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Summary

Cardiac pumping physiology is important for understanding the pathophysiology
of patients with cardiac disease. MRI gives the opportunity to measure volumes
and flow non-invasively with high accuracy and precision. This thesis examines
some aspects on cardiac pumping physiology. Study I showed that the total heart
volume in humans decreases during systole by�8 % (range 5-11 %), and anatom-
ically identified the major outer volume variations to occur around the AV-plane
with a left-side predominance. Also, a new method for measuring total heart vol-
ume variation (THVV) by MRI flow quantification was developed and validated
against cine measurements. Study II showed that the THVV is similar in patients
before and after cardiac bypass surgery compared to healthy subjects. Further-
more, study II also showed that the movement of the center of volume of the
heart during the cardiac cycle, in both healthy individuals and patients, describes
a well-defined loop in three-dimensional space with �2 mm between the extreme
points. This loop is called the center of volume variation, COVV. After coronary-
bypass surgery, however, intra-individual COVV approximately doubled, possibly
related to the paradoxical septal movement following cardiac surgery. Study III
showed that longitudinal AV-plane displacement (AVPD) is the primary contrib-
utor to left ventricular (LV) pumping, accounting for�60 % of the stroke volume
(SV) in healthy subjects and that this does not differ in athletes or in patients with
dilated ventricles. Study IV showed that radial function of the ventricles explains
over 80 % of the THVV during the cardiac cycle. The longitudinal component
of right ventricular (RV) pumping is �80 % and the difference compared to the
LV is explained by the larger AVPD of the RV. Study V identified and quantified
a previously unknown increase in total heart volume before the end of systolic
ejection. This total heart volume increase or late ejection filling volume (LEFV)
into the atria was �11 ml or �18 % of THVV, with no difference between the
left and right side of the heart. This volume might be important for understand-
ing the coupling of systolic to diastolic function. Furthermore, the decrease in
total heart volume caused by flow from the heart generated by atrial contraction
(the atrial wave reversal volume, AWRV) was quantified to be �7 ml or �11 %
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of THVV. Thus, the heart is largest before atrial contraction prior to the end of
diastole and smallest before the end of systole.

In summary, this thesis has explained the total heart volume variations through-
out the cardiac cycle and quantified the contribution of the AV-plane to ventric-
ular pumping.
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Populärvetenskaplig
sammanfattning

Förståelse av hjärtats pumpförmåga är av yttersta vikt för att kunna behandla
patienter med hjärtsjukdom, framförallt hjärtsvikt. Studier av hjärtat har av
naturliga skäl framförallt gjorts med öppen bröstkorg eller med hjärtat uttaget
ur kroppen, och detta påverkar hjärtats pumpning. Magnetresonans-kameran gör
det möjligt att avbilda hjärtat i alla delar av hjärtcykeln samt att mäta flödet i
kärlen till och från hjärtat. Denna avhandling har studerat hur och varför hjär-
tat varierar i volym under hjärtcykeln samt kvantifierat de olika sätt som hjärtats
kammare arbetar. Delarbete I visade att hjärtats yttre volymförändring under
hjärtcykeln hos friska frivilliga var c:a 8 % och varierade från 5-11 %. Både
flödesmätning och volymsbestäming av hjärtat över hjärtcykeln gav samma re-
sultat. Den yttre volymförändringen är låg jämfört med hur mycket blod som
tömmer sig ur kamrarna men det förklaras av inflöde av blod till förmaken. Vid
jämförelse mellan höger och vänster sida av hjärtat återfanns en större del (60 %)
av den yttre volymförändringen på vänstersidan. Delarbete II visade att hjärtats
yttre volymförändring hos patienter var i stort sett oförändrad före och efter kran-
skärlsoperation och skilde sig inte jämfört med friska. Dessutom visade studien att
centerpunkten (volymcentrum) i hjärtat rör sig under en hjärtcykel i en loop som
börjar och slutar på samma ställe. Loopen är c:a 2 mm mellan extrempunkterna.
Denna rörelse skilde sig inte mellan friska och patienter men efter operation dub-
blerades rörelsen till c:a 4 mm. Delarbete III visade att 60 % av vänsterkammarens
slagvolym genereras av den längsgående förkortningen av kammaren genom att
basen av kammaren (AV-planet) förflyttas mot kammarspetsen under tömnings-
fasen. Detta mättes dels på friska frivilliga men också hos atleter på elitnivå och
patienter med förstorade vänsterkammare och sänkt kammarfunktion. Det var
ingen skillnad mellan grupperna i andelen slagvolym som orsakas av längsgående
förkortning. Delarbete IV visade på motsvarande sätt som delarbete III att 80 %
av högerkammarens slagvolym genereras av den längsgående förkortningen hos
friska frivilliga. Dessutom kunde delarbetet visa att hjärtats yttre volymsförän-
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dring till över 80 % kan förklaras av den radiella, kramande, kammarpumpnin-
gen. I delarbete V studerades när hjärtat är som störst och som minst. Hjärtats
största volym inträffar före förmakskontraktionen då blod inte bara förflyttas från
förmak till kammare, men också ut ur hjärtat som backflöde i venerna. Denna
volym kvantifierades med flödesmätning på höger och vänster sida. Hjärtat är
inte som minst vid slutet av systole utan börjar öka i volym före denna tidpunkt
vilket beror på att inflödet av blod till förmaken är större än utflödet. Detta kan
innebära att det finns en rörelseenergi i blodet på väg in i förmaket vid det tillfälle
då klaffarna mellan förmak och kammare öppnas och detta kan vara en del i förk-
laringen till den snabba fyllnadsfasen. Dessa parametrar kan ge ny information
för att förstå hjärtats pumpfunktion.

Sammanfattningsvis har denna avhandling visat hur hjärtat minskar i volym
under kammarsystole samt att den främsta orsaken till detta är kamrarnas kra-
mande radiella kontraktion. Hjärtats volymsvariation över hjärtcykeln har visat
att hjärtat är som störst innan förmakssystole och som minst innan slutet av kam-
marsystole. Dessutom har AV-planets bidrag till de båda kamrarnas slagvolym
kvantifierats.
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Abbreviations

2ch two chamber
4ch four chamber
AVPD atrioventricular plane displacement
AV-plane atrioventricular plane
AWRV atrial wave reversal volume
COV center of volume
COVV center of volume variation
CT computed tomography
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ECG electrocardiogram
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LEFV late ejection filling volume
LV left ventricle
LVOT left ventricular outflow tract
LVSV left ventricular stroke volume
MRI magnetic resonance imaging
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ROI region of interest
RV right ventricle
RVSV right ventricular stroke volume
SA short axis
SENSE sensitivity encoding
SV stroke volume
SVAVPD stroke volume generated by AVPD
SVAVPD% the portion of the stroke volume generated by AVPD in percent of the SV
THV total heart volume
THVV total heart volume variation
VENC velocity encoding
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Chapter 1

Introduction

1.1 Cardiac pumping

It is essential to understand the mechanics of cardiac pumping in order to un-
derstand cardiovascular physiology and correctly interpret the pathophysiology of
patients with cardiovascular disease. Heart failure is defined as the inability of
the heart to deliver the cardiac output required by the body´s metabolism with
sustained filling pressures.1 Heart failure is relatively common and the incidence
increases with age.1 It is estimated that 10 million people have heart failure in Eu-
rope2 and in Sweden alone 250 000 people,3 the most common aetiology being
coronary disease.4 The prognosis is poor, despite modern pharmacotherapy. Half
of the patients with heart failure will die within four years and among those with
severe heart failure within one year.2 In the Medicare system of the United States,
heart failure cost more money than any other diagnosis.5 Furthermore, modern
research is often focused on understanding cellular and molecular physiology and
pathophysiology, but the basic concepts of cardiac pumping on a macroscopic
level are still not completely understood.6 MRI can be used to accurately mea-
sure volume and flow, and this makes it possible to undertake detailed studies of
cardiac function in humans.

Cardiac structure and the cardiac cycle

The heart is composed of myocardium which encloses four cavities, two atria
and two ventricles. The pericardium encloses the myocardium. The atria are
separated from the ventricles by the atrioventricular plane (AV-plane) which is a
fibrous structure where the valves are inserted. The heart is divided into a right
and left side, each having one atrium and one ventricle (Figure 1.1). The right
atrium receives blood from the body through the two caval veins, the superior
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caval vein receiving blood from the head, arms and thorax and the inferior caval
vein receiving blood from the lower part of the body. The right ventricle delivers
blood to the lungs through the pulmonary trunk. The blood from the lungs re-
turns to the left atrium through the four pulmonary veins. The blood is ejected
from the left ventricle to the aorta which transports blood to the systemic cir-
culation. The resistance is four to five times higher in the systemic circulation
compared to the pulmonary circulation. Therefore, the LV needs to generate
higher pressures compared to the RV and hence the myocardium of the left ven-
tricle is four to five times thicker than the right ventricular myocardium. The part
of the myocardium facing the lumen is called the endocardium and the part far-
thest away from the lumen is called the epicardium. The heart is surrounded by
the pericardium, composed of two layers which are lubricated by a small amount
of pericardial fluid. This minimizes the friction of the movement of the heart
against the pericardium.7

endo

epi

LV

RV

RA

LA

IVC

SVC

RPV

LPV

apex

base

Ao

Pu

FIGURE 1.1 Schematic view of cardiac structures. Ao aorta,
endo endocardium, epi epicardium, IVC inferior vena cava, LA
left atrium, LPV left pulmonary veins, LV left ventricle, Pu pul-
monary trunk, RA right atrium, RPV right pulmonary veins, RV
right ventricle, SVC superior vena cava

