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A COMPARISON OF ROBUST AND ADAPTIVE CONTROL

K.J. Astrém
Department of Automatic Control, Lund Institute of Technology,
Box 118, 221 00 Lund, Sweden

L. Neumann and P.O. Gutman
EL-OP, Israel Electro—-Optics Industries, POB 1165, Rehovot 76110, Israel

Abstract. Design of control systems for plants with considerable parameter
uncertainty can be approached by robust control and adaptive control. Robust
design methods gives fixed compensators with satisfactory performance over a
specified range of plant parameter variations. Adaptive design methods
extract knowledge of the plant parameters on line and redesigns the control

law. These two approaches are compared in the paper.

1. INTRODUCTION

This paper considers control of systems with unknown or time wvarying
dynamics. It is attempted to understand the possibilities and limitations of
controlling such system with linear constant parameter controllers, and to
compare with adaptive control. One goal Is to indicate when one type of

control is advantageous over the other.

The problem of plant uncertainty inspired Black’s invention of the feedback
amplifier. It has in different forms been in the mainstream of feedback control
research ever since. The problem is now frequently popularized as robust
control. The problem of parameter variations cannot be dealt with in isolation.
A proper approach must also include other aspects of control systems design
like command following, load disturbances and measurement noise. In this

paper the main emphasis is, however, on the parameter variations.

Some fundamental {ssues that characterize the control of uncertain systems are
discussed in Section 2. A few illustrative examples are given. Different ways
to formulate design problems which can cope with parameter variations are
mentioned in Section 3. The main emphasis {s on the Horowitz design method.

Conditions for this method to work for a realistic class of plants are stated in



essential that the perturbations are such that M(s) is stable.

There is a convenient frequency domain criterion which guarantees the
stability of a closed loop system under unstructured uncertainty. This can be

stated as the inequality:

1+ Lgtdw)
Ly (3w)

> mlw) (2.3)

where Lo(s) is the loop transfer function. The inverse of (2.3) gives the
Horowitz bound which will be Introduced later in Section 3. Unstructured
uncertainties and consequencies for design are discussed in Kimura (1984),

Astrdm (1985), Doyle and Stein (1981), and Morari and Doyle (1986).

The graph topology is suitable for determining a neighbourhood of a linear
system for investigating stability robustness, see Vidyasagar (1985).

In this paper we will use combinations of structured and unstructured
uncertainty. It will be assumed that the low frequency characteristics of the
plant are described by structured uncertainty but we will allow unstructured

uncertainty at high frequency.
Simultaneous stabilization

General conditions for existence of robust controls are not known. It {s
therefore of interest to know necessary conditions. Simultaneous stabilization
is such a condition. It is defined as to find a fixed gain compensator that
stabilizes all plants in a given set (Vidyasagar, 1985). For sets that include
unstable plants robust control implies simultaneous stabllization. Criteria for
robust stabilization are given in Kimura (1984), Lehtomaki et al. (1984),
Vidyasagar (1985), Ghosh (1985), Bialas (1985), Saberi (1985). Simple conditions

involve the notion of high frequency gain which is defined as follows.

Definition 1: The high frequency gain k of a plant P(s) is defined as:

k 4 lim sdP(s) (2.35)
85

where d denotes the excess of poles over zeros. a



family as shown in Yaniv (1986c¢).

The sign of the high frequency gain must be known when a linear time
invariant compensator is designed. This is however no longer necessary if

nonlinear compensators are used, See Nussbaum (1983) and Martensson (1986).

3. THE HOROWITZ DESIGN METHOD

There are several design methods which can give robust control laws. One
technique has been proposed by Doyle and Stein (1981). It is based on the LQG
methodology. By adjusting the weighting matrices in the LQG problem, a "loop
transfer recovery" is achieved. Doyle and Stein (1981) also presents a method
to analyze robustness when the plant uncertainty is unstructured, the so
called o-method which is based on minimum and maximum singular wvalues.
Morari and Doyle (1986) give an overview of several methods. Another
approach is to describe the system by a set of models (Fan et al. 1985). The
design methods used in this case are frequently based on multiobjective
optimization. In this paper we will use the Horowitz design method, Horowitz
and Sidi (1972). This was originally developed for structured perturbation. An

extension to constructured perturbations will be glven.

