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Abstract

This thesis is about Turbo codes — codes constructed via parallel concatenation
of two recursive convolutional encoders linked by an interleaver. The focus of the
work is on the understanding and design of Turbo codes. This includes thorough
investigation of central components that influence Turbo code performances,
such as the constituent encoders and the interleaver, as well as the procedure
of iterative decoding. The investigations are carried out for transmission on
additive white Gaussian noise channels.

Two aspects that influence the performance of Turbo codes are considered:
(1) code properties, in terms of Hamming distance spectra, and (2) decoding
properties, in terms of the performance of iterative decoding. It is asserted
that both these aspects are influenced by both the choice of interleaver and the
choice of constituent encoders. An interleaver design algorithm based on these
observations is presented. Furthermore, guidelines for the choice of constituent
encoders are outlined. As regards the interleaver, it can be designed to result in
both good code- and decoding properties. In contrast, the choice of constituent
encoders involves a trade off between the two.

A measure that comprises the interleaver properties influencing the per-
formance of iterative decoding is presented. This measure is called iterative
decoding suitability (IDS), and it is derived using a model that approximates
correlation properties of decoder inputs and outputs.

The aspect of trellis termination of Turbo codes is also investigated. It is
demonstrated that with proper interleaver design, very competitive error rate
performances are obtained also without trellis termination. In addition, it is
demonstrated that the ’error-floor’ Turbo codes are claimed to suffer from at
medium- to high signal-to-noise ratios can be significantly lowered by proper
combination of constituent encoders and interleaver design.
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Preface

In 1995, Prof. Torleiv Maseng engaged two new Ph.D. students at the De-
partment of Applied Electronics, in the area of modulation and coding. These
students were to work on two different projects: one on ’Orthogonal Frequency
Division Multiplex’, and one on "Turbo codes’.

Thanks to being a fortunate friend of Fredrik Tufvesson, I applied for one
of the positions as Torleiv Maseng’s student. Both Fredrik and I were accepted
to the programme and now the question were: ”Which one of us were to work
with which project?”

From the time as an undergraduate student, I had always been intrigued
by channel coding. After some brief discussions between Fredrik and I, we had
agreed on which projects to choose. Of limited surprise, I was to work with
Turbo codes.

With Turbo codes being a recent invention (1993), I was frustrated by the
fact that I was to investigate and apply these codes to various communication
systems without fundamental understanding of the properties that govern their
behavior and performances. As a consequence, my work was directed towards
exactly these issues. In this thesis, I have tried to gather what I have learned
about the fundamental behavior of Turbo codes during my time as a Ph.D.
student.
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Thesis Outline

This thesis is about the understanding and the design of Turbo codes. It consists
of two parts; the first part provides an introduction to the research field, as well
as a review of my research results. The second part consists of papers previously
published elsewhere, or submitted for publication.

In Part I, Chapter 1 provides a brief introduction to communication systems
in general and to the research field of this thesis, i.e. channel coding. A few fun-
damental concepts of channel coding and the goals that the coding community
are striving towards are introduced. In particular, bounds on achievable coding
performances are reviewed, and compared to the performance of an example
Turbo code.

Chapter 2 provides an introduction to the Turbo coding principles. This
includes a description of the different components of a Turbo code encoder,
namely the constituent encoders and the interleaver, as well as to the concept
of iterative decoding. The latter includes a brief review of the BCJR~algorithm
adopted for iterative decoding. Further, the mechanism inherent in the structure
of Turbo codes that lies behind the lower part of the distance spectra of Turbo
codes is discussed.

Chapters 3 and 4 provide an overview of research results regarding the de-
sign of the central components of a Turbo code. The work behind this thesis
has been primarily focused on the role of the interleaver, but also on trellis
termination for Turbo codes and the choice of constituent encoders. The re-
sults obtained regarding the interleaver are reviewed in Chapter 3, where two
conceptually different interleaver design criteria are discussed. Based on these
criteria, an interleaver design algorithm suitable for both small and large in-
terleavers is presented. To our knowledge, the presented algorithm produces
interleavers with unsurpassed performances. Chapter 4 discusses the choice of
the constituent encoders. As in the case of interleaver design, the choice of con-
stituent encoders is considered both from a distance spectrum- and an iterative
decoding point of view.

Finally, in Chapter 5 the research findings are summarized, including a re-
view of the major contributions of this thesis to the research field.

ix
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Part IT consists of the following papers:

I Methodical Interleaver Design for Turbo Codes. Johan Hokfelt and Torleiv
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Chapter 1

General Introduction

There are several different parts or functional components of a modern commu-
nication system that are loosely referred to as ’coding’, for example so diverse
things as image compression and cryptography. Turbo codes belong to the group
of codes referred to as channel codes. In this introductory chapter, the general
concepts involved in a communication system are introduced, and the role of
channel coding is described. Further, fundamental channel coding concepts are
introduced, together with some theoretical limits useful when evaluating code
performances.

1.1 A Model of Communication Systems

A complete communication system embraces numerous areas of interesting and
challenging problems. Most modern communication systems operate in the
digital domain, which offers a large amount of signal processing possibilities
for system and lower level designers. Both for conceptual- and implementa-
tion purposes, it is common to partition the chain of processing performed in
a communication system into separate building blocks, thereby forming a com-
prehensible model of the system. Figure 1.1 shows such a model, whose building
blocks are briefly introduced in the sequel.

The information source generates messages that are to be transmitted to the
receiver. These messages can be either analog or digital, depending on the type
of source. For example, the voice transmitted during a phone conversation is
represented by the continuous time and continuous amplitude signal generated
by a microphone, which together with the speaker constitutes an analog source.
In a digital communication system, the messages delivered from an analog source
are converted into a digital signal, usually represented by sequences of binary
digits, or bits. This operation is performed by the source encoder, which strives
to represent the input messages with as few bits as possible. If the information
source is digital, the source encoding does not require an analog to digital (A/D)

3
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Source Channel .
Source Encoder Encoder Modulator
Channel
IR Source Channel
Destination Decoder Decoder Demodulator

Figure 1.1: Block diagram of a communication system.

conversion. However, the task to represent the message with as few bits as
possible remains. This process is called data compression, a process during
which the amount of redundancy present in the source messages is reduced or,
ideally, removed.

The next block in the communication model is the channel encoder. While
the source encoder is chosen with respect to the particular information source,
the channel encoder is typically chosen with respect to the channel the messages
are to be transmitted on. The purpose of the channel encoder is to make the
transmitted messages less susceptible to, for example, noise and interference
introduced by the channel. In contrast to the source encoder, which removes
redundancy from the source sequence, the functionality of the channel encoder
relies on the principle of adding structured redundancy. Turbo codes — the topic
of this thesis — belong to this type of codes, that is, channel codes.

The channel serves as a conveying medium over which the encoded messages
are transmitted. In many practical situations, for example in radio communica-
tions, the channel is a waveform channel. Hence, it cannot be used to directly
transmit the sequences of binary digits. Instead, the digital sequences must be
converted into waveforms suitable for the specific characteristics of the channel —
a task performed by the modulator. The waveforms output from the modulator
are then corrupted in a way that depends on the characteristics of the channel.
The corrupted waveforms are input to the demodulator whose function is the
inverse of the modulator, i.e. to convert the received waveforms into a discrete-
time sequence, ideally identical to the one that entered the modulator. Due to
the noise and interference introduced by the channel, the demodulator output
will not be exactly the same as the input to the modulator. This is where the
channel decoder comes into play; its role is to counteract the channel-induced
disturbances, by exploiting the redundancy introduced by the channel encoder.

In general, for optimal system performance the source encoder, channel en-
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coder and modulator should be considered as a single function, and not sepa-
rated into disjoint blocks as in Figure 1.1. However, Shannon showed in [84]
that, asymptotically, source and channel encoding can indeed be separated into
individual units, without loss of optimality. The same does not hold for the
channel coding and the modulator functions. For example, it is well known that
trellis coded modulation (TCM) [92, 93], which is a technique that combines
channel coding and modulation, can achieve higher performance than methods
that consider channel coding and modulation separately.

1.1.1 Channel Models

When studying and comparing channel codes, it is convenient to consider the
modulator and demodulator as being part of the channel. The result is a com-
posite channel with discrete-time inputs and discrete-time outputs, character-
ized by the possible inputs, the possible outputs, and transition probabilities
that relates the outputs to the inputs. In general, these transition probabilities
may vary with time, and they may also be correlated from one time to another.
Further, the channel output does not necessarily depend on the current input
only; it may depend also on previous channel inputs. In such cases, the channel
is said to have memory. The channels encountered in mobile communication sys-
tems are examples of channels that often must be modeled as time varying and
with memory. These effects arise from the combination of movement and the
numerous reflections of the transmitted radio wave, caused by the propagation
environment between the transmitting and receiving antennas.

This thesis is about understanding and designing Turbo codes. Due to the
complex nature of these codes, it is desirable to use fairly simple channel models
which do not introduce intricacies that further hinder the understanding. At the
same time, it is of course desirable to use a model with practical relevance. An
attractive compromise between these objectives is the additive white Gaussian
noise (AWGN) channel. As suggested by the model name, the channel output
Y is modeled by adding a Gaussian distributed random variable to the channel
input X, that is,

Y =X+G (1.1)

where G is a zero mean Gaussian random variable with variance o2, i.e. G ~
N (0, 02). For a given input symbol X = z, the channel output Y is a Gaussian
distributed random variable with mean = and variance o2, that is,

1 _ (y—x)>
by|x (y‘x) = \/%Ue 2%, (1'2)

where p () denotes a probability density function of a random variable.

A simplified communication model where the modulator/demodulator pair
and the waveform channel is replaced by a discrete-time channel is shown in
Figure 1.2. In this model, further simplifications has been made by replacing
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A~

U X Channel Y U

——>  Encoder —— Pyix (y]x) >  Decoder —>

Figure 1.2: A communication model where the waveform channel and the mod-
ulator/demodulator pair are replaced by a discrete-time channel.

the source and the source encoder with a sequence of binary symbols. These
symbols are independent and identically distributed (i.i.d.) random variables,
with equal probability of being 0 and 1. This corresponds to an ideal situation
in which the source encoder has removed all the redundancy present in the
original information sequence. The result of these simplifications is a more
confined model which is frequently used in studies and comparisons of channel
codes [17, 18, 67].

1.1.2 Channel Coding

The purpose of channel coding is to make the transmitted messages less suscep-
tible to the noise introduced by the channel. This is achieved by adding struc-
tured redundancy to the transmitted sequence, thereby increasing the number
of bits to transmit. There are two basic types of codes used to introduce this
redundancy: block codes [69] and convolutional codes [58]. A block code maps
an information word of length & to a codeword of length n, where n > k. A con-
volutional encoder is instead continuously introducing redundancy to a stream
of incoming symbols. For both types of codes, the code rate R is the number of
information symbols transmitted per codeword symbol, that is, for block codes
R = k/n. This thesis is restricted to investigations of binary codes, for which
each symbol can take on one of two possible values, for example 0 and 1.

Thanks to the redundancy added by the channel encoder, the receiving end
can detect and correct errors introduced by the channel. Channel codes that are
designed and used for the latter purpose are called error correcting codes. Turbo
codes belong to this group of codes. The performance of an error correcting
code is measured in, for example, the signal-to-noise ratio (SNR) required to
obtain communication with a certain bit or packet error rate. Typically, the
SNR required to achieve a certain error rate is considerably lower when using
error correcting coding compared to uncoded signalling. However, there are
two drawbacks using error correcting codes: it increases the number of channel
accesses and thereby the required modulation bandwidth, and it leads to an
increased implementation complexity in transmitters and receivers.

Owing to the theories presented by Shannon in 1948 [84], it has been long
known that there exist codes that achieve certain performance limits. However,
the theories do not reveal how to design codes that perform as good as proved
possible. Consequently, communication theorists and engineers have been in
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quest for such codes for many years. In the next section some fundamental
limits and bounds are reviewed, which are useful when placing the performance
of a code or a system into perspective.

1.1.3 Performance Bounds

As part of the mathematical theory of communication, Shannon defined the
concept of channel capacity [84]. The channel capacity is a measure of the
amount of information that can be conveyed between the input X and the output
Y of a channel. The capacity measure is related to the mathematical definition
of information; the average mutual information between the continuous random
variables X and Y, in bits, is defined as [18]

I1(X;Y)= / / px,y (¢,y)logy ———————~dydz, 1.3
BY)= | S Py e o ) (-3
where px v (z,9), px (x) and py (y) are joint and marginal probability densities
for X and Y. The unit of "bits” follows from the base of the logarithm; for
example, if the natural logarithm is used instead, the unit is "nats”. The channel
capacity C is defined [18] as the maximum value of I (X;Y"), maximized over

the input distribution px (), that is,
C=maxI(X;Y), (1.4)

px ()
measured in bits per channel use. The relevance of the capacity C is asserted
by the channel coding theorem [56, 84]. The channel coding theorem provides a
relationship between the channel capacity C and the information transmission
rate R:

For any rate R < C, it is possible to achieve arbitrarily small error probability
by using sufficiently large codes. Conversely, for rates R > C', the error
probability is lower bounded by some positive number.

For the discrete-time AWGN channel with continuous inputs and continuous
outputs, the channel capacity is [18]

1 2
C = 3 log, <1 + %) bits/channel use, (1.5)

where the channel input power is limited by E [X 2] < 0%, and o2 is the noise
variance. In practice, the physical waveform channel embedded in the discrete-
time channel is band-limited. Thus, it is not possible to indefinitely increase
the transmission rate by accessing the channel indefinitely often. For an AWGN
waveform channel limited to a bandwidth of W Hz and a double-sided noise
power spectral density Ng/2, the capacity is [18]

Vig .
C = W10g2 (1 + ]VO—W> bltS/S, (16)
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where P is the average input power. Letting the channel bandwidth W increase
towards infinity, the infinite-bandwidth channel capacity C is found as

Co = Nii) log, e. (1.7)
The channel input power can be expressed as P = Eyrp, where Ej is the trans-
mitted energy per information bit and 3 is the information rate in bits/s. Com-
bining the channel coding theorem with the infinite-bandwidth channel capacity
(1.7) yields rp < ]\% log, e, which leads to a fundamental requirement for reliable
communication:

Ey
- >
No = logye

=1In2. (1.8)

where In is the natural logarithm. Hence, it is not possible to design a commu-
nication system having arbitrarily low error rate if Ey/Ng < —1.6 dB. On the
other hand, as long as F/Ny > —1.6 dB, it is in theory possible to achieve an
arbitrary low error probability by using sufficiently large codes.

The above bound provides a lower limit on the SNR in terms of energy-per-
bit to noise-spectral-density ratio (Ep/Ng) required in order to achieve error-free
communication. However, the assumptions used to derive the limit are too opti-
mistic for most practical situations. Firstly, the channel bandwidth is in reality
limited. Secondly, the derivation of the channel capacity allows the transmit-
ted codewords to be infinitely long, thus introducing an infinite delay in the
transmission. Clearly, practical communication systems are designed to trans-
mit the information within a limited amount of time. Furthermore, the limit is
derived under the assumption of a continuous input, whereas digital communi-
cation systems use modulation schemes with finite alphabet sizes. Due to these
assumptions, the required E,/Ny for a specific situation is in reality higher than
-1.6 dB. The sphere packing lower bound, whose properties are summarized
below, takes some of these assumptions into account, thereby offering a bound
that is closer to realistic conditions.

The Sphere-Packing Bound

The sphere-packing bound [28, 85] provides a lower bound that includes param-
eters such as the bandwidth expansion and the transmission delay. Further, it is
valid for a certain specified error rate, in contrast to error-free communication.
For evaluation and comparison of channel codes, the bandwidth expansion and
the transmission delay can be expressed in terms of code rate R and code block
length n. Given these, the bound provides the minimum Ejp/Ny required on an
AWGN channel in order to achieve a certain frame-error rate (FER).

