based on the service level table provided
during registration time, the current state of the system, and the system
objective. A more detailed description of the algorithm used to calculate
this value will be part of Chapter 5.

Assigned Server Budget and Period

The assigned server budget and server period parametrize each virtual
processor created by the resource manager. The assigned server budget
defines the maximum budget that can be used by the application tasks
running inside a virtual processor every period.
The period is directly given in the service level table of each applica-

tion through the timing granularity value. It may depend on the service
level. The assigned server budget value is initially defined by the resource
manager at the creation of the virtual processor, that is, at the registra-
tion of a new application, and redefined whenever the algorithms inside
the resource manager consider that the assigned server budget does not
match the real resource needs of the application process. Chapters 6 and 7
will provide more information about when the assigned server budget is
calculated, and under which conditions it can be recalculated.

Affinity

The affinity value decides to which physical processor a virtual processor
should be allocated. Considering that the ACTORS software architecture
is mainly oriented to multicore systems, there are several ways how the
resource manager can specify these values. A more detailed description
about the algorithm used to set the affinity value can be found in Chap-
ter 6.

44



5

Service Level Assignment

One of the objectives of the architecture proposed by ACTORS (see Fig-
ure 3.3) is to be able to optimally distribute the CPU resources among
the running applications. This distribution must be done systematically
according to a performance criteria, which defines what optimality means,
and to policies that specify when and how this must be done.
The resource manager plays a key role in this distribution because it is

able to dynamically communicate with the applications and the scheduler
layer. Thus, it is aware at any time of the resource requirements of the
running applications as well as the availability of system resources. This
places the resource manager in a position of decision maker in the sys-
tem, with the ability of implementing algorithms that provide the desired
optimal distribution.

5.1 Problem Description

To carry out the distribution of CPU resources the resource manager
needs to define some rules or policies. They specify who can take part
in the distribution, when it should take place, and which are the mini-
mum requirements on the information that must be provided. The policies
specify that:

• Only accepted applications or the ones in process of being accepted
by the resource manager can take part in the distribution. The pro-
cess of acceptance is also known as registration.

• The registration is the first step that must be done by every appli-
cation that wants to run on system.

• The distribution is executed when an application registers, unregis-
ters, and whenever the performance criterion as well as the system
conditions require it.

45



Chapter 5. Service Level Assignment

• The unregistration takes place when the application has finished its
execution and therefore it does not need to use the resources of the
system anymore.

• The information required includes the importance table, the service
level tables of the applications, and the performance criteria.

In addition to these policies a performance criterion must be consid-
ered. This criterion defines the optimality of the distribution. One crite-
rion could be to maximize the quality of service provided by the system,
although this could sound like a misconceived idea since the quality of
service is a relative measurement. Consider for instance the experience
perceived by the user when running different applications. In such a case
the system quality of service can be interpreted as the sum of the quality
of service of the different running applications.
Another criterion could be to save energy, in systems such as mobile

phones this could be an important issue. This would relegate the quality
of service provided to a second place. However, a certain quality of service
that matches the energy constraints must be guaranteed. For the purpose
of the present work, only the first criterion will be considered.
The starting point of the resource distribution is when an application

registers with the resource manager. At this moment the application pro-
vides its resource requirements through its service level table. It is then
the task of the resource manager to allocate resources to the application.
The quality of service as well as the consumed resources are directly

associated with the service levels that an application supports. Thus, the
best way to allocate resources to the application would be to define the
service level at which it must execute. This is also known as the service
level assignment of an application.

5.2 BIP Formulation

The problem previously described can be formulated as an optimization
problem. The objective of this optimization is to select the service level
of each application so that the weighted sum of the quality of service is
maximized. This optimization problem is subject to the constraint that
the total CPU resources are limited.
Since from all the service levels provided by each application only

one will be assigned, the problem formulation can be done such that the
decision variables represent the selection of a particular service level.
Additionally, the constraint defined by the maximum assignable CPU re-
sources on the system can be expressed as a linear combination of the
decision variables.

46



5.2 BIP Formulation

The particular characteristics of the formulation described place it in
the category of a Binary Integer Programming (BIP) Problem [Boyd and
Vandenberghe, 2004]. This is a special case of integer linear programming,
which constrains the decision variables to be binary. In general a BIP
problem can be formulated as follows:

minimize
x

{cT x : x ∈ P ∩ X }

subject to Ax ≤ b
Gx = d
xi ∈ {0, 1}, i = 1, . . . ,n

(5.1)

where A and G are real coefficient matrices of dimensions mxn and pxn
respectively. The objective and the constraints are affine functions. The
feasible set of the BIP problem is specified by P ∩ X , where P is a given
polyhedron, and X is a combinatorial discrete set that are defined as:

P := {x ∈ ℜn : Ax ≤ b, x ≥ 0}
X := {x ∈ Zn : 0 ≤ x ≤ 1}, X ⊆ Zn

BIP problems are convex optimization problems with a feasible finite
set containing at most 2n points. In general they can be very difficult
to solve, but they can be efficiently solved under certain conditions such
as when the constraint matrix is totally unimodular, and the right-hand
side vector of the constraints belongs to the integers. They can be solved
using different algorithms, the performance of any particular method is
highly problem-dependent. This methods include enumeration techniques,
including the branch and bound procedure [Land and Doig, 1960], cutting
plane techniques [Gomory, 1958], and group theoretic techniques [Shapiro,
1968].

Service Level Assignment Formulation

The service level assignment can now be formulated as a BIP prob-
lem [Romero Segovia and Årzén, 2010]. The service level j ∈ M =
{0, . . . ,SLi − 1}, where SLi is the number of service levels supported
by application i ∈ N = {1, . . . ,n}, is represented as a column vector xi j
containing boolean variables, where the variable is 1 if the corresponding
service level has been selected and 0 otherwise. The quality of service
and the bandwidth of each application are represented by the row vectors
qi j and α i j of corresponding size. The problem can now be formulated as

47



Chapter 5. Service Level Assignment

follows:

maximize
x

n
∑

i=1

m
∑

j=0
wiqi jxi j

subject to
n
∑

i=1

m
∑

j=0
α i jxi j ≤ C

∀i,
m
∑

j=0
xi j = 1

(5.2)

In the formulation C corresponds to the total assignable bandwidth of the
system, and wi to the importance value of application i. The set N contains
all the running applications which include the registered applications, as
well as the one in process of registration. The set M contains the service
levels supported by each application.
The first constraint guarantees that the total sum of the bandwidth

at the assigned service level of each application does not exceed the total
capacity of the system. The last constraint ensures that all applications
get registered with the resource manager, this means that applications
that have lower importance values, and do not contribute significantly to
the performance criterion will be accepted to run at the default lowest
service level x that is defined automatically by the resource manager.
Assigning the lowest service level x is a way for the resource manager

to inform an application that it cannot meet its resource requirements.
Then, it is up to the application to decide whether to proceed at the lowest
service level with a very small amount of resources, or to terminate itself.
Because of the presence of the service level x, the optimization problem
in all practical situations always has a feasible solution.
The formulation in Equation 5.2 assumes that the resource manager

accepts all applications that want to run on the system. In case this does
not represent an important issue, the last constraint can be relaxed by
changing it to an inequality constraint. Thus, the resource manager will
be able to shut down some applications in order to allow the registration
of applications with higher importance values.

5.3 Example

In this section a simple example is introduced to show how the service
level assignment is performed. The scenario includes four applications
named A1, A2, A3, and A4. For illustration reasons the importance value
of the applications is shown as an extra column named I in the service
level table of the applications.

48



5.3 Example

Table 5.1 Service level table of applications A1, A2, A3, and A4.

Application I SL QoS BW Granularity BWD
name [%] [%] [µs] [%]
A1 10 0 100 200 50 [50, 50, 50, 50]

1 90 150 90 [35, 35, 45, 35]
2 70 100 120 [25, 25, 25, 25]
3 60 50 250 [10, 10, 20, 10]
x 1 4 100000 [1, 1, 1, 1]

A2 100 0 100 180 50 [60, 60, 60]
1 80 140 90 [27, 27, 26]
2 50 100 120 [17, 17, 16]
x 1 3 100000 [1, 1, 1]

A3 1000 0 100 120 50 [30, 30, 30, 30]
1 60 80 90 [20, 20, 20, 20]
x 1 4 100000 [1, 1, 1, 1]

A4 200 0 100 100 50
1 90 90 90
2 60 60 120
x 1 100000

Table 5.1 shows the service level tables of all the applications. One
can observe that the applications support different number of service lev-
els and have different resource requirements. All the applications except
application A4 provide the BWD parameter, that is, it has more than one
virtual processor.

Implementation Considerations

The physical platform employed is a four core machine. The BIP optimiza-
tion problem is solved using the GLPK [GLPK: GNU Linear Programming
Kit] linear programming toolkit. To ensure a proper behavior of the oper-
ating system 10% bandwidth of each processor is reserved for system ap-
plications including the 10% for the resource manager itself. Thus, 360%
of the bandwidth is available to applications executing under the control
of the resource manager.
Solving an ILP problem online in a real-time system may sound as a

quite bad approach due to the potential inefficiency. However, in this case
there are several factors that avoids this problem. The resource man-
ager thread that performs the optimization is also executing within a
SCHED_EDF reservation. Hence, it will not disturb applications that already
have been admitted to the system, but will only delay the registration of
the new application. Also, provided that the new application has been

49



Chapter 5. Service Level Assignment

Table 5.2 Service level assignment of applications A1, A2, A3, and A4
with and without relaxation of the second constraint of Equation 5.2.

∀i,
∑

x(i) = 1 or
∑

x(i) ≤ 1 ∀i,
∑

x(i) = 1 ∀i,
∑

x(i) ≤ 1
t0 t1 t2 t3 t4 t4

A1 - 0 1 3 4 -
A2 - - 0 0 2 1
A3 - - - 0 0 0
A4 - - - - 0 0

WQoS - 1000 11500 110600 125000 128000

ABW - 200 330 350 324 360

correctly implemented using a separate thread for the D-Bus communi-
cation, not even this application will be blocked. Instead it will continue
executing under the normal Linux scheduling class during the registra-
tion process, provided that the SCHED_EDF threads do not consume all the
CPU time. Also, the size of the optimization problem is quite limited. The
largest application set so far used with the resource manager is the con-
trol demonstrator described in Chapter 10. It consists of 8 applications
with 2-4 service levels each. In this case the registration process takes
1-2 seconds.

Service Level Assignment

The result of the service level assignment is presented for two cases. In
the first case no relaxation of the second constraint in Equation 5.2 is
allowed, and in the second case relaxation is allowed.
At time t0 no applications are running on the system. At time t1 ap-

plication A1 wants to execute on the system, therefore the registration
process begins. After solving Equation 5.2 the resource manager assigns
service level 0 to A1. At time t2 application A2 begins the registration pro-
cess. Since this application is more important than application A1, and it
contributes significantly to the objective function, the resource manager
assigns the highest service level to A2, and decreases the service level of
A1 from 0 to 1. When application A3 registers at time t3, the resource
manager assigns service level 0 to A3 and A2 and reduces the service of
A1 to 3.
The results are shown in Table 5.2. The table shows that the assigned

service level for applications A1, A2, and A3 will be the same if relax-
ation of the constraint is considered or not. Additionally the table shows
the weighted quality of service (WQoS) and the total assigned bandwidth
(ABW) after each service level assignment.

50



5.3 Example

Depending on which constraint is employed different results in the
service level assignment can be observed at time t4 when application A4
registers with the resource manager. When the equality constraint is used,
all four applications remain in the system, however, application A1 gets
to execute at the default lowest service level that can be assigned for this
application, that is, service level 4 that only provides 4% bandwidth of the
system to the application, while application A2 gets service level 2. On
the other hand if the inequality constraint is used, the resource manager
will unregister application A1, and give service level 1 to A2.
A careful observation of the table at time t4 shows that the weighted

QoS is greater when the inequality constraint is used, this at the price
of shutting down the application A1. Naturally when using the equality
constraint application A1 will still be running on the system consuming
a minimum amount of resources, this may imply a poor performance of
the application, then again whenever applications A2, A3 or A4 finish
their execution the application A1 will recover. A deeper evaluation of
this behavior will be done in Chapter 7.

Advantages and Disadvantages of the Formulation

The formulation presented in Equation 5.2 is very simple, and uses little
information to produce a solution. However, it is this lack of more detailed
information which constitutes its weakest point. For instance consider the
example previously explained. The solution of the problem did not consider
the bandwidth distribution parameter, this parameter is very important
specially when defining how each of the virtual processors of the appli-
cations must be assigned to each processor on the system. Although the
maximum assignable bandwidth of the system is 360%, the maximum
assignable bandwidth in each core is only 90%. Therefore the solution
provided by Equation 5.2 is not necessarily schedulable.
Although this could look like a major drawback, one has to keep in

mind that solving BIP problems can be very difficult and very time and
resource consuming. Thus, the idea behind this formulation is "divide and
conquer", first the resource manager will use this simple formulation to
assign a possible service level, and later on with the help of additional
techniques will produce the final assigned service levels which respect all
schedulability conditions.

51



6

Bandwidth Distribution

In the previous chapter it was mentioned that the optimal distribution
of CPU resources among the running applications begins at registration
time. At this point the resource manager assigns the service level at which
each application present on the system must execute. This service level
assignment is formulated as a BIP optimization problem. This formulation
includes the new application that has requested the registration as well
as the applications already registered.
After the service level assignment the resource manager is aware of

the total amount of resources or bandwidth that each application requires.
The next natural step would be to distribute the total bandwidth. This
process is known as the bandwidth distribution and includes two subprob-
lems.
The first subproblem is how the resource manager should divide the

total bandwidth of an application between its virtual processors. This can
be easily solved using the BWD values from the service level table in case
they have been provided. Otherwise, the total bandwidth is split evenly
between the virtual processors (VP) of the application.
The second subproblem is how the virtual processors should be mapped

or distributed onto the physical cores. The complexity of this problem is
increased by the multicore nature of the platform, and the particular
partitioning of the applications (BWD). The resource manager handles
this problem using different distribution policies.

6.1 Distribution Policies

There are different ways how the resource manager can map the virtual
processors of an application onto the physical cores. Basically the resource
manager implements two different policies, the balanced distribution, and
the packed distribution.

52



6.1 Distribution Policies

Balanced Distribution

The balanced distribution policy is primarily developed for multimedia
applications implemented using dataflow techniques. For multimedia ap-
plications the main objective is often to maximize throughput. In order to
achieve this it is desirable that all the cores do productive work as much
as possible and avoid unproductive work, for instance, context switching.
Hence, the run time system used for these types of applications contains
one thread per physical core. In order to be able to control the comput-
ing resources assigned to these threads they are each executing within
a virtual processor. A consequence of this is that the number of virtual
processors typically equals the number of physical cores. In order to avoid
context switching the virtual processors are mapped to different physi-
cal cores. In order to enable dynamic frequency/voltage scaling (DVFS),
which on certain architectures cannot be applied to the individual cores
but only to all the cores, the distribution policy further tries to perform
the mapping so that the load on all the cores is balanced as much as
possible.
The policy works as follows. First the physical cores are sorted accord-

ing to their amount of free bandwidth space in descending order and the
virtual processors are sorted according to their bandwidth. If the number
of virtual processors of the application being registered is equal to or less
than the number of physical cores the mapping is simply performed ac-
cording to this order. Should the number of virtual processors be larger
than the number of physical cores then a resorting of the physical cores is
performed each a time a number of virtual processors equal to a multiple
of the number of physical cores has been mapped.
Figure 6.1 shows the balanced distribution for an application named

A1 which has five tasks, each of them within a VP. The generated load is
balanced among the four processors (cores). Since the application contains
more VPs than the number of cores, two of the VPs will have the same

Figure 6.1 Balanced distribution for application A1

53



Chapter 6. Bandwidth Distribution

affinity.
The balanced distribution is done only for the new application. In this

way the assigned affinity of the currently executing applications is kept
constant. Only the size of their VPs is adjusted, that is, increased or
decreased accordingly to their assigned service level.

BIP Formulation The balanced distribution can be expressed as a
heuristic first fit problem with the objective to evenly maximize the us-
age of all the cores on the system. This can formulated as a BIP prob-
lem [Romero Segovia and Årzén, 2010], where the decision variables are
contained in the matrix x of dimension mxn where m is the number of
available cores and n is the number of virtual processors of the new ap-
plication. The value of xi j is 1 if the virtual processor j ∈ N = {1, . . . ,n}
of the new application is assigned to core i ∈ M = {1, . . . ,m} and 0 oth-
erwise. The bandwidth requirements of each virtual processor is given by
the vector v. The problem can now be stated as follows:

maximize
x

m
∑

i=1

n
∑

j=1
civjxi j

subject to
n
∑

j=1
vj xi j ≤ ci

∀i,
n
∑

j=1
xi j ≤ 1

∀ j,
m
∑

i=1
xi j = 1

(6.1)

In the formulation ci is the free bandwidth on core i. The second con-
straint implies that each core can have at the most one VP from the same
application, while the third one enforces that a VP can be assigned to
only one core. If an application contains more VPs than there are cores,
the resource manager will pack some of them together, beginning with
the smallest ones. This packing is done so that the problem matches the
formulation proposed by Equation 6.1. Once the formulation produces a
solution, the packed VPs are unpacked and assigned the same affinity.
The formulation described by Equation 6.1 can be implemented as a

first fit bin packing algorithm. The algorithm sorts the VPs of the new
application being registered from large to small, and the cores from full to
empty. Then it performs the distribution according to the following pseudo
algorithm:
The balanced distribution respects the assigned affinity of the cur-

rently executing applications not only during registration of new applica-

54



6.1 Distribution Policies

Algorithm 1 BALANCEDDISTRIBUTION
Require: Sort VPs (large to small) ∧ Ps (full to empty).
Ensure: BalancedDistribution.

1: j Z −1
2: for i = 0 to nVPs do {nVPs is number of Virtual Processors}
3: j Z ( j + 1) mod nPs {nPs is number of Processors}
4: if j = 0 then
5: resort Ps from full to empty
6: end if

7: if VP[i] fits in P[ j] then
8: map VP[i] to P[ j]
9: reduce space left in P[ j]
10: else

11: BalancedDistribution failed
12: end if

13: end for

tions but also when an application unregisters. Similar to the registration
case, the size of the VPs of the running applications is adjusted according
to their new assigned service level.

Packed Distribution

Another way to perform the bandwidth distribution is to select the affin-
ity of the virtual processors of an application such that they fit in as
few cores as possible. This is also known as the packed distribution. Fig-
ure 6.2 shows the packed distribution version of the example presented
in the Balanced Distribution subsection. One can notice that this time
the number of cores used for the distribution is less than in the balanced
distribution case.
The motivation for the packed distribution is to utilize as few physical

cores as possible, making it possible to switch off or power down the

Figure 6.2 Packed distribution for application A1

55



Chapter 6. Bandwidth Distribution

unused cores using power management techniques.
The name packed distribution comes from the fact that the algorithm

tries to pack as many virtual processors as possible in the same core.
First it sorts the VPs of the application being registered from large to
small, and the cores from full to empty. Then it performs the distribution
according to pseudo algorithm 2.

Algorithm 2 PACKEDDISTRIBUTION
Require: Sort VPs (large to small) ∧ Ps (full to empty).
Ensure: PackedDistribution if f ound = 1.

1: for i = 0 to nVPs do {nVPs is number of Virtual Processors}
2: f oundZ 0
3: for j = 0 to nPs do {nPs is number of Processors}
4: if VP[i] fits in P[ j] then
5: map VP[i] to P[ j]
6: reduce space left in P[ j]
7: f oundZ 1
8: break
9: end if

10: end for

11: if f ound = 0 then
12: PackedDistribution failed
13: end if

14: end for

The algorithm will always try to fit the virtual processors into cores
in the same core order. The packed distribution is done only for the new
application respecting the assigned affinity of the already registered ap-
plications.
For the packed distribution policy the unregistration of an application

may trigger new affinity assignments for the VPs of the running applica-
tions. This ensures that the VPs of the applications are packed in as few
cores as possible also after the unregistration.

6.2 Handling Infeasible Distributions

The solution produced by the balanced or the packed distribution may or
may not be feasible in terms of schedulability. This means, that the par-
ticular partitioning for the assigned service level (how the bandwidth is
distributed among the VPs) of each application might not match the free
space available on the system. In the case of a non-feasible solution the
registration process fails. Figure 6.3 shows the infeasible distribution so-
lutions of the balanced and the packed distribution policies. The scenario

56



6.2 Handling Infeasible Distributions

(a) Balanced distribution (b) Packed distribution

Figure 6.3 Example of infeasible distributions.

has three applications represented by different colors. Infeasibility occurs
when the third application (blue) tries to register.
As mentioned in the last section of Chapter 5 this could be the result

of not including the BWD values of the applications in the service level
assignment formulation described in Equation 5.2. To avoid this situation
the resource manager additionally implements two mechanisms that al-
ways produce a feasible solution. The mechanisms are repetitive service
level assignment, and compression and decompression algorithm. They
are self-contained and can be used independently from each other.

Repetitive Service Level Assignment

Infeasibility occurs when the particular partitioning of the application at
the current assigned service level cannot be mapped to the system cores.
The repetitive service level assignment algorithm addresses the problem
by performing a new service level assignment. This new service level as-
signment does not contain the assigned service level combination that
resulted in the infeasible solution. This is repeated until a feasible solu-
tion which can be mapped onto the cores is found.
There are different ways to avoid producing the undesired service level

combination. A simple way consists of adding a constraint that ensures
that the new optimal value of the cost function is always less than it
was at the previous optimization. Equation 6.2 shows the new constraint,
where ZO is the old optimal cost function value.

n
∑

i=1

m
∑

j=0
wiqi jxi j < ZO (6.2)

Notice that the value of the objective function produced by the unde-
sired combination could also be obtained by another combination which

57



Chapter 6. Bandwidth Distribution

Figure 6.4 A function f(x) with two local maxima elements at points a
and b

would not necessarily lead to an infeasible solution. This means that the
objective may contain several local maxima. Figure 6.4 shows a simple
illustration of this phenomenon, where the curve contains two local max-
ima defined as a and b. The formulation proposed by Equation 6.2 does
not observe this possibility. It directly bounds the upper limit of the new
value of the objective function. Hence, it discards the other local maxima
that could have produce a feasible solution.
An advantage with this approach is that the number of constraints

remains constant.
A more elegant way to avoid the service level combinations can be

achieved by dynamically adding constraints to the formulation described
by Equation 5.2. These constraints will include information about the
service level assigned to each application that leads to infeasibility. For
instance, consider three applications A1, A2, and A3 with three service
levels for each of them. Assume that the service level assignment that
leads to infeasibility corresponds to 0, 0, and 1 for A1, A2, and A3 respec-
tively. For this case the new constraint added to the formulation would
correspond to:

x10 + x20 + x31 < 3

No matter which of these methods that is used, the repetitive service
level assignment will eventually produce a feasible solution. The only dif-
ference between them lay on the optimality of the results.
The repetitive service level algorithm has different effects in each of

the distribution policies. For the balanced distribution algorithm it re-
spects the assigned affinity of the already registered applications, and
only affects the affinity of the new application. For the packed distribu-
tion the algorithm sets the affinity of the applications beginning with the
highest importance application. This may lead to a totally new distribu-
tion.

58



6.2 Handling Infeasible Distributions

Compression and Decompression Algorithm

Another way to handle the infeasible solution produced by Equation 6.1
is through the compression and decompression algorithm. The objective
of this algorithm is to always provide a schedulable solution, where the
particular partitioning of the new application matches the available free
space of the system. Depending on the information collected from the new
application that is, the QoS provided at the assigned service level, and
the importance with respect to the other applications, the algorithm might
trigger a new service level assignment for the new application or even for
the currently executing ones. The algorithm can be described as follows:

• Each virtual processor of each application has a nominal bandwidth
Bjn, which corresponds to the bandwidth distribution value assigned
to the virtual processor j at the current service level. The index n
means that this is a nominal value.

• Each virtual processor j has a maximum and minimum bandwidth
Bjmax and Bjmin, which correspond to the bandwidth values assigned
to the same virtual processor j at the next and previous service level
respectively, that is

Bjmin ≤ Bjn ≤ Bjmax

• A new bandwidth B̂j > Bjn can be assigned to a virtual processor j
as long as the following condition is fulfill

∀i,
∑

j

Bi j ≤ 1 i ∈ P (6.3)

where P corresponds to the set of online processors on the system.

• If Equation 6.3 does not hold then the bandwidth assigned to the
virtual processors of the other applications executing in the same
processor must be reduced or compressed according to

B̂j = Bjn − (Bn − Bd)
s j

S

Bn =
∑

τ j∈Γc

Bjn ∀Bn > Bd

S =
∑

τ j∈Γc

s j ∀τ j∈Γc s j = �(Ij)

Bd = BM − B f ∀B̂j < Bjmin [ B̂j = Bjmin

(6.4)

where Γc is the set of VPs which bandwidth can be reduced or com-
pressed, Γ f is the set of VPs which bandwidth cannot be reduced,

59



Chapter 6. Bandwidth Distribution

BM is the maximum assignable bandwidth on the system, �(Ij) is
a function of the importance value of the application, and s j is a
scaling factor which is inversely proportional to the importance of
the application.

In addition to this, the following policies are followed before compress-
ing the bandwidth assigned to the currently executing applications as well
as the new application:

• The applications which bandwidth will be compressed are the ones
for which the importance times the QoS at the currently assigned
service level is smaller than the one of the application that has
requested more bandwidth than what is available on the system. If
the compressed bandwidth of the applications is greater than Bjmin
(the assignable bandwidth at the next lower service level), then the
application keeps its assigned service level, otherwise the service
level is decreased.

• In case the importance times the QoS of the new application at the
currently assigned service level is smaller than the ones of all the
other applications, then the new application receives the remaining
free available bandwidth on the system. If this is greater than Bjmin
(the assignable bandwidth at the next lower service level), then the
application keeps its assigned service level, otherwise the service
level is decreased.

As can be seen from the previous policies, the compression of the band-
width either in the currently executing applications or in the new appli-
cation can trigger a change in the assigned service level.

Bandwidth Decompression Each time an application unregisters, the
available free bandwidth is distributed among the other applications
which bandwidth was compressed, this is known as the bandwidth de-
compression. By decompressing the bandwidth of the applications which
where affected by the compression algorithm previously described, the
performance of these applications can be increased.
The algorithm can be described as follows:

• Two sets of applications can be considered, the set of applications
that have been compressed, that is Γc and which current bandwidth
is smaller than the nominal one, that is Bj < Bjn, and the set of
applications that have not been compressed, that is Γ f and which
current bandwidth is greater or equal than the nominal one, that is
Bj ≥ Bjn

60



6.3 Reservation Parameters Assignment

• Considering that an application that belongs to the set Γ f decreases
its bandwidth consumption then two cases can be observed.

1. Decompress under the assumption that:

Bcn + B f ≤ BM
Bcn =

∑

τ j∈Γc

Bjn

B f =
∑

τ j∈Γ f

Bjn

(6.5)

where Bcn is the total sum of the original nominal bandwidth of
the applications that have been subject to bandwidth compres-
sion, and B f is the total sum of the assigned bandwidth of the
applications that have not been compressed. In case the sum of
these bandwidths is smaller or equal than the total assignable
bandwidth on the system, that is BM , then the bandwidth of
all the compressed applications can be restored to its nominal
value.

2. Compress again under the assumption that:

Bcn + B f > BM (6.6)

In case the sum of these bandwidths is greater than BM , then
the set is not schedulable and therefore their bandwidth must
be compressed again using the compression algorithm. Notice
that this time the constraint over the bandwidth that can be
distributed among the compressed applications, that is Bd, will
be less restrictive than the first time the compression was car-
ried out.

6.3 Reservation Parameters Assignment

After finding an schedulable solution to the bandwidth distribution prob-
lem, either with the balanced or the packed distribution method, the re-
source manager must set the values of the reservation parameters for
each of the virtual processors of the new application. The reservation pa-
rameters of a virtual processor are defined by the assigned budget Q and
the assigned period P. The reservation parameters can be directly calcu-
lated from the BW and granularity values provided in the service level

61



Chapter 6. Bandwidth Distribution

table of each application as follows:

Pj = Granularityi (6.7)

Q j =
BWD j Pj
100

where j is the index for the number of the virtual processor of the new
application.

6.4 Example

A simple example containing several applications with different structures
will be described. This will allow us to compare the performance of the
different methods previously described to solve the bandwidth distribution
problem.
The scenario contains three applications named A1, A2, and A3 with

3, 4 and 2 service levels respectively. Table 6.1 shows the service level
information provided by the three applications to the resource manager.
For completeness, the importance value I is also included in Table 6.1.
In addition to this the resource manager also knows the number of

VPs that each application contains, that is 4 for A1 and A2 and 3 for A3,
and the importance of each of the applications, in this case 10, 1 and 100
for A1, A2 and A3 respectively. The number of VPs can also be directly
obtained from the number of partitions in the BWD value.