The Method

The Horowitz design method is a direct descendent of Bode’s work on feedback
amplifiers Bode (1945), where the key problem was to design feedback systems
that could cope with the changing characteristics of vacuum tube amplifiers,
see Horowitz (1963). The key ldeas are the following: Assuming that the output
and the reference are both available for measurement, a two
degree-of-freedom structure, consisting of a feedback compensator, and a
prefilter is proposed. The feedback loop is used to stabilize the plant (if
necessary), to reduce the sensitivity to plant variations, and to reject
disturbances. The prefilter is used to shape the nominal transmission from
reference to output, thereby giving a required set point response. See Figure
3.1,



The Horowitz design method has been successfully used in a considerable
number of practical applications, among others Ashworth and Towill (1982),

Horowitz et al. (1983), and Gutman et al. (1986).

Design Procedure

Step 1: Determine the closed loop specifications as upper and lower limits on
the gain of the closed loop transfer function. Phase tolerances can also be
included. The differences between the limits (in decilog or dB) are called
TOLERANCES. Also determine the desired disturbance rejection, see Equation
(3.3c). This may be frequency dependent.

Step 2: Determine the plant uncertainty by speclifying the range of variation
of the plant transfer function for different frequencies. For each frequency the

plant uncertainty gives rise to a TEMPLATE.

Notice that no feedback is necessary at those frequencies where the tolerances
exceed the plant uncertainty. If this is the case for all frequencles, an open

loop control could be considered.

Step 3: Given the tolerances and the templates, calculate constraints on the
open loop transfer function L(jw). In the complex plane the constraint for each
frequency will take the form of a border between an allowed and a forbidden
region for the nominal compensated open loop system. The borders are called
HOROWITZ BOUNDS.

Step 4: Design a feedback compensator so that the compensated open loop
transmission satisfies the tolerances. This is conveniently done in a Nichols
chart. A series compensator composed of minimum phase stable transfer
functions is added until the loop transfer function for each frequency is on the

correct side of the bound, or until the task is considered impossible.

Step 5: Design a prefilter so that all transfer functions lle within the closed

loop specifications. This design is conveniently done in a Bode chart.

It i1s straightforward to calculate the Horowitz bounds. Several computer

programs are available for the design, e.g. the interactive program HORPAC,
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0 < A(w) < IT(Ju) ! < B(w), for o < ©g (3. 3a)
IT(o) | § =—, for w > (3. 3b)
r c
w
1
1T + G(joIP(j) < x, x>1 (disturbance rejection)

(3. 3c)

where ©, defines the end of the Ylow frequency region”. Assume that “c < Oy

and let [uc,(.) ] be the "cross-over frequency region”.

H

For a given o find the set of complex numbers E(w) 4 {atw)}:

a(w)P(jaw)
{ alw): A T+ ala)P(jo) ‘ < B(w)-A(w) for w<o
(3. 4)
1
and 1T+ ala)P(Ja) | € x for all P(s) E P(s, p) }

where A denotes the variation over the set of plants. The difference Bl(w)-A(w)

is the "tolerance" for w. We have the following result:

Theorem 1: Necessary and sufficient conditions to achieve the closed loop
specifications (3.3) with stable, minimum phase, strictly proper compensators
G(s) and F(s) are that:

(a) if “c < (')H’ there exists an w € [oc,oH] such that the set E(w) is simply

connected, or, If mc = uH ’ E(uc-) N E(w, +) 18 non-empty, (where w- (w+)

H
denotes an infinitesimal neighbourhood to the left (right) of w).

(b) that there exists a continuous function P(w) that satisfles the Bode
gain-phase relations, such that for each P(s) € P(s,p), B(w)-P(ju) satisfles
the general Nyqvist stability criterion and such that p(w) € E(w) for each

W. a

Remark 1:

The assumption that w < oy is necessary since if ®

find a G(s) that satisfies (3.3a) for [

H < © it is impossible to

H,wc]. Knowledge of the sign of the high

frequency gain is necessary for stabilizability. See section 2. ]
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Figure 3.2. E(w) for some values of w. ul € low frequency region. w, € cross
over frequency region. w, € high frequency reglon. N%te that
E(w +) is disjoint and thaf? E(w _-) c E{(w_+). Note that E(uﬂ-) is
disfoint and that E(o #) ¢ EmH—‘i. Note tiiat E(w,) 2 Etwy#.

different frequencles.

From the above arguments it is clear that it {s possible to select
continuous functions f(w), with p(w) € E(w) for each w, separately in the

low frequency region, and high frequency region. If w, <O the
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where P () is a nominal plant model. (]
nom

Remark 6:

Conditions (b) and (c) impose conditions on the interplay between the plant
uncertainty (3.1) and the closed loop specifications (3.3). Recall that according
to Bode’s relations e.g. Ashworth, (1982), gain decrease per frequency unit is
coupled to the phase (cf. e.g. 1/s and 1/52). Hence, the required open loop gain
decrease per frequency unit over the cross-over frequency region must not be
such that the open loop phase violates the stability criterion (b). For example
if the required gain decrease is of the order 1/53, then the open loop phase has
to be -270°, and the Nyquist criterion will be violated for an open loop stable
P(s).

The passage from "high" open loop gains near ©, to "low" open loop gains near
Wy must take place over a suitable frequency span. This imposes the following
limit on the phase variations of the plant templates PL(ju,p) in the cross over

frequency region:

-]
A arg P, (jo, p) < (360-9) (3.6)

where ¢/2 denotes the phase margin given by (3.3c)). An example of a "fat"
template that must be placed either at a high or at a low open loop gain is
given in Figure 3.3.

The theorem gives an insight into the trade-off between plant uncertainty and
closed loop specifications. By relaxing the tolerances in (3.3) and (3.4), the
sets E(w) may grow, and conditions (b) and (c) are easier to satisfy.
Conversely, it might be found that the plant uncertainty has to be decreased,
and that a robust control alone is not sufficient. One possibility is then to use
on-line identification to improve plant knowledge, and to implement an
adaptive controller. Note in particular that the theorem indicates the

frequency range where the plant uncertainty should be reduced. (]

Remark 7:
If the plant is non-minimum phase arbitrary specifications (3.3) cannot be
satisfied, see Horowitz and Sidi (1978, Horowitz and Liao (1984). In practical
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Horowitz (1980) that the optimal G(s) lies on the boundary of E(w) for all
w <o . Gera and Horowitz (1980) also gives an algorithm how to compute the

optimal G(s). a

When applying the Horowitz design method in practice, only a finite number of
plant cases is considered, Gutman and Neumann (1985). These must be chosen
judiciously. It is not sufficient to consider only cases where the parameters
assume their extreme values. This is realized by studying the template and
Nichols chart of Figure 3.3.

4. ADAPTIVE CONTROL

When comparing robust and adaptive control it is essential that similar control
problems are discussed. For this reason we will discuss an adaptive regulator
for a deterministic control problem. The regulator is based on the principle of
certalnty equivalence, i.e. the control design is based on the assumption that
the identified process parameters are the correct ones. It is assumed that the

process to be controlled can be modeled by
A(gq)y(t) = B(glu(t) (4. 1)

where u is the control variable y the controlled output and A and B are
polynomials in the forward shift operator. Assume that it is desired to find a
control law such that the relation between the command signal and the output

is glven by

Am(q)y(t) = Bm(q)u(t) (4.2)

Furthermore let the observer polynomial be Ao. When the parameters are
known and certain technical conditions are satisfied the design procedure can

be expressed as follows.

Design Procedure

Factor the polynomial B as B+B-, where B+ is monic stable and well damped.

Determine polynomials R and S which satisfy the equation

AR, + B S =AA (4.3)
om
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Figure 5.1. Nichols chart (dB wvs. degrees) displaying bounds and gxe
compensated nominal open loop for Example 1. Pnom(s)=1/(1+23) .

Consider a process characterized by

P(s)=k/(1+TB)2,k € [1,41, T € [0.5, 2]

Let the alm of the control system is to make the output follow step commands
well and give zero steady state error for constant load disturbances for all

parameters in the given range.

Robust design:

The closed loop gain tolerances are given in Table 5.1. The disturbance

rejection (= x in equ. 3.3c) is required to be at least 6 dB.

Table S.1: Closed loop gain specifications for Example 1.

w [rad/s] 0.1 1 0.2 1 0.5, 1 1.0,.1 1.5 1 2.1 4.1 2 5|
upper [dB] 0.1, 1 0.2, 1 0.8, 1 1.5 1 2.0 1 O, 1-12. | -18 1
lower [dB] -0.1 1-0.2 1-0.5 1-1.0 |-3.0 |- 8 1-25 lfree |
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Robust control: ref & outputl. T changes from 1 to 0.5 at time

a 0 0 .y

HUuyuy

i v

8. 25, . o%. 75. 129.

control signal

-3,
a. 2s. 50. 75. 160, /

Figure 5.3. Simulation of the robust control system. The gain i{s changed
from 1 to 4 at time t=15s. The time constant is 1.

1 —n N N

0 10 20 30 40 50
2
0]
-2
14 T L 1 1] 1
0 10 20 30 40 50

Figure 5.4. Simulation of the adaptive control system. The galn {s changed
from 1 to 4 at time t=15s. The time constant is 1.

Figure 5.4.

Comparison: A comparison of the Figure 5.3 with Figure 5.4 and other
simulations, Astrém et al. (1987b) gives some of the characteristics of the
different approaches. The robust control responds much faster to parameter
varilations than the adaptive system. In Figure 5.4 {t takes three transients
after a parameter change before the adaptive system has adjusted to the
changed parameters. The robust system responds I{nstantaneously. The

response of the robust systems is not perfect, but within specifications. The
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0
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Figure 5.5 Nichols chart (dB wvs. degrees) displaying bounds and the
compensated nominal open loop for the integrator with delay.
P (s) = 1.
nom
1 —— =
: -
-1
0 20 40 60
4
o\ /_' J
-41 |
0 20 40 60
Figure 5.6. Step response and step disturbance rejection for control with the
robust regulator when T d =0.1.
F(g) = .—i%
[1 + 5]

Simulations of the time responses for the extreme values of the time delay are

shown in Figure 5.6 and Figure 5.7. A more complex controller that satisfied

the bounds was attempted, but the time response were inferior, see

Astrdm, (1987b).
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[\
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0 20 40 60/
Figure 5.9. Step response and step disturbance rejection for control with the

adaptive regulator when T d =1,

Comparigon:

Figure 5.6 and Figure 5.7 show that although the frequency domain
specifications for the robust design are almost satisfied there is quite a
variation in the step responses when the time delay is changing. The
responses of the adaptive system are much better. Apart from the time delay
there is practically no difference between the responses shown in Figure 5.8
and Figure 5.9. Also notice the differences in the control signals. The high

gain nature of the robust regulator is clearly noticeable.

Example 3: An industrial robot arm.
A simple model of a robot arm was used in this case. The transfer function
from the control input (motor current) to measurement output (motor angular

velocity) is

lﬂ.sz + d‘lﬂ-Ja-s + k.l’.n‘]a
P(g) = Jm Jm Jm
s3 + d.Jm+Ja.52 + k,‘Jm+.‘la.

JIm+Ja Jm-Ja °

with Ja € [0.0002,0.002], Jm=0.002, d=0.0001, k=100, and km=0.5. The moment of
inertia Ja of the robot arm varies with the arm angle. Bode plots of the plant
gain for the extreme values of the arm inertia Ja are given in Figure 5.10. The
purpose of the control system s to control the angular velocity step

responses at various arm angles.
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The open loop design is shown i{n Figure S5.11. A feedback compensator which

satisfies the specifications is is:

1251 + §6][1 + 536]
G(g) = = = -
s(1 + goo) (2 + 5000]

This compensator is essentially a PI regulator with a lead filter. The design of
the prefilter presented some difficulties. It was possible to get the closed
loop transfer function envelope within the specifications by choosing a unit
gain prefilter with a pole at -60, a zero at -200, and a resonance at 200 rad/s
with a relative damping of 0.25. However, individual transfer functions inside
the envelope had well attenuated resonance peaks which may cause
oscillations or "wobbling"” Horowitz and Sidi (1972). Indeed, simulations
revealed that the arm angular velocity wobbled slightly, while the measured
motor angular velocity behaved smoothly. Moreover, the settling time was 0.3
seconds for the largest arm inertia, i.e. much slower than the designed
bandwidth would seem to imply. The prefilter was therefore redesigned with
the help of simulations so that acceptable, and non-oscillating step responses
with a settling time of 0.3s were achieved for all arm angle inertias. The final

prefilter is:

2 -

_?._.]
F(s) = 1000
[+ + 2612 + 260) [* + 05

Simulated responses are shown in Figure 5.12 and Figure 5.13.

Adaptive Design

In this particular problem the essential uncertainty is in one parameter only,
the moment of inertia. It f{s then natural to try to make a special adaptive

design where only this parameter is estimated.

The adaptive regulator s designed based on a simplified model. Neglecting
the elasticity in the robot arm the system can be described by

do

Jdt

=k I (5.1)
m

where J = Ja + Jm is the total moment of inertia and km the current gain of the
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(5. 2)

gives a closed loop system with the characteristic equation

92 + 2Ews + 02 =0

The regulator parameters are thus related to the model by simple equations.
Notice that the integration time Ti
and that the regulator gain should be proportional to the moment of inertia.

does not depend on the moment of inertia

A root-locus calculation shows that the design based on the simplified model

will work well if

k3 1/2

J
a

The most critical case occurs for Ja=0.002. It implies that & must be less than
20 rad/s.

The fact that the design is based on a simplified model limits the closed loop
bandwidth. A fast response to command signals can still be obtained by use of
feedforward compensation. For this purpose let the desired response to

angular velocity commands be given by

2
W

G = m (5.3)

m 82 + 2Ew 8 + wz
m m

With the process model (5.1) the feedforward transfer function is given by

G Jo (AN -]
G =-ﬂ= m. m
FF Go km 52 + 280 8 + wz

This feedforward compensator can be implemented as



Figure 5.14.

1 Output snd reference

0.3 _ Control signa!

Simulation of the tailored adaptive systems response, with the
arm Inertia Ja=0.0002. The regulator parameters are initially

tuned for Ja=0.002.

Dutput and reference

1

o 0.2 0.4 0.6

Control signal

(-]

0.5 |
-0.5

T T T
0 0.2 0.4 0.6

T i
0.8 1

Figure 5.15. Simulation of the tailored adaptive systems response, with the
arm Inertia Ja=0.002, The regulator parameters are Initially

tuned for Ja=0.0002.

The parameter h was chosen to 0.1s in the simulations. The figures show that

the system adapts to a good response after two transients. Notice the different

magnitudes of the control signal for the cases of low and high inertia.
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parameter variation in order to ensure stability Kreisselmeyer (1986). The
adaptive systems will also give better respanses to set point changes and load
variations when the parameter estimates have converged, if the underlying
design model is sufficiently correct. This is particularly noticeable for
non-minimum phase systems. Systems obtained by the Horowitz design will in
general have higher loop gains which makes them more sensitive to noise. The
Horowitz design as presented here is meant to be implemented in by analog
hardware. If a digital implementation is desired, the method is slightly
modified. Also notice that a few examples are not sufficient for a comparison

between two design methods. More work is therefore necessary.

Robust and adaptive control are two complementary ways to deal with process
uncertainty. Robust control gives a fixed gain regulator which is designed to
be insensitive to specific parameter variations. Adaptive control deals with
uncertainty by reducing the uncertainty by recursive parameter estimation.
The adaptive control laws are normally derived using the certainty
equivalence principle. This means that a model is determined and a regulator
is designed as if the model was exact. The design is based on low order simple
models. The fact that this procedure may lead to difficulties when the
estimated model is i{naccurate is now well understood. A key difference
between robust and adaptive and robust control is that robust control leads to
a high order fixed gain regulator while adaptive control leads to a time

varying compensator of lower order.

It seems attractive to combine robust and adaptive control. This can be done
in many different ways. One possibility is to use a robust control design as
the underlying design method in an adaptive system. This would intuitively be
better than to use the certainty equivalence principle. The parameter
estimation will also reduce plant uncertainty and thereby make the robust

design easier.

It Is difficult to use robust control in this way because the Horowitz design
method in its present form is difficult to implement as an analytic procedure
which can be used on line. The method thus requires development of analytic
versions. The approach suggested by Doyle and Stein (1981) may be an
alternative. See also Gawthrop (1985). There are however other ways to

combine robust and adaptive control.
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