Figure 1.3 shows the minimum Ej/Ny required to obtain frame-error prob-
abilities of 1072, 1074, 107% and 10~® as functions of the information block
length k, using rate-1/3 coding (n = 3k). As expected, the Ej /Ny required for
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code rate R=1/3

FER=10"%

Required Ej,/Ny (d

10 10 10" 10°

Information block size, k bits

Figure 1.3: Sphere-packing lower bounds on the required Ep/Ny as a function of
the information block size, for code rate R = 1/3 and frame error rates ranging
from 1078 to 1072,

a certain FER is lower the larger the block length. Furthermore, the figure il-
lustrates that the required increase in Ep /Ny for lowering the frame error rate is
higher for small block sizes. Figure 1.4 shows the corresponding sphere-packing
bounds on the SNRs required to achieve a frame error rate of 10~* for code
rates ranging from 1/2 to 1/8. Assuming that performances according to the
bounds in Figure 1.4 are achievable, the gain achieved by decreasing the code
rate is practically independent of the information block size k (for & > 100),
measured in reduced Ej,/Ng-requirement.

Bounds Based on Code Properties

The performance of a communication system is related to how successful the
receiver is in distinguishing between transmitted messages. The less alike these
messages are, the easier for the receiver to discern the transmitted message from
the others. For channel codes the amount of differences between codewords is
summarized by the Hamming distance spectrum or equivalently, for linear codes,
the weight distribution' [69]. The Hamming distance between two codewords
is the number of positions/symbols the codewords differ. The Hamming weight
of a codeword is the number of non-zero symbols in the codeword. The weight
distribution of a code is a listing of the number of codewords having each possible

IThe terminology ’distance spectrum’ and ’weight distribution’ are used interchangeably
throughout this thesis.



10 CHAPTER 1. GENERAL INTRODUCTION

frame error rate: 1074

Required E,/Ny (dB)

R=1/8

10 10° 10" 10°

Information block size, k bits

Figure 1.4: Sphere-packing lower bounds on the required Ejp/Ny as a function of
the information block size, for code rates ranging from 1/8 to 1/2 and a frame
error rate of 1074,

weight, ranging from O to n. These numbers are referred to as multiplicities,
denoted ag4, d =0,1,... ,n. Thus,

ag = the number of codewords with Hamming weight d.

The smallest distance d > 0 for which agq # 0 is called the minimum distance of
the code, denoted d,,;,. The minimum distance of a code has a central role in
code design, since it has a large influence on the performance of the code. In
general, code design aims at constructing codes with as large minimum distance
as possible.

In the following, a few useful bounds based on the distance spectrum of a
code are reviewed. These bounds assume that the decoder uses a maximum
likelihood (ML) decoding algorithm, which minimizes the decoding error prob-
ability (if all information sequences are equally likely) [67]. On an AWGN
channel, the probability that an ML-decoder will choose a codeword c¢; in favor
of a codeword ¢;, the transmitted codeword, is [67]

Pr(c; — ¢) = Q ( M%) , (1.9)

where d;; is the Hamming distance between codeword c¢; and c;, R is the code

rate, and Q (z) = f;o \/%e*tzﬁdt is the upper tail probability of a normalized
Gaussian random variable.
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A Lower Bound. A lower bound on the decoding performance is obtained
by using the probability that a decoding error is made to a specific codeword
at distance dp;,. Denoting the decoding error probability P,, a lower bound is

P.>Q ( 72dm]i§fE” ) . (1.10)

The Union Bound. An upper bound on the decoding error probability based
on the pair-wise probability that a transmitted codeword is erroneously decoded
to each one of the other codewords is called the union bound [67, 71, 74, 76, 83].
The union bound is formed by summing the pair-wise error probabilities that a
transmitted codeword c; is mistaken for the codeword c; for all j # i:

M
P <Y Pr(ei —c)) ZQ (,/Qd”REb) : (1.11)
j=1

J#i 3751

where M is the number of codewords in the code. Using the weight distribution
of the code, the union bound can be formulated as

P< Y a0 (,/QdREb>, (1.12)

d=dmin

where a4 is the number of codewords with Hamming weight d. For large Ep/Ng:s,
the union bound is dominated by the first terms in (1.12), which means that
it is mainly influenced by the lower part of the distance spectrum. For low
Ey/Ny:s, the bound is influenced by a larger number of terms. Especially, it
rapidly becomes excessively pessimistic when the computational cutoff rate Ry
approaches the code rate R. The computational cutoff rate is a practical limit
on the highest rate at which a sequential decoder can operate [17]. In practice, a
sequential decoder that operates at rates R > Ry will have severe computational
loading causing buffer overflows, as a consequence of the large decoding com-
plexity. For an AWGN channel, the cutoff rate is Rg = 1 —log, (1 + e BB/ NU)
[17].

The Tangential Sphere Bound. Since the introduction of Turbo Codes in
1993, it is known that there exist codes that can be decoded with reasonable
complexity at SNRs for which the cutoff rate is lower than the code rate. Hence,
there is a need for improved upper bounds, which are tighter than the union
bound at low SNRs. In [73], Poltyrev derived the tangential sphere bound, which
was shown in [43] to be tighter than both the union bound and the tangential
bound presented by Berlekamp in [11].

Figure 1.5 shows both the union bound and the tangential sphere bound for
an example distance spectrum derived for rate-1/3 coding. As seen, the union
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Figure 1.5: Example of the union bound and the tangential sphere bound on the
decoding error probability. (The bounds are derived using the average spectrum
for 500-bit Turbo codes with (35/23)4 constituent encoders.)

bound begins to grow larger than 1 when the cutoff rate approaches the code
rate, while the tangential sphere bound is potentially realistic (i.e. < 1) for the
entire range of Ep/Np:s. The region of useful SNRs is thus considerably larger
for the tangential sphere bound than for the union bound. This is indeed useful
for evaluations of Turbo codes since these are known to operate above the cutoff
rate, that is, they yield low error rates even at Ej/Ng:s for which the cutoff rate
is lower than the code rate. In Figure 1.5, this corresponds to E,/Ng < 2 dB.
An example of such performance is shown in the following section.

1.2 Summary and Motivation of Research Area

The purpose of channel coding is to establish reliable communication over chan-
nels that corrupt transmitted messages with noise and interference. The per-
formance of a specific channel code can be measured in the SNR required to
obtain a certain frame- or bit-error rate. Using information theory, it is possible
to prove that there exists codes with which essentially error-free communication
at rates approaching the channel capacity is possible. However, in practice no
codes have been found that perform according to these capacity bounds with a
reasonable decoding complexity.

The introduction of Turbo codes [13] constitutes a very important step for-
ward, both in the search of good codes as well as in the search of efficient
decoding algorithms. An example of the remarkable performance obtainable
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Figure 1.6: Example of Turbo code frame- and bit-error rate performances.
Triangles: random interleaving, circles: designed interleaver.

with Turbo codes? is illustrated in Figure 1.6. The code that corresponds to
the circle-marked lines operates above the cutoff rate at frame- and bit-error
rates below 1076 and 108, respectively, which is indeed remarkable. Further,
for frame error rates down to 1079, the performance of this code is less than 1
dB above the sphere-packing lower bound.

The Turbo code corresponding to the circled-marked lines in Figure 1.6 uses
a designed interleaver®. In contrast, the triangle-marked performances corre-
spond to Turbo codes using random interleaving, which corresponds to the av-
erage performance of Turbo codes using this particular interleaver size. As seen,
the average Turbo code performance suffers from a rather severe ’error-floor’,
whereas the Turbo code that uses a designed interleaver shows no error-floor
behavior even at frame error rates as low as 1077. The issue of investigating
and understanding the mechanisms of Turbo codes that give rise to their perfor-
mances, both when good and when bad, is the focus of this thesis. This includes
investigation of the central Turbo coding components including the interleaver,
the constituent encoders?, as well as aspects such as trellis termination’.

2These rate-1/3 Turbo codes use 500-bit interleavers, 8-state encoders and a maximum of
15 decoding iterations with the BCJR-algorithm.

3The interleaver is one of the central parts of Turbo codes, which is introduced in Section
2.1.2.

4The constituent encoders are introduced in Section 2.1.1.

5Trellis termination for Turbo codes is introduced in Section 2.1.3.



14

CHAPTER 1.

GENERAL INTRODUCTION



Chapter 2

A Turbo Code Preliminary

7...good codes just might be messy”
J. L. Massey

Turbo codes where introduced by Berrou, Glavieux and Thitimajshima in their
groundbreaking paper ”Near Shannon Limit Error-Correcting Coding and De-
coding: Turbo Codes” [13]. The paper presented several epoch-making ideas and
results to the field of channel coding — results at first looked upon with scep-
ticism and doubt in the coding community, but today widely accepted. The
reason for the doubts are not far-fetched: the performance results presented
were significantly better than what had previously been seen and, more im-
portant, what was anticipated feasible. In fact, the paper presented results of
communication over the AWGN channel less than 1 dB above the lower limit
predicted by Shannon. Especially, it was shown that communication is possible
at SNRs for which the cutoff rate is lower than the code rate, a limit for a long
time considered the practical limit for reliable communication.

Berrou et al. made important contributions to both the problem of choosing
codes/encoders, and the problem of efficient decoding. The basic principle of
the Turbo coding concept is illustrated in Figure 2.1. In short, the same message
is encoded in two different ways, by Encoder 1 and Encoder 2. The decoder is
correspondingly divided into two separate decoders, where each decoder decodes
its part of the concatenated codeword. By the use of sophisticated algorithms,
the decoders can exchange information on their decoding results and thereby
cooperate in finding the correct codeword. The term ”Turbo” actually reflects
the iterative decoding associated with Turbo codes. The authors compared the
process of using the output from one unit as input in the next, over and over

15
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Figure 2.1: The Turbo coding/decoding principle.

again, with the functionality of a Turbo combustion engine'. Hence, the term
”Turbo” is indicative on the decoding method rather than of the code selection
and the term ”Turbo decoding” is sometimes used as a synonym for iterative
decoding.

Apart from the important work Berrou et al. made on the concept of iter-
ative decoding, they proposed a new code construction: parallel concatenation
of recursive convolutional encoders. Through the combination of this code con-
struction and the iterative decoding algorithm, the authors had found a way to
construct very large and complex codes, which can be decoded with high perfor-
mance and reasonable complexity. This combination is very appealing, in light
of the channel coding theorem which is derived on the basis that the codeword
length increases towards infinity. The encoder structure and the design of its
components is the topic of this thesis, and it will be discussed in the sequel.

A last comment on the terminology of Turbo codes. There is no clean-cut
definition of what Turbo codes are. For example, it is possible to exchange the
constituent codes to any other type of code, for example block codes. Such
constructions are called Block Turbo Codes [75]. Further, it is possible to con-
catenate several constituent codes by arranging additional encoders in parallel
[25, 42]. Such constructions are still denoted Turbo codes, or sometimes multiple
Turbo codes. In the investigations reported in this thesis, we are exclusively re-
ferring to the original encoder structure presented by Berrou et al. in [13], that
is, parallel concatenation of two recursive systematic convolutional encoders.

2.1 Encoder Structure

A general Turbo encoder structure using two constituent encoders is illustrated
in Figure 2.2. It consists of three basic building blocks: an interleaver, the
constituent encoders, and a puncturing and multiplexing unit. The interleaver
is a device that re-orders the symbols in its input sequence. Together with
the lower constituent encoder, the interleaver can be considered to implement
"Encoder 2’ in Figure 2.1. In the following, the building blocks used in a Turbo
code encoder, as depicted in Figure 2.2, are described.

I Turbochargers utilize energy in the exhaust gases to boost the air intake.
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Figure 2.2: Block diagram of a Turbo code encoder.
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Figure 2.3: Recursive systematic convolutional encoder with feedback polyno-
mial 7g and parity polynomial 5g.

2.1.1 The Constituent Encoders

The constituent encoders are recursive systematic convolutional (RSC) encoders,
i.e. systematic convolutional encoders with feedback. Such an encoder with two
memory elements is depicted in Figure 2.3. For systematic codes, the informa-
tion sequence is part of the codeword, which corresponds to the direct connection
from the input to one of the outputs. For each input bit the encoder generates
two codeword bits: the systematic bit and the parity bit. Thus, the code rate
is 1/2. The encoder input and parity bits are denoted u and ¢, respectively.

A convenient and common way to specify a convolutional encoder is to use
the octal representation of the polynomial in D that describes the encoder. The
delay operator D indicates a delay of one symbol time; D™ indicates a delay
of n symbol times. Thus, the polynomial in D that describes the parity bit in
Figure 2.3, as a function of the encoder memory contents, is 1 + D?. Similarly,

the feedback polynomial is 1+ D+ D?. The generator matrix of this encoder, in
14+D?

T+ D+D?

ficients in the polynomials as binary numbers, the parity and feedback polyno-

mials can be represented by 101, and 1115 respectively, which is 5g and 7g in

polynomial representation is G (D) = ( 1 ) . Representing the coef-
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Figure 2.4: (a) State- and (b) trellis-diagrams for the convolutional encoder in
Figure 2.3.

octal representation®. A compact representation of the encoder in Figure 2.3 is
thus ( 1 5/7 )8. Throughout this thesis, the parity polynomial is assumed to
be monic with the same degree as the feedback polynomial.

The functionality of convolutional encoders is conveniently described by
state- and trellis-diagrams, shown in Figure 2.4. Each state in the state-diagram
corresponds to the contents of the memory elements in the encoder, and the
state-transitions are labeled with the input and parity bit corresponding to each
transition. The trellis-diagram includes a time-dimension, hereby incorporating
the history of the encoder. Each codeword belonging to the code is made up
by the labels [u,c,] on the trellis transitions that correspond to a specific path
through the trellis.

In general, the constituent encoders can be of any code rate. In the original
Turbo code paper, Berrou et al. proposed systematic rate-1/2 encoders. Since

then, lower rate Turbo coding schemes have also been investigated, e.g. in
[8, 25, 62, 65].

2The binary digits can be partitioned into 3-tuples starting both from the most significant
bit (MSB) and the least significant bit (LSB). Throughout this thesis, the octal representation
is based on partitioning from the LSB.
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2.1.2 Interleaving

The interleaving performed on the information sequence before it is fed to the
second constituent encoder constitutes a re-ordering of the information symbols.
The combination of two recursive encoders and the interleaver provides a solu-
tion to two important issues associated with coding: (1) the creation of codes
with good distance properties which (2) can be efficiently decoded, through it-
erative decoding. The influence on the distance spectra is discussed in Section
2.3 below. The reason that the interleaver enables the use of iterative decoding
is that it ’de-correlates’ nearby® decoder inputs. This is essential, since nearby
decoder inputs that are correlated have a detrimental influence on the decoding
performance. This issue is further studied in Chapter 3, addressing interleaver
design criteria.

In general, the interleaver can process a continuous input stream. However,
throughout this thesis we view the input to the interleaver as divided into blocks
of length V. The re-ordering is then performed within each such block. Typi-
cally, the performance of a Turbo code is improved when the interleaver size is
increased, which has an positive influence on both the code properties and the
iterative decoding performance.

There are many possibilities of representing the interleaver rule. Among the
most common is the use of a vector 7 of length N, containing the positions that
each input symbol holds after interleaving. Thus, 7 (i) is the position that input
bit ¢ is interleaved to. Equivalently, the interleaving rule can be represented by
the vector d, where d (i) holds the input position that is interleaved to position
1. The former representation may seem more natural, but in conjunction with
the interleaver design algorithm described in Chapter 3, the use of d is more
convenient.

A third way of representing interleavers is by using permutation matrices.
A permutation matrix is an N x N matrix containing exactly one 1 in each
row and in each column, all other elements being zero. One of the benefits of
using permutation matrices is that they efficiently visualize interleaver struc-
tures. For example, Figure 2.5 shows two permutation matrices, where each 1 is
represented by a dot. To the left, the permutation matrix of a pseudo-random
interleaver, and to the right, a 10 x 10 block* interleaver, both of length 100 bits.
The deterministic and structured properties of the block interleaver, compared
to the pseudo-random interleaver, are obvious. Other interleaver properties that
are nicely visualized with permutation matrices are discussed in Chapter 3, in
conjunction with interleaver design and iterative decoding performance.

3With 'nearby’ is meant positions that are close to each other in the input sequence.
4 A block interleaver is obtained by writing the elements to a matrix row-wise and reading
them column-wise.
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Figure 2.5: Illustration of the permutation matrices of two 100-bit interleavers
Left: a pseudo-random interleaver. Right: a 10 x 10 block interleaver.

2.1.3 Trellis Termination

As mentioned in the introductory chapter, and to be further addressed in later
sections, the performance of a code is highly dependent on its Hamming dis-
tance spectrum. For convolutional codes, to which the constituent codes in
Turbo codes belong, the Hamming distances between codewords are the result
of taking different paths through the trellis. In principle, the larger the number
of trellis transitions in which two paths differ, the larger is the possible Ham-
ming distances between the corresponding codewords. It is thus desirable that
the shortest possible detour from a trellis path is as long as possible, to ensure
a large Hamming distance between the two codewords that correspond to the
two paths.

For convolutional codes that are truncated at some point, which is the case
of block-oriented Turbo codes, severe degradation of the distance spectra may
occur. If no precautions are taken before the truncation, each of the encoder
states is a valid ending state and thus the shortest possible difference between
two trellis paths is made up of only one trellis transition. Naturally, this proce-
dure may result in very poor distance properties, with accompanying poor error
correcting performance.

A solution to the above problem is trellis termination. With trellis termi-
nation, v tail bits are appended to the information sequence, where v is the
number of memory elements in the encoder. The tail bits are chosen so that,
after encoding these bits, the encoder is terminated in the zero-state. This way,

the shortest possible trellis detour is the same as without truncation, and the
distance spectrum is preserved. Using feed-forward convolutional encoders, i.e.
encoders without feedback, trellis termination is easily obtained by appending
tail bits that are all zeros. For recursive encoders, however, the situation be-
comes more complicated, since the tail bits depend on the information sequence.
A second approach to the problem of trellis truncation is tail-biting. With
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tail-biting, the encoder is initialized to the same state as it will end up in by
the end of the block. For feed-forward encoders tail-biting is readily obtained
by inspection of the last v bit in the input sequence, since these dictate the
encoder ending state. However, as in the case of trellis termination, the situation
becomes more complicated when using recursive encoders [57].

The advantage of using tail-biting compared to trellis termination is that
tail-biting does not require transmission of tail bits (the use of tail bits reduces
the code rate and increases the transmission bandwidth). For large blocks, the
rate-reduction imposed by tail-bits is small, often negligible. For small blocks,
however, it may be significant.

In this thesis, the issue of trellis termination is studied in [Paper VI]. Ad-
ditional investigations on trellis termination and tail-biting for Turbo codes are
found in [5, 14, 26, 34, 38, 48, 51, 55] and [2, 20, 88, 95, 96|, respectively.

2.1.4 Puncturing

Puncturing is the process of removing certain symbols/positions from the code-
word, thereby reducing the codeword length and increasing the overall code rate.
In the original Turbo code proposal, Berrou et al. punctured half the bits from
each constituent encoder. However, the systematic bits are the same for both
constituent encoders, except for the re-ordering caused by the interleaver. Thus,
puncturing half the systematic bits from each constituent encoder corresponds
to sending all the systematic bits once, if the puncturing is properly performed.

In the original Turbo code proposal, the overall code rate is R =1/2. The
most common alternative to this is not to puncture the parity bits of either
constituent encoder, which results in a Turbo code with rate 1/3. This is an ap-
pealing approach for investigations regarding interleaver design and the choice
of constituent encoders, since it removes the ambiguousness resulting from the
various possibilities of performing the puncturing. Further, puncturing may
have different effect on different choices of interleavers, and on different con-
stituent encoders. Thus, as we are interested in the issues of interleaver design
and the choice of constituent encoders, we have not used puncturing in our in-
vestigations. Consequently, the overall Turbo code rate of the codes presented
in this thesis is R = 1/3.

An equivalent Turbo code encoder that corresponds to the assumptions out-
lined above is shown in Figure 2.6. Here, the systematic bit stream is separated
from both encoders, but it can of course still be considered part of both con-
stituent codes. Further, the multiplexing unit has been omitted. This is conve-
nient when discussing the decoding algorithm, which make use of the different
bit streams separately.
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Figure 2.6: Equivalent structure of a Turbo code encoder, using constituent
encoders with generator polynomials (17/15)g and no puncturing.

2.2 Iterative Decoding

One of the novel attributes of Turbo codes is their ability to compose ”large
codes” that can be decoded with reasonably low complexity. As mentioned ear-
lier, this is achieved by iteratively decoding the two constituent codes that
together compose a Turbo code. A block diagram of an iterative decoder
that matches the encoder in Figure 2.6 is shown in Figure 2.7. It consists
of two constituent decoders, one for each constituent code, and the interleav-
ing/deinterleaving blocks required to convert the sequences between the ”code
spaces”.

Each decoder processes input blocks of size IV, i.e. the size of the interleaver.
After the first decoder has performed its decoding using the received channel
symbols associated with the first code, it passes a block of soft information of
length N to the second constituent decoder. Next, the second decoder uses the
information from the first decoder together with the received channel symbols
associated with the second code. Hopefully, the second decoder performs better
than the first, since it has access to more information. Further, if the first
decoder is presented with the results from the second decoder it is conceivable
that it might improve its performance, compared to its first decoding attempt.
Thus, in the second decoding round of the first decoder, it uses the same channel
information as in the first round, together with the information passed from the
second decoder.

One decoding iteration is completed after one pass of both the first and
the second constituent decoders. The decoding performed by one constituent
decoder is referred to as a "half-iteration’.

Ideally, the information passed between the constituent decoders should con-
sist of prior knowledge of the probability distribution of each bit in the informa-
tion sequence. As such, the decoder inputs used as a priori information should
depend only on the transmitted information sequence, and not on the noise on
the other decoder inputs. By using decoders producing a posteriori probabili-
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Figure 2.7: Block diagram of an iterative Turbo code decoder.

ties, so called APP- or soft-output decoders, the a posteriori probabilities after
decoding the first constituent code can be used as a priori input when decoding
the second constituent code.

In a first description, consider an isolated APP decoder whose input a priori
information is based on the a priori probabilities Pr (u, = 1) and Pr (u,, = 0).
For binary information symbols, it is convenient to represent the a priori infor-
mation as a log-likelihood ratio® (LLR). Thus, denoting the nth a priori input

A,,, we have

~ Pr(u, =1)
Ap=In—F"——=. 2.1

" Pr (u, =0) (2.1)
The input to the decoder consists of three sequences, for the rate-1/2 constituent
encoders considered. These inputs are: the received systematic sequence, o,
the received parity sequence, y1¥, and the a priori input sequence, AY. These
are sequences are in short referred to as RY, that is,

RY = (ad,yl AY). (2:2)
The task of an APP decoder is to derive the a posteriori probabilities

Pr (un =1|RY ) and Pr (un =0|RY ), where u,, is information symbol n. Sim-
ilar to the a priori input, the decoder soft-output, denoted A,,, is represented

5The term log-likelihood ratio is used for all logarithms of probability-ratios in this thesis.
Even though this is often the case in turbo coding literature, it can be argued that it is an
abuse of terminology.
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as an LLR

Pr (un = I\R{V)

An:nPr(un:O\R{V) n=12...,

N. (2.3)

The decoder hard decision is achieved by using the sign of the APP soft-output;
if A,, > 0, the decoder hard decision is %, = 1, and vice versa.

Let us now return to the iterative decoding environment. It is very impor-
tant that the information passed between the constituent decoders is properly
composed. In particular, since the two decoders are linked in a loop, care must
be taken so that instability is avoided. Therefore, it is only a specific portion
of the decoder soft-output that should be passed on to the next constituent
decoder. Assuming that the encoder inputs are independent, the LLR (2.3) can
be partitioned into three parts (see Appendix A for details):

Pr (un = 114, + 1 Ponlin = 1)

A, = In o (un B OIJN\n) P (Tn|un = 0)

— -1 N N An—1 AN
1 Pr (u’n - 1|xrll 1Tt W1 7A? ’An+1>
n

- — . (2.4)
Pr (un = 0|x7117 ,$£ZV+1, y{\f’ Arlli ’Ar]:zrl)

Thus, the a posteriori LLR A, is composed of three LLRs. The first LLR
contains the contribution from the input a priori information A,,. The second
LLR is denoted Li,, and called the intrinsic information, since it contains the
contribution directly from systematic channel observation x,,. The third LLR is
denoted Le,, and called the extrinsic information, since its contribution to A,
stems from other sources than the a priori information A,, and the systematic

channel observation z,. Noting that Pr (un = z\]&n> — eihn (1 + e[\") (cf.
(A.19) and (A.20) in Appendix A), the output LLR A,, can be expressed as

A, = A, + Liy, + Le,,. (2.5)

In an iterative decoder, the a priori information originates from the previous
constituent decoder; thus, it should not be included in the information that
is passed on to that decoder in the next decoding step. Likewise, the intrinsic
information Li,, is directly available to the next decoder through the channel ob-
servation x,,. Consequently, the only portion of A,, that is passed on to the next
decoder is the extrinsic information Le,. Thus, it is the extrinsic information
derived in one half-iteration that becomes the input a priori information in the
next. By indicating the number of performed half-iterations with a superscript
(k), we have

AP = LeV 1 Li,, + Lel®), (2.6)
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Figure 2.8: Inputs and outputs to each constituent encoder.

where the subscript n’ indicates the re-ordering performed by the interleaver
and deinterleaver; output n’ from half-iteration k& — 1 is interleaved (if k even),
or deinterleaved (if k£ odd), to position n before being passed to the kth half-
iteration. Figure 2.8 shows an APP decoder, with inputs and outputs corre-
sponding to the described iterative decoding situation. In the following section,
algorithms that can be used to derive the APPs are discussed.

2.2.1 APP Decoding

A device capable of producing a posteriori probabilities of each information
symbol based on the channel observations and a priori probabilities is called an
APP decoder. An optimal algorithm for estimating state- and state transition
probabilities of a Markov source was presented by Bahl et al. in 1974 [3]. The
algorithm is suitable for decoding of convolutional codes, whose codewords can
be viewed as the output from a Markov source. The algorithm, often referred
to as the BCJR-algorithm®, is optimal in the sense of minimizing the symbol
error rate. It was modified by Berrou et al. to account for a priori information.
With this modification, a mazimum a posteriori (MAP) decoding algorithm is
obtained. In the Turbo coding literature, this algorithm is referred to as both
the MAP- and the BCJR-algorithm.

The complexity of the BCJR-algorithm is higher than that of the Viterbi al-
gorithm [30, 94]. However, the Viterbi algorithm does not produce a posteriori
probabilities. Therefore, modifications to the Viterbi algorithm have been pro-
posed. In [7] Battail presented a method to estimate the reliability of symbols
decoded with the Viterbi algorithm. A similar approach was taken by Hage-
nauer and Hoeher in [35], proposing the Soft Output Viterbi Algorithm (SOVA)
which was later used for iterative decoding of Turbo codes in [37]. Lin and
Cheng proposed improvements to the SOVA algorithm in [66], resulting in the
same algorithm as originally proposed by Battail in [7]. The same modifications
to the SOVA algorithm were independently proposed in [31], where it was also
shown that this algorithm is equivalent to the Max-Log-MAP algorithm [78].
The Max-Log-MAP algorithm is a simplified version of the MAP- or BCJR-
algorithm, with slightly inferior performance. However, with a low-complexity
correction procedure, the performance of the Max-Log-MAP algorithm is very
close to that of the original BCJR algorithm [78]. Additional low-complexity

6 After the initials of the authors: Bahl, Cocke, Jelinek and Raviv.
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variants of the BCJR-algorithm, based on reducing the trellis search-space, are
reported in [32, 33].

The BCJR Algorithm

Here, we give a brief review of the BCJR-algorithm; a full derivation of the is
given in Appendix A. The encoder input is, as above, represented by RY =

(I{V Lyl AN ) However, in the iterative decoding environment the ’true’ a

priori information A{V is replaced by the extrinsic output from the previous
decoding stage. Hence, the encoder input at time n is R,, = (xn, Yn, Le(’" 1>),

where Legffl) is the extrinsic output from the previous decoder that is input

at bit position n in this decoding stage.

From the derivation in Appendix A, the decoder soft output decision variable
after the kth half-iteration, i.e. the log-likelihood ratio Aslk >, can be expressed
as

A g P = URY) 5 3 e () 7k (B 5) B, (9
T By S ORY) e St ()78 (B 9 5, )]

where s’ and s are the possible encoder states at time n — 1 and n, respectively.
The a-, 8- and y-quantities are related to state- and state-transition probability
densities, defined in Appendix A. For antipodal modulation (0 — —1 and
1 — +1) over an AWGN channel with noise variance o2, the trellis transition
related probability density function i (R, s’,s), i € {0,1}, is (see Appendix
A)

(2.7)

Vi (Rn, ' 8) = o(@n (2i=1)+yn (2cn—1))/0* +iLes ™Y
n

Pr (S, = s|lup, =14, Sp—1=15"), (2.8)

where c,, is the parity bit associated with a transition between the states s’ and s,
caused by an information symbol w, = 1. The probability
Pr (S, = s|lup, =14,5,-1 =¢’) is either 0 or 1, depending on if there exists a
trellis transition between the states s’ and s caused by an information sym-
bol u,, = i. The a- and (-values are calculated recursively, starting from the
beginning and the end of the received block, respectively:

2Y—1 1

an (s) = Z Zan 1 ’yn (Rn, s, s) (2.9)
s'=0 1=0
1 1

/gn (S/) = Z Zﬁn+1 ’}/n-&-l (R”-‘rla Sla S) ) (210)

=0 =0

where v is the number of memory elements in the encoder. With encoders
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initialized and terminated in their zero states, the recursions are initialized with

a0 (5) = { L s=0 (2.11)

0 otherwise

and
1 s=0

0 otherwise. (212)

(o) = {
For encoders not terminated in the zero state by the end of each block, the
initialization of the backward recursion is instead”

1
B (s) = 5 s=0,...,2" —1. (2.13)

Finally, after calculating the decoder soft-output Aslk ), the extrinsic information
is found as

Le®) = AW — L% _ 1, (2.14)
where Leg‘ffl) is the a priori input and Li,, is calculated as
2
Li, = < zy,. 2.1
i i (2.15)

2.3 Distance Spectra

The computational complexity of calculating the distance spectrum of a Turbo
code is considerable, also for small interleavers. Therefore, one is often confined
to computing only the lower part of the distance spectrum. Fortunately, this is
still useful for performance estimations since, at moderate to high SNRs, a large
part of the decoding errors are made to codewords at distances corresponding
to the lower part of the distance spectrum.

A major step forward in the understanding of the Turbo code concept, both
for analysis and design, was taken by Benedetto et al. in [9, 10]. There, a
method was derived with which it is feasible to calculate the average distance
spectrum of Turbo codes using specific constituent encoders and a certain inter-
leaver length IV, where the average is taken over the ensemble of all interleavers.
The presented method made possible several important observations regarding
the unexplained and unmatched performances of Turbo codes. The method
is summarized in [Paper VIJ; for a thorough description cf. [10]. Additional
work related to the distance spectra of Turbo codes is found in for example
[15, 23, 24, 27, 51, 72, 89].

In the following sections the structure of Turbo codes is exploited to illustrate
the origin of the lower part of the distance spectrum of a Turbo code. These
observations also serve as an introduction to the criteria required for successful
interleaver design, addressed in Chapter 3.

"Several alternatives to the initialization of the backward recursion for non-terminated
trellises have been proposed. A discussion on this subject is found in [Paper VI].
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2.3.1 Distance Spectrum of a Specific Turbo Code

Due to the parallel structure of Turbo code encoders, the Hamming weight
of a codeword is made up of three separate parts: the weight of the system-
atic sequence, the weight of the first parity sequence, and the weight of the
second parity sequence. Let u denote the systematic sequence, i.e. u = ull =
(u1,ug,... ,uy), and ¢; and ¢, the corresponding parity sequences. Further, let
¢ denote the concatenated Turbo code codeword, so that ¢ =(u, ¢1, ¢z). Then,
the Hamming weight of a Turbo code codeword is wy (¢) = wg (u) +wg (€1) +
wp (€2), where wy (-) denotes the Hamming weight operator. For notational
convenience, the short notations w £ wg (u), p1 £ wy (e1), po 2 wy (e2)
are used in the following. When appropriate, the sequences are represented
by their corresponding D-transform. For example, the input sequence u can
be represented by U (D) = >°)_, D%, where iy, € {0,... ,N — 1} corresponds
the position of the kth input 1. Similarly, the interleaved input sequence u’
is U'(D) = Y3, D%, where i}, € {0,...,N — 1} represents the position of
the kth input 1 in the interleaved sequence. Note that 7}, is not necessarily the
interleaved position of i, since these indices are ordered from the first to last
input 1’s in the respective sequence.

Figure 2.9 depicts the state-diagrams of two recursive convolutional encoders,
having generator polynomials (17/15)g and (15/17)g, respectively. Since the
encoders are recursive, a single input 1 will cause the encoder to cycle in a loop
of states. Such zero-input loops are marked with solid lines in Figure 2.9. For
encoders with primitive feedback polynomials [54], there exist only one zero-
input loop. However, for non-primitive polynomials several zero-input loops
exist. In such cases, 'the zero-input loop’ refers to the loop entered directly
from the zero-state, following an input-1 transition. Let L denote the length
of the zero-input loop, in terms of the number of state transitions required to
fulfill one cycle, and pyo, the number of parity 1’s generated by each cycle in
this loop. The length of the zero-input loop corresponds to the periodicity of
the infinite impulse response of the encoder, and it is also referred to as the
period of the feedback polynomial. For the encoders in Figure 2.9, L is 7 and
4 respectively, while pi,op, is 4 and 2. For memory-3 encoders, the maximum
value of L is 7. This follows from the relation [74]

L<2—1, (2.16)

where v is the number of memory elements. In general, (2.16) hold with equality
for primitive feedback polynomials, thus maximizing L for a given number of
encoder memory elements.

Assume that all codewords with Hamming weight less than or equal to a
threshold d,,, are to be found. A low-weight codeword must have low weight
on all three of the concatenated sequences, i.e. u, ¢; and ¢y. To begin with, the
weight of the input sequence must be less than dy.x, i.e. w < dyax. Further,
it is input sequences with low weight, in particular with w = 1,2,3 and 4, that
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[input /parity]

0/0 0/1

Figure 2.9: State-diagrams of recursive convolutional encoders with generator
polynomials (17/15)g and (15/17)g, respectively. The zero-input loops are indi-
cated by the state transitions with solid lines.
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Figure 2.10: Relative contribution to the union bound for low-weight input
sequences, for the ensemble of Turbo codes using 500-bit interleavers and con-
stituent encoders with generator polynomials (17/15)g. (a) No trellis termina-
tion and (b) termination of the first trellis only. The Hamming weight of the
input sequence is denoted w.

are most likely to cause low-weight codewords. This is motivated in Figure
2.10, showing the relative contributions to the union bound for Turbo codes
using 500-bit interleavers and constituent encoders with generator polynomials
(17/15)g, for various input weights w. Figure 2.10(a) shows the situation for
Turbo codes using no trellis termination at all, while in Figure 2.10(b), the
first constituent encoder is terminated. For both alternatives, it is the input
sequences with Hamming weight less than or equal to 4 that have the major
influence on the union bound, for Ej,/Ny > 2 dB (the union bound is unrealistic
for Ey /Ny < 2 dB). In the following, the mechanism behind the origin of these
low-weight codewords is reviewed.

Weight-1 input sequences

To start with, we study input sequences of weight 1, i.e. w = 1. Since the
constituent encoders are recursive, the single input 1 will cause them to cycle
in the zero-input loops until the end of the block, as illustrated in Figure 2.11.
The more time spent in these loops, the larger amount of parity 1’s is gener-
ated in the parity sequences. For a low-weight codeword to be generated, it
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trellis path of
first encoder
input sequence

to first encoder  [0]0[0]0[0[0[0[0]0]0[O]O[0[0]0[1]0]0[00]0[0][0[00[0[o[0[0]00[0]

interleaver mapping

[o[ojo]o]of1[ofoo[ofojolo[ofojolojojofoojojojofojojojojojojofo]

input sequence
to second encoder

trellis path of
second encoder

Figure 2.11: Illustration of the trellis paths caused by a weight-1 input sequence,
for a specific interleaver mapping.

is necessary that both encoders spend only a limited time in their zero-input
loops. Hence, low-weight codewords resulting from weight-1 input sequences are
produced whenever a position near the end of the input sequence is interleaved
to a position near the end of the interleaved sequence. The number of such low-
weight codewords are easily found for a specific interleaver, simply by encoding
all the weight-1 input sequences.

A weight-1 input sequence U (D) = D% will spend N —i;—1 trellis transitions
in the zero-input loop, corresponding to |[(N —i; —1) /L] full cycles®. The
weight of the generated parity sequence is thus lower bounded by

N—1 -1
pl‘U(D):Dil 2 1 + <T1 - 1> Ploop (217)

since || > x — 1. When searching for all Turbo code codewords with weight
less than or equal to dy, .y, there is no point in encoding input sequences for
which the weight of the first parity sequence is larger than d, ., minus the
lowest possible weight of the other two sequences, i.e. input sequences for which
P1 > dmax — W — Ming,—1 P2 = dyax — 2. Hence, it is sufficient to encode input
sequences U (D) = D with iy > N — 1 — ((dwax — 3) /Ploop + 1) L.

It is common to employ trellis termination of at least the first constituent
encoder in a Turbo code encoder. Then, the encoder is forced to the zero-state
by the end of the input sequence by appending appropriate tail bits. Hence,
the sequence that enters the encoder can no longer consist of less than two 1’s
and, consequently, there exists no codewords that are generated by weight-1
input sequences. Thus, for Turbo codes which employ trellis termination of at
least one constituent encoder within the length of the interleaver, there are no
low-weight codewords that originate from weight-1 input sequences.

8 |z] denotes the largest integer smaller than or equal to x.
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Weight-2 input sequences

The recursive property of the constituent encoders is of importance also for
input sequences of weight larger than 1. An input weight-2 sequence returns
the encoder to the zero state only if the second input 1 is at a position when
the encoder is in state 0...01, that is, in state 001 for the memory-3 encoders
in Figure 2.9. Therefore, all weight-2 input sequences that return a recursive
encoder to the zero state can be expressed on the form

U (D) = D™ (14 D*1) (2.18)

where k1 and kg are integers such that 0 < k; < N—1and 0 < k;+ko L < N—1.

Examples of weight-2 input sequences that cause low-weight parity sequences
in the first constituent encoder are shown in Figure 2.12. For the particular
interleaver mapping shown in 2.12(a), the input 1’s are mapped to two posi-
tions that also after interleaving are separated by a multiple of L positions.
Consequently, the trellis detour taken by the second encoder is also of limited
length, and the overall Turbo code codeword weight is potentially low. In Figure
2.12(b), however, the interleaving of the input 1’s are such that the interleaved
positions are not separated by a multiple of L positions. As a consequence,
the trellis path of the second encoder runs in the zero-input loop until the end
of the block, generating a codeword with large Hamming weight (assuming a
reasonably large interleaver, and i} < N, where i} is the position of the first 1
in the interleaved sequence).

To summarize, finding low-weight codewords caused by weight-2 input se-
quences consists in encoding all input sequences on the form U (D) = D! -
(1 + D’QL), for which p1 < dipax — W — Ming_o Pa = dypax — 2 — 1. (The mini-
mum possible weight of the second parity sequence is min,,—s po=1, which may
arise when the two input 1’s are interleaved to the two very last positions®.)
Since the weight of the first parity sequence is p; = 2+ k2 - pioop, it is necessary
to encode all weight-2 input sequences for which ko < |(dwax — 3) /Ploop -

If the first encoder is not terminated in the zero state, it is also necessary
to investigate the weight-2 input sequences that are not on the form U (D) =
DF (1+ DkzL), i.e. those for which (iz — 1) mod L # 0. The parity weight
resulting from such inputs is at least

N -1 -1
P1l(is—ir) mod L0 > 1+ {—( Ll ) _ 1J Ploops (2.19)

essentially following the argumentation used to derive (2.17). Thus, for non-
zeroterminating input sequences it is sufficient to encode those whose first input
1 is at a position 41 > N — 1 — ((dwax —4) /Proop +2) L.

9Dependending on the generator polynomial, the weight of the second parity sequence is
either one or two for the input sequence U’ (D) = DN—1 + DNV,
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Figure 2.12: Tllustration of trellis paths caused by weight-2 input sequences, for
constituent encoders with L = 7. (a) An interleaver mapping for which both
encoder inputs are zero-terminating sequences, and (b) an interleaver mapping
for which the input to the second constituent encoder is not zero-terminating.

Higher-weight input sequences

Similar to the case of weight-2 input sequences, most of the low-weight code-
words in a Turbo code originate from interleaver mappings where a zero-term-
inating input sequence is mapped to another zero-terminating sequence. When
the input weight is larger than 2, the minimum length trellis detour is no longer
determined by the length of the zero-input loop, L. In contrast, for weight-3
and weight-4 input sequences, the shortest possible trellis detours are instead
related to the number of encoder memory elements. More precisely, the shortest
possible trellis detour is lower bounded by v+ 1 transitions. Since v is typically
in the range of 2 to 4 for Turbo codes, said trellis detours may be short, with
accompanying low-weight parity sequences. However, when using for example
random interleaving, the probability that 3 input 1’s that generate a length-3
trellis detour is interleaved to another length-3 detour is small, particularly for
large interleavers.

Remark. As a final remark regarding the distance spectra of Turbo codes, it
is worthwhile to observe the influence of the period L. First of all, the length of
the period L directly determines the shortest possible trellis detour that can be
caused by weight-2 input sequences. The combination of two trellis detours that
have these minimum lengths, i.e. L + 1, results in a Turbo code codeword with
a potentially low weight, unless L is large. The weight of this codeword is called
the effective free distance [24] and it proves to have an important impact on
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Turbo code performances, especially when using for example random- or pseudo-
random interleaving. Further, the length of the period L has an important
impact on the probability that any given sequence with a certain number of
1’s is zero-terminating. The last input 1 must be input at a position when the
encoder is in state 0.. . . 01, which, in principle, occurs with probability 1/L for an
encoder that cycles its zero-input loop. Thus, the probability that a randomly
chosen interleaver mapping results in an interleaved input sequence causing a
short trellis detour in the second encoder is larger the shorter the period L. All
in all, a long period has a favorable influence on the distance spectra of Turbo
codes.

2.4 Summary

The fundamental principles behind Turbo coding have been introduced, includ-
ing the encoder structure and the principles of iterative decoding. The central
components of a Turbo code encoder are the recursive systematic convolutional
(RSC) encoders and the interleaver that link them in parallel by re-ordering
the bits in the information sequence before they enter the second constituent
encoder.

The concept of iterative decoding relies on the use of soft-input/soft-output
decoders, which calculates a posteriori probabilities (APPs) based on the re-
ceived channel sequences and a priori information. An optimal algorithm
for computing APPs is the BCJR~algorithm, also called the MAP-algorithm.
Due to the high complexity of the BCJR-algorithm, soft-output versions of the
Viterbi algorithm have been suggested (SOVA) for Turbo decoding. The SOVA
algorithm have essentially half the implementation complexity compared to low-
complexity implementations of the BCJR-algorithm, and approximately 0.5 dB
worse performance when used as a constituent decoder in an iterative decoder.

The mechanism that lies behind the lower part of Turbo code distance spec-
tra was discussed. To conclude, the lower part of Turbo code distance spectra
originates from low-weight input sequences, typically of weight-2, 3 and 4, for
Turbo codes using trellis termination of at least one constituent encoder. Fur-
ther, the period L of the feedback polynomial has a large impact on the distance
spectra. The longer the period, the better the distance spectrum. For this rea-
son, from a distance spectrum point of view, it is attractive to use primitive
feedback polynomials, since they maximize L for a given number of memory
elements.



Chapter 3

Interleaver Design

The interleaver is a key component of Turbo codes, and its design is essen-
tial for achieving high performance. Indeed, the issue of designing Turbo code
interleavers has received substantial attention among Turbo code researchers.
Since the original introduction of the Turbo coding concept, a large amount of
interleaver design criteria and algorithms have been presented, for example in
[1, 4, 5, 21, 22, 27, 29, 38, 47, 50, 53, 70, 77, 80, 86, 91]

In this chapter, two conceptually different interleaver design criteria pre-
sented in [Paper I] and [Paper IV] are reviewed. Based on these criteria, an
interleaver design algorithm is formed. This design algorithm has a rather low
computational complexity, allowing efficient design of both small and large in-
terleavers. Interleavers designed with this algorithm yield state-of-the-art per-
forming Turbo codes, to our knowledge not surpassed by any other interleaver
design methodology.

3.1 Design Criteria

In line with the traditional design criterion for error correcting codes, a success-
ful interleaver design must ensure that the distance spectrum of the resulting
Turbo code is "good”. There is no straightforward answer to what a ”good”
distance spectrum is; it depends on the target operating scenario of the system.
For example, at high SNRs it is well-known that the code minimum distance
has a major influence on the code performance [71]. Thus, for such systems it
is possible to design codes based solely upon the minimum distance parameter.
In contrast, at low SNRs a larger part of the distance spectrum comes into role,
and the design criteria may require proper adjustments.

The distance spectrum is a good design-base for codes that are decoded using
a maximum likelihood (ML) decoding algorithm. However, the iterative decod-
ing procedure used for Turbo codes does not guarantee ML-decoding decisions.
In fact, it is easy to verify that a Turbo code decoder occasionally makes non-

35
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ML decoding decisions. Thus, it is natural to study the properties of a Turbo
code that govern the performance of iterative decoding. In particular, the choice
of interleaver has a significant influence on the iterative decoding performance;
hence, it is natural to formulate an interleaver design criterion based on these
observations.

In the following sections, two interleaver design criteria are reviewed. The
first criterion targets code properties, in terms of the distance spectrum, while
the second criterion targets the performance of iterative decoding. The latter
is described in more detail, since this criterion has received less attention in the
literature.

3.1.1 Criterion Based on the Code Distance Spectrum

In the previous chapter, the influence of the interleaver on the distance spectrum
of a Turbo code was discussed. In particular, it was demonstrated how spe-
cific interleaver mappings result in low-weight codewords. A natural interleaver
design approach is to avoid precisely such mappings, thereby improving the
distance spectrum. This approach has been dominating in the Turbo Code in-
terleaver design literature, with results reported in for example [1, 21, 22, 27, 77],
as well as in [Paper I].

The interleaver design algorithm presented in [Paper 1] is based on avoiding
interleaver mappings that generate low-weight codewords. In line with the ob-
servation in the previous chapter, that it is primarily low-weight input sequences
that produce low-weight codewords, the algorithm was designed to take input
sequences of weight-2, 3 and 4 into account. Since the first encoder is assumed
to be terminated, weight-1 input sequences need not be considered. The algo-
rithm was evaluated for Turbo codes using 105-bit! interleavers and constituent
encoders with generator polynomials (17/15)g. For this setup, the algorithm
produced a Turbo code with minimum distance 22 and multiplicity 8. Among
the interleavers compared to, the best interleaver found was a block helical simile
[5] interleaver, resulting in a Turbo code with minimum distance 19, multiplicity
24. The distance spectra of these codes are listed in Table 1 in [Paper I], for
Hamming distances up to 29 resulting from input sequences of weight 6 and
less. The distance spectrum of our interleaver is clearly superior compared to
the other spectra.

Even though the design criterion in [Paper I] is limited to weight-2, 3 and
4 input sequences, the computational complexity of such algorithms increases
rapidly with the interleaver length. Thus, the algorithm is suitable primarily
for short interleavers, up to a few hundred bits. For a given target minimum
distance the design complexity, in terms of the number of interleaver mappings
that must be avoided, is decreased if the feedback period L is increased. Thus,

IThe size of 105 bits was chosen since the best interleaver found to compare with, about
100 bits long, was a 105-bit block helical simile [5] interleaver.
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larger interleavers can be designed if for example constituent encoders with
many memory elements and primitive feedback polynomials are used.

Other distance spectrum criteria/algorithms

A genetic algorithm adapted for interleaver design based on the distance spec-
trum criterion was proposed by Bartolome in [6]. Using this algorithm, Bar-
tolome generated a 105-bit interleaver yielding a code with minimum distance
23 and multiplicity 29. Thus, the minimum distance was slightly improved from
22, achieved using the algorithm in [Paper I].

An interesting observation made when investigating the distance spectra of
Turbo codes concerns the characteristics of the input sequences that generate
low-weight codewords; these input sequences often consist of a short burst of
1’s, at positions such that the encoder is returned to the zero-state by the last
1 (¢f. Section 2.3). Hence, an efficient way of avoiding interleaver mappings
that generate low-weight codewords is to ensure that nearby positions are not
interleaved to positions again being close to each other, after interleaving. A
design criterion based on this observation was proposed by Dolinar et al. in [27].
The proposed design criterion ensures that two input positions that are sepa-
rated by S or less positions are interleaved to two positions at least S positions
apart. Besides that, this S-random design is the same as when ”designing” a
pseudo-random interleaver. Interleavers designed with this spreading criterion
are known to yield good-performing Turbo codes. However, trying to design
small S-random interleavers, in the range of 100 bits, results in minimum dis-
tances clearly inferior to those reported in [Paper I] and [6].

3.1.2 Criterion Based on the Performance of Iterative De-
coding

In the derivation of the BCJR algorithm, several assumptions regarding inde-
pendencies between stochastic variables are made. For example, consider the
derivation of the forward and backward recursions used for calculating the a-
and the (-values, that is, equations (2.9) and (2.10). In the derivation of the
forward recursion, independence is assumed between decoder input R,,, as de-
fined in (2.2), and all the previous inputs R?il, conditioned on knowing the
trellis state at position n — 1. The independence assumption is manifested by
the use of

p(un =14,5, =8, Ry|Snc1 = 8/, RY™") = p(un = 1,5, = 8, Rn|Sp-1 = )
(3.1)

in Appendix A, expression (A.13). Similarly, the backward recursion assumes
RY 1 to be independent of R,, conditioned on knowing the trellis state at
position n, through the use of

p (Rf:;,l‘Un = Z-, Sn =S8, Rn, Sn,l = Sl) =p (R,£1V+1|Sn = 8) (32)
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Figure 3.1: Empirical correlation bewteen extrinsic output 50 and the entire
sequence of extrinsic outputs (105 bits), for a recursive convolutional encoder
with generator polynomials (17/15)g.

in expression (A.14). In an iterative decoder, the input a priori information A,
is approximated by the extrinsic output from the previous decoder, Le,,. Thus,
the decoder input is RY = (I{V Ly, LeN ), and the above assumptions imply
that each extrinsic output Le,, is independent of all the other extrinsic outputs.
However, the extrinsic outputs are in contrast likely to be statistically dependent
on each other, since they are functions of the same input variables. That this is
indeed the case can be verified by examining the correlation between the extrin-
sic outputs, since correlated variables implies a statistical dependency. Figure
3.1 shows empirical correlation coefficients? between extrinsic output 50 and the
entire sequence of extrinsic outputs (105 bits long), when decoding a received
sequence with the BCJR~algorithm. The encoder in this example has generator
polynomials ( 1 17/15 )8, and the received codewords are corrupted by addi-
tive white Gaussian noise. Evidently, extrinsic output 50 is indeed correlated to
its neighboring extrinsic outputs, with decreasing correlation as the separation
is increased. Consequently, there exists a dependency between extrinsic outputs,
which is translated into a dependency between the a priori inputs in the next
decoding step. Thus, the assumptions made in the derivation of the forward
and backward recursions in the BCJR algorithm are violated. The amount of
correlation between two extrinsic outputs Legl) and Leg-l) is larger the smaller
the distance |i — j|. Thus, it is desirable to use two extrinsic outputs with small
separation |i — j| as inputs as far away from each other as possible in the next
decoding step.

Another independence assumption exploited in the BCJR algorithm is when
calculating the 7-values. Behind the derivation of (2.8), independence is as-
sumed between the encoder inputs z,, y, and Le,s, conditioned on knowing
the state transition from position n — 1 to n, when separating the probability

2When transmitting random information sequences, the correlation between extrinsic out-
puts measured in terms of Cov (Le;, Lej) is zero, since the information symbols u; and u;
are uncorrelated. The correlation coefficients reported here are obtained by ’rectifying’ each
extrinsic value by its information symbol, i.e. via Cov (Le; - (2u; — 1), Lej - (2u; — 1)). The
same holds for correlation coefficients between extrinsic outputs and noise samples, etc.
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in Appendix A, in the derivation of (A.16). For the first and second decoding
step this assumption is valid; however, starting with the third decoding step,
there exists a dependency. The origin of this dependency is illustrated in Figure
3.2. In the first decoding step, no a priori information is used, and thus there
exist of course no dependencies. As for the second decoding, a priori input
Leg(zn) is independent of the parity observation y(z) ,Vn, since the second parity
sequence is not used at all by the first decoder. As for the independence between
Leg(
to position m, the independence follows from the calculation of the extrinsic
output in (2.14). Indeed, the subtraction of the intrinsic information Li g(,,)from

Zn) and T 4(,), where x4(,,) is the systematic channel observation interleaved

the soft-output Afil(zn) provides independence between the extrinsic information

LeEll(zn) and Zg(,). However, in the third decoding step the process of iterative

decoding is asserted. The a priori input at position j = d (i), Legz) , stemming
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from output position ¢ from the second decoder (c¢f. Figure 3.2), is dependent
on the previous a priori input at position m, i.e. Legll(zn). This dependency
is demonstrated by the dashed curve at the second decoding stage in Figure
3.2, showing empirical correlation between a priori input Legl(zn ) and extrinsic

1(2) gllzn is dependent on the channel

observations x; and y;, again illustrated by a set of empirically found correlation
coefficients. In total, through this decoding chain it is plausible that the a prior:
input LeEQ), which is input at position j in the third half-iteration, is dependent
on the channel observations x; and y;. That this is indeed the case is easy to
verify by Monte-Carlo simulations. As a consequence, the assumptions used in
(3.3) are violated.

In the above paragraphs, we have seen three assumptions made in the deriva-
tion of the BCJR algorithm that are not valid when used in an iterative decoding
scheme. For all violations, the degree of correlation is reduced with increasing
distances between positions in the encoder input and output sequences. Refer-
ring to the notations in Figure 3.2, this means that the sum of the distances
|d (m) —d(i)] and |m —i|, i.e. the length of the cycle formed by interleaver
mappings d (m) and d (), should be made large.

Naturally, the size of the interleaver sets a limit on how large |d (m) — d ()| +
|m — i| can be. More importantly, it imposes restrictions on how large the small-
est value of |d(m) —d(i)| + |m —i|,Vi,m can be. Conceptually, it is plausible
that the spectrum of distances |d (m) —d (¢)| + |m — |, Vi, m has an influence
on the performance of the iterative decoding. In [Paper III], a measure that
comprises all these distances into a single scalar is investigated. This measure
is called dterative decoding suitability (IDS), and it proves to be related to the
convergence rate of iterative decoding.

In [Paper IV], an interleaver design criterion based on the performance of
iterative decoding is proposed. In principle, the criterion is formulated with the
goal to reduce the degree of suboptimality of the iterative decoding algorithm,
as a consequence of the aforementioned assumptions. Both the design criterion
and the IDS measure use an approximation of the correlation between extrinsic
outputs after the second decoder and channel noise samples. This approxima-
tion takes the form of an exponential decrease in correlation as the separation
between two positions is increased. To start with, the correlation between ex-
trinsic output ¢ from the first decoder and systematic noise sample j, denoted

pg}j), is approximated as

output Le;”. In turn, the a priori input Le

—eli=il if 5 £
(1) _ ] ae if j #14 oL
pij = { 0 otherwise 7 = 1,2,...,NV. (3.4)

The value of the constants a and ¢ depend on the choice of constituent encoders;

for example, for the generator polynomial (17/15)g, a = 0.23 and ¢ = 0.18. As
(2)

for the corresponding correlation after the second decoding stage, denoted Pis s
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Figure 3.3: Illustration of the correlation between extrinsic outputs and chan-
nel observations, after the first (a) and second decoding (b) stages. The solid
lines are empirically found coefficients, while the dotted lines correspond to the
approximations (3.4) and (3.5).

these coefficients are approximated as [Paper I11]

—c|ld™ " (5)—1 1 2 —c(ld(m)—j|+|i—m
(1= b1 (jy-i) ae " 7 4 2 3 aZeeldlmsltiom),

m=1
from the systematic input m#i,d(m)#j

»2) —
¥

1
2

from extrinsic inputs

(3.5)

where § is the Kronecker delta-function, and d=! (j) is the position to which
input 7 is interleaved. Both approximated and empirically achieved correlation
coefficients for a 105-bit Turbo code, after the first and second decoding stages,
are shown in Figure 3.3. Even though (3.5) is a heuristic approximation of the
correlation coefficients after the second decoder, it yields reasonable results and
it proves to be very useful for the purpose of interleaver design.

With the above used interleaver description, d (i) represents the position to
which the ith output from the second decoder is deinterleaved®. In Figure 3.2,
extrinsic output ¢ from the second decoder is deinterleaved to position j, i.e.
d (i) = j. The process of designing an interleaver can be organized as choosing
the positions d (i) ,¢ € {1,... , N}. For each choice, d (i) is chosen to minimize
(2

the correlation between extrinsic output Le;”’ (which is deinterleaved to be used

3 Equivalently, d (i) represents the position in the original sequence that is interleaved to
become the ith input to the second decoder.
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as a priori input at position d (7)) and the channel observations zg¢;) and yg(;)-
Thus, an appealing design criterion is to choose d (i) as

%,

d (i) = arg minﬁ(Q) (3.6)
j

where ﬁg) is calculated using the already defined interleaver mappings. Note

that for j = d (2) the first part of (3.5), corresponding to the systematic input, is
zero since 1 —64-1(jy—; = 0. Consequently, the above minimization is equivalent
to

406 — are mi —e(ld(m)—jl+|i=m]) 3.7
(i) =argmin} e (3.7)

This means that d (i) is assigned a position j so that the sum in (3.7) is
minimized. The longer the cycles formed by the mappings d(m) and d (i) ,
i.e. the larger the |d (m) — d (i)| + |¢ — m|, the smaller the sum. This coincides
with the observations by Wiberg in [97], where he analyses iterative decoding
using Tanner graphs. Wiberg finds indications that to avoid poor decoding
performance, short cycles should be avoided.

In the next section, we describe an interleaver design algorithm that exploits
both the correlation criterion and the distance spectrum criterion.

3.2 A New Interleaver Design Algorithm

In the two previous sections, we have reviewed two conceptually different in-
terleaver design criteria; one that targets code properties, and one that targets
the performance of iterative decoding. In this section, we combine these two
criteria into an interleaver design algorithm.

As before, the interleaver is described by a vector of length NV, defined by the
elements d (m),m =1,..., N. In the algorithm described here, the elements in
this vector are assigned values one by one, until the whole vector is defined. For
each new assignment, a position is chosen based on both the distance spectrum
and the correlation criteria. Regarding the distance spectrum, the algorithm
is formulated to avoid interleaver mappings that result in a codeword with
Hamming weight less or equal to a certain value, called the ’design distance’,
ddesiglv

It is not straightforward how to weigh the importance of the distance spec-
trum of the code and the performance of the iterative decoding. Especially
since it is not obvious how much the iterative decoding performance is degraded
by a certain amount of correlation between the decoder inputs. In the design
algorithm presented here, we have adopted the following strategy:

For each new interleaver element to assign, choose a position with ”good”
correlation properties among the positions that fulfill the distance spectrum
requirements imposed by dqesien -
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In principle, the elements in the interleaver vector can be assigned values
in any order; however, in our investigations we have found it efficient to assign
the values in straight order, either from position 1 to N, or from N to 1. For
reasons described in [Paper VI], which deals with interleaver design from a
trellis termination point of view, there are advantages with designing interleavers
in reversed order, that is, from N to 1. This is the strategy adopted in the
algorithm presented here.

Below, the basic stages of the interleaver design algorithm are stated. Vari-
ous aspects of the algorithm are commented in the sections to follow.

Definitions:

d: The vector that defines the interleaver. d = [ d(1) d(2) ... d(N) ],
where the mth element holds the input position, d (m), that is interleaved
to the mth position in the interleaved sequence.

ddesign: The maximum codeword Hamming weight that is consciously avoided
by the interleaver design algorithm. This value may be compared with the
dmax parameter used in Section 2.3, when searching for codewords with
weights less than or equal to dax.

M: The set of positions in the interleaved sequence not yet associated with a
position in the original sequence, i.e. the positions ¢ for which d (¢) is not
yet defined.

L: The set of positions in the original sequence that has not been assigned to
interleaved positions, i.e. the counterpart of M.

H: A vector of length N containing the Hamming weights of the lowest-weight
codewords that result from the possible choices for d(¢). In particular,
H (1) stores the weight of the lowest weight codeword that results from
the choice d (i) = 1,1 € L.

Algorithm:

Initialization

1. Set M ={1,... ,N}and L={1,... ,N}.

2. Choose a design distance dcsign-

Design loop

1. Choose a position ¢ € M, for which d (¢) is to be assigned. With reversed
order interleaver design, ¢ = maxM. d (i) is to be chosen among the
positions [ € L.
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2. Calculate the lowest codeword weight resulting from each of the choices
d (i) =1,1 € L, taking Hamming weights less than or equal to dicsign into
account. Thus, for each position [ € L there is an associated minimum
codeword weight that will exist in the code, given that the choice d (i) =1
is made. This set of weights is stored in the vector H. If no low-weight
codeword (< dyesign ) is found for the choice d (i) = [, then H (I) is assigned
a large number (arbitrary, but larger than dyesign and equal for all such
I’s).

3. Let the positions in £ that result in the highest weight codewords form
the set L', i.e.

L=Cn {l . H (I) = maxH (m)}. (3.8)

m

4. Choose to deinterleave extrinsic output Le§2) to the position among the
positions in £’ it has the lowest correlation to, according to (3.7). Thus,
choose d (i) as

d(z) = arglnglcrll Z 670(‘d(m)7l|+|i7m|). (39)
megM

If more than one of the positions I € £’ result in the same minimum
correlation, choose one of them at random.

5. Remove i and d (i) from M and L, respectively.
6. If M is not empty, go to 1.

The design process is illustrated in the flow chart in Figure 3.4. Many
modifications of the algorithm are of course possible; a few of which are discussed
in the following.

Optimization criterion. The process of choosing the position d (i) = I,1 €
L', corresponding to the channel observations that extrinsic output 7 is least
correlated to, up to the point of the present design step, by no means guaran-
tees that a global optimum of the overall minimization problem is found. In
fact, a global optimization criterion has not even been stated. Such a criterion
could for example be based on the IDS-measure, hereby including the correlation
properties for the entire interleaver. However, experience from designing a large
amount of interleavers indicates that the presented algorithm produces inter-
leavers with very good correlation properties, compared to what is believed to
be achievable. This is motivated in Appendix B.1, where the correlation prop-
erties of interleavers designed with the presented algorithm are compared to
whose of golden interleavers [21]. Golden interleavers are based on the golden
section, and they result in interleavers with very good correlation properties.
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Remove i from M
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Figure 3.4: Flow chart of the interleaver design algorithm.
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The motivation for the use of golden interleavers in [21] is however not based on
the performance of iterative decoding, but rather on its successful spreading of
error bursts. Golden interleavers perform very well for small interleaver sizes,
but suffer from high multiplicity of rather low-weight codewords for large inter-
leaver sizes. Consequently, the error-floor for golden interleavers appear earlier
than what is achievable by including a distance spectrum criterion in the design.

Design order. It is not obvious how to choose the design order, that is, the
order in which the elements are chosen from the set M in step 1 of the design
loop. The most suitable design order is related to the size of the interleaver, as
illustrated in Appendix B.2. The use of straight-order design (e.g. from last to
first) yields good results for a wide range of interleaver sizes. However, for very
small interleavers, in the order of 100 bits, there might be a reason to investigate
alternative strategies, for example random design order.

Choosing dgesign. It is not straightforward to choose a suitable value of
dqesign- Naturally, it is tempting to use a large dgesign so that the minimum
distance of the code becomes as large as possible. However, if dgcsign is chosen
much larger than the minimum distance the design algorithm can achieve, it is
likely that the distance restrictions have had a negative influence on the corre-
lation properties of the designed interleaver. Therefore, it is often necessary to
choose dgesign based on experience. This process is discussed in Appendix B.4,
where the effect of choosing different values of dgcsign is illustrated.

Self-terminating interleavers. The design algorithm can easily be modified
so that the designed interleaver is a self-terminating interleaver [5, 38]. Self-
terminating interleavers have the advantage that both constituent encoders are
terminated in the same state. Consequently, the issue of trellis termination is
readily solved by inserting flush bits so that the first encoder is terminated in
the zero-state. However, experience show that the self-termination constraint
may severely restrict the interleaver design. Results on this issue are reported
in [Paper VIJ.

Interleaver structures. It is possible to include arbitrary design restrictions
in the presented algorithm. A reason for doing so can be implementation aspects.
For example, by restricting the design to odd-even symmetric interleavers [Paper
V], that is, interleavers for which d (¢) isodd if i iseven and d (i) = j = d (j) =
1, the storage requirement of the resulting interleaver rules are less than that of
non-structured interleavers. These aspects, including additional storage-saving
interleaver structures, are studied in [Paper V.

Distance calculations. The most demanding part of the design process, in
terms of computational complexity, is Step 2 in the design loop, i.e. the distance
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Figure 3.5: Typical weight-2 input sequence that are considered when searching
for positions that result in a codeword with weight less than or equal to dgcsign -
Valid for design of interleavers used in a Turbo code where the trellis of the first
constituent encoder is terminated.

related calculation of H. Fortunately, the correlation criterion has a positive in-
fluence on the distance spectrum, especially for higher-weight input sequences.
As a consequence, the number of checks that need to be performed in the de-
sign is significantly reduced. For example, most zero-terminating weight-3 and
weight-4 input sequences are effectively broken up by the correlation criterion.
However, there are certain mappings that spreading criteria* in general fail to
avoid. Figures 3.5-3.7 show the type of weight-2, 3 and 4 input sequences
that are not always avoided. Thus, it is the Hamming distances resulting from
these types of sequences that are accounted for by the H-vector. The sequences
shown in Figures 3.5-3.7 are valid when designing an interleaver for a Turbo
code whose first constituent encoder is terminated in the zero-state. If another
termination method is used, other types of sequences need to be considered.
Specific interleaver design for different trellis termination methods is addressed
in [Paper VI|. One of the results thereof is that as long as the proper types of

4Both the correlation design and the S-random design are examples of interleaver design
criteria that yield good spreading properties.
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Figure 3.6: Typical weight-3 input sequence that are considered when searching
for positions that result in a codeword with weight less than or equal to dqesign -
Valid for design of interleavers used in a Turbo code where the trellis of the first
constituent encoder is terminated.
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Figure 3.7: Typical weight-4 input sequence that are considered when searching
for positions that result in a codeword with weight less than or equal to dgcsign -
Valid for design of interleavers used in a Turbo code where the trellis of the first
constituent encoder is terminated.
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input sequences are considered in the interleaver design, the performances of
different trellis termination methods are very similar, also for low error rates.

3.3 Performance Examples

This section demonstrates how the presented interleaver design criteria influence
the error rate performances of Turbo codes. For this purpose, four different 105-
bit interleaver constructions are compared:

1. Random interleaving. A different pseudo-random interleaver is chosen for
each block to transmit.

2. A block helical simile interleaver [5], with 5 rows and 21 columns. dpi, =

19, aq,,,, = 24.
3. A distance spectrum-designed interleaver (from [Paper I]). dpmin, = 22,
ad,,, =8

4. A distance spectrum- and correlation-designed interleaver. Designed with
the algorithm presented in the previous section. dp,in = 18, aq,,,, = 1.

All compared interleavers are 105 bits long, with permutation matrices® and
IDS-values shown in Figure 3.8. Both the block helical simile interleaver (#2)
and the correlation-designed (#4) interleaver have good correlation properties,
judging from the IDS-values and from inspecting their permutation matrices®.
Similarly, both the random interleaver (#1) and the distance spectrum-designed
interleaver (#3) appear to have poor correlation properties.

The frame error rates as a function of the number of decoding iterations
for the resulting Turbo codes are shown in Figure 3.9 for SNRs corresponding
to Ey/No = 2.0 and 3.5 dB. The constituent encoders have generator polyno-
mials (17/15), and the decoders use the full BCJR-algorithm. It is observed
that the interleavers with the best correlation properties (lowest IDS) yield
faster converge than the other interleavers, both at medium and high SNRs.
As a consequence, for a Turbo decoder employing less than 12 half-iterations
(or 6 full iterations), the best performance is obtained with the interleavers
having superior correlation properties. At Ey/Np = 3.5 dB, the distance spec-
trum designed-interleaver (#3) performs better than the block helical simile
interleaver (#2) after about 7 decoding iterations. Before that, the superior
convergence rate of the block helical simile interleaver is of higher importance.

SFor the random interleaving case, the permutation matrix shown corresponds to one
single pseudo-random interleaver, while the IDS-value is the mean IDS of 500 pseudo-random
interleavers. The standard deviation from the mean value is 0.03.

6In the permutation matrices, two dots that are close to each other correspond to two input
postitions that are close to each other both before and after interleaving. Thus, they result
in high correlation between the decoder inputs.
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Block helical simile (5x21) correlation-designed

IDS=1.03 IDS=1.02

Figure 3.8: Permutation matrices and IDS-values for four compared 105-bit
interleavers. The IDS-values are normalized to the IDS of a golden interleaver
of the same size.

3.4 Summary

When designing interleavers for Turbo codes, there are two important concepts
to take into account: (1) the distance properties of the code and (2) its suit-
ability two be iteratively decoded. The latter concept is a new code design
criterion, required as a consequence of using sub-optimum iterative decoding.
The interleaver design criterion related to the code distance spectrum is based
upon avoiding interleaver mappings of self-terminating sequences into another
self-terminating sequence. The design criterion related to the decoding per-
formance is instead based on the correlation properties of the inputs to the
constituent decoders. Fortunately, the two criteria are not in conflict with each
other. On the contrary, the spreading achieved when designing interleavers with
good correlation properties has positive influence on the distance properties of
the code.
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Figure 3.9: Simulated frame error rate performances vs. the number of decoding
iterations for Turbo codes using four different 105-bit interleavers. Tranmission
over an AWGN channel with E,/Ny = 2.0 and 3.5 dB.
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Chapter 4

Choosing Constituent
Codes

In the previous chapter, in the review of interleaver design criteria, two funda-
mental properties that govern the performance of a Turbo code were exploited:
the distance spectrum and the performance of iterative decoding. In this chap-
ter, the same approach is used to investigate selection criteria for the choice
of constituent codes, with focus on the feedback polynomial. This review is
not exhaustive, but indicative of properties that should be considered in the
process of designing Turbo codes. In contrast to the conclusions regarding in-
terleavers, which can be designed both for good Hamming distance properties
and good correlation properties, there is a trade-off between the two when choos-
ing the constituent encoders. Therefore, the guidelines for choosing constituent
encoders are dependent on the target operating point of the code.

The issue of choosing generator polynomials from a distance spectrum per-
spective only, including both the feedback and parity polynomials, is investi-
gated in for example [8, 25, 44]. The issue of choosing encoders from a decoding
perspective is investigated in [90, 16], on which the results presented in this
chapter are based. The main extensions to previous observations are due to
the use of interleavers designed with the criteria presented in Chapter 3, which
influences the regions for which different design guidelines apply.

All simulation results reported in this chapter are valid for 15 decoding
iterations using the full BCJR~algorithm. Further, the results are obtained for
Turbo codes using trellis termination of the first constituent encoder.

4.1 Distance Spectra

For a specific pseudo-random interleaver, as well as for the average of all inter-
leavers of a specific length, the Turbo code distance spectrum is highly influenced

53
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Figure 4.1: Tangential sphere upper bound (lines) of the performances of rate-
1/3 Turbo codes using three different generator polynomials, for the ensemble
of all 500-bit interleavers. Also shown are the corresponding simulation results
(markers).

by the period L of the feedback polynomial. In general, the longer the period,
the better the distance spectrum of the Turbo code. Especially, the minimum
distance and the effective free distance [24] are directly influenced by the period
length for reasons outlined in Section 2.3. Thus, the feedback period has a large
impact on the asymptotic performance of the code, that is, the performance
at high SNRs [71]. As an illustration, the tangential sphere bounds [73, 81] of
the ML-decoding performances of three Turbo codes using different constituent
encoders are shown in Figure 4.1 (lines). These correspond to the distance
spectra achieved with the ensemble of all 500-bit interleavers, for the respective
constituent codes. The compared codes all use 16-state constituent encoders,
described by the generator polynomials (21/37)g, (23/35)g and (35/23)g, with
periods 5, 7 and 15, respectively. As expected, the best distance spectrum cor-
responds to the feedback polynomial with the longest period, i.e. (35/23)g.
The relative performances are also verified by simulation results (markers) for
each choice of generator polynomial, obtained using a new pseudo-random inter-
leaver for each transmitted block. For E,/Ng 2 1.5 dB, the simulation results
approach the tangential sphere upper bound.

Figure 4.2 shows simulated frame error rate performances of Turbo codes
using the same generator polynomials as above, but for 4096-bit interleavers.
As seen, these performances suffer from the same type of error floors as the
500-bit Turbo codes, caused by the poor minimum distances resulting from the
use of random interleaving. Together with Figure 4.1 this illustrates that the
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Figure 4.2: Simulated frame error rate performances of rate-1/3 Turbo codes
using random 4096-bit interleaving, and different constituent encoders.

length of the feedback period is important for both small and large interleavers.

Having observed how the period L influences Turbo code distance spectra, it
is reasonable to choose feedback polynomials with as large periods as possible.
Since primitive polynomials achieve the largest possible L for a given number
of memory elements, the use of primitive feedback polynomials is common in
Turbo coding literature.

The performances obtained in Figures 4.1 and 4.2 are valid for the ensemble
of interleavers of a certain length. When using designed interleavers, the feed-
back period L is not necessarily as important. With sophisticated interleaver
design, the lower part of the distance spectra can often be made sufficiently good
also for feedback polynomials with shorter periods. ’Sufficiently good’ implies
that the code is operating at SNRs for which it has not reached its asymptotic
performance, as dictated by its minimum distance and the corresponding mul-
tiplicity. For such codes and operating regions, the benefit of further improving
the distance spectra is limited. As a consequence, there might be selection crite-
ria other than the distance spectrum that deserves consideration when choosing
the feedback polynomial. Such criteria, related to the performance of iterative
decoding, are discussed in the next section.

4.2 TIterative Decoding Performance
The discussion on distance spectrum in the previous section provides guidelines

for choosing the feedback polynomials for Turbo codes operating at high SNRs.
For low and medium SNRs, in the 'waterfall’ region, the properties that govern
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the performance of Turbo codes are more subtle. It has been observed, for ex-
ample in [90], that the error correcting performance in this region is better for
Turbo codes using non-primitive instead of primitive feedback polynomials. It
is difficult to construct reliable bounds and estimates of the error performance
based on the distance spectra in this region of SNRs. Hence, it is doubtful if it
is possible to explain these observations using distance spectra argumentation.
For example, the tangential sphere bounds for the 500-bit interleavers in Fig-
ure 4.1 indicate that the encoder using primitive feedback polynomials retains
its superior performance throughout the entire range of SNRs. However, the
simulation results at Ep/Ny = 0.5 dB indicate that this code actually has the
worst performance, among the three. The same behavior, even more evident, is
observed for the 4096-bit interleavers in Figure 4.2.

The Turbo code properties that govern the error correcting performance in
the waterfall region are still not completely understood. Since simulated per-
formances are above the upper bounds valid for ML-decoding, the iterative de-
coding is clearly suboptimal. Hence, it may come to a point where the decoding
performance is of higher importance than the distance properties of the code.
As in the case of interleaver design, the choice of the constituent encoders influ-
ences the performance of iterative decoding. Here, we present a few indications
on how different choices of constituent encoders affect the performance of iter-
ative decoding. In particular, we focus on the choice of feedback polynomials,
since these are found to have a large influence on said performance.

As the iterative decoding proceeds, the statistical dependencies increase be-
tween decoder inputs and outputs, as well as between the transmitted symbols
and the decoder outputs. In [16], Brink presents a method for investigating
the convergence of iterative decoding based on the mutual information between
the transmitted information symbols and the decoder a priori inputs/extrinsic
outputs, for different number of decoding iterations. With this methodology,
comprising the technique of using extrinsic information transfer charts, Brink
succeeds in predicting the position of what is referred to as the ’turbo-cliff’,
that is, the Ej/Ng for which the iterative decoding starts to converge. The
methodology of extrinsic information transfer charts is reviewed briefly in the
following paragraphs.

Let Igc) denote the mutual information between transmitted symbols (an-
tipodal) and the corresponding extrinsic output after the kth half-iteration,
0 < I,gc) < 1. For an iterative decoder that improves its decoding perfor-
mance at the kth half-iteration this mutual information is increased, that is,
I](Ek) > I](Ekfl) [16]. In contrast, if I](Ek) = I](Ekfl) the iterative decoding process
does not improve in the kth half-iteration. Figure 4.3 shows principal appear-
ances of the extrinsic information transfer characteristics of a soft-in/soft-out
decoder [16]. The situation corresponding to Igc) = Igc_l) is indicated by diag-
onal lines (dashed). In Figure 4.3(a), the influence of different SNRs is shown.
An increase in Ejp/Ng results in increased mutual information at the decoder
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Figure 4.3: Principal appearances of extrinsic information transfer characteris-
tics of soft-in/soft-out decoding of recursive systematic convolutional codes. (a)
different SNRs for a specific generator polynomial, and (b) different number of
encoder memory elements for a specific Fp/Ny.

output, for a given mutual information at the decoder input!'. This corresponds
to improved decoding performance. In Figure 4.3(b), the influence of using con-
volutional encoders with different number of memory elements is shown. For a
priori inputs with low mutual information with the transmitted sequence (i.e.
the lower parts of the abscissa), the best decoding progress is obtained with
the codes corresponding to a small number of memory elements. On the other
hand, with a priori inputs having high mutual information to the transmitted
sequence, the situation is the opposite. Then, the best decoding progress is
obtained for the codes that correspond to a larger number of memory elements.

For a given number of memory elements in the encoder, the extrinsic infor-
mation transfer characteristics are also dependent on the generator polynomials
[16]. Figure 4.4 shows the characteristics for two memory-4 constituent encoders
using generator polynomials (35/23)g and (21/37), respectively. It is noted

that in the early decoding stages, that is for mutual information I;Ek) < 0.5, the
largest decoding progress for each half-iteration is achieved for the (21/37)¢-
code. Equivalently, it is observed that if E,/Ng is decreased, the characteristic
of the (35/23)¢-code reaches the diagonal first, which corresponds to a cease in
the iterative decoding convergence.

!The extrinsic outputs from the previous half-iteration (k — 1) act as a priori inputs at
half-iteration k.



58 CHAPTER 4. CHOOSING CONSTITUENT CODES

1 —
= (35/23), 4
8'/3 K //
gi}“ 0.8 ". ///
® & S
5 g 7
= -2 0 //
2 = (21/37), /
E & 8 /
5 = ’
E = 04 4
— = v
3 T e
£ 2 74
S R02I A0

/

/

0

0 0.2 0.4 0.6 0.8 1
Mutual information at input
to half-iteration k, Ig“fl

Figure 4.4: Illustration of extrinsic information transfer characteristic for con-
stituent encoders with 4 memory elements and generator polynomials (35/23)
and (21/37)g, respectively. Results from [16].

When designing Turbo codes that operate in the waterfall region, the E;, /Ny
is such that the iterative decoding is barely converging. Thus, the extrinsic in-
formation transfer characteristic has a region where it is just above the diagonals
in Figure 4.3. This corresponds to only a slight increase in the mutual infor-
mation Iém for each new half-iteration. The region that tends to cause most

problems regarding convergence is in the range 0.2 < Igc) < 0.6 [16]. In this
region, the curves in Figure 4.3(b) indicate that the best convergence properties
are obtained with constituent encoders with few memory elements. However,
at later decoding steps the situation is reversed, as commented above. Thus,
the idea of using asymmetrical Turbo codes, which implies different constituent
encoders to be used in the Turbo encoder, is indeed attractive. Asymmetrical
Turbo codes are investigated in [90, 16].

The extrinsic information transfer characteristics suggest that the 'Turbo-
cliff’ is obtained first, i.e. for the lowest SNR, with encoders using few memory
elements and feedback polynomials with short period. This is verified in Figure
4.5, showing the bit error rate performances® of Turbo codes using memory-
3 and memory-4 encoders and 4096-bit interleavers. The interleavers are de-
signed using the algorithm in Section 3.2. In Figure 4.5(a), memory-3 con-
stituent encoders with generator polynomials (17/15)g and (15/17)g are used.
These feedback polynomials have periods L = 7 and L = 5, respectively. As

9 . . . .

“The plots presented in this section use bit error rate as the performance measure. The
same principle holds also for frame error rates, although the differences in Ep, /Ny are smaller,
or sometimes negligible.
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Figure 4.5: Simulated bit error rate performances of rate-1/3 Turbo codes using
(a) memory-3 and (b) memory-4 constituent encoders. The interleaver size is
4096 bits, and each Turbo code uses an interleaver designed for the particular
constituent encoders.

anticipated, the Turbo-cliff appears first for the non-primitive feedback polyno-
mial, that is, polynomial 17g. The same behavior is observed in Figure 4.5(b),
showing memory-4 encoders with generator polynomials (35/23)g, (23/35)g and
(21/37)g, with periods 15, 7 and 5, respectively. For both the memory-3 and
memory-4 encoders, the Turbo-cliff appear in the order suggested by the feed-
back polynomial periods.

It is also interesting to notice the effect on the distance spectrum resulting
from the use of shorter period feedback. For L = 15 and L = 7, and for the
error rates shown in Figure 4.5, that is, as low as 10~% in BER, the interleaver
design algorithm succeeds in designing interleavers for which the error floor is
not reached. However, for L = 5, the error floor is reached at approximately
105 in BER, even though a designed interleaver is used.

Finally, we compare the performances of Turbo codes having the same pe-
riods of their feedback polynomials but different number of memory elements.
For example, even though the number of memory elements differ, the polyno-
mials 155 and 35g both have period L = 7, and the polynomials 17g and 37g
both have period L = 5. The performances of the codes using these feedback
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Figure 4.6: Comparison of simulated bit error rate performances of rate-1/3
Turbo codes using constituent encoders with feedback period L =5 and L =7,
with different number of memory elements. The interleaver size is 4096 bits,
and each Turbo code uses an interleaver designed for the particular constituent
encoders.

polynomials in Figure 4.5 are shown in the same plot in Figure 4.6. It is re-
markable how close the performances with identical polynomial periods are to
each other, even though the number of memory elements differ. Indeed, the
period of the feedback polynomial has the major influence on the location of
both the Turbo-cliff and on the distance properties. In contrast, the number of
encoder memory elements has virtually no influence when comparing the above
encoders with identical periods.

To conclude, when choosing feedback polynomial there is a trade off between
a low error-floor and an early Turbo-cliff; either a long L with a corresponding
low error-floor, or a short L with an early Turbo-cliff.

Figure 4.7 shows the bit error rate performances achieved with 500-bit in-
terleavers, using the same constituent encoders as for the 4096-bit interleavers
in Figure 4.5. The 500-bit interleavers are also designed with the algorithm pre-
sented in Section 3.2. The behavior is in principle the same as for the 4096-bit
interleavers. However, very little gain is achieved, if any, by using polynomials
with period 5 instead of 7. Again, the performances are more influenced by the
period of the feedback polynomial than by the number of memory elements in
the encoders. This is verified by comparing the performances of the (17/15)¢-
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Figure 4.7: Simulated bit error rate performances of rate-1/3 Turbo codes using
(a) memory-3 and (b) memory-4 constituent encoders. The interleaver size is
500 bits, and each Turbo code uses an interleaver designed for the particular
constituent encoders.

and (23/35)¢-codes, as well as the (15/17)¢- and (21/37)g-codes.

Finally, we stress the importance of using properly designed interleavers in
conjunction with constituent encoders having short periods. For this purpose,
we compare the performances of two additional interleavers: random interleav-
ing and golden interleavers [21]. In short, random interleaving result in neither
good distance spectra nor good correlation properties. Golden interleavers, on
the other hand, result in very good correlation properties, but often suffer from
large multiplicities of relatively low-weight codewords. Figure 4.8 shows the
BER performances using generator polynomials (35/23)g and (17/15)g for 500-
bit (a) golden-, (b) random- and (c) designed interleavers. As seen, for the
golden- and random interleaving alternatives the use of the memory-3 encoders
has better performance above BER of approximately 10~4, while the corre-
sponding limit for the designed interleaver is at approximately 10~7 in BER. As
asserted, the benefits of using a feedback polynomial with short period are valid
for a much wider range of error rates when using properly designed interleavers.
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Figure 4.8: Simulated bit error rate performances of rate-1/3 Turbo codes using
500-bit interleavers and memory-3 and memory-4 constituent encoders with
primitive feedback polynomials. (a) Golden interleaver, (b) random interleaving,
and (c) designed interleavers.

4.3 Summary

In this chapter, the influence of the constituent encoders on the performance
of Turbo codes has been reviewed, with focus on the feedback polynomials.
In particular, their impact on the distance spectra and the iterative decoding
performance is investigated. It is concluded that there is a single parameter that
has a strong relation to both these issues: the period of the feedback polynomial.
In essence, a long period L has a positive impact on the lower part of the Turbo
code distance spectra. Thus, for asymptotic performances, i.e. at high SNRs,
it is advantageous to use constituent encoders with long periods. For a given
number of encoder memory elements v, the longest L possible is obtained with
primitive feedback polynomials, for which L = 2" — 1.

For low SNRs, i.e. when the Turbo code is operating in the waterfall region,
it is sometimes advantageous to use feedback polynomials with shorter peri-
ods. This is especially true when using designed interleavers, since these can
mitigate the deteriorating effect that a short L has on the distance spectrum.
For complexity reasons, it is natural to decrease the value of L by reducing
the number of memory elements in the encoders. In our investigations, nearly
identical error performances are obtained for Turbo codes using constituent en-
coders with identical feedback polynomial periods but with different number of
memory elements.



Chapter 5

Conclusions

There are two purposes of this first part of the thesis. Firstly, it is an introduc-
tion to Turbo codes in general and, secondly, it is an overview of the research
area, including a review of the major results and contributions to the field of
designing Turbo codes.

There are different definitions on what *Turbo codes’ are. The codes inves-
tigated in this thesis are constructed via parallel concatenation of two recursive
convolutional codes (RSC). The parallel concatenation is implemented by inter-
leaving, i.e. re-ordering, the information sequence before it is input to the second
constituent encoder. Two of the most central parts of a Turbo code encoder
are thus the interleaver and the constituent encoders. Other central aspects of
a Turbo encoder are trellis termination and puncturing. Trellis termination is
an issue brought into attention as a consequence of the recursive property of
the constituent encoders, in combination with the interleaver. Puncturing is
the process of excluding bits from the outputs from the constituent encoders,
so that the concatenated transmitted sequence is a decimated version of the
encoder outputs.

One of the major breakthroughs related to the introduction of Turbo codes
is the process of iterative decoding. With iterative decoding, two or more con-
stituent decoders take turns in attempting to decode the received message. In ev-
ery new attempt, each decoder make use of the outcome from the other decoder’s
last decoding attempt. Properly formulated, and with sufficient signal-to-noise
ratio, the process of iterative decoding is remarkably successful in refining the
decoder outputs until the two decoders converge to a joint decision.

The reason to use iterative decoding is related to the invincible complexity
(still) associated with maximum likelihood decoding of Turbo codes. Iterative
decoding offers efficient decoding of a complex and powerful code, however to
the price of being suboptimal to maximum likelihood decoding.

The subject of this thesis is the design of Turbo codes, that is, how to choose
and/or design the components in a Turbo code encoder to get the best possible
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performances. Traditionally, the issue of designing codes is focused on the goal of
creating the best possible Hamming distance spectrum. Indeed, this is a major
issue also in the case of designing Turbo codes. However, since Turbo codes
are decoded using an iterative and suboptimal decoding algorithm, new design
criteria arise. In fact, the success of iterative decoding proves to be related to
the choice of the components in the Turbo code encoder.

In order to investigate the performance of iterative decoding, the concept of
studying the correlation properties between decoder inputs is introduced. It is
found that the correlation properties are strongly influenced by the interleaver
choice. These findings can be exploited in two ways. Firstly, it is possible to
investigate the properties of an interleaver, to determine wether it is suitable for
an iterative decoding environment or not. For this purpose, the IDS-measure
was introduced, as a means of assessing the iterative decoding suitability of an
interleaver without performing extensive simulations. Secondly, it is possible to
form an interleaver design criterion based on the correlation properties.

An extensive part of the presented work is on the issue of interleaver de-
sign. For the purpose of constructing high-performance interleavers, two design
criteria are proposed in this thesis. The first criterion is based on Turbo code
distance spectra. This criterion relies on the observation that the lower part of a
Turbo code distance spectrum originates from input sequences of low weight, in
particular of weight-2, 3 and 4. The second criterion targets the performance of
iterative decoding, based on the correlation properties between decoder inputs.
An important result of using correlation properties in the interleaver design is a
faster convergence of the iterative decoding process. The performance of inter-
leavers designed with both the code/distance- and decoding/correlation-criteria
are very competitive compared to other interleaver designs reported in the lit-
erature. In fact, to our knowledge there are no other design methodologies that
result in better performing interleavers. Finally, the attempt to design inter-
leavers resulting in codes with both good distance properties and good iterative
decoding performance is by no means counteracting. On the contrary, the cor-
relation criterion has a beneficial influence also on the code distance spectrum.

The choice of the constituent encoders has also been reviewed. One of the
important parameters of the recursive convolutional encoders that has a strong
relation to the Turbo code performance is the period of the feedback polynomial.
Again, both the distance spectrum and the performance of iterative decoding
are influenced by this parameter. However, in contrast to the case of interleaver
design, the choice of the feedback period involves a trade-off: A long period
is beneficial for the distance spectrum, and therefore important for the perfor-
mance at high SNRs. On the other hand, at low SNRs a short period results
in a better iterative decoding performance. Thus, the choice of feedback period
is dependent on the target operating SNR of the Turbo code. The use of inter-
leavers designed with sophisticated methods increases the region for which the
advantages of a short period dominate. Thus, properly designed interleavers
not only improve Turbo code performance, but can also decrease the decoding
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complexity. This follows since shorter feedback periods are associated with a
smaller number of memory elements in the constituent encoders. In addition,
interleavers with good correlation properties have faster iterative decoding con-
vergence, and thus, require fewer decoding iterations.

The issue of trellis termination is not thoroughly described in this part of the
thesis. However, trellis termination for Turbo codes is addressed in [Paper VI].
There, the distance spectra of Turbo codes using different termination methods
are investigated, as well as the issue of designing interleavers customized to the
termination method. As an important result thereof, it is demonstrated that
the error-correcting performances of Turbo codes using different termination
methods, including no termination at all, are very similar as long as custom
designed interleavers are used.

The investigations in this thesis have been restricted to a specific rate 1/3
Turbo code structure and antipodal modulation over a memoryless AWGN chan-
nel. This has been favorable in the sense that the degree of freedom in the design
has been kept at a reasonable level, allowing for more detailed studies of confined
issues. On the other hand, it also leaves a number of interesting questions open
for further investigation. This relates both to the Turbo code structure and the
transmission environment, in the form of modulation and channel characteris-
tics. This thesis shows that certain statistical dependencies between the inputs
to the constituent decoders have a deteriorating effect on the performance of
iterative decoding. Such statistical dependencies can, in addition to those ad-
dressed in this thesis, be introduced by channels containing memory, fading,
and colored noise. One or more of these are present in most practical communi-
cation systems, making the understanding of Turbo codes in such environments
an urgent extension to what is known today.
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Appendix A

The BCJR Algorithm

A.1 Theoretical Description

The BCJR algorithm [3] is an optimal algorithm for calculating the a posteriori
probabilities of symbols encoded with a convolutional code and transmitted on
an AWGN channel. The algorithm is re-derived in this appendix, with notations
and modifications appropriate when decoding rate-1/2 recursive systematic con-
volutional encoders in an iterative decoding environment (Turbo decoding). The
review is based on the derivations in [3, 12, 59, 77].

The BCJR-algorithm is based on calculating the state transition probabilities
of the Markov chain representing the encoding process. The encoder input
sequence is denoted u¥ = (uy,ug, ... ,ux) and the parity sequence generated by
a rate-1/2 recursive convolutional encoder ¢¥ = (cy,ca,. .. ,cn), where u,, ¢, €
{0,1}. This notation is illustrated in Figure A.1, showing an encoder with
generator polynomials ( 1 7/5 )8. Using binary antipodal modulation, the
Up:s and c,:s are converted to +1 before being transmitted on the channel.
With the additive white Gaussian noise channel model, the received systematic
and parity sequences, ¥& = (21,79,... ,2x) and ¥y = (y1,v2,... ,yn), are

un

Figure A.1: Example of a systematic recursive convolutional encoder with gen-
erator polynomials (1 7/5)g.
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modeled as

z, = Qu,—1)4+wy, (A.1)
Yn = (2¢, — 1)+ wyn, (A.2)

where w, , and wy , are independent and identically distributed (ii.d.) zero

mean Gaussian random variables with variance o2, i.e.

Wy, Wy, ~ N (0,6%), n=1,... N. (A.3)

Apart form the received code sequences 21 and yi¥, the decoder has access
to a priori information for each transmitted bit, denoted A,. The a Priori
information is given as the logarithm of the prior probabilities that information
bit u,, is land 0 respectively, that is,

Pr(u, =1)

Ap=In—2—"7
Py (un, = 0)

(A4)

The decoder inputs for an entire block of length N is denoted RYY, where RY =
(o AY).

The objective of the decoder is to calculate the a posteriori probabilities
that information symbol u, is 1 or 0, based on the received code sequences
and the available a priori information, that is, calculate Pr (un =1|RY ) and
Pr (un =0|RY ) These probabilities can be calculated by summing state tran-
sition probabilities in a trellis diagram. A section of the trellis diagram of the
4-state encoder in Figure A.1 is shown in Figure A.2. Each state transition is
labeled with the systematic and parity bit generated by the encoder. In or-
der to calculate Pr (u, = 1|R{) and Pr (u, = 0|R{"), the probability of trellis
transitions corresponding to u, = 1 and u,, = 0, marked with solid and dashed
lines in Figure A.2, is summed. Denoting the encoder state after the nth input
symbol by S,, € {0,1,...,2" — 1}, where v is the number of memory elements
in the encoder, we get

2¥v—12¥—1
Pr (u, = i|RY) = Z Z Pr(u, =14,8,1=5,8,=sRY), u,=01

s'=0 s=0

(A.5)

For the sake of calculating the above state transition probabilities, it is conve-
nient to define the joint probability density function

ol(s',s) 2 p (un =4,S,_1=5,5,=s, R{V) , (A.6)
through which (A.5) becomes

2v—12"-1

Pr (un:i|RN Z Z al.(s',s)/p RN) (A.7)

s'=0 s=0
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Sn—1=0 Uy, Cp=00 Sn=0

Figure A.2: A 4-state trellis diagram for an RSC encoder with generator poly-
nomials described by (1 7/5)g . The trellis transitions corresponding to input 0’s
and 1’s are marked with dashed and solid lines, respectively.

The probability density function (pdf) o?,(s", s) can be calculated in a recursive
manner by factorizing it into three parts, denoted &1 (8), 75, (Rn, s, s) and

B, (s). Firstly,

(up, =1%,S 1=5,S,=s,R])-

(szv—i-l‘un = iv Sn,1 = Sla Sn =S, R?)

(Sp1=4, R?*l) p(un =1,8, =5 Ry|Sy 1 =5, R’f*l) .
(Rr]:crl‘un = iv Snfl = Sla Sn =S, R?) . (A8)

ol (s, s) P
p
= P
p

Here, p (un =1, Sn = S, Rn|Snfl = S/, R?il) = p(un =1, Sn = S, Rn|Snfl = S/),
since the information bit u,,, the state S,, and the decoder input R,, are all inde-
pendent on R?_l if the encoder state S,_1 is known. Similarly,
P (R%_l\un =4,S,1=5,5,=s, R’f) =p (R,J,y+1|5’n = s). Thus,

U:;(Sla 8) = p (Snfl - Sla R?il) p(un = ia Sn =S, R71|S7171 = Sl) .
p (R5y+1|sn = 3)
= ap-1(8) A (Ruys',8) B, (s) (A.9)
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where
Gno1(s)) 2 p(Spmr =9, RYTH, (A.10)
:}/77;7, (Rna 8/7 S) £ p(un - Z S =S Rn‘snfl = S/) s and (All)
Bn (S) é p( n+1 Sn — S) (A12)

The recursive part is in the calculation of the a:s and the st, since they can
be expressed in their preceding and succeeding counterparts, respectively. More
precisely,

an(s) = p(S = s, RY)

1
= Z Z Up = i,Sn_l = SI, Sy = 81R711)
'=0 i=0

— 1

= Z =3 Ry7")-

(un =i,58, =8, Rp|Sn_1=15 R?il)

Y1 1

- Z p n 1= =g Rn 1) (un - Z.,Sn - SaRn|Snfl - S/)
s'=0 1=0
2Y—1 1

= Z Zan 1(8) 75 (Rn, ', 5, (A.13)

and

Bu(s) = p(BLalSn=+)
2¥—-1 1
- Z Zp (u7l+1 =1, Sn+1 =S, Rr]:crl"s’n - 8/)
s=0 =0
2¥—-1 1
- Z Zp (R7]¥+2‘un+1 = iv Sn+1 =S, Rn+17 Sn = S/) ’
s=0 =0
p (u77’+1 = i’ S77f+1 =S, Rn+17 Sn - SI) /Pr (Sn - S/)
v_1 1
= > D r(RilSun=5)
s=0 =0
p(“”+1 =14, Sny1 = 8 Rny1|Sn = &)
-1 1

= Z Zﬁn+1 771+1 ( n+1, Sl’ 8) . (A14)

s=0 =0

The calculations of the é:s and the B:s according to (A.13) and (A.14) are
referred to as the forward and the backward recursion.
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It remains to calculate the density functions 4t (Rp,s', s). From its definition
in (A.11), 4;, (Rx, s', s) can be expressed
3 (Rp,8',s) = plun=1,58, =8, Rn|lSn_1 =5
= p(Rn‘un = i, Sn =S, Snfl = Sl) :
Pr (S, = s|lup, =14, Sp—1 =) Pr(u, =4). (A.15)
Assuming that the encoder inputs are independent, conditioned on a certain

trellis transition, and exchanging R,, for (xn, Un, /N\n), we get

’Vn (R'm S/a 3) = Pp (x'myna An‘un =1i,8,=8,8,-1= S/) :
Pr (S, = s|u, =14, Sn—1 = &) Pr (u,, = 1)
= p(xn‘un = Z,Sn = Sa‘s’n—l = S/) :
p(yn|un - 7:1 S’n - 87 S’nfl - 8/) °
p (j\n|un - ia Sn - 87 Sn—l — S/) :
Pr (S, = s|u, =14, Sn—1 = &) Pr (u,, = 1)
— pealun=1)-
P (Ynlun = 1,8, 1 =5")-
P <[~\n|un = z) Pr (u, =1) -
Pr (S, = s|u, =4,S,—1 = &)
— p(xn‘un = 7’) .
P (Ynlun = 1,8, 1 =5")-
Pr (un = z\]&n) P (]\n) .
Pr (S, = s|u, =1i,Sp-1 = §'). (A.16)
The received samples z,, and y,, are Gaussian distributed random variables with
mean (2u, — 1) and (2¢,, — 1) respectively, and standard deviation o, that is,
1 _ '.TnfEZ"L'fl\l\lz

p(xnlu, =14) = e 202 , and (A.17)

2ro

1 _ (un=ecp—1))2

e 202 . (A.18)

p (yn‘un - i, Snfl - S/)
2o

Further, Pr (un = z\]\n) is the a priori probability that information symbol

u, =i. Since A, =In %Z;—j}%, the a priori probabilities are

_ o
Pr (un = 1|An) = %" and (A.19)
1+ ehn
Pr (un = 0|]\n) L (A.20)
1+ ehn
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The probability density function p (/N\n) in (A.16) is unknown; however, when
forming the log-likelihood ratio A,, below, p (]\n) is a constant factor common

to both the numerator and denominator. Similarly, knowledge of p (]Xn) is in

principle required in the recursive calculations of the a:s and the B:s. However,

since p (]Xn) is the same for all the transitions in a given section of the trellis

(i.e. for a given n), it appears as a constant factor of all &, (s) and 3, (s),
s€{0,...,2” —1}. As discussed in further detail in Section A.2 below, factors
common to all states need not be included in the calculations. Finally, the prob-
ability Pr (S,, = sju,, =1, 5,-1 = ¢') in (A.16) is either one or zero, depending
on if there exist a trellis transition between state s’ and s associated with an
input symbol equal to i.

The a posteriori log-likelihood ratio, denoted A,,, can now be expressed as

Pr (un = 1|R{V)

A, 2
" Pr (un = O|RY)

B S SN oo o 1 o = LS s = )
Zs’ Zs (-1 (8") p (Zn|tn = 0) p (Yn|un = 0,81 = &) -
Pr (un = 1|j\n) ]\n) Pr(S, = slu, =1,5,-1 =) ~n (S))

Pr un—l|An)Z Yos (Gpq ()

Pr (un = 0|An) S Ds (A1 ()

P Ynltiy =1,8,_1 = ) Pr (S, = slup, =1,5,_1 = 5) 6, (s))
)

p yn|un — 07 Snfl — S/) Pr (Sn - S|un = 07 Snfl - S/) Bn (8)

p(@n|un = 1) +In Pr (un ~ 1|j\n)
P (Tn|un =0) Pr (un = 0|/~\n)

o n— n—1

Pr (u” - 1‘I1 ’ n+1’ yl ’A An+1)
_ n— 71

PI" (u” - 0‘.’1)1 9 n+1’ yl ’ An+1)

9 _
= ﬁx” + A, + Le,, (A.21)

= In

In

where Le,, denote the decoder extrinsic output. The partitioning of the a pos-
teriori log-likelihood ratio A,, is useful in an iterative decoding environment,
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where it is only the extrinsic output Le,, that is passed on to the next decoding
step. Since the first and second terms in (A.21) are easily obtained from the
encoder inputs, the most straightforward way to calculate the extrinsic output
is through

Len = An - 5

p 2 Ts Ot (D0 B8 ) B () 2 5 g

Z 3. @nei (8) 3% (Rn, 8, 8) By, (5) o2

where &, (s') and 3, (s) are recursively calculated using (A.13) and (A.14).

A.2 Implementation Aspects

When forming the LLR in (A.22), any factors that are common to all the terms
in the summations in both the numerator and the denominator may be omitted.
Beginning with the 7;, (R,, s, s):s,

1 T —(2i—1))2 1 yn—(2cp—1))2 eZA”
: e 3

3 (R, §',5) = ——e 20 —_— 20 _ (]\n) .
T ( ) V2ro V2o 1+ eAn P
Pr (S, = slup, =1,S8,-1 = &)
p (An) a2 +(2i—1)> +Jn+(zcn 1)?
— € 207
2mo? (1 + eA")

zn2i—)+ynRen—1) | - %
e — +2A

" Pr (S, = slu, =i,S,—1 =) (A.23)
Using (2i —1)* = 1 and (2¢, — 1) = 1, we define

p (A”) =htvg+2
. T and
2mo2 (1 + eAn)

9
zn(2i—1)+yn(2cn—1) iA
2.
e o2 +

A
O’Y no

(1>

v (R, 8, 8) " Pr (S, = slup, =14,S-1=15"),
which leads to
’Nyjl (R,,s,s) = Cv’,,,’Yiz (R, s, s). (A.24)

Since C,, is independent on both s and s’, 4t (Rn, ', s) may be replaced by
v (R, 8, 8) in (A.22). Further, the forward recursion can be written

Y—1 1
~ /
Qp (3) g E a71 1 777, Rn? s ’8)
s'=0 i=0
2¥—-1 1

= Cy, DY an 1 ()Y (Ra, 8, s), (A.25)

s'=0 1=0
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and since C,  is common to all the &, (s),s € (0,...,2” — 1), it may be omitted
from the recursion. The backward recursion is analogous. Thus, we define

2Y—1 1

an, () £ Z Zan 1 v, Rn,s/,s), and
s'=0 i=0
Y11

Bu(s) = ZZﬁn+1 $) V1 (B, ', 8). (A.26)

s'=0 i=0

The initialization of the first set of a-values, i.e. ag(s),s € {0,...,2" —1},is
straightforward; it is simply the probabilities of the encoder being in each of its
possible states. Since the encoder is initialized in its zero-state, we have

ao (5) = { 1 s=0 (A.27)

0 otherwise.

Similarly, for encoders terminated in the zero-state the (-initialization is

5@ ={ 5 Sone

0 otherwise.
If the encoder is not terminated in the zero-state, all ending states are equally
probable and thus

(A.28)

B (5) = 5 s=0,...,2" - 1. (A.29)

In each step in the recursive calculation of the a:s and the §:s they tend to
get smaller and smaller. It is therefore a risk for numerical underflow, especially
when decoding long blocks. This problem can be avoided by scaling. For exam-
ple, the a:a and the (:s for a specific time n can be scaled so that their sums
are 1, that is, > a, (s) =1 and > 5, (s) = 1.

The implementation complexity of the BCJR~algorithm is further reduced
by performing the operations in the log-domain [78]. Then, a suboptimal but
high performing algorithm referred to as Maz-Log-MAP is obtained using the
approximation In (e‘s‘ + 662) ~ max (61, 62), which corresponds to

o (14 e=51) =0
since
In (e + e%) = max (81, 82) + In (14 %70,

In [78], a correction of the above approximation is proposed, where pre-calculated
values of In (14 e 1%27%11) = f, (|62 — 61]) is stored in a one-dimensional look-
up table. This low-complexity algorithm is shown to perform very close to
the original BCJR~algorithm, also when the look-up table consist of only a few
entries.



Appendix B

Comments on the

Interleaver Design
Algorithm

The interleaver design algorithm described in Section 3.2 has certain aspects
that deserve to be commented. Firstly, the concept of using a ”"non-global”
design approach, regarding the correlation properties, needs to be motivated.
Further, the algorithm offers a number of possible variations and parameters
that can be varied. The influence of such variations are discussed briefly here,
including:

B.1: The use of a non-global optimization criterion.

B.2: The design order, i.e. the order in which the positions is chosen from the
set M (cf. Section 3.2).

B.3: The modelled correlation decay rate, i.e. the constant ¢ in (3.4) and (3.5).

B.4: The effect of distance spectrum design restrictions, dqcsign-

In this appendix, the impact of the above issues are investigated, primarily by
illustrating permutation matrices (¢f. Section 2.1.2) and comparing IDS-values
of different design variations. For each interleaver size, the reported IDS-values
are normalized to the IDS value of a golden interleaver [21] of the same size.
This is because golden interleavers have very good correlation properties, and
they can easily be generated for every interleaver size. With this normalization,
the resulting IDS-values give an indication on how much the correlation prop-
erties of the resulting interleaver is degraded, compared to what is known to be
achievable.
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B.1 Non-Global Correlation Criterion

In this section we compare the correlation properties of interleavers designed
with the algorithm presented in Section 3.2 with those of golden interleavers.
This is done in order to motivate the use of a non-global optimization criterion.
Golden interleavers are based on the golden section. The golden section
divides a segment of length 1 into two parts with lengths ¢ and 1 — g, such
that the ratio of the longer segment to the entire segment is the same as the
ratio of the shorter segment to the longer segment. Thus, g/1 = (1 —g) /g,
which yields g = (\/5 — 1) /2. To generate a golden interleaver, consider the
points obtained then starting with 0 and adding increments of length g, using
modulo-1 arithmetic. The golden interleaver is obtained as the order in which
these points should be read, if sorted in ascending order. In Matlab, golden
interleavers can for example be generated by the following function:

function Interleaver = GoldenInterleaver (IntSize)

g = (sqrt(5)-1)/2;
RealPositions = mod((1:IntSize)*g, 1);
[temp, Interleaver] = sort(RealPositions);

Figure B.1 illustrates the permutation matrices of both golden-, correlation
designed'- and pseudo-random interleavers with lengths 100, 500 and 1000 bits.
Also shown are the respective IDS-values, normalized to the IDS of the golden
interleavers. The effect of using a non-global correlation criterion is discernible
in the upper left- and right corners of the correlation-designed permutation ma-
trices, especially for the smaller interleaver sizes. Towards the end of the design,
there are fewer and fewer positions to choose from in the design. For the very last
element in M (cf. Section 3.2), the set £ contains only one element, and there
is no design freedom at all. It is therefore not guaranