
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Support for Ad-Hoc applications in ubiquitous computing

Svensson Fors, David

2006

Link to publication

Citation for published version (APA):
Svensson Fors, D. (2006). Support for Ad-Hoc applications in ubiquitous computing. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/550200a7-1a72-4830-bc9b-43ef3d6ac9d0

Support for
Ad-Hoc Applications

in Ubiquitous Computing

David Svensson

Licentiate thesis, 2006

Department of Computer Science
Lund University

ISSN 1652-4691
Licentiate Thesis 7, 2006
LU-CS-LIC:2006-4

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: david@cs.lth.se
WWW: http://www.cs.lth.se/~david

Typeset using LATEX 2ε

Printed in Sweden by Tryckeriet i E-huset, Lund, 2006

c© 2006 by David Svensson

Abstract

This thesis presents work within the area of ubiquitous computing, an area
based on a vision of computers blending into the background. The work
has been done within the EU project PalCom that introduces palpable com-
puting. Palpable computing puts a new perspective on ubiquitous comput-
ing, by focusing on human understandability.
The thesis goals are to allow for ad-hoc combinations of services and non-
preplanned interaction in ubiquitous computing networks. This is not pos-
sible with traditional technologies for network services, which are based
on standardization of service interfaces at the domain level. In contrast
to those, our approach is based on standardization at a generic level, and
on self-describing services. We propose techniques for ad-hoc applications
that allow users to inspect and combine services, and to specify their co-
operation in assemblies. A key point is that the assembly is external to the
services. That makes it possible to adapt to changes in one service, without
rewriting the other coordinated services.
A framework has been implemented for building services that can be com-
bined into ad-hoc applications, and example scenarios have been tested
on top of the framework. A browser tool has been built for discovering
services, for interacting with them, and for combining them. Finally, dis-
covery and communication protocols for palpable computing have been
developed, that support ad-hoc applications.

Preface

This thesis is for the Licentiate degree, a Swedish degree between the MSc
and PhD. It consists of an introductory part and four papers. The research
papers included in this thesis are:

I. David Svensson and Boris Magnusson. An Architecture for Migrat-
ing User Interfaces. Proceedings of NWPER’2004, 11th Nordic Workshop
on programming and Software Development Tools and Techniques, Turku,
Finland, 2004.

II. David Svensson, Boris Magnusson, and Görel Hedin. Composing ad-
hoc applications on ad-hoc networks using MUI. Proceedings of Net.Ob-
jectDays 2005, Erfurt, Germany, 2005.

III. David Svensson, Boris Magnusson, and Görel Hedin. Discovery and
communication protocols for palpable computing. Submitted for pub-
lication, 2006.

IV. David Svensson, Görel Hedin, and Boris Magnusson. Pervasive ap-
plications through scripted assemblies of services. Accepted for publi-
cation at SEPS 2006, Lyon, France.

Acknowledgments

First of all, I wish to thank my supervisors, Professor Boris Magnusson and
Dr. Görel Hedin. Your support, ideas and experience have been absolutely
vital for me during the thesis work.
The work has been carried out at the Department of Computer Science,
Lund University, and within the PalCom project. Thanks to Torbjörn Ekman
for kind help and valuable input, especially related to the PalCom Java
compiler, and to Sven Gestegård Robertz for rewarding joint work on Pal-
Com assemblies. Torbjörn Eklund has my gratitude for our cooperation
during the first parts of the MUI project. I have learned a lot from protocol
discussions with Jacob Frølund and Jeppe Brønsted, and Boel Mattson and

Brice Jaglin have given important feedback to the protocols in their master
thesis project. I wish to thank all people in PalCom for creating an inspir-
ing atmosphere that has really made me feel like a palcomer, even though
the project is spread across six countries.
I would like to thank the people at the department for good company and
interesting lunch room conversations. My room mates Richard Johansson,
Jonas Wisbrant and Emma Nyman have made it a great working environ-
ment. Klas Nilsson deserves a special thanks for introducing me to the
ARTES++ graduate school, where I learned about real-time systems and
saw research environments at other universities. Anne-Marie Westerberg,
Lena Ohlsson, Anna Nilsson, Tomas Richter, Peter Möller and Lars Nilsson
have been very helpful with practical things. You really are the backbone
of the department.
I am grateful towards my football friends in Stora Harrie IF for providing
another world, outside the university, where we focus on different things.
My deepest thanks to my family for always supporting me, and to Emma
for your love and support, and for your way of looking at small and big
things in life.

Contents

Introduction 1
1 Background . 1

2 Traditional approaches to interoperability 2

3 Thesis objectives . 3

4 Migrating user interfaces and palpable computing 6

5 Papers . 8

6 Contributions . 10

7 Evaluation . 10

8 Related work . 14

9 Conclusions and future work 17

References . 18

Paper I: An Architecture for Migrating User Interfaces 21
1 Introduction . 23

2 A Scenario . 24

3 Previous Work . 25

4 Services and Connections . 27

5 Discovery . 28

6 MUITP . 30

7 RemoteConnect . 31

8 User Interfaces . 31

9 Implementation and Framework 32

10 Conclusions . 34

11 Future Work . 34

References . 35

A mui-info.dtd . 36

v

B mui-discovery.dtd . 37

C mui-remote-connect.dtd . 37

D mui-ui.dtd . 38

Paper II: Composing ad-hoc applications on ad-hoc networks using
MUI 39
1 Introduction . 41

2 Previous Work . 42

3 Scenario: Distributed slideshow 43

4 The MUI framework . 45

5 Evaluation and Future work 49

6 Conclusions . 52

References . 52

Paper III: Discovery and communication protocols for palpable com-
puting 55
1 Introduction . 57

2 Ad-hoc applications . 58

3 Requirements . 59

4 Implementation . 65

5 Basic communication . 66

6 The discovery protocol . 69

7 Service interaction . 74

8 Remote connect . 75

9 Evaluation . 76

10 Related work . 78

11 Conclusions and future work 80

References . 81

Paper IV: Pervasive applications through scripted assemblies of ser-
vices 85
1 Introduction . 87

2 Basic approach . 87

3 Assembly representations . 89

4 Simple assemblies . 90

5 Scripted assemblies . 94

6 Related work . 97

vi

7 Future work . 99
8 Conclusions . 99
References . 100

vii

Introduction

1 Background

The vision of ubiquitous computing was introduced by Mark Weiser in 1991
[27]. When that vision is realized, computation blends into the environ-
ment: computers are there to assist us when we need them, but do not
require constant attention. This is a shift from the focus on desktop com-
puters, towards computers of many different form factors. The ubiquitous
computers may be virtually invisible, such as wearable computers [21] or
computers in furniture [13], but they may also be handheld devices, such
as PDAs or mobile phones, or larger devices, such as wall-sized displays.
The important thing is that they are at hand when we need them, but dis-
appear from human attention when not used.
Ubiquitous computing takes advantage of the ongoing rapid improvements
in areas such as network technology and embedded systems. A key factor
is the increasing number of devices that use wireless communication. Wi-
Fi, Bluetooth, and similar technologies let these devices connect and form
local ad-hoc networks, independent of a central network infrastructure. In
these networks, services can become available to users when needed. As
an example, consider a user that carries his handheld computer and comes
into the vicinity of a particular device. The device might be a DVD player
in his home, a ticket vending machine at the train station, or a printer at the
office. Thanks to the wireless communication, services from these devices
can be brought to the handheld computer. The services can be presented
on its screen, and the user can interact with the devices remotely through
the handheld.
There are two other terms, pervasive computing and ambient computing, that
are used for the same vision as ubiquitous computing. In this thesis, the
three are treated as synonyms. They all convey the sense of computers be-
ing in the background, everywhere around us. In addition, the concept of
ambient intelligence has been introduced. This denotes a vision of ubiqui-
tous computers acting more autonomously, making intelligent decisions
and thereby providing enhanced user experiences [1].

INTRODUCTION

The work in this thesis targets problems within the area of ubiquitous com-
puting, towards the following overall goals:

Non-preplanned interaction In order to make adequate use of services in
a ubiquitous computing context, special preparation of personal de-
vices, such as handhelds, must not be needed each time you want
to use a service. Instead, services should ideally just emerge on the
handheld, ready for immediate use.

Ad-hoc combinations It should be possible to combine previously unknown
services into new applications, in order to make use of functionality
that is not given by any of the individual services themselves.

These observations are particularly true for ubiquitous computing systems,
compared to systems in a traditional setting. That has to do with the scale
of the systems. Like has been noted, e.g., in [9], ubiquitous computing sys-
tems can be expected to offer many more services than what are available
in current networks. The rate at which new versions of services will be of-
fered, and at which completely new services will become available, will
also be much higher. Therefore, unnecessary configuration for each new
service, or for each new version of a service, would become too much of a
burden. It would also be very beneficial to be able to combine services, in-
stead of having to wait for a dedicated service with the wanted combined
functionality. As a common factor here, there is a challenge of interoperabil-
ity between services.
The rest of this introduction is structured as follows. In the next section,
we will discuss how service interoperability has traditionally been sought.
Section 3 goes into more detail about our objectives, and Section 4 presents
MUI and PalCom, the projects within which we work. Then follow Sec-
tion 5, with presentations of the four papers that are the main part of the
thesis, and Section 6, where we list what we see as the main contributions
of our work: among them an architecture and a framework, supporting
non-preplanned interaction and ad-hoc combinations of services. Section 7
contains an evaluation of the implementation so far, and Section 8 relates
to other work in the area. Section 9 concludes the introduction, and points
out directions for future work.

2 Traditional approaches to interoperability

The traditional approach for achieving interoperability between services
in networks is standardization at the domain level, i.e., specifically for the
application area where the services are used. Jini, UPnP, and Bluetooth all
rely on this, in different ways. In Jini [26], Sun’s technology for network
services, a client program obtains a proxy (Java) object from a service, and

2

3. THESIS OBJECTIVES

invokes operations on that proxy object for interacting with the service.
Therefore, in order to write a Jini client program, you need to know the
type, or interface, of the proxy object. For example, in order to be able to use
a printer, you need to know the exact type of printer proxy objects, includ-
ing the names and parameter formats of all the operations you can perform
on a printer. This means that standardization of service types is needed, so
that independently written service and client programs can interoperate.
The Jini community has started a process for standardizing common ser-
vice types. Up to this point, that process has resulted in a standard type for
printers, but no standards for other domains, except standards closely tied
to the core of the Jini technology [14].
In UPnP [24], a set of protocols for networked devices managed by the
UPnP Forum, devices are categorized into different classes. Domain expert
committees work out standards for devices and their services. This process
has resulted in UPnP standards for printers, scanners, lighting controls,
and digital security cameras, among others [23].
For Bluetooth [4], the specification for short-range wireless communica-
tion standardized as IEEE 802.15.1, there are specifications for a number
of different profiles. These profiles specify protocols and procedures that a
device must follow in order to be profile-compliant and certified to be in-
teroperable. Some of the profiles are domain-independent, but several are
domain-specific, e.g. the profiles for audio/video remote control, for phone
book access, and for basic printing [5].
While this standardization work comes from a very real need—making
services and devices from different manufacturers interoperable—there are
problems inherent in the approach. With domain-specific standards, a quite
static situation is bound to arise. In a ubiquitous computing setting, stan-
dardization processes cannot possibly keep up with the pace at which new
kinds of services arrive. Furthermore, it is impossible to combine new ser-
vices with old ones, unless they follow the old standards, at the level of
individual service operations. For ubiquitous computing, we see a need
for more dynamic combinations. This is the motivation behind the work in
this project, as will be discussed in the following section.

3 Thesis objectives

The overall goal in this thesis is to find techniques for enabling more flex-
ible, ad-hoc, use and combination of services in ubiquitous computing net-
works. This way, we intend to help making non-preplanned communica-
tion and interaction more feasible than today, and to ease the process of
integrating new devices and services into existing systems. The thesis re-
ports on our results so far, and points out directions for future work.
We aim at supporting what we call ad-hoc applications. These are applica-

3

INTRODUCTION

tions that are put together for a special situation, using services available
in the current environment. The ad-hoc applications range from simple set-
ups to more complicated:

Remote control An important basic case is when a user interface for one
service is migrated to another device. The user interface is rendered
on that device, and the user can interact with the service remotely.
This gives easier access to services, and is useful for interacting with
services on devices with no or limited input/output capabilities.

Simple assemblies A second fundamental case is when a user chooses to
establish connections between a set of services, and saves this set-
up for later re-establishment. We refer to the saved set-up as a simple
assembly. This facilitates repeated use of a set of services.

Scripted assemblies Building on the first two, it is possible to add coordi-
nating logic to a set of services in a so called assembly script. This way,
the ad-hoc application can become more than the sum of its parts.

Software services Finally, for including more advanced functionality than
what can be specified in an assembly script, it is also possible to incor-
porate services written in a general-purpose programming language,
such as Java, into an ad-hoc application. We refer to these services as
software services. The name reflects that these services are not tied to
the hardware of any particular device, but built for performing com-
putations in assemblies.

Putting together the different kinds of ad-hoc applications requires differ-
ent levels of programming skill. The first two should be possible to set
up using simple operations in a graphical tool, while the last one requires
knowledge about a general-purpose programming language. Our goal is
to make the third one, constructing an assembly script, reasonable to man-
age for an end user.
Building further on this, it would be useful if the assembly script could
also specify a user interface for the whole ad-hoc application, capturing
aspects that are not covered by the user interfaces of the individual services
themselves. In a similar way, the script could define a new service, a so
called synthesized service, offering combined functionality to other devices
in the network. This, and issues about versioning and automatic updating
of assembly scripts, are discussed in Section 9, about future work.
The assembly is a fundamental part of our approach. This is an entity that
defines an ad-hoc application by coordinating a set of services. The assem-
bly is external to all the services, which is important for supporting the
demands of ad-hoc composition: this is what makes it possible to adjust
the ad-hoc application after changes in service interfaces, and to include
new services after the initial construction of the application.

4

3. THESIS OBJECTIVES

Figure 1: Traditional approach.

Figure 2: Our approach.

A metaphor with wires and connectors can be used for illustration. The tra-
ditional case of interoperation between two services is shown in Figure 1,
where the service S2 uses service S1. Here, S1 has a female connector, rep-
resenting its service interface. S2 connects directly to it, using a wire with
a male connector that has been constructed to fit with S1. Interoperability
with S1 is built into S2. In our approach, shown in Figure 2, both services
have female connectors. It is the assembly in the middle that connects to
both services using male-connector wires. The assembly works as an adap-
tor, and the advantage is that when either S1 or S2 changes, it is possible to
change the adaptor, instead of changing the other service. It is not so that
both services must conform to a standard that was established when the
first one was built.
For this arrangement to be beneficial, it is of course important that it is
easier to construct and change the assembly than to rewrite the services (if
rewriting the services is possible at that time). In general, the difficulty
of changing the interaction depends on the complexity of the included
services—adapting to a new standard for streaming video, e.g., is prob-
ably a complex task. As indicated above, we aim at enabling end users to
work with a large portion of these assemblies. For the most complex cases,
we rely on support for incorporating a software service, written in Java or
a similar language, into the assembly.
The idea of having an assembly in the middle can be compared to the Medi-
ator design pattern [10, p. 273]. The Mediator pattern gives similar advan-
tages of looser coupling, and the possibility to vary the interaction between
objects independently.

5

INTRODUCTION

Concretely, the objectives of this thesis work is to demonstrate the useful-
ness of the concept of ad-hoc applications, by developing

• a framework for creating services that can be combined into ad-hoc
applications,

• prototype services on top of the framework,

• tools that can be used for manipulating the ad-hoc applications, and

• protocols for discovery and interaction between the services and tools.

Regarding the protocols, we would like to stress that this is not about de-
veloping protocols at the domain level. Instead, the protocols we develop
are for discovery and interaction at a generic level: how to make a service
known in the network, how to announce its service interface, and how to
format messages. The service interface consists of a description of what
messages the service can send and receive. The interpretation of the con-
tents and meaning of the messages is left to the constructor of the assembly.
There are different kinds of qualities that are important in a system such
as ours. These will be discussed in more depth in Section 7 on Evaluation.
One kind is the usability qualities: it must be as intuitive as possible to in-
spect the descriptions of services, for understanding what the services do,
and to combine services into an ad-hoc application. Other qualities are effi-
ciency and responsiveness: the protocols must permit implementation of ser-
vices in resource-constrained environments, it must be possible to handle
large numbers of devices and services, and the user must become aware
of changes quickly. Like in all ubiquitous computing systems, the qualities
of security and privacy are also important. These have not been our focus,
though, and we rely on mechanisms in lower layers for keeping data se-
cure and private.

4 Migrating user interfaces and palpable comput-
ing

Our work started in a project called MUI, which stands for Migrating User
Interfaces. The name reflects our initial focus on the migration of user in-
terfaces between devices, as mentioned above. Since then, our scope has
broadened, and we now also target larger compositions of services, and
interaction between services at a programmatic level.
MUI was originally started as a project with funding from VINNOVA, the
Swedish Agency for Innovation Systems [25]. Our work is now part of
the EC-funded IST project PalCom [19]. PalCom introduces palpable com-
puting, a new flavour of ambient computing. The project at large seeks

6

4. MIGRATING USER INTERFACES AND PALPABLE COMPUTING

Invisibility complemented with visibility
Construction de-construction
Heterogeneity coherence
Change stability
Scalability understandability
Sense-making and negotiation user control and deference

Table 1: The PalCom challenges.

to make ambient computing systems more understandable for humans.
This is done by trying to meet a number of challenges, listed in Table 1.
These challenges are formulated as pairs of complementary properties. For
each challenge, the property on the left is one traditionally sought in am-
bient computing systems, while the property on the right is added by Pal-
Com for achieving better human understandability. Palpable computing is
about balancing these pairs. For the work in this thesis, the most impor-
tant of the PalCom challenges are balancing invisibility with visibility, and
finding ways of allowing construction and deconstruction of systems at
appropriate levels.
The two main objectives of the PalCom project are to design an open archi-
tecture for palpable computing, and to develop a conceptual framework
for it. The latter is needed for understanding the specifics of what palpa-
bility means, and for being able to talk about it. The PalCom objectives
span a wide area, across several disciplines. Consequently, there are peo-
ple involved from computer science, interaction design, industrial design,
ethnography, and sociology. These researchers come from eleven academic
and industrial partners, in six European countries. The work is carried out
both as software design and development, and as construction of physi-
cal prototypes. The software work is resulting, e.g., in a new virtual ma-
chine, and in a communication model for palpable computing. The pro-
totypes are used for evaluating and giving input to the open architecture
and the conceptual framework. They are tested out in the field, in coopera-
tion with people representing the anticipated end users. In this prototyping
work, there are subprojects aiming at support for landscape architecture
field work, for personnel at the site of a major incident, for women in their
contact with hospitals during pregnancy, for rehabilitation of hand-surgery
patients, for training of children needing physical-functional and cognitive
rehabilitation, and for treatment of premature children in an incubator.
For the work reported in this thesis, the scenarios in PalCom both serve
as inspiration, and give concrete requirements for ad-hoc applications and
for the protocols developed.

7

INTRODUCTION

5 Papers

This section briefly introduces the four co-written papers that constitute
the main part of the thesis. The author of the thesis is the primary author
of all the papers, and the main implementer of the developed software.
The ideas behind the papers have been formed in collaboration with the
co-authors.

5.1 Paper I: An Architecture for Migrating User Interfaces

The first paper presents the initial architecture of the MUI system, and the
implementation of a framework for building MUI services. The focus is
on the first kind of ad-hoc applications mentioned above, remote control,
where the user interface for a service is migrated to another device, typi-
cally with better input/output capabilities, and rendered there. A protocol
for discovery is presented, with an XML format for messages, and an ex-
ample scenario is described where audio equipment is controlled from a
handheld device.
It is the user that connects suitable services, either based on information
about the MIME types of the data the services can handle [12], or by initi-
ating a user interface migration. In the user-interface case, the client device
does not need to be prepared in advance for the exact messages to be ex-
changed with the service, because they are provided by the service in the
user interface description, and the rendering of a user interface is generic.
The intention is to make it possible to interact with minimal or no prepa-
ration in advance.

5.2 Paper II: Composing ad-hoc applications on ad-hoc net-
works using MUI

Paper II introduces assemblies that coordinate services, and a dual role
for service descriptions as programmatic APIs (in addition to the role as
sources for rendered user interfaces). An implemented MUI browser is de-
scribed. The browser can be used for discovering devices and services, and
for interacting with them and combining them. The MUI implementation
is evaluated according to the so called palpable qualities, i.e., how well it
supports PalCom challenges listed in Table 1.
The paper contains two example scenarios that have been implemented
in the MUI framework. One is a distributed slideshow scenario, where a
presentation session is set up and performed in a smooth way using MUI,
and the other is the SitePack scenario from PalCom1, where landscape ar-
chitects set up an ad-hoc application for tagging camera images with GPS

1The scenario referred to in the paper has since been renamed to GeoTagger.

8

5. PAPERS

coordinates out in the field. The second kind of ad-hoc applications, simple
assemblies (saving a set of connections for later re-use), becomes useful in
the slideshow scenario. The SitePack scenario has been implemented us-
ing initial versions of scripted assemblies, with coordination by an assembly
script, and delegation of complex calculations to a software service.

5.3 Paper III: Discovery and communication protocols for
palpable computing

Paper III presents discovery and communication protocols developed within
the PalCom project. These are much refined and extended, compared to the
discovery protocol presented in Paper I. One of the purposes of the proto-
cols is supporting ad-hoc applications. That goal, and other requirements
encountered in the PalCom prototyping work, has formed the features of
the protocols. One feature is device awareness, having devices visible at the
top level in the discovery process. Announcement heartbeats and on-demand
service discovery are techniques used for limiting the bandwidth required
by the protocols.
The implementation of the PalCom communication components uses these
protocols. The components run both on the Pal-VM, the virtual machine
developed within PalCom, and on the JVM. They are used in our imple-
mentations of services, and in our work on assemblies. The current imple-
mentation runs on top of UDP, but the protocols are prepared for other
transport protocols, such as Bluetooth.