The myocardium is composed of different layers and is often described as
having three layers, an endocardial layer with longitudinal fibers, a thick midwall
layer with circular fibers and an epicardial layer with longitudinal fibers.8–10 Stud-
ies of ventricular structure have proposed that the myocardium of both ventricles
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is a organized as a continuous muscle band oriented in loops.11–13 Furthermore,
the fibers from the apex to the base have been shown to be oriented in the shape
of a helix and the transition of fibre angles from the epicardial left-handed helix
to the endocardial right-handed helix has been shown to be smooth.14–16

Inner volume changes during the cardiac cycle

The volume changes of the individual chambers of the heart have been studied
extensively and are illustrated in most physiology and cardiology textbooks.17–21

Systole is the term used to describe the phase of contraction of myocardium caus-
ing emptying of blood and diastole is the term that describes the filling phase.
Pressure differences drive blood flow. Myocardial contraction generates increased
pressure when the valves are closed and the volume cannot be diminished, and
this is called isovolumetric contraction. When the valves are open myocardial
contraction also causes volume decrease as blood leaves the chamber. Systole and
diastole of the atria and ventricles are separated in time. During ventricular ejec-
tion the atria are filled by blood, and this is called the reservoir function of the
atria.22–27 Ventricular diastole is characterized by an initial short isovolumetric
relaxation followed by an early rapid filling phase and a subsequent later or atrial
filling phase.28 During the time between the early and late filling phases there is
little flow into the ventricle. The relative contribution of the early and atrial filling
phases changes with age and is affected by diastolic dysfunction.29 The rate of the
filling and emptying of the ventricles are well established measures of ventricular
diastolic and systolic function, respectively.29–34 The atria is described as conduits
during the first part of diastole.22–27, 35 During this phase blood from the veins
can pass through the atria to the ventricles because of the open AV-valves. How-
ever, most blood that enters the ventricles during the first part of diastole entered
the heart during systole (the reservoir function). The last phase of ventricular di-
astole occurs during atrial systole and this is described as a booster function for the
ventricles.23, 25 The effect of atrial contraction is a slight increase in atrial pressure
and thus flow from the atria to the ventricles. However, the main effect of atrial
contraction is a decrease in atrial volume mainly by shifting the AV-plane towards
the base and thus increasing the volume of the ventricles. The contribution of
atrial contraction in normal subjects is 10-20 % at rest but this atrial contribution
to stroke volume increases linearly with heart rate during exercise.36, 37 Further-
more, recent studies have examined the three dimensional flow patterns within
the heart38–40 which have given new insights to the physiological consequences of
the fluidic properties of the blood flowing through the heart. The location of the
insertion of the pulmonary and caval veins into the heart contributes to the for-
mation of a vortex within each atrium, and these vortices direct blood towards the
AV-valves. According to Newton’s third law, a generated force will have an equal
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force in the opposite direction. The forces of the blood ejected through the aorta
and pulmonary trunk are directed towards the AV-plane because of the sinuously
looped atrioventricular arrangement in vertebrates. Thus, the enlargement of the
atria is influenced by ventricular contraction which pulls the AV-plane towards
the apex, but also by the opposite force directed from the AV-plane of the ejected
blood through the aorta and pulmonary trunk. In diastole, the enlargement of
the ventricles, or the return of the AV-plane, is facilitated by the momentum of
part of the blood entering the ventricles directed towards the AV-plane.36, 40 Thus,
there is an atrio-ventricular coupling of the inner volume displacement within the
heart during the cardiac cycle and this is mediated by the AV-plane.

Outer volume changes during the cardiac cycle

Much less is known regarding outer volume changes of the heart compared to
the volume changes of the individual chambers. Textbooks on cardiac physiology
and pathophysiology often include illustrations of large outer volume variations
from diastole to systole.17, 19 This may be an effect of the outer volume variations
that are apparent during open heart surgery, or when observing isolated hearts in a
Langendorff preparation. During surgery or Langendorff preparation, the systolic
ejection of blood from the heart to the great arteries will result in a decreased vol-
ume of the ventricles which moves the pericardium inwards. This outer volume
variation has been called total heart volume variation (THVV) because the vol-
ume of all structures within the pericardium is taken into account. The extent of
THVV will have an impact on the efficiency of cardiac pumping. A large total vol-
ume change will result in energy loss through either displacement of surrounding
tissues or induction of a pendular motion of cardiac tissue and blood.41–44 Car-
diac pumping would thus require energy in order to move, for example, lung and
liver tissue. Studies of outer volume changes during the cardiac cycle within the
intact thorax using different techniques have shown somewhat different results.
In 1932, Hamilton and Rompf described a relative constancy of the total heart
volume during the cardiac cycle in frogs, turtles and dogs.43 Subsequent non-
invasive investigations in cats, monkeys45 and dogs41, 44 were concordant with
this initial finding of a relatively constant total heart volume over the cardiac cy-
cle. The observed outer volume variations of the heart have been proposed to be
a measurement error.41 Interestingly, Gauer used x-ray fluoroscopy and reported
a 2 % larger systolic volume compared to the diastolic total heart volume in a
cat before and after pooling of blood by increased g-forces.45 Some authors41, 46

have referred to Gauer´s results as being in conflict with those of Hamilton and
Rompf. Gauer concluded that systolic filling of the atria is larger in small animals
compared to large animals such as humans and that this is coupled to the faster
heart rates. This means that a larger THVV can be expected in larger species with
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slower heart rates, for example humans, compared with the previously studied
smaller species.

Investigations in humans using CT47 and MRI in ventilated healthy subjects48

have suggested that a volume variation of 8-13 % may occur between diastole and
systole. However, recent work found a lower volume variation of 5 % using mod-
ern MRI techniques.49 The explanation for the difference between the observa-
tions during open heart surgery and using non-invasive techniques has not been
fully investigated. One potential mechanism may be the differences in the status
of the pericardium. The role of the pericardium in interaction between the com-
partments of the heart has been debated.50–55 However, it has been suggested that
the negative pericardial pressure generated during systole is important for right
atrial filling during systole, and that pericardiotomy lowers atrial systolic filling.7

Also, a lower atrial systolic filling volume will result in an increased THVV. Re-
cently, a study using MRI found a THVV of 13 % in a subject with congenital
absence of the pericardium compared to the 5 % THVV in control subjects.49

However, Hoffman showed that the THV remained relatively constant when air-
way pressure was increased and the THV was lower.41 Thus, THVV was low even
when the heart did not "fill out" the pericardium. Furthermore, the intrathoracic
pressure within the closed chest as such may also have implications for THV con-
stancy. In summary, the role of the pericardium for maintaining low THVV is
not clear.

The center of volume variation (COVV) during the cardiac cycle will also af-
fect cardiac efficiency but has been studied even less than the THVV. The COVV
is a term used to describe the movement over time of the volumetric or geometri-
cal center of a three dimensional structure. A constant THVV can be associated
with a large COVV if the heart expands in one part and concomitantly decreases
by the same volume in another part. The effect of COVV on cardiac pumping
efficiency is apparent in the formula for calculating work.

Work =Mass� Acceleration � Distance

Distance traveled in this case is the COVV. Thus, work is performed when
the center of volume of the heart is accelerated from one point to the other dur-
ing each cardiac cycle. A constant or low COVV is thereby coupled to conser-
vation of energy. Hoffman et al studied cardiac pumping and found a relative
constancy of the COVV (called center of mass by the authors) using computed
tomography in six volunteers.47 They observed a COVV of 3 mm between end-
diastole and end-systole along the left ventricular long axis. Studies in children
with congenital heart disease found a small COVV at different stages of Fontan
reconstruction56, 57 and no discernible pattern of movement in the COVV.
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Longitudinal and radial function of the ventricles

The reduction of ventricular volumes during systole occurs by longitudinal and
radial shortening of the ventricles,58 which was already described by Harvey in
the 17th century.59 Even earlier work by da Vinci showed greater movement in
the heart at the base compared to the midventricular part, and little movement
at the apex.60 Longitudinal function has been described in experimental stud-
ies42, 43, 45 and the systolic longitudinal shortening of the ventricle has been shown
to start during isovolumetric contraction.61 The movement of the base of the
ventricles has been shown by different techniques such as roentgen cinematogra-
phy,62, 63 angiography58 and ultrasound.64 Also, in clinical echocardiography, the
movement of the AV-plane measured by M-mode Doppler is used to assess global
ventricular function and estimate left ventricular ejection fraction.65–67 The no-
tion that longitudinal function is an important part of left ventricular pumping is
known from theoretical calculations. The EF would be <30 % and the shortening
fraction�12 % if there were only short-axis contraction without the contribution
of longitudinal shortening.8, 68 Yet, left ventricular pumping is still described in
modern textbooks on physiology and pathophysiology as the result of the radially
diminishing diameter of the left ventricle.17, 19

Figure 1.2 illustrates how to calculate the portion of the stroke volume gen-
erated by the longitudinal AVPD. Panel A shows the epicardial contour of a
schematic LV with only longitudinal pumping. The broken lines indicate the po-
sition of the AV-plane in end systole. The stroke volume generated by the AVPD
(SVAVPD) is the volume basal to the position of the AV-plane in end systole, shown
in grey.

Panel B shows the same ventricle as in A. d1 denotes the largest diameter of
the LV defined as the greatest epicardial area in a short axis plane. d2 denotes
the diameter at the position of the mitral valve. The grey region indicates the
diameter (d1) multiplied by the AVPD. This region is the same size as the grey
region in A, see D below.

In panel C myocardium is added to the model. Myocardium reduces the inner
contour of the ventricle but the volume of the myocardium is constant throughout
the cardiac cycle. The myocardium is rearranged as it pulls the AV-plane towards
the apex and therefore appears thickened. The SVAVPD is again indicated in grey
and is identical to the grey regions in panels A and B. This illustrates that the area
at d1 (the largest short axis diameter) shall be used when calculating the SVAVPD.
The SVAVPD would be underestimated if the area of either the mitral annulus at
d2 or the endocardial area at d3 would be used. Panel D shows the grey region in
A and C divided by a dotted line and broken apart. When adding them together,
the grey region in B is generated. This illustrates why the largest epicardial area
of the ventricle should be multiplied by the AVPD in the derived method for

6



Aspects on Cardiac Pumping

calculating SVAVPD.
Panel E shows a schematic short-axis view in end diastole (solid line) and

end systole (broken line) at the level of the thin dotted line in C. The horizontal
dashed lines indicate the position of the non-moving epicardium in end diastole
and end systole. Note that in this model there is no radial sqeezing motion.
However, the endocardium will still move inwards during systole as the result of
the longitudinal AVPD, and this gives the false impression of a squeezing motion
when the endocardium is viewed in a short-axis plane.

Panel F shows a heart in four-chamber long-axis MR images (panels 1 and 2)
and corresponding short-axis images at the levels indicated by thin dotted lines
(panels 3-6). The left ventricle (LV), right ventricle (RV), left atrium (LA) and
right atrium (RA) can be seen. The solid white line is the contour of the epi-
cardium in end diastole. The end-diastolic epicardial contour is copied to end
systole. The curved dotted line in panels 1 and 2 is the basal contour of the epi-
cardium in end diastole moved to the position of the AV-plane in end systole.
The area between these contours (arrows) corresponds to the grey region in A-D.
The piston-like movement of a smaller basal part of the ventricle into a larger
midventricular part as seen in panels 1 and 2 explains most of the apparent epi-
cardial movement inwards during systole seen in panels 3 and 4. In contrast, the
epicardial area from the level of panels 5 and 6 becomes smaller as the position
approaches the apex. At this level, the longitudinal AVPD will not move a smaller
area into a larger area in the apical and midventricular parts of the ventricle. This
means that the epicardial inward movement at these levels rather reflects true ra-
dial function.

The importance of using epicardial contours for these calculations can also
be explained by the analogy of the tube of a telescope which can shorten and
lengthen along its long-axis. The volume of the telescope decreases when the tube
shortens and this would be the stroke volume of the tube. In order to calculate
the stroke volume of the tube, two measures need to be known. 1) The decreased
length of the tube (the AV-plane displacement of the LV), and, 2) the outer cross
sectional area of the tube (the short axis epicardial area). The outer area of the
tube would be used because the decrease in volume is not affected by what is
inside the tube. The volume decrease is only affected by what has disappeared
from where the tube was before it was shortened lengthwise. Two tubes with
the same outer area but one with a thick wall and the other with a thin wall
(different thickness of the myocardium in the LV) will decrease the same volume
given the same outer area and same longitudinal shortening. Also, the wall of
the tube is non-compressible, i.e. it retains its volume when shortening the tube.
This analogy is true for the myocardium, the volume will be the same during the
cardiac cycle because it is non-compressible.69–71 The product of the AVPD and
the short-axis area of the LV was found by Lundbäck to be in the same range
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FIGURE 1.2 A schematic view of left ventricular pumping. See
text for details.

as the reported normal LVSV from earlier studies.42 Emilsson et al. used this
equation with measurements obtained by echocardiography in healthy volunteers
and found that approximately 80 % of the LVSV was generated by AVPD assessed
by this method.46

Radial function is defined as the reduction in the epicardial short-axis radius of
the ventricle caused by the squeezing of the ventricle. The endocardial movement
towards the center of the lumen has previously been described as radial thicken-
ing due to the contraction of circular myocardial fibers.9, 72 However, the inward
movement of the endocardium has been shown to be the result of more complex
myocardial mechanics.11, 69, 70, 73, 74 Isolated radial function is more difficult to
assess because the inward motion of the endocardium is also the result of longitu-
dinal shortening and redistribution of myocardium (Figure 1.2).42, 71, 75 This can
be understood by using the analogy of the tube of a telescope described above.
The telescope has no radial function, the wall is made of a rigid non-compressible
material. However, when the tube shortens along its long axis, the inner diam-
eter of the telescope will diminish because the walls of the tube will accumulate
within the shortened tube. This is an observed radial inward movement which in
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reality is caused by longitudinal shortening. Therefore, the outer walls, i.e. the
epicardium, must be studied when investigating isolated radial function.

Furthermore, the epicardial area at the mitral annulus in end diastole is smaller
than the mid-ventricular area because of the dome shape of the basal part of the
LV. As illustrated in Figure 1.2, the dome shape will contribute to an apparent
inward epicardial motion at the base of the LV during AVPD. Isolated radial
function can be identified in the radial inward movement of the epicardium in
the midventricular and apical two-thirds of the LV.

The macroscopic perspective of radial and longitudinal function of the heart
is relatively straightforward. However, coupling the volume changes of the car-
diac chambers to the function of the different myocardial fiber layers is somewhat
more complicated. The contractile unit of the myocardium is the sarcomere, and
the sarcomere can shorten by 10-12 %.59 A consequence of the different angles
between the myocardial fibers and the ventricular wall is that contraction results
in myocardial shortening in the longitudinal and radial direction as well as a tor-
sion of the myocardium around its long axis.8, 9, 14, 15 The apical part of the left
ventricle rotates around the long axis counter clockwise with respect to the base as
viewed from the apex, whereas the basal part rotates in the opposite direction, i.e.
clockwise. This has been proposed to be an effect of more epicardial than endo-
cardial fibers, a greater radius in the epicardium giving a greater force, the delay of
excitation of the epicardium and tethering or transmural mechanical coupling.15

The torsion of the left ventricle results in a "wringing" of the left ventricle that
has been studied by implanted radiopaque markers15, 76, 77 and MRI.78, 79 Detailed
information about myocardial contraction can also be obtained non-invasively by
Doppler80–82 or MRI measurements83, 84 of myocardial velocities during the car-
diac cycle to quantify regional function. However, this thesis did not seek to inves-
tigate the intrinsic mechanics of the myocardium but rather the volume changes
of the total heart and individual chambers, and therefore myocardial torsion or
regional myocardial function has not been studied.

Outer volume variations in relation to the longitudinal and

radial function of the ventricles

As discussed above, a relationship between longitudinal function and the relative
constancy of the heart has been proposed. However, the quantitative relationship
between outer volume variations and the function of the ventricles has not been
studied. Figure 1.3 presents five theoretical models (A-E) of the outer volume
variations of the heart in relation to longitudinal and radial function of the ven-
tricles and atrial filling. For simplicity the model includes the epicardial borders
of a single atria and a single ventricle, and the inflow from the veins is shown at
the top and outflow to the arteries at the bottom. The volume of the myocardium
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is constant over the cardiac cycle69–71, 85 and is thus omitted from the model for
simplicity. The piston-like atrioventricular plane displacement (AVPD) is indi-
cated by double-headed arrows. Solid lines indicate the end diastolic position and
dotted lines the positions in end systole. The total stroke volume (TSV) of the
ventricles is generated by longitudinal (SVlong) and radial (SVrad) function. SVlong

is generated by AVPD and SVrad by inward displacement of the outer walls of the
ventricle. Model A has no radial function of the ventricles, instead the AVPD
generates the entire stroke volume and the simultaneous atrial filling. Thus, there
is no total heart volume variation (THVV) and no center of volume variation
(COVV). In model B, the TSV is generated by a combination of radial and lon-
gitudinal function. Atrial filling is coupled to the longitudinal function and thus
THVV will be identical to SVrad. There will be a small COVV in the direction
of the base of the heart because of the radial diminishment of the ventricles and
the constant atrial diameter. Model C illustrates a situation with no AVPD and
thus no longitudinal function. The TSV will be identical to SVrad. Atrial filling
during systole in spite of no AVPD causes the atria to expand radially while the
ventricles diminish. This will lower the THVV, but the COVV will be high. In
model D, AVPD generates the TSV as in model A, but atrial filling is zero. Thus,
the outer walls of the atria will move inwards. THVV will be equal to SVlong and
the COVV will be high. Model E shows a combination of SVlong and SVrad as
in B but SVlong is larger and atrial filling is slightly less than SVlong. This will
result in a larger THVV than SVrad but a lower COVV compared to model B. In
conclusion, both THVV, COVV and either radial or longitudinal function must
be determined to quantitatively determine the relationship between outer volume
variations and function of the ventricles.

1.2 Magnetic Resonance Imaging

Theoretical background

All protons and neutrons have a small magnetic field due to the quantum me-
chanical property of "spin". The hydrogen nucleus consists of a single proton.
The hydrogen nuclei that give MR signal are mainly bound in water molecules,
but also hydrogen in fat and other molecules contribute. When a body is placed
in a magnetic field two things happen to its spin. The small magnetic field of the
body will align either along the external field or against it. There is a small surplus
of spins along the field compared to against the field and that will result in a small
net magnetization vector, called M. The M vector determines the maximum MR
signal that can be measured. Furthermore, the spin will rotate around an axis
parallel to the magnetic field, this motion is called precession. The frequency of
the precession is called the Larmore frequency and is directly proportional to the
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FIGURE 1.3 Five theoretical explanations for different total heart
volume variations. For details see text.

magnetic field. The Larmore frequency for hydrogen nuclei is 42.6 MHz/T. The
spin can be affected by energies sent into the system at the Larmore frequency,
as this is the resonance frequency of the system. The absorbed energy will alter
the direction of the vector M. If the direction of M is changed from along the
field it can be detected, as it is no longer hidden by the much larger surrounding
magnetic field. The component of M that is perpendicular to the main field will
rotate around the direction of the main field with an angular velocity equal to the
Larmor frequency. An antenna can detect this rotating component. This rotating
component can be viewed as an echo of the energy sent into the system. The sig-
nal obtained from the body is sampled in the frequency domain or k-space, and
is reconstructed by Fourier analysis to provide the image.

The amount of energy needed to change the vector M to an orientation per-
pendicular to the magnetic field is called a 90Æ pulse. After this energy has been
deployed the vector M will start to return to its origin. This is called relaxation
and occurs in two ways: 1) a gradual increase in the magnitude of the M vector
along the magnetic field (described by the time constant T1) and 2) dephasing
or splitting of the vector M perpendicular to the magnetic field (described by the
time constant T2). Different tissues have different T1 and T2 values, and this is
used for creating contrast between tissues in the image.
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The MRI scanner is composed of several coils. One coil creates a large mag-
netic field, in modern scanners typically 1-3 T. In comparison, the magnetic field
of the earth is 30-60 mT. The large magnetic field in the MR scanner is maintained
by the superconducting wiring. In a superconducting wire, the temperature of the
metal is lowered by liquid helium to a temperature near the absolute freezing point
and this eliminates friction and enables large currents to be used without energy
loss. Thus, the magnetic field of the MRI scanner is always on, and turning it off
is a complicated process that takes time, effort and is expensive. Three gradient
coils are used for inducing small variations in the magnetic field that are used to
select the imaging plane. Surface coils are receiver antennae that are used close to
the body as to increase the sensitivity for detection of signals from the body. The
programs used for directing the currents in the coils are called sequences and dif-
ferent sequence parameters are used to provide different images. MRI is sensitive
to motion and physiological triggering is needed when imaging the heart. The
motion of the heart is corrected for by cardiac triggering and respiratory motion
is minimized by imaging during breath hold. Cardiac triggering is most often
performed by prospective or retrospective ECG triggering. In prospective ECG
triggering, the MR scanner automatically detects the R-wave and image acquisi-
tion begins at that point and continues for a determined length of time. The RR
interval determines the length of time available for image acquisition but often
the last part of the cardiac cycle, the atrial contraction, is not imaged. Modern
scanners are able to use retrospective triggering which gives the ability to image
the complete cardiac cycle. This is done by continuous image acquisition and par-
allel detection of the ECG. After image acquisition, the images are arranged in the
appropriate part of the RR interval. Pulse triggering can be used if the ECG signal
is not optimal. Fast imaging techniques make it possible to acquire images in real
time, thereby making triggering unnecessary. However, the real time images have
lower spatial and temporal resolution.

Cine imaging and volume measurements

Volume measurements in studies of heart function are often performed using two-
dimensional techniques and geometrical assumptions of heart shape.86–88 An ex-
ample is the Simpson’s biplane formula often used in echocardiography.21 All
two-dimensional techniques will be limited by these geometrical assumptions.89

MRI gives the opportunity to image the body using parallel image planes (Fig-
ure 1.4). The volume of each slice is obtained by delineation of the borders of
the heart and multiplying the area by the slice thickness. The volume of the body
is obtained by adding the delineated volumes of all slices. Volume measurements
by MRI have been shown to be reliable, accurate and have low interobserver vari-
ability.90 This has made MRI the gold standard for assessing the cavitary and
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myocardial volumes of the heart.91–99 Reference values for cardiac volumes in
humans by MRI are now available.30, 100, 101

LV
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FIGURE 1.4 Measurement of cardiac volumes by MRI. The top
panels show long-axis views of the heart in end diastole (A) and
end systole (B). The heart is imaged from apex to base in the short
axis view (bottom panels) as indicated by white lines in A and B.
The dotted lines in the bottom panels indicate the pericardial
borders of the heart in end diastole (C) and end systole (D). The
volumes of all slices are added to obtain the entire volume of the
heart.

Flow imaging and analysis

MRI provides the opportunity for non-invasive flow measurements with excel-
lent accuracy and precision in large vessels102–111 and even vessels at the size of
the coronary arteries.112–114 Also, MRI flow quantification has been shown to be
equally accurate and less variable compared to both Fick principle115 and ther-
modilution.116 This is performed by measuring the velocity of the tissue in the
direction perpendicular to the imaging plane by phase velocity mapping.117 The
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velocity of all tissue is measured and the velocity of the flow in the vessel is used
for analysis. In short, magnetic field gradients are used to encode the velocity
into an image. The precession frequency will change in an object moving in a
varying magnetic field. This will affect the phase angle in a linear relationship to
the velocity of the object. A phase image can be reconstructed that depicts the
phase angle information in proportion to the grey scale value of the image. The
signal intensity can be measured in each pixel of the image and will be directly
proportional to the velocity of the tissue in that pixel. Thus, the phase image can
be used as a velocity map of the tissue. In theory the phase or velocity of non-
moving tissue, e.g. chest wall, will be zero. Unfortunately, there can be disturbing
factors such as eddy currents and inhomogeneities of the magnetic field that will
alter the velocity information. Therefore, it is of importance to perform in vitro
and in vivo calibrations of each MRI scanner. In addition, filters and background
corrections can be used. Flow imaging also generates anatomic (or modulus) im-
ages that can be used for identification and delineation of the vessel whereas the
phase images contain corresponding information about flow velocity.

Figure 1.5 shows an example of the velocity mapping technique with modulus
and phase images in the inferior caval vein. The grayscale values of each pixel in
the phase images are directly proportional to velocity. Thus, within a region of
interest (ROI), the average blood flow velocity for any given time point through-
out the cardiac cycle can be calculated while the cross sectional area of that vessel
is simultaneously measured. This allows for calculation of absolute blood flow at
each time point by the following equation:

Average Velocity � Area = Average Flow
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FIGURE 1.5 Phase velocity mapping of the flow in the inferior
caval vein encircled in white. Black circles indicate ROIs used for
background correction.
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Chapter 2

Aims

The general aim of this thesis was to examine new aspects on human cardiac
pumping which may help to understand pumping physiology and pathophysiol-
ogy MRI.

The specific aims for each paper were:

I. To investigate the magnitude and timing of the total heart volume variation
(THVV) during the cardiac cycle in healthy adults.

II. To determine the direction and extent of the center of volume variation
(COVV) throughout the cardiac cycle in healthy adults and assess THVV
and COVV in patients with cardiac failure due to ischemic heart disease
before and after cardiac surgery.

III. To measure the percentage of the left ventricular stroke volume explained
by AV-plane displacement (SVAVPD) in healthy subjects, athletes and pa-
tients with severely decreased left ventricular function due to dilated car-
diomyopathy (DCM).

IV. To determine if the SV generated by radial contraction is equal to the outer
volume variations of the left, right and total heart. Also, to meausure the
SVAVPD of the right ventricle.

V. To quantify the increase in total heart volume which occurs before the end
of systolic ejection and to quantify the decrease in THV caused by the
outflow from the heart through the veins during atrial contraction.
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Chapter 3

Materials and Methods

3.1 MRI scanners and sequences

MRI scanners

In study I and II a 1.5 T Magnetom Vision (Siemens, Erlangen, Germany) with
25 mT/m maximum gradient strength was used to acquire all images. In study
III, IV and V a 1.5 T Philips Intera CV (Philips, Best, the Netherlands) with 33
mT/m maximum gradient strength and a cardiac synergy coil was used.

MRI sequences

Cine imaging
Siemens: Prospective ECG-triggered gradient-echo sequences were used to

obtain cine images during end-expiratory apnea (approximately 15 seconds). The
number of phases was determined by the RR-interval resulting in 15-21 images
per heart cycle. Typical imaging parameters were, repetition time 100 ms with
echo sharing resulting in one phase every 50 ms, echo time 4.8 ms, flip angle 30Æ,
slice thickness 10 mm and no slice gap.

Philips: A steady-state free-precession sequence with retrospective ECG trig-
gering was used to achieve 30 phases per cardiac cycle and giving a temporal
resolution of typically 30 ms, repetition time 2.8 ms, echo time 1.4 ms, flip angle
60Æ, spatial resolution of 1.4x1.4, slice thickness 8 mm and no slice gap. Parallel
imaging with a SENSE factor of 2 was used in the short-axis images.

Flow imaging
Siemens: A free breathing gradient-echo velocity mapping sequence with

prospective ECG triggering provided by the manufacturer was used. Typical
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imaging parameters were: repetition time 30 ms, echo time 5 ms, slice thickness 8
mm, VENC of 150 cm/s for arteries and 80 cm/s for veins. In the case of aliasing
the study was repeated with a higher VENC. Velocity information was acquired
over one or two heart cycles and the acquisition time was 3-7 minutes. Back-
ground correction was performed manually to correct for field inhomogenities.
Two regions of interests (ROI) were drawn in stationary tissue at approximately
equal lengths from the vessel investigated, as previously described.103 The average
signal intensity of these ROI:s in non-moving tissue were set to represent zero
cm/s.

Philips: An in-house adapted, free breathing fast field echo velocity encoded
sequence with retrospective ECG triggering was used to obtain full coverage of the
cardiac cycle. Typical imaging parameters were: repetition time 10 ms, echo time
5 ms, flip angle 15Æ, slice thickness 6 mm, 35 phases, number of acquisitions 1, no
parallel imaging and a VENC of 200 cm/s for arteries and 80 cm/s for veins. The
in-plane spatial resolution was typically 1.2x1.2 mm and the temporal resolution
was dependent on the heart rate. If suboptimal image quality was found in the free
breathing images, flow measurements were performed using a breath hold turbo
field echo velocity encoded sequence with retrospective ECG triggering. Typical
imaging parameters of the breath hold flow sequence were: repetition time 4.5
ms, echo time 2.9 ms, flip angle 15Æ, slice thickness 10 mm, 40 phases, number
of acquisitions 1, SENSE factor of 2, an in-plane spatial resolution of 1.2x1.2
mm. A linear phase correction filter supplied by the manufacturer was used for
background correction.

3.2 Study population

In study I, eight healthy volunteers were examined by cine and flow MRI to obtain
total heart volume variation over the cardiac cycle. The subjects were 26-47 years
old and five were males. The volunteers declared that they were healthy and had
no prescribed cardioactive drugs, blood pressure was below 140/90 and ECG was
normal. The images from six of these volunteers were used in study II to acquire
center of volume information, namely the subjects 1, 2, 3, 4, 7 and 8 listed in
table 1 of study I. The remaining two subjects were not used because the data
from the first six subjects analyzed was consistent and thus were sufficient. Center
of volume variation and total heart volume variation was also measured in eight
patients before and after cardiac surgery. They were enrolled in a trial designed to
study changes in cardiac function after coronary bypass surgery in patients with
depressed cardiac function.118 The patients were 56-74 years old, all men, were
scheduled for first time coronary bypass surgery and had ejection fraction below
50 % as determined by echocardiography. The MR examinations were performed
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the week before and approximately one month after surgery. Coronary bypass
surgery was performed with grafting of the left anterior mammary artery and 0-4
venous grafts, and the pericardium was not closed, but opposed by a few stitches.
In study III, 12 healthy subjects (mean age 24 years, 5 women) were imaged for
comparison with 12 triathletes (mean age 35 years, 4 women) and 12 patients
(mean age 54 years, 4 women) with dilated cardiomyopathy. The 12 healthy
subjects were imaged by cine images covering the short axis and the three long-
axis as well as flow images of all vessels to and from the heart. The triathletes
and patients were imaged by cine images similar to the control subject, but flow
images of all vessels to and from the heart were not acquired. The triathletes were
imaged as a part of a study of heart function in athletes using ergospirometry and
cardiac MRI. Patients were imaged in clinical routine and enrolled after reviewing
the charts for patients with dilated cardiomyopathy who had ejection fraction
below 30 %. Patients with ischemic genesis to the dilated cardiomyopathy were
not included. Of the 12 healthy subjects in study III, 11 could be used for the
subsequent studies IV and V. The remaining subject could not be used because
of aliasing and misplaced flow planes resulting in suboptimal flow images. The
subjects are given the same number in study IV and V.

3.3 Total heart volume variation

The total heart volume (THV) was defined as the volume of all structures within
the pericardium, including myocardium and blood of both ventricles and atria
and pericardial fluid. The pericardium covers the proximal parts of the great ves-
sels and thus these parts were included in the measurements. A region of interest
was manually drawn around the pericardial borders of the heart of all slices cov-
ering the heart from apex to the base of the heart of all images throughout the
cardiac cycle (studies I and II) or only in end diastole and end systole (study IV).
The total heart volume in end diastole was used as reference value for calculations
of total heart volume variation (THVV). The myocardium and pericardial fluid
is non compressible and thus remains constants during the cardiac cycle. Blood
in the chambers is the only volume within the pericardium that varies over the
cardiac cycle. The blood volume in the coronary vessels will not cause an error
as they originate and empty within the pericardium. Hence, THVV measures
the difference in blood leaving the heart and entering the heart. A new method
for calculating THVV by flow imaging was developed. Flow images of all vessels
leading to the heart (caval and pulmonary veins) and from the heart (the aorta
and pulmonary trunk) were obtained. Adding all inflow (ml/s) into the heart
and multiplying by time (s) gives the increase in THV (ml) for each time point.
Likewise, adding all outflow from the heart gives the decrease in THV for all
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time points. Total heart volume variation can then be calculated by subtracting
the decrease of THV from the increase in THV. Flow imaging gives the absolute
changes in THV and to get the relative changes in THV, the THVV by flow was
divided by the THV at end diastole obtained from the cine images.

3.4 Center of volume

Calculations of the center of volume variation (COVV) were used for the total
heart in study II and for the left and right ventricle in study IV. The center of
volume is the geometrical center of a body and can be calculated by dividing
the volume in a series of parallel images covering the volume. By weighting the
coordinates (Coordinate1 to Coordinaten) for each slice by the volume of that
slice (Vol1 to Voln) the coordinate for the center of volume can be calculated
using equation 1 in study II. The center of volume has three coordinates and
the calculation is performed for each coordinate individually. The calculations
were done for all time frames during the cardiac cycle in study II and for the end
diastolic and end systolic images in study IV. The maximum distance between the
coordinates was calculated using equation 2 in study II.

3.5 Atrioventricular plane displacement

Atrioventricular plane displacement (AVPD) was measured in studies II, III and
IV. AVPD was defined as the distance between the AV-plane from end diastole to
end systole perpendicular to the AV-plane position in end-diastole. AVPD of the
left ventricle was measured at the basal part of the muscular wall in three long-
axis images resulting in six measuring points placed 60 degrees apart in a short
axis view (Figure 3.1). The position of the most basal point of the left ventricular
myocardium was manually traced and the mean of the motion was used for cal-
culations. Apical motion was calculated in the same images and along the long
axis of the ventricle and the mean distance of the three images was calculated.
AVPD of the right ventricle was calculated from two of the three long axis views,
namely the four-chamber and left-ventricular outflow-tract view. The basal point
of the right ventricular myocardium of the free lateral wall was manually traced
in the four-chamber images and the basal point of the right ventricular outflow
tract was manually traced in the left-ventricular outflow-tract images. The inter-
ventricular septum is part of both ventricles and has lower AVPD than the free
wall of the RV. The mean septal motion was calculated from the four-chamber
and left-ventricular outflow-tract images. AVPD of the RV was calculated as the
mean of the septal motion and the motion of the free wall and right ventricular
outflow tract.
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FIGURE 3.1 The measurement of AVPD in three long axis im-
ages (left), the AVPD over the cardiac cycle for the LV and RV
(top right) and the position of the measurement points for AVPD
(white dots) shown in a short axis image (bottom right). AVPD
was measured perpendicular to the AV-plane at end diastole as
indicated by vertical white dotted lines. The AVPD is shown by
white solid lines.

3.6 Longitudinal function

Longitudinal function was defined as the portion of the stroke volume generated
by AVPD (SVAVPD). The proposed method42 of multiplying the AVPD by the
LV epicardial area does not take into account the varying short-axis area of the
part of the LV encompassed by the range of the AVPD. Therefore, we further
developed the method proposed by Lundbäck by using the mean of the largest
short-axis areas encompassed by the AVPD (Figure 1.2). To validate this derived
method, longitudinal function was also measured by direct volumetry in a stack of
radial long axis slices.119, 120 For each long-axis slice in a radial stack, the epicardial
border of the LV in end diastole was outlined and the position of the AV-plane
in end systole was identified. The outline of the epicardial border of the LV in
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end diastole was translated along the long-axis of the LV towards the apex so that
the basal part of the outline had a position corresponding to the position of the
AV-plane in end systole. The volume difference between the two borders in the
base of the end diastolic contour was calculated for all radial slices.

No method for calculating the SVAVPD of the right ventricle has previously
been proposed. In study IV, the same method as for the LV was used to calculate
SVAVPD of the RV. However, the validation of the method in the long axis views
is more complicated because of the complex anatomy of the RV. Therefore, we
performed the direct volumetry of the SVAVPD between the AV-plane in diastole
and systole in images obtained by multiplanar reconstruction from the short axis
images. This enabled the visualization of the contours of the RV in perpendicular
long axis views in systole and diastole. Stroke volume for the LV and RV was
calculated as previously described.121, 122

3.7 Integration of outer and inner volume changes of
the heart

Atrial filling is coupled to ventricular ejection by AVPD, and the relative con-
stancy of the THV is explained by an inner volume displacement within the heart
caused by the longitudinal shortening of the ventricles (AVPD).41–43 The remain-
ing radial function of the ventricles or radial squeezing of the LV is not caused by
AVPD, and thus not related to atrial filling during systole. Therefore, the outer
total heart volume variation (THVV) is related to radial function.123 THVV
determined by flow imaging was compared to radial function calculated as the
stroke volume minus the volume attributed to longitudinal function. This was
performed for each ventricle individually using flow measurements in the vessels
to and from the corresponding part of the heart, and for the total heart using all
flow to and from the heart as described above.

3.8 Late ejection filling volume

The late ejection filling volume (LEFV) was defined as the increase in THV which
occurred between minimum THV and the end of systolic ejection as calculated
from the flow data. Figure 3.2 shows flow and cine data from one typical subject.
Panel A shows the atrioventricular plane displacement (AVPD) of the left ventricle
(LV) and the right ventricle (RV). Panel B shows the total heart volume (THV)
and volume of the LV and RV. Note that the THV in the latter part of diastole is
greater that the THV in end diastole. Panel C shows flow in the pulmonary trunk
and the combined flow of the inferior and superior caval veins. Panel D shows
flow in the aorta and the combined flow of the pulmonary veins. Panel E shows
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the sum of the outflow (aorta and pulmonary trunk) from and inflow (caval and
pulmonary veins) to the heart. Line 1 indicates when inflow to the heart exceeds
the outflow during late systole which corresponds to the time of the lowest THV
seen in B. Line 2 indicates the end of systolic ejection. The area between lines 1
and 2, indicated by diagonal lines in E represents the late ejection filling volume
(LEFV). Minimum THV will occur when outflow is equal to inflow in the later
part of systole. Thereafter, inflow is greater than outflow and THV will increase.
The end of systolic ejection was defined as when the combined systolic flow of
the aorta and pulmonary trunk reached 0 ml/s. The magnitude of the LEFV was
expressed in absolute volume as well as percent of both THV and THVV. Also,
the LEFV was compared to the total stroke volume and the rate of systolic AVPD.
Furthermore, the LEFV was quantified separately for each side of the heart as the
flow difference between the lowest heart volume and end of systolic ejection for
the left and right side of the heart, respectively.

3.9 Atrial wave reversal volume

The atrial wave reversal volume (AWRV) was defined as the volume of blood ex-
iting the heart during late diastole through the veins. Figure 3.2 shows a negative
flow at the end of diastole in all veins, coinciding with atrial contraction as seen
in A, and resulting in the decrease of the THV in late diastole as seen in B. The
AWRV was measured as the negative flow seen in the veins during late diastole
multiplied by time from the beginning of the late diastolic negative flow until end
diastole. The AWRV was measured for the left, right and total heart, respectively.
The total heart AWRV was also expressed as percent of both THV and THVV.

3.10 Image analysis software

In study I and II, Scion Image (Scion Image, Scion Corporation, Maryland, USA)
was used for flow and volumetric measurements. In study II atrioventricular
plane movement measurements was performed using the freely available software
ImageJ v.1.32j (http://rsb.info.nih.gov/ij/). For flow analysis in study I, RAD-
GOP (Context Vision, Linköping, Sweden) was used by the second observer. In
studies III-V the freely available software Segment was used (Segment 1.4-1.6,
http://segment.heiberg.se).124

3.11 Statistical analysis

Continuous variables are expressed as mean � standard error of the mean (SEM)
and the range. The non-parametric Mann-Whitney test was used to determine
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the significance of the differences between variables. The non-parametric Wilcox-
son test was used in study II to determine if variables were different before and
after surgery. In study I the inter-observer variability or method concordance
was calculated using the intraclass correlation coefficient (ICC).125 Bland-Altman
analysis126 was used to test if two methods used to measure the same parameter
differed. In study I, the paired t-test was used to test if the changes in apex-base
length were significant. A p-value <0.05 was defined as statistically significant.
The relationship between variables was determined by Pearson’s correlation coef-
ficient.
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Chapter 4

Results and Comments

4.1 Total heart volume variation

Studies I, II, IV and V

Although variations in total heart volume affect cardiac efficiency, little is
known about the variations in total heart volume in humans. Therefore, in study
I the total heart volume variation (THVV) was determined in eight healthy vol-
unteers. The study used two independent methods of determining THVV during
a cardiac cycle, namely, volumetric and flow imaging. The volumetric and flow
methods showed similar results, 8.2�0.8 % (range 4.8-10.6 %) vs. 8.8�1.0 %
(range 5.6-11.8 %). ICC of the two methods was 0.999 and the difference be-
tween the volumetric and flow method according to Bland-Altman analysis was
-0.6%�1.0 % (SD). The concordance of the findings by the two methods both
in magnitude and time course in all subjects implies that the range of the total
heart volume variation between subjects likely demonstrates a true physiological
variation (Figure 4.1). The inter-individual variation of THVV between healthy
subjects has not been described previously. The physiological significance and the
cause of the variation between healthy subjects were still unclear at this point and
therefore further studies of THVV were undertaken.

The constancy of THV over the cardiac cycle has been proposed to be de-
pendent on AVPD41–43, 45, 57 and therefore we compared THVV in patients with
decreased AVPD with healthy volunteers in study II. The AVPD differed between
healthy volunteers (16.3� 0.7 mm) and patients before surgery (9.9� 0.6 mm, p
= 0.002) and after surgery (10.2� 0.5 mm, p = 0.002). Patients after surgery did
not differ in AVPD compared to before surgery (p = 0.40). Although the patient
population had a lower AVPD, THVV before surgery (6.9�0.2 %, range 5.1-9.3
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FIGURE 4.1 The THV throughout the cardiac cycle in all sub-
jects of study I by volumetric (volume) and flow (derived volume)
imaging.
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%) and after surgery (7.5�0.2 %, range 5.8-9.5 %) was not significantly larger
compared to the healthy subjects (7.3�0.4 %, range 4.0-9.1), (p=0.61 and p=
0.80 respectively). Thus, study II, found no difference in THVV when compar-
ing healthy subjects and patients with decreased ejection fraction and significantly
reduced AVPD. This suggests that the THVV cannot be explained only by the
magnitude of AVPD.

The relationship between THVV and the relationship between radial and lon-
gitudinal function of the ventricles was further investigated in study IV, see section
4.5. THVV has been proposed to be dependent on the pericardium,49 but earlier
studies have suggested minimal pericardial influence on the constant THV.127, 128

Therefore, the THVV before and after pericardiotomy (bypass surgery) was com-
pared to elucidate the effect of the pericardium on the constant THV. A statistical
significance was found (p=0.05) between THVV after surgery (7.5�0.2 %, range
5.8-9.5 %) compared to before surgery (6.9�0.2 %, range 5.1-9.3 %). However,
the magnitude of the difference was very low and visual assessment of the time-
volume curves shows that the THVV was nearly unchanged by the coronary-
bypass surgery, and that the time course of the change in THV was essentially
similar in all subjects (Figure 4.2). The THV decreased in the majority of pa-
tients, but notably the relative THVV was not affected. This may indicate that
the THVV (magnitude and time course) is a physiological parameter different
from patient to patient, but constant over time, even after interventions such as
cardiac surgery.

The explanation for no apparent increase in THVV after surgery despite peri-
cardiotomy may be that structures other than the pericardium around the heart
(thoracic wall, liver, lung and mediastinum) play an important role in the con-
straint of the heart129–131 and thus could be responsible for maintaining intracy-
cle relative constancy of THV. The pericardium was, however, loosely opposed
by stitches according to standard surgical procedure, which could mean that the
pericardium may retain some of its function. The measurements of THVV by
cine and flow imaging were repeated in a new population of healthy volunteers
in another MRI scanner in study IV. The THVV of healthy subjects in study IV
(8.4�0.6 %, range 5.7-11.1 %) was similar to study I (8.2�0.8 %, range 4.8-
10.6 %). The volumetric and flow method showed similar results also in study
IV (r=0.95, p<0.001) and bias was low (4.0�7.8 ml). This gives further evidence
of the physiological explanation for the range of THVV between subjects. For
further discussion on the explanation of THVV see section 4.5.

Cine images were used to find the anatomical location of the outer volume
changes during the cardiac cycle (study I). The major contributor to the volume
change is the region around the AV-plane displacement. For any given cardiac
MRI short-axis imaging plane, the change in volume was essentially proportional
to the starting volume in that plane (R2 = 0.43). The predominant volume
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FIGURE 4.2 The THV throughout the cardiac cycle normalized
to the THV at end diastole before and after cardiac surgery for all
patients of study II.
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changes were visually observed where the heart was most adjacent to the lungs
while the regional changes in volume at the borders to the liver were less and were
essentially absent near the thoracic wall (Figure 1.4 and Figure 4.10).

The contributors to THVV can also be studied using the flow patterns in and
out of the heart. The left side of the heart contributed to a majority of the THVV
(61�2 %, range 52-70 %). The outflow showed a pulsatile pattern in systole
and the inflow was more continuous, and slightly biphasic with increases in flow
both in diastole and systole (Figure 3.2 and Figure 4.3). In systole, outflow was
greater than inflow (decrease in cardiac size) while the reverse was true during
diastole (Figure 3.2 and Figure 4.3). This means that the proportion of blood
ejected during systole exceeded the filling of the atria during systole, 24�1 % vs.
15%�1 % of the total heart volume (p=0.001). During systole 62�2 % of the
stroke volume from the ventricles was secured by filling of the atria. This causes
a decrease in total heart volume in systole due to a discrepancy in blood flow
into and out of the heart with no significant longitudinal shortening of the heart
during this process. The caval veins exhibit a flow pattern which is more similar
to that seen in the great arteries compared to the flow patterns in the pulmonary
veins. This flow pattern in the caval veins has previously been associated with
normal right heart hemodynamics.132 In study I, 64 % of the stroke volumes
from both chambers were secured into the atria during systole (reservoir function
of both atria). The reservoir function of the left atrium in percent of the stroke
volume of the left ventricle has previously been reported to be 38 % as assessed by
Doppler echocardiography26 and 41 % as assessed by MRI.133 Thus the reservoir
function of the right atrium is higher than the left atrium. This can be visualized
in the flow curves as a more bipolar flow in the caval veins with the highest peak
in systole and a more continuous flow in the pulmonary veins. A similar biphasic
pattern of blood flow during systole and diastole into the heart as in the present
study, has been found in Doppler examination of caval and pulmonary veins.40, 134

Venous filling into the heart has been found to alter with heart rate.36, 135

Proportionally greater systolic atrial filling over diastolic flow occurs at increased
heart rates, compared to lower heart rates. At higher heart rates and cardiac out-
put the momentum of the blood created by the descent of the AV-plane can thus
be used for a more rapid filling of the expanding atria. This will cause less outer
volume changes in the surrounding tissue, which would conserve energy. In ad-
dition, higher heart rates may result in a lower total heart volume change because
of a shortened diastolic phase, and this possibly could make the outflow less pul-
satile, and hence synchronize the in- and outflow.42 This will result in a lesser
total heart volume change at higher frequencies and is in line with the findings of
Brecher,136 Nilsson et al137 and the conclusions of Gauer45 that faster and smaller
hearts secure 80 % of their stroke volume during ventricular systole. AVPD is
also known to increase during exercise36, 138, 139 and this may imply an increased
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atrioventricular coupling in humans at higher heart rates.36

4.2 Center of volume

Studies II and IV

Work is defined as the product of mass, acceleration and distance traveled.
Therefore, the mass of the heart, its acceleration and its distance traveled during
the cardiac cycle all have implications for the energy expenditure and the effi-
ciency of cardiac pumping. Therefore, the center of volume variation (COVV)
for the total heart was calculated in Study II to measure the distance traveled by
the heart during the cardiac cycle. In Study II the COVV in healthy subjects was
2.3�0.1 mm. The COVV was not significantly different in the patient popu-
lation before surgery, 1.9�0.05 mm (p=0.09), Figure 4.4. After cardiac bypass
surgery the COVV increased significantly to 3.6�0.09 mm (p=0.01), and this
was significantly larger than in healthy subjects (p=0.007), Figure 4.4.

The COVV described a loop in all three dimensions that began and ended
near each other, suggesting that this is a physiological finding and not random
movement (Figure 4.5). After cardiac surgery the COVV doubled and the main
direction of the loop was similar to that before surgery with the main movement
being towards the right side of the heart in systole and back again in diastole. The
pathophysiological significance of this is unclear but the constancy of the COVV
has been proposed to influence the energy state of the heart, possibly influenc-
ing long-term pumping efficiency.57 The explanation of the increased COVV
after pericardiotomy could reflect the paradoxical movement of the interventric-
ular septum towards the right ventricle.140 The cause of this paradoxical septal
movement is not fully understood and several explanations have been proposed,
for example exaggerated cardiac mobility explained by the lack of restraint of the
pericardium,141 events during cardiopulmonary bypass,142 systolic translation of
the ventricle,143 impaired motion pattern of the RV144 and the displacement of
septum at diastole because of a transseptal pressure gradient.145 In the present
study the largest COVV occurred in a direction similar to the paradoxical move-
ment of the septum (see study II, figure 5). Thus, it is possible that the paradoxi-
cal movement of the septum may partly contribute to the increase of COVV after
surgery.

The center of volume movement of the ventricles was measured in Study IV
as a measure of differences in pumping between the ventricles. The center of vol-
ume movement for the ventricles between end diastole and end systole in the base
to apex direction was found to be larger in the right ventricle (13.0�0.7 mm,
p<0.001) compared to the left ventricle (7.6�0.4 mm). There was no significant
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(a) (b)

(d)(c)

FIGURE 4.4 The COVV, AVPM (synonymous to AVPD)
THVV and THV for the healthy subjects and patients before
and after cardiac surgery in study II.

difference between the movement in the base-apex direction and the maximum
movement in three dimensions for the left or right ventricle (p=0.55 and p=0.39,
respectively). The similarity in movement of the ventricular center of volume
between the base to apex direction and the maximum movement in three dimen-
sions implies that AVPD explains most of the center of volume movement. The
longitudinal shortening of the right ventricle was larger than for the left ventri-
cle, in line with the findings of greater contribution of AVPD to right ventricular
pumping compared to the left ventricle (see section 4.4).
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FIGURE 4.5 The COVV throughout the cardiac cycle described
a loop in three dimensional space similar in healthy subjects (a)
and patients (b). After cardiac surgery the COVV doubled (c).
The black dot indicates the COV coordinates at end diastole.
The white arrowhead indicate the COVV in systole and the black
arrowhead the COVV in diastole. The dotted line indicate the
maximum distance between the COV during the cardiac cycle.
Note that the COVV loop begins and ends nearly at the same
coordinates.

4.3 Atrioventricular plane displacement and apical
motion

Studies I, II, III and IV

The longitudinal component of ventricular pumping involves shortening of
the ventricle. This can be accomplished by shortening of the base, atrioventricular
plane displacement (AVPD) or apical motion. AVPD and apical motion for the
left ventricle was investigated in study III. AVPD was compared between athletes,
patients and healthy controls in study III. The AVPD of the left ventricle for con-
trols was 16�0 mm. AVPD of the left ventricle was similar in athletes (17�1
mm, p=0.45) and lower in patients (7�1 mm, p<0.001), Figure 4.6. AVPD was
greater in the present study (16 mm) compared with a three dimensional trans-
esophageal echocardiographic study by Carlhäll and coworkers (10 mm),146 and
this can be explained by several factors. First, the subjects in that study were older
(56�11 years vs. 24�1 years in our study) and AVPD is known to decrease with
age.147 Second, six of the subjects of that study were imaged during general anaes-
thesia and this could affect AVPD. Last, the AVPD was measured at the mitral
annulus in that study and at the tip of the muscular wall in our study which is
known to differ.148 Noteably, the AVPD of the study III is in accordance with re-
cently published normal values of AVPD by MRI.30 AVPD is known to decrease
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with age,147 and in study III patients were older and had higher heart rates than
controls. Thus, part of the difference in AVPD may be related to these disparities.
AVPD was studied during breath hold and earlier studies have shown a slight in-
crease in AVPD during inspiration.149

Apical motion can contribute to longitudinal shortening but earlier studies
have reported the apex to be relatively stationary.11, 41, 44, 76, 150, 151 In study I we
showed a limited shortening of the entire heart in the apex-base direction during
systole (0.9�0.5 %) which also has been reported by others (0.03�1.0 %).123

Taken together with the limited center of volume movement (2.3�0.2 mm) of
the heart during the cardiac cycle (study II), these findings imply that the apical
movement can be no more than a few millimetres, and this is confirmed by study
III. Study III showed that apical motion between end diastole and end systole was
small for controls, athletes and patients (1.9�0.5 mm, 1.8�0.5 mm and 0.1�0.2
mm, respectively). Furthermore, by analysis of the contribution to the SV on an
anatomical basis, the apical contribution was found to be negligible. In contrast,
a study using epicardially implanted radiopaque markers in sheep reported that
apical motion constitutes 22 % of the longitudinal shortening of the ventricle.152

However, the same study found that isolated AVPD correlated better to ventric-
ular stroke work than AVPD combined with apex movement. This implies that
apical epicardial motion is not a large contributor to the SV. Furthermore, it is
possible that the increased apical movement found in the mentionend study152

may be an effect of the surgical preparation with pericardiotomy. Moreover, the
epicardial contour of the apex moves very little, although this does not imply
that the apical myocardium does not contribute to LV pumping. In conclusion,
the AVPD of the LV can be used as an approximation of longitudinal function
without taking apical motion in consideration because of the relatively stationary
apex.

In study IV a new method for determining the mean AVPD of the right
ventricle by MRI was presented. This method takes into account the movement
of the septum, the lateral free wall and the right ventricular outflow tract (see
Methods 3.5). The AVPD of the right ventricle determined by this method was
larger (23.4�0.8 mm, p<0.001) compared to the left ventricle (16.4�0.5 mm)
which is consistent with earlier studies using echocardiography and MRI.21, 153–155

4.4 Longitudinal function

Studies III and IV

AVPD has been recognized as an important contributor to LV pumping8, 42, 43, 45, 68
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FIGURE 4.6 The atrioventricular plane displacement (AVPD),
stroke volume (SV) and percentage contribution to the SV by the
AVPD (SVAVPD%) for the left ventricle in controls, athletes and
patients. ns p>0.05, ** p<0.01, *** p<0.001

and used as a measure of global LV function,65–67, 156 but the portion of the LVSV
derived by AVPD (LVSVAVPD%) has been unclear.46, 146, 157, 158 Methodological
limitations of echocardiography were discussed by the authors of a study that de-
termined the LVSVAVPD% to �80 %,46 and in some cases the calculated LVSV
derived from the AVPD was larger than the measured total LVSV. Furthermore,
the relationship between longitudinal and radial function is affected by heart dis-
ease159 and cardiac function in athletes is different from controls.34 Therefore,
study III was performed to calculate the LVSVAVPD% in healthy subjects, ath-
letes and patients with dilated cardiomyopathy. The previously proposed derived
method42 was refined and validated against direct measurement of the LVSV gen-
erated by AVPD (LVSVAVPD) in a subset of the healthy subjects. The LVSVAVPD

determined by direct measurement and the derived method did not differ (70�14
ml vs. 68�11 ml, p=0.67). There was a good correlation between the direct mea-
surements and the derived method (r=0.82, p=0.007), and the difference between
the direct measurements and the derived method was 2�8 ml. Therefore, the
refined derived method was used in all subjects in study III. The LVSVAVPD% for
controls was 60�2 %. LVSVAVPD% did not differ for athletes (57�2 %, p=0.51)
or for patients (67�4 %, p=0.24), Figure 4.6. Interestingly, controls, athletes and
patients had similar LVSVAVPD% although the AVPD was lower in patients com-
pared to controls. This can be explained by a higher SV in athletes, a lower SV in
patients compared to controls, the non-significant trend towards larger short-axis
areas in athletes, and a significantly larger short-axis areas in patients compared to
controls.

Longitudinal function has been proposed to be more important in the right
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ventricle compared to the left ventricle,9, 154, 160 and AVPD has been shown to
be larger on the right side compared to the left side.153 However, no study has
quantified the part of the RVSV derived by AVPD (RVSVAVPD). Therefore, study
IV was designed to determine RVSVAVPD by direct volumetric measurement as
well as the derived method used in study III. The RVSVAVPD determined by the
volumetric and derived method did not differ (p=0.60) and the difference be-
tween the volumetric and derived method was 2.6�7.2 ml (range -11 to 9 ml).
There was an excellent correlation between the derived and volumetric method
for RVSVAVPD (r=0.92, p<0.001). The amount of right ventricular stroke volume
generated by longitudinal AVPD (RVSVAVPD%) was 82�2 % by direct volumetry
and 78�2 % by the derived method. The difference between the ventricles is ex-
plained by the larger AVPD of the RV compared to the LV, whereas the short-axis
areas of the left and right ventricle did not differ. Figure 4.7 shows the proportion
of the stroke volume generated by radial function and longitudinal function for
each ventricle and the total heart.
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FIGURE 4.7 Percentage contribution to stroke volume by radial
(rad) and longitudinal (long) function for the right and left side
of the heart as well as the total heart. * p<0.05, *** p<0.001

Radial function in Figure 4.7 is calculated from flow imaging (see section 4.5
below) and thus is independently calculated and also serves as validation. The
longitudinal contribution to RVSV, LVSV and TSV was larger than the radial
contribution (p<0.001 for all groups). The longitudinal contribution to RVSV
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was larger than the longitudinal contribution to LVSV (p<0.001), and the radial
contribution to LVSV was consequently larger than the radial contribution to
RVSV (p<0.05). The difference in pumping between the ventricles can be appre-
ciated in Figure 4.8. In conclusion, longitudinal function explains �60 % of the
left ventricular stroke volume and �80 % of the right ventricular stroke volume.

RV
LV

FIGURE 4.8 Three dimensional reconstruction of the epicardial
borders of the left ventricle (LV) and right ventricle (RV) in end
diastole (open net) and end systole (colored surface).

4.5 Integration of outer and inner volume changes of
the heart

Studies I-IV

Studies I and II raised questions regarding the cause of the total heart volume
variation (THVV) and why THVV did not differ between healthy subjects and
patients with decreased AVPD. Atrial filling is coupled to ventricular ejection by
AVPD but the stroke volume generated by radial function, however, does not
affect atrial filling. Thus, radial function has been proposed to explain the inward
motion of the outer borders of the ventricles42, 46 and hence, total heart volume
variation.123 Study IV was performed to test the hypothesis that the SV caused by
radial function explains the outer heart volume variation. THVV was calculated
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by the flow and volumetric methods described previously (section 3.3). Figure 4.9
shows the relationship between THVV and the stroke volume generated by radial
function (r=0.92, R2=0.84, p<0.001). The difference between THVV and the
stroke volume generated by radial function was 3�13 ml (range -10 to 16 ml)
and THVV did not differ significantly from the stroke volume generated by radial
function (p=0.66). The R2 of the relation between THVV and radial function
was 0.84. This implies that 84 % of the THVV depends on radial function of
the ventricles. The remaining part of the THVV might be explained by THVV
at the atrial level or be a measurement error. As discussed in the Introduction
and illustrated in Figure 1.3, outer volume changes of the atria will also influence
the measurement of THVV. Study I showed that the atria contributed to a small
part of the THVV and this is in line with the low COVV found in study II. No
atrial contribution to THVV would mean a larger COVV (see Figure 1.3). The
reduced outer dimensions of the atria at the time point of minimum THV can be
appreciated in Figure 6 in study I and Figure 2 in study IV.
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FIGURE 4.9 Relationship between outer volume variations of the
heart and radial function of the ventricles. The solid lines indicate
the line of identity and the broken lines the regression line. Note
that the right heart has lower volume variation and radial function
that the left heart.

In studies I and IV the THVV was found to be larger on the left side of the
heart (61�2 % and 62�2 % of the THVV, respectively) compared to the right
side. This is consistent with the larger longitudinal function, and thus less radial
function, found on the right side of the heart compared to the left side. In study
III, the longitudinal function of the left ventricle did not differ between healthy
subjects and patients with decreased AVPD. Thus, the reason for an unchanged
THVV between patients and healthy subjects in study II may be a similar relation-
ship between longitudinal and radial contribution to the SV. Notably, the THVV
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differs between subjects and the findings of study IV indicate that this is related
to different proportions of radial and longitudinal function between individu-
als. Furthermore, THVV has been shown to be smaller in smaller species41, 43, 45

compared to man.49 Considering the current findings, this implies that radial
function is less important in smaller species, and that longitudinal function is the
major contributor to SV in these animals.

In conclusion, most of the total heart volume variation from end diastole
to minimum THV is explained by the radial component of the ventricular stroke
volume although there is a small atrial contribution that lowers COVV. A method
for quantifying the radial function of each ventricle by flow imaging of the vessels
leading to and from the heart has been presented and validated. In Figure 1.3,
five theoretical models of total heart volume variations and cardiac pumping were
presented. The results of studies I, II and IV support model E of Figure 1.3
which shows that a combination of radial and longitudinal function contribute
to ventricular pumping (Figure 4.7) and that there is a proportional decrease in
THV of all parts of the heart during systole (Fig. 6 and 7 of Study I). This is
concordant with a minimal COVV (Figure 4.4 and Figure 4.5) and a low THVV
(Figure 1.4, Figure 4.4 and Figure 4.10).

4.6 Late ejection filling volume

Study V

The time point of the lowest THV occurs during late systole and close in-
spection of the flow measurements from study I show that the inflow to the heart
begins to exceed the outflow prior to the end of systolic ejection. This results in
an increase of THV before the end of systolic ejection, which would mean that
the lowest THV does not coincide with end systole. We propose the term late
ejection filling volume (LEFV) for this increase in THV which occurs between
minimum THV and end systole. Figure 4.10 shows the heart at minimum THV
as well as end systole. To our knowledge, the LEFV has not previously been de-
scribed or quantified and therefore Study V was designed to calculate LEFV. The
quantification of the LEFV is illustrated for both sides of the heart and the total
heart in Figure 3.2. The LEFV is the difference in inflow and outflow between
the time points indicated by the two vertical dotted lines 1 and 2. The LEFV for
the total heart was 11.4�1.3 ml which corresponds to 17.8�2.3 % of the THVV
or 1.4�0.1 % of the THV. The LEFV of the right and left side of the heart did
not differ (p=0.92). The LEFV must occur in the atria because of the ongoing
ventricular ejection which means that the atrioventricular (AV) valves are closed.
Thus, the LEFV may be the result of atrial filling during late systole by blood that
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FIGURE 4.10 Cardiac structures and the pericardial contours of
the heart throughout the cardiac cycle. The top panels show the
heart in a four-chamber view. The two bottom rows show the
heart in short-axis views as indicated by the lines 1 and 2 in the
top left-hand panel. The pericardial contours and AV-plane is
indicated by a solid line at end diastole and by a broken line at end
systole. The pericardial contours and the AV-plane in end diastole
and end systole are superimposed in the right hand column. The
dotted line in the four-chamber view divides the heart into the
left and right side. The SV generated by AVPD is indicated by
diagonal lines. A heart with a THV of 800 ml and a THVV
of 8 % (�60 ml) generate its TSV of 200 ml (100 ml from each
ventricle) by a longitudinal function of 80 % (80 ml) on the right
side and 60 % (60 ml) on the left side. This volume is indicated
by the diagonal lines in the top right panel. The remaining total
stroke volume of 60 ml (200 ml - 80 ml - 60 ml) is generated by
radial squeezing that results in a THVV, which can be appreciated
as the difference between outer pericardial contours at ventricular
level in the right hand column.
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was accelerated during earlier systolic AVPD. This could mean that kinetic en-
ergy from inflowing venous blood is generated during early systole and the inertia
of the blood from the veins causes continued filling in late systole (LEFV) and
ultimately early diastole. This may imply that diastolic dysfunction rather may
be a diastolic observation of dysfunction during systole which has been under de-
bate.161, 162 A reduction in systolic function would thereby result in a decrease
in kinetic energy of the inflowing venous blood which would be observed as a
reduced LEFV and a reduced diastolic ventricular filling rate. This hypothesis
is supported by previous studies showing a coupling between systolic and early
diastolic function40, 163 and decreased longitudinal systolic function in patients
with diastolic dysfunction.164–166 The LEFV may thereby be a novel measure to
further understand this connection and may be a new measure of systolic dysfunc-
tion. Further studies to elucidate the kinetic energy of blood flow throughout the
cardiac cycle in health and disease are therefore merited.

4.7 Atrial wave reversal volume

Study V

The rise in atrial pressure which can be observed by cardiac catheterization
during atrial contraction167 causes reversal of blood out of the heart in late diastole
(a-wave reversal) which can be seen using Doppler echocardiography.20, 134, 135, 168

This reversal results in a late diastolic decrease in the THV and it has been pro-
posed that this results in a neglible change in volume.23, 35 However, the a-wave
reversal volume (AWRV) is difficult to measure with Doppler echocardiogra-
phy169–171 and therefore has not been quantitatively assessed. The negative flow
during late diastole can be seen in the flow data in Figure 3.2 and from these flow
measurements the AWRV was calculated in study V. In ten out of eleven subjects,
flow out of the heart in the veins was found in late diastole and this coincided
with the AVPD caused by atrial contraction (Figure 3.2). The resulting AWRV
was greater in the caval veins (4.3�0.6 ml, p<0.05) than in the pulmonary veins
(2.6�0.7 ml). The resulting volume decrease of the total heart caused by the
negative flow in the veins during late diastole was 6.9�1.1 ml. Furthermore, the
total AWRV was 11.2�1.9 % of THVV and 0.8�0.1 % of THV. A-wave reversal
assessed with Doppler echocardiography has been found to correlate to left ven-
tricular end diastolic filling pressure172 and right ventricular function,173 and this
implies that the THV decrease during atrial contraction is related to ventricular
function.

The presence of an AWRV means that the maximum THV does not occur in
end diastole but rather in late diastole before atrial contraction (Figure 4.10). The
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THVV reported in this thesis is based on calculations of THV at end diastole
and thus the maximum THVV is slightly larger than the reported 5-11 % of
study I. However, this does not mean that the findings of previously published
studies23, 35, 123 or study IV must be re-evaluated. The difference between THV
in end diastole and minimum THV should still be used when using THVV to
calculate systolic radial function. The amount of blood exiting the heart during
atrial contraction does not influence the relationship between radial function and
THVV during systolic ventricular contraction.
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Chapter 5

Conclusions

This thesis has investigated aspects on cardiac pumping that may contribute to
the understanding of cardiac pumping efficiency. The thesis has explained the
total heart volume variation throughout the cardiac cycle and quantified the con-
tribution of the AV-plane to ventricular pumping. The major conclusions of each
paper were:

I. The total heart volume decreases during systole by �8 % (range 5-11 %)
in humans. The variation in total heart volume change between subjects
likely demonstrates a true physiological variation because of the concordant
findings from two independent methods.

II. The center of volume during the cardiac cycle describes a well-defined loop
in three-dimensional space �2 mm between the extreme points. COVV
and THVV are similar in patients and healthy individuals. After coronary-
bypass surgery, however, COVV approximately doubled while the THVV
was nearly unchanged.

III. Longitudinal AVPD is the primary contributor to LV pumping, accounting
for �60 % of the SV in healthy subjects and this does not differ in athletes
or in patients with dilated cardiomyopathy.

IV. Radial function of the ventricles explains over 80 % of the THVV and in-
dependent measurements by volumetric and flow methods yielded similar
results. The longitudinal component of RV pumping is higher compared
to the LV (�80 % vs. �60 %), and is explained by the larger AVPD of the
RV.

V. A previously unknown increase in total heart volume before the end of sys-
tolic ejection which occurs in the atria has been identified and quantified
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to �11 ml. This volume might be important for understanding the cou-
pling between systolic and diastolic function. Furthermore, the total heart
volume decreases during atrial contraction by �7 ml.
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