Table 6.1 Service level table of application A1, A2 and A3

Application I SL QoS BW Granularity BWD
name [%] [%] [ms] [%]
A1 10 0 100 160 40 [40, 40, 40, 40]

1 80 120 50 [30, 30, 30, 30]
2 50 80 100 [20, 20, 20, 20]
x 1 4 100 [1, 1, 1, 1]

A2 1 0 100 200 20 [50, 50, 50, 50]
1 90 160 40 [40, 40, 40, 40]
2 70 120 70 [30, 30, 30, 30]
3 40 80 150 [20, 20, 20, 20]
x 1 4 100 [1, 1, 1, 1]

A3 100 0 100 80 20 [20, 15, 45]
1 70 60 100 [20, 10, 30]
x 1 3 100 [1, 1, 1]

62



6.4 Example

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 0 200 [50, 50, 50, 50]

Figure 6.5 Normal registration of applications A1 and A2.

Implementation Considerations

For this example it was assumed that only 90% of the CPU of each of the
four cores could be allocated at any time, this implies a total available
bandwidth of 360% for the system.
The methods implemented by the balanced and the packed distribu-

tion were directly coded in C++. This also includes the BIP formulation
described by Equation 6.1. In this case the GLPK toolkit was not used.
The repetitive service level assignment used for both distributions im-

plements the constraint defined by Equation 6.2. Hence the new cost value
produced by Equation 5.2 is upper bounded by the old cost value which
led to a non schedulable solution.

Balanced Distribution

At the beginning A1 and A2 register with the resource manager at time
t0 and t1 respectively. The resource manager assigns service level 0 to
both applications according to Equation 5.2. The balanced distribution
methodology distributes the load of the virtual processors evenly among
the system processors. This is done at time t0 and t1 for A1 and A2 re-
spectively.
Figure 6.5 shows the assigned service level (SL), the total bandwidth

(BW), and the bandwidth distribution (BWD) values of both applications,
as well as a graphic representation of the bandwidth distribution of the
two applications on the four core platform.
After some time, A3 with higher importance than A1 and A2 registers

with the resource manager. Following Equation 5.2 the resource manager
assigns service level 0, 2, and 0 to A1, A2, and A3 respectively. According
to the balanced distribution formulation in Equation 6.1, the solution to
the bandwidth distribution problem is not schedulable. This can be seen in
Figure 6.6. In order to handle the infeasible solution, the repetitive service
level assignment method, as well as the compression and decompression
algorithm are used.

63



Chapter 6. Bandwidth Distribution

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 2 120 [30, 30, 30, 30]
A3 0 80 [20, 15, 45]

Figure 6.6 Registration of application A3 that leads to an infeasible
solution.

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 x 4 [1, 1, 1, 1]
A3 0 80 [20, 15, 45]

Figure 6.7 Registration of application A3 after repetitive service level
assignments.

Repetitive Service Level Assignment The non schedulable solution
triggers the repetitive service level assignment method. The method car-
ries out two more service level assignments until it finds a feasible solu-
tion that can be mapped onto the cores. Figure 6.7 shows the new service
level assignment and the bandwidth distribution for the three applica-
tions.
After a while A1 unregisters and the resource manager assigns new

service levels to the remaining executing applications A2 and A3. This
assignment produces again a non schedulable solution as can be seen in
Figure 6.8.
In order to avoid infeasibility, a new service level assignment is done.

In this way, A2 is assigned service level 1, while A3 remains at its old
service level. Figure 6.9 shows the feasible distribution after the new
service level assignment.

Compression and Decompression Algorithm The infeasible solution
shown in Figure 6.6 can also be handled by the bandwidth compression
algorithm. According to Equations (6.3) and (6.4), the algorithm reduces

64



6.4 Example

App. SL BW BWD [%]
name [%] [%]
A2 0 200 [50, 50, 50, 50]
A3 0 80 [20, 15, 45]

Figure 6.8 New service level assignment of A2 and A3 after unregistra-
tion of A1.

App. SL BW BWD
name [%] [%]
A2 1 160 [40, 40, 40, 40]
A3 0 80 [20, 15, 45]

Figure 6.9 New service level assignment of A2 and A3 after repetitive
service level assignment.

App. SL BW BWD
name [%] [%]
A1 0 157 [40, 40, 40, 37]
A2 3 67 [20, 20, 20, 7]
A3 0 80 [20, 15, 45]

Figure 6.10 Registration of application A3 after bandwidth compression.

the service level of the lowest importance application A2 from 2 to 3 and
also reduces the bandwidth values of the virtual processors of A1 and
A2 executing in core P4. The final schedulable solution is shown in Fig-
ure 6.10.
Similar to the repetitive service level assignment case, A1 unregisters

after finishing its execution. This leads again to the problem shown in

65



Chapter 6. Bandwidth Distribution

App. SL BW BWD
name [%] [%]
A2 1 160 [40, 40, 40, 40]
A3 0 80 [20, 15, 45]

Figure 6.11 New service level assignment of A2 and A3 after bandwidth
compression.

Figure 6.8. The bandwidth compression algorithm produces a schedulable
solution where the service level of A2 is reduced from 0 to 1, as shown in
Figure 6.11.
As can be seen in the example, each time that an application registers

or unregisters with the resource manager, a new service level assignment
as well as bandwidth distribution is carried out according to Equations 5.2
and 6.1. This solution might not be schedulable considering all the possi-
ble combinations of all the different partitions of each of the applications
running on the system. In order to produce a schedulable solution, the
bandwidth compression algorithm compresses the bandwidth of the ap-
plications in the system according to Equations 6.3 and 6.4, which could
again trigger a new service level assignment.

Packed Distribution

For the packed distribution case, only the repetitive service level assign-
ment is considered. In order to see the differences between this distri-
bution and the balanced one the registration of each application will be
described. At time t0 application A1 registers with the resource manager,
which assigns service level 0. The packed distribution sets the affinity of
the virtual processors such that they fit in as few cores as possible. This
can be seen in Figure 6.12 which shows the bandwidth distribution for
A1.
At time t1 application A2 begins the registration with the resource

manager. According to Equation 5.2 the resource manager assigns ser-
vice level 0 to both applications. Of course this leads to an infeasible
solution, which the packed distribution handles by recalling the service
level assignment method. After one new service level assignment, which
reduces the service level of A2 to 1, the packed distribution is able to map
the virtual processors into the system cores. Figure 6.13 shows the final
result of the distribution.

66



6.4 Example

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]

Figure 6.12 Registration of application A1.

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 1 160 [40, 40, 40, 40]

Figure 6.13 Registration of application A2 after packed distribution.

Application A3 registers with the resource manager at time t3. The
resource manager assigns service level 0, 2 and 0 to A1, A2 and A3 respec-
tively. This leads to an infeasible solution when the packed distribution
tries to assign the largest VP in the emptiest core. Figure 6.14 shows the
infeasible distribution.
Infeasibility is handled by the repetitive service level assignment

which assigns service level 3 to A2. Additionally, new affinity values are
assigned to all applications. Figure 6.15 shows the feasible solution. No-
tice that the VPs of A3 (highest importance), are the first to be assigned
to a core. Then the assignment follows with A1 and A2.
When A1 unregisters the resource manager assigns service level 0 to

A2 and A3, which leads to an infeasible distribution. To solve this the
repetitive service level assignment produces a new service level for A2.
The final result of the feasible distribution is shown in Figure 6.16.

67



Chapter 6. Bandwidth Distribution

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 2 120 [30, 30, 30, 30]
A3 0 80 [20, 15, 45]

Figure 6.14 Registration of application A3 which leads to an infeasible
solution.

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 3 80 [20, 20, 20, 20]
A3 0 80 [20, 15, 45]

Figure 6.15 Registration of application A3 after repetitive service level
assignment.

App. SL BW BWD
name [%] [%]
A2 1 160 [40, 40, 40, 40]
A3 0 80 [20, 15, 45]

Figure 6.16 New service level assignment of A2 and A3 after repetitive
service level assignment.

68



7

Bandwidth Adaption

The distribution of CPU resources is performed by the resource manager
in two different ways. In the first case the resource manager adapts the ap-
plications to changes in the resource availability. This is done by changing
the service level of the applications. This adaption takes place whenever
applications register or unregister with the resource manager or when
the amount of available resources changes. It is event based and includes
not only the assignment of the service level, but also the distribution of
the bandwidth at the assigned service level.
In the second case the resource manager adapts the resource distribu-

tion to changing application requirements. This takes place online during
the execution of applications. At this moment the resource manager has
provided CPU resources to the application according to the information
provided in its service level table. However, this information serves just
as an initial prediction of the real amount of resources needed by the
application at a certain service level.
It is the task of the resource manager to find out this amount of re-

sources such that the resources are optimally used and not wasted. To do
so the resource manager uses the dynamic information provided by the
application, that is, the happiness value, and the information obtained
from the scheduler such as the application resource utilization values.
Based on this information the algorithms implemented by the resource
manager will adapt the bandwidth provided to each application.

7.1 Resource Utilization Feedback

To guarantee optimal use of the resources provided to the application,
the resource manager periodically measures the application resource uti-
lization. Based on this, as well as the control strategy implemented the
resource manager adapts the distributed bandwidth of each virtual pro-
cessor in each of the cores.

69



Chapter 7. Bandwidth Adaption

Figure 7.1 Resource utilization measurements per server period for ap-
plication A1.

Controller Inputs

The resource utilization values include the cumulative used budget and
exhaustion percentage which are periodically fed back from the scheduler
layer to the resource manager. Figure 7.1 shows the resource utilization
measurements inside one of the virtual processors of an application. For
explanatory reasons the figure considers the resource utilization measure-
ments per server period and not the cumulative ones. In the figure UB,
EP, T , and AB stand for used budget, exhaustion percentage, period, and
assigned budget respectively. The assigned budget and period correspond
to the reservation parameters assigned by the resource manager to each
virtual processor of the application. The used budget as well as the ex-
haustion percentage values reflect the resources consumed by the tasks
running inside the virtual processor.
In the figure one can see that during the first two periods the assigned

budget is almost completely consumed. In the third period, the task wants
to consume more resources than the ones provided, this is represented by
the dashed block. Due to the hard CBS nature of the reservation, the
task is not able to consume more than the current AB3. This triggers an
event which is represented by the exhaustion percentage value EP3. This
event as well as the used budget in the current period will indicate to the
resource manager to increase the assigned budget for the next period.
The process of adapting the assigned budget is carried out during the

lifetime of the application. It begins after the application has successfully
registered with the resource manager and ends when the application un-
registers.
For illustration reasons in Figure 7.1 the adaption of the bandwidth

is done at each period. In reality this is done at time intervals, which
correspond to the sampling time of the controller. This sampling time will
be a multiple of the period assigned to the virtual processors of the ap-
plication. The logic explanation behind this is that the resource manager
should execute the feedback algorithms only in response to major changes
in the resource utilization. This is something that only can be noticed af-
ter the task running inside the virtual processor has executed for some

70



7.1 Resource Utilization Feedback

(a) Synchronized activation. (b) Unsynchronized activation.

Figure 7.2 Used budget and exhaustion percentage dependencies.

time.
The cumulative values of the used budget and exhaustion percentage

are further processed by the resource manager. This results in average
values of the used budget and exhaustion percentage within each sam-
pling interval. These values together with the assigned budget of the last
sampling interval provide the inputs to the controller.

Controller Strategy

The average used budget and the exhaustion percentage represent the
process variables of the control strategy. The correlation between these
two variables depends on many factors. One factor is the relationship
between the used budget and the assigned budget for a particular instance
of time, for instance when the used budget equals or exceeds the assigned
budget. Another is the synchronization between the activation time of the
task within the reservation and the replenishing time of the reservation
budget.
Figure 7.2 shows the dependencies between the used budget and ex-

haustion percentage variables within a single period. In the case of Fig-
ure 7.2(a) the activation and replenishing times are synchronized. Since
the task requires more budget than the assigned one, the exhaustion per-
centage event is triggered. In the case of Figure 7.2(b) the exhaustion
percentage event is also triggered. However, this happens not due to lack
of budget but due to the lack of synchronization between the activation
and replenishing time.
Considering each of the factors that could affect the correlation be-

tween the process variables would result in the implementation of a com-
plex controller algorithm. This controller would also require high con-
sumption of CPU resources which are mainly designated for the appli-
cations. The trade off between the complexity of the algorithm and the
resources needed by the controller is represented by the bandwidth con-
troller shown in Figure 7.3.
The figure shows the cascade structure of the bandwidth controller.

The resource manager assigns one bandwidth controller to each virtual

71



Chapter 7. Bandwidth Adaption

Figure 7.3 Bandwidth controller structure.

processor of the applications. In the figure the average used budget UB
and exhaustion percentage EP correspond to the process variables of the
inner and outer loop respectively. The task of the outer controller C1 is to
define the set point UBSP of the inner controller C2 based on the values
of EPSP and EP. The inner controller C2 defines the assigned budget AB
for each of the virtual processors of every application. The AB is defined
such that the UB does not deviate from the UBSP defined by the outer
controller. Each of the set point values EPSP and UBSP do not correspond
to scalar values but to bounded intervals.
The idea behind the bandwidth controller is to be able to keep the

average used budget and exhaustion percentage within the bounds defined
by the used budget and exhaustion percentage set points respectively. This
can be achieved by adjusting the assigned budget of the virtual processors.

Outer Controller The inputs of the outer controller C1 are EP and
EPSP. The average exhaustion percentage EP represents the percentage
of server periods when the used budget exceeds the assigned budget. It
may also represent the percentage of server periods within a sampling
interval where the activation and replenishing time where not synchro-
nized.
The EP value, can have a very noisy nature. This is the effect of the

different factors that affect the dependencies with the UB. Consider that
UB reflects the amount of resources used by a task inside a reservation,
and that those resources may change abruptly over time. For instance
in the case of a MPEG 4 video decoder application, decoding a full color
image may need more resources than the ones needed for a black and
white image.
This poses some constraints to the selection of the EPSP. Thus, it is

defined by the interval [EPSL, EPSU ], which defines the lower and upper
limit of the exhaustion percentage set point. Figure 7.4 shows the average
EP value. The EPSP defines three areas in the figure. Different decisions
will be taken by the outer controller depending on which of these areas
the EP is in. These decisions are represented by the states S1 to S4 in

72



7.1 Resource Utilization Feedback

Figure 7.4 Exhaustion percentage set point defined by the limits EPSL
and EPSU

the outer controller.
Each state defines actions taken by the outer controller. The controller

output produced in each of these states will affect the UBSP of the inner
controller. Just like in the case of the EPSP, the UBSP is also specified by
the interval [UBSL,UBSU ].
Figure 7.5 shows the different states of the outer controller. The state

S0 represents the initial state. State S1 affects the used budget bounds
such that AB is decreased. Similarly, state S2 affects the bounds such
that AB is increased. State S3 affects both bounds causing AB to be
kept constant, this defines a stability region for the controller. State S4
smooths the action of the state S1. The variable D corresponds to the
sample standard deviation of UB that will later on be explained in more
detail.
When an application has registered, the resource manager initializes

bandwidth controllers for each of the virtual processors of the application.
Thus, the outer controller state is set to S0, the exhaustion percentage
set point limits EPSL and EPSU are set to values that guarantee a good
performance of the registered application, while the used budget set point
limits UBSL and UBSU are set to initial default values that later on will
be modified or changed by the outer controller.
In order to be able to change the UBSP values, the outer controller

needs to know the initial values of UBSP, as well as the trend of the av-
erage used budget UB in the last sampling intervals. The trend of UB
during the last sampling intervals is obtained through statistical mea-
surements. These measurements include the sample mean and the sample
standard deviation of UB.
The size of the time window where the statistical measurements are

73



Chapter 7. Bandwidth Adaption

Figure 7.5 Outer controller state machine

calculated must be defined considering different aspects. It must be able
to catch the abrupt changes that UB may experience from one sampling
time to another. At the same time it must filter the UB signal that by
nature can be very noisy.
The statistical measurements are defined by Equation 7.1, where UB

and D correspond to the used budget sample mean, and the used budget
sample standard deviation respectively. The total number of observations
N is a multiple of the sampling interval. Its selection is a trade off between
having not enough information and using too old information to obtain
the trend of UB.

UB = 1
N

N
∑

i=1
UBi (7.1)

D =

√

∑N
i=1(UBi − UB)
N − 1

Recalling the state machine of the outer controller shown in Figure 7.5,
one can see that in order to evolve from the initial state S0 to S1, S2,
or S3, the outer controller uses the exhaustion percentage value EP, and
additionally the sample standard deviation D. In S0 no changes are done
to UBSP, mainly it provides the time needed to generate the statistical
measurements required by the other states.
Figure 7.6 shows the different transitions among the states of the outer

controller. It also shows how the output of the outer controller changes
the lower and upper limit of the average used budget that is, UBSL and

74



7.1 Resource Utilization Feedback

Figure 7.6 States transitions of the outer controller and changes of the
UBSP in each state.

UBSU .
The transition to the state S1 from any of the other states is done

whenever EP is below EPSL. The limits defined by UBSL and UBSU are
changed according to

UBSP =
{

UBSU = AB
UBSL = UB + OL

(7.2)

where,
eEP = EPSL − EP, eEP ∈ [em, eM ]

OL = −
(b− a)
eM

DeEP + bD

Here eEP corresponds to the exhaustion percentage error. This value is
bounded by [em, eM ] which are the minimum and maximum eEP. For state
S1, em and eM correspond to 0 and EPSL respectively.
An exhaustion percentage EP smaller than EPSL implies an over-

estimation of the assigned budget AB. This problem can be solved by
shifting UBSL by a factor which is a function of the sample standard
deviation D and the exhaustion percentage error eEP. This is indicated
by OL. The lower offset or OL correspond to a line equation with nega-
tive slope, where a and b are small positive constants. These constants
determine the aggressiveness of the controller.

75



Chapter 7. Bandwidth Adaption

The transition to state S2 is done whenever EP is greater than EPSU .
The limits defined by UBSL and UBSU are changed according to

UBSP =
{

UBSU = UB − OU
UBSL = UBSU − cD

(7.3)

where,
eEP = EPSU − EP, eEP ∈ [em, eM ]

OU = −
(b− a)
eM

DeEP + aD

Similar to the previous case EP is bounded by [em, eM ], which corresponds
to the interval [0, 1− EPSU ].
An exhaustion percentage EP greater than EPSU implies an under-

estimation of the the assigned budget AB. This is handled by adjusting
UBSU . In this case the bound is shifted such that it lays below UB. The
shifting factor also know as the upper offset OU corresponds to a line
equation with a positive slope. The constants a, b, and c have positive
values.
The transition to state S3 is done whenever EP is within the interval

[EPSL, EPSU ]. In this case the upper and lower limits of UBSP are defined
by Equation 7.4 where c is a positive constant.

UBSP =
{

UBSU = AB
UBSL = UB − cD

(7.4)

The outputs produced by state S3 set UBSU and UBSL such that UB lays
within the bounds. Thus, a stability region is reached.
The last state S4 can only be reached from the state S1 whenever EP

is equal to 0. The output is the same as the one produced by the state
S3 (see Equation 7.4). This state smooths the output produced in the
state S1. Whenever EP is smaller than EPSL the state machine will be
oscillating between the states S1 and S4.
The constants a, b, and c previously described have different values

for each state.

Inner Controller The function of the inner controller C2 is to change
the assigned budget AB provided to the virtual processor. This is done
based on the deviation between UB and UBSP. When the bandwidth con-
troller is executed the first time, the UBSP has initial default values for
UBSU and UBSL. These values are updated if necessary by the outer
controller C1.
The inner controller C2 is also modeled as a state machine. The state

machine of the inner controller consisting of four states is shown in Fig-
ure 7.7. In the figure S0 corresponds to the initial state. The states S1

76



7.1 Resource Utilization Feedback

Figure 7.7 Inner controller state machine

and S2 are the ones that will change AB according to deviation between
the UB and the UBSP. The state S3 keeps the value of the AB generated
in any of the other states.
The initial state S0 is able to reach the other states once the bandwidth

controller begins to execute. In this state no changes are done to AB, that
is, it keeps the value assigned during registration.
The changes produced in AB by the states S1 to S3 are shown in

Figure 7.8. In the figure ABM is the maximum allowed assigned budget.
It corresponds to the budget assigned during registration, and is also
known as the initial budget. In Chapter 8 it will be shown that this value
can be tuned for each service level through the bandwidth controller.
The state S1 can be reached from any of the states whenever UB

is smaller than UBSL. This suggests a non-optimal use of AB or waste
of resources. Thus, the assigned budget must be reduced according to
Equation 7.5. In the equation eL is the controller error with respect to the
lower bound UBSL. Similar to the case of the outer controller this error is
also bounded by em and eM , which correspond to 0 and UBSL respectively.
An exponential controller is used to change the value of AB. How fast
or slow it changes will depend on the value of KL and a. The factor KL
changes dynamically according to eL and is bounded by the interval [1, 10].
The constant a is a positive small number derived through tuning.

AB = e−aKL AB (7.5)

77



Chapter 7. Bandwidth Adaption

where
eL = UBSL − UB, eL ∈ [em, eM ]

KL =
9

UBSL
eL + 1

The state S2 can be reached if UB is greater than UBSU . In this
case the assigned budget is too low to satisfy the performance criteria
of the outer and the inner controller. Hence the assigned budget is in-
creased according to Equation 7.6. The controller error eU is upper and
lower bounded by em and eM , which for the state S2 correspond to 0 and
AB − UBSU respectively. The controller employed is also an exponential
controller. The factor KU changes dynamically in the interval [1, 10], the
small positive constant a is derived through tuning.

eU = UB − UBSU , eU ∈ [em, eM ]

KU =
9

AB − UBSU
eU + 1

AB = e aKU AB (7.6)

The state S3 is reached whenever UB lays within the bounds defined
by UBSL and UBSU . This means that the performance criteria of both con-
trollers C1 and C2 is satisfied. Under this conditions the assigned budget
keeps its current value.

Figure 7.8 States transitions of the inner controller and changes in the
AB in each state.

78



7.2 Achieved QoS Feedback

Figure 7.9 Complete state machine of the bandwidth controller.

7.2 Achieved QoS Feedback

The resource manager also adapts the resources distributed to the reg-
istered applications based on their achieved QoS, which is indicated by
the happiness value. This approach considers the achieved QoS as a func-
tion of the assigned service level and the CPU resources provided at this
service level only. It does not consider other factors that may affect the
obtained QoS. For instance in the case of a video conference application,
it would not consider degradation of the application performance due to
package losses or time delays on the communication which are not CPU
bandwidth dependent.

Controller Input

The happiness value is an indicator of the quality obtained with the allo-
cated resources at the assigned service level. It takes one of two values 0
or 1, with 1 meaning that the application is happy and 0 otherwise. For
those applications that cannot provide the happiness value the resource
manager assumes that the application is always happy.

Controller Strategy

For the achieved QoS feedback the bandwidth controller corresponds to a
simple proportional controller. The controller is activated if the application
is unhappy. Figure 7.9 shows how the inner and outer state machines of
the logic explained in Section 7.1 evolve to the unhappy state S.
The state S is activated when the application of the virtual processor

is unhappy. In such a case the controller simply increases the assigned
budget AB linearly according to Equation 7.7, where K is the proportional
constant of the controller.

AB = K AB (7.7)

79



Chapter 7. Bandwidth Adaption

The assigned budget AB is increased until the application becomes
happy again or the assigned budget becomes equal to the initial budget
ABM of the virtual processor.
The happiness value sent by the application is event based in nature.

However, the bandwidth controller always consider the most recent hap-
piness value and uses time triggered control.

7.3 Example

Two different scenarios are shown in this section. In the first scenario a
CAL MPEG 4 SP decoder application is used. This scenario shows how
the bandwidth controller adapts the assigned bandwidth and the effects
of different sampling periods and exhaustion percentage set points in the
performance of the application.
In the second scenario the MPEG 4 SP decoder is used together with a

CAL periodic pipeline application. This allow us to evaluate the bandwidth
controller of the CAL MPEG 4 SP decoder at different service levels.
The information related to the decoder and pipeline applications is

shown in Table 7.1. The importance values of the decoder and the pipeline
application are 1 and 10 respectively, which implies that the pipeline
application is more important than the decoder application.
In this section the terms used bandwidth and assigned bandwidth will

be used instead of used budget and assigned budget respectively.

Implementation Considerations

The decoder is connected to an Axis network camera that streams MPEG
4 SP frames. The decoder has two partitions, three service levels, and can
report its happiness value to the resource manager. When the decoder
is required to switch to a lower service level it configures the camera
to reduce the frames per second (fps) and resolution in order to reduce
the resources required to decode the video frames. The happiness is a

Table 7.1 Service level table of the decoder and pipeline applications

Application I SL QoS BW Granularity BWD
name [%] [%] [ms] [%]
Decoder 1 0 100 120 100 [60, 60]

1 80 100 330 [50, 50]
2 60 40 400 [20, 20]

Pipeline 10 0 100 80 20 [40, 40]
1 90 54 40 [27, 27]
2 70 32 70 [16, 16]

80



7.3 Example

Figure 7.10 MPEG 4 SP application.

boolean value which indicates if the resulting frame rate of the displayed
video corresponds to what can be expected at the current service level.
Figure 7.10 shows the internal structure of the MPEG 4 SP application.
The periodic pipeline application has two partitions and three service

levels. This application is intended to model a typical rate-based stream-
ing application. The structure of the application is shown in Figure 7.11.
The application has two partitions and consists of four parallel pipelines,
where each pipeline consists of four actors: one producer actor, two for-
ward actors, and one consumer actors. The producer is triggered by a
clock token from the clock system actor. When triggered it generates a
token that enters a feedback loop where the number of loops taken de-
pends on a parameter value. Through this value it is possible to model
that the computations performed by the producer takes a certain amount
of time. After the correct number of loops the token is forwarded to the
first forward actor. This also feeds back the token for a user-dependent
number of loops before it is forwarded to the next forward actor. The final
consumer actor instead consumes the token once the feedback loops are
finished.
The DBus actor constitutes the interface to the resource manager.

When the resource manager changes the service level, it is being trans-

81



Chapter 7. Bandwidth Adaption

Figure 7.11 Periodic pipeline application. The dashed rectangles repre-
sent the different partitions.

lated into a corresponding sampling period for the clock actor. Finally, the
happiness actor implements a keyboard interface through which the user
interactively can change the happiness of the application, in which case
the value is forwarded to the resource manager over the D-Bus.
The periodic pipeline application has three service levels where the

service levels correspond to different sampling periods. Although the
amount of computations performed per sampling period is the same inde-
pendently of the sampling period, that is, the required budget is the same,
the required bandwidth gets smaller as the service level value increase.
The delay of the application in the different service levels are equal to the
sampling periods.
The values of the different constants of the bandwidth controllers are

shown in Table 7.2. In the achieved QoS feedback, the value of the constant
K was set to 1.1. This constant as well as the ones shown in Table 7.2
were used for both applications.
The experiment is carried out in a dual core system with resource

availability of each core set to 90%. The sampling period for the two sce-

Table 7.2 Tuning constants of the bandwidth controller based on re-
source utilization feedback.

Outer controller Inner controller

S1 S2 S3 S1 S2

a 0.0625 0.5 - 0.01 0.025
b 0.125 0.75 - - -
c - 2 2 - -

82



7.3 Example

Figure 7.12 Resources adaption for VP0 of the CAL SP decoder appli-
cation.

narios is 10Pi, where Pi is the server period of the application i that is
being controlled. Notice that the server period varies with the service level
for the periodic pipeline application. An exception occurs in two of the ex-
periments in scenario 1, where the sampling interval corresponds to 5Pi.
The size of the time windows to do the statistical measurements, that is
N, was set to 5hi, where hi is the sampling period of the application i. In
order to evaluate the different input and output signals of the bandwidth
controllers, the UB, AB and EP signals are normalized to values between
0 and 1.

Scenario 1: MPEG 4 SP Decoder Application

For the first scenario three different experiments are carried out. In the
first experiment EPSP is set to [0.1, 0.18]. Figure 7.12 shows the band-
width adaption for virtual processor 0 (VP0) of the decoder application.
The UB (green), AB (red) and EP (blue) are shown in the first two
plots. The transitions between the different states of the outer controller
are shown in the last plot.
At time t = 0 the decoder application registers with the resource man-

ager, which assigns service level 0 to the application. This produces an
initial bandwidth distribution of 0.6 to both virtual processors. At the be-

83



Chapter 7. Bandwidth Adaption

(a) Decoding without disturbance (b) Decoding with disturbance

Figure 7.13 Images of the video generated by the CAL MPEG 4 SP
decoder application.

ginning the state machine of the outer controller is in S0 which is shown
as value 0 in the lower plot. At this point the resource manager collects
information about the trend of the UB. After sometime it begins to gener-
ate the statistical measurements required by the outer controller. Thus,
the outer controller begins to switch among states S1 to S4. One can
observe that when decreasing AB there is a back and forth transition
between states S1 and S4, which provides a smoother decrease of AB.
Around time t = 220 a disturbance occurs which increases the resource
consumption and gives rise to a deviation of EP from the set point EPSP.
This is corrected by increasing AB. This is a combination of the actions
of the states S2 of the outer and the inner controller.
It is important to remark that each value in the Time interval axis in

Figure 7.12 corresponds to one sampling interval, which in this case is
equal to one second.
The disturbance consists of introducing a moving person in the image.

This increases the complexity of the frames that must be decoded. At the
same time it increases the amount of resources needed by the decoder
application to produce an image that satisfies the QoS requirements. The
images of the video generated can be seen in Figure 7.13.
In the second experiment the sampling time is reduced and EPSP is set

to [0.1, 0.15]. Figure 7.14 shows the bandwidth adaption for both virtual
processors of the application. A disturbance was also introduced between
time t = 200 and t = 220. For this experiment each measurement point
in the Time interval axis corresponds to a measurement done each 0.5
seconds. One can notice that the adaption in this case is much faster
than in the previous experiment.
In the third experiment the sampling time is the same as in the pre-

vious experiment. The exhaustion percentage set point EPSP is set to

84



7.3 Example

Figure 7.14 Resources adaption of the CAL SP decoder application for
VP0 and VP1.

[0.05, 0.1]. Similar to the previous experiment the disturbance is present
between time t = 220 and t = 250. In this case EPSP is closer to an
ideal situation of having a used bandwidth UB smaller than the assigned
bandwidth AB during all the sampling intervals. Figure 7.15 shows the
final results of the resources adaption for the virtual processors of the
decoder application.
The outliers observed in the EP are caused by lack of synchronization

between the activation time of the tasks within the virtual processors and
the replenishing time of the reservation assigned bandwidth AB.
One can notice in the figure that the bandwidth controllers are able

to keep the EP close to 0 most the time without wasting the bandwidth
resources. This means that the application does not need 120% of band-
width in order to have a good performance.

Scenario 2: MPEG 4 SP Decoder and Pipeline Applications

For the second scenario the upper and lower bounds of the exhaustion
percentage set point, that is, EPSL and EPSU were set to 0.1 and 0.15
respectively. These bounds were used for both applications. Figure 7.16
shows the used bandwidth UB, the assigned bandwidth AB and the ex-
haustion percentage EP signals of the two virtual processors VP0 and
VP1 of the decoder application.

85



Chapter 7. Bandwidth Adaption

Figure 7.15 Resources adaption of the CAL SP decoder application.

At time t = 0 the decoder application registers with the resource man-
ager. Since there is no other application executing on the system, the
resource manager assigns the highest service level 0 to the application,
which corresponds to an initial assigned bandwidth AB equal to 0.6. After
registration the bandwidth controllers adapt the assigned bandwidth AB
in each of the VPs trying to keep the EP within EPSP. If the EP is greater
than 0.15 the bandwidth controllers increment the AB. The decoder ap-
plication becomes unhappy at time t = 10 and t = 210 which causes the
bandwidth controllers to increment the allocated bandwidth until the ap-
plication is happy again. The periodic pipeline application registers with
the resource manager at time t = 240. Since this application has higher
importance than the decoder, the resource manager assigns service level
0 to the pipeline application and reduces the service level of the decoder
application from 0 to 1. The initial assigned bandwidth of the decoder ap-
plication at the new service level equals 0.5, which later on is decreased
by the bandwidth controllers. Around time t = 410, the pipeline appli-
cation unregisters, this increases the amount of free CPU resources, and
triggers a new service level assignment for the decoder application, which
in this case increases from service level 1 to service level 0.
It is important to remark that the time scale in the figure changes

when the service level changes.

86



7.3 Example

Figure 7.16 Resources adaption of the CAL SP decoder application.

87



8

Adaption and Learning

The temporal behavior of the registered applications is initially unknown
to the resource manager. The only available information at this point for
the resource manager is what is provided by the service level table of each
application. However, the service level table must be considered just as
an initial model of the application which is not completely accurate.
For the resource manager, the implemented feedback techniques pro-

vide in first place the means to adapt at runtime the resources provided to
the registered applications. This guarantees that the performance crite-
ria based on resource utilization and/or achieved QoS is always satisfied.
In second place they also provide knowledge about the real amount of
resources needed by the applications, which may differ from the initial
information provided by the service level table.

8.1 Service Level Table Inaccuracy

The application developer specifies offline each of the values in the service
level table. The information used by the developer to define these values
includes the internal structure of the application, the level of intercon-
nection and communication of the different components of this structure,
the hardware platform, and the nature of the data to be handled.
Despite having a great deal of information about the internal topology

and networking of the application, the information about the data is some-
thing that can be certainly known only at runtime. Consider for instance
the CAL MPEG 4 SP decoder application from Chapter 7. Depending on
the nature of the decoded frames, the amount of resources needed may
vary substantially for the same service level.
Therefore, the resource manager must be able to handle uncertainties

in the initial model and to tune the values specified in it.

88



8.2 Resource Allocation Beyond Service Level Specifications

8.2 Resource Allocation Beyond Service Level

Specifications

The lack of accuracy of the values defined in the service level table can
produce two different scenarios. In the first scenario the application may
require less resources than the ones initially specified. In such a case
the bandwidth controllers can adapt the allocated resources to the real
needs of the application, and reallocate the unused resources to other
applications if needed.
In the second scenario the application may require more resources

than the ones initially specified. This is the worst case scenario due to
the performance criteria of the bandwidth controllers may not be sat-
isfied. This means that although the bandwidth controllers provide the
maximum assigned bandwidth, the application will not be able to have a
good performance. This of course could reduce the provided QoS.
In order to avoid this problem, the resource manager must be able to

allocate more resources than what is initially specified. This procedure
must be done in a systematic way that considers the resource limitations
of the system, and specifies the rules or policies under which more re-
sources can be provided.
The maximum assignable bandwidth of each core of the system must

be considered when increasing the assigned bandwidth. In order to sat-
isfy the schedulability condition. The policies to increase the assigned
bandwidth specify that:

• A virtual processor of an application can be assigned more resources
if there is available free bandwidth.

• A virtual processor of an application can take bandwidth from other
virtual processors that are less important, and are executing with
a bandwidth that is larger than what was initially assigned during
registration.

To understand these policies a simple example is included. Figure 8.1
shows the additional bandwidth allocated for a virtual processor of appli-
cation 1. In the figure BWM is the maximum assignable bandwidth of the
core, that is 90%, where the virtual processor is executing. The maximum
assigned bandwidth ABM1 (dotted red line), corresponds to the initial
bandwidth distribution value assigned during registration. At time t0 the
assigned bandwidth AB1 corresponds to ABM1, f0 is the free available
bandwidth which can be assigned if needed. The bandwidth controller
continuously adapts AB1, and at time t1 the free available bandwidth in-
creases. This free resource could be allocated to other virtual processor
executing on the same core. The resource manager begins to allocate more

89



Chapter 8. Adaption and Learning

Figure 8.1 Bandwidth assignment beyond service level specifications.

resources to the application at time t2. The virtual processor of a new reg-
istered application is assigned to the same core at time t3, this forces AB1
to return to ABM1. After sometime at time t4 the bandwidth controller of
the new virtual processor release unused resources which are taken and
allocated to the first application.

8.3 Service Level Table Update

In either of the two scenarios, the bandwidth controllers obtain runtime
information about the real resource consumption of the applications. Thus,
the resource manager is able to determine the adequate amount of re-
sources needed by the application at an specific service level.
The next natural step would be to update some of the values in the

service level table. These values include the bandwidth and the bandwidth
distribution at each service level. A complete update of these values is only
possible if the application has been assigned each service level at some
point during its execution time. Otherwise only a partial update can be
carried out.
The policies to update the bandwidth and bandwidth distribution val-

ues at a particular service level specify that:

• The application has been assigned that particular service level at
least once during its execution time.

• The update is carried out after the application is assigned a new
service level. The values to be updated correspond to the previous

90



8.4 Example

service level. These values are equal to the assigned bandwidth and
bandwidth distribution prior to the new service level assignment.

• In case the same service level has been active more than once, the
updated values correspond to the largest ones among the last three
updates carried out for the same service level.

The last policy gives the possibility to discard old data that does not
provide new information to the update process.

8.4 Example

This section will show the functionality of the service level table update
for the CAL MPEG 4 SP decoder application. To force the service level
change of the decoder application, the CAL periodic pipeline application
is used.
The original service level table for both of the applications is shown in

Table 8.1.

Implementation Considerations

The experiment is carried out in a dual core system where the resource
availability of each of the cores is set to 90%. The sampling time is set to
5Pi, where Pi is the period of the application i that is being controlled.
The exhaustion percentage set point EPSP is set to [0.05, 0.1]. The tuning
parameters of the bandwidth controllers are the same as in Section 7.3
(see Table 7.2). For a better visualization of the results the input and out-
put signals of the bandwidth controller are normalized to values between
0 and 1.

Table 8.1 Original service level table of the decoder and pipeline appli-
cations

Application I SL QoS BW Granularity BWD
name [%] [%] [ms] [%]
Decoder 1 0 100 120 100 [60, 60]

1 80 100 330 [50, 50]
2 60 40 400 [20, 20]

Pipeline 10 0 100 80 20 [40, 40]
1 90 54 40 [27, 27]
2 70 32 70 [16, 16]

91



Chapter 8. Adaption and Learning

Figure 8.2 Resources adaption and bandwidth update of the CAL SP
decoder application.

Service Level Table Update

The resource adaption and bandwidth update of the decoder application
are shown in Figure 8.2. In the figure the used bandwidth UB, the as-
signed bandwidth AB, and the exhaustion percentage EP are represented
by the green, red, and blue colors respectively.
The decoder application registers with the resource manager at time

t = 0, and gets service level 0. According to the service level table this
means that each virtual processor gets an initial assigned bandwidth of
0.6. At time t = 100 a disturbance occurs which is counteracted by the
bandwidth controllers by increasing AB. The application becomes un-
happy at time t = 200 this produces a new increase of AB until the ap-
plication becomes happy again. Around time t = 250 the periodic pipeline
application registers with the resource manager. Before the new service
level assignment is performed, the resource manager updates the band-
width distribution values and the total bandwidth for the decoder appli-
cation at service level 0. The updated bandwidth distribution values of
VP0 and VP1 correspond to 0.47 and 0.33 respectively.
After registration of the pipeline application the resource manager as-

signs service level 0 to the pipeline and the service level of the decoder
application to 1. The initial assigned bandwidth of the decoder at this

92



8.4 Example

Table 8.2 Updated service level table of the decoder application

Application I SL QoS BW Granularity BWD
name [%] [%] [ms] [%]
Decoder 1 0 100 80 100 [47, 33]

1 80 49 33 [25, 24]
2 60 40 100 [20, 20]

service level equals 0.5 which later on is decreased by the bandwidth con-
trollers. At time t = 400 the pipeline application unregisters. Before the
new service level assignment is performed the resource manager updates
the bandwidth distribution and the total bandwidth values for the decoder
application at service level 1. In this case the updated bandwidth distri-
bution values of VP0 and VP1 correspond to 0.25 and 0.24 respectively.
After the updating process the decoder is assigned service level 0. This
time the initial assigned bandwidth of VP0 and VP1 correspond to 0.47
and 0.33 respectively.
For illustration reasons a new service level assignment is forced with

the registration again of the pipeline application. This reduces the service
level of the decoder from 0 to 1. In this case the initial assigned bandwidth
of VP0 and VP1 correspond to the updated 0.25 and 0.24 and not to the
original 0.5.
The update of the bandwidth distribution values as well as the total

bandwidth for service level 0 and 1 are shown in Table 8.2.
Once can notice in Figure 8.2 that the output of the bandwidth con-

trollers after the update is more steady and almost constant. This is the
result of having a model of the application that is tuned at runtime.

93



9

Adaption towards changes

in resource availability

The resource manager is able to adapt how resources are distributed
when the application requirements change and to adapt the applications
to changes in resource availability. In this last case, it has so far been
assumed that the available amount of system resources is constant. How-
ever, this is also subject to changes over time, specially if the system
supports power management and/or thermal control.
Not only the available system resources may change dynamically, but

also the significance that each application may have for the user at dif-
ferent points in time. This implies that the importance of an application
with respect to others may change dynamically.

9.1 Changing Resource Availability

The system power consumption can become very significant when the
total computational load generated by the registered applications is too
high. This will increase the temperature of the system chips. One way to
prevent failures due to overheating is to limit the computational load or
utilization of the system.
The approach described in [Romero Segovia et al., 2011] which uses a

single core platform, combines a PI controller for thermal control of the
chip and the resource manager described in the previous chapters. Fig-
ure 9.1 shows the proposed system model. The thermal controller keeps
the temperature at an acceptable temperature for the processor. The re-
source manager dynamically allocates resources to each application on the
system. In the figure T and TR are the current temperature of the system,
and the reference temperature respectively. This last value is defined by
the system designer. The values U, Umin, Umax and UL correspond to the

94



9.2 Changing Application Importance Values

Figure 9.1 System model for thermal control in a single core.

utilization of the system, the lower and upper utilization bounds and the
utilization limit defined by the thermal controller respectively.
The input Umin represents the minimum utilization required by the

applications to provide the lowest permissible QoS. The input Umax is the
maximal available utilization defined by the employed scheduling policy.
The output of the thermal controller UL decides the maximum amount
of bandwidth available to the resource manager for allocation to applica-
tions. A change in UL could trigger new service level assignments for the
registered applications.
The extension of this approach to multicore systems would require the

implementation of thermal controllers for each of the cores. The resource
manager would require to dynamically pack the virtual processors onto as
few physical processors as possible. This would make it possible to turn off
cores. The functionality for this, that is, to be able to dynamically migrate
virtual processors and their tasks is already available and was explained
in Chapter 6.
The service level assignment, the bandwidth distribution as well as the

bandwidth adaption functionalities would still be used on this extension.
The only difference is that they would be subject to the constraint defined
by UL.

9.2 Changing Application Importance Values

The significance that the user may give to the running applications may
also change over time. This means that the user may want to change the
importance values of the registered applications at runtime. In this case
the resource manager may have to redistribute the resources. This will
possibly require new service level assignments for the registered applica-
tions, and change how the bandwidth is distributed among the cores.

95



Chapter 9. Adaption towards changes in resource availability

Table 9.1 Service level table of application A1, A2 and A3

Application I SL QoS BW Granularity BWD
name [%] [%] [ms] [%]
A1 10 0 100 160 40 [40, 40, 40, 40]

1 80 120 50 [30, 30, 30, 30]
A2 1 0 100 110 20 [20, 30, 30, 30]

1 90 55 40 [10, 15, 15, 15]
2 70 35 70 [ 5, 10, 10, 10]

A3 100 0 100 75 20 [20, 15, 40]
1 70 60 100 [10, 10, 30]

9.3 Example

This section will show the results obtained when the resource availability
as well as the application importance values are subject to changes. The
chosen scenario contains three applications A1, A2 and A3. Table 9.1
shows the service level information provided by the three applications and
their importance values in column I. Originally the resource availability
of each of the cores in the four core system is set to 90%.
Figure 9.2 shows the assigned service level and the bandwidth distri-

bution of each of the applications after their registration with the resource
manager. The bandwidth distribution policy is packed distribution.

Changing Resource Availability

For the first experiment the resource availability of the processor 4 is set
to 0. This change could be generated by a power management controller.
Figure 9.3 shows how application A2 receives a new service level. This is
not surprising since this application is the one that contributes the least
to the overall QoS. After the new service level assignment migration of

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 1 55 [10, 15, 15, 15]
A3 0 75 [20, 15, 40]

Figure 9.2 Registration of applications A1, A2 and A3.

96



9.3 Example

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 2 35 [ 5, 10, 10, 10]
A3 0 75 [20, 15, 40]

Figure 9.3 New distribution and service level assignments of the appli-
cations after changes in resource availability.

App. SL BW BWD
name [%] [%]
A1 0 160 [40, 40, 40, 40]
A2 0 110 [20, 30, 30, 30]
A3 1 40 [10, 10, 30]

Figure 9.4 New distribution and service level assignment of the appli-
cations after changes in the importance values.

the virtual processors of A2 to the other processors is possible.

Changing Application Importance Values

For the second experiment the importance values of A1, A2 and A3 are
changed to 100, 10 and 1 respectively. This means that the importance of
application A2 is increased. This produces a new service level assignment
for A2 which increases to 0, and for A3 which decreases to 1. The new
bandwidth distribution is shown in Figure 9.4.

97



10

Application Examples

This chapter briefly describes different applications developed based on
the resource management framework described in Chapters 3-9. The ap-
plications were all developed as demonstrators [Årzén et al., 2011a] in the
ACTORS project. Most of the applications were implemented in CAL.
The main objective for implementation of the demonstrators was to

evaluate the capacity and the performance of the resource manager. Of
course this also includes evaluation of the performance achieved by the
applications under the control of the resource manager.

10.1 Video Decoder Demonstrator

The camera decoder application consists of an MPEG 4 SP decoder written
in CAL that is connected to an Axis M1011 network camera capable of
generating SP encoded video streams and where the frame rate and the
resolution can be changed dynamically. This application is the same that
has been used in Chapters 7, and 8.
The video frames are received over the network using a special system

actor that extracts the SP frames from the Real-Time Transport Protocol
(RTP) transport format generated by the camera and which also issues
commands to the camera to change the frame rate and resolution. High
frame rate and high resolution both implies a higher resource demand for
the decoding.
The camera decoder application is considered to be a low importance

process, its importance value is set to 100.

10.2 Video Quality Adaption Demonstrator

The video quality adaption demonstrator consists of a video player client
executing under the control of the resource manager. The video player

98



10.3 Feedback Control Demonstrator

Figure 10.1 Overview of the control demonstrator.

can either be implemented in CAL or be a legacy media player. The video
stream is received over the network from a video server. When the avail-
able resources for the decoding decrease and it needs to lower its service
level it issues a command to the video server to adapt the video stream by
skipping frames, in the case of MPEG 2 streams [Kotra and Fohler, 2010],
or by skipping macro block coefficients in the case of MPEG 4 streams.

10.3 Feedback Control Demonstrator

The feedback control demonstrator [Kralmark and Årzén, 2011] shown in
Figure 10.1, consists of the following applications all of them executing
under the control of the resource manager:

• A ball and beam controller implemented in CAL. Two instances of
this application are used.

• An inverted pendulum balancing and a swing-up controller imple-
mented in CAL. The actuator for the pendulum is an ABB industrial
robot.

• A CAL MPEG 4 SP video decoder in combination with an Axis net-
work camera which has already been described in Chapter 7.

• A GUI for the resource manager implemented in C++.

99



Chapter 10. Application Examples

Figure 10.2 The ball and beam process.

Figure 10.3 Ball and Beam Model Structure.

• An external load generator implemented in C++. The load generator
is a compute-bound application that consumes all CPU cycles given
to it. It is used to generate disturbing computing load on the system.

• A CAL pipeline application described in Chapter 7. This application
is also used to generate disturbing computing load on the system.

The Ball and Beam Controller

The ball and beam process [Årzén et al., 2011b] consists of a horizontal
beam and a motor that controls the beam angle. The measured signals
from the process are the beam angle relative to the horizontal plane and
the position of the ball. Figure 10.2 shows the process.
The dynamic model from the motor to the ball position consists of

two transfer function blocks connected in series, in which the beam angle
appears as an intermediate output signal (see Figure 10.3).
The aim of the control system is to control the position of the ball on

the beam. Due to the dynamic of the process a cascade controller is used.
The CAL implementation of the controller includes different actors:

• The D-Bus actor acts as an interface to the resource manager.

• The Service Level actor translates the service level into a suitable
sampling period, that is, in this application different service levels
correspond to different sampling periods. A high service level implies

100



10.3 Feedback Control Demonstrator

Figure 10.4 Ball and Beam CAL Model.

a short sampling period which in turn results in a high bandwidth
and high QoS obtained.

• The Exit actor implements functionality for terminating the appli-
cation using a keyboard command.

• The Merge actor merges together the sampling period from the Ser-
vice Level actor and a token from the Exit actor and forwards the
tokens to the Clock actor.

• The reference signal for the outer controller is a low frequency
square-wave signal. This is generated by a separate clock system
actor (RefGen Clock) and a reference signal generator (RefGen).

• The clock, position, outer controller, angle, inner controller, and out-
put actors constitute the cascade controller of the process.

The complete CAL implementation of the ball and beam controller is
shown in Figure 10.4.
The service level table of the ball and beam application is shown in

Table 10.1. The task to be performed is the same for all service levels. A
service level change produces a change in the controller parameters, such
that the controller is designed with respect to the new period. The change
in the parameters is necessary to have a stable closed loop system. Due
to the structure of the CAL network no parallel computations are needed,
and therefore only one core is used. The ball and beam application is
considered to be a medium importance process with an importance value
of 20.
The controller does not report any explicit happiness value to the re-

source manager. This implies that the application is always happy as long
as it is allowed to execute at one of the specified service levels. It is, how-
ever, straightforward to extend the implementation with functionality for
calculating the quality of control achieved. One possibility is to use an ac-
tor that takes the control signal and the measured ball position as inputs
and calculates a quadratic cost function. The value of this cost function is

101



Chapter 10. Application Examples

Table 10.1 Service level table for the ball and beam controller applica-
tion

SL QoS BW Granularity BWD
[%] [%] [ms] [%]

0 100 30 20 30
1 90 20 30 20
2 70 12 50 12
3 40 9 70 9

then sent to a Happiness actor that translates the value of the cost func-
tion into a happiness value taking the current service level into account.
The happiness value would then be sent as an input to the D-Bus actor
that would send a message to the resource manager.

The Inverted Pendulum Controller

The inverted pendulum controller [Årzén et al., 2011b] consists of a free
swinging pendulum that is attached to an ABB IRB 2400 industrial robot.
The inverted pendulum actuated by the industrial robot is shown in Fig-
ure 10.5
The objective of the CAL controller is to automatically swing-up the

pendulum and then balance the pendulum in its upward position. The
pendulum controller consists of four main parts:

• Signal processing logic for calculating the angular velocity of the
pendulum from the angle measurement.

Figure 10.5 Inverted pendulum actuated by an industrial robot.

102



10.3 Feedback Control Demonstrator

Figure 10.6 Inverted Pendulum CAL Model.

• The balancing controller that balances the pendulum in the upward
position. This controller is a state feedback controller using four
states: the cart position, the cart velocity, the pendulum angle, and
the pendulum angular velocity.

• The swing-up controller. This controller automatically swings up the
pendulum from the downward position to the upward position by
gradually pumping in more and more energy into the pendulum.

• Mode selection logic for deciding which one of the balancing con-
troller and the swing-up controller that should be connected to the
cart.

The pendulum controller is shown in Figure 10.6. The Sampling actor
takes a sample of the robot arm and velocity, and of the pendulum an-
gle. From the angle the angular velocity is calculated through a simple
difference approximation. The resulting four state variables are merged
together and sent the the balancing controller, the mode selector, and the
swing-up controllers which are executed in parallel. The Switch actor se-
lects the output of one of the two controllers based on the output of the

103



Chapter 10. Application Examples

Table 10.2 Service level table for the inverted pendulum controller ap-
plication

SL QoS BW Granularity BWD
[%] [%] [ms] [%]

0 100 40 10 [8, 16, 16]
1 90 20 20 [4, 8, 8]
2 70 10 40 [2, 4, 4]
3 40 5 80 [1, 2, 2]

Mode Selector actor. The limited control signal is then sent out to the
physical pendulum process. Also, in this example some of the connections
have been omitted for the sake of clarity.
The inverted pendulum controller is considered as the most important

process, its importance value is set to 100. The service level table is shown
in Table 10.2.
The calculations in the CAL network are done in parallel. The clock

actor that triggers the controller, together with the actors that handle
the D-Bus communication execute in the first virtual processor. The kine-
matics to obtain the pivot position are calculated in the second virtual
processor, while the signal processing of the angle measurement is done
in the third virtual processor. When all the states are obtained they are
sent to the swing-up and balancing controller (see Figure 10.6) which
execute in parallel in the second and third virtual processors.
The inverted pendulum controller does not report any happiness to the

resource manager, that is, it is assumed to always be happy.

The Resource Manager GUI

The resource manager GUI is implemented in C++, and is used to visualize
the internal actions of the resource manager. It runs itself under the
control of the resource manager using a single service level and a single
virtual processor with a default bandwidth of 15%, a granularity of 10000
ms and an importance value of 10.

104



11

Conclusions

11.1 Summary

The central theme of first part of this thesis is adaptive CPU bandwidth
resource management for applications executing on multicore platforms.
The work focuses on the development and implementation of different al-
gorithms for the resource manager part of the ACTORS framework. The
framework uses the fairly abstract concepts of service levels and happi-
ness to interface the applications with the resource manager. The inter-
face between the resource manager and the operating system is based on
reservation parameters and resource utilization measurements.
The implemented algorithms combine feedforward and feedback tech-

niques. As a result the resource manager is able to adapt the applications
to changes in resource availability, and to adapt how the resources are dis-
tributed when the application requirements change. Some remarks about
the outcomes of the first part of this thesis are given below.

Service Level Assignment and Bandwidth Distribution

An algorithm that uses feedforward techniques is presented. The algo-
rithm proposes a BIP formulation to assign service levels to the applica-
tions. The assignment is done according to their bandwidth requirements
and QoS provided at each service level, as well as their importance val-
ues. The formulation is very simple and uses little information to produce
a solution. The lack of more detailed information may lead to solutions
that are not schedulable, this is specially noted during the bandwidth
distribution process.
Different distribution policies are proposed and implemented to per-

form the bandwidth distribution of the registered applications. Each pol-
icy produces a particular mapping onto the physical cores of the virtual
processors of an application. This is always possible when a schedulable
solution is produced during the service level assignment.

105



Chapter 11. Conclusions

Different algorithms are presented to handle unschedulable solutions.
The algorithms include a repetitive service level assignment method and a
bandwidth compression and decompression algorithm. The first one solves
the problem in a very simple but non optimal way. The second one, more
complex in nature, provides a better solution.

Bandwidth Adaption and Learning Process

An algorithm that implements bandwidth controllers based on feedback
techniques is presented. The resource manager assigns one bandwidth
controller per virtual processor of every application. Each bandwidth con-
troller dynamically adapts the allocated CPU resources. The bandwidth
controllers are periodically activated. The adaption is performed based on
resource utilization and/or achieved QoS feedback.
For the resource utilization feedback a bandwidth cascade controller

structure is employed. The output of the controller is generated based on
the cumulative measurements of the used budget and exhaustion percent-
age, as well as statistical measurements. For the achieved QoS feedback a
simple proportional controller is used. This controller produces an output
based on the happiness measurements directly provided by the applica-
tion.
The bandwidth controllers guarantee that the allocated resources are

optimally used and not wasted. Additionally, the bandwidth controllers
provide knowledge about the real amount of resources needed by the ap-
plications, which may highly contrast with the initial information provided
by the service level table. Thus, they are able to produce a model of the
application that is tuned at runtime.

Adaption Towards Changes in Resource Availability

The different implemented algorithms are able to perform adaption to-
wards changes in resource availability. This is very relevant specially for
systems that provide support for power management and/or thermal con-
trol. The algorithms are also able to handle changes related to the signif-
icance that each application may have for the user at different points in
time.

11.2 Future Work

The work presented in this thesis can be continued in several directions.
Some of the more interesting ones are the following:

Support for power management and/or thermal control The cur-
rent functionality of the resource manager is to a large extent already pre-

106



11.2 Future Work

pared for this. A possible approach is to use a cascaded structure where
an outer power or thermal controller decides how much CPU resources
that the resource manager may use to allocate to applications. The ther-
mal controller described in Chapter 9 uses this approach, but only in the
single-core case. Accurate multicore thermal control requires sensors that
measure the temperature of the individual cores as well as a thermal con-
troller that controls the amount of resources that may be allocated on a
per core basis. A possible approach to include power management in the
system would be to add terms to the cost function in the service level
optimization that allows individual cores to be either active or inactive.

Multi-resource management The current resource manager only man-
ages the CPU time. An interesting extension would be to also allow man-
agement of other resources, for example, memory. The service level table
format was initially developed to support multiple resources. The idea
was to use periodic server abstractions for all resources and to express
the bandwidth and granularity requirements on a per resource basis.

Model-free resource adaptation The current resource manager re-
quires the application developer to provide estimates of the resource re-
quirements of the application at each service level and for the particular
hardware platform that the application should execute on. This informa-
tion can be viewed as a model of the application that is used in the service
level optimization and the bandwidth distribution. However, this approach
has certain drawbacks. In addition to the practical problems associated
with deriving this information it also limits the application portability
from one platform to another. An alternative approach would be to in-
stead base the resource adaptation only on feedback from the measure-
ments of the resource consumption and the application happiness. The
bandwidth requirement and the QoS information in the service level ta-
ble could still be used, but should now be interpreted as relative values
that the resource manager may use to, for example, decide whether to
switch service level of an application, rather than as absolute values. A
problem with a purely feedback-based approach is to decide how much
bandwidth that an application should receive initially.

107



Bibliography for Part I

Abeni, L. and G. Buttazzo (1999). “Adaptive bandwidth reservation for
multimedia computing”. In: 6th IEEE Conference on Real-Time Com-
puting Systems and Applications. Hong Kong, pp. 70–77.

Abeni, L. and G. Buttazzo (2004). “Resource reservations in dynamic real-
time systems”. Real-Time Systems 27:2, pp. 123–165.

Abeni, L., G. Lipari, and G. Buttazzo (1999). “Constant bandwidth vs.
proportional share resource allocation”. In: 6th IEEE International
Conference on Multimedia Computing and Systems. Florence, Italy,
p. 107.

Abeni, L., C. Scordino, G. Lipari, and L. Palopoli (2007). “Serving non
real-time tasks in a reservation environment”. In: Proceedings of the
9th Real-Time Linux Workshop (RTLW). Linz, Austria.

ACTORS: Adaptivity and Control of Resources in Embedded Systems

(2008). http://exoplanet.eu/catalog.php.

AQuoSA: Adaptive Quality of Service Architecture (2005). http://aquosa.

sourceforge.net/index.php.

Årzén, K.-E., V. Romero Segovia, S. Schorr, and G. Fohler (2011a). “Adap-
tive resource management made real”. In: Proceedings of the 3rd Work-
shop on Adaptive and Reconfigurable Embedded Systems, APRES.
Chicago, USA.

Årzén, K.-E., M. Kralmark, and J. Eker (2011b). Deliverable D5d: Control
Algorithms: Dataflow Models of Control Systems.
http://www3.control.lth.se/user/karlerik/Actors/M36/d5d-

main.pdf.

Bini, E., G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Arzen,
V. Romero Segovia, and C. Scordino (2011). “Resource management on
multicore systems: the actors approach”. IEEE Micro 31:3, pp. 72–81.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge
University Press, Cambridge, MA, USA, p. 194.

108



Bibliography for Part I

Burchard, A., J. Liebeherr, Y. Oh, and S. H. Son (1995). “New strate-
gies for assigning real-time tasks to multiprocessor systems”. IEEE
Transactions on Computers 44:12, pp. 1429–1442.

Buttazzo, G. C., M. Caccamo, and L. Abeni (2002). “Elastic scheduling
for flexible workload management”. IEEE Transactions on Computers
51:3, pp. 289–302.

Craciunas, S., C. Kirsch, H. Payer, H. Röck, and A. Sokolova (2009). “Pro-
grammable temporal isolation through variable-bandwidth servers”.
In: Proceedings of the Symposium on Industrial Embedded Systems
(SIES). Lausanne, Switzerland, pp. 171–180.

Cucinotta, T., L. Palopoli, L. Marzario, and G. Lipari (2008). “AQoSA -
adaptive quality of service architecture”. Software - Practice and Ex-
perience 39:1, pp. 1–31.

D-Bus. http://www.freedesktop.org/wiki/Software/dbus.

Dhall, S. K. and C. L. Liu (1978). “On a real-time scheduling problem”.
Operation Research 26:1, pp. 127–140.

Eker, J. and J. Janneck (2003). CAL Language Report. Tech. rep. ERL
Technical Memo UCB/ERL M03/48.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New
York, NY, USA.

GLPK: GNU Linear Programming Kit. http://www.gnu.org/s/glpk/.

Gomory, R. E. (1958). “Outline of an algorithm for integer solutions to
linear programs”. Bulletin of the American Mathematical Society 64,
pp. 275–278.

Heiser, G. (2008). “The role of virtualization in embedded systems”. In:
Proceedings of the 1st workshop on Isolation and integration in embed-

ded systems. Glasgow, Scotland, pp. 11–16.

Johson, M. (1991). Superscalar Microprocessor Design. Prentice Hall, New
Jersey, USA.

Kassler, A., A. Schorr, C. Niedermeier, R. Schmid, and A. Schrader (2003).
“MASA - a scalable qos framework”. In: Proceedings of Internet and
Multimedia Systems and Applications (IMSA). Honolulu, USA.

Knight, W. (2005). “Two heads are better than one [dual-core processors]”.
IEEE Review 51:9, pp. 32–35.

Kotra, A. and G. Fohler (2010). “Resource aware real-time stream adap-
tation for MPEG-2 transport streams in constrained bandwidth net-
works”. In: Proceedings of the IEEE International Conference on Mul-
timedia and Expo (ICME). Singapore, pp. 729–730.

109



Bibliography for Part I

Kralmark, M. and K.-E. Årzén (2011). Deliverable D5b: Control Demon-
strator. http://www3.control.lth.se/user/karlerik/Actors/M36/

d5b-main.pdf.

Lamastra, G., G. Lipari, and L. Abeni (2001). “A bandwidth inheritance
algorithm for real-time task synchronization in open systems”. In: Pro-
ceedings of the 22nd IEEE Real-Time System Symposium (RTSS). Lon-
don, UK, pp. 151–160.

Land, A. H. and A. G Doig (1960). “An automatic method of solving dis-
crete programming problems”. Econometrica 28:3, pp. 497–520.

Lauzac, S., R. Melhem, and D. Mossé (2003). “An improved rate-monotonic
admission control and its applications”. IEEE Transactions on Com-
puters 52:3, pp. 337–350.

Lee, E. A. (2006). “The problem with threads”. IEEE Computer 39:5,
pp. 33–42.

Lee, E. A. and D. Messerschmitt (1987). “Static scheduling of synchronous
data flow programs for digital signal processing”. IEEE Transactions
on Computers C-36:1, pp. 24–35.

Lee, E. A. and T. Parks (1995). “Dataflow process networks”. Proceedings
of the IEEE 83:5, pp. 773–801.

Li, B. and K. Nahrstedt (1999). “A control-based middleware framework
for quality-of- service adaptations”. IEEE Journal on Selected Areas
in Communications 17:9, pp. 1632–1650.

Li, B. and K. Nahrstedt (2001). “Impact of control theory on QoS adapta-
tion in distributed middleware systems”. In: Proceedings of the Amer-
ican Control Conference. Arlington, VA, USA, pp. 2987–2991.

Lipari, G. and E. Bini (2005). “A methodology for designing hierarchi-
cal scheduling systems”. Journal of Embedded Computing - Real-Time
Systems (Euromicro RTS-03) 1:2.

Lipari, G. and C. Scordino (2006). “Linux and real-time: current ap-
proaches and future opportunities”. In: IEEE International Congress
ANIPLA. Rome, Italy.

Liu, C. L. (1969). “Scheduling algorithms for multiprocessors in a hard
real-time environment”. JPL Space Programs Summary 37–60 2,
pp. 28–31.

Liu, C. L. and J. W. Layland (1973). “Scheduling algorithms for multi-
programming in a hard-real-time environment”. Journal of the ACM
20:1.

López, J. M., M. García, J. L. Díaz, and D. F. García (2003). “Utiliza-
tion bounds for multiprocessor rate-monotonic scheduling”. Real-Time
Systems 24:1, pp. 5–28.

110



Bibliography for Part I

Lu, C., J. Stankovic, G. Tao, and S. H. Son" (1999). “Design and evaluation
of a feedback control edf scheduling algorithm”. In: Proceedings of the
20th IEEE Real-Time Systems Symposium. Arizona, USA, pp. 56–67.

Manica, N., L. Abeni, L. Palopoli, D. Faggioli, and C. Scordino (2010).
“Schedulable device drivers: implementation and experimental re-
sults”. In: Proceedings of the 6th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT).
Brussels, Belgium, pp. 53–62.

Mercer, C. W., R. Rajkumar, and H. Tokuda (1993). “Applying hard real-
time technology to multimedia systems”. In: Workshop on the Role
of Real-Time in Multimedia/Interactive Computing System. Raleigh-
Durham, NC, USA.

Nesbit, K. J., M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J.
E. Smith (2008). “Multicore resource management”. IEEE Micro 28:3,
pp. 6–16.

Palopoli, L., L. Abeni, and G. Lipari (2003). “On the application of hy-
brid control to cpu reservations”. In: Proceedings of the Conference on
Hybrid Systems Computation and Control (HSCC03). Prague, Czech
Republic, pp. 389–404.

Parekh, A. K. and R. G. Gallager (1993). “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case”. IEEE/ACM Transactions on Networking 1:3, pp. 344–357.

Petrou, D., J. W. Milford, and G. A. Gibson (1999). “Implementing lottery
scheduling: matching the specializations in traditional schedulers”.
In: ATEC’99: Proceedings of the Annual Technical Conference on 1999
USENIX Annual Technical Conference. Monterey, California.

Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP.
McGraw-Hill, New York, NY, USA.

Rajkumar, R., K. Juvva, A. Molano, and S. Oikawa (1998). “Resource
kernels: a resource-centric approach to real-time and multimedia sys-
tems”. In: SPIE/ACM Conference on Multimedia Computing and Net-
working. Boston, Massachusetts, USA, pp. 150–164.

Real, J. and A. Crespo (2004). “Mode change protocols for real-time sys-
tems: a survey and a new proposal”. Real-Time Systems 26:2, pp. 161–
197.

Rizvanovic, L. and G. Fohler (2007). “The MATRIX: a framework for real-
time resource management for video streaming in networks of het-
erogeneous devices”. In: The International Conference on Consumer
Electronics 2007. Las Vegas, USA, pp. 219–233.

111



Bibliography for Part I

Rizvanovic, L., D. Isovic, and G. Fohler (2007). “Integrated global and
local quality-of-service adaptation in distributed, heterogeneous sys-
tems”. In: The 2007 IFIP International Conference on Embedded and
Ubiquitous Computing. Taipei, Taiwan.

Romero Segovia, V. and K.-E. Årzén (2010). “Towards adaptive resource
management of dataflow applications on multi-core platforms”. In:
Proceedings Work-in-Progress Session of the 22nd Euromicro Confer-

ence on Real-Time Systems, ECRTS. Brussels, Belgium, pp. 13–16.

Romero Segovia, V., M. Kralmark, M. Lindberg, and K.-E. Årzén (2011).
“Processor thermal control using adaptive bandwidth resource man-
agement”. In: Proceedings of the 18th IFAC World Congress. Milan,
Italy, pp. 123–129.

Scordino, C. (2007). Dynamic Voltage Scaling for Energy-Constrained
Real-Time Systems. PhD thesis. Computer Science Department, Uni-
versity of Pisa, Pisa, Italy.

Shapiro, J. F. (1968). “Group theoretic algorithms for the integer pro-
gramming problem 2: extension to a general algorithm”. Operations
Research 16:5, pp. 928–947.

Stankovic, J., T. Abdelzaher, M. Marleya, G. Tao, and S. Son (2001). “Feed-
back control scheduling in distributed real-time systems”. In: Proceed-
ings of the Real-Time Systems Symposium (RTSS). London, England,
p. 59.

112



Part II

Measurement Noise Filtering

for PID Controllers





12

Introduction

12.1 Motivation

The PID controller is by far the most common way of using feedback.
Most PID controllers are actually PI controllers, were derivative action
is not used because of the difficulties to tune the derivative gain [Gerry,
2002], and its sensitivity to measurement noise. Tuning of the parameters
of the PID controller is typically a compromise between robustness and
performance [Garpinger et al., 2012], a rich variety of methods for finding
the parameters have been proposed [O’Dwyer, 2009].
Special techniques for design of PID controllers have been used for a

long time, and PID control has not been in the main stream of control
design until the last decades. Research in PID control increased in the
1980s, partially because of the interest in automatic tuning. There were
special IFAC symposia treating PID control in Terrassa 2000 and Brescia
2012, and several monographs on PID control appeared (see [Vilanova and
Visioli, 2012; Visioli, 2006; Åström and Hägglund, 1988; Åström and Häg-
glund, 1995; Åström and Hägglund, 2005; Johnson and Moradi, 2005]).
A drawback of feedback is that measurement noise is feed into the

system, this generates undesired control actions which may create wear
of actuators. Filtering is essential to keep the variations of the control sig-
nal generated by measurement noise within reasonable limits. Therefore
filtering is recommended for controllers with derivative action. The filter
time constant is often fixed, and sometimes it is an adjustable parameter
which is occasionally considered in the design.
In the second part of this thesis, the design of filtering is considered

an essential part of the control design, thus, simple tuning rules are de-
veloped in the classical spirit. A controller architecture consisting of an
ideal PID controller and a second order filter of the measured signal is
used. Some efficient tuning methods for controllers tuning parameters
are developed by designing controllers for a large number of processes in
a representative test batch, and correlating the controller parameters ob-

115



Chapter 12. Introduction

tained to the parameters of an FOTD model. For example, in the AMIGO
[Åström and Hägglund, 2005]method the integrated error IE is minimized
subject to constraints on the maximum sensitivities. A similar procedure
to find suitable values of the filtering time constant is used here.
It is well established to characterize load disturbance attenuation by

the integrated error IE, or the integrated absolute error IAE for a unit
step load disturbance at the process input [Shinskey, 1996]. Determining
the effects of measurement noise is straight forward if detailed models of
process and disturbances are available. Since this information is not read-
ily available for most PID control applications, simple approaches which
do not require detailed information have been found. Control actions gen-
erated by measurement noise are then characterized by the mean square
variation of the control signal (SDU), where the measurement noise is
assumed to be white and to have unit spectral density. The noise gain kn
is introduced as the ratio of the standard deviations of the control signal
and the filtered measured signal for white measurement noise.
The effective process dynamics changes when the measured signals are

filtered, and the ability to reduce effects of load disturbances is reduced.
The trade-off between load disturbance attenuation and measurement in-
jection can be illustrated by plotting IAE as a function of SDU for different
filtering time constants. Approximate expressions that give SDU and the
noise gain as a function of the controller parameters and the filtering
time constant are also given.
By exploring the test batch consisting of 135 processes it is shown that

simple rules for finding the filter time constant can be obtained for the
tuning rules, Lambda, SIMC and AMIGO. The formulas contain a tun-
ing parameter α which controls the degree of filtering and the trade-offs
previously described. Simple rules for how the parameters of the FOTD
model and the controller parameters are influenced by filtering are also
given. Experiments are performed to show the practical relevance of the
results.

12.2 Outline

The second part of this thesis is organized as follows: Chapter 13 pro-
vides the relevant background and mentions related research. Chapter
14 presents the criteria used for filter design, and describes the effects of
filtering in the controller. The iterative method initially used for filtering
design is explained in Chapter 15, together with assessment of the method
for processes with different characteristics. Based on the results obtained,
Chapter 16 proposes simple tuning rules to calculate the filter time con-
stant based on the parameters of the nominal FOTD model, and of the

116



12.2 Outline

nominal controller. Chapter 17 shows the effects of filtering on process dy-
namics, and proposes simple equations to account for the added dynamics.
The results are then used to describe the complete tuning procedure to
calculate the filter time constant, and the controller parameters. Exper-
imental results for PID and PI control using the tuning procedure are
presented in Chapter 18, where the controller parameters are calculated
using AMIGO, Lambda, and SIMC rules. Chapter 19 shows a summary
of the results obtained with the second part of this work, and provides
some directions for possible future work.

117



13

Background

A rational approach to control design starts with models of the process
and its environment, and a collection of requirements from what is ex-
pected from the closed loop system. Design of controllers can then be done
in different ways. One approach is to use optimization, this requires to
combine all requirements into a lossfunction. However, this poses difficul-
ties in assigning weights to the different specifications. Another approach
is to consider design as a trade-off between the different requirements.
Independent of which approach is used, the selection of the controller and
its parameters must be done in such a way that reasonable closed-loop
properties that match the specifications are obtained.
This thesis will consider linear SISO systems, which can be described

by the block diagram structure shown in Figure 13.1. The feedback loop
consists of the controller C, and the process P. The system is influenced
by the reference signal or set-point ysp, the load disturbance d, and the
measurement noise n. Internally the figure shows the error signal e, the
control signal or manipulated variable u, the output or process variable
y, and the undistorted process output x.
Some important characteristics of the system can be disclosed from

the input-output relations that exist between these signals. Thus, the

n

x
C P

−1

ye uysp

d

ΣΣΣ

Figure 13.1 Block diagram of a simple feedback loop.

118



13.1 Simple Process Models

following relations can be obtained

Y = P

1+ PC D +
1

1+ PC N

U = − PC

1+ PC D −
C

1+ PC N
(13.1)

where Y, U , D, and N are the Laplace transforms of y, u, d, and n, re-
spectively. No relations to the reference signal have been included because
setpoint response can be handled using setpoint weighting as described
in [Horowitz, 1963, p 74-76], and will not be needed in this thesis.
The transfer functions described in Equation (13.1) are also known as

the Gang of Four [Åström and Hägglund, 2005], and they describe how
the system reacts to load disturbances and measurement noise.

13.1 Simple Process Models

Modeling of processes can be done based on physical laws, or experimental
data. Here the focus is given to the second case, since this is the kind of
modeling that is normally used in process control.

The FOTD Model

The FOTD model, also known as First Order Time Delay model, is a
simple approximation of processes which have a monotone response to
excitation signals, and which are very common in process control.
The FOTD model is given by

P(s) = K

1+ sT e
−sL (13.2)

The model includes a first order system and a time delay with three
parameters K , L, and T , which are known as the static gain, the apparent
time delay, and the apparent time constant, respectively.
The parameters can be obtained in different ways, one widely used

in industry is based on a step response experiment, also known as a
bump test. Figure 13.2 shows the process response to a step change in u
of magnitude ∆u. The static gain K is obtained from the ratio between
the output and the input variation, that is, K = ∆y/∆u. The apparent
time delay L results from the intercept of the steepest tangent of the
measurement signal, that is, smax with the horizontal axis. The apparent

119



Chapter 13. Background

Figure 13.2 Monotonic response of a process to a step excitation signal.

time constant T can be determined in different ways, for instance

T = t63 − L (13.3)
T1 = ∆y/smax (13.4)
T2 = Tar − L (13.5)

where t63 is the time when the measurement signal has reached 63%
of the final value, and Tar is the average residence time. Figure 13.2
shows the apparent time delay L, and the apparent time constant for the
representations given by equations (13.3), and (13.4). The shaded area in
the figure can be used to calculate the average residence time, which is
given by Tar = A0/K .
The parameters can also be obtained by model reduction from a more

complex model, a common procedure is Skogestad’s half rule [Skogestad,
2003].
In this thesis, a bump test will be used to calculate the parameters

of the FOTD model, the apparent time constant will be calculated using
Equation (13.3), which here will be named as the 63% rule.
The parameters L, and T can also be used to characterize process

dynamics through the normalized time delay τ [Åström and Hägglund,
2005] defined as

τ = L

L+ T (13.6)

which has the property 0 ≤ τ ≤ 1. Processes with small values of τ have
lag-dominant dynamics, for high values of τ delay dynamics are dominant,
while for values in between balance dynamics are expected.
The parametrization given in equation (13.2) allows representation of

pure time delay processes (T = 0), but it cannot represent a pure inte-
grator with finite values of the parameters. For processes with integral

120



13.1 Simple Process Models

Figure 13.3 Monotonic step response of a process with integral and time
delay characteristics.

and time delay characteristics, the parametrization given by

P(s) = Kv
s
e−sL (13.7)

is used. The parameters Kv, which is the velocity gain, and L can also
be obtained from a bump test as indicated in Figure 13.3. The velocity
gain Kv corresponds to the steepest slope of the step response and can be
calculated from the ratio y1/L.
Apart from the FOTD model, other models which have more param-

eters can be used to model process dynamics. These models such as the
SOTD, or Second Order Time Delay, require more information than the
one provided by a bump test to reliable obtain their parameters.

The Test Batch

Knowledge of the difficulties faced in industry to control processes with
different characteristics has been of great help to find new control tech-
niques, and to be aware of the different challenges that can be expected.
For this reason it is important to have representatives of the process struc-
tures encountered in process control. The Test Batch in (13.8) [Åström and
Hägglund, 2005], includes processes with lag, balanced, and delay domi-
nant dynamics. All the processes except for P8 and P9 have monotone step

121



Chapter 13. Background

responses.

P1(s) =
e−s

1+ sT
T = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3, 1.5,

2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

P2(s) =
e−s

(1+ sT)2 ,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3,
1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

P3(s) =
1

(1+ s)(1+ sT)2 ,

T = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4(s) =
1

(1+ s)n ,

n = 3, 4, 5, 6, 7, 8

P5(s) =
1

(1+ s)(1+α s)(1+α 2s)(1+α 3s) ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

P6(s) =
1

s(1+ sT1)
e−sL1 ,

L1 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1, T1 + L1 = 1

P7(s) =
T

(1+ sT)(1+ sT1)2
e−sL1 , T1 + L1 = 1

T = 1, 2, 5, 10 L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

P8(s) =
1−α s

(1+ s)3 ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

P9(s) =
1

(1+ s)((sT)2 + 1.4sT + 1) ,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

(13.8)

13.2 Controller and Filter Structures

Control and regulation of different aspects of a process are born from the
need to satisfy production requirements, as well as to keep quality levels

122



13.2 Controller and Filter Structures

of the end products within specified limits.
The most common control algorithm used in industrial control systems

is the PID controller. It consists of three components: the proportional part
P, the integral part I, and the derivative part D.
The most common representation of the PID algorithm can be de-

scribed by the transfer function

CPID(s) = Kp
(

1+ 1
sTi

+ sTd
)

(13.9)

where the controller parameters Kp, Ti, and Td are the proportional gain,
integral time, and derivative time, respectively. This representation is
known as the standard form or non-interacting form. A slightly different
representation of the controller known as the parallel form is given by

CPID(s) = kp +
ki

s
+ skd (13.10)

where ki is the integral gain, and kd the derivative gain. Obtainment of
pure proportional, integral, and derivative action of the controller, or any
combination of them is possible with finite values of the parameters.
Another common version used in commercial controllers is described

by

C′PID(s) = K ′p

(

1+ 1
sT ′i

)

(1+ sT ′d) (13.11)

this representation is known as the interacting or serial form, because the
integral and derivative terms interact. This representation can always be
converted into the non-interacting form given by Equation (13.9). The
other way around requires that the condition Ti ≥ 4Td is satisfied.
A drawback of using feedback is that measurement noise is injected

into the system (see Figure 13.1). The noise generates undesirable motion
of the actuator which may cause wear and possible break down. This is
specially true for PID controllers, where the derivative action has very
high gain for signals with high frequency.
Measurement noise can be reduced in different ways, one approach is

to filter the D part of the controller using a first order filter. Based on
the controller structure given in Equation (13.9) this can be described by

CPID(s) = Kp
(

1+ 1
sTi

+ sTd

1+ sTf

)

(13.12)

where Tf is the filter time constant, and it is often chosen as a fraction of
the derivative time, that is, T f = Td/N. This simple approach has draw-
backs as was pointed out in [Isaksson and Graebe, 2002; Visioli, 2006], and

123



Chapter 13. Background

does not guaranty significant reduction of the control signal variations,
as can be seen from the high frequency approximation of the controller
in (13.12) given by Kp(1+ N). This value represents the maximum gain
of the control signal at high frequencies.
Another approach which allows heavier filtering is described by C(s),

which results from the combination of CPID(s)G f (s), and it is given by

C(s) = Kp
(

1+ 1
sTi

+ sTd
)

1
1+ sTf + (sTf )2/2

. (13.13)

The second order filter guaranties roll-off in the controller, which means
that the controller gain goes to zero for high frequencies, as recommended
in [Åström and Hägglund, 2005]. This can also be seen in the high fre-
quency approximation of the controller which corresponds to 2KpTd/sT2f .
The use of this kind of filter can be seen as a modification of the nomi-
nal process, that is now given by P(s)G f (s). Adding a filter consequently
requires modification of the controller parameters. This will be a topic of
further discussion in the following chapters.

13.3 Control Requirements

Control system evaluation can be carried out based on certain criteria or
requirements which typically include specifications on performance and
robustness. Another performance criterion, very often neglected, is reduc-
tion of the undesirable control actions generated by measurement noise.

Robustness

To assess robustness of a system it is necessary to consider certain sta-
bility margins. Robustness of the system can be characterized by the gain
margin �m, and the phase margin ϕm given by

�m =
1

pGl(iω 180)p
, ϕm = π + argGl(iω �c) (13.14)

where Gl(s) = P(s)C(s) is the loop transfer function, ω 180 is the phase
crossover frequency, and ω �c is the gain crossover frequency.
A good property of feedback is that it can make good systems out of

bad ones. This means, that the closed-loop system is relatively insensitive
to variations in the process. Some examples of process variations include
changes in operation conditions, uncertainty in process approximation,
and equipment aging.

124



13.3 Control Requirements

Figure 13.4 Stability margins of the loop transfer function Gl , and
graphical interpretation of the maximum sensitivity Ms.

Robustness to process uncertainty can be captured through the trans-
fer functions

S(s) = 1
1+ P(s)C(s) , T(s) = P(s)C(s)

1+ P(s)C(s) (13.15)

which are the sensitivity and the complementary sensitivity functions,
respectively.
Robustness can be characterized by the maximum sensitivities Ms and

Mt which are given by

Ms = max
ω
pS(iω )p, Mt = max

ω
pT(iω )p. (13.16)

Figure 13.4 shows the Nyquist plot of the loop transfer function Gl,
the stability margins, as well as the maximum sensitivity Ms. According
to the figure, in order to keep robustness, the Nyquist curve must not be
close to the critical point. Notice that Ms provides a stronger condition for
robustness than the phase and gain margins.
A more conservative robustness condition is given by the combined

sensitivity M [Åström and Hägglund, 2005, Figure 4.15], which defines a
circle that encloses both circles defined by Ms and Mt.
Reasonable values for the robustness and stability margins, as sug-

gested in [Åström and Hägglund, 2005], are Ms,Mt = 1.2− 2, �m = 2− 5,
and ϕm = 30○ − 60○, respectively.

Load Disturbance Attenuation

Attenuation of load disturbances is often the main issue for process con-
trol. Load disturbances, which typically have low frequencies, may be of

125



Chapter 13. Background

many different types and they may enter the process in different ways.
There is a well established practice in tuning of PID controllers to charac-
terize attenuation of load disturbances by the response of the closed loop
system to a unit step load disturbance at the process input or output.
Following [Shinskey, 1996] it will be assumed that the disturbance enters
at the process input.
The transfer function from a load disturbance d at the process input

to process output y is

Gyd(s) =
P(s)

1+ P(s)C(s) = P(s)S(s). (13.17)

The performance can be expressed as the integrated absolute error
IAE or the integrated error IE

IAE =
∫ ∞

0
pe(t)pdt, IE =

∫ ∞

0
e(t)dt = Gyd(0), (13.18)

where e is the control error due to a unit step load disturbance applied
at the process input as shown in Figure 13.1. The criteria are identical
if e is positive, and close to each other if the closed loop system is well
damped.

Measurement Noise

Measurement noise which is the theme of this work will be discussed in
Chapter 14.

13.4 Controller Tuning Methods

The large amount of control loops encountered in process control industry
limits the effort that can be devoted to a single loop. Thus, tuning of
PID controllers has focused on the development of simple rules to set
the controller parameters such that reasonable closed-loop properties are
obtained. These rules are based on process models characterized by a few
parameters, such as the FOTD model.
Some know tuning methods based on the FOTD model given by Equa-

tion (13.2) include Lambda, SIMC, and AMIGO tuning, respectively. The
Lambda tuning method [Sell, 1995] is probably the most common tun-
ing rule in process control. It is based on the FOTD model, and it has
a tuning parameter Tcl, which is the desired closed-loop time constant.
The parameter is sometimes called λ , which is the reason for the name
of the method. A common choice of the design parameter is Tcl = T . This
choice is conservative for lag-dominant processes, and gives an aggressive

126



13.4 Controller Tuning Methods

tuning for delay-dominant processes. Therefore, it is often recommended
to choose Tcl proportional to the process delay L in these cases.
SIMC tuning [Skogestad, 2006] is originally based on the IMC (Inter-

nal Model Control) method [Rivera et al., 1986]. It is a modification of the
Lambda method that gives better performance for lag and delay dominant
processes. It is suggested to choose the design parameter proportional to
L instead of T , which are obtained using Skogestad’s half rule. Origi-
nally, the method used an SOTD model to produce a PID controller, a
recent modification [Grimholt and Skogestad, 2013], allows to obtain a
PID controller based on an FOTD model.
AMIGO tuning [Åström and Hägglund, 2005] or Approximate MIGO,

is based on MIGO design [Åström and Hägglund, 2005] (M constrained
Integral Gain Optimization) which maximizes the integral gain subject
to a joint sensitivity constraint M . AMIGO provides conservative robust
rules with lower performance than MIGO and robustness close to M =
1.4. The method does not include any design parameter and is only based
on the FOTD parameters.
Table 13.1 and 13.2 show the tuning parameters for the different

methodologies. Table 13.1 shows the tuning parameters for processes ap-
proximated using the FOTD model given in 13.2 for the different method-
ologies. In both tables the parameters kp, Ti, and Td belong to the con-
troller structure given by (13.9), which is in non-interacting form. The
parameters T ′i , and T

′
d in Table 13.1 are integrating time and derivative

time of the interacting controller described in (13.11). These parameters
correspond to T ′i = min{T , 4(Tcl + L)}, and T ′d = L/3. Recommended
values for the design parameter Tcl are also given in the tables.

127



C
h
a
p
ter
1
3
.
B
a
ck
g
ro
u
n
d

Table 13.1 Controller parameters using Lambda, SIMC and AMIGO tuning rules for process described
by an FOTD model.

kp Ti Td Tcl

Lambda

PI
1
K

T

(L + Tcl)
T L,T , 3T

PID
1
K

L/2 + T
L/2 + Tcl

T + L
2

TL

L + 2T L,T , 3T

SIMC

PI
1
K

(T + L/3)
(Tcl + L)

min{T + L/3, 4(Tcl + L)} L

PID
T

3KT ′i

(3T ′i + L)
(Tcl + L)

T ′i + T ′d
T ′d

1+ T ′d/T ′i
L/2

AMIGO

PI
0.15
K

+ T

K L

(

0.35− LT

(L + T)2

)

0.35L+ 13LT2

T2 + 12LT + 7L2

PID
1
K

(

0.2+ 0.45T
L

)

L
0.4L+ 0.8T
L + 0.1T

0.5LT
0.3L+ T

128



13.4 Controller Tuning Methods

Table 13.2 Controller parameters for integrating processes using SIMC
and AMIGO tuning rules.

kp Ti Td Tcl

SIMC PI
1
Kv

1
(Tcl + L)

4(Tcl + L) L

AMIGO
PI

0.35
KvL

13.4L

PID
0.45
KvL

8L 0.5L

Table 13.2 shows the tuning parameters for processes with integrating
dynamics, which use the FOTD model given in 13.7. Lambda results are
not included since it does not include such kind of processes. For SIMC
only parameters for PI control are shown, the method does not provide
PID parameters based on the model 13.7.

129



14

Filtering Design Criteria

Design of controllers for a specific process requires certain knowledge
about the physical variables that need to be controlled. This information
can be obtained through sensors. Most of the time the signals obtained
are distorted due to the presence of measurement noise. An inevitable
consequence of feedback is that the noise is introduced in the feedback
loop.
Measurement noise can generate undesired control activity resulting

in wear of actuators and reduced performance. The effects of measure-
ment noise can be alleviated by filtering of the measurement signal. Fil-
tering design is then a trade-off of different control requirements.
The discussion about the different criteria proposed to design measure-

ment noise filters begins with the selection of the different components
of the system. Figure 14.1 shows the system components as well as the
different signals that influence the system. The system consists of the
process and the controller. Depending on the characteristics of the pro-
cess P, it can be approximated using any of the FOTD models described
in Chapter 13. The controller used results from the combination of the

−1

Controller Process

G f CPID P ΣΣ
yyf u

d n

Figure 14.1 Block diagram of the system.

130



14.1 Measurement Noise

second order filter G f and the PID controller CPID given by

CPID(s) = Kp
(

1+ 1
sTi

+ sTd
)

= kp +
ki

s
+ skd,

G f (s) =
1

1+ sTf + (sTf )2/2
.

(14.1)

The combination is denoted by

C(s) = CPID(s)G f (s). (14.2)

The signals shown in the figure are the measured output y, the filtered
output yf , the control signal u, the load disturbance d and the measure-
ment noise n.

14.1 Measurement Noise

Measurement noise can have different sources, and it is typically of high
frequency. Low frequency noise produces drifting of the measured signal,
while high frequency noise produces undesired control activity.
A characterization of measurement noise in continuous time can be

done through its spectral density

Φ(ω ) = 1
2π

∫ ∞

−∞
e−iω tr(t)dt (14.3)

where r(t) is its covariance function, and it is given by

r(t) =
∫ ∞

−∞
e−iω tΦ(ω )dω . (14.4)

The spectral density shows the distribution of the noise power among
different frequencies.
For white noise disturbance signals, the spectral density is constant,

that is, Φ(ω ) = c. This poses some difficulties for analysis, since white
noise has infinite variance given by

r(0) =
∫ ∞

−∞
cdω . (14.5)

To remove this difficulty one could instead consider a signal with constant
spectral density, but limited finite variance. This is also known as band
limited white noise and is characterized by

Φ(ω ) =
{

c pω p < Ω

0 pω p ≥ Ω
(14.6)

131



Chapter 14. Filtering Design Criteria

14.2 Effects of Filtering in the Controller

Introduction of a measurement noise filter in the feedback loop changes
the qualitative behaviour of the controller. The changes depend critically
on the order of the filter and on the filter time constant. With filtering
the controller transfer function changes from CPID to C = CPIDG f .
In order to design measurement noise filters, it is necessary to first

get insights about how the properties of the controller change with the
order of the filter and the filter time constant.

PI Control

Consider a PI controller with a first order filter described by

C(s) = Kp
1+ sTi
sTi

⋅
1

1+ sTf
. (14.7)

This controller acts like a PI controller if T f is small, but proportional
action disappears when Tf = Ti because there is a pole-zero cancellation
in the controller given in Equation (14.7). The controller then becomes an
integrating controller. When T f ≥ Ti the controller acts like an I controller
with filtering.
If a second order filter is used instead, the controller becomes

C(s) = Kp
1+ sTi
sTi

⋅
1

1+ sTf + (sTf )2/2
. (14.8)

To investigate the effects of the filter, the analysis considers the Bode
plot of the controller, specifically the asymptotes of the gain curve. The
numerator of the transfer function (14.8) has a break point at ω = 1/Ti,
and the denominator has a double break point at ω =

√
2 /Tf . The shape

of the Bode plot depends qualitatively on the positions of the break points
of the numerator and the denominator. The controller has proportional
action, if the filter break point ω =

√
2/T f is located to the right of the

original controller break point ω = 1/Ti. This implies that proportional
action is lost if T f ≥

√
2Ti. Thus, the controller is a PI controller for

smaller values of Tf and an integrating controller for larger values of T f .
The effects of filtering for PI control are illustrated in Figure 14.2. The

left part shows the effects produced by a first order filter, while the right
part shows the effects when a second order filter is used.

PID Control

First consider the transfer function of a PID controller in series form with
a first order filter

C(s) = K ′p
(1+ sT ′i )(1+ sT ′d)

sT ′i
⋅

1
1+ sTf

. (14.9)

132



14.2 Effects of Filtering in the Controller

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

G
ai
n

P
h
as
e

ωTi

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

-180

-90

0

G
ai
n

P
h
as
e

ωTi

Figure 14.2 Bode plots for PI controllers with filtering. The controller
parameter is Ti = 1. The left figure shows a controller with a first order
filter, with T f/Ti = 0.5,1 and 2. The right figure shows a controller with a
second order filter, with T f /Ti

√
2 = 0.5,1 and 2. The full blue line shows

the PI controller without filter, and the red lines show the controllers with
filtering. The full red line shows the borderline case when proportional
action disappears.

From this equation it is easy to see that derivative action disappears when
Tf = T ′d. Considering that roll-off is desired for PID control, a second order
filter must be used instead, in such a case it is not so straight forward to
see when the controller becomes a PI controller.
For evaluation lets consider instead a PID controller in standard form

with a second order filter

C(s) = Kp
TiTds

2 + (Ti + Td)s+ 1
sTi

⋅
1

1+ sTf + (sT f )2/2
. (14.10)

For controllers with complex zeros, that is, Ti < 4Td, the numerator
of the controller (14.10) has a double break point at ω = 1/

√
Ti Td. With

a first order filter derivative action disappears when Tf =
√
Ti Td and

the PID controller becomes a PI controller. With a second order filter the
denominator has a break point at ω =

√
2/Tf and both derivative and

proportional action disappear for T f =
√
2Ti Td and the controller be-

comes an integrating controller. Figure 14.3 shows the effects of filtering
for PID control. The left part shows the effects produced by a first order
filter, and the right part the effects produced by a second order filter.
The series form of the controller given in Equation (14.10) exists if

Ti ≥ 4Td (see [Åström and Hägglund, 2005, p 71]), then the parameters
T ′i and T

′
d are given by

T ′i =
Ti

2

(

1+
√

1− 4Td/Ti
)

T ′d =
Ti

2

(

1−
√

1− 4Td/Ti
)

. (14.11)

133



Chapter 14. Filtering Design Criteria

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

-90

0

90

G
ai
n

P
h
as
e

ωT ′
d

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

-180

-90

0

90

G
ai
n

P
h
as
e

ωT ′
d

Figure 14.3 Bode plots for PID controllers with filtering. The controller
parameters are K = 1, Ti = 1.414 and Td = 0.707. The left figure shows a
controller with a first order filter, the filter time constants are T f = 0.2,
0.5, 1 and 2. The right figure shows a controller with a second order filter
and the filter time constants are T f /

√
2 = 0.2, 0.5, 1 and 2. The blue

curve shows controllers without filter and the red curves show controllers
with filters. Critical filter constants where the derivative action is lost are
indicated in full red lines.

For this kind of controller derivative action disappears for Tf = T ′d when
a first order filter is used, and for T f =

√
2T ′d when a second order fil-

ter is used. Figure 14.4 illustrates the Bode plots for the transfer func-
tion (14.10) when Ti ≥ 4Td for different values of the filter time constant.

Summarizing the derivative action of a PID controller disappears
when Tf =

√
2T∗
d where

T∗
d =







Ti

2

(

1−
√

1− 4Td/Ti
)

if Ti > 4Td
√
TiTd if Ti < 4Td

. (14.12)

There are differences between Figures 14.3 and 14.4. The range where
the gain curve is almost flat is much larger in Figures 14.4. The range
of filtering constants where the controller changes from PID to I in Fig-
ure 14.4, where Ti/Td = 10, is 0.1–10 but it is considerably smaller 0.2–2
in Figure 14.3, where Ti/Td = 2. The ratio Td/Ti is thus important. This
ratio depends on the characteristics of the process and on the tuning
method as shown in Figure 14.5. Notice that Ti/Td ≥ 4 for SIMC and
Lambda tuning but that the ratio is smaller for AMIGO tuning. Also no-
tice that the ratio depends strongly on the relative time delay τ . The ratio
Td/Ti is small for lag dominated and delay dominated dynamics and that
it is in the range of 2-4 for processes with balanced dynamics. We can
thus expect that the controller looks like Figure 14.4 for processes with

134



14.3 Design Criteria

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

-90

0

90

G
ai
n

P
h
as
e

ωT ′
d

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

-180

-90

0

90

G
ai
n

P
h
as
e

ωT ′
d

Figure 14.4 Bode plots of PID controllers with filtering. The controller
has the parameters Ti = 5.2, Td = 0.19, T ′i = 5.0, T ′d = 0.2. The left
figure shows a controller with a first order filter and the right figure
shows a controller with a second order filter. The blue curves shows a
controller without filtering. The red lines show controllers with the filter
time constants T f = 0.1,0.2,1, 5. The full red line shows the borderline
controller where derivative actions disappears.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

T
i/
T
d

τ

Figure 14.5 The ratio Ti/Td as a function of the normalized dead time τ
for AMIGO tuning (red), Lambda tuning (cyan), and SIMC tuning (blue).

lag dominated dynamics and like Figure 14.3 for processes with balanced
dynamics.

14.3 Design Criteria

The overall goal of the measurement noise filter design is to limit and
reduce the control actions generated by measurement noise, without re-
ducing performance and robustness too much. The fluctuations in the
control signal, as well as in the filtered output, can be computed from
the transfer functions of the process and the controller, and a character-
ization of the measurement noise, like its spectral density. Such detailed

135



Chapter 14. Filtering Design Criteria

information is rarely available for PI or PID control and therefore simple
measures must be used.
The base for the criteria proposed are the transfer functions from mea-

surement noise to the control signal, Gun, and the transfer function from
measurement noise to the filtered output, Gyf n. These transfer functions
are given by

Gun = C(s)S(s), Gy f n = G f (s)S(s), (14.13)

where S is the sensitivity function

S(s) = 1
1+ P(s)C(s) . (14.14)

Control Bandwidth

The effect of sensor noise can be characterized by the control bandwidth
ω cb [Romero Segovia et al., 2013], which is the smallest frequency where
the gain of the transfer function Gun is less than a certain value β . In
traditional definitions of bandwidth, β = −3dB = 1/

√
2. In this thesis

a slightly smaller value has been used, β = 0.1. Approximate expres-
sions for the control bandwidth for PI and PID control can be obtained
by observing that the gain of sensitivity function S(s) in Equation (14.14)
approaches 1 for frequencies higher than the gain crossover frequency
ω �c. Hence, (14.13) implies β = pGun(iω cb)p ( pC(iω cb)p for ω cb ≫ ω �c. It
then follows from equation (14.1) that

ω PIcb (
1
T f

√

2kp
β

ω PIDcb ( 2kd
βT2f

. (14.15)

Standard Deviation of the Control Signal (SDU)

The variance of the filtered process output yf and the controller output u
generated by the measurement noise are given by

σ 2u =
∫ ∞

−∞
pGun(iω )p2Φ(ω )dω

σ 2yf =
∫ ∞

−∞
pGyf n(iω )p2Φ(ω )dω

(14.16)

where Φ(ω ) is the spectral density of the measurement noise.
The expressions (14.16) are complex because of the shapes of the trans-

fer functions Gyf n and Gun and the spectral density Φ(ω ). It is rare that
detailed information about the spectral density is known. Hence, in anal-
ogy with the criterion IAE for load disturbance attenuation we will char-

136



14.3 Design Criteria

acterize measurement noise injection by

SDU = σuw =
√

∫ ∞

−∞
pGun(iω )p2Φ0dω

=
√

2π
∫ ∞

0
h2un(t)dt = ppGunpp2. (14.17)

which is the standard deviation of the control signal for white measure-
ment noise [Romero Segovia et al., 2014b] at the process output with
spectral density Φ0. The second equality follows from Parseval’s theorem
[Bochner and Chandrasekharan, 1949]. SDU is the L2 norm of the trans-
fer function Gun.
It is useful to have approximations of the criteria, like the one used

for load disturbance attenuation where IAE ( IE = 1/ki. Similar approx-
imations of ppGunpp2 given by (14.13), will now be derived.
The transfer function Gun(s) is complicated and its shape is different

for PI and PID control and for process with different dynamics, see Fig-
ure 14.6. Consider the shapes of the gain curves for PI control shown in
the top row of the figure, they have a peak for lag dominated processes
but not for balanced and delay dominated processes. For PID control there
are high peaks for processes with lag dominated and balanced dynamics
but not for the process with delay dominated dynamics. There are also
significant differences in the noise bandwidths between PI and PID con-
trol.
For low frequencies (small s) the numerator of Gun(s) is dominated

by the integral gain ki. If the static process gain P(0) = K is finite the
following approximations are valid

CPID (
ki

s
, G f (s) ( 1, S(s) (

1
1+ Kki/s

= s

s+ Kki
.

The low frequency approximation of Gun(s) is thus

Gun(s) ( G I(s) =
ki

s+ Kki
.

The variance of the output of G I(s) for white noise input, with spectral
density Φ0, can be computed analytically from Theorem 3.3 in [Åström,
1970, p. 133], which gives

σ 2I ( π
ki

K
Φ0. (14.18)

To compute the contributions of the variance for the proportional and
derivative part, the high frequency approximation of Gun(s) is needed. For

137



Chapter 14. Filtering Design Criteria

10
0

10
2

10
-1

10
0

10
0

10
2

10
-2

10
0

10
2

10
-1

10
1

10
-1

10
0

10
-1

10
1

10
-2

10
0

10
2

10
0

10
1

10
-1

10
0

10
0

10
1

10
-2

10
0

10
2

Lag dominated dynamics

P
I

P
ID

Balanced dynamics Delay dominated dynamics

Figure 14.6 Gain curves of the transfer function Gun(s) in typical cases.
The top plots show results for PI control and the bottom plots for PID
control. The different columns show examples of different dynamics, lag
dominated, balanced and delay dominated from left to right. The true gain
curves are shown in solid lines, the approximation of the I and PD parts
by blue and red dashed lines, respectively.

high frequencies S(s) ( 1 and the contributions from the proportional and
derivative parts are given by the transfer function

Gun(s) ( GPD =
kp + kds

1+ sTf + (sT f )2/2
.

The variance of the output of this transfer function when the input is
white noise with spectral density Φ0 is then

σ 2PD = π

(

k2p

Tf
+ 2 k

2
d

T3f

)

Φ0. (14.19)

The contributions from the integral part I, and the proportional and
derivative part PD, are not independent, but they are weakly correlated
because of the frequency separation. Therefore ppGunpp2 can be approxi-
mated by adding σ 2I and σ 2PD . Summarizing the following approximate

138



14.3 Design Criteria

expression for SDU is found

σ̂uw =
√

σ 2I +σ 2PD =

√

√

√

√π

(

ki

K
+
k2p

T f
+ 2 k

2
d

T3f

)

Φ0 (14.20)

where σ̂uw is the approximation of SDU or σuw. The expression given
in (14.20) can be used for processes where the static gain K is finite. For
process with integration, which have K = ∞, the first term given by ki/K
disappears.
The approximations are illustrated in Figure 14.6. The figure shows

that the approximations of Gun(s) at low frequencies given by G I(s)
(dashed blue lines), and at high frequencies given by GPD(s) (dashed
red lines) are good approximations.

Noise Gain

Measurement noise can also be characterized by the noise gain kn [Romero
Segovia et al., 2014b], which tells how fluctuations in the filtered process
output are reflected in variations of the control signal. The noise gain is
defined as

kn =
σu
σ yf
. (14.21)

If white measurement noise with spectral density Φ0 is considered at
the process output, the noise gain for white measurement noise is given
by

knw =
σuw
σ yfw

. (14.22)

Following the same ideas used to calculate SDU, the high frequency
approximation of Gyf n(s) can be used to find an approximate expression
for the noise gain, thus

Gy f n(s) (
1

1+ sTf + (sTf )2/2
The approximation is based on S(s) being close to one for high frequency.
Using this expression the variance of the filtered measured signal can be
computed analytically, thus

σ 2yf n =
π

T f
Φ0 (14.23)

Approximative expressions for the noise gain can be obtained using
Equations (14.20) and (14.23), hence

knw =
σuw
σ yfw

=

√

√

√

√

(

kiT f

K
+ k2p + 2

k2d
T2
f

)

(14.24)

139



Chapter 14. Filtering Design Criteria

It follows from Equation (14.22) that

σuw = knwσ yfw.

Thus, considering white measurement noise at the process output, the
standard deviation of the control signal is the product of two terms, the
noise gain and the standard deviation of the filtered process output. Both
terms are influenced by the noise filter. The noise gain is a convenient
characterization of the effect of sensor noise because it has a clear physical
interpretation and it can be measured. A drawback is however that it
depends on the noise spectrum as will be discussed further in Chapter 18.

14.4 Trade-off Plots

So far the focus for design of measurement noise filters was given to the
attenuation of measurement through different characterizations, such as
the control bandwidth ω cb, the standard deviation of the control signal
SDU, and the noise gain kn. However, the design must also consider ro-
bustness and performance criteria of the feedback loop. This is easy to
understand since the introduction of filtering in the loop produces modifi-
cations of the nominal process and the nominal controller which must be
considered. Thus, a compromise or trade-off between the different criteria
is necessary.
The trade-offs [Romero Segovia et al., 2014a] are illustrated in Fig-

ure 14.7, where the robustness level curves are a function of the per-
formance (IAE) and the standard deviation of the control signal (SDU).

IA
E

SDU

Robustness

Figure 14.7 Trade-offs plot showing relation between performance
(IAE), measurement noise injection (SDU), and robustness.

140



14.4 Trade-off Plots

High performance in terms of a small IAE value can be obtained with low
robustness and large control signal deviations SDU. High robustness can
be obtained if the IAE and the SDU values are large. A small SDU value
can be obtained if the robustness is low or if the IAE value is large.

141



15

Filtering Design: Iterative

Method

There are many simple tuning rules for PID controllers that give a tradeoff
between performance and robustness, but these rules do not take mea-
surement noise into account. If a controller is tuned using these rules, and
a noise filter is added afterwards, the performance and robustness will
be altered. If the filter dynamics is added to the process dynamics, the
controller can be retuned based on the new process dynamics according
to the desired tradeoff between performance and robustness of the tuning
rule. However, the new controller tuning may lead to a need to modify the
noise filter. To solve this dilemma, an iterative procedure that manages to
take all three aspects, performance, robustness, and noise injection into
account is presented in this section.

15.1 Iterative Method

The combination of the controller and the filter transfer function in (14.2)
has three parameters kp, ki, and Tf for PI, and a fourth one kd for PID,
respectively. The problem of optimizing performance subject to constraints
on robustness and noise attenuation is not convex and it requires detailed
specifications of the noise characteristics.
Adding a filter reduces the effects of measurement noise, but it also

reduces robustness and deteriorates the response to load disturbances. A
compromise is then to choose the filter so that the impact on robustness
and performance is not too large.
The filter has a significant effect on the controller transfer function, as

explained in Section 14.2. One way to determine the filter time constant
Tf is to design ideal controllers and to add the filter afterwards, however,
this leads to conservative design with modest filtering. For severe mea-
surement noise, this approach is not effective and other methods must be

142



15.2 Convergence Condition

considered. There are methods based on optimization were both the con-
troller and the filter time constant are determined [Isaksson and Graebe,
2002; Kristiansson and Lennartson, 2006; Garpinger, 2009; Sekara and
Matausek, 2009; Larsson and Hägglund, 2011].
The choice of the filter time constant determines the magnitude of

SDU. For tuning purposes the filter time constant can be related to in-
tegral time Ti for PI control, and to derivative time Td for PID control.
However, from a design perspective it is more natural to relate the filter
time constant to the gain crossover frequency.
In this thesis, an iterative procedure will be used to design measure-

ment noise filters. The filter time constant T f will be chosen as

T f =
α

ω �c
. (15.1)

where α is a constant.
Controllers with this filter time constant will be designed for different

values of α . The value of α will be chosen as a trade-off between perfor-
mance, robustness, and attenuation of measurement noise. For a given
value of α , the design procedure is as follows

• Find the FOTD approximation of the process P.

• Select the controller parameters as functions of K , L, and T , such
that requirements on performance and robustness are satisfied.

• Choose the filter time constant as T f = α /ω �c.

• Repeat the procedure with P replaced by PG f until convergence.

15.2 Convergence Condition

The procedure to find the filter time constant Tf can be represented as

Tn+1f = f (Tnf ),

where the function f captures the iterative process described in Sec-
tion 15.1 which can be summarized as

Tnf → K , L,T → kp, ki, kd → Gl(s) → ω �c → Tn+1f
Starting with the filter time constant Tnf , new FOTD parameters K , L and
T of PG f are calculated. These values give the new controller parameters,
and a new crossover frequency ω �c, which gives the filter time constant

Tn+1f = α

ω �c
.

143



Chapter 15. Filtering Design: Iterative Method

The limiting value is the fixed point T∞f given by

T∞f = f (T∞f )

Conditions for existence and uniqueness of a fixed point, and conver-
gence is given by the Banach fixed point theorem [Kolmogorov and Fomin,
1957], which is also known as the contraction mapping theorem. Accord-
ing to this theorem, for a function f continuous on [a, b], the fixed point
exists and is unique if f ′(Tf ) exists for all T f ∈ (a, b) and if

p f ′(Tf )p < 1, ∀Tf ∈ (a, b) (15.2)

where a ≤ f (T f ) ≤ b.
The function f (T f ) is quite complicated, two special cases will be in-

vestigated to get some insight. Both cases use PI controllers and the con-
troller parameters are calculated using AMIGO tuning method.

Integrating Process

Consider an integrating process P, and a second order filter G f where

P(s) = Kv
s
esL, G f (s) =

1
1+ sTf + (sTf )2/2

.

The PI controller CPI(s) is given by Equation (13.10), and the loop transfer
function Gl(s) = P(s)CPI(s)G f (s) for s = iω becomes

Gl(s) =
Kv

s2
⋅

kps+ ki
1+ sTf + (sTf )2/2

e−sL,

Gl(iω ) =
Kv

−ω 2
⋅

iω kp + ki
1+ iωTf − (ωTf )2/2

e−iω L,

pGl(iω )p2 =
K 2v (ω 2k2p + k2i )

ω 4(1+ (ωT f )4/4)
.

Assuming that (ωT f )4/4≪ 1, the crossover frequency ω �c is

ω 4�c = K 2v (ω 2�ck2p + k2i )

ω 2�c =
K 2v k

2
p

2
+

√

K 4v k
4
p

4
+ K 2v k2i .

(15.3)

The AMIGO tuning rule gives the controller parameters

kp =
0.35
KvL

[ Kvkp =
0.35
L

ki =
0.35

13.4KvL2
[ Kvki =

0.026
L2

144



15.2 Convergence Condition

Replacing these expressions in Equation (15.3) gives

ω 2�c =
0.128
L2
, ω �c =

0.357
L
,

and hence
Tf =

α

ω �c
= 2.8α L (15.4)

To proceed it is necessary to know how filtering influences the pa-
rameters L and T of the FOTD model. In Chapter 17 it is shown that
for an integrating process the filter time constant is simply added to the
nominal apparent time delay L0, of the nominal process P(s). Hence

L = L0 + T f

According to this expression and using Equation (15.4), the function f (T f )
and its derivative f ′(T f ) become

f (T f ) =
α (L0 + Tf )
0.357

f ′(T f ) =
α

0.357
(15.5)

The map f is thus a contraction if

α < 0.357. (15.6)

The convergence condition depends on the parameter α , and the lim-
iting value is given by

T∞f = f (T∞f ), T∞f =
α (L0 + T∞f )
0.357

, T∞f =
α

(0.357−α ) ⋅ L0.

Delay Process

Consider a delay process with the transfer function

P(s) = K e−sL,

a second order filter G f , and a PI controller CPI . The loop transfer function
Gl(s) = P(s)CPI(s)G f (s) is then given by

Gl(s) =
K

s
⋅

kps+ ki
1+ sTf + (sT f )2/2

e−sL

Gl(iω ) =
K

iω
⋅

iω kp + ki
1+ iωTf − (ωTf )2/2

e−iω L

pGl(iω )p2 =
K 2(ω 2k2p + k2i )

ω 2(1+ (ωT f )4/4)

145



Chapter 15. Filtering Design: Iterative Method

Assuming (ωT f )4/4≪ 1, the crossover frequency ω �c is given by

ω 2�c =
K 2k2i

1− K 2k2p
. (15.7)

The AMIGO tuning rule gives the controller parameters

kp =
0.15
K

[ Kkp = 0.15

ki =
0.15
0.35K L

[ Kki =
0.43
L

Inserting these values in Equation (15.7) gives

ω 2�c =
0.184

L2(1− 0.023) , ω �c =
0.43
L
,

and hence
Tf =

α

ω �c
= 2.3α L (15.8)

In Chapter 17 it is shown that the effect of filtering in the FOTD
parameters for a pure time delay process is to increase the nominal ap-
parent time delay L0 by 0.35Tf , and to increase the nominal apparent
time constant T0 by 1.1Tf . Thus, accounting for the added dynamics in
Equation (15.8), the function f (T f ) and its derivative f ′(T f ) are given by

f (T f ) =
α (L0 + 0.35Tf )

0.435
, f ′(T f ) = 0.805α . (15.9)

The iterative process thus converges if α < 1.24, and the limiting value
is given by

T∞f =
α (L0 + 0.35T∞f )

0.435
T∞f =

2.3α
(1− 0.805α ) ⋅ L0

Figure 15.1 shows plots of the function f for three processes with in-
tegrating, balanced, and pure delay dynamics. The red curves are plotted
for α = 0.01, 0.02, 0.05, and 0.1. The figures show that for a specific
value of α , the difference in dynamics are reflected in the slopes of the
red curves for each of the process. Hence, for integrated processes a higher
slope is expected than the one for pure delay process, this is also shown
in Equations (15.4) and (15.8), respectively. Thus, in order to achieve
convergence special care must be taken when selecting the parameter α ,
the algorithm will always converge for sufficiently small α .

146



15.3 Criteria Assessment

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Integrating process

f
(T
f
)

T f

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Balanced process

T f

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Pure delay process

T f

Figure 15.1 Fixed point approximation plots for an integrating process
(left), a balanced process (center), and a pure delay process (right). All
processes have the time delay L0 = 1. The red curves show the functions
f (T f ) for α = 0.01 (bottom), 0.02, 0.05, and 0.1 (top), the square markers
are the corresponding fixed points.

15.3 Criteria Assessment

This section presents the trade-offs between load disturbance attenuation,
robustness, and measurement noise injection for different processes. The
methodology was applied to a test batch given in (13.8), which includes
processes with different dynamics encountered in process control. The
controller parameters are obtained using Lambda, SIMC, and AMIGO
tuning, respectively.
To illustrate the effects of the filter time constant Tf in performance,

robustness and attenuation of measurement noise, the results for four
processes with different dynamics are shown. The processes have lag dom-
inant, balanced, delay dominant, and integrating dynamics, respectively.
For the lag dominant case, an extensive analysis with AMIGO tuning is
also included. The reason to do this is mainly because the problems due to
measurement noise injection can be quite severe for processes with such
kind of dynamics. Another reason is to show parts of the early reasoning
used by the author to understand the effects of filtering in the feedback
loop, and that later on led to the application of the methodology to other
tuning methods.

Lag-dominated Dynamics

The process considered is given by the transfer function

P1(s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1) (15.10)

Approximating P1(s) with an FOTD model according to (13.2) gives
K = 1, T = 1.04, L = 0.08, and τ = 0.07, which shows the dominant lag
dynamics of the process. Design of a PI controller using AMIGO tuning

147



Chapter 15. Filtering Design: Iterative Method

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

10
-2

10
0

10
2

10
4

10
-2

10
-1

10
0

10
1

10
-2

10
0

10
2

10
4

10
-5

10
0

Figure 15.2 Dependence of performance and robustness on the filter
time constant for a process with lag-dominated dynamics using PI control.
The controller parameters are calculated using AMIGO tuning. The top
left figure shows the time response of the closed loop system to a unit
step load disturbance. The top right shows the Nyquist plot of the loop
transfer function Gl . The bottom left plot shows the gain curve of Gun and
the bottom right the gain curve of Gl . The filter time constant is given by
T f = α /ω �c, with α = 0 (red), 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2 (green).

gives kp = 4.13 and ki = 7.67. These values can also be seen in Table 15.1,
which shows the influence of the filter time constant on the process dy-
namics (L,T ,τ ), the controller parameters (kp, ki), performance (IAE),
robustness (ϕm,�m,Ms,Mt), as well as in the noise attenuation (ω cb/ω �c,
SDU, σ̂uw, kn).
Figure 15.2 shows the effects on performance, robustness and attenu-

ation of measurement noise of the filter time constant given by (15.1) for
different α values. The top left plot shows the process output response to
a unit step load disturbance. The top right shows the Nyquist plot of the
loop transfer function Gl = P1C and the region where the sensitivity Ms
is in the range 1.2 ≤ Ms ≤ 1.6. The bottom left figure shows the mag-
nitude of the transfer function from measurement noise to control signal
Gun, given by (14.13); the circles indicate the control bandwidth ω cb for
β = 0.1. The lower right figure shows the gain curve of the loop transfer
function Gl.
The load disturbance response (top left) increases significantly with

increasing filtering. The maximum sensitivity (top right) remains essen-

148



15.3 Criteria Assessment

tially constant but the gain margin decreases with increased filtering.
The gain crossover frequency (bottom right) decreases as a function of
increased filtering. The noise attenuation Gun (bottom left) changes sig-
nificantly with filtering; the ratio ω cb/ω �c, SDU and kn decrease with
increased filtering. This is also reflected in Table 15.1, which also shows
that σ̂uw given by (14.20) is a good approximation of the real SDU.
The process parameter L and the controller parameters given by the

iterative design procedure change significantly with the filter time con-
stant. Without filtering τ = 0.07, and with α = 0.2, τ increases to 0.26
(see Table 15.1).
Design of a PID controller gives kp = 6.44, ki = 17.83, and kd = 0.24.

Table 15.1 shows the dependence of the filter time constant on different
parameters.

0 1 2 3

0

0.05

0.1

0.15

0.2

-1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

10
-2

10
0

10
2

10
4

10
-2

10
0

10
2

10
4

10
-2

10
0

10
2

10
4

10
-5

10
0

Figure 15.3 Dependence of performance and robustness on the filter
time constant for a process with lag-dominated dynamics using PID con-
trol. The top left figure shows the time response of the closed loop system
to a unit step load disturbance. The top right shows the Nyquist plot of
the loop transfer function Gl . The bottom left plot shows the gain curve of
Gun and the bottom right the gain curve of Gl . The filter time constant is
calculated for α = 0 (red), 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2 (green).

The response to load disturbance, the Nyquist plot of the loop transfer
function Gl, the gain curve of the noise transfer function Gun, as well as
the gain curve of Gl are shown in Figure 15.3. Just like in the PI control
case, there is an increment in the response of the system to load dis-

149



Chapter 15. Filtering Design: Iterative Method

turbances with increased filtering. Robustness in terms of the maximum
sensitivity remains almost constant and again the gain margin decreases
when strong filtering is used. For PID control, filtering shows a signifi-
cant effect on the attenuation of measurement noise. The gain crossover
frequency also decreases with increased filtering.
The filtering influence on the process parameter L and the controller

parameters kp and ki is less significant than for the PI case. The value of τ
varies between 0.07 and 0.12 for α = 0 and 0.2, respectively. The constant
behavior of kd in Table 15.1 can be explained using the high frequency
approximation of P1C where kd ( (Ms − 1)T/KpMs (notice that kd does
not depend on T f ).

150



1
5
.3
C
riteria

A
ssessm

en
t

Table 15.1 Parameter dependence on the filter time constant for a process with lag-dominated dy-
namics using PI and PID control. The controller parameters are calculated using AMIGO tuning.

PI Control

α τ L T kp ki T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

0 0.07 0.08 1.04 4.13 7.67 0 4.09 0.13 55 21.6 1.37 1.16 ∞ ∞ ∞
0.01 0.07 0.08 1.04 3.95 7.21 0.003 3.92 0.14 55 18.2 1.37 1.16 886.5 139.0 138 3.93
0.02 0.07 0.08 1.04 3.79 6.81 0.005 3.79 0.15 55 15.8 1.37 1.15 437.1 95.07 93.62 3.83
0.05 0.08 0.09 1.04 3.33 5.65 0.015 3.39 0.18 56 11.4 1.37 1.13 163.2 50.63 48.77 3.34
0.1 0.10 0.11 1.04 2.53 3.87 0.038 2.64 0.26 59 8.1 1.36 1.09 71.3 25.27 23.52 2.57
0.15 0.15 0.18 1.03 1.45 1.89 0.095 1.57 0.53 64 7.0 1.31 1.03 35.8 9.49 8.62 1.51
0.2 0.26 0.37 1.05 0.60 0.66 0.312 0.64 1.53 72 6.8 1.27 1.00 17.4 2.64 2.41 0.76

PID Control

α τ L T kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

0 0.07 0.08 1.04 6.4 17.8 0.24 0 5.69 0.059 51 382 1.30 1.28 ∞ ∞ ∞
0.01 0.07 0.08 1.04 6.3 17.1 0.24 0.002 5.58 0.062 51 133 1.30 1.28 263500 7490 7770 185.7
0.02 0.07 0.08 1.04 6.1 16.5 0.24 0.004 5.46 0.064 51 79.3 1.30 1.28 64300 2620 2670 91.12
0.05 0.08 0.09 1.04 5.7 14.7 0.24 0.010 5.17 0.072 52 35.6 1.30 1.28 9700 620 620 34.67
0.1 0.08 0.10 1.04 5.0 11.9 0.24 0.022 4.63 0.089 52 17.6 1.31 1.25 2200 200 200 16.24
0.15 0.10 0.11 1.04 4.4 9.6 0.24 0.037 4.11 0.111 53 11.4 1.32 1.24 900 100 90 10.17
0.2 0.12 0.14 1.03 3.7 7.3 0.24 0.057 3.51 0.146 54 8.4 1.32 1.21 400 50 50 6.91

151



Chapter 15. Filtering Design: Iterative Method

The previous results for AMIGO tuning have shown that filtering af-
fects process dynamics, which leads to undesired changes in control re-
quirements. Since the AMIGO tuning rule is based on the principle to
keep the robustness M = 1.4, the changes in robustness shown in Ta-
ble 15.1 are small, whereas the changes in performance and noise attenu-
ation may be significant. The changes will highly depend on the selection
of the design parameter α . The results in Figures 15.2 and 15.3, as well
as in Table 15.1, show that values of α < 0.1 can be a good trade-off be-
tween performance, robustness, attenuation of measurement noise, and
changes in process dynamics. In the following, the results for the other
tuning methods will be shown when the design parameters α is chosen
between 0 and 0.5.
Table 15.2 shows the parameter dependence on filtering for PI and

PID control, when Lambda, SIMC, and AMIGO tuning are used to cal-
culate the controller parameters. For comparison, the results are shown
for the nominal process P, that is, when α = 0 (no filtering), and for
α = 0.05. For Lambda tuning the table shows the outcomes for λ = T ,
and for λ = L (which is recommended for lag-dominated processes). The
results presented in the table for α = 0.05 are also shown in Figures 15.4,
and 15.5 for PI and PID control, respectively. The figures depict the effects
of filtering on performance, robustness and attenuation of measurement
noise for Lambda with Tcl = L (cyan), SIMC (blue), and AMIGO (red)
tuning.
Figure 15.6 shows the effects on performance and attenuation of mea-

surement noise of the filter time constant given by (15.1) for α values
between 0 and 0.2. The results for PI and PID control are given in red
and blue, respectively. The outcomes for α = 0.05 are shown with squares
for PI, and with triangles for PID. The influence of filtering when us-
ing AMIGO, SIMC, and Lambda tuning are shown in solid, dashed and
dash-dotted lines, respectively. For Lambda tuning three different tuning
parameters are used, λ = L,T , and 3T .
As expected heavier filtering attenuates measurement noise for all

the tuning methods at the price of deteriorating the load disturbance re-
sponse. This can be explained by the changes in process dynamics due
to filtering, particularly evident for L, which affect the integral gain ki,
and can be seen when recalculating τ for the new process given by P1G f .
Higher measurement noise attenuation is obtained for PI control for all
the tuning methods, however, load disturbance attenuation deteriorates in
contrast with PID control. The results obtained show that the outcomes
for PI control with SIMC and Lambda, with λ = L, are very similar
(see Table 15.2). Likewise for PID control, some similarities are observed
between AMIGO and SIMC in terms of performance, and measurement
noise attenuation. The differences in performance for PI and PID control

152



15.3 Criteria Assessment

0 2 4 6

0

0.1

0.2

-1 -0.5 0
-1

-0.5

0

10
-2

10
0

10
2

10
4

10
-1

10
0

10
1

10
-2

10
0

10
2

10
-2

10
2

Figure 15.4 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P1(s) using
PI control. The controllers are designed using the Lambda (cyan), SIMC
(blue), and AMIGO (red) tuning methods. The filter time constant is cal-
culated for α = 0.05.

between the tuning methods is due to the robustness limits provided by
each of them, while for AMIGO the limits are between 1.2 and 1.6, for
Lambda and SIMC they are between 1.2 and 2. Thus, with higher robust-
ness poor load disturbance attenuation can be anticipated (see Figure
14.7).
In general, better noise attenuation can be obtained for Lambda

(λ = T , 3T) and AMIGO, however, Lambda tuning has poor performance.
Although in terms of performance it is recommended to set λ = L for
Lambda tuning, this selection is not well suited in terms of measurement
noise attenuation.

153



Chapter 15. Filtering Design: Iterative Method

0 2 4 6

0

0.05

0.1

-1 -0.5 0
-1

-0.5

0

10
0

10
2

10
4

10
-1

10
0

10
1

10
-2

10
0

10
2

10
-2

10
2

Figure 15.5 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P1(s) using
PID control. The controllers are designed using the Lambda (cyan), SIMC
(blue), and AMIGO (red) tuning methods. The filter time constant is cal-
culated for α = 0.05.

10
0

10
2

10
4

0.05

0.5

5

PI red, PID blue

IA
E

SDU

λ = L

λ = T

λ = 3T

Figure 15.6 Trade-offs between performance, robustness, and attenu-
ation of measurement noise for a lag-dominated process with α values
between 0 and 0.2. The results are shown for AMIGO (solid lines), SIMC
(dashed lines), Lambda (dash-doted lines).

154



1
5
.3
C
riteria

A
ssessm

en
t

Table 15.2 Parameter dependence on the filter time constant for a process with lag-dominated dy-
namics using PI and PID control

PI Control

α τ L T kp ki T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

Lambda L
0 0.067 0.075 1.040 6.93 6.67 0 5.93 0.150 55.9 14.4 1.45 1.08 ∞ ∞ ∞
0.05 0.075 0.084 1.036 6.13 5.92 0.009 5.39 0.169 55.8 8.6 1.48 1.07 222.11 117.6 113.93 6.17

Lambda T
0 0.067 0.075 1.040 0.93 0.90 0 0.91 1.115 85.4 107.0 1.08 1.00 ∞ ∞ ∞
0.05 0.116 0.136 1.033 0.88 0.86 0.058 0.86 1.169 82.6 17.8 1.12 1.00 84.08 6.89 6.71 0.91

SIMC
0 0.067 0.075 1.040 7.10 11.83 0 6.19 0.085 48.5 12.9 1.54 1.23 ∞ ∞ ∞
0.05 0.075 0.084 1.036 6.33 9.42 0.009 5.62 0.106 49.5 8.0 1.56 1.20 225.1 123.56 119.09 6.34

AMIGO
0 0.067 0.075 1.040 4.13 7.67 0 4.09 0.130 54.5 21.6 1.37 1.16 ∞ ∞ ∞
0.05 0.080 0.090 1.036 3.33 5.65 0.015 3.39 0.177 56.1 11.4 1.37 1.13 163.18 50.63 48.77 3.34

PID Control

α τ L T kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

Lambda L
0 0.067 0.075 1.040 9.58 8.89 0.35 0 7.61 0.113 64.2 260 1.21 1.02 ∞ ∞ ∞
0.05 0.074 0.082 1.035 8.73 8.11 0.35 0.007 7.10 0.123 63.8 38.2 1.23 1.01 19623 1468 1477 69.93

Lambda T
0 0.067 0.075 1.040 1.00 0.93 0.04 0 0.94 1.078 87.9 248 1.05 1.00 ∞ ∞ ∞
0.05 0.113 0.132 1.034 1.00 0.91 0.06 0.054 0.92 1.099 85.7 32.6 1.07 1.00 456.3 14.49 14.55 1.91

SIMC
0 0.067 0.075 1.040 9.76 20.54 0.23 0 7.66 0.049 49.8 312 1.41 1.24 ∞ ∞ ∞
0.05 0.074 0.082 1.036 8.88 17.07 0.23 0.007 7.15 0.059 50.3 35.4 1.42 1.22 13170 997.6 1003 47.41

AMIGO
0 0.067 0.075 1.040 6.44 17.83 0.24 0 5.69 0.059 51.2 381 1.30 1. ∞ ∞ ∞
0.05 0.076 0.085 1.036 5.70 14.67 0.24 0.010 5.17 0.072 51.6 35.6 1.30 1.27 9673 619.6 622.6 34.67

155



Chapter 15. Filtering Design: Iterative Method

0 10 20 30 40 50

0

0.4

0.8

-1 -0.5 0
-1

-0.5

0

10
-2

10
0

10
2

10
-1

10
0

10
-2

10
0

10
2

10
-2

10
0

Figure 15.7 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P2(s) using
PI control. The controllers are designed using the Lambda (cyan), SIMC
(blue), and AMIGO (red) tuning methods. The filter time constant is cal-
culated for α = 0.05.

Balanced Dynamics

The process considered is given by the transfer function

P2(s) =
1

(s+ 1)4 (15.11)

The FOTD approximation of the system according to (13.2) gives K = 1,
T = 2.92, L = 1.43, and τ = 0.33, which shows the balanced dynamics of
the process. Just like in the previous case, Table 15.3 shows the influence
of the filter time constant Tf on the process dynamics, the controller
parameters, performance, robustness, and attenuation of measurement
noise. The results for Lambda are given for λ = T . Likewise, Figures 15.7,
and 15.8 show the effects of filtering when α = 0.05 for PI and PID
control, respectively. The results depicted are for Lambda (cyan), SIMC
(blue), and AMIGO (red) tuning.
Figure 15.9 shows the trade-offs between performance, robustness,

and attenuation of measurement noise when filtering is used for AMIGO,
SIMC, and Lambda (with λ = T and 3T) tuning. For PI higher atten-
uation of measurement noise and good robustness can be obtained with
AMIGO and Lambda (λ = 3T). Better results in terms of load distur-
bance attenuation can be obtained with SIMC and Lambda (λ = T) at

156



15.3 Criteria Assessment

0 10 20 30 40

0

0.2

0.4

-1 -0.5 0
-1

-0.5

0

10
-1

10
1

10
3

10
-1

10
0

10
-2

10
0

10
2

10
-2

10
0

Figure 15.8 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P2(s) using
PID control. The controllers are designed using the Lambda (cyan), SIMC
(blue), and AMIGO (red) tuning methods. The filter time constant is cal-
culated for α = 0.05.

10
0

10
2

2

5

15

PI red, PID blue

IA
E

SDU

λ = T

λ = 3T

Figure 15.9 Trade-offs between performance, robustness, and attenua-
tion of measurement noise for a balance dominant process with α values
between 0 and 0.2. The results are shown for AMIGO (solid lines), SIMC
(dashed lines), Lambda (dash-doted lines).

157



Chapter 15. Filtering Design: Iterative Method

the price of losing in robustness (see Table 15.3). For PID attenuation
of measurement noise is quite similar when using AMIGO, SIMC and
Lambda with λ = T . The performance loss is minimal for λ = T in spite
of using harder filtering. Better results can be obtained for PID in terms
of noise rejection with λ = 3T at the expense of losing in performance. If
higher attenuation of measurement noise is required, PI control would be
the right selection. On the other hand, if higher performance is required
PID will be preferred. Notice that according to the results obtained in Ta-
ble 15.3, the changes in process dynamics due to filtering are particularly
evident in the apparent time delay L, while the apparent time constant
T remains almost constant.

158



1
5
.3
C
riteria

A
ssessm

en
t

Table 15.3 Parameter dependence on the filter time constant for a process with balanced dynamics
using PI and PID control

PI Control

α τ L T kp ki T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

Lambda
0 0.328 1.425 2.915 0.67 0.23 0 0.25 4.34 69.7 3.8 1.53 1.00 ∞ ∞ ∞
0.05 0.359 1.635 2.914 0.64 0.22 0.208 0.24 4.55 68.1 3.4 1.58 1.00 71.59 2.76 2.62 0.68

SIMC
0 0.328 1.425 2.915 1.19 0.35 0 0.44 2.96 50.9 2.3 2.00 1.37 ∞ ∞ ∞
0.05 0.347 1.548 2.914 1.11 0.32 0.122 0.41 3.21 52.8 2.3 2.00 1.35 94.15 5.98 5.70 1.13

AMIGO
0 0.328 1.425 2.915 0.41 0.16 0 0.16 6.43 76.7 5.9 1.32 1.00 ∞ ∞ ∞
0.05 0.388 1.841 2.909 0.33 0.12 0.408 0.12 8.37 77.8 5.7 1.29 1.00 51.22 1.16 1.10 0.40

PID Control

α τ L T kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

Lambda
0 0.328 1.425 2.915 1.00 0.28 0.57 0 0.32 3.628 75.0 6.1 1.41 1.00 ∞ ∞ ∞
0.05 0.353 1.587 2.914 1.00 0.27 0.62 0.161 0.31 3.707 74.1 4.8 1.46 1.00 1553 24.75 24.70 5.59

SIMC
0 0.328 1.425 2.915 1.59 0.47 0.65 0 0.54 2.176 48.4 3.0 1.96 1.32 ∞ ∞ ∞
0.05 0.343 1.523 2.915 1.50 0.44 0.65 0.098 0.51 2.331 49.5 2.8 1.97 1.31 2647 54.14 53.72 9.48

AMIGO
0 0.328 1.425 2.915 1.12 0.47 0.70 0 0.42 2.516 52.8 5.1 1.61 1.12 ∞ ∞ ∞
0.05 0.348 1.555 2.914 1.04 0.42 0.70 0.129 0.39 2.727 54.5 4.6 1.60 1.09 2167 38.32 38.18 7.74

159



Chapter 15. Filtering Design: Iterative Method

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0
-1

-0.5

0

10
0

10
1

10
2

10
-2

10
-1

10
0

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

Figure 15.10 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P3(s) using
PI control. The controllers are designed using SIMC (blue), and AMIGO
(red) tuning methods. The filter time constant is calculated for α = 0.05.

Delay-dominated Dynamics

The process is given by the transfer function

P3(s) =
1

(0.05s+ 1)2 e
−s (15.12)

An FOTD approximation of the system according to (13.2) gives K = 1,
T = 0.09, L = 1.01, and τ = 0.92, thus P3 has delay dominant dynamics.
Table 15.4 shows different parameter dependence on the filter time con-
stant Tf . The results for PI and PI control when α = 0.05 are illustrated
in Figures 15.10 and 15.11, respectively.
Figure 15.12 shows the effects of filtering in attenuation of measure-

ment noise and load disturbance response for the SIMC and the AMIGO
tuning methods. The results for Lambda tuning are not shown, since the
controllers obtained even without filtering (α = 0) provide very poor
robustness to the system. This is also mentioned in [Skogestad, 2003;
Garpinger et al., 2012], where lambda tuning is not recommended for
delay-dominated processes due to the bad choice of the integral time con-
stant. For PI control higher measurement noise attenuation is obtained
with AMIGO, while better load disturbance attenuation is obtained with
SIMC. For PID the same attenuation of measurement noise can be ob-
tained with both tuning rules. Performance is not much affected by fil-

160



15.3 Criteria Assessment

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0
-1

-0.5

0

10
0

10
1

10
2

10
-2

10
-1

10
0

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

Figure 15.11 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P3(s) using
PID control. The controllers are designed using SIMC (blue), and AMIGO
(red) tuning methods. The filter time constant is calculated for α = 0.05.

10
0

10
1

1.5

2

4

PI red, PID blue

IA
E

SDU

Figure 15.12 Trade-offs between performance, robustness, and attenu-
ation of measurement noise for a delay-dominated process with α values
between 0 and 0.2. The results are shown for AMIGO (solid lines), and
SIMC (dashed lines).

161



Chapter 15. Filtering Design: Iterative Method

tering, this can be seen in the flatness of the curves, and also in the IAE
values shown in the Table 15.4. The differences in terms of performance
is related to the robustness provided by each method, for this process
AMIGO provides 1.42 ≤ Ms ≤ 1.52, while SIMC gives 1.66 ≤ Ms ≤ 1.78.
The results obtained in Table 15.4 show that process dynamics given by
L and T are both influenced by the filter time constant T f , this is partic-
ularly evident for T .

162



1
5
.3
C
riteria

A
ssessm

en
t

Table 15.4 Parameter dependence on the filter time constant for a process with delay-dominated
dynamics using PI and PID control

PI Control

α τ L T kp ki T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

SIMC
0 0.916 1.014 0.093 0.21 0.49 0 0.51 2.028 70.4 3.2 1.49 1.00 ∞ ∞ ∞
0.05 0.883 1.090 0.145 0.23 0.46 0.106 0.47 2.180 70.9 3.0 1.51 1.00 43.19 1.98 1.75 0.32

AMIGO
0 0.916 1.014 0.093 0.18 0.47 0 0.48 2.106 69.7 3.4 1.45 1.00 ∞ ∞ ∞
0.05 0.880 1.092 0.148 0.18 0.44 0.110 0.45 2.252 69.2 3.3 1.47 1.00 38.30 1.76 1.53 0.29

PID Control

α τ L T kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

SIMC
0 0.916 1.014 0.093 0.28 0.66 0.02 0 0.67 1.521 63.9 2.7 1.66 1.00 ∞ ∞ ∞
0.05 0.897 1.077 0.123 0.30 0.62 0.03 0.079 0.64 1.615 64.4 2.7 1.66 1.00 138.89 3.97 3.89 0.62

AMIGO
0 0.916 1.014 0.093 0.24 0.51 0.03 0 0.51 1.972 71.5 5.2 1.42 1.00 ∞ ∞ ∞
0.05 0.884 1.089 0.143 0.26 0.48 0.04 0.104 0.48 2.096 71.7 3.6 1.47 1.00 166.11 3.80 3.74 0.68

163



Chapter 15. Filtering Design: Iterative Method

0 20 40 60 80 100

0

1

2

3

-1 -0.5 0
-1

-0.5

0

10
-2

10
0

10
2

10
-2

10
-1

10
0

10
-2

10
0

10
2

10
-2

10
0

10
2

Figure 15.13 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P4(s) using
PI control. The controllers are designed using SIMC (blue), and AMIGO
(red) tuning methods. The filter time constant is calculated for α = 0.05.

Integrating Dynamics

The process is given by the transfer function

P4(s) =
1

s(0.5s+ 1) e
−0.5s (15.13)

An FOTD approximation of the system according to (13.7) gives Kv = 1,
L = 1, and τ = 0. Thus, P4 shows pure lag dynamics. Based on the FOTD
approximation, and the tuning rules given in Table 13.2, the SIMC and
AMIGO tuning rules were used for PI, while for PID only AMIGO was
used.
Table 15.5 shows different parameter dependencies on the filter time

constant T f . Notice that the changes in process dynamics due to introduc-
tion of filtering are collected in the apparent time delay L. The filtering
effects for α = 0.05 are also shown for PI control in Figure 15.13, and for
PID control in Figure 15.14.
Figure 15.15 shows the effects of filtering in attenuation of measure-

ment noise and load disturbance. According to the figure, for PI higher
attenuation of measurement noise is obtained with AMIGO, while better
performance can be achieved with SIMC. For PID, the performance loss
is minimal with respect to the attenuation of measurement noise when
harder filtering is used.

164



15.3 Criteria Assessment

0 10 20 30 40

0

1

2

-1 -0.5 0
-1

-0.5

0

10
-1

10
1

10
3

10
-2

10
-1

10
0

10
-2

10
0

10
2

10
-2

10
0

10
2

Figure 15.14 Dependence of performance, robustness and attenuation
of measurement noise on the filter time constant for process P4(s) using
PI control. The controller is designed using AMIGO tuning method. The
filter time constant is calculated for α = 0.05.

10
0

10
2

20

60

200

PI red, PID blue

IA
E

SDU

Figure 15.15 Trade-offs between performance, robustness, and atten-
uation of measurement noise for a integrating process with α values be-
tween 0 and 0.2. The results are shown for AMIGO (solid lines), and SIMC
(dashed lines).

165



C
h
a
p
ter
1
5
.
F
ilterin

g
D
esig
n
:
Itera

tiv
e
M
eth
o
d

Table 15.5 Parameter dependence on the filter time constant for a process with integrated dynamics
using PI and PID control

PI Control

α kv L kp ki T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

SIMC
0 1 1 0.50 0.063 0 0.50 16 47.6 4.2 1.59 1.30 ∞ ∞ ∞
0.05 1 1.111 0.45 0.051 0.111 0.45 19.72 47.5 3.9 1.61 1.30 60.02 2.52 2.40 0.45

AMIGO
0 1 1 0.35 0.026 0 0.35 38.28 58.0 6.2 1.36 1.19 ∞ ∞ ∞
0.05 1 1.165 0.30 0.019 0.165 0.30 51.92 57.9 5.6 1.37 1.19 49.03 1.37 1.32 0.30

PID Control

α τ L kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

AMIGO
0 1 1 0.45 0.056 0.23 0 0.44 17.79 61.33 7.1 1.22 1.23 ∞ ∞ ∞
0.05 1 1.127 0.40 0.044 0.23 0.127 0.39 22.62 61.28 6.1 1.25 1.23 706.43 12.62 12.56 2.53

166



15.3 Criteria Assessment

Figures 15.6, 15.9, 15.12, and 15.15, together with the Tables 15.2,
15.3, 15.4, and 15.5 show that filtering has a significant effect on the
trade-offs between performance, robustness, and measurement noise at-
tenuation. Introduction of filtering produces changes in process dynam-
ics, which are significant for higher values of α . Thus, the trade-off is
governed by the design parameter α . A small value of α emphasizes per-
formance, while a larger value emphasizes noise rejection. The choice of
α is problem-dependent, but according to the results obtained α = 0.05
is a reasonable nominal value.
The figures also show whether using PI or PID control can yield bet-

ter results in terms of attenuation of load disturbance and measurement
noise. Thus, when overlapping between the PI and PID curves occurs,
which happens when the ki parameters of both controllers are similar,
there are no benefits in using PID since the filter time constant T f reduces
and even eliminates the effects of the derivative part of the controller, this
was also explained in Section 14.2.

167



16

Filtering Design: Tuning

Rules

The methodology previously proposed begun with the calculation of the
FOTD model of the process when no filtering is included. The filter time
constant is then iteratively calculated based on the gain crossover fre-
quency and the design parameter α . From a design point of view, it would
be more useful to have simple design rules where no iteration is required
[Romero Segovia et al., 2014a; Romero Segovia et al., 2014c], and which
relate the filter time constant to the FOTD model, or the controller pa-
rameters of the nominal process, respectively, and the nominal processes
dynamics characterized by the normalized time delay τ .

16.1 Design Rules Based on FOTD Model

Finding dependencies of the filter time constant with respect to the
parameters of the original FOTD model approximation is very useful
[Romero Segovia et al., 2014a], especially if one considers that the model
can be obtained through simple experiments as mentioned in Section 13.1.
The nominal time constant and time delay are denoted T0 and L0, respec-
tively.
In the following, the discussion will focus on these dependencies for PI

and PID control when Lambda, SIMC and AMIGO tuning are used. For
Lambda tuning two different tuning constants are considered, Tcl = L
for 0 ≤ τ ≤ 0.4, and Tcl = T for 0 ≤ τ ≤ 0.8. The results that will be
shown are valid for α values between 0 and 0.05. Only the relations to
the nominal apparent time delay L0 are shown, because simple rules can
be obtained from this relation, as well as a better curve fitting, than those
obtained when T0 is considered.

168



16.1 Design Rules Based on FOTD Model

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

T f /(α L0)

L
am
bd
a
L

τ
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

T f /(α L0)

L
am
bd
a
T

τ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

S
IM
C

τ
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

A
M
IG
O

τ

Figure 16.1 Filter time constant relations to FOTD model parameter L0

for PI control using Lambda, SIMC and AMIGO tuning for 0 ≤ α ≤ 0.05.

PI Control

Figure 16.1 illustrates the relation between the filter time constant
Tf /(α L0), and the normalized time delay τ , where L0 is apparent time
delay of the nominal process (α = 0). The scaling with respect to α has
been done in order to have a single curve that represents the outcome for
0 ≤ α ≤ 0.05. The red markers in each plot correspond to the FOTD ap-
proximation of the 135 processes included in the Test Batch for α = 0.01,
0.02, and 0.05, respectively. The blue solid lines correspond to the curve
fitting carried out in each figure, and which equations are shown in Ta-
ble 16.1. The blue dashed lines show the 15 percent variations of the
equations.
The left plots of Figure 16.1 show that the outcomes for Lambda tun-

ing with Tcl = L and SIMC are fairly similar. The results are nearly
constant and independent of the normalized time delay τ . On the other
hand the results for Lambda tuning with Tcl = T and AMIGO are not
independent of τ . For Lambda tuning with Tcl = T higher filter time
constants are obtained for lag-dominated processes (τ < 0.2), which is
expected considering the poor performance (smaller ω �c) provided by this
design. For AMIGO two phenomena are observable, first the scaling with
α does not produce a single red curve but two, since the values obtained

169



Chapter 16. Filtering Design: Tuning Rules

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

T f /(α L0)

T f

L
am
bd
a
L

τ
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

T f /(α L0)

L
am
bd
a
T

τ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

S
IM
C

τ
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

A
M
IG
O

τ

Figure 16.2 Filter time constant relations to FOTD model parameter L0

for PID control using Lambda, SIMC and AMIGO tuning for 0 ≤ α ≤ 0.05.

for α = 0.05 are above the other ones. Second, the filter time constant
does not change monotonically with τ , it first increases up to τ ( 0.35 and
then it decreases. The reason for this hump is the fact that the AMIGO
rules gives a proportional gain kp for PI control that is too low for τ in the
range of 0.3 to 0.6, see [Åström and Hägglund, 2005, Figure 7.1]. Another
manifestation of the phenomena is that the AMIGO rule gives controllers
with maximum sensitivities around 1.3 instead of 1.4 for PI control of
processes with balanced dynamics, see Table 15.3.
Due to the high robustness, lower crossover frequencies and conse-

quently higher filter time constants are provided for processes with bal-
anced dynamics.

PID Control

Just like in the previous case, Figure 16.2 shows the relations between
the filter time constant T f/(α L0), and the normalized time delay τ for
the three tuning methods. Additionally to the red curves, which are the
outcomes of the Test Batch, the blue solid lines, which represent the equa-
tions used for the curve fitting (see Table 16.1), and the dashed blue lines,
which show the 15 percent variations of the equations, there are in some
of the curves vertical dotted blue lines. These lines can be used as an

170



16.1 Design Rules Based on FOTD Model

indicator which shows that in spite of introduction of filtering according
to the equations given in Table 16.1 for PID control, the characteristics
of the PID controller are preserved. This will be further explained in the
next section.
According to the results obtained in the figure, despite the differences

between the AMIGO and SIMC methodologies, the similitudes between
their outcomes are quite remarkable, and it shows that the filter time
constant as a function of the apparent time delay L0, can be chosen inde-
pendent of the normalized time delay τ . On the other hand, for Lambda
tuning, the filter time constant depends on the dynamics of the process,
which is given by τ . The results show that for Lambda with Tcl = L, mod-
erate filtering is used, while for Tcl = T higher filter time constants are
obtained for processes with lag dynamics (see Table 15.2).

Simple Rules

In order to obtain design rules for the filter time constant, curve fitting
has been carried out in the different curves for the PI and PID cases
previously described. The results are shown in Table 16.1. The rules for
PI and PID control using AMIGO are applicable to all the processes in
the Test Batch, the same holds for PI control using SIMC. Special cases
are the ones for PI and PID control with Lambda, and PI control using

Table 16.1 Simple design rules for the filter time constant T f based on
the FOTD parameter L0, α , and τ .

PI Control

Tcl T f /(α L0) Remark

Lambda
L 2

no integrating processes
T 1/τ

SIMC L 2 whole Test Batch

AMIGO
5τ 2 + 5τ + 3.2, for τ < 0.35

whole Test Batch
7.2τ 2 − 14τ + 9, for τ ≥ 0.35

PID Control

Tcl T f /(α L0) Remark

Lambda
L 1.8− τ

no integrating processes
T 0.7/(τ − 0.02)

SIMC L/2 1.5 no integrating processes

AMIGO 2 whole Test Batch

171



Chapter 16. Filtering Design: Tuning Rules

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

T f /(αT0i )

T f

L
am
bd
a
L

τ
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

T f /(αT0i )

L
am
bd
a
T

τ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

S
IM
C

τ
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

A
M
IG
O

τ

Figure 16.3 Filter time constant relations to controller parameter T0i
for PI control using Lambda, SIMC and AMIGO tuning for 0 ≤ α ≤ 0.05.

SIMC tuning, which can be used with almost all the processes in the
Test Batch, except the ones with integrating dynamics (process P6 of the
Test Batch), this was also explained in Section 15.3. The rules given in
Table 16.1 provide a good estimation within ±15%.

16.2 Design Rules Based on Controller Parameters

In a similar way, design rules can be obtained to calculate the filter time
constant T f using the original controller parameters T0i and T

0
d . By orig-

inal it is meant the controller parameters used for the nominal process
without any filter, that is, for α = 0. Knowing the relations of the fil-
ter time constant to the controller parameters can be useful whenever no
FOTD model is available, and good tuning parameters based on Lambda,
SIMC, or AMIGO are known. The methodology used here to present the
results in the figures is the same as in the previous section. The results
obtained are valid for 0 ≤ α ≤ 0.05.

PI Control

Figure 16.3 illustrates the ratio Tf /(αT0i ) as a function of the normalized
time delay τ for the different tuning methods.

172



16.2 Design Rules Based on Controller Parameters

Simple curve fitting gives the equations shown in Table 16.2 that can
be used to calculate the filter time constant. The outcomes for the dif-
ferent tuning methods show that there is a large difference between lag
dominated and delay dominated systems. Thus, strong filtering can be
used for processes with lag-dominated dynamics, which is particularly
evident for smaller values of τ . For processes with balanced and delay-
dominated dynamics regular to mild filtering can be used. Introduction
of filtering not only produces changes in dynamics, but can also deterio-
rate the characteristics of the PI controller as explained in Section 14.2.
For the values of the design parameter α used here, the characteristics
of the PI controller are preserved.
Consider for instance, the worst case value for the ratio Tf /(αT0i ) = 6,

which corresponds to AMIGO tuning. For α = 0.05 the ratio Tf /T0i = 0.3.
Thus, the effects of the P part are not reduced with filtering. The results
obtained from the different tuning methods, show that harder filtering can
be obtained for Lambda tuning with Tcl = T for lag-dominated process,
while AMIGO provides harder filtering for balanced and delay-dominated
processes, these results can also be seen in Tables 15.2, 15.3, and 15.4.

PID Control

Likewise for PID control, Figures 16.4, and 16.5 show the ratios Tf /(αT0i )
and Tf /(αT0d ) as functions of τ . The equations corresponding to the curve
fitting (solid blue lines) for both figures are given in Table 16.2. Since the
derivative part of the controller is the one that has higher influence in
the attenuation of measurement noise, it has always been assumed that
the filter time constant should be related to the derivative time. However,
according to Figure 16.4, a good relationship can be found between the
filter time constant T f and the integral time T0i . The figure also shows
that for Lambda tuning with Tcl = T the relationship T f/(αT0i ) is prac-
tically independent of τ , whereas for Lambda with Tcl = L, SIMC, and
AMIGO tuning it is highly correlated with the normalized time delay τ .
Previously in Section 14.2 it was mentioned that filtering produces

changes in the process dynamics and consequently also in the character-
istics of the controller. This is especially true when using PID controllers.
Figure 16.5 shows the relationship between the filter time constant T f and
the nominal derivative time T0d for the tuning rules. The three vertical
dotted blue lines in each of the curves, as well as in Figures 16.4, and 16.2
indicate the value of τ for which the ratio T f/T0d = 0.5 for α = 0.01, 0.02
and 0.05 has been reached. For instance, consider the bottom right figure
for AMIGO, the ratio Tf /T0d = 0.5 scaled by α = 0.01, 0.02 and 0.05 gives
the values Tf /(αT0d ) = 50, 25, and 10, respectively. Looking at the fig-
ure these values correspond to τ = 0.97, 0.94, and 0.83 correspondingly.

173



Chapter 16. Filtering Design: Tuning Rules

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T f /(αT0i )

f

L
am
bd
a
L

τ
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

T f /(αT0i )

L
am
bd
a
T

τ

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

S
IM
C

τ
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

A
M
IG
O

τ

Figure 16.4 Filter time constant relations to controller parameter T0i for
PID control using Lambda, SIMC and AMIGO tuning for 0 ≤ α ≤ 0.05..

Thus, if one chooses α = 0.05 and wants to keep the ratio Tf /T0d = 0.5, the
rule given by 4.3/(1−τ 3) (see Table 16.2) can be used for processes with
τ ≤ 0.83. By keeping this ratio within certain bounds, for this particular
case Tf /T0d = 0.5, the characteristics of the PID controller are preserved.

Notice that some of the curves do not have the vertical dotted blue
lines, this means that no there is no constraint in the value that can be
given to the filter time constant, this with respect to the influences of the
filter in the PID controller. The results shown in Figures 16.4, and 16.5
show clear similitudes between the outcomes for SIMC and AMIGO, this
was also observed for the ratio T f/(α L0) shown in Figure 16.2. They also
show that the relation T f /(αT0d ) for τ < 0.5, is practically independent
of τ . This implies that the dynamics of lag-dominated and balanced pro-
cesses, as well as the controller characteristics remain. Thus, considering
hard filtering with α = 0.05, and according to the equations 5/(1 − τ 3)
for SIMC, and 4.3/(1 − τ 3) for AMIGO, this gives T f /T0d = 0.28 and
Tf /T0d = 0.24 for SIMC and AMIGO tuning, respectively, which is larger
than the value 0.1T0d commonly used. It is also interesting to see that the
results for Lambda with Tcl = L are independent of τ .

174



16.2 Design Rules Based on Controller Parameters

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

T f /(αT0d )

L
am
bd
a
L

τ
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

T f /(αT0d )

L
am
bd
a
T

τ

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

S
IM
C

τ
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

A
M
IG
O

τ

Figure 16.5 Filter time constant relations to controller parameter T0d for
PID control using Lambda, SIMC and AMIGO tuning for 0 ≤ α ≤ 0.05..

Simple Rules

Simple curve fitting for Figures 16.4, and 16.5 provides the rules given in
Table 16.2. The rules given provide a good estimation for 15% variations
in the filter time constant.

175



Chapter 16. Filtering Design: Tuning Rules

Table 16.2 Simple design rules for the filter time constant T f .

PI Control

Tcl T f /(αT0i ) Remark

Lambda
L 2.5τ no integrating
T 1/(1− τ ) processes

SIMC L 6.5τ 2 − 1.2τ + 0.34 whole Test Batch

AMIGO
18τ 2 + 1.7τ + 0.26, for τ < 0.35

whole Test Batch−2τ 2 + 7.5τ + 0.7, for τ ≥ 0.35

PID Control

Tcl T f /(αT0i ) T f /(αT0d ) Remark

Lambda
L 0.02+ 1.6τ 3.5 no integrating
T 0.9 2/τ processes

SIMC L/2 4.7τ 2 − 0.8τ + 0.3 5/(1− τ 3) no integrating
processes

AMIGO 3.9τ 2 + 0.6τ + 0.46 4.3/(1− τ 3) whole Test Batch

176



17

Effect of Filtering on

Process Dynamics

The effects of filtering on the controller was discussed in Chapter 14,
when the filter G f and the controller CPID were lumped to obtain the
equivalent controller C = CPIDG f . It was shown that filtering influences
the characteristics of the controller. Thus, for PI control proportional ac-
tion disappears with hard filtering, while for PID control the derivative
action may disappear.
In Chapter 15 an iterative approach was introduced to obtain the fil-

ter time constant Tf . The approach required to find an FOTD approxima-
tion of PG f . The results showed that filtering can also be interpreted as
changing the dynamics of the process. Because of the changes in process
dynamics, a recalculation of the controller parameters is needed.
In order to explain the effect of filtering on process dynamics, the filter

G f and the process P will be lumped to obtain the filtered process model
P f = PG f as is illustrated in Figure 17.1.
In Chapter 16, the iterative process was used to develop simple design

rules for the filter time constant Tf . In this chapter a similar procedure

Process and filter

−1

G fCPID PΣ ΣΣ

yu

d n

Figure 17.1 Block diagram of the system. The filter and the process are
lumped to obtain the filtered process model P f = PG f .

177



Chapter 17. Effect of Filtering on Process Dynamics

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T f /T0

(L
a
,T
a
,L
a
+
T
a
)/
T
f

Figure 17.2 Effect of filter time constant for a process with first order
dynamics. The blue line shows the increase in the apparent time delay, the
red line shows the increase of the apparent time constant, and the black
line shows the sum of the two increments.

will be used to find simple rules for how filtering changes the parameters
of the FOTD model.

17.1 A Simple Example of Added Dynamics

Design of filters for PID controllers is a four parameters design, where
the dynamics of the system must be taken into account. For designs based
on an FOTD model it is interesting to investigate how the noise filter
changes the parameters of the FOTD model. Here, it is assumed that the
parameters of the FOTD model are determined using the 63% rule.
A first observation shows that for an integrating process P(s) = Kv/s,

the step response with an added noise filter gives asymptotically a ramp
that is delayed by Tf . Thus, adding a noise filter gives an FOTD model
with L0 = T f . The other extreme case is a process with pure time delay
dynamics, here the time delay does not change and the filter time constant
simply becomes the apparent time constant. These simple examples show
that the effects of the measurement noise filter on the parameters of the
FOTD model depend on the nature of the process.
Further insights can be obtained by analyzing a first order system

with a time constant T0, a time delay L0, and a first order filter with time
constant Tf . Figure 17.2 shows the relative increases of the time constant
and the time delay of the FOTD model for different τ . The blue and red
lines correspond to the ratios La/Tf and Ta/Tf , respectively, where the
increment of the time delay is given by La, and Ta is the increment of the
time constant due to filtering. The black line represents the ratio (La +
Ta)/Tf , which tells how much of the total added dynamics are contained
in the filter time constant. The figure shows that for small T f /T0 the filter

178



17.2 Design Rules for the Test Batch

0

0.5

1

1.5

2

L
a
/T
f

0

0.5

1

T
a
/T
f

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

(L
a
+
T
a
)/
T
f

τ

Figure 17.3 Effect of filter time constant on the Test Batch dynamics
for PI control, using a second order filter.

time constant is simply added to the time delay, and the time constant
remains the same. As the ratio T f/T0 increases a smaller fraction of Tf
is added to the time delay, and a larger fraction to the time constant. For
Tf /T0 = 0.2, both time delay and time constants are increased by 0.6T f ,
and for Tf = T0 the time delay is incremented by 0.28Tf , while the time
constant is incremented by 0.86Tf .

17.2 Design Rules for the Test Batch

Using the insights gained in the previous section, and considering that
process dynamics can be characterized by the normalized time delay τ ,
simple rules can be derived to calculate the FOTD parameters of the
filtered process model given by P f .
Figures 17.3 and 17.4 show the effects of the filter time constant on

the dynamics of the Test Batch when PI and PID control are used. A
second order filter was used, with the design parameter α = 0.05. In the
figures, the relative increment in the apparent time delay given by La/Tf
is shown in the top, the relative increment in the apparent time constant
given by Ta/Tf is shown in the center, and the relation between the total
added dynamics and the filter time constant given by (La + Ta)/T f is

179



Chapter 17. Effect of Filtering on Process Dynamics

0

0.5

1

1.5

2

L
a
/T
f

0

0.5

1

T
a
/T
f

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

(L
a
+
T
a
)/
T
f

τ

Figure 17.4 Effect of filter time constant for the Test Batch dynamics
for PID control, using a second order filter.

shown in the bottom graph. The markers in each plot correspond to the
results obtained for the different tuning methods, thus, blue is used for
SIMC, red for AMIGO, and cyan for Lambda. The outcomes for SIMC and
AMIGO are shown for 0 ≤ τ ≤ 1, while for Lambda two different domains
are used, 0 ≤ τ ≤ 0.4 for Tcl = L , and 0 ≤ τ ≤ 0.8 for Tcl = T . The solid
lines correspond to the curve fitting performed in each figure. Notice that
there are some outliers which correspond to the process P3 in the Test
Batch.
The figures show that for small τ the filter time constant T f is sim-

ply added to the nominal time delay L0, while for τ > 0.6 it influences
both the nominal time delay L0 and the nominal time constant T0. Thus,
considering the FOTD approximation of the nominal process given by
Equation (13.2), the FOTD approximation of the filtered process model
P f is given by

P f (s) =
K

1+ s(T + Ta)
e−s(L+La) (17.1)

For processes with integral and time delay characteristics which FOTD
approximation of the nominal process is given by Equation (13.7), the

180



17.3 A Complete Tuning Procedure

FOTD approximation of the filtered process model P f is given by

P f (s) =
Kv

s
e−s(L+La) (17.2)

The values of La and Ta can be found using curve fitting, which gives
the following equations

La = (1− 0.65τ 8)T f , Ta = 1.1τ 8T f . (17.3)

The results obtained were found for the design parameter α = 0.05,
but computations have shown that they are also valid for smaller α values.

17.3 A Complete Tuning Procedure

By combining the results of this chapter with those of Chapter 16, a
method to design measurement noise filters for PID controllers can be
proposed. The method is a four parameters design, where the filter time
constant is obtained using the design rules given in Chapter 16, and the
controller parameters are calculated using the FOTD approximation of
the filtered process model. The method can be described as follows:

• Obtain the FOTD approximation of the nominal process P(s), this
provides the values of L0, T0 and τ . Notice that for processes with
integral and time delay characteristics which have τ = 0, the only
value provided is L0.

• Choose the value of the design parameter α between 0.01 and 0.05.

• Select a tuning method and calculate the filter time constant Tf
using the equations in Table 16.1 or Table 16.2. Hence, depending
on which table is used one of the following steps is obtained:

– In case of using the equations in Table 16.1, the only informa-
tion needed is L0, T0, and τ , from the nominal process.

– For the equations provided in Table 16.2 it is necessary to know
the tuning parameters of the controller for the nominal process,
and for some tuning methods even τ .

• Calculate the added dynamics of the nominal FOTD model using
Equation (17.3).

• Depending on the characteristics of the process, replace the nomi-
nal process P(s) by the filtered process model P f (s) given in Equa-
tion (17.1) or (17.2), and calculate the controller parameters for P f (s)
using Table 13.1 or 13.7.

181



Chapter 17. Effect of Filtering on Process Dynamics

Tuning Procedure Example

The design method will be illustrated by applying it to the lag-dominated
process P1(s) given by (15.10). The three different tuning methods are
used to evaluate the effects of filtering in the system when using PID
control. Following the steps described in Section 17.3, the filter time con-
stant for α = 0.05 is calculated for each of the methods using the design
rules for PID control provided in Table 16.1. The controller parameters
are then calculated using the FOTD parameters of the filtered process
model P f given by (17.1) and the tuning rules given in Table 13.1.
Table 17.1 shows the influence of the filter time constant on the process

and the controller parameters, as well as the performance (IAE), robust-
ness (ϕm,�m,Ms,Mt), and noise attenuation (ω cb/ω �c, SDU, σ̂uw, kn). The
results are shown for α = 0 (no filtering), and for the recommended value
α = 0.05. For comparison the results also include the ones obtained with
the iterative method, which row is labeled with the capital letter I. The
outcomes of the tuning procedure are labeled with the capital letter T. As
expected, the use of filtering produces changes in process dynamics, where
the dynamics of the filter add to the apparent time delay. The changes
in the controller parameters are method dependent. Notice however, that
the derivative gain kd does not change for most of the methods.
The results obtained with the tuning procedure provide values for the

filter time constant Tf , and the controller parameters kp, ki, and kd which
are very close to the ones obtained with the iterative method. Thus, iter-
ation can be avoided by using the tuning procedure.
For completeness, Figure 17.5 shows the effects on performance, ro-

bustness and attenuation of measurement noise of the filter time constant
for the Lambda with Tcl = L (cyan), SIMC (blue), and AMIGO (red) tun-
ing methods. The top left plot shows the process output response to a
unit step load disturbance. The top right shows Nyquist plots of the loop
transfer function Gl = P1C and the region where the sensitivity Ms is in
the range 1.2 ≤ Ms ≤ 1.6. The bottom left figure shows the magnitude of
the transfer function from measurement noise to control signal Gun. The
lower right figure shows the gain curve of Gl. The figure shows that for
α = 0.05 better performance can be obtained when using SIMC, while
higher attenuation of measurement noise is provided by AMIGO. Robust-
ness is within desired limits for the three methods. For this particular
process, no big differences exist in the gain crossover frequency obtained
with each of the methods.
The results shown in Figure 17.5 can also be compared with the ones

shown in Figure 15.5, which are obtained using the iterative method.

182



17.3 A Complete Tuning Procedure

0 2 4 6

0

0.05

0.1

-1 -0.5 0
-1

-0.5

0

10
0

10
2

10
4

10
-1

10
0

10
1

10
-2

10
0

10
2

10
-2

10
2

Figure 17.5 Dependence of performance, robustness and attenuation of
measurement noise on the filter time constant for process P1(s) using PID
control. The controllers are designed using Lambda with Tcl = L (cyan),
SIMC (blue), and AMIGO (red) tuning methods. Table 16.1 is used to
calculate T f for α = 0.05.

183



C
h
a
p
ter
1
7
.
E
ffect

o
f
F
ilterin

g
o
n
P
ro
cess

D
y
n
a
m
ics

Table 17.1 Parameter dependence on the filter time constant for a process with lag-dominated dy-
namics using PID control

α τ L T kp ki kd T f ω�c IAE ϕm �m Ms Mt
ω cb
ω�c SDU σ̂uw kn

Lambda L

0 0.067 0.075 1.040 9.58 8.89 0.35 0 7.61 0.113 64.2 260 1.21 1.02 ∞ ∞ ∞
I 0.05 0.074 0.082 1.035 8.73 8.11 0.35 0.007 7.10 0.123 63.8 38.2 1.23 1.01 19623 1468 1477 69.9

T 0.05 0.073 0.082 1.040 8.84 8.18 0.35 0.007 7.20 0.122 63.7 31.4 1.23 1.01 21341 1658 1670 76

Lambda T

0 0.067 0.075 1.040 1.00 0.93 0.04 0 0.94 1.078 87.9 248 1.05 1.00 ∞ ∞ ∞
I 0.05 0.113 0.132 1.034 1.00 0.91 0.06 0.054 0.92 1.099 85.7 32.6 1.07 1.00 456.3 14.49 14.6 1.91

T 0.05 0.112 0.131 1.040 1.00 0.90 0.06 0.056 0.92 1.105 85.8 31.7 1.07 1.00 442.3 14.0 14.1 1.87

SIMC

0 0.067 0.075 1.040 9.76 20.54 0.23 0 7.66 0.049 49.8 312 1.41 1.24 ∞ ∞ ∞
I 0.05 0.074 0.082 1.036 8.88 17.07 0.23 0.007 7.15 0.059 50.3 35.4 1.42 1.22 13170 997.6 1003 47.4

T 0.05 0.072 0.081 1.040 9.08 17.78 0.23 0.006 7.30 0.056 50.1 43.1 1.42 1.23 16435 1375 1390 59

AMIGO

0 0.067 0.075 1.040 6.44 17.83 0.24 0 5.69 0.059 51.2 381 1.30 1. ∞ ∞ ∞
I 0.05 0.076 0.085 1.036 5.70 14.67 0.24 0.010 5.17 0.072 51.6 35.6 1.30 1.27 9673 619.6 622.6 34.7

T 0.05 0.074 0.083 1.040 5.87 15.35 0.24 0.008 5.28 0.069 51.5 43.9 1.30 1.27 12620 914.1 921.1 45.0

184



18

Experimental Results

The effect of filtering is most pronounced for processes with lag dominant
dynamics and we have therefore chosen to make experiments with such a
system. One set of experiments was performed to illustrate the effect of
filtering on PI control and another one to illustrate the effect of filtering
on PID control. The controller parameters are calculated using Lambda
with Tcl = L, SIMC, and AMIGO tuning rules.

18.1 Experimental Set Up

Standard equipment that is normally used in teaching was configured for
the experiments. The setup is shown in Figure 18.1 and it consists of a
cylindrical tank, a pressure level sensor that produces an output in the
range of 0 to 10V and an electrically driven pump to control the inflow
to the tank. The pump from a similar system is also used to provide a
load disturbance. The system has 16 bit AD and DA converters. The DA
converter has an antialiasing filter with a time constant of 0.15 s. The
FOTD model approximation of the process is

P(s) = 3.7
72s+ 1 e

−3.3s, (18.1)

according to (13.6) it has a normalized time delay τ = 0.044, which shows
the lag dominated dynamics of the process.
The system is controlled using a standard PC running Matlab under

Linux, the sampling rate for analog input is 100 Hz, no real time kernel
is used since the sampling rate is so low.
Filtering is done with a digital filter running at 100 Hz. The filter is

implemented using the states

x1 = yf , x2 = ẏf , (18.2)

185



Chapter 18. Experimental Results

Figure 18.1 System setup. The level of the upper tank on the right is
controlled through a pump. The system on the left is used to introduce a
load disturbance.

and the filter transfer function G f according to (14.1) has the state-space
representation

[

ẋ1
ẋ2

]

= 1
Tf

[

x2
−2x1 − 2x2 + y

]

, (18.3)

where y is the AD converted output. Notice that the filter gives both the
filtered output yf and the filtered derivative. The PID controller is then
given by

u = kp(ysp − yf ) + ki
∫

(ysp − yf )dt− kd ẏf (18.4)

where ysp is the setpoint. The control signal is computed at a slower rate
for the second set of experiments.

18.2 Effect of Filtering

The objective of these experiments is to show how the filter influences the
variations in the control signal and load disturbance responses. A load
disturbance is generated by applying a constant input of 1V to the pump
that provides the load disturbance. To start the experiments, the process
is run with constant set point (4 cm) until steady state is established.
PI and PID controllers were designed for values of α between 0 and

0.05 to show the effects of the filter time constant Tf . The filter time
constants used for the experiments were obtained using the tuning pro-
cedure described in Section 17.3 with the rules given in Table 13.1. To be

186



18.3 Result for AMIGO Tuning

able to compare with the results obtained with the iterative method de-
scribed in Section 15.1, the results for some parameters are shown below.
The results provided by the iterative method, are labeled with the capital
letter I in each table. Likewise, the outcomes with the tuning procedure
are labeled with the capital letter T.

18.3 Result for AMIGO Tuning

The effects on the response to load disturbance for different Tf values are
illustrated in Figure 18.2 for PID control, and Figure 18.4 for PI control. At

3.85

3.9

3.95

4

3.85

3.9

3.95

4

1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

IAE=3.44, σ y = 2.3 mV IAE=3.37, σ yf = 1.5 mV T f = 0.066, σu = 40.0 mV

3.85

3.9

3.95

4

3.85

3.9

3.95

4

1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

IAE=3.65, σ y = 2.0 mV IAE=3.58, σ yf = 1.2 mV T f = 0.132, σu = 19.7 mV

0 100 200 300

3.85

3.9

3.95

4

0 100 200 300

3.85

3.9

3.95

4

0 100 200 300

1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=3.91, σ y = 1.8 mV IAE=3.84, σ yf = 0.9 mV T f = 0.330, σu = 9.4 mV

Figure 18.2 Load disturbance responses for different values of the filter
time constant T f using PID control. The controller parameters are obtained
using AMIGO tuning. The figure shows the process variable y (left), the
filtered process variable yf (center) and the control signal u (right) to a
constant load disturbance for T f = 0.066, 0.132 and 0.330.

187



Chapter 18. Experimental Results

time t = 0s the process variable y is in steady state and has a magnitude
of 4V. The disturbance enters at the process input at time t = 100s.
For PID control, Figure 18.2 shows that the filter has a significant

effect on the control signal. Comparing the measured and the filtered sig-
nals y and yf , respectively, one can immediately conclude that the filter
only has a small influence on yf even if the filter time constant changes
by a factor of five. If the measurement noise was white it follows from
Equation (14.23) that the standard deviation of the filtered process out-
put should change by a factor of 2.25. Thus, one can conclude that the
measurement noise is not white (see Table 18.1). The variations in the
measured signal when the control signal is constant have several sources,
which include measurement noise and ripples caused by the water enter-
ing the tank.

Table 18.1 summarizes the results of the experiment. It shows the in-
fluence of the filter time constant on the process dynamics (τ , L, T), con-
troller parameters (kp, ki, kd), performance (IAE), and noise attenuation.
The effects on the attenuation of measurement noise are shown through
the values found with the approximations σ̂uw, σ̂ yfw, and k̂nw given in
Equations (14.20), (14.23), and (14.24), respectively, and the values ex-
perimentally found of σu, σ yf , and kn. The performance values shown in
the table have also been experimentally obtained

Table 18.1 shows that the outcomes from both methods, the iterative
method and the tuning procedure, are close to each other. Introduction
of filtering produces changes in the process dynamics, which are evident
in the apparent time delay L of the process. The controller parameters
change accordingly to the process dynamics. Filtering increment produces
a significant reduction in performance which is reflected by the integrated
absolute error IAE.

Some values which are not shown in the table do not experience sig-
nificant changes. For instance, considering the effects from no filtering to
hard one, the gain crossover frequency ω �c varies between 0.138 and 0.140,
the robustness margins remain essentially constant, with ϕm = 60.2,
�m = 3.52, Ms = 1.41, and Mt = 1.21.
Before explaining the effects of filtering on the reduction of measure-

ment noise, it is important to consider that the equation (14.24) for the
noise gain k̂nw is based on the assumption that the measurement noise
is white. This is not the case in the experiments as was clearly seen in
Figure 18.2 and from the values of σ y f in Table 18.1. If the measurement
noise was white the standard deviation would decrease as 1/

√

T f but the
values in the table are practically independent of the filter time constant
indicating that the noise is bandlimited. Assuming that the measurement

188



18.3 Result for AMIGO Tuning

noise is bandlimited with spectral density

Φ(ω ) = Φ0

1+ω 2T2b
, (18.5)

and using high frequency approximations, the variances of the control
signal and the filtered output can be computed from the algorithms in
[Åström, 1970, Chapter 5.2], thus

σ̂ 2yf b =
Tf /2+ Tn

2T2n + 2TnTf + T2f
Φ0, σ̂ 2ub =

k2d + k2p(T2f /2+ TnT f )
T f (2T2n + 2TnT f + T2f )

Φ0

The noise gain for low pass measurement noise is

k̂nb =
σ̂ub
σ̂ yf b

=
√

k2p +
k2d

Tf (T f/2+ Tb)
. (18.6)

Determining the parameter Tb from the measured signal in the exper-
iment one gets Tb = 0.35. This result can also be validated by investi-
gating the properties of the noise, which can be obtained by analysing
the measurement signal in open loop. A sample of the signal is shown in
Figure 18.3, which also shows the covariance function. The figure clearly
shows that the noise is not pure white noise. The sharp peak at τ = 0
is a white noise component, but there is also a component which can be
modeled as white noise filtered by a first order system. A small drift
in the data shows up as the constant level in the covariance function.
The fit represented by the dashed red line corresponds to the covariance
function r(τ ) = 0.01e−pτ p/0.33, that is, white noise filtered by a first order
system with the time constant 0.33s. The time constant is close to the
value Tb = 0.35 given above.
Table 18.1 shows the corresponding values of k̂nb for the time constant

Tb = 0.35. These results which are of particular interest show a relation
between the values of k̂nb, which are obtained from the controller and the
filter parameters, and the values of kn = σu/σ yf which are experimentally
obtained. Thus, the manual calculation of the noise gain gives insight
about how filtering affects the reduction of the undesirable control actions
generated by measurement noise.
Figure 18.4 shows the effects of filtering on the filtered signal yf , and

the control signal u for PI control. Despite variations of the filter time
constant T f between 0.116 and 0.578, the effects on the activity of the
control signal are not very significant. This can also be appreciated in
Table 18.1, where σu varies between 2.7 and 2.2. From the results shown
in the figure and the table, it is clear that the measurement noise signal
does not have a significant influence in the controller activity. This is

189



Chapter 18. Experimental Results

0 5 10 15 20 25 30 35 40 45 50
-0.01

-0.005

0

0.005

0.01

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

τ

r
(τ
)

Time (s)

y

Figure 18.3 The top figure shows a sample of the measurement signal in
open loop. The bottom figure shows the corresponding covariance function.
The red dashed line is a fit to the part of the covariance function that
corresponds to non-white noise.

because the main frequency content of the measurement noise is located
at higher frequencies than the bandwidth of the noise filter.
For the PI control case, the results in Table 18.1 show that the simil-

itudes between k̂nw ( kp and kn are remarkable. This is easy to under-
stand if one considers that the maximum gain of Gun at high frequencies
is limited by the proportional gain kp. Likewise, using the expression in
Equation (18.6), the noise gain for low pass measurement noise is equal
to k̂nb = kp. The table also shows the changes in dynamics, controller
parameters, as well as performance due to filtering. Notice that while the
results provided by filtering with PI control are remarkable for attenua-
tion of measurement noise, the loss in performance is very significant, up
to three times larger, compared to the results obtained by filtering with
PID control. The effects of filtering in the robustness margins are not sig-
nificant, thus, ϕm ( 60, 4.83 < �m < 4.91, Ms = 1.36, and Mt = 1.14. The
gain crossover frequency ω �c varies between 0.1 for no filtering to 0.084
for hard filtering.

190



18.3 Result for AMIGO Tuning

3.8

3.9

4

3.8

3.9

4

1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

IAE=8.07, σ y = 2.0 mV IAE=8.03, σ yf = 1.4 mV T f = 0.116, σu = 2.7 mV

3.8

3.9

4

3.8

3.9

4

1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

IAE=8.57, σ y = 2.3 mV IAE=8.53, σ yf = 1.5 mV T f = 0.231, σu = 2.6 mV

0 100 200 300

3.8

3.9

4

0 100 200 300

3.8

3.9

4

0 100 200 300
1.6

1.8

2

2.2

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=9.90, σ y = 2.1 mV IAE=9.85, σ yf = 1.4 mV T f = 0.578, σu = 2.2 mV

Figure 18.4 Load disturbance responses for different values of the filter
time constant T f using PI control. The controller parameters are obtained
using AMIGO tuning. The figure shows the process variable y (left), the
filtered process variable yf (center) and the control signal u (right) to a
constant load disturbance for T f = 0.116, 0.231 and 0.578.

191



C
h
a
p
ter
1
8
.
E
x
p
erim

en
ta
l
R
esu
lts

Table 18.1 Data summary for the level control experiment using AMIGO tuning.

PID Control

α τ L T kp ki kd T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 2.71 0.146 4.41 0 ∞ ∞ - - -

0.01
I 0.045 3.38 71.58 2.63 0.140 4.38 0.074 545.7 6.52 83.75
T 0.045 3.37 72.00 2.66 0.141 4.41 0.066 3.37 652.2 40.0 6.90 1.5 94.53 26.67 27.85

0.02
I 0.046 3.47 71.57 2.56 0.134 4.38 0.151 187.5 4.56 41.10
T 0.046 3.43 72.00 2.61 0.137 4.41 0.132 3.58 230.8 19.7 4.88 1.2 47.32 16.41 18.99

0.05
I 0.050 3.76 71.54 2.37 0.117 4.38 0.406 42.9 2.78 15.44
T 0.048 3.63 72.00 2.47 0.125 4.41 0.330 3.84 58.8 9.4 3.09 0.9 19.06 10.44 10.98

PI Control

α τ L T kp ki T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 1.86 0.065 0 ∞ ∞ - - -

0.01
I 0.046 3.42 71.57 1.78 0.061 0.104 9.79 5.49 1.78
T 0.045 3.42 72.00 1.79 0.061 0.116 8.03 9.32 2.7 5.20 1.4 1.79 1.95 1.79

0.02
I 0.047 3.54 71.56 1.71 0.057 0.217 6.51 3.80 1.71
T 0.047 3.53 72.00 1.72 0.058 0.231 8.53 6.35 2.6 3.69 1.5 1.72 1.79 1.72

0.05
I 0.053 3.99 71.52 1.49 0.047 0.617 3.37 2.26 1.49
T 0.051 3.88 72.00 1.55 0.049 0.578 9.85 3.62 2.2 2.33 1.4 1.55 1.55 1.55

192



18.4 Result for Lambda Tuning

3.85

3.9

3.95

4

3.85

3.9

3.95

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=9.24, σ y = 2.6 mV IAE=9.19, σ yf = 2.0 mV T f = 0.099, σu = 70.2 mV

0 200 400
3.85

3.9

3.95

4

0 200 400
3.85

3.9

3.95

4

0 200 400

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=9.12, σ y = 2.3 mV IAE=9.04, σ yf = 1.5 mV T f = 0.248, σu = 24.6 mV

Figure 18.5 Load disturbance responses for different values of the filter
time constant T f using PID control. The controller parameters are obtained
using Lambda tuning with Tcl = L. The figure shows the process variable
y (left), the filtered process variable yf (center) and the control signal u
(right) to a constant load disturbance for T f = 0.099 and 0.248.

18.4 Result for Lambda Tuning

Figure 18.5 and Figure 18.6 illustrate the effects on the response to load
disturbances for different Tf values for PID and PI control, respectively.
The process variable y is in steady state at time t = 0s and has a mag-
nitude of 4V. At time t = 100s the load disturbance enters at the process
input.
Figure 18.5 shows the influence of the filter time constant on the

reduction of control activity due to measurement noise for PID control.
No results are shown for α = 0.01 due to the high variations of the control
signal, which were up to 1V peak to peak. On the other hand, filtering
has a small influence on the variations of the measured and the filtered
signals y and yf , respectively, which shows that the measurement noise
is not white.
Table 18.2 shows the effects of the filter time constant on different

parameters. The changes on process dynamics are reflected in the added
dynamics of the apparent time delay L, the controller parameters change
accordingly. No significant reduction in performance is observed, whereas
the attenuation of measurement noise is significant. Due to the low pass

193



Chapter 18. Experimental Results

characteristics of the measurement noise, the values provided by σ̂uw,
σ̂ yfw, and k̂nw are not good approximations of the values obtained exper-
imentally. Thus, using Equation (18.6) and Tb = 0.32, the values of knb
can be obtained (see Table 18.2). These results show a relation with the
values experimentally obtained, that is, kn, which is interesting consider-
ing that they are obtained from the controller and the filter parameters.
The effects of filtering in robustness are not significant, thus, ϕm = 68.9,
�m = 2.33, Ms = 1.77, and Mt = 1. The gain crossover frequency ω �c
varies between 0.215 for no filtering to 0.2 for T f = 0.248.
For PI control, the effects of the filter time constant on the filtered sig-

nal yf , and the control signal u are shown in Figure 18.6. Although the
filter time constant magnitude varies for more than a factor of four, the
effects on the reduction of the control activity are not very significant.
This is because the measurement noise is at a frequency band higher
than the bandwidth of the noise filter. Table 18.2 shows the similitudes
between the values of k̂nw, kn, and k̂nb which are approximately equal to
kp. Additionally the table shows the effects on dynamics, controller pa-
rameters, and performance. Other parameters such as the gain crossover
frequency ω �c varies between 0.152 and 0.138. The robustness margins
remain almost constant with introduction of filtering, thus, ϕm ( 61.3,
�m = 3.14, Ms = 1.59, and Mt = 1. Notice that the outcomes provided by
the iterative method and the tuning procedure are very similar.
The results obtained with PI and PID control show that higher attenu-

ation of measurement noise can be obtained with PI control at the price of
losing in performance, while for PID significant attenuation of measure-
ment noise can be obtained with almost negligible losses in performance.
Hence, the selection of the controller is problem dependent.

194



18.4 Result for Lambda Tuning

3.8

3.9

4

3.8

3.9

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=12.08, σ y = 3.8 mV IAE=12.03, σ yf = 3.2 mV T f = 0.066, σu = 9.4 mV

0 200 400
3.8

3.9

4

0 200 400
3.8

3.9

4

0 200 400
1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=12.81, σ y = 3.3 mV IAE=12.77, σ yf = 2.9 mV T f = 0.132, σu = 8.2 mV

0 200 400
3.8

3.9

4

0 200 400
3.8

3.9

4

0 200 400
1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=13.16, σ y = 2.9 mV IAE=13.09, σ yf = 1.8 mV T f = 0.330, σu = 4.8 mV

Figure 18.6 Load disturbance responses for different values of the filter
time constant T f using PI control. The controller parameters are obtained
using Lambda tuning with Tcl = L. The figure shows the process variable
y (left), the filtered process variable yf (center) and the control signal u
(right) to a constant load disturbance for T f = 0.066, 0.132 and 0.330.

195



C
h
a
p
ter
1
8
.
E
x
p
erim

en
ta
l
R
esu
lts

Table 18.2 Data summary for the level control experiment using Lambda tuning.

PID Control

α τ L T kp ki kd T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 4.02 0.055 6.49 0 ∞ ∞ -

0.01
I 0.045 3.35 71.58 3.94 0.054 6.45 0.048 1537.7 8.1 190.1
T 0.045 3.35 72.00 3.96 0.054 6.48 0.050 1453.2 7.9 183.3

0.02
I 0.046 3.41 71.57 3.87 0.053 6.45 0.097 535.6 5.7 94.1
T 0.045 3.40 72.00 3.91 0.053 6.48 0.099 9.19 521.9 70.2 5.6 2.0 92.6 35.1 32.85

0.05
I 0.048 3.59 71.55 3.68 0.050 6.45 0.236 141.7 3.6 38.8
T 0.047 3.55 72.00 3.75 0.051 6.48 0.248 9.04 132.2 24.6 3.6 1.5 37.1 16.4 19.31

PI Control

α τ L T kp ki T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 2.95 0.041 0 ∞ ∞ - -

0.01
I 0.045 3.38 71.58 2.86 0.040 0.068 19.44 6.79 2.86
T 0.045 3.37 72.00 2.89 0.040 0.066 12.03 19.94 9.4 6.90 3.2 2.89 2.95 2.89

0.02
I 0.046 3.46 71.57 2.80 0.039 0.139 13.31 4.75 2.80
T 0.046 3.43 72.00 2.84 0.039 0.132 12.77 13.86 8.2 4.88 2.9 2.84 2.85 2.84

0.05
I 0.049 3.72 71.54 2.60 0.036 0.375 7.53 2.89 2.60
T 0.048 3.63 72.00 2.68 0.037 0.330 13.09 8.27 4.8 3.09 1.8 2.68 2.68 2.68

196



18.5 Result for SIMC Tuning

18.5 Result for SIMC Tuning

Figure 18.7 and Figure 18.8 show the effects on the response to load
disturbances for different T f values for PID, and PI control, respectively.

3.85

3.9

3.95

4

3.85

3.9

3.95

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=2.60, σ y = 2.4 mV IAE=2.56, σ yf = 1.9 mV T f = 0.049, σu = 61.3 mV

3.85

3.9

3.95

4

3.85

3.9

3.95

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=2.72, σ y = 2.0 mV IAE=2.68, σ yf = 1.3 mV T f = 0.099, σu = 27.2 mV

0 100 200 300
3.85

3.9

3.95

4

0 100 200 300
3.85

3.9

3.95

4

0 100 200 300

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=2.84, σ y = 1.9 mV IAE=2.78, σ yf = 1.1 mV T f = 0.248, σu = 10.1 mV

Figure 18.7 Load disturbance responses for different values of the filter
time constant T f using PID control. The controller parameters are obtained
using SIMC tuning. The figure shows the process variable y (left), the
filtered process variable yf (center) and the control signal u (right) to a
constant load disturbance for T f = 0.049, 0.099 and 0.248.

For PID control, Figure 18.7 shows that while filtering has a high
influence in the reduction of the control activity, no significant influence
is observed on the variations of the measured and the filtered signals y
and yf , respectively.
Table 18.3 shows a summary of the experimental results. According

to this results the changes in process dynamics, and controller parame-

197



Chapter 18. Experimental Results

ters are not significant, despite the magnitude changes of T f which go
up to a factor of five. Likewise, the gain crossover frequency ω �c varies
between 0.213 and 0.208. The robustness margins remain constant with
ϕm ( 53.4, �m = 2.6, Ms = 1.7, and Mt = 1.17. The small variations of
these parameters are reflected by the added dynamics due to filtering,
which are not very significant for this process. The results for attenua-
tion of measurement noise are also shown in the table. Since the mea-
surement noise is not white, and assuming that the measurement noise
is bandlimited, the noise gain for low pass measurement noise kn can
be obtained based on the controller parameters, and the filter time con-
stant (see Equation (18.6)). The results obtained with Tb = 0.32 show
similitudes with the ones experimentally obtained, which is remarkable.
For PI control, the effects of filtering are shown in Figure 18.8, and

Table 18.3. Just like in the AMIGO and Lambda tuning cases, the changes
in the filter time constant Tf seem not to produce significant effects on
the reduction of the control activity due to measurement noise. The re-
semblance between the values of k̂nw, kn, and k̂nb, which are roughly equal
to the proportional gain kp, are also shown in the table. Filtering has no
important effects on the robustness margins, which remain almost con-
stant, with 51.6 < ϕm < 52.2, �m = 3, Ms = 1.67, and Mt = 1.17. The
crossover frequency changes between 0.158 for no filtering to 0.144 for
Tf = 0.33. Once again, notice that the results obtained with the iterative
method and the tuning procedure are quite similar.
The results obtained for PID control show that high attenuation of

measurement noise is possible with no significant loss in performance.
On the other hand, with PI control higher attenuation of measurement
noise is possible at the expense of higher loss in performance.

198



18.5 Result for SIMC Tuning

3.8

3.85

3.9

3.95

4

3.8

3.85

3.9

3.95

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=4.41, σ y = 2.1 mV IAE=4.37, σ yf = 1.6 mV T f = 0.066, σu = 5.0 mV

3.8

3.85

3.9

3.95

4

3.8

3.85

3.9

3.95

4

1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

IAE=4.69, σ y = 1.7 mV IAE=4.65, σ yf = 0.8 mV T f = 0.132, σu = 2.4 mV

0 100 200 300
3.8

3.85

3.9

3.95

4

0 100 200 300
3.8

3.85

3.9

3.95

4

0 100 200 300
1.6

2

2.4

y
(V
)

y
f
(V
)

u
(V
)

Time (s)Time (s)Time (s)

IAE=5.26, σ y = 1.5 mV IAE=5.22, σ yf = 0.3 mV T f = 0.330, σu = 0.8 mV

Figure 18.8 Load disturbance responses for different values of the filter
time constant T f using PI control. The controller parameters are obtained
using SIMC tuning. The figure shows the process variable y (left), the
filtered process variable yf (center) and the control signal u (right) to a
constant load disturbance for T f = 0.066, 0.132 and 0.330.

199



C
h
a
p
ter
1
8
.
E
x
p
erim

en
ta
l
R
esu
lts

Table 18.3 Data summary for the level control experiment using SIMC tuning.

PID Control

α τ L T kp ki kd T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 4.15 0.199 4.32 0 ∞ ∞ -

0.01
I 0.045 3.35 71.58 4.06 0.191 4.30 0.048 1025.5 8.1 126.8
T 0.045 3.35 72.00 4.09 0.193 4.32 0.049 2.56 998.9 61.3 8.0 1.9 124.7 32.26 32.01

0.02
I 0.046 3.41 71.57 3.99 0.185 4.30 0.098 352.1 5.7 62.2
T 0.045 3.40 72.00 4.03 0.187 4.32 0.099 2.68 348.4 27.2 5.6 1.3 61.8 20.92 22.11

0.05
I 0.048 3.59 71.55 3.79 0.167 4.30 0.256 84.3 3.5 24.1
T 0.047 3.55 72.00 3.86 0.172 4.32 0.248 2.78 88.7 10.1 3.6 1.1 24.9 9.18 13.21

PI Control

α τ L T kp ki T f IAE σ̂uw σu σ̂ yfw σ yf k̂nw kn k̂nb

0 0.044 3.30 72.00 2.99 0.113 0 ∞ ∞ - - -

0.01
I 0.045 3.37 71.58 2.91 0.108 0.065 20.23 6.95 2.91
T 0.045 3.37 72.00 2.94 0.109 0.066 4.37 20.29 5.0 6.90 1.6 2.94 3.05

0.02
I 0.046 3.45 71.57 2.85 0.103 0.134 13.80 4.84 2.85
T 0.046 3.43 72.00 2.88 0.105 0.132 4.65 14.05 2.4 4.88 0.8 2.88 2.86

0.05
I 0.049 3.70 71.54 2.66 0.090 0.357 7.89 2.97 2.66
T 0.048 3.63 72.00 2.73 0.094 0.330 5.22 8.43 0.8 3.09 0.3 2.73 2.67

200



18.6 Final Remarks

18.6 Final Remarks

The experiments have shown that introduction of filtering in the feedback
loop can effectively reduce the undesired control activity of the control
signal due to measurement noise. The results are more striking for PID
control, where the effects of measurement noise at high frequency are
more evident. On the other hand, for PI control the reduction of measure-
ment noise was not significant with respect to the filtering increment.
This was the result of having the noise signal at a frequency band which
was higher than the bandwidth of the noise filter.
The similarities between the outcomes from the iterative method and

the tuning procedure have shown that the filter time constant, as well as
the controller parameters can be easily calculated without iterations. The
only information needed is the parameters of the nominal FOTD model,
or the nominal controller and the normalized time delay τ , and the design
parameter α , which is problem dependent and can be chosen as a trade-off
between performance, robustness, and attenuation of measurement noise.
The theoretical calculation based on the controller parameters and the

filter time constant of the noise gain for white measurement noise knw,
and for low pass measurement noise knb, give insight about how filtering
influences the attenuation of measurement noise.

201



19

Conclusions

19.1 Summary

The main focus of the second part of this thesis is the design of mea-
surement noise filters for PID controllers. The design used an iterative
approach to calculate the filter time constant, which was a function of
the gain crossover frequency of the loop transfer function, and the design
parameter α . The calculations were based on the information provided
by the FOTD model of the process. The controller parameters were calcu-
lated using some know tuning methods based on the FOTD model such
as Lambda, SIMC, and AMIGO tuning, respectively. For assessment of
the filter design, criteria based on the trade-offs between performance,
robustness, and attenuation of measurement noise was proposed. The re-
sults showed that the value of α directly influences these trade-offs.
The results obtained gave insights about the effects of the filtering

on different parameters of the feedback loop. This information was used
to obtain simple tuning rules to calculate the filter time constant, thus,
iteration could be avoided. Design of the filter time constant was then
based on information provided by the nominal process, and the nominal
controller.
Finally, a complete tuning procedure that obtains the filter time con-

stant based on the tuning rules, and which considers the effects of filtering
in the nominal process was proposed. The added dynamics were accounted
for in the filtered process model. This model was then used to recalculate
the controller tuning parameters. Some remarks about the outcomes of
the second part of this thesis are given below.

Design Criteria

Assessment of the proposed design procedure to calculate the filter time
constant was carried out based on the trade-offs between performance,
robustness, and measurement noise attenuation. Performance was char-
acterized by IAE, while robustness margins were given by ϕm, �m, Ms,

202



19.1 Summary

and Mt. To account for the effects of measurement noise three quantities
were proposed, the control bandwidth ω cb, the standard deviation of the
control signal SDU, and the noise gain kn. Approximation of the expres-
sions provided insights about the effects of the filtering on the different
parameters of the feedback loop.

Tuning Rules for Filter Design

In order to obtain rules for filter design, the iterative method initially pro-
posed was applied to the Test Batch. From the results obtained, simple
rules were derived to calculate the filter time constant when the controller
parameters are obtained using Lambda, SIMC, or AMIGO tuning. Two
set of rules were obtained for PI and PID control, respectively. One set
used the FOTD parameters of the nominal process, that is, the apparent
time delay L0, the apparent time constant T0. The other set required the
tuning parameters of the nominal controller, that is, the integral time
T0i , the derivative time T

0
d , and the normalized time delay τ . An impor-

tant observation was that for PID control the filter time constant can be
chosen as either a fraction of the derivative time, or the integral time.
This observation is interesting considering that it has always been as-
sumed that the derivative part has higher influence in the attenuation of
measurement noise.

Added Process Dynamics

Design of filters for PID controllers is a four parameters design. The de-
sign must account not only for the dynamics of the nominal process, but
also for the added dynamics introduced with filtering. The added dynam-
ics together with the nominal process model are represented by the fil-
tered process model P f . Following the same ideas used to find the tuning
rules for filter design, the results from the Test Batch are used to derive
simple equations which can be used to calculate the added dynamics and
hence, the filtered process model.

Complete Tuning Procedure

A tuning procedure which accounts for the dynamics introduced by filter-
ing was proposed to calculate the filter time constant for PID controllers.
The tuning procedure begun with the calculation of the FOTD model of
the nominal process. Then, after selection of the design parameter α , the
tuning rules provided in Table 16.1 or Table 16.2 could be used to find
the filter time constant. The procedure finishes with the calculation of the
new controller parameters for the filtered process model, which included
the added dynamics due to filtering.

203



Chapter 19. Conclusions

19.2 Future Work

This second part of the thesis has treated the design of a second-order
noise filter applied to PI or PID controllers tuned using the AMIGO,
Lambda, or SIMC methods. Interesting future work is to extend the iter-
ative design procedure to find tuning rules for other filter structures and
other tuning rules. The model used for the procedure described is based
on the information provided by the FOTD model, it would be interesting to
see the extension of this work when more complex models are used, such
as the SOTD model. It is also interesting to investigate the noise filtering
for other controller structures, not only P or PD controllers, but also more
advanced controller structures where the control signal variation is not
taken into account yet.

204



Bibliography for Part II

Åström, K. J. (1970). Introduction to Stochastic Control Theory. Dover,
New York, NY, USA.

Åström, K. J. and T. Hägglund (1988). Automatic Tuning of PID Con-
trollers. Instrument Society of America, Research Triangle Park, North
Carolina.

Åström, K. J. and T. Hägglund (1995). PID Controllers: Theory, Design,
and Tuning. Instrument Society of America, Research Triangle Park,
North Carolina.

Åström, K. J. and T. Hägglund (2005). Advanced PID Control. ISA - In-
strumentation, Systems, and Automation Society, Triangle Park, NC
27709, USA.

Bochner, S. and K. Chandrasekharan (1949). Fourier transforms. 19.
Princeton University Press.

Garpinger, O. (2009). In: Licenciate thesis, Design of Robust PID Con-
trollers with Constrained Control Signal Activity. http : / / www .

control.lth.se/Publication/gar09lic.html. Department of Au-
tomatic Control, Lund University, Sweden.

Garpinger, O., T. Hägglund, and K. J. Åström (2012). “Criteria and trade-
offs in PID design”. In: IFAC Conference on Advances in PID Control.
Brescia, Italy.

Gerry, J. (2002). “Use derivative action responsibly”. Control Engineering
49:2, p. 64.

Grimholt, C. and S. Skogestad (2013). “Optimal PID-control for first order
plus time delay systems and verification of the simc rules”. In: Nordic
Process Control Workshop. Oulu, Finland.

Horowitz, I. M. (1963). Synthesis of Feedback Systems. 1st. Academic
Press, New York and London.

205



Bibliography for Part II

Isaksson, A. J. and S. F. Graebe (2002). “Derivative filter is an integral
part of PID design”. IEE Proceedings, Control Theory and Applications
149, pp. 41–45.

Johnson, M. A. and M. H. Moradi (2005). PID control. Springer.
Kolmogorov, A. and S. Fomin (1957). Functional Analysis (Vol. I).
Kristiansson, B. and B. Lennartson (2006). “Evaluation and simple tuning
of PID controllers with high frequency robustness”. Journal of Process
Control 16:2, pp. 91–103.

Larsson, P.-O. and T. Hägglund (2011). “Control signal constraints and
filter order selection for PI and PID controllers”. In: American Control
Conference. San Francisco, CA, USA, pp. 4994–4999.

O’Dwyer, A. (2009). Handbook of PI and PID controller tuning rules.
Vol. 2. World Scientific.

Rivera, D. E., M. Morari, and S. Skogestad (1986). “Internal model control:
PID controller design”. Industrial & Engineering Chemistry Process
Design and Development 25:1, pp. 252–265.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2013). “Noise filtering
in PI and PID control”. In: American Control Conference. Washington,
DC, USA, pp. 1763 –1770.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014a). “Design of
measurement noise filters for PID control”. In: IFAC World Congress.
Cape Town, South Africa.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014b). “Measure-
ment noise filtering for PID controllers”. Journal of Process Control
24:4, pp. 299–313.

Romero Segovia, V., T. Hägglund, and K. J. Åström (2014c). “Measure-
ment noise filters for common PID tuning rules”. Control Engineering
Practice. Submitted.

Sekara, T. B. and M. Matausek (2009). “Optimization of PID controller
based on maximization of the proportional gain under constraints on
robustness and sensitivity to measurement noise”. IEEE Transactions
of Automatic Control 54:1, pp. 184–189.

Sell, N. J. (1995). Process Control Fundamentals for the Pulp and Paper
Industry. 3th. Tappi Press, Technology Park, Atlanta, USA.

Shinskey, F. G. (1996). Process Control Systems. Application, Design, and
Tuning. 4th. McGraw-Hill, New York, NY, USA.

Skogestad, S. (2003). “Simple analytic rules for model reduction and PID
controller tuning”. Journal of Process Control 13:4, pp. 291–309.

206



Bibliography for Part II

Skogestad, S. (2006). “Tuning for smooth PID control with acceptable
disturbance rejection”. Industrial and Engineering Chemistry Research
45, pp. 7817–7822.

Vilanova, R. and A. Visioli (2012). PID Control in the Third Millennium,
Advances in Industrial Control. Springer, New York.

Visioli, A. (2006). Practical PID Control. Springer, London.

207