5.4 Paper IV: Pervasive applications through scripted as-
semblies of services

The last paper goes into more detail about assembly scripts. It is shown
how assemblies separate the interoperation between services from the ser-
vices themselves, and motivated why we want to use a scripting language,
rather than a general-purpose programming language. Different types of
intended usages of the scripts are discussed (by end users, by expert users,
by tools), and also different assembly representations (XML, concrete syn-
tax, abstract syntax trees, tool-specific representations).
Examples of assembly syntax are shown for the RemoteSlideShow and
GeoTagger scenarios. The assembly descriptor specifies sets of devices, ser-
vices and connections that are included in an ad-hoc application. For the
more advanced assemblies, scripted assemblies, it also specifies a set of syn-
thesized services, and a script with coordinating logic. The script is written
as an event handler, and the actions possible in the script are to send mes-
sages to services, and to store values in local variables. The paper discusses
how static and dynamic constraints can be checked in a browser, at assem-

9

INTRODUCTION

bly development time and at run-time.

6 Contributions

The following are what we see as the main contributions of the work in
this thesis:

• An architecture and a framework for building services that can be com-
bined into ad-hoc applications. This is presented in Paper I, covering
remote control, and in Paper II, covering simple assemblies and initial
versions of scripted assemblies and software services.

• A browser tool, that can be used for working with ad-hoc applications.
The browser is presented in Paper II.

• Protocols for discovery and communication, supporting ad-hoc applica-
tions. The protocols are described in Paper III.

• An assembly script language, in an initial version, as presented in Pa-
per IV.

7 Evaluation

Looking back at our work in the project so far, we can evaluate both the
concept of ad-hoc applications itself, and our implementation of it. In this
section, we will present how we have performed this evaluation, and the
results we have got.
As mentioned above, our overall goals are to allow for non-preplanned in-
teraction, and for ad-hoc combinations of devices and services. Important
qualities for our implementation are usability and efficiency, and we have
looked specifically at the palpable qualities.

7.1 Experimental validation

Our main method of evaluation is experimental validation. The imple-
mented framework has been evaluated through continuous use: with sim-
ulated devices for trying out scenarios, and in the implemented browser.
In Lund, we have built a number of scenarios on top of the framework,
including GeoTagger and RemoteSlideShow. For the other groups within
PalCom, the code of the implementation is available in the project’s shared
code repository. The parts that have been used the most outside Lund
are the communication components, presented in Paper III. There are also

10

7. EVALUATION

plans in PalCom to release parts of the code publicly, under an open source
license.
The concept of ad-hoc applications is clearly promising. The implementa-
tion has worked well, and we are confident that it will be a good foun-
dation when we develop more elaborate tools and scripted assemblies in
our continued work. We have been able to combine services that are not
constructed according to commonly agreed-upon service interfaces, and
use them together. This has been done both with matching based on the
type of data handled, and with assemblies written to make use of available
service descriptions.

7.2 Usability

From a usability point of view, the functionality of the browser is most im-
portant, because this is where services are discovered, interacted with, and
combined. The current browser has been implemented to run on a sim-
ulated handheld device, with a rather small screen, so it uses a small set
of graphical widgets. It is possible to connect services in an intuitive way
using a drag-and-drop interface, but the user must switch between dif-
ferent tabs for viewing discovered devices and services, for manipulating
connections and assemblies, and for direct interaction with services. That
gives decreased usability, but these limitations could be overcome by mak-
ing a browser version for full-screen mode on a laptop. This is the intended
use of a PalCom Eclipse plugin that is currently being developed in Lund
(see [8] for information about the Eclipse Integrated Development Envi-
ronment). There is also ongoing work within PalCom on visualizing con-
nected services graphically. That service graph is best viewed on a larger
screen, too.
The Eclipse plugin, and similar browsers, will provide more advanced
script-editing facilities. A browser for a mobile phone or a PDA, like the
one discussed above, will only offer more basic functionality, such as direct
interaction with services, and establishment of simple assemblies. This span
in handled complexity is also reflected in the groups of users that we fore-
see. Assemblies are intended to be handled by end users, but there will be
more groups of users than just service developers and end users. Within
the end-user group, there are naturally some that have more experience
with computers, while some would rather not make any configuration by
themselves. It is people in the former category that are most likely to write
an assembly script using an advanced browser. Therefore, it is also impor-
tant that written assemblies can easily be shared with others, as will be
discussed in Section 9, about future work.

11

INTRODUCTION

7.3 Efficiency and responsiveness

Efficiency and performance considerations are important both for the ser-
vices and browsers that run on devices, and for the protocols developed.
For the interaction with users, responsiveness is important, and the pro-
tocols must tolerate unreliable networks and, preferably, large numbers of
devices.
The performance of software running on the devices is most critical for
smaller devices, offering limited memory and computing power. The Pal-
Com communication components that implement the protocols run on the
Pal-VM, which is intended for small devices. For these devices to provide
a PalCom service, an advantage is that they will generally only need to re-
spond to requests in the protocols, often with a fixed description of their
services, and handle a small set of commands. The smallest devices need
not support, e.g., execution of assemblies or rendering of user interfaces.
In a current project in Lund, an Axis network camera [2] is being equipped
with PalCom services, implemented in the C programming language. A
part of this work is an investigation of how the protocols can be supported
on a small device.
The protocols initially target networks of limited physical range, in the
vicinity of a single person. Therefore, they do not need to scale up to,
say, thousands of devices. As discussed in Paper III, it is difficult to make
fair quantitative measurements for comparing to other protocols. We have
used the mechanisms of announcement heartbeats and on-demand service dis-
covery for limiting the network traffic. In order to cope with unreliable net-
works and transient devices, frequently joining and leaving networks, the
protocols are based on asynchronous communication.

7.4 Palpable qualities

The palpable qualities are related to the usability qualities. We evaluate
our implementation of ad-hoc applications as follows, in relation to the
palpable challenges listed in Table 1:

• The challenge of invisibility, complemented with visibility, is about find-
ing a balance of what should be made visible for the end user, and
at what times. The discovery of connections is one factor supporting
visibility. Another factor is the device awareness, that devices are visi-
ble at the top level during discovery, which is important, because the
physical devices are significant for the users in pervasive computing
settings. As a third factor, the involvement of users in the process of
constructing ad-hoc applications in itself facilitates increased visibil-
ity and understanding. Finally, assemblies are announced as services
themselves, which means that they can be composed hierarchically.

12

7. EVALUATION

When such an assembly does not work as expected, it is possible to
open it up level by level, looking for the reason of the failure.

• For the PalCom challenge of construction and deconstruction, the as-
sembly concept is central. By connecting a number of services in
an assembly, the end user can construct new applications. Existing
assemblies can also naturally be deconstructed, and their parts in-
spected. It is an important goal that saving a set of services as an as-
sembly is as easy as possible for the end user. In the current browser,
that goal is met quite well for simple assemblies, and we focus on this
in our development of scripted assemblies. The hierarchical compo-
sition of assemblies, mentioned above, is very relevant also for the
construction and deconstruction challenge. It is equally important
that users can establish and manipulate connections between pairs of
services that both run on devices other than the browser device. This
is supported by the small RemoteConnect protocol. For the same rea-
son, connections are made discoverable through the discovery proto-
col, in addition to devices and services.

• One way of balancing heterogeneity and coherence is by putting the
standardization of protocols at the right level. We have a common
protocol for discovery and basic communication, but no standard-
ized protocols at the domain level. This means that devices and ser-
vices are discovered and described in a coherent way, but the hetero-
geneity at the domain level is not restrained.

• The high degree of change in pervasive computing systems is moder-
ated in palpable computing by mechanisms for increased stability. As
one step in this direction, we let the user be involved when a service
interface has changed, and assemblies have to be updated. This chal-
lenge will also be important to keep in mind in our future work on
more dynamic bindings to services, as discussed below in Section 9.

• The challenge of scalability and understandability becomes an issue for
the presentation of discovered services. In an environment with many
available services, the user must not have to deal with all services
at once. For making this easier, we have support for grouping ser-
vices on devices. There are mechanisms in the browser for narrowing
down the number of possible end points while a connection is being
established, and hierarchical assemblies also support this challenge.

• When it comes to the challenge of sense-making and negotiation, com-
plemented with user control and deference, we tend to focus on the latter
part. As an example, services can be explored directly by the user
before building an assembly, so problems can be identified.

13

INTRODUCTION

8 Related work

There is an abundance of previous and existing systems and technologies
for communicating services, running on devices in wired and wireless net-
works. In this section we will relate to a number of these, from the perspec-
tive of our ad-hoc applications.

8.1 Jini and UPnP

Jini [26] and UPnP [24] are important examples of network service tech-
nologies that have taken a route of domain-level standardization. This does
not necessarily imply that ad-hoc applications cannot be built on top of
those, but we have chosen not to. For the Jini case, the main reason is the
tight connection to the Java language, with Java objects moved across the
network. In practice, that puts demands on all participating devices of run-
ning a JVM, which is too limiting for smaller devices. There is a notion in
Jini of “surrogate devices”, devices providing a JVM for the benefit of less
powerful ones, but that makes the smaller devices dependent on their sur-
rogate. Jini is also tied to Remote Method Invocation (RMI, [22]), a scheme
for making method calls on objects across the network. The problem with
RMI is that a method call is synchronous, forcing the caller to block until a
response has been returned from the callee. There is also an event mecha-
nism in Jini, but for simple messages, RMI is used. With the unreliable na-
ture of networks in pervasive computing settings, we have instead opted
for a scheme with only asynchronous messaging between services.
UPnP is more similar to our architecture. It is specified as a set of protocols,
not dictating a specific implementation on the devices, and the messages
are in XML, like we have also chosen. One difference is that UPnP focuses
on IP networks, while the PalCom protocols are intended also for other
lower-layer protocols, like Bluetooth. Another difference is that UPnP uses
SOAP over TCP as its standard form of simple communication. With SOAP
over TCP, the sequence of messages is like for RMI, with a blocking caller.
In spite of these differences, it would probably be possible to build ad-hoc
applications on top of UPnP. When doing that, the format of service de-
scriptions would have to be extended, allowing services to describe them-
selves in a way suitable for connecting them through assemblies.

8.2 Web browsing technologies

Another obvious set of technologies to relate to is those of the Web. With its
explosive growth during the past fifteen years, the Web has an enormous
user base. There are Web browsers available in devices of many different
sizes and form factors. This means that for realizing remote control ad-hoc

14

8. RELATED WORK

applications, it seems like a natural choice to interact with locally available
devices through a Web interface. This was the approach of Cooltown, an
early pervasive computing project that put Web servers into things, for
bringing the Web to the physical world [16]. A fundamental limitation
of the Web technologies, though, is that they are based on pull mecha-
nisms. From a user interaction perspective, that burden has been some-
what relieved with the introduction of the Ajax and related technologies
[11], which let parts of a Web page be updated without reloading the whole
page. Still, the messages over the network follow a request-reply scheme,
initiated by the client. This is different from how our services communi-
cate. After a service description has been transferred in our system, there
is a true peer-to-peer situation between two communicating services, with
messages flowing in both directions.

8.3 Web services

It is also interesting to compare Web service technologies to simple and
scripted assemblies. Web services is a set of technologies enabling com-
munication between applications residing on Web servers, and not only
between a browser and a server. There is a language, WSDL (Web Services
Description Language [6]), for describing Web services. In correspondence
to our assemblies, there is also a language for describing choreographies
between Web services (WS-CDL, Web Services Choreography Description
Language [15]). A choreography is similar to an assembly in that it coordi-
nates a set of services, and that it is external to all of them. Being external
to all of the services could give the advantages of separating the interoper-
ation from the services, like we want for allowing adjustments to changes
in services. But, that is not the focus of Web services. Instead, the choreo-
graphy is more like a contract that is signed by a number of cooperating
service providers, beforehand. There is also no notion of physical devices
in Web services, which is important in pervasive computing (device aware-
ness, as discussed in Section 7.4).

8.4 The Semantic Web

In relation to Web services, the effort to build a Semantic Web should also
be mentioned [3]. Tim Berners-Lee et al. recognized that for making it pos-
sible for a computer to make use of Web servers, the structure of a Web
service must be made known to the computer in a format different from
that which humans read. At the same time, they saw a risk in standard-
izing at the level of Jini or UPnP, considering that to be too much “at a
structural or syntactic level”. The Semantic Web approach, instead, builds
on the creation of a global ontology, formed by connecting many smaller
ontologies. An ontology is a collection of information that defines classifi-

15

INTRODUCTION

cations and relationships among terms. When constructing a service, the
programmer describes the service, using the OWL language (Web Ontol-
ogy Language [7]). The OWL description can then be used by computer
programs, together with the global ontology, for finding out what the ser-
vice does. This, again, is different from the approach we have followed.
Our main objection is that the global ontology suffers from similar prob-
lems as the domain-level standardization. The classifications of things into
the ontology will always lag behind. Instead, for the situations we target,
we want the user to be able to make ad-hoc modifications in the assembly.

8.5 Approaches that avoid domain-specific standards

The problems of domain-specific standards have been recognized before
by pervasive computing researchers, and solutions have been proposed
that are more closely related to our approach. The most similar, of the ones
that we have seen, is Obje from Xerox PARC2 [18]. Obje shares with MUI
the idea of having a very generic protocol at the foundation, and then let-
ting the user be involved in sorting out the specifics of how services should
interact. The terms used for this are recombinant computing [9] and serendip-
itous integration (the ability to integrate resources in an ad-hoc fashion).
Features in common with MUI are the user-in-the-loop interaction and the
generic interfaces. A difference is the use of mobile code, where a proxy
object is moved to a device, for “teaching” it how to interact with another
one. We do not make use of mobile code, for reasons discussed above, but
put interoperation logic in the assembly instead. This reflects the partly
different focus in Obje, where end users only perform very simple opera-
tions by establishing connections, while we also support a programmatic
perspective in the assemblies.
Ponnekanti et al. at Stanford University have spotted the same problem,
but implemented an approach that is more different from ours [20]. Their
approach to avoiding standardized service interfaces is based on dynamic
downloading of stubs and adapters for services from directories available
in the network. Adapters, or automatically generated chains of found adap-
ters, are presented to the user as suggestions for how to combine a set
of services. The authors stress the separation between identifying seman-
tically compatible services, and the mechanics of how to combine them.
They point out how Jini and UPnP have mixed these aspects, thereby re-
quiring a single standard service interface for each domain. The main dif-
ference from our approach is that the pre-programmed stubs and adapters
must be available in a central directory at combination time, instead of
having an assembly that can be modified by the end user. Not to rely on
this kind of central directory is one of the requirements that we put on our
protocols, as will be discussed in Paper III.

2The project has also been referred to as Speakeasy.

16

9. CONCLUSIONS AND FUTURE WORK

8.6 Task-oriented approaches

For enabling a user to combine and use a number of discovered services,
there are also task-oriented approaches, where the user formulates what he
wants to do as a task description, and not as a combination of a specific set
of services. One example is InterPlay [17], which is a middleware for inte-
grating devices in a networked home. That domain is more narrow than
the one targeted by MUI and PalCom, but still characterized by an increas-
ing number of heterogeneous devices. The InterPlay designers let the user
express his wanted functionality as a pseudo sentence, following a restricted
form of English. The subject, verb and target device of the pseudo sentence
are taken from descriptions available in that particular home, and the mid-
dleware handles the orchestration of devices accordingly. There is also a
notion of task sessions, where the middleware handles the execution state
of a task across several devices. Some features of the InterPlay system do
not carry over directly to our situation. One is the presence of central direc-
tories of available devices and available content, that are used for building
the pseudo sentence. Another one is the use of device attributes for auto-
matically selecting the best device for a given task. As discussed above,
we see the creation of such an attribute hierarchy as an obstacle in a more
general setting.

9 Conclusions and future work

This introduction has given an overview of the research reported in the
four papers that follow. The research has been carried out within the Pal-
Com project, a project within the area of pervasive computing. The under-
lying theme is to allow for non-preplanned interaction and ad-hoc combi-
nations of services. We argue that interoperability between services should
be based not on domain-specific standardization of interfaces, but on inter-
faces defined at a more generic level, and on the possibility to manipulate
the interoperation independently of the services themselves. This way, it is
possible to combine services that were not created together.
We call our approach ad-hoc applications. The ad-hoc applications are sup-
ported by four mechanisms. Remote control means that a browser on one
device renders a user interface for a service on another device, allowing di-
rect interaction. Simple assemblies are sets of connections between services
that are saved for later reestablishment. Scripted assemblies extend simple
assemblies with a script, containing logic that controls the interoperation.
Finally, software services are services written in a general-purpose program-
ming language, that are included in an assembly for performing more com-
plex tasks.
For remote control, the migration of user interfaces gives some of the fea-

17

REFERENCES

tures that we want. The rendering of user interfaces is generic, so there is
no need for preparation in advance. For assemblies, a key point is that the
assembly is external to the services themselves. This gives looser coupling,
and the possibility to adjust the assembly at a later time, without repro-
gramming the services.
A framework has been implemented for building services that can be com-
bined into ad-hoc applications. We have built a browser application, and a
number of example services. We have also designed and implemented the
PalCom discovery and communication protocols, that support ad-hoc ap-
plications. Services announce descriptions of themselves, specifying a set
of commands that can be used for interacting with the service.
The PalCom protocols have been designed to support transient devices,
devices that come and go in the network as people move around and as
network connectivity varies. An important feature in the discovery pro-
tocol is device awareness, i.e., physical devices can be discovered as such.
There are also features for limiting the traffic in the network: announcement
heartbeats is a scheme for announcing device information that combines an-
nouncements and heartbeats, and on-demand service discovery means a split
between transfer of light-weight device/service information, and transfer
of potentially bulky service descriptions.
In our continued work, an important part will be to design the assembly
script language at the right level of sophistication, and with the right func-
tionality. One feature that we discuss is to extend the support for synthe-
sized services: letting the assembly itself specify a service description and
function as a service. This service will typically provide combined func-
tionality from the services that are included in the assembly. Another goal
is to find good mechanisms for bindings, which means specifying in the
assembly that one or more services or devices should be automatically sub-
stituted, according to some rule, in case they are not available. We will also
experiment with support for sharing created assemblies with other users.
This involves sending of assemblies between devices, and also migration of
software components, which can be instantiated as software services. This
development will trigger needs for versioning of assemblies and software
components, and for update mechanisms.
Also in the future, our work will be driven by insights from the scenarios
in the PalCom project, and we will go deeper into some of these for finding
further requirements on ad-hoc applications. We will continue to develop
more advanced tools, with support for editing of assembly scripts.
To conclude this introduction, we feel that our work so far has provided a
good foundation for the realization of ad-hoc applications.

18

REFERENCES

References

[1] E. Aarts, R. Harwig, and M. Schuurmans. Ambient Intelligence. In
B. Denning, editor, The Invisible Future, pages 235–250. McGraw-Hill,
2001.

[2] Axis Communications. Network cameras. http://www.axis.com/
products/video/camera/index.htm.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34–44, May 2001.

[4] Bluetooth.com. The Official Bluetooth R©Wireless Info Site. http:
//www.bluetooth.com/.

[5] Bluetooth.org. Specification - Qualification and Testing. http://
www.bluetooth.org/spec/.

[6] Erik Christensen et al. Web Services Description Language (WSDL)
1.1. W3C, March 2001. http://www.w3.org/TR/2001/
NOTE-wsdl-20010315.

[7] Mike Dean et al. OWL Web Ontology Language Reference.
W3C, February 2004. http://www.w3.org/TR/2004/
REC-owl-ref-20040210/.

[8] Eclipse.org. Eclipse.org home. http://www.eclipse.org/.

[9] W. Keith Edwards, Mark W. Newman, and Jana Z. Sedivy. The Case
for Recombinant Computing. Technical report, Xerox Palo Alto Re-
search Center, April 2001.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[11] Jesse James Garrett. Ajax: A New Approach to Web Applications.
Technical report, Adaptive Path, February 2005.

[12] Internet Engineering Task Force. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies, 1996. http://
www.ietf.org/rfc/rfc2045.txt.

[13] Masaki Ito et al. Smart Furniture: Improvising Ubiquitous Hot-spot
Environment. In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW’03), pages 248–253.
IEEE, May 2003.

[14] Jini.org. Jini Community Decision Process (JDP) Status. http://
www.jini.org/standards/status.html.

19

http://www.axis.com/products/video/camera/index.htm
http://www.axis.com/products/video/camera/index.htm
http://www.bluetooth.com/
http://www.bluetooth.com/
http://www.bluetooth.org/spec/
http://www.bluetooth.org/spec/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.eclipse.org/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.jini.org/standards/status.html
http://www.jini.org/standards/status.html

REFERENCES

[15] Nickolas Kavantzas et al. Web Services Choreography Description Lan-
guage Version 1.0. W3C, November 2005. http://www.w3.org/TR/
2005/CR-ws-cdl-10-20051109/.

[16] T. Kindberg et al. People, Places, Things: Web Presence for the Real
World. In Proc. 3rd IEEE Workshop Mobile Computing Systems and Ap-
plications (WMCSA 00), pages 19–28, 2000.

[17] Alan Messer et al. InterPlay: a middleware for seamless device inte-
gration and task orchestration in a networked home. In Proceedings of
PerCom’06, the Fourth Annual IEEE International Conference on Pervasive
Computing and Communications, 2006.

[18] Obje Interoperability Framework, 2003. http://www.parc.com/
research/projects/obje/Obje_Whitepaper.pdf.

[19] PalCom. Palpable Computing: A new perspective on Ambient Com-
puting. http://www.ist-palcom.org/palcom-info.pdf.

[20] Shankar R. Ponnekanti and Armando Fox. Application-service inter-
operation without standardized service interfaces. In Proceedings of
PerCom 2003, the First IEEE International Conference on Pervasive Com-
puting and Communications, pages 30–37, 2003.

[21] Thad E. Starner. Wearable Computers: No Longer Science Fiction.
IEEE Pervasive Computing, 1(1):86–88, January–March 2002.

[22] Sun. Java Remote Method Invocation Specification, 2003.

[23] UPnPTM Forum. UPnPTM Standards. http://www.upnp.org/
standardizeddcps/.

[24] UPnPTM Forum. UPnPTM Device Architecture 1.0. Technical report,
December 2003. Version 1.0.1.

[25] Vinnova.se. VINNOVA - Swedish Agency for Innovation Systems.
http://www.vinnova.se.

[26] Jim Waldo. The Jini Architecture for Network-Centric Computing.
Communications of the ACM, pages 76–82, July 1999.

[27] Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):66–75, February 1991.

20

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.ist-palcom.org/palcom-info.pdf
http://www.upnp.org/standardizeddcps/
http://www.upnp.org/standardizeddcps/
http://www.vinnova.se

Paper I

An Architecture for Migrating User Interfaces

David Svensson and Boris Magnusson
Dept. of Computer Science, Lund University, Sweden

{david|boris}@cs.lth.se

ABSTRACT

The MUI project looks at flexible ways of creating user-initi-
ated connections between services in wireless networks. A cen-
tral idea is to migrate user interfaces from controlled devices to
devices with better input/output capabilities. The paper shows
the different parts of the MUI architecture, and motivates de-
sign choices. An initial implementation and a framework for
building MUI services are described.

1. INTRODUCTION

1 Introduction

MUI (Migrating User Interfaces) is an architecture for services in wireless
networks, where the user can connect and combine services in a simple,
yet flexible, way. User interfaces can be migrated between devices, so the
user can control several services from one device. MUI is developed as an
ongoing research project at the department of computer science, Lund uni-
versity. This paper presents the MUI architecture and the thoughts behind
it. It focuses on the current state of the architecture, and on the implemen-
tation of the system.
MUI is initially designed to operate in networks of limited physical range,
typically within a room, or even in networks formed between devices car-
ried by a single person. This can be a very dynamic environment, where
services enter and leave networks quite frequently, as people move around.
This, in turn, puts requirements on the architecture: it must be smooth
and simple to discover new services and connect to them. The diversity of
equipment also requires the devices to interact with minimal or no prepa-
ration in advance. We think that the need for non-pre-planned communica-
tion is best fulfilled by defining interfaces at a very general level. Attempt-
ing to standardize the protocol for each interesting combination of ser-
vices is, as we see it, not feasible—that process would be too complicated
and time-consuming, as the number of services in the networks contin-
ues to grow. Instead, in the MUI architecture, a service should just present
general-level information about the data it can provide and consume. It is
up to the user to connect it to suitable services, with matching data types.
User interfaces are important in this context. To allow for the flexible con-
nection of services, a service should be able to show an interface to the user,
where the communication with another service can be controlled in more
detail. It should be possible to show the interface on a device with suitable
input/output resources, such as display and keyboard. Therefore, migrat-
ing user interfaces between services is a central concept in the architecture,
and user interfaces have got special attention during our initial work. We
view a user interface as a service among other services, but it has a special
protocol associated with it, which will be presented in section 8.
The devices in the networks will often be very small, with limited mem-
ory and processing power. This gives further requirements: the architecture
should not rely on facilities such as IP network connectivity or graphical
displays on all devices, but allow a light-weight implementation. Our en-
visioned underlying technology for network communication is Bluetooth
[2], even if the initial implementation with simulated devices uses IP, as
will be discussed in section 9.
The paper continues with an example scenario, and a discussion about
some previous work within this problem domain. Sections 4 through 8 look
at different parts of the MUI architecture. In section 4, the fundamental

23

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

Audio

User-interface

information

data
information

User-interface

Figure 1: An example scenario with a handheld computer, an MP3 player,
and loudspeakers.

structure of services and connections is presented. Section 5 deals with the
discovery protocol, and section 6 with MUITP, the binary transport pro-
tocol for connections. Two protocols with XML messages, for connecting
services with RemoteConnect and for representing user interfaces, are ex-
plained in sections 7 and 8. A presentation of the implementation, conclu-
sions, and future work round off the paper.

2 A Scenario

Figure 1 illustrates an example scenario where the architecture is at work:
with a handheld computer in his hand, and a portable MP3 player in his
pocket, a user enters a room where a set of loudspeakers are in the corner.
The MP3 player and the loudspeakers show up as services in a browser ap-
plication on the handheld. The user can see that they match, and connects
them by joining them in the browser. Now, the MP3 player sends its music
to the loudspeaker. The volume is a little low, though, so the user chooses
to control the loudspeakers by clicking their service in the browser. A user
interface is moved to the handheld and shown. It may look as in figure 2
(a). The user presses “Volume up”, the volume is adjusted, and he can enjoy
the music. At the same time, the user interface on the handheld is updated

24

3. PREVIOUS WORK

(a) (b)

Figure 2: A migrated user interface for loudspeakers, before (a) and after
(b) adjusting the volume.

to that of figure 2 (b). If he wants to control also the MP3 player from the
handheld, a user interface can be obtained for it in the same way.
Tables 1 and 2 show XML documents that are transferred in this scenario.
The document in table 1, which describes the user interface, is what the
loudspeakers send when connected to from the handheld. Table 2 shows
the document that is sent when the volume has been changed, so the user
interface can be updated on the handheld.

3 Previous Work

Jini from Sun [1] has targeted many of the same requirements as MUI, and
could be used in the scenario above. It is an architecture where services
register their presence at a lookup service, so they can be found and used
by clients. The lookup service distributes proxy objects, which are down-
loaded to clients and used for communicating with the service. The client
knows about the programmatic interface of the proxy, but does not need to
know about its implementation in order to use it.
One problem we see in Jini is that the proxy interfaces are quite specific.
Sun and partners are standardizing interfaces for printers, scanners, stor-
age devices, etc. This means that clients have to be written for using a spe-
cific kind of service, and as new kinds services are invented, new clients
have to be written. We hope to relax this in MUI, with general-level inter-
faces.
Another aspect to Jini is that it is heavily tied to Java. The proxy objects are
Java objects, typically communicating with the service using RMI (Remote
Method Invocation, see [13]). When considering small, embedded devices,
this makes Jini services bulky. We see the need for allowing implementa-
tions in other languages, such as Smalltalk or C.
There is a specification for user interfaces in Jini, in the ServiceUI API [7].
The user interfaces are associated with a service, and are written to use
the proxy object interface of that service. A problem, as we see it, is that
the user interfaces themselves have specific programmatic interfaces and

25

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE UI SYSTEM "mui-ui.dtd">
<UI text="Loudspeakers">

<Button text="Volume up" command="volumeUp"/>
<Button text="Volume down" command="volumeDown"/>
<Panel text="Volume">

<Label text="Low"/>
</Panel>

</UI>

Table 1: An XML document for the loudspeaker user interface. There are
two buttons with commands attached, and a panel with an inner label.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE UIUpdate SYSTEM "mui-ui.dtd">
<UIUpdate element="/1/3/1" text="Normal"/>

Table 2: A UI update for the user interface of table 1. The syntax for the
element attribute is a restricted form of the XPointer child sequence syn-
tax (see [17]). In this example, the attribute refers to the label of the docu-
ment.

different semantics. As new services are standardized, they are expected to
come with new user-interface types, so clients will still have to be written
against a specific service.
Web Services [16], the technology for application-to-application communi-
cation on the Web, is also interesting to look at in relation to MUI. There is
a language, WSDL, for describing a Web service, by listing messages sent
and received, and specifying message exchange patterns. The description
has to be known to both the service requester and the service provider,
together with some knowledge about the semantics of the service. The se-
mantics can be encoded as different kinds of metadata, but, as noted in
[18], current description technologies are not sufficient for describing the
complete semantics of complex services.
The Speakeasy project at the Palo Alto Research Center [4, 5] introduces
the term recombinant computing for an architecture where the user can com-
bine functionality from several services into one. Like MUI, they have an
approach of generic interfaces for letting the user combine services in new
ways. Other key concepts in their framework are mobile code and user-in-
the-loop interaction. Mobile code means proxy objects, like in Jini, that are
downloaded to clients and executed there. This requires some platform-
independent code, and they have used Java in their implementation. For
discovery and user-interface they seem to have used Jini. It is unclear to

26

4. SERVICES AND CONNECTIONS

us how light-weight Speakeasy implementations can be. User-in-the-loop
interaction means that the user should always be in control when connect-
ing services, leaving it up to him to make sure the connection makes sense.
The latter point, the authors claim, helps keeping the interfaces small and
generic.
In a previous project [6], we implemented a remote-control scenario for
two devices with real hardware, where Bluetooth was used for the wire-
less communication. There was a VCR, which could be discovered from
a Palm handheld. A remote-control user interface was downloaded to the
handheld, and the VCR could be controlled by clicking buttons in the in-
terface. With the experiences from that project, we are now working with
simulated devices communicating over IP—this makes it easier to shape
the architecture for multi-device scenarios.
One thing we found in the previous project considered the representation
of the user interfaces. There, they were contained in small Java applica-
tions, J2ME MIDlets [12], that were downloaded and installed on the client
device. We did not use Jini, but our own protocol for discovering and mi-
grating the interfaces. We felt that using Java applications for the interfaces
was a bit heavy-weight, so we are now working with an XML represen-
tation instead. The experiences from the previous project will be further
discussed in section 8.

4 Services and Connections

The architecture of MUI is based on connections between services. A ser-
vice runs on some device in the network. The service may represent the
whole device, such as an MP3-player service representing an MP3 player,
but there may also be several services on a device. The latter would typi-
cally be the case for larger devices, such as laptops. This device agnosticism
is also present in Jini: everything is services, both hardware and software
[3].
MUI services implement the interface Service, shown in figure 3. Ser-
vices can have subservices in a tree structure, which is useful for group-
ing services into logical units. When establishing a connection, one of the
two parties must be a client. Client is a subinterface of Service, which
means that clients are services themselves. The rationale behind this is the
following: all clients offer a particular kind of service, namely the abil-
ity to connect to other services. The methods connectToService and
disconnectFromService reflect this. Clients should also support initi-
ation of connections over the network, using the RemoteConnect protocol
(see section 7).
A service holds information about itself in a ServiceInfo. The infor-
mation consists of the name of the service, a URL for connecting to the

27

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

<<Interface>>

Service

getSubservice(index: int) : Service

<<Interface>>

Client

connectToService(info: ServiceInfo) : String

disconnectFromService(id: String) : void

ServiceInfo

name : String

url : String

serviceContentType : String

getSubserviceInfo(index: int) : ServiceInfo

ClientInfo

clientContentType : String

ConnectionInfo

connectionID : String

Figure 3: Classes and interfaces for services, clients, and connections. Not
all aspects of the types are shown, only the most central.

service, and the content type offered by the service. The content type is
the MIME type of the data transferred over connections to the service.
ServiceInfos can be nested, reflecting subservice trees. Information about
clients, in ClientInfos, hold an additional item: the content type ac-
cepted from services. This is used for determining whether a client can
connect to a certain service.
When a connection is established, a ConnectionInfo is put together. It
contains information about the two parties, and an ID identifying the con-
nection. The ID can be used for disconnecting later.
MUI connections are like socket connections: bidirectional connections that
stay up until either party closes them or until a network error occurs. As
mentioned above, the data is of a certain MIME type. It is transferred in
chunks, called documents, and it is normal that several, or many, documents
are transferred over the same connection. The MUITP protocol has been
defined for the binary transport, as will be discussed in section 6.

5 Discovery

For clients to be able to use services, information about the services must
reach the clients in some way. This is handled by a discovery protocol. The
information transferred by the MUI discovery protocol is in Service-
Infos and ConnectionInfos. The ServiceInfos can be displayed
to the user of an application on a device, letting him browse available
services and establish connections between matching client-service pairs.
ConnectionInfos are for managing established connections—disconnec-
ting them, e.g. The messages are in an XML format, for which DTDs have

28

5. DISCOVERY

Browser
application

Handheld device

Client

Client device

Service

Service device

Inquiry

Browser
application

Handheld device

Client

Client device

Service

Service device

ClientInfoServiceInfo

(a) (b)

Browser
application

Handheld device

Client

Client device

Service

Service device

ConnectionInfo

Browser
application

Handheld device

Client

Client device

Service

Service device

ConnectionInfo

(c) (d)

Figure 4: Discovering and connecting services.

been defined (see appendices A and B).
The MUI discovery protocol relies on having some broadcast mechanism.
The existing implementation uses IP multicast, as discussed in section 9.
The protocol has not yet been optimized to minimize the network traffic.
Figure 4 illustrates the process of discovering and connecting services. There
are three devices: a service device, a client device, and a handheld device
with a browser application. At first, the handheld broadcasts an inquiry
(a). The service and client devices respond by broadcasting their informa-
tion (b). In the browser application, the user can now see that the service
and the client match, meaning that they can handle the same type of data.
He chooses to connect them. A ConnectionInfo is assembled, and sent
to the client using the RemoteConnect protocol (c). The client uses the ser-
vice URL in the ConnectionInfo for connecting to the service, and starts
receiving data. It also broadcasts information about the new connection
(d).
The risk of partial failure is an issue for discovery. This is one thing that

29

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

makes distributed systems more complicated than non-distributed: there is
always a risk that one node goes down in an unclean way, without having
the time to inform the other nodes [3]. This could, e.g., be due to a software
crash, power loss, or physical damage. From the other nodes, it can be hard
to detect this, because it may look like a node is simply slow in response.
There must be a way to handle devices that suddenly leave the network
without sending out notifications, so that the lists on all devices can be
updated. In Jini, leasing is used to remedy these problems: all resources
that are used by other nodes are leased for a limited time. If the lease is not
renewed regularly, the resource will be removed. This keeps old resources
from filling up memory on devices, and gives a form of self-healing to the
system. In MUI, we plan to implement some leasing mechanism, or to use a
simpler scheme where devices periodically send out broadcasts, signalling
that they are still alive.

6 MUITP

In order to transfer documents over a connection, a transport protocol is
needed. We considered HTTP, but its request-response nature makes it in-
adequate for MUI, where any party should be able to initiate a transfer at
any time1. Instead, MUITP was defined (MUI transport protocol).
The protocol works as follows. When a connection is established, both
parties start reading from their input streams. At first, small headers are
sent, where the non-client supplies the content type. The client leaves this
header empty. After that follows a sequence of zero or more documents in
both directions, with an arbitrary delay before and in between. The data of
each document is preceded by a header, containing the length of the data.
Any party may terminate the connection at any time, by simply closing it.
The definition of a new transport protocol leads to a new scheme for URLs.
For simulated devices communicating over IP, a URL may look like

muitp://130.235.16.32:6427/

This URL can be used for connecting to a service listening on port 6427
of host 130.235.16.32. For a discussion about Bluetooth as the underlying
protocol, and an example of a URL for Bluetooth, see section 9.
An important difference, compared to HTTP, is that in MUI the URL refers
to the connection, not to a document. This is more appropriate in the MUI
case, because the number of documents and identities of individual docu-
ments may be unknown to the client.

1This requirement initially comes from UI connections, where commands and UI updates
are sent asynchronously from both parties (see section 8).

30

7. REMOTECONNECT

On top of MUITP, a protocol is needed for the flow of documents over
the connection—which party should start to send, will there be responses,
and so on. The current approach in MUI is to have an extremely simple
protocol for general connections, with a little more sophisticated protocols
for two special cases: RemoteConnect and user-interface connections. In
the simple case, MUI connections are uni-directional; only the non-client
sends documents. A uni-directional connection can be combined with a
user-interface connection, letting the user control the data flow through the
user interface. This is enough in many applications, where a service is the
provider of some data, but perhaps the protocol will have to be changed, or
split into several subprotocols, as more experience is gained from building
and evaluating prototypes.

7 RemoteConnect

An important feature of MUI is the ability to establish a connection be-
tween two services, and to close it, from a third device on the network. This
is handled by RemoteConnect, a protocol on top of MUITP. The messages
of the protocol are listed in the DTD shown in appendix C. For these XML
messages, a special MIME type application/x-mui-remote-connect
has been defined.
The URLs of MUI clients are RemoteConnect URLs. When an applica-
tion wants to establish a connection, it connects to this URL and sends a
ConnectRequest. When the requested connection is up, the client sends
back an OKResponse (or an ErrorResponse if something goes wrong).
Disconnecting a connection with DisconnectRequest works similarly.

8 User Interfaces

The second kind of service with a special protocol—besides the Remote-
Connect service—is the user-interface service. This service lets user inter-
faces be migrated to clients, so that users can control services from a de-
vice with suitable input/output capabilities. The interfaces are described
in an XML format, of which the loudspeaker document in table 1 is an
example and whose DTD is shown in appendix D. This format has been
given the special MIME type application/x-mui-ui+xml. There are
XML elements for different widgets, with attributes for specifying a cer-
tain command to be sent when the widget is chosen (clicked). The current
widget types supported are buttons, labels, and panels. Natural widgets
to add next are text input fields, and perhaps check boxes and radio but-
tons. Adding images would also be nice, but that requires a mechanism for
referring to external image resources.

31

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

When a client connects to a user-interface service, the XML description will
be sent back. It is interpreted by the client, and the user interface is shown
with help from a user-interface library, such as MIDP [14]. Commands are
sent to the service when the user performs an action in the user interface.
The service reacts to these in a domain-specific way: the set of commands
is specified entirely be the service. It does not need to be standardized,
because the service provides the user-interface description itself.
Web forms is a natural comparison for MUI user interfaces. In contrast to
these, we wanted to make the communication two-way. The service can
send a UI update at any time, which will result in a change in the inter-
face on the client, as was exemplified in section 2. The commands and the
UI updates give both pull and push functionality, and more dynamic in-
terfaces than for Web forms. Using HTTP to accomplish this would require
polling, with repeated requests to see if something has changed. In relation
to web forms, the set of supported widgets is also relevant. With the exten-
sions discussed above, we will support roughly the same set of widgets as
for web forms.
In the previous project [6], we implemented the user interfaces in Java, and
moved a small Java application to the client instead of XML data. The ap-
plication was run on the client, displaying the interface. That gave the full
power of Java, and the ability to create very dynamic interfaces, but we also
felt that it was a quite heavy process to transfer, install, and start an appli-
cation for each interface. We think XML will suffice for many interfaces,
and it has the advantage of being independent of the client platform—it
can be rendered differently depending on screen-size, e.g. Still, we con-
sider adding an applet-like mechanism to the architecture, for situations
where the power of Java is needed.

9 Implementation and Framework

An implementation of MUI has been written for the standard edition of
Java (J2SE). The network communication is over an IP network, with IP
multicast as broadcast mechanism in the discovery protocol. This imple-
mentation allows simulated devices, entirely in software, that can be used
for testing the architecture.
As stated before, the intention is to use MUI in wireless networks. There
are several options for the wireless communication, but Bluetooth [2] has
been a target from the beginning. The standard for using Bluetooth from
Java, JSR-82 [10], was constructed mainly for the small-device edition of
Java (J2ME, [12]). In the future, J2ME is indeed a natural choice for MUI,
as many devices in the networks will have limited memory and process-
ing power. Consequently, the design of the network classes has been made
with J2ME in mind.

32

9. IMPLEMENTATION AND FRAMEWORK

One goal of the implementation is to provide a framework for construc-
tion of MUI services. The classes and interfaces presented in section 4 are
included, but there are also abstract classes that implement more of the be-
haviour expected for typical services and clients. Creating a service should
be simple, if it does not have very specific needs.
We have tried to build the framework with loose coupling between com-
ponents, using events and listeners for their communication. The idea is
that when implementing a new device, it should be possible to pick just
the components needed. Functionality that has been implemented includes
the following:

• There is support for discovery. These classes rely on IP multicast, but
it should be possible to change their implementation to use Bluetooth
discovery, without changing their interface too much.

• RemoteConnect is implemented in the abstract client class, so by de-
fault all clients speak RemoteConnect. A class RemoteConnectCli-
ent represents the client part of the RemoteConnect protocol, and
can be used by applications for establishing remote connections.

• Migratable user interfaces have support in the form of a number of UI
component classes, which make up the interfaces, a MigratableUI
service, which provides interfaces to clients, and a UIClient, which
can receive the interfaces and manage the client side of the commu-
nication. The UI components can be rendered as XML or as Swing
components. On smaller devices, MIDP [14] would be a more suit-
able user-interface library than Swing.

• The network classes have been designed to fit into the Generic Con-
nection Framework, the more light-weight network API that is used
in J2ME [11]. A protocol handler has been written for MUITP. When
establishing a connection to a URL, the scheme part of the URL will
be used by Java library classes to select the right protocol handler
(both for J2SE and J2ME). Adjusting the network connections to Blue-
tooth will mainly mean to rewrite the protocol handler. The contents
of a MUI URL will also have to change, from IP address and port
to a Bluetooth 48-bit device address and a server channel identifier2,
something like

muitp://0050C000321B:5

• There is support for parsing and generating XML messages (used for
discovery, RemoteConnect and user interfaces). The DOM API in the

2Perhaps, it would be the best to make both IP and Bluetooth possible. Then, the URL
would have to be extended with some protocol specifier after muitp.

33

PAPER I: AN ARCHITECTURE FOR MIGRATING USER INTERFACES

Java standard classes is used. In J2ME, there is no built-in support
for XML, so we will have to use a third-party parser, or write our
own. See [9] for a discussion about parsers and performance consid-
erations with XML in J2ME.

The MUI implementation is provided as a single JAR file, which can be
run on any platform with J2SE and an IP network. It includes some sample
simulated devices and services: there is a handheld device with a browser
application for discovering and connecting services, a slide-show service,
which can be connected to a screen, and a poetry service, which produces
text that can be shown on a poetry client device. The implementation of
the sample services has helped form the framework.

10 Conclusions

This paper has presented the current state of the MUI architecture and im-
plementation, and the ideas behind it. We believe that the basic architecture
is simple and flexible enough to be useful in the context of a wireless net-
work where many devices provide services that can be used by clients over
user-initiated connections.
Even if the implementation is in Java, the architecture is not Java-specific.
The protocols and XML formats from sections 4 to 8 could be implemented
by devices with runtime environments for programs written in other lan-
guages, such as Smalltalk or C. This could be an advantage where the
memory and processing-power resources are scarce.
The use of XML as data format seems reasonable. The documents follow-
ing our DTDs are quite compact, and we get XML’s advantages of a human-
readable format with many available parser implementations. There are
XML parsers for J2ME that should be small enough (see [9]). XML is well
established as a data format in many domains, and standardized as a W3C
recommendation [15].
Thanks to the framework, the sample services were quite simple to write.
It seems to be a good idea to provide the basis for a standard service, that
can be used when developing custom services.

11 Future Work

The current work on MUI involves fixing smaller things in the implemen-
tation, and extending the testing of the classes, using the JUnit framework
[8]. We will add a few more widget types, as discussed in section 8. Then,
we plan to add support in the architecture for user-controlled composi-
tion of virtual services: several connected services combined into one, for

34

REFERENCES

smoother repeated use. It will be interesting to see if the user interface for
the virtual service can be generated from user interfaces of individual ser-
vices.
We will investigate further the options for migrating to real wireless hard-
ware, such as Bluetooth. We also want to make it possible for services to
provide applet-style executable code to be run on clients, as a complement
to the XML UI descriptions. Prototypes for more different kinds of services
will be built and investigated. Finally, we will work more on the error han-
dling, especially that concerning the partial failure issues discussed in sec-
tion 5.

References

[1] Ken Arnold et al. The Jini Specification. Addisson-Wesley, 1999.

[2] Bluetooth.org. Bluetooth.org - The Official Bluetooth Membership
Site. http://www.bluetooth.org/.

[3] W. Keith Edwards. Core Jini. Prentice Hall, 1999.

[4] W. Keith Edwards, Mark W. Newman, Jana Sedivy, and Trevor Smith.
Challenge: Recombinant Computing and the Speakeasy Approach. In
Proceedings of ACM MOBICOM’02, September 2002.

[5] W. Keith Edwards, Mark W. Newman, and Jana Z. Sedivy. The Case
for Recombinant Computing. Technical report, Xerox Palo Alto Re-
search Center, April 2001.

[6] Torbjörn Eklund and David Svensson. Mui: Controlling Equipment
via Migrating User Interfaces. Master’s thesis, Lund University, Jan-
uary 2003.

[7] Jini.org. The ServiceUI API specification. http://www.jini.org/
standards/ServiceUI/ServiceUISpec.html.

[8] JUnit.org. JUnit, Testing Resources for Extreme Programming. http:
//www.junit.org/.

[9] Jonathan Knudsen. Parsing XML in J2ME. Technical report, Sun
Developer Network, March 2002. http://developers.sun.com/
techtopics/mobility/midp/articles/parsingxml/.

[10] Motorola. Java API for Bluetooth Wireless Technology (JSR-82), Specifica-
tion version 1.0a, April 2002.

35

http://www.bluetooth.org/
http://www.jini.org/standards/ServiceUI/ServiceUISpec.html
http://www.jini.org/standards/ServiceUI/ServiceUISpec.html
http://www.junit.org/
http://www.junit.org/
http://developers.sun.com/techtopics/mobility/midp/articles/parsingxml/
http://developers.sun.com/techtopics/mobility/midp/articles/parsingxml/

REFERENCES

[11] C. Enrique Ortiz. The Generic Connection Framework.
Technical report, Sun Developer Network, August 2003.
http://developers.sun.com/techtopics/mobility/
midp/articles/genericframework/.

[12] Sun. Java 2 Platform, Micro Edition (J2ME). http://java.sun.
com/j2me/.

[13] Sun. Java Remote Method Invocation (Java RMI). http://java.
sun.com/products/jdk/rmi/.

[14] Sun. Mobile Information Device Profile. http://java.sun.com/
products/midp/.

[15] W3C. Extensible Markup Language (XML) 1.0 (Third Edi-
tion). W3C Recommendation, http://www.w3.org/TR/2004/
REC-xml-20040204/.

[16] W3C. Web Services. http://www.w3.org/2002/ws/.

[17] W3C. XPointer xpointer() Scheme. http://www.w3.org/TR/
xptr-xpointer/, December 2002.

[18] W3C. Web Services Architecture. http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211/, February 2004.

A mui-info.dtd

This DTD defines the format for information about MUI services, clients,
and connections:

<!ENTITY % serviceinfoelement
"(ServiceInfo | ClientInfo)">

<!ENTITY % boolean
"(true | false)">

<!ELEMENT ServiceInfo ((%serviceinfoelement;)*)>
<!ATTLIST ServiceInfo

name CDATA #REQUIRED
serviceContentType CDATA #REQUIRED
url CDATA #REQUIRED>

<!ELEMENT ClientInfo ((%serviceinfoelement;)*)>
<!ATTLIST ClientInfo

name CDATA #REQUIRED
clientContentType CDATA #REQUIRED

36

http://developers.sun.com/techtopics/mobility/midp/articles/genericframework/
http://developers.sun.com/techtopics/mobility/midp/articles/genericframework/
http://java.sun.com/j2me/
http://java.sun.com/j2me/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/midp/
http://java.sun.com/products/midp/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/xptr-xpointer/
http://www.w3.org/TR/xptr-xpointer/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

REFERENCES

remoteConnectURL CDATA #REQUIRED>

<!ELEMENT ConnectionInfo (ServiceInfo, ClientInfo)>
<!ATTLIST ConnectionInfo

connectionID CDATA #IMPLIED>

<!ELEMENT ServiceInfoEvent (%serviceinfoelement;)>
<!ATTLIST ServiceInfoEvent

active %boolean; #REQUIRED>

<!ELEMENT ConnectionInfoEvent (ConnectionInfo)>
<!ATTLIST ConnectionInfoEvent

active %boolean; #REQUIRED>

B mui-discovery.dtd

The DTD for discovery contains a single element, except those included
from mui-info.dtd:

<!-- Include declarations from info DTD -->
<!ENTITY % infodecl SYSTEM "mui-info.dtd">
%infodecl;

<!ELEMENT Inquiry EMPTY>

C mui-remote-connect.dtd

The messages of the RemoteConnect protocol are defined in the DTD file
mui-remote-connect.dtd:

<!-- Include declarations from info DTD -->
<!ENTITY % infodecl SYSTEM "mui-info.dtd">
%infodecl;

<!ELEMENT ConnectRequest (ConnectionInfo)>

<!ELEMENT DisconnectRequest (ConnectionInfo)>

<!ELEMENT OKResponse EMPTY>
<!ATTLIST OKResponse

connectionID CDATA #REQUIRED>

37

REFERENCES

<!ELEMENT ErrorResponse EMPTY>
<!ATTLIST ErrorResponse

message CDATA #REQUIRED>

D mui-ui.dtd

The UI DTD defines elements for widgets, commands and UI updates:

<!ENTITY % uielements "(Panel | Button | Label)*">

<!-- UI elements -->
<!ELEMENT UI %uielements;>
<!ATTLIST UI

text CDATA #REQUIRED>

<!ELEMENT Panel %uielements;>
<!ATTLIST Panel

text CDATA #REQUIRED>

<!ELEMENT Button EMPTY>
<!ATTLIST Button

text CDATA #REQUIRED
command CDATA #REQUIRED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label

text CDATA #REQUIRED>

<!-- Elements for communication with the user -->
<!ELEMENT Command EMPTY>
<!ATTLIST Command

name CDATA #REQUIRED>

<!ELEMENT UIUpdate EMPTY>
<!ATTLIST UIUpdate

element CDATA #REQUIRED>
text CDATA #REQUIRED>

38

Paper II

Composing ad-hoc applications on ad-hoc
networks using MUI

David Svensson, Boris Magnusson, and Görel Hedin
Dept. of Computer Science, Lund University, Sweden

{david|boris|gorel}@cs.lth.se

ABSTRACT

The MUI framework supports composition of ad-hoc appli-
cations from services available on ad-hoc networked devices.
MUI is an open-ended framework, relying on migrating user
interfaces and standardized data formats for connecting ser-
vices, allowing existing devices to be connected to new devices
without needing any pre-defined knowledge of their services.
We illustrate the benefits of the approach with scenarios in-
volving devices like cameras and laptops that are connected
through wireless networks.

1. INTRODUCTION

1 Introduction

More and more devices in our daily environment are being equipped with
wireless communication capabilities, both at home, at work, and out in
the street. Using Wi-Fi, Bluetooth, and similar technologies, they can con-
nect and form local ad-hoc networks, not relying on a central network in-
frastructure. This development brings us closer to the vision of ubiquitous
computing [10], where computation blends into the environment, support-
ing people without requiring constant attention. Services can become avail-
able when needed. An example can be when a user, carrying his handheld
computer, comes into the vicinity of a particular device, such as his home
TV or a ticket vending machine at the train station. Services from these de-
vices can be brought to the handheld computer at that moment. In order
to make adequate use of services in this context, special preparation of the
handheld must not be needed each time. Instead, services should ideally
just emerge on the handheld, ready for immediate use. It should also be
possible to combine previously unknown services into new applications.
For a more general introduction to the challenges and goals in the field of
ubiquitous computing, see for example [3]. In particular we focus on the
demand for forming ad-hoc applications, i.e., the possibility to combine
devices and services with no, or very general, prior knowledge of each
other.
In order to support such ad-hoc applications we have developed the MUI
framework (Migrating User Interfaces). MUI allows (1) user interfaces for
services to be migrated to other devices, e.g. the handheld in the example
above, making it possible to interact with the services remotely, and still in
a direct fashion. Services can also (2) be connected to each other via typed
data connections. Such connections can be set up remotely, from a third
device. For example, using a handheld to connect an MP3 player to a loud
speaking system.
For more complex service-to-service interactions, the user interface de-
scriptions can (3) play a dual role of programmatic interfaces, or proxies,
for the services. These proxies can be utilized by programs or scripts that
glue services together in (4) assemblies.
MUI was originally started as a project with funding from VINNOVA1, but
is now also part of the EU IST project PalCom [6], which, at large, seeks to
make ambient computing systems more understandable by humans. This
is done by trying to meet a number of challenges, of which perhaps the
most important are balancing invisibility with visibility, and finding ways
of allowing construction and deconstruction of systems at appropriate lev-
els.
This paper is structured as follows: Section 2 puts the work in context of

1VINNOVA - Swedish Agency for Innovation Systems, http://www.vinnova.se

41

http://www.vinnova.se

PAPER II: COMPOSING AD-HOC APPLICATIONS USING MUI

previous work in the field. Section 3 presents a scenario that illustrates how
MUI can be put to work. Section 4 gives a more in-depth discussion of the
framework. Section 5 discusses the overall goals and challenges of PalCom
in more detail, and evaluates the MUI framework from this perspective,
providing directions for future work. Section 6 concludes the paper.

2 Previous Work

There are several earlier systems proposing solutions to the general prob-
lem of how to combine distributed services in a flexible manner. In this sec-
tion we will discuss some of them and contrast them with the suggested
technology in MUI.
Jini [9] is an early attempt to support combination of distributed services.
The focus of Jini is programmatic, i.e. it is about programs that communi-
cate. A central mechanism in Jini is a look-up service that aids client pro-
grams to find available services. Proxies for services are defined as Java
code and in practice also the service provider is a Java program. In con-
trast, MUI has a user focus, i.e., it is a user that finds and combines services,
at least initially. MUI uses a lightweight description of services rather than
Java code which enables MUI service providers (and service customers)
to be implemented in any language. This is particularly important when
small service providers (such as sensors and actuators) are considered. The
MUI service descriptions can be used both to directly drive user interfaces,
and also as programmatic interfaces. In the latter case, glue code at the
service customer will bridge from the customer to the provided service,
rather than relying on standardized Java APIs that are defined and must
be known prior to connecting to the service.
Speakeasy [3] and MUI share an overall idea of recombinant computing
and agree on (1) keeping the user in the loop in deciding when and how
components should interact with each other, and (2) using a small set of
generic interfaces. Here, Speakeasy uses the terms serendipitous integration
(the ability to integrate resources in an ad-hoc fashion), and appropriation
(using resources in unexpected ways). Speakeasy does, however, use mo-
bile Java code to encapsulate communication details, where MUI uses more
lightweight descriptions in a textual (XML) format. For data communica-
tion, such as audio or video, the Speakeasy solution puts the burden of
having a JVM also in dedicated devices such as MP3 players and speakers.
The use of downloaded Java code also raises security issues as has been ob-
served when using applets. For UI information, the use of Java to describe
these means that customizing the user interface for different output devices
is problematic. In contrast, the textual descriptions used in MUI allow the
output devices to control the rendering. Furthermore, the MUI solution
gives an architectural advantage in that the same interface description can

42

3. SCENARIO: DISTRIBUTED SLIDESHOW

be used both to drive a UI and to drive a programmatic API.
The focus in the Speakeasy project and MUI are partly different. The focus
in Speakeasy has been on providing user interface mechanisms that enable
an end user without programming expertise. This is an important aspect
of MUI as well, but in addition we have a focus on building ad-hoc com-
posite applications, assemblies, using the control part of a remote device
as an API. Assemblies in MUI can offer new services which can be used in
other assemblies in their turn, thus providing a hierarchical composition
mechanism.
Barton et. al. [2] have chosen to build on existing HTTP technology, en-
hanced with a “Producer” mechanism to register services with a HTTP-
server and XForms to communicate between such services and sensors
(which here is used for any source of information). XForms share, with
MUI, the approach to use XML-inspired textual descriptions for communi-
cation, thus avoiding dependence on Java. Being based on existing HTTP
it is, however, limited by the capabilities of that technology such as a com-
munication model based on pull and no direct support for push, as well as
other restrictions.
Our early work with MUI has been presented in the master’s thesis [4] and
in the paper [8]. In the master’s thesis project, a prototype with a VCR was
built, where a user interface description could be migrated from the VCR
to a handheld computer via Bluetooth: the handheld computer became a
remote control for the VCR. The paper [8] presented MUI’s discovery pro-
tocol, and XML-based languages for service and UI descriptions. At that
stage, the focus was on migration of user interfaces. Since then we have
started to work also with assemblies, and with using the interface descrip-
tions as programmatic APIs.

3 Scenario: Distributed slideshow

As an example of a scenario where MUI can be applied, consider a slight
variant of the traditional presentation session scenario, where slide shows
are projected onto a large white screen. In the traditional scenario, the slide
shows run on a laptop connected to the projector. When it is time for the
next speaker, he either switches to his slide show, which has been copied
in advance to that laptop, or he plugs in his own laptop. In our variant
of this scenario, we make use of MUI to provide more flexibility. Rather
than physically connecting a laptop to the projector, we use a computer-
ized projector that the laptops can communicate with via the wireless net-
work. Furthermore, a mobile phone can be used as a remote controller for
the slide show on the laptop. This scenario is more flexible in several ways:
First, the slide shows can be run on the different speakers’ own laptops,
giving an obvious advantage in terms of less preparation in advance. Sec-

43

PAPER II: COMPOSING AD-HOC APPLICATIONS USING MUI

Figure 1: Distributed slideshow scenario

ond, the laptops can be left anywhere in the room, and the speaker can also
be located anywhere in the room, not necessarily beside the laptop. Third,
more than one slideshow can be shown at the same time, with images in-
terleaved. This can be useful in group discussions, where one person might
want to jump in with a few slides in the middle of a presentation.
Figure 1 shows a set up for this scenario. The devices in this scenario: pro-
jectors, laptops, etc., are MUI-fied, i.e., they run the MUI system. This is
easily accomplished for a laptop. The projector, on the other hand, needs
to be equipped with an embedded computer with wireless capabilities. To-
day, this situation is easily emulated by using a standard projector and
physically connecting it with a dedicated computer.
The projector has a MUI service, Screen, that can receive JPEG images
and project them onto the physical screen. A laptop has a MUI service,
SlideShow, which has a user interface for controlling a slide show (with
buttons Play, Stop, Next, etc.), and which can send out slide show JPEG im-
ages on network connections. The mobile phone has a MUI browser, that
can discover nearby devices and their services. Through the browser, the
user can ask the Screen to connect itself to the SlideShow of a specific lap-
top, causing the images sent out from that laptop to appear on the screen.
In the browser, the user can also ask for the SlideShow user interface which
causes this to migrate from the laptop and pop up on the display of the
phone. Then, he/she can use the phone to change slides during the pre-
sentation. The laptop also has a MUI browser, so, if desired, the user can
issue the user interface commands (Play, Stop, Next, ...) and/or set up the
service connections directly from the laptop as well. If several people have
their slide shows connected to the projector, the latest slide is shown on the
screen whenever one of them changes to a new slide.

44

4. THE MUI FRAMEWORK

Figure 2: Service hierarchy

3.1 Extending the scenario: adding a camera

The MUI system is open-ended, allowing new devices with new services to
easily be added and connected. Suppose the presentation is at a conference
for bottle cap collectors, and a person in the audience would like to show
a particular rare bottle cap. With a camera with a MUI service Camera that
can send JPEG images, she can simply take a picture of the bottle cap, and
send it to the projector to show the image.

3.2 Ad-hoc composition

In order to support composition of ad-hoc applications, MUI relies on stan-
dardized connection types. This is in contrast to systems that rely on stan-
dardized service types, like Jini [9] I.e., in MUI it is possible to connect the
laptop to the projector because they send and receive JPEG images. The ser-
vice Screen does not need any prior knowledge of the service SlideShow,
or vice versa. This allows a service to be used in new, perhaps unforeseen,
ways. The SlideShow can be connected to any other service that can receive
JPEG images as well, e.g., printers, file storage devices, etc.

4 The MUI framework

MUI is based on services. Services are what runs on the devices, and what
offer functionality to users and to other services. The services describe
themselves in XML service descriptions, which are distributed to other de-
vices on the network by means of a discovery protocol [8]. More complex
services can be formed as composite services with subservices (see Fig-
ure 2), but it is the basic, atomic, services that are ultimately connected via
the ad-hoc network. These have a certain type, and can be either providers
or customers. We will describe below the different roles these two play in

45

PAPER II: COMPOSING AD-HOC APPLICATIONS USING MUI

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE CustomerInfo SYSTEM "mui-info.dtd">
<CustomerInfo name="Screen"

customerContentType="image/jpeg"
urn="mui://10.0.0.3/screen">

<Subservice urn="mui://10.0.0.3/ui"/>
</CustomerInfo>

Figure 3: Service description for the screen, which is a customer for JPEG
images. The URN identifies the service. There is one subservice (a user
interface), whose service description is referenced by its URN.

connections. Figure 3 shows a small example of an XML service descrip-
tion, for the Screen in the slideshow scenario. The type of an atomic service
determines the kind of connections that can be established to it. There are
two main kinds of connections: (1) control connections, allowing the service
to be controlled by another device, either programmatically or via a gener-
ated user interface; and (2) data connections, for transfer of typed data. The
Speakeasy infrastructure [3] is in many ways similar to ours: services have
meta-data descriptions, and connections can be either for transmission of
data, or for control. In both systems, there is also a browser from which the
user can view and set up connections.

4.1 Control connections

The protocol implemented by a control connection is described as a ser-
vice description of the type control. These descriptions can be rendered as
a user interface in order to allow the user to inspect the functionality of the
service, and to interact with it directly, which is a key aspect of MUI. An
example is the user controlling the laptop SlideShow service via the mo-
bile phone: an XML description for a simplified version of this interface is
shown in Figure 4.
When a control customer is connected to a control provider, the service
description is migrated to the customer, and the user interface can be ren-
dered on the receiving device. The XML description specifies mappings
from actions in the user interface to what commands should actually be
sent over the network to the service, and the service can also send out mes-
sages which lead to updates in the user interface. So, after the user inter-
face has been migrated, the roles of the two sides are really symmetric—
we have a peer-to-peer arrangement, where, e.g., both pull and push are
possible. It is up to the service programmer, who also writes the service
description, to decide upon the details of this protocol. A brief example of
this kind of two-way communication will be discussed in Section 4.5.

46

4. THE MUI FRAMEWORK

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ControlStructure SYSTEM "mui-control.dtd">
<ControlStructure text="Slideshow">

<InCommand id="prev" text="Previous slide"/>
<InCommand id="next" text="Next slide"/>

</ControlStructure>

Figure 4: A control interface describing a simplified slideshow service.
There are two commands for moving between slides.

Representing a user interface as a description has the advantage that the
different browsers on different devices, having different display capabili-
ties, can use different ways to present the user interface. This is an area that
has attracted some attention in itself, see for example [7], and there are a
number of XML-based user-interface markup languages, e.g. UIML [1].
An alternative use of the service descriptions is as proxies that can be used
for controlling the service programmatically from another device. This al-
lows composite services to be built, relying on distributed subservices,
where a script on one device can coordinate the subservices. In PalCom,
this script is referred to as an assembly [5]. We will briefly discuss an ex-
ample of this in Section 4.5.

4.2 Data connections

Besides control connections, there are data connections for transfer of typed
data. These are formed when a customer of a given type is connected to a
provider of the same type. For example, the Screen service is a customer for
type JPEG, and can be connected to providers of type JPEG, e.g., those in
SlideShow and SendPicture. Currently, we use MIME types to distinguish
different types.
The data connections can also be called streaming connections, because
data flows from provider to customer, one message at a time. This suits
multimedia formats, such as streaming audio and video, but can also be
used in less resource-demanding applications, such as when one JPEG im-
age is sent every time a speaker switches to the next slide in the slideshow
example.

4.3 Remote connection of services

An important aspect of MUI is the possibility to connect two services from
a third device. This was exemplified above, where the user connected the
laptop’s SlideShow to the projector’s Screen, using the browser on the mo-

47

PAPER II: COMPOSING AD-HOC APPLICATIONS USING MUI

bile phone. In order to allow this, there is a simple protocol which devices
can use for instructing a device to connect one of its services to a service
on another device: the mobile phone instructed the projector to connect
its Screen to the laptop’s SlideShow. Similarly, it is possible to disconnect
two services that are currently connected. This functionality builds on a
property of the discovery protocol: devices announce information not only
about the devices themselves, and about their services, but also about es-
tablished connections. This support for connections gives more visibility
for the user. He can see not only what devices and services there are, but
he can also view and control the connections.

4.4 The MUI browser

A MUI browser has been implemented, on which nearby MUI devices and
services can be inspected and controlled, and from which new connections
can be established. Using the browser for remote control allows devices to
be networked that do not themselves have any or very limited user inter-
action capabilities, e.g., sensors and actuators. Browsers can be expected to
run on more resource-rich devices, such as PDAs and mobile phones. The
current implementation is in Java, but having an underlying JVM is not
essential—the browser could be written in any language.
Existing connections can be viewed, and possibly disconnected, as men-
tioned above. The browser utilizes the hierarchical structure of services
for making the connection process easier and more natural. E.g., the user
can choose to connect the SlideShow service directly to the Screen, with-
out opening up to see what subservices they have. In this case, there will
be exactly one matching provider-customer pair, and this pair—the JPEG
provider of SlideShow and the JPEG customer of Screen—will be con-
nected. If there had been more than one matching pair, the user would
have been asked to select the one he intended. This can be seen as a simple
way of supporting visibility at an appropriate level.

4.5 Example of usage: the SitePack

The SitePack is one of the scenarios studied in the PalCom project (see [6, 5]
for more background information). In this scenario, landscape architects
out in the field make use of PalCom technology for combining devices in
different set-ups, suitable for the situation at hand. One example is during
the documenting phase, when photos taken at a site need to be tagged
with location and other information, so they can be put together later at
the office. For this purpose, the landscape architects use three devices from
the SitePack: a digital camera, a GPS, and a handheld computer. When
a picture is taken, the current GPS location should automatically be saved
with the picture. This is realized as an ad-hoc application, with an assembly

48

5. EVALUATION AND FUTURE WORK

running on the handheld computer, that coordinates the camera and the
GPS. The special logic needed for this particular case is in the assembly. It is
important to note that the camera and the GPS are not prepared in advance
for this scenario, except being PalCom-compliant at a general level.
We have implemented a simple version of this scenario using the MUI
framework. The camera and the GPS expose their functionality as MUI
services, both as data (GPS coordinates) and as user-interface descriptions.
The user-interface descriptions are used as programmatic control interfaces
by the assembly script, running at the handheld (the assembly is currently
"hard-coded" in Java, but is to be written in a simpler script language later).
The control interfaces are migrated to the handheld computer when the as-
sembly is activated. As a picture is taken by the camera, the assembly gets
notified through a message over the camera’s control interface. In response
to this, it asks for the latest picture from the camera, using an operation in
the control interface. When the assembly gets the picture, the picture is
tagged with the latest coordinate received from the GPS (using a special
coordinate stuffer service, running on the handheld), and is sent to a back-
end server for storage.
Important aspects of the implementation are that it makes use of the two-
way communication that is possible with control interfaces, where both
the camera service and the assembly initiate communication at different
stages, and that it is an example of a user-interface description function-
ing as a programmatic proxy. As mentioned above, it should also be noted
that only the handheld has been especially prepared for this scenario: the
GPS and the camera expose their normal interfaces. The preparation of
the handheld consists of construction or installation of the special coor-
dinate stuffer service, and of writing the assembly script. The coordinate
stuffer, which manipulates JPEG image meta-data, is an example of a ser-
vice which is best implemented in a full-blown programming language,
such as Java, and which therefore has to be written by someone with that
knowledge. It offers a service description as other services. The script, on
the other hand, should be possible to write by end users. This is where the
actual adaptation to the scenario is done.

5 Evaluation and Future work

MUI involves the user in the establishment of connections between ser-
vices. This gives him visibility and control over how services form ad-hoc
applications. But, at the same time, this must not become a burden for him.
It has to be possible also to automate the process. E.g., when he comes
home, carrying his MP3 player, he might want it to automatically connect
to his set of loudspeakers. Therefore, we are working on support for sav-
ing a set of connections in assemblies, which can be stored, e.g. on the MP3

49

PAPER II: COMPOSING AD-HOC APPLICATIONS USING MUI

player, and which can actively establish their connections. This is a sim-
pler form of assembly than the SitePack assembly above. In our continued
work, we will combine these types of assemblies into one type, so that a
simple set of connections can be further customized with script logic.
From a PalCom perspective, it is interesting to look at how well MUI sup-
ports the so called palpable qualities, i.e. how well it meets the PalCom chal-
lenges mentioned above [6]. Our focus has been mainly on visibility/in-
visibility, and on construction/deconstruction. Scalability, complemented
with understandability, is another important PalCom challenge. We will
relate to these three in turn, and after that there will be a short discussion
of security aspects, which are of course also important in the MUI context.

5.1 Visibility and invisibility

Ubiquitous computing brings a degree of invisibility to computing sys-
tems, in that they blend into the environment. PalCom highlights the need
for balancing this with an appropriate degree of visibility, so that the sys-
tems remain understandable. Regarding visibility, we find it important that
the user can be involved in the process of setting up connections between
services. It is of course often desirable with an automatic process for this,
but when the user is involved it is easier for her to understand the sys-
tem. In many cases, it will also be necessary, because a program cannot be
expected to understand the interfaces of the previously unknown services
that will pop up in these ad-hoc networks. Another point when it comes to
visibility is the merit of letting the discovery protocol distribute informa-
tion about established connections, and not only about the services. This
can give the user a view of the current communication.

5.2 Construction and deconstruction

For construction/deconstruction, the notion of assembly is important in
PalCom. MUI combines this with limited pre-defined knowledge of ser-
vice interfaces. When a new service is encountered, it should be as easy
as possible for the end user to make use of it in assemblies. We think this
should be approached at different levels: At one level, it should be possible
to save a set of connections as an assembly for later activation. At another
level, programmable scripts should support the need for more complex
logic. In both cases, the deconstruction aspect is crucial—it must be pos-
sible to open up an assembly and inspect its parts, especially when some-
thing goes wrong.
The current implementation of MUI contains first versions of support for
both levels of assemblies: it is possible to establish a number of connections
and save them in a list for later re-activation, and the SitePack implemen-

50

5. EVALUATION AND FUTURE WORK

tation, described in Section 4.5, demonstrates a more complex assembly.
Future work will involve refinement of both types, e.g. with the introduc-
tion of a script language for the more complex assemblies, and unification
of the two into one concept, so they can be handled similarly.

5.3 Scalability and understandability

A third PalCom challenge that is certainly relevant for MUI is the need for
supporting scalability, complemented with understandability. When us-
ing the MUI browser, the user must not be overwhelmed with the sheer
amount of available services. One step in the right direction here, which
we have implemented and which is also related to the visibility/invisi-
bility challenge, is the possibility to group services as composite services.
Another useful mechanism in our implementation is the use of type infor-
mation for narrowing down the number of possible end-points during the
establishment of a connection.
Scoping mechanisms on the network will also be needed, for making sure
that the services discovered are really reachable in the current context. Sim-
ilar concerns must be handled for the discovery of established connections.
Ideally, only relevant connections should be shown, and for connections
there is also an additional problem area of visualization.

5.4 Security

In relation to scoping, there is the general question of security. It is impor-
tant that unauthorized users or devices are not able to use your services,
or spy on your connections, or modify them. To some degree, we rely on
mechanisms in the lower networking layers here. In Bluetooth, e.g., two
devices have to be paired before they can use each other’s services. Pairing
occurs once, and does not need to be done more in the future. But, there
are several open issues. E.g., it has to be possible to use public services, out
in the street, without having to pair each time, and still without your con-
nections being visible to everyone. There should be some more advanced
scoping mechanism also for this.
In many cases, social conventions provide sufficient security. In the slide-
show scenario, all participants that have the pin codes for pairing with the
devices, are also trusted with not using the technical possibilities for dis-
turbing a presentation. Social structures could also be used for scoping.
One example is the Speakeasy converspaces [3], where members of a con-
verspace can invite others to share a set of components. This way, it will
be possible to trust users, on the basis of trust in those who invited them.
In order to use such social conventions and trust, a complement can be
logging of events that can be used to find out who did what after the fact.

51

REFERENCES

6 Conclusions

MUI answers some of the basic challenges in ubiquitous computing. It en-
ables ad-hoc interaction among devices without prior knowledge of each
other. They need to share a common, generic set of protocols for discovery
and communicating service descriptions, but nothing that is special for a
particular service. A user can very intuitively connect service descriptions
to a browser and remotely control devices. It is also intuitive in a browser to
connect the typed data channels between different devices and thus have
them share information like audio or JPEG pictures. Here the data types are
standardized, not the services. With this basic functionality, MUI supports
many of the scenarios envisioned as ubiquitous computing.
Sets of connections can be stored as assemblies, saving the user from es-
tablishing the connection over again in case it is a situation that will occur
frequently. In more complex situations, an assembly can be instrumented
with a script that ties together service descriptions from remote devices
(now interpreted as APIs rather than UIs). In this way complex interaction
between devices can be constructed in an hierarchical fashion, thus sup-
porting composition and decomposition.
In case an application needs algorithmic support that goes beyond what a
scripting language can offer, the MUI model enables program components
to be incorporated in an assembly, if only they implement the discovery
protocol and offer a service description of their capabilities.
The requirement for a device to take part in a MUI system is to observe the
generic set of protocols. MUI is thus an open framework that can be imple-
mented in any language. It might be particularly interesting to implement
“small” devices such as sensors or actuators in a low-level language and in
such cases the effort to implement the MUI protocols should be small.
The MUI model is supporting a user-centric perspective where the user
decides on when and how devices and services should interact with each
other, but at the same time offers a programmatic perspective for automat-
ing tasks.

References

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and
J. E. Shuster. UIML: An Appliance-Independent XML User Interface
Language. WWW8 / Computer Networks, 31(11-16):1695–1708, 1999.

[2] John J. Barton, Tim Kindberg, Hui Dai, Nissanka B. Priyantha, and
Fahd Al-Bin-Ali. Sensor-enhanced Mobile Web Clients: an XForms
Approach. In Proceedings of ACM-WWW 2003, pages 80–89, Budapest,
Hungary, May 2003.

52

REFERENCES

[3] W. Keith Edwards, Mark W. Newman, Jana Sedivy, and Trevor Smith.
Challenge: Recombinant Computing and the Speakeasy Approach. In
Proceedings of ACM MOBICOM’02, September 2002.

[4] Torbjörn Eklund and David Svensson. Mui: Controlling Equipment
via Migrating User Interfaces. Master’s thesis, Lund University, Jan-
uary 2003.

[5] Mads Ingstrup and Klaus Marius Hansen. Palpable assemblies: Dy-
namic service composition for ubiquitous computing. In Proceedings
of SEKE 2005, The Seventeenth International Conference on Software Engi-
neering and Knowledge Engineering, 2005.

[6] PalCom website. Palpable computing—a new perspective on ambient
computing. http://www.ist-palcom.org/. IST-002057.

[7] Peter Rigole, Chris Vandervelpen, Kris Luyten, Yves Vandewoude,
Karin Coninx, and Yolande Berbers. A Component-Based Infrastruc-
ture for Pervasive User Interaction. In International Workshop on Soft-
ware Techniques for Embedded and Pervasive Systems STEPS’2005, Mu-
nich, Germany, May 2005.

[8] David Svensson and Boris Magnusson. An Architecture for Migrat-
ing User Interfaces. In Koskimies, Lilius, Porres, and Østerbye, edi-
tors, NWPER’2004, 11th Nordic Workshop on Programming and Software
Development Tools and Techniques, pages 31–44, Turku, Finland, August
2004.

[9] Jim Waldo. The Jini Architecture for Network-Centric Computing.
Communications of the ACM, pages 76–82, July 1999.

[10] Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):66–75, February 1991.

53

http://www.ist-palcom.org/

Paper III

Discovery and communication protocols for
palpable computing

David Svensson, Boris Magnusson, and Görel Hedin
Dept. of Computer Science, Lund University, Sweden

{david|boris|gorel}@cs.lth.se

ABSTRACT

This paper reports on the specification and implementation
of discovery and communication protocols for palpable comput-
ing, which is a flavour of pervasive computing, explored in the
PalCom project. The protocols have been designed to support
the construction of ad-hoc applications, i.e. applications put to-
gether by end users for utilizing available services in a particu-
lar situation.

Based on the work on prototype scenarios in the PalCom
project, we have drawn a number of requirements on the proto-
cols. These include device awareness, the need for making phys-
ical devices explicit in the discovery protocol, on-demand ser-
vice discovery, which means that service descriptions should be
transferred only on demand and handled incrementally, and
the need for discovering connections, in addition to discovering
devices and services. Bandwidth and responsiveness consider-
ations have lead us to propose a new device discovery scheme,
called announcement heartbeats.

1. INTRODUCTION

1 Introduction

PalCom is an EC-funded integrated project within the area of pervasive
computing, which introduces the notion of palpable computing [16]. Palpa-
ble computing systems are capable of being noticed and mentally appre-
hended, to a larger degree than pervasive systems in general. As one of the
keys to better human understanding of pervasive systems, PalCom seeks
to enable both construction and de-construction of systems by end users. In
our work within PalCom, we have focused on this challenge, and in par-
ticular on finding ways of supporting so called ad-hoc applications, which
are applications that are put together in a certain situation, from services
available in that particular context [22].
This paper reports on the discovery and communication protocols we have
developed to support such ad-hoc applications. The requirement for sup-
porting ad-hoc networks has heavily influenced the design of the proto-
cols. We have implemented the protocols in Java and they run on a normal
JVM as well as on the Pal-VM [15], a new virtual machine for embedded
devices that is being developed in the PalCom project. The protocols are
independent of technology and have at the time of writing been imple-
mented for IP networks on top of UDP, and an implementation for short-
range wireless networks using Bluetooth [3] is forthcoming.

Asynchronous communication

The unreliable nature of wireless ad-hoc networks calls for a model based
on asynchronous communication. A synchronous model, such as one based
on Remote Method Invocation (RMI, [20]), is not suitable. In RMI, the
caller of a method is blocked until the method has completed, and a re-
turn value has been received. With dropouts in the communication, this
means that the caller may, theoretically, get blocked forever. Instead, we
use asynchronous message passing both in the discovery protocol, and for
communication between services.

Discovery protocols

There are many existing protocols for discovery of devices and services in
pervasive computing systems. The basic purpose of such protocols is that
it should not be necessary to know the exact address of a service (such as
IP address and port). Instead, it should be possible to discover and use
the service when one connects to a network. Some discovery protocols are
developed in academia, such as DEAPspace and GSD [14, 4], some by soft-
ware vendors as part of operating systems, such as Jini, UPnP, and Apple’s
Bonjour [25, 23, 1], and some by various consortia, such as Salutation [18],

57

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

IETF and Bluetooth SIG. Zhu et al. have compared a number of these ex-
isting discovery protocols along different dimensions, and placed them in
a taxonomy [26]. This taxonomy, and how our protocols relate, will be dis-
cussed in Section 10.

Paper organization

The rest of this paper is organized as follows. Section 2 discusses our no-
tion of ad-hoc applications, and Section 3 the requirements on the protocols
that we have derived from this kind of applications. In this section we mo-
tivate why we have chosen to develop new protocols and message formats.
A more detailed description of our implementation platform is presented
in Section 4, with presentations of the protocols in Sections 5 through 8. In
Section 9, we evaluate the protocols in relation to our requirements. Sec-
tion 10 discusses related work, and Section 11 concludes the paper.

2 Ad-hoc applications

The general setting for a palpable application is that it involves a number
of devices, each offering one or more services on the network that the user
wants to combine ad-hoc, i.e. in new, unforeseen ways. We want to make
this possible also if the services are not designed to work together, i.e they
do not share a common domain-level protocol.
A service has either a provider role or a customer role, and connections
can only be established between two services with different roles. Being
a provider means that the service offers some functionality, described in
a service description, that can be used by connected customers. There are
two basic kinds of provided services: data services and control services. A
data service provides streamed data. For example, a photo service on a dig-
ital camera device can provide digital images to the customers. A control
service provides commands for remote control of the device. For example,
a control service on the digital camera can provide a command for taking
a photo.
In creating an ad-hoc application, the user typically interacts with the ser-
vices via a PalCom browser application. The browser allows the user to estab-
lish connections between services, e.g., connect the camera’s photo service
to a customer service on a database backend. The browser also allows the
user to directly interact with a control service, rendering the commands as
a graphical user interface. For example, the command for taking a photo
can be rendered as a button in the browser. The user interface displayer in
the browser thus serves as a customer of control services.
Ad-hoc applications can be made more powerful through the introduction

58

3. REQUIREMENTS

of an assembly, an entity that keeps a configuration of services, and coor-
dinates them [21]. The interaction with a service can be automated by an
assembly script which then serves as the customer of control services. For
example, to take a photo every 10 seconds, an assembly can coordinate in-
coming events from a timer service with events sent to the control service
of the camera. Through the use of the PalCom browser and assemblies, the
user can construct and deconstruct ad-hoc applications: put them together
and try them out interactively, save them and run them as assemblies, and
later deconstruct and change them as needed.
The protocols discussed in this paper have been designed with the overall
goals of ad-hoc applications in mind. We have developed protocols for dis-
covery, and for communication between services. The discovery protocol
is used by a service, or by a browser application, for obtaining informa-
tion about devices and services in the vicinity. Then, the communication
protocol can be used for interacting with the services, either manually, or
automatically through an assembly.

3 Requirements

Within the PalCom project, a number of prototypes have been constructed,
exploring scenarios in collaboration with end users. Examples include IT
support for professional landscape architects, rehabilitation games for dis-
abled children, major emergency incidents scenarios, and several others.
We have drawn on this work to provide requirements for the developed
protocols.
The requirements we put on discovery and communication protocols are
both functional and non-functional. Our primary goal is to support ad-hoc
applications, as mentioned above. We need to do that in a way which keeps
the user’s experienced performance high, and which does not demand too
much bandwidth from the network. This section will discuss our most im-
portant considerations:

Standardization at a general level In order to enable ad-hoc combinations,
the protocols must not rely on domain-specific standards.

Support for transient devices It is normal in pervasive systems that de-
vices join and leave networks frequently. When a device leaves the
network range, or goes down unexpectedly, this must become known
to the other devices within a reasonable time.

No central directory Our discovery protocol should not be based on a cen-
tral directory, where services are looked up, because in the ad-hoc
networks we target, such a central node cannot always be expected
to be available.

59

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

Device awareness As the identity of the physical devices are important
for the end users, it is a requirement that these are announced in the
discovery protocol.

On-demand service discovery Descriptions of services are anticipated to
often become rather extensive, so the whole descriptions should not
be announced with every device announcement. Instead, they should
be available on-demand for interested customers.

Discovery of connections In order for the user to be able to get a view
of the communication between nearby services, and manipulate it, it
must be possible to discover connections between services.

Limited broadcasting Messages that are broadcasted to all devices in the
network must not be used too often in the discovery protocol, be-
cause they require more bandwidth.

Advertisements, not queries It must not be necessary to specify the prop-
erties of a service in order to discover it.

The first two of these requirements are for communication in general, while
the other six are specific to the discovery protocol. The requirements will
be discussed in more detail in the following.

3.1 Standardization at a general level

PalCom devices should be possible to combine in ways that are not pre-
planned, in ad-hoc ways, which means that the discovery protocol must be
understood and supported by all PalCom devices. This is standardization
at a general level, not on the domain level, as discussed in [22]. Further-
more, PalCom should be an open framework. This means it must be possible
to implement PalCom devices not only on top of the existing implemented
framework (see section 4), but also using other technologies. This could be
for supporting “small devices”, such as sensors or actuators, or for adding
support for PalCom to existing devices. This communication on the discov-
ery level must thus be defined and standardized as a protocol with regards
to message formats and representation. In particular, we do not see it as
feasible to base the protocol on mobile code, as in Jini [25]. That puts too
strict demands on the run-time systems of devices.
For small devices, it is important that the overhead inflicted by the dis-
covery protocol is small. Such a device would be one that simply offers
a service. It will never initiate a discovery procedure, because it is itself
not interested in replies. It can answer requests with a simple, often fixed
answer, and it can ignore the broadcasted replies from the other devices.
Regarding standardization of protocols, there are different levels of Pal-
Com communication:

60

3. REQUIREMENTS

• The discovery protocol enables devices to find other devices, services
and connections. This is a standard protocol, supported by all de-
vices.

• Service descriptions, obtained through discovery, describe the service
protocol observed by a service. A service protocol defines the mes-
sages and format used by a particular service. There is a standard
format for messages that can be used, but for services with special
demands on performance, encryption, etc, a non-standard format can
also be used, for utilizing available technology in an optimal way.
This will be discussed more in Section 7. The content of the mes-
sages is service-specific, and not standardized—it is the provider of
the service who decides what messages it can handle. The descrip-
tions themselves follow a standard format, but will probably have to
be extended in the future to support non-standard service protocols.

3.2 Support for transient devices

It is in the very nature of pervasive computing systems, that many de-
vices will frequently join and leave networks. Devices will follow people,
forming ad-hoc networks with the devices currently in the vicinity. These
networks are generally wireless, with varying signal strengths. This means
that the protocols must be prepared to handle dropouts in the communi-
cation, and that replies to messages cannot always be expected. In gen-
eral, this calls for a model based on asynchronous communication. For the
discovery protocol, it is important that new devices are discovered fairly
quickly, and that devices leaving a network do not remain “discovered”
for too long, in the caches of other devices.
A related aspect to consider when designing the discovery protocol is how
we get to know that a device is not available any more. This is a tough
problem, because when you are dead, or have left the network range, it is
too late to tell the world, and death can come unexpectedly. The problem is
called partial failures, one of the issues that makes distributed systems more
difficult to handle [10]. Some kind of heartbeat is one way of solving this,
and we propose a solution to this fundamental problem with a combina-
tion where the heartbeat also works for discovering devices. We call this
scheme announcement heartbeats. It is the most “eager” device that controls
the frequency of the heartbeat. The technique seems to be minimal in some
aspects. As mentioned above, it is also desirable to minimize the messages
broadcasted in a network; for network load reasons, both in terms of the
number of such messages and the size of them. In our protocol, broad-
casting is only needed for these combined heartbeat and device-discovery
messages. Compared with techniques within fault tolerance, the announce-
ment heartbeats scheme can be seen as a combination of the “I Am Alive”
and “Are You Alive” patterns in [19]. The heartbeats sent out by the most

61

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

eager device are I-am-alive messages, spreading information about that
device. At the same time, they work as Are-you-alive messages, triggering
responses from the other devices.
An alternative to using a heartbeat solution is sometimes leasing. In gen-
eral, leasing means that a service keeps a resource for another, as long as
the lease is renewed, or until it times out. In Jini, leasing is used for ser-
vice announcement. Services list themselves at lookup services, by leasing
a place in their directories, and clients go to the lookup services for find-
ing available services. A problem with this scheme is that when a service
disappears abruptly, the lookup service will not remove the entry for the
service until its lease times out. In the mean-time, clients will be informed
as if the service was still available, and it is the service that decides the du-
ration of the lease. This does not fit well with the PalCom scenarios, where
very up-to-date information is required in many cases. As an example, con-
sider a doctor that uses a BioMonitor for monitoring a patient at the site of
an accident. The BioMonitor service may have granted a rather long lease,
perhaps based on its battery power, but it may still be the case that it does
not respond (maybe it has been moved out of range). Here, it must instead
be the doctor that sets the time limit. In a way, our protocol can be seen as
a leasing protocol where the user of a service sets the time limit.

3.3 No central directory

One important design parameter for a discovery protocol is whether there
is a central directory or not. The discovery protocols for Jini and Salutation
make use of this: services register themselves in a central directory, and
clients go to the directory for looking up services. The opposite alternative
is to let each device or service announce its presence on the network di-
rectly by means of broadcasts,1 and for clients to go directly to the service
for interacting with it. This approach is taken, e.g., by UPnP [23]. There are
also hybrid approaches: one example is VSD [11], where more powerful
devices can volunteer to serve as directories, when it is needed.
Based on our work with end-user composition in PalCom, and on require-
ments drawn from the PalCom prototypes, we have chosen an approach
without a central directory. In many cases there are only a few devices
forming an ad-hoc network, and, as pointed out in [14], it is often not obvi-
ous what device should host the directory in such situations. As we see it,
directories are better used for limiting bandwidth usage in large networks,
as discussed in Section 9.1.

1Here, we use the term broadcast in a broad sense, referring to a message that goes out to a
number of anonymous receivers. On an IP network, broadcast may be implemented using IP
multicast.

62

3. REQUIREMENTS

3.4 Device awareness

The most obvious entity that should be possible to discover through a dis-
covery protocol is the service. Services are what is ultimately used over
the network. Starting from this, several protocol designers have chosen to
let services be the only entity that can be discovered. One example is Jini,
whose creators speak about device agnosticism. This means that also devices
are treated as services by Jini, and this is presented as one of the key con-
tributions of the technology. Hardware and software can be handled in a
unified way by clients [6].
For pervasive computing, we argue that this unification is not useful. In
this context, the integration of discovery protocols with people is a very
serious challenge [26]: pervasive services are localized (as opposed to, e.g.,
Web services), and people can be expected to care more about exactly which
of several services is used. For people, the physical devices are important.
Therefore, we let devices be discovered at the top level, and services below
that, for each device. This is backed by the observation that in many appli-
cation prototypes studied in PalCom, the actual device that hosts a service
plays an important role for the end user: the GeoTagger and the SiteSticks
for landscape architects, biomonitor sensors for emergency personnel [12],
enhanced incubators at the hospital, the Stone device supporting pregnant
women [24], etc. In these scenarios there are multiple devices with identi-
cal services around, and device identity matters for the user—in particular
when something goes wrong. Even in the often-mentioned example with
finding a “Print” service for printing a document,2 the physical location
of the printer (the device that provides the service) is relevant. This is the
motivation for having devices as discoverable elements. We should also
mention that this decision is not unique. UPnP focuses on devices, and lets
services be discovered inside device descriptions [23].

3.5 On-demand service discovery

Of the messages transferred by the discovery protocol, it is the service de-
scriptions that we expect to become most extensive. For complex services,
the descriptions will contain specifications for many messages. Therefore,
these descriptions are not sent out with every device announcement. In-
stead, they are obtained through unicast requests from those devices that
are interested. This may be the case, e.g., when a user has opened up a
service list for one device in a browser.

2The “Print” example is a common example in discovery protocol literature.

63

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

3.6 Discovery of connections

Besides devices and services, our protocol also supports discovery of con-
nections. Like has been discussed in [22], the visibility experienced by the
user of a browser is increased by visualizing also connections, and the pos-
sibility to manipulate established connections depends on having connec-
tions discoverable. This functionality is also a basis for our work on assem-
blies.

3.7 Limited broadcasting

Sending out a broadcast message requires more bandwidth from the net-
work than a unicast message, in general. Therefore, it is desirable to keep
the number of broadcasts down, and this is a design goal for our discov-
ery protocol. We should mention that the scope of the protocol is for local
networks. Large and/or heterogeneous networks are discussed under Sec-
tion 9.1.
Having a discovery protocol without a central directory, as discussed in
Section 3.3, does not mean that all information has to be provided using
broadcasts. Instead, many protocols use broadcasts in an initial phase, and
then unicast communication for obtaining detailed information about ser-
vices. As an example, Jini uses a broadcast protocol for announcing its
lookup servers (directories), and then clients contact the servers using uni-
cast. One benefit with such an approach is that a unicast call demands less
bandwidth from the network, as mentioned above. We have opted for a
similar solution: Broadcasts are used for sending out overview information
about devices. After that, a pull protocol with unicast messages is used for
distributing information about services and connections. These, potentially
extensive, pieces of information go only to those devices that are explicitly
interested.
The cost of a broadcast depends on the type of the network. On larger IP
networks, there are normally multicast routers, that permit communication
using multicast instead of pure broadcast. This is more efficient than pure
broadcasting to all nodes on a subnet, because the message only reaches
those nodes that have registered at a particular multicast address. In our
PalCom implementation with UDP, we make use of multicast communica-
tion.

3.8 Advertisements, not queries

In much of the literature about device and service discovery (see, e.g., [17,
26, 9]), a query-based approach is taken as the starting point. This means
that, initially, a user or client makes a query on the network, specifying

64

4. IMPLEMENTATION

the name or properties of the service, or services, that he wants to use.
Again, the “Print” service is the most common example. The query-based
approach has advantages. It is possible to let the (relatively compact) query
be broadcasted out on the network, and for only those services that match
the query to reply with their (perhaps extensive) service descriptions, in
direct unicasts to the client. This keeps the load on the network down.
Still, we do not want to base our protocol on queries. For one thing, the
language of the queries is a complication. In order to be able to formulate
good queries, you would need some kind of ontology for the properties of
all types of services. This leads to the type of domain-level standardization
that we want to avoid. Secondly, relying on queries means that the connec-
tion to the physical devices in your vicinity, as advocated in Section 3.4, is
easily lost, because the focus is on services, not devices. Instead, we prepare
for building querying mechanisms on top of our announcement-based ap-
proach, where services can be filtered depending on the contents of their
service descriptions. Building on top of the discovery protocol, rather than
basing the discovery protocol on queries, also means that the query calcu-
lations can be made other places than on the (possibly small) device that
provides the service, which is good, and how the query is implemented
can be realized in many different ways without changing the protocol.

4 Implementation

Before going into the details of the protocols, we would like to briefly
outline our implementation, and the platforms on which it runs. Figure 1
shows selected parts of the PalCom protocol stack, with the communica-
tion layer zoomed in. The communication layer is where communication
and discovery protocols are implemented. As mentioned above, Pal-VM
[15] is the virtual machine (VM) developed within PalCom. This is a VM
which supports programs written in Smalltalk, Java, and BETA. The com-
munication components run on top of the Pal-VM, and they also run on
an ordinary Java Virtual Machine (JVM), shown beside the Pal-VM in Fig-
ure 1. The layer just above the VMs, with pal-base and pal-jbase, con-
tains base libraries in versions specific for each VM. In the layers above
that, components written in Java run on both VMs, with the same source
code. This is the case for the components in process and communication.
The main reason for targeting two different VMs is that there exist more li-
braries for the JVM, supporting graphics etc., that can be used in browser
applications and in prototypes, while the Pal-VM is being developed fur-
ther.
The process layer contains a PalCom thread library, modelled after SimIO-
Process in the Lund Simula system [13]. The threads are built on corou-
tines in the base libraries, which are supported directly by the Pal-VM and

65

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

Figure 1: The PalCom stack. Components in the communication layer are
zoomed-in on the right.

implemented using Java threads for the JVM. There is a PalCom thread
scheduler, which relies on a Unix select mechanism for timeouts and non-
blocking I/O. There are classes for semaphores, monitors, and event com-
munication between threads. Currently, cooperative scheduling is suppor-
ted. Plans for future improvements include preemptive scheduling and hi-
erarchical schedulers.
For the actual network communication, the communication components
rely on support for different networking technologies in the Pal-VM. On
top of this, the components offer APIs, uniform message formats, and ad-
dressing. The first kinds of networking supported in the Pal-VM are UDP,
unicast and multicast, which suit the asynchronous communication needed
by many PalCom applications. UDP is used in the first implementation
of the communication component. An earlier design study was based on
Bluetooth and PalCom communication is now also developed for Blue-
tooth.
The box on the right in Figure 1 shows the components in the communica-
tion layer. MAL is the Media Abstraction Layer, which abstracts the details
of different networking technologies. On top of that are components for
publish/subscribe, point-to-point messaging, and point-to-point connec-
tions. These will be discussed in the following sections.

5 Basic communication

Our presentation of the communication protocols will start with the basic
facilities in the PalCom stack for sending point-to-point and publish/sub-
scribe messages. The discovery protocol and the communication between
services is built on top of these two mechanisms: a point-to-point message
is intended for one specific receiver, while a publish/subscribe message
goes to all receivers that have subscribed to the topic on which the message
is published. The topics are strings agreed upon in advance by a number

66

5. BASIC COMMUNICATION

of communicating parties. As an example, our discovery component is im-
plemented using publish/subscribe, with a pre-defined “discovery” topic.

5.1 Point-to-point

The basic type of communication offered by the PalCom communication
component is asynchronous message passing: messages are sent without
waiting for a reply. In the current Java implementation, with UDP, there
is no guarantee that the message will reach its receiver. Adding different
levels of such guarantees is possible, and we plan to implement that. This
could be done through the use of other transport protocols, such as TCP, or
through acknowledgments and re-sends on top of UDP. Our intention is to
do the latter, rather than using TCP, because TCP’s connected nature is not
suitable for the ad-hoc networks and the message-based communication
that we target.
PalCom defines a general wire format for messages. This format is used for
packaging of point-to-point messages between services, except for those
services that use their own, private message formats, as discussed above
(those special services implement their communication against the net-
work layer directly). The message format has been selected so that it per-
mits hierarchically structured messages, with messages inside messages at
any number of levels. That is used, e.g., for the packaging of publish/sub-
scribe messages, and for packaging of commands sent over connections.
Another important point is that the messages should be human-readable,
as far as possible. That makes inspection and debugging easier, and helps
meeting the PalCom visibility challenge [16]. Finally, care has been taken
to keep the messages compact, and make parsing simple. Regarding the hi-
erarchical structure, and the human readability, an obvious choice would
have been to base the format on XML. We have not done that for the ba-
sic message format, though, because we want to permit binary data in
the messages. However, the message formats for discovery and service
descriptions, sent as data inside basic messages, are XML-based (see Sec-
tions 6 and 7).
The messages are self-addressed: the address of both the sender and the
receiver is in the message. In order to obtain the complete sender address
from a received message, information from lower layers is used. In the
UDP case, the IP address and port of the sender is taken from the UDP
packet. Together with the sender selector from the message header (see
below), the sender address can be formed.
Figure 2 shows an example of a message. The data in the message are the
8 bytes of the word palpable. The message header contains four fields with
printable characters, separated by semi-colon: 8 is the length of the mes-
sage, d says that it is a data message, and 1 and 2 are selectors for the sender
and the receiver of the message. Selectors are assigned by devices for iden-

67

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

8;d;1;2;︸ ︷︷ ︸
Header

palpable︸ ︷︷ ︸
Data

Figure 2: An example message.

tifying local end-points for communication. Note that in this example all
bytes are printable characters, including the message data, so the wire for-
mat can be shown this way. This is practical for debugging.

Connections

In many of the PalCom scenarios, there are situations where two services
exchange a sequence of messages. In order to support this common case,
the communication component provides a connection abstraction, which
builds upon the message sending described above. To the programmer, a
connection is presented as a connection object, in a symmetrical way to
both parties. The connection object fills in sender and receiver addresses
in all messages sent, and handles shut-down when one party closes the
connection. There is a special type of messages, c, for connection-control
messages.

5.2 Publish/subscribe

Communication in a more loosely-coupled fashion, where the sender and
the receiver are not necessarily aware of each other’s identity, is also used
in PalCom applications. The communication components support the pub-
lish/subscribe style of communication [8], where services publish events
on different topics, which are delivered to subscribers that have registered
interest in matching topics. The discovery component is one example of a
component that uses publish/subscribe.
Publish/subscribe messages are packaged as multi-part messages with two
parts: one for the topic, and one for the actual message. The data sent out
for a publish/subscribe message is shown in Figure 3, where the data in
the actual message is the string palpable (8 bytes), and the topic string
is words (5 bytes). The type of the message is + for a multi-part message,
and the data of the multi-part message contains two messages after each
other, which are structured as the example in Figure 2. No selectors are
used, because the message is a broadcast message.

68

6. THE DISCOVERY PROTOCOL

25;+;;;︸ ︷︷ ︸
Header

Part 1︷ ︸︸ ︷
5;d;;;words

Part 2︷ ︸︸ ︷
8;d;;;palpable︸ ︷︷ ︸
Data

Figure 3: A publish/subscribe message packaged as a multi-part message.

6 The discovery protocol

Taking the requirements of Section 3 into account, we have designed a dis-
covery protocol. Table 1 lists the discovery messages, grouped after mes-
sages about devices, services, and connections, with an informal descrip-
tion for each message. An announcement protocol is used for device in-
formation, and a pull protocol for the other two. As discussed above, the
reason for this is that bandwidth-demanding broadcasts should be limited
to the relatively compact information about devices.
The discovery protocol uses the publish/subscribe communication for broad-
casts, and the discovery messages are in an XML format. In this section we
will give an overview of how the PalCom discovery protocol works, what
kind of messages are sent, and what kind of information they contain.

6.1 Discovering devices

There are several situations when a PalCom device needs to know what
other PalCom devices are available. Clear cases are when a device is booted,
and when it has been moved so the set of reachable devices has changed.
Many devices need to keep an up-to-date list of reachable devices and thus
need to know when other devices come and go.
The device that needs to know what other devices are available broadcasts
the message DeviceInfoRequest(DeviceInfo) with the interpretation “I am the
device described by this DeviceInfo—who are you?” The request, which is an
XML message, contains the information about the requesting device, so
other devices get that at the same time. Receiving this message, all other
devices broadcast a reply DeviceActive(DeviceInfo) with the interpretation “I
am the device described by this DeviceInfo, and I am active”. After this sequence,
all the devices have sent one message each, and received one message from
each of the other devices. They all thus have had the possibility to update
their list of available devices, add new devices, and remove devices that no
longer answer, after a short time. The requirements about limited broad-
casting, discussed in Section 3.7, are fulfilled.
DeviceInfos are structured according to line 1 of the abstract grammar3

3The syntax of abstract grammars in this chapter follows that of abstract grammars used
by the JastAdd tool [7], which we use in our implementation.

69

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

Message Broadcast/
unicast

Description

DeviceInfoRequest(Device-
Info)

B (request) “I am the device described
by this DeviceInfo—who are
you?”

DeviceActive(DeviceInfo) B (reply) “I am the device described by
this DeviceInfo, and I am ac-
tive”

DeviceInactive(DeviceInfo) B “I, the device with this De-
viceInfo, am about to shut
down.”

ServiceListRequest U (request) “Please send me lists of your
services”

ServiceList* U (reply) “Here are my services”
(may contain several lists)

ServiceDescription-
Request(serviceURN)

U (request) “Please send me a descrip-
tion of the service identified
by serviceURN”

ServiceDescription U (reply) “Here is my service proto-
col.”

ConnectionInfoRequest U (request) “Please send me information
about the connections you
have initiated”

ConnectionInfo* U (reply) “Here are my connections”
(may contain several In-
fos)

Table 1: Discovery protocol messages.

70

6. THE DISCOVERY PROTOCOL

1 DeviceInfo ::= <URN> <Name> <URL>;
2 ServiceList ::= <ParentURN> ServiceInfo*;
3 ServiceInfo ::= <Name> <Type> <Role> <URN> <URL>;
4 ConnectionInfo ::= <ProviderURN> <CustomerURN>;

Figure 4: Abstract grammar for information about devices, services, and
connections.

shown in Figure 4. They contain very basic information about a device. URN
is a globally unique identifier of the device, Name is a name of the device
that can be displayed to the user, and URL is an address that can be used
for sending requests to the device. Both the URN and the URL are needed,
because the URL may change when a device reboots, or perhaps when it
moves, and the URN must be stable, so the device can be referred to over a
long time. The XML messages for DeviceInfos follow this structure directly
(a DeviceInfo element with three attributes).
One crucial design decision is how often the discovery procedure is ini-
tiated. If it is done too seldom, a user will notice a delay between when
things should become available and when they are actually shown as avail-
able. If it is done too often, the resulting messages can overflow basically
any network. The design chosen here is to initiate the discovery proce-
dure on demand—that is when needed. The device most eager to know
about the others initiates the discovery procedure, and all the other de-
vices will be updated as well as a side effect, because they listen in. We call
this scheme announcement heartbeats.
The PalCom discovery protocol does not impose a specific strategy for how
the discovery mechanisms are used, but this is up to the implementers of
PalCom devices. The discovery procedure will typically be initiated by de-
vices running for example a PalCom browser, and thus providing a user in-
terface, which is showing the available devices. A possible strategy for that
situation is to send out requests relatively seldom, say if the available list is
older than 10 seconds. This will guarantee that the view presented is fairly
up to date. If there is another device sending out requests more frequently,
the less demanding device will never actually send out its requests. On top
of this mechanism, the browser could offer an update button, so the user
can refresh the view more frequently when needed. This strategy has been
used in our implementation.
A device that is about to be orderly shut down can inform other devices
that so is the case. It does so by broadcasting a message DeviceInactive(Device-
Info) with the meaning: “I, the device with this DeviceInfo, am about to shut
down.” Devices receiving this message should remove the sending device
from its list of available devices, and disconnect all connections it has with
services on that device. Devices can thus be removed from listings on other

71

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

devices: either explicitly, after receiving this DeviceInactive notification, or
indirectly when a device fails to respond to a DeviceInfoRequest.

6.2 Listing services

When a device has discovered another device through the device discovery
procedure above, it knows the address of the device, and the device name
can, for example, be shown in a browser application. The device can also
request information about the services on another device.
Services on a device can be arranged in a logical tree, as shown in Figure 5.
This is useful for grouping on devices that have many services. In order
to know what services are available on another device, a device sends a
single unicast message to it: a ServiceListRequest with the meaning “Please
send me lists of your services”. Receiving this message, the addressed device
will answer over unicast with (a number of) ServiceLists, which contain in-
formation about the addresses and names of the services. A ServiceList
is structured according to lines 2–3 of the abstract grammar in Figure 4.
ParentURN is the URN of the device or service which is the parent of
the services in the list. This can be used for building the tree of Figure 5
incrementally, as ServiceLists come in. Each ServiceInfo contains basic in-
formation about one service: name, content type (MIME type), role, URN,
and URL. The role can be provider or customer: a customer is a service that
uses another service (the provider), as explained above in the introduction.
URN and URL correspond to the similar fields in DeviceInfo. Note that the
services have a name and an address each. They can thus be addressed as
separate entities, although they of course reside on a device.
There are different kinds of situations, where services are offered. A “small
device” can reply with a fixed, pre-prepared representation of its services,
making this part of the protocol easy to support. Browsers, and other de-
vices that can activate assemblies, need to represent a dynamic list of ser-
vices, including the services offered by its active assemblies. In the same
way, providing execution of software services means that the services offered
by these must be included in the resulting service list. Software services are
instantiated from components written in a general-purpose programming
language, such as Java, but are not tied to the hardware of a particular
device. Software services can be included in an assembly, for performing
more complex calculations than what can be expressed directly in an as-
sembly script.
Before a device can start to use a service on another device, it must know
what protocol to use for communication with that particular service. These
service protocols are described in service descriptions. A device that wants
to know the details of a particular service unicasts a ServiceDescriptionRe-
quest(serviceURN) to the device of that service (it knows the URN of the
service from a ServiceList reply). This means “Please send me a description

72

6. THE DISCOVERY PROTOCOL

Figure 5: The logical tree of information about services on one device. DI
is the DeviceInfo. Under the DeviceInfo, there is a ServiceList, shown as a
box with ServiceInfos, SI , inside. Each ServiceInfo has another ServiceList
with subservices, or a ServiceDescription that describes the service (grey
box with a hook).

of the service identified by serviceURN”. The service replies to the requester
with a ServiceDescription with the meaning “Here is my service protocol.” Sec-
tion 7 further describes the structure of ServiceDescriptions.
Service listing is a two-step process, because ServiceDescriptions are envi-
sioned to be large, so it should only be necessary to retrieve those that you
are interested in. This is what we refer to as on-demand service discovery.
The protocol for obtaining ServiceDescriptions is currently a pull proto-
col. For obtaining up-to-date information about services, when services are
added to or removed from a device, customers must periodically send Ser-
viceListRequests and ServiceDescriptionRequests to it. This is a situation
we are not fully satisfied and we are considering alternative techniques
here.

6.3 Listing connections

It is possible to ask another device what connections it has initiated (thus
where it has a service that plays the role of a customer). A device does
so by sending the other device the message ConnectionInfoRequest with the
meaning: “Please send me information about the connections you have initiated”.
The receiving device will answer with a number of ConnectionInfos. Each
ConnectionInfo contains the URN of the provider and the customer in a
connection (line 4 of Figure 4). This is enough information to re-establish

73

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

the connections at the later stage, as needed by the RemoteConnect proto-
col, described in Section 8. For periodically updating its list of connections,
a device polls the other device repeatedly.

7 Service interaction

After having discovered a service, it is possible to request a ServiceDescrip-
tion for it. There can be several reasons for this. A user might want to
directly interact with the service and want his browser to render a user
interface as a remote control for it. A second case is that a user may be
putting together an assembly, and needs to know what messages the as-
sembly script can accept and send. A third case is that an assembly is
about to be activated, and it needs to be verified that the protocol expected
by the assembly is actually provided by the service. The content of a Ser-
viceDescription is such that these examples can be handled, provided that
the standard description format is used, as discussed in Section 3.1.
It is, however, also clear that there will be applications with demanding
needs, exploring the available technology to the limit. In such cases, one
might need to use handcrafted optimized service protocols, and it should
be possible to do that for PalCom services. It is at this point, however, not
decided on exactly how they will be specified in a ServiceDescription. This
is a trade-off between flexibility in tailoring a specialized protocol, and con-
formance with PalCom and the support that can be offered. Here, the fur-
ther development will be guided by the application prototypes in PalCom.
Requirements on the service descriptions are that they should contain the
information needed to connect to the service and make use of it. This in-
volves specifying the messages the service can send and accept, as well as
the involved data types.
The structure of a ServiceDescription is illustrated in Figure 6. There are
commands, with zero or more parameters, and commands can be grouped
hierarchically. It is possible to have groups within groups, at any num-
ber of levels. The ServiceDescription is transmitted as one XML element,
with groups, commands and parameters as sub-elements. The grammar
in Figure 7 shows the structure in a more formal way, and also shows
what fields the elements contain. All elements have an ID field for identi-
fying them. The notation with colon means that GroupInfo inherits from
ControlInfo. The ServiceDescription has a ProviderURN field for link-
ing it to its parent, just as for the ServiceList above (the parent URN is used
when building the tree of figure 5, where the ServiceDescriptions are the
small grey boxes with hooks). The Dir field for commands is the direc-
tion of the command. It can be either in for in-going commands, sent from
the customer to the provider, or out for out-going commands, sent in the
other direction. The Type field of ParamInfo holds the MIME type of the

74

8. REMOTE CONNECT

Figure 6: The structure of a ServiceDescription, SD. There are commands,
C, with zero or more parameters, P , and the commands can be grouped
hierarchically.

1 abstract ControlInfo: Info ::= <ID>;
2 GroupInfo: ControlInfo ::= ControlInfo*;
3 ServiceDescription: GroupInfo ::= <ProviderURN>;
4 CommandInfo: ControlInfo ::= <Dir> ParamInfo*;
5 ParamInfo: ControlInfo ::= <Type>;

Figure 7: Abstract grammar for service descriptions.

parameter’s data.
After having received a ServiceDescription about a provider through dis-
covery, a customer can start interacting with it. This is done by first con-
necting to the provider, using the connection mechanism described in Sec-
tion 5.1. Then, messages can be exchanged, according to the contents of the
ServiceDescription. The customer sends in-going commands to the provider,
and vice versa for out-going commands. The commands are sent as XML
documents called Command, with inner Param elements for the parame-
ters. These are structured like CommandInfo in Figure 7, but also contain
data values for the parameters. This data is sometimes binary, so it is not
transmitted inside XML elements. Instead, an XML element Command is
packaged together with its parameter values in a multi-part message.

8 Remote connect

The need for being able to remotely connect two services was motivated in
[22]. This is important for being able to construct ad-hoc applications in a
browser, and for assemblies. Table 2 shows what messages are sent in the
small protocol used for this. In order to initiate a connection between ser-

75

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

Message Broadcast/
unicast

Description

RemoteConnect(Connection-
Info)

U “Please establish this con-
nection”

RemoteDisconnect(Connection-
Info)

U “Please close this connec-
tion”

Table 2: RemoteConnect messages.

vices on two other devices, a device sends a RemoteConnect(ConnectionInfo)
message to the service that plays the role of customer. This means “Please
establish this connection”. The ConnectionInfo describes the desired connec-
tion, and the customer establishes it. This can be initiated by a direct user
action in a browser, or indirectly, when an assembly is activated. Remote-
Disconnect is the counterpart to RemoteConnect, with similar motivation.
A message RemoteDisconnect(ConnectionInfo) is sent to the service playing
the role of customer. In response to this, the customer closes the connection.

9 Evaluation

Our main way of evaluating the described protocols is by continuously
using them in developed prototypes and tools. This has been done in a
number of simulated devices and in a browser application [22], using the
Java implementation of the communication components described here.
In these examples, the implemented components and the protocols have
worked well, and we are confident that the protocols will be adequate
in our continued development of assemblies. The asynchronous mode of
communication in the discovery protocol is handled by building a tree
structure, like in Figure 5, incrementally as information comes in.
The implemented communication components are now also being used
in an Eclipse plugin [5] for PalCom browsing and assembly development.
Another project implements support for the PalCom protocols directly in
C, on an Axis network camera running Linux [2]. A part of this work is an
investigation of how the protocols can be implemented on a small device,
without a virtual machine.

9.1 The discovery protocol

It is difficult to evaluate the discovery protocol quantitatively, by compar-
ing it to existing protocols. The performance of any discovery protocol de-
pends very much on the environment, and on parameters that vary be-

76

9. EVALUATION

tween protocols. In this section, we will try to analyze and discuss how
it will behave with respect to different design goals, and in particular its
potential for scaling up to larger networks.
The approach taken in the discovery protocol is based on broadcast with-
out a central directory. Initially we presume a situation with a single net-
work with a limited number of devices. The devices available are those
that are visible on that network.

Protocol-inflicted delays It is a design goal that the responsiveness of Pal-
Com is sufficient for interactive work. From a user perspective this
can be illustrated with the situation when a user studies the available
devices in a PalCom browser. How long will it take before a change in
the number of available devices is reflected for the user in the worst
case?

There are five cases of how the situation can change, where X is one
of the devices:

1. Device X boots.

2. Device X is shut down uncleanly.

3. Device X is shut down cleanly.

4. Device X comes within reach.

5. Device X leaves.

In the discovery protocol, there will be direct notification to all other
devices in case 1 and 3. Here, the protocol will thus not inflict any
extra delay. In the other three cases the change will be noticed at the
next round of the discovery procedure. The time from the change
takes place until it is actually reported depends on the time until the
most eager device initiates a new discovery procedure. This time is
thus determined by the applications, and not by the discovery proto-
col itself. It can for example be set very short for a while by a device
that is in a critical state. This can be lifted all the way up to the end
user to control.

Protocol inflicted communication load Another design goal is that the pro-
tocol must be efficient from the point of view on putting load on the
communication channel. It is a PalCom design choice that there is no
central server.

When a new device becomes present (boots or comes within reach)
it needs to get information about all other available devices. In an
environment with N devices, this requires one initial request and N−
1 replies, which is what the protocol will use. Since these messages
are sent as broadcasts it means that at the same time all other devices
are brought up to date as well (including registering the new device).

77

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

For updating a situation with N devices we require N messages. If
single messages (unicast) had been used for answering the request
there would have been needed N ∗N messages.

There are several areas where more examination and experimentation are
needed. The following two areas are potential possibilities for the future
evolution of the model:

Large numbers of discoverable elements In large networks, the number
of discoverable services can potentially become overwhelming for
the user. One possible way to help the user in such a situation is to
offer some query and filtering mechanism. The specification of such
mechanisms are studied in PalCom (resource and contingency man-
agement).

Discovery in complex networks The discovery protocol described in this
paper has primarily been developed for the situation in a local net-
work, and for meeting high demands on responsiveness and with
less restrictions on broadcasted traffic. In a situation with a wide area
network, these design goals change. The demands on responsiveness
are relaxed, the available services are less dynamic and the broad-
casted traffic must be kept to a minimum. For this situation it might
be that the discovery model will need to be extended with some ser-
vice directory mechanism. One possibility here is to combine such a
mechanism with a gateway between a local area network and a wide
area network.

10 Related work

As mentioned in the introduction, there are many existing protocols for
discovery of, and interaction with, services and devices in various types of
networks. The protocols target different levels of communication, and also
different network technologies and complexities. Therefore, it is difficult to
compare them quantitatively. As an example, DEAPspace [14] focuses on
single-hop short-range wireless systems, where low power consumption
is crucial, while Jini [25] targets larger and more fixed networks, where
devices can be more powerful.
Zhu et al. [26] have made a taxonomy for discovery protocols within the
area of pervasive computing. Nine protocols are characterized along ten
different dimensions. There is not room here to present the complete cate-
gorization, but we can look at how the PalCom protocols relate:

1. Service and attribute naming. PalCom uses a template for how services
are named, but there are no predefined attributes that can be used for
further describing services.

78

10. RELATED WORK

2. Initial communication method. The PalCom protocols make use of broad-
cast initially (multicast on IP networks), not unicast which requires
prior knowledge of device addresses.

3. Discovery and registration. The discovery is announcement-based, not
query-based, with the variant that clients send out announcements,
that at the same time trigger announcements from services.

4. Service directory infrastructure. The PalCom discovery protocol is non-
directory-based.

5. Service information state. The PalCom model here is more like hard
state, where clients poll services for getting sufficiently up-to-date in-
formation, than like soft state, where services put a lifetime on an-
nouncements, which are considered valid until they time out, or are
renewed.

6. Discovery scope. It will be the network topology that delimits the scope
of discovery, not user roles or context. Investigating these mecha-
nisms has not been our focus, though.

7. Service selection. Service selection is manual, not automatic. It is the
user who chooses what service to use.

8. Service invocation. Here, PalCom is at the first or second level of the
three levels given by Zhu et al. It is at the first level, where only a
service location is provided through the discovery protocol, for the
case where a non-standard service protocol is used. In the most com-
mon PalCom case, where the standard message formats are used, it
is at the second level, defining also the communication mechanisms.
PalCom is never at the third level, where domain-specific application
operations are defined.

9. Service usage. Service usage is explicitly released, and leasing is not
used. We are investigating timeouts for connections, which can be
compared to a lease-based scheme.

10. Service status inquiry. Both service event notification and polling are ex-
plicitly supported, considering the peer-to-peer style of communica-
tion between a provider and a customer, after a service description
has been transferred, and a connection established.

Looking at the categorized protocols in the paper by Zhu et al., UPnP [23] is
the one which is most similar to the PalCom protocols, with similar choices
in five of the ten dimensions (4, 6, 7, 9, and 10). DEAPspace and Salu-
tation [18] have four dimensions the same. Most interesting is probably
where PalCom differs from many protocols:

79

PAPER III: DISCOVERY AND COMMUNICATION PROTOCOLS

• All the protocols except DEAPspace (and PalCom) support query-
based discovery.

• Only UPnP supports both notification and polling for service status
inquiry, like PalCom does.

• The announcement strategy in the PalCom protocols are different
from the standard announcement procedure described in the article.
In PalCom, the frequency of announcements is controlled by the most
eager device, as discussed above.

Having categorized our protocols according to a taxonomy like this, we
would also like to point out that the choice of dimensions is of course
important. A dimension that could be added to the taxonomy is the de-
scription format, where we have chosen a textual (XML) format for human
readability, not a binary format. It is also interesting to see whether the
protocols use mobile code or not. Jini does so, but UPnP and the PalCom
protocols do not. The reason for this, in the PalCom case, is that it puts
requirements on the run-time systems of devices.
Being most similar to UPnP, we will now compare in more detail with
that. Similarities are that UPnP is XML-based, that it does not make use
of mobile code, and that the primary focus in the discovery protocol is
on devices, not on services. There is also a correspondence in the split
between the UPnP discovery step, where only “a few essential specifics”
about devices and services are distributed, and the description step, where
detailed information is retrieved. This is similar to how the PalCom dis-
covery protocol separates between sparse information in DeviceInfos and
ServiceLists, and rich information in ServiceDescriptions (the on-demand
service discovery). Differences, compared to UPnP, are that UPnP is built on
IP networks, while PalCom supports also, e.g., Bluetooth, and that UPnP
makes use of SOAP over TCP. The latter is a protocol that works much
like Remote Method Invocation (RMI), in that the caller waits for a syn-
chronous response from the callee. As discussed in the introduction, that
is not suitable for ad-hoc networks. A third difference is that in UPnP, it is
the advertising device or service who determines the duration of advertise-
ments, while in PalCom it is the most eager device. Finally, at another level,
the UPnP consortium has taken an approach of domain-level standardiza-
tion. This is something we have avoided, as discussed in Section 3.1.

11 Conclusions and future work

This paper has reported on developed discovery and communication pro-
tocols for palpable computing. We are confident that the protocols will
work well as a foundation for our continued work on ad-hoc applications.

80

REFERENCES

The discovery protocol distributes information about devices, services, and
connections, and the distributed service descriptions can be used for com-
municating with a service according to the right service protocol. This ser-
vice communication can be done directly from another service, from a user
interface rendered in a browser, or from an assembly that coordinates sev-
eral services.
The protocols are based on asynchronous communication. A request is typ-
ically sent in one message, and as replies come back, they can be handled
by incrementally building a data structure of devices and services in the
vicinity. This approach has worked well in our implementations.
The development of the protocols has been guided by requirements for ad-
hoc combinations of devices and services, and by requirements from proto-
types developed within PalCom. One of the requirements is that of device
awareness: not only services, but also devices, should be visible through
discovery. Another is that of on-demand service discovery: for efficiency and
bandwidth reasons, it must be possible to acquire service information in-
crementally, and for only those services one is interested in. A new device
discovery procedure has been proposed, named announcement heartbeats,
which is based on broadcasted requests, where all devices on the network
listen in on the broadcasted replies. This way, all devices will be updated
as a side effect, when one device makes a request. It is the device most ea-
ger for fresh information about other devices that controls the frequency of
requests, and thus how fast device information spreads in the network.
A protocol stack has been implemented, which runs both on the Pal-VM
(PalCom’s new virtual machine), and on the JVM. The implementation
uses a thread library built on top of coroutines, with a scheduler based
on Unix select.
Future work on the protocols includes support for large numbers of dis-
coverable elements, and for discovery in complex networks.

Acknowledgments

This work has been conducted within the PalCom project, EU-IST 002057.
The protocols have been developed in collaboration with other people with-
in the project, among them Jacob Frølund and others at Aarhus University.
Of the implementations mentioned in the paper, the Pal-VM implementa-
tion and the Smalltalk base libraries have been developed mostly at Aarhus
University. We would also like to thank Torbjörn Ekman, the main archi-
tect and developer behind the PalCom Java compiler, for valuable help
with many issues related to running on top of the two VMs.

81

REFERENCES

References

[1] Apple. Bonjour. http://www.apple.com/macosx/features/
bonjour/.

[2] Axis Communications. Network cameras. http://www.axis.com/
products/video/camera/index.htm.

[3] Bluetooth.com. The Official Bluetooth R©Wireless Info Site. http:
//www.bluetooth.com/.

[4] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. GSD: A Novel Group-
based Service Discovery Protocol for MANETs. In 4th IEEE Conference
on Mobile and Wireless Communications Networks (MWCN 2002), 2002.

[5] Eclipse.org. Eclipse.org home. http://www.eclipse.org/.

[6] W. Keith Edwards. Core Jini. Prentice Hall, 1999.

[7] T. Ekman, G. Hedin, and E. Magnusson. JastAdd: an open-source
Java-based compiler compiler system. http://jastadd.cs.lth.
se.

[8] P. Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–
131, June 2003.

[9] Internet Engineering Task Force. Service Location Protocol, Version 2,
1999. http://www.ietf.org/rfc/rfc2608.txt.

[10] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. A
Note on Distributed Computing. Technical Report TR-94-29, Sun Mi-
crosystems, November 1994.

[11] M.J. Kim, M. Kumar, and B.A. Shirazi. Service discovery using vol-
unteer nodes in heterogeneous pervasive computing environments.
Pervasive and Mobile Computing, 2(3):313–343, 2006.

[12] Margit Kristensen, Morten Kyng, and Esben Toftdahl Nielsen. IT sup-
port for healthcare professionals acting in major incidents. In Pro-
ceedings of SHI2005, 3rd Scandinavian conference on Health Informatics,
Aalborg University, August 2005.

[13] Boris Magnusson. Using the simioprocess library on Unix Systems. Lund
Software House AB, August 1997.

[14] M. Nidd. Service Discovery in DEAPspace. IEEE Personal Comm.,
pages 39–45, August 2001.

82

http://www.apple.com/macosx/features/bonjour/
http://www.apple.com/macosx/features/bonjour/
http://www.axis.com/products/video/camera/index.htm
http://www.axis.com/products/video/camera/index.htm
http://www.bluetooth.com/
http://www.bluetooth.com/
http://www.eclipse.org/
http://jastadd.cs.lth.se
http://jastadd.cs.lth.se
http://www.ietf.org/rfc/rfc2608.txt

REFERENCES

[15] Ulrik Pagh Schultz, Erik Corry, and Kasper V. Lund. Virtual Ma-
chines for Ambient Computing: A Palpable Computing Perspective.
In ECOOP 2005 Object Technology for Ambient Intelligence Workshop,
Glasgow, U.K., 2005.

[16] PalCom. Palpable Computing: A new perspective on Ambient Com-
puting. http://www.ist-palcom.org/palcom-info.pdf.

[17] Golden G. Richard III. Service and Device Discovery: Protocols and Pro-
gramming. McGraw-Hill Professional, 2002.

[18] Salutation Consortium. Salutation Architecture Specification, 1999.

[19] Titos Saridakis. A System of Patterns for Fault Tolerance. In Proceeding
of EuroPLoP 2002, Seventh European Conference on Pattern Languages of
Programs, Irsee, Germany, July 2002.

[20] Sun. Java Remote Method Invocation Specification, 2003.

[21] David Svensson, Görel Hedin, and Boris Magnusson. Pervasive ap-
plications through scripted assemblies of services. In Proceedings of
SEPS ’06, 1st International Workshop on Software Engineering of Perva-
sive Services, June 2006. To appear.

[22] David Svensson, Boris Magnusson, and Görel Hedin. Composing
ad-hoc applications on ad-hoc networks using MUI. In Proceedings
of Net.ObjectDays 2005, 6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a
Networked World, pages 153–164, Erfurt, Germany, September 2005.

[23] UPnPTM Forum. UPnPTM Device Architecture 1.0. Technical report,
December 2003. Version 1.0.1.

[24] Aino Vonge Corry, Tony Gjerlufsen, and Jesper Wolff Olsen. The
Stone: Digital support for (un)common issues during pregnancy. In
Proceedings of SHI2005, 3rd Scandinavian conference on Health Informat-
ics, Aalborg University, August 2005.

[25] Jim Waldo. The Jini Architecture for Network-Centric Computing.
Communications of the ACM, pages 76–82, July 1999.

[26] Feng Zhu and Matt W. Mutka. Service discovery in pervasive com-
puting environments. IEEE Pervasive Computing, 4(4):81–90, October–
December 2005.

83

http://www.ist-palcom.org/palcom-info.pdf

Paper IV

Pervasive applications through scripted assemblies
of services

David Svensson, Görel Hedin, and Boris Magnusson
Dept. of Computer Science, Lund University, Sweden

{david|gorel|boris}@cs.lth.se

ABSTRACT

This paper proposes a technique for letting end users build
pervasive applications by combining services on networked de-
vices. The approach avoids relying on standardized service in-
terfaces which are deemed too limiting, and instead makes use
of migratable user interfaces and scripted combinations of ser-
vices.

1. INTRODUCTION

1 Introduction

In a world of pervasive computing, people will encounter a wealth of de-
vices that offer software services in (typically wireless) networks. These
services will often be tied to the particular devices, enabling control of and
interaction with the devices in powerful ways. We argue that in this setting,
interoperability is bound to become a major challenge.
A typical need that can be foreseen is the possibility to combine services,
utilizing the combined functionality of several devices. Support for this can
facilitate repeated use of a set of connected devices, and also provide inher-
ently new functionality, not given by the individual devices themselves.
However, the device vendors cannot be expected to foresee all possible
combinations of services that can be demanded by future users; combi-
nations possibly including future services and devices. This makes the
usual approach, where one service interacts directly with another service
through a standardized service-specific interface, too limiting. Instead, we
propose that the combination of services should be separated from the ser-
vices themselves, and that this combination is scripted, rather than pro-
grammed, to make it easy to adjust by end users. This will allow individ-
ual services to be developed independently of other services, but still be
integrated into combined services.
In this paper, we describe a mechanism called scripted assemblies, that sup-
ports such combination of independent services. We have built an experi-
mental system based on this approach, and tried it out on example scenar-
ios. The ideas build on the MUI system [7], that supports remote control
through migratable user interfaces. The work has been carried out within
the EC-funded integrated project PalCom [5].
The rest of this paper is organized as follows. In Section 2, we present our
basic approach. Sections 3 to 5 go into more detail about non-scripted and
scripted assemblies, dealing with issues in the assembly description lan-
guage. Section 6 relates to other work in this area, and Section 7 lists some
things that remain to be investigated and developed. Finally, Section 8 con-
cludes the paper.

2 Basic approach

Figure 1 illustrates our approach to dealing with interoperability. There are
two services, A and B, located on two different devices, DA and DB . The
user wants to use and combine these two services. To accomplish this, the
user has a third browser device that supports device and service discovery.
Typically, the browser device is a handheld like a PDA or a mobile phone,
but it could also be a general-purpose computer, e.g., a laptop. Each of

87

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

A
DA

B
DB

A

B

Browser device

uiDisplay

(a) The user interacts with two services, A and
B, through user interfaces that are rendered
on his browser device. The user interfaces are
generated according to service descriptions
(shown as small boxes with “hooks”).

A
DA

B
DB

A

B

Browser device

Assembly

(b) An assembly on the browser device co-
ordinates A and B, automating the desired
combined behavior.

Figure 1: Our approach to interoperability between services.

the services A and B has a service description that can be migrated to the
browser device, and rendered as a user interface there, in order to remotely
control the service.
In Figure 1(a), the user interacts with A and B through these migrated
user interfaces that are rendered on the browser device. This remote control
mechanism is provided by a service uiDisplay that runs on the browser de-
vice. The uiDisplay service receives service descriptions from remote ser-
vices, creates corresponding user interfaces that are shown on the screen
of the browser device, and connects to the services over the network.1 In
the figure, the service descriptions are the gray boxes with a small “hook”.
After this setup process, there is a two-way, peer-to-peer communication
between uiDisplay and each of the remote services A and B. When the
user performs an action in one user interface, a command is sent over
the connection to the remote service, which can react appropriately. When
something happens at the remote service, typically as a result of physical
interaction with the device on which the remote service lives, a command
is sent in the other direction, typically updating status information in the
user interface on the browser device.
The interaction through user interfaces solves parts of the problems with
standardization of service interfaces. In this case, the human is in the loop,
and can make intelligent interpretations of changes in the service descrip-
tions (which show up in the user interfaces). When a new feature is added
to a device, perhaps through an update of its firmware, a change in the
service can be directly spotted and utilized. There is nothing in uiDisplay
itself that is tied to the specific service.

1The migration of user interfaces, and adaptation to different client platforms, is a research
area in itself. See, e.g., [6].

88

3. ASSEMBLY REPRESENTATIONS

The other part of the figure, 1(b), shows how interaction with the services
can be automated, realized through an assembly. The assembly is a service
which performs much the same function as uiDisplay, but instead of ren-
dering service descriptions as user interfaces, it coordinates the services ac-
cording to an assembly descriptor (shown as a scroll). The assembly descrip-
tor contains a specification of a combination of services, residing on differ-
ent devices. Simple assembly descriptors just specify a number of connec-
tions between the services, while more advanced assembly descriptors also
contain a script, which coordinates the interaction in a more fine-grained
way. The assembly shown in Figure 1(b) is of the latter type. It specifies
how different events received from A lead to one or more commands sent
to B.
The key point in our approach is that interoperation is separated from services.
This is what makes it possible to combine groups of services that were not
created together, without restraining all of them to use standard service in-
terfaces that were already established when the oldest service was created.
In the case of user interface rendering, the user controls the interopera-
tion directly, something which is good for trying things out in order to see
how they work. This can be impractical, though, for more complex or long-
lasting tasks. For these, the assembly works better. The goal is that assem-
blies should be possible to create and modify by end users. For this reason,
we propose that assemblies should be created using a scripting language,
rather than using a general-purpose programming language that would
require programming skills. In some cases, the interoperation of two ser-
vices might, however, require programming. For example, in order to con-
vert between different kinds of real-time data streaming formats. To handle
this, we propose that such problems are delegated to separate software ser-
vices. Such software services need to be programmed, but can be used and
combined in an assembly by an end user.

3 Assembly representations

Our model of an assembly consists of the following parts:

1. A set of devices.

2. A set of services (on those devices).

3. A set of connections between those services.

4. A set of offered synthesized services, generated by the assembly.

5. Logic and scripts defining and constraining how the assembly should
be deployed and executed.

89

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

Furthermore, an assembly can be fully bound, forming a composition of
particular identified services on particular identified devices, or it can be
in various ways partially unbound, e.g., to act as a template. In this paper,
we will focus on fully bound assemblies.
It is useful to discuss the assembly from several different perspectives: the
end user, the expert user, the tools manipulating the assembly, etc. In our
system, we use the following important representations of the assembly:

1. An XML representation that is used for storing the assembly in a file
system, and for moving or copying it between different devices.

2. A concrete syntax that is used in documents like this to show the
same details as in the XML representation, but in a syntax more read-
able by humans. In principle, this concrete syntax could also be used
by editing tools on laptops for creating or editing assemblies by ex-
pert users.

3. A representation as an attributed abstract syntax tree (AST) that is
used internally by tools accessing and manipulating the assembly.
We use the JastAdd compiler construction system for supporting AST
programming [1], allowing the internal tools to add computations
on the AST as modular aspects. The XML and concrete syntax can
trivially be unparsed from the AST representation, programmed as
simple JastAdd aspects.

4. Tool-specific editing representations for displaying parts of the as-
sembly information to end users, often in a visual way. E.g., a PalCom
browser device can display the connections between services as lines
between boxes, and provide graphical commands for composing or
changing an assembly.

In this paper, we will use the concrete syntax when providing examples.
In Section 4 we will discuss simple assemblies with devices, services, and
connections, but without scripts. In Section 5 we will discuss how scripts
can be added to capture the execution logic of an assembly.

4 Simple assemblies

4.1 A remote slide show assembly

Some simple assemblies consist only of a set of connections between ser-
vices on particular devices, and have no logic of their own. As an example,
consider an assembly RemoteSlideShow which composes a video projec-
tor, a laptop, and a PDA. Slides are sent from the laptop to the video pro-

90

4. SIMPLE ASSEMBLIES

assembly RemoteSlideShow {
this = global-service-name;
devices {

projector = global-device-name;
laptop = global-device-name;
pda = global-device-name;

}
services {

control on laptop = global-service-name;
images on laptop = global-service-name;
uiDisplay on pda = global-service-name;
imageViewer on projector = global-service-name;

}
connections {

control on laptop -> uiDisplay on pda;
images on laptop -> imageViewer on projector;

}
}

Figure 2: A simple assembly.

jector, and the user controls the actions, next slide, previous slide, etc., from
the PDA. The assembly itself resides on the PDA.
To illustrate the use of this assembly, consider the following scenario:

The user is a university professor who has weekly lectures in
room E:1406 at the university. On the first lecture, she creates
the assembly RemoteSlideShow by connecting her laptop, her
PDA, and the video projector in room E:1406. This is done by
a few visual commands on the PDA. On the PDA, she then
uses commands to select the desired presentation, and to step
through the slides. At the next lecture, she simply activates the
existing assembly, which will then discover and connect the de-
vices according to the assembly description. She can then im-
mediately select the appropriate presentation and step through
the slides.

4.2 Local device and service names

The RemoteSlideShow assembly is shown in Figure 2 in concrete syntax.
The assembly introduces a number of local device names: projector, lap-
top, pda; and a number of local service names: control, images, uiDisplay,
and imageViewer. These local names are used within the assembly, e.g., to
define the connections, and inside assembly scripts (discussed later).
Typically, the local names are taken from the logical names used in the
device and service descriptions of actual devices. But refactoring to other
names inside the assembly (for greater readability), would not affect the

91

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

behavior of the assembly. These names are not used for binding the assem-
bly to real devices and services. For such binding, the global names are
used (see below).
In the proposed language, the service names are simple rather than struc-
tured. However, it could easily be generalized to support structured names.
This would be useful since the services on a device are typically structured
in a hierarchy, and it would be useful to keep that hierarchy in the local
names of the assembly.

4.3 Global names of devices and services

Devices and services are identified by globally unique names. The globally
unique names have an internal structure including a globally unique iden-
tifier, versioning information, and a logical name (which does not need to
be unique). Typically, these names are quite long, and not intended to be
very readable to a human. In the example in Figure 2, we simply display
them as “global-device-name” and “global-service-name”. These unique
names are used for making it possible to reconnect an assembly to the same
devices and services as used when the assembly was constructed. The as-
sembly also has such a unique name itself (the value of “this”), with the
same structure as a service name. The versioning information in the glob-
ally unique names is used by tools to make safe upgrades of an assembly
when a service or a device has been upgraded. Note, however, that when
an assembly is upgraded (rebound device and/or service), this has to be
somehow visible to the user, and testing might be needed (unless it can be
deduced that testing has already been carried out).
Two different devices, e.g., two projectors, can have (different instances of)
the same service on them. To uniquely identify a service instance, i.e., a
service on a particular device, the global names of the hosting device and
the service are combined.

4.4 Connections

The connections part in the assembly specifies how the services in the as-
sembly are connected to each other, using clauses on the following form:

providing-service on device-1 ->

customer-service on device-2

Connections can be either data connections (uni-directional), sending mes-
sages from provider to customer, or control connections (bi-directional),
where messages can go in both directions. For example, in Figure 2, the
connection images on laptop -> imageViewer on projector is

92

4. SIMPLE ASSEMBLIES

a data connection where JPEG images are sent from the laptop to the pro-
jector. The connection control on laptop -> uiDisplay on pda is
a control connection. As an example of messages over this connection, the
PDA can send a message “next” to the laptop, to go to the next slide. The
laptop will then send a status message back to the PDA, showing the name
of the currently shown slide.
MIME types are used for specifying the types of connections. For exam-
ple, the type of the image-imageViewer connection is image/jpeg,
whereas the type of the control-uiDisplay connection is applica-
tion/x-palcom-control+xml. These types are not explicitly visible in
the assembly, but belong to service descriptions that are available for each
device through the discovery protocol. The service description also classi-
fies a service as being either provider or customer.

4.5 Static-semantic constraints on the assembly

There are certain semantic constraints on how assemblies may be con-
structed. The local names should be declared and used correctly. E.g., two
devices named the same way is forbidden, using an undeclared name is
forbidden, using a device name where a service name is expected is forbid-
den, etc. This boils down to normal name and typechecking rules similar
to those in simple programming languages.

4.6 Dynamic constraints on the assembly

There are additional semantic constraints that can be checked only dynam-
ically, i.e., when trying to activate the assembly:

• Device bound. When activating an assembly, the device declarations
will be bound to descriptions of actually discovered devices. Natu-
rally, it may be the case that it is not possible to discover a given
device. It might be broken, turned off, not within range, etc. The op-
eration of the assembly may then be limited for the moment.

• Service bound. Even if a device is bound, it is not guaranteed that all its
services are available. Some services may be down, depending on the
state of the device. It might also be the case that when an assembly
is changed so that a device declaration is rebound to another device,
the new device does not have all the declared services, and this is
then flagged as errors or warnings. The tools can then guide the user
in trying to rebind to another service on the same device, or possibly
to a service on another device.

• Connection well formed. If the services of a connection are bound, it is
checked that the connection is well formed. I.e., the service declared

93

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

Camera

GPS

Backend

Handheld

Figure 3: The GeoTagger scenario

as the providing service should indeed be specified as a providing
service in its service description, and similarly for the customer ser-
vice. Furthermore, the MIME types of the provider and the customer
should match.

5 Scripted assemblies

In the RemoteSlideShow example, the assembly simply connects existing
services directly to each other. A more advanced assembly can itself re-
ceive and send messages and perform actions internally. These actions are
written in a simple script language that can be used by an end-user. In the
present experimental system, the script is edited as text, but in future ver-
sions, we plan to provide visual tools for editing the scripts. If the internal
logic is more complex than the script language can handle, parts of the
logic can be delegated to new software services, programmed in a general-
purpose language.
Below, we extend the assembly representation to include a scripting possi-
bility. The basic idea is that the assembly can be connected to other services
to receive and send messages. The body of the script is an event handler
that receives messages from other services and acts upon them. The possi-
ble actions (supported so far) are to send messages to other services and to
store values in variables local to the script.

5.1 GeoTagger as a scripted assembly

GeoTagger is one of the end-user scenarios studied in PalCom, see Figure 3.
It is an application intended for use by landscape architects. The idea is
that photos taken with a camera should be automatically tagged with the

94

5. SCRIPTED ASSEMBLIES

current GPS coordinates and stored in a backend database on a laptop. This
application is realized as a scripted assembly running on a handheld PDA.
The assembly combines and coordinates services running on the camera,
the GPS device, and the laptop.
Figure 4 shows the scripted assembly. In the event handler, clauses are writ-
ten as

when message from service on device {

actions

}

where the actions can access data in the message, send new messages to
other services, and perform simple computations (assignments of local vari-
ables).
The service coordStuffer on the PDA device is a software service that can
receive an image in JPEG format, and a GPS coordinate, and which sends
out an image tagged with the GPS coordinate. This is a typical example
of a computation that is too complex to express directly in the scripting
language, and that is instead implemented as a software service.
As shown in the example, the assembly interacts with other services by
receiving and sending messages. Thus, the assembly implicitly plays the
role of a service that connects to the other services. The “this” expression
used in the assembly script refers to the assembly itself viewed as a ser-
vice. Received messages that are not listed in the event handler are simply
ignored.

5.2 Additional constraints on the assembly

The introduction of the script in the assembly makes it possible and nec-
essary to check additional constraints, statically and dynamically. In the
static part, the name and type analysis is extended to the local variables.
In the dynamic part, it is checked that the bound services actually have the
incoming and outgoing messages used in the script, with the appropriate
message structure.

5.3 Loopback mechanism

It might be the case that the assembly is located on the same device as
some of the other services. A loopback mechanism is used which allows
the assembly to communicate in the same way with these services as with
services on other devices, without causing any messages to go out unnec-
essarily on the network.

95

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

assembly GeoTagger {
this = global-service-name;
devices {

gps = global-device-name;
camera = global-device-name;
backend = global-device-name;
pda = global-device-name;

}
services {

gps on gps = global-service-name;
photo on camera = global-service-name;
storage on camera = global-service-name;
display on camera = global-service-name;
coordStuffer on pda = global-service-name;
photo_db on backend = global-service-name;

}
connections {

gps on gps -> this;
photo on camera -> this;
storage on camera -> this;
display on camera -> this;
coordStuffer on pda -> this;
photo_db on backend -> this;

}
script {

variables {
text/plain latestReadableCoordinate;
text/nmea-0183 latestStandardCoordinate;

}
eventhandler {

when position from gps on gps {
latestReadableCoordinate = thisevent.WGS84;
latestStandardCoordinate = thisevent.NMEA-0183;

}
when photo_taken from photo on camera {

send show(latestReadableCoordinate) to display on camera;
send sendme_photo() to storage on camera;

}
when photo from storage on camera {

send sendme_stuffed_image(
latestStandardCoordinate, thisevent.Photo)

to coordStuffer on pda;
}

when stuffed_image from coordStuffer on pda {
send store_photo(thisevent.Image) to photo on backend;
send store_photo() to storage on camera;

}
}

}
}

Figure 4: A scripted assembly.

96

6. RELATED WORK

The loopback mechanism is used also if the assembly connects two services
on the same device: the network is transparent, and messages between ser-
vices will only go out on the network if the services are on different devices.
Note that it is often the case that services on the same device are tightly
bound and communicate with each other directly (not via an assembly).
For example, when taking photos with a digital camera, the photos will be
stored locally on the camera. This process is a bottleneck and needs to be
carried out as efficiently as possible, to allow pictures to be taken at high
speed.
Assemblies for connecting services on the same device are useful when the
services are more unrelated, i.e., when they could in principle be located
on different devices, but just happen to be located on the same device.

5.4 Moving the assembly?

For a scripted assembly, its location can dramatically affect the efficiency.
For the GeoTagger, there will be large messages sent that include JPEG
images. Suppose the assembly is located on the PDA (a natural choice since
an assembly interpreter will need some kind of general-purpose platform
to run on). In this case, JPEG images will be sent from the camera to the
PDA, coordinates added to the image on the PDA, and the “stuffed” image
is sent to both the camera and the laptop backend.
Clearly, if the coordinate stuffer and the assembly were moved to the cam-
era or to the laptop, network traffic would be substantially reduced. It
might be possible to move them to the camera if it is sufficiently advanced
to serve as a general-purpose software service platform. And moving them
to the laptop should be possible, but then the assembly would rely on the
laptop which might be heavy for the user to always carry with him.
Note that if the assembly is moved to another device, its script does not
need to change. There is nothing in the assembly script that makes it de-
pend on its own platform.
If the assembly and coordinate stuffer are moved to the camera or laptop, it
might still be the case that the user would like to control the assembly from
the PDA, e.g., to activate it. Future versions of our system will support this
by using an uiDisplay service for remote control of assemblies.

6 Related work

The scripted assemblies we propose are related to W3C’s Web Services
Choreography Description Language [2]. WS-CDL choreographies are ex-
pressed in an XML language, and govern peer-to-peer interoperation be-
tween a number of services. Like our assemblies, the choreographies are

97

PAPER IV: PERVASIVE APPLICATIONS THROUGH SCRIPTED ASSEMBLIES

external to all the participating services. One thing that differs is the con-
text. WS-CDL is intended for E-business, taking place between Web ser-
vices on the Internet. There is no notion of physical devices, which are
important in our approach, and in pervasive computing in general. The
purpose of WS-CDL is also not on keeping interoperability between ser-
vices when facing service interface changes. Instead, the choreography is
more like a contract that is decided on before a business relationship is
started, making it possible for all parties to keep the internals of their ser-
vices private.
Another closely related project is Obje at PARC [4]. Obje targets the same
basic problem, and seeks to enable interoperability without relying on do-
main-specific standards. A difference is that Obje builds on mobile code.
Using mobile code, in the form of a proxy object that is distributed to clients
and executed there, services are able to “teach” clients how to communi-
cate. This way, it is possible to let users combine their clients with new ser-
vices, some of whose features were unknown at the time the clients were
written. There is also a possibility to let the proxy object generate a user
interface, giving a situation similar to that of Figure 1(a), where the proxy
object corresponds to our service description. Another difference, though,
is the way of programmatically interfacing the proxy objects. Obje proxy
objects are (Java) code, which requires the capability of running Java on
clients, and their interfaces are so called meta interfaces, offering only very
generic operations, such as reading a chunk of data. In contrast, our ser-
vice descriptions are distributed as XML, which can be handled on almost
any device, and they contain domain-specific operations: the operations
are invoked by the user through a user interface, or by the assembly script.
There is no concept in Obje corresponding to the assembly. Instead, the
user directly connects components written in Java.
Cooltown at HP Labs [3] is an early pervasive computing project, whose
target is to bring the Web to things in the physical world. By embedding
wirelessly accessible web servers into things, it is possible for a user to
interact with them in a Web browser on his handheld device. It is also pos-
sible to connect one device to another, by sending a URL to one of the de-
vices, identifying a resource on the other. There is nothing domain-specific
in the Web protocols involved, so this can be seen as a way of achieving
basic parts of the interoperability we look for. But, apart from the client-
server model being inherent in the interaction between Web clients and
servers, one big difference is that our assemblies can define other aspects
of a service interoperation than just pure connections.
Jini and UPnP are important technologies for network services. Jini [11] is
tied to the Java programming language, and clients interact with services
through proxy objects, distributed to the clients at discovery time. Our ob-
jection, also stated by Obje, is that this approach requires the interfaces of
the proxy objects to be standardized at the domain level. To partly over-

98

7. FUTURE WORK

come this, there is a framework for user interface services built on top of
Jini [10]. But, still, the tight connection to the Java language makes it incon-
venient to build assemblies on top of Jini. UPnP [9] is not tied to Java, or to
another programming language: devices and services are described using
XML. But the focus in UPnP is on standardization of device types at the
domain level. There are standards for devices such as printers, scanners,
lighting controls, and digital security cameras, among others [8]. There-
fore, UPnP is not directly usable as a platform for assemblies, either.

7 Future work

In our continued work on scripted assemblies, we will look into a num-
ber of issues including synthesized services, binding of services, message
types, and service versions. Synthesized services are services that are of-
fered by the assembly itself, allowing control of the combination of ser-
vices, rather than of each service individually. A simple case of a synthe-
sized service could be to collect the most important parts of the participat-
ing services’ interfaces into one interface, for convenience. Another case
could be to have an interface for changing the activity state of the whole
assembly.
So far, we have considered only fully bound assemblies where each service
declared in the assembly is bound to a specific service on a specific device.
We will look into more elaborate support for service bindings. One exam-
ple is to investigate cases where an assembly can be functional without all
services being present. This may give degraded, but acceptable, functional-
ity of the assembly. In other cases, it may be enough with one out of a set of
services for full functionality. There are also possibilities for experimenting
with partially bound assemblies, where the identity of a device or service
is not filled in, but can be specified later, perhaps when the assembly has
been moved into a new context. In relation to this, versioning of assembly
descriptors becomes important.
Currently, we demand exact matching of MIME types for connecting ser-
vices. However, we will investigate the use of subtyping to allow services
to be connected where the types match only partially.

8 Conclusions

This paper has presented scripted assemblies as a technique for letting end
users combine services, and for letting them control the cooperation be-
tween services in a script. The assembly concept allows the interoperation
between services to be separated from the services themselves. As a conse-
quence, it is possible to adjust aspects of the interoperation at a later time,

99

REFERENCES

without re-programming the services, and to incorporate services with dif-
ferent, or changed, interfaces, by manipulating the assembly only. We see
this as a way of easing interoperability in pervasive computing systems.
In the paper, the current language of assembly descriptors has been pre-
sented, exemplified by scenarios from the PalCom project, and possibilities
for future development and experimentation have been discussed.

References

[1] T. Ekman, G. Hedin, and E. Magnusson. JastAdd: an open-source
Java-based compiler compiler system. http://jastadd.cs.lth.
se.

[2] Nickolas Kavantzas et al. Web Services Choreography Description Lan-
guage Version 1.0. W3C, November 2005. http://www.w3.org/TR/
2005/CR-ws-cdl-10-20051109/.

[3] T. Kindberg et al. People, Places, Things: Web Presence for the Real
World. In Proc. 3rd IEEE Workshop Mobile Computing Systems and Ap-
plications (WMCSA 00), pages 19–28, 2000.

[4] Obje Interoperability Framework, 2003. http://www.parc.com/
research/projects/obje/Obje_Whitepaper.pdf.

[5] PalCom. Palpable Computing: A new perspective on Ambient Com-
puting. http://www.ist-palcom.org/palcom-info.pdf.

[6] Peter Rigole, Chris Vandervelpen, Kris Luyten, Yves Vandewoude,
Karin Coninx, and Yolande Berbers. A Component-Based Infrastruc-
ture for Pervasive User Interaction. In International Workshop on Soft-
ware Techniques for Embedded and Pervasive Systems STEPS’2005, Mu-
nich, Germany, May 2005.

[7] David Svensson, Boris Magnusson, and Görel Hedin. Composing
ad-hoc applications on ad-hoc networks using MUI. In Proceedings
of Net.ObjectDays 2005, 6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a
Networked World, pages 153–164, Erfurt, Germany, September 2005.

[8] UPnPTM Forum. UPnPTM Standards. http://www.upnp.org/
standardizeddcps/.

[9] UPnPTM Forum. UPnPTM Device Architecture 1.0. Technical report,
December 2003. Version 1.0.1.

[10] Bill Venners. The ServiceUI API Specification, Version 1.1a, 2005. http:
//www.artima.com/jini/serviceui/Spec.html.

100

http://jastadd.cs.lth.se
http://jastadd.cs.lth.se
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.ist-palcom.org/palcom-info.pdf
http://www.upnp.org/standardizeddcps/
http://www.upnp.org/standardizeddcps/
http://www.artima.com/jini/serviceui/Spec.html
http://www.artima.com/jini/serviceui/Spec.html

REFERENCES

[11] Jim Waldo. The Jini Architecture for Network-Centric Computing.
Communications of the ACM, pages 76–82, July 1999.

101

	Introduction
	Background
	Traditional approaches to interoperability
	Thesis objectives
	Migrating user interfaces and palpable computing
	Papers
	Contributions
	Evaluation
	Related work
	Conclusions and future work
	References

	Paper I: An Architecture for Migrating User Interfaces
	Introduction
	A Scenario
	Previous Work
	Services and Connections
	Discovery
	MUITP
	RemoteConnect
	User Interfaces
	Implementation and Framework
	Conclusions
	Future Work
	References
	mui-info.dtd
	mui-discovery.dtd
	mui-remote-connect.dtd
	mui-ui.dtd

	Paper II: Composing ad-hoc applications on ad-hoc networks using MUI
	Introduction
	Previous Work
	Scenario: Distributed slideshow
	The MUI framework
	Evaluation and Future work
	Conclusions
	References

	Paper III: Discovery and communication protocols for palpable computing
	Introduction
	Ad-hoc applications
	Requirements
	Implementation
	Basic communication
	The discovery protocol
	Service interaction
	Remote connect
	Evaluation
	Related work
	Conclusions and future work
	References

	Paper IV: Pervasive applications through scripted assemblies of services
	Introduction
	Basic approach
	Assembly representations
	Simple assemblies
	Scripted assemblies
	Related work
	Future work
	Conclusions
	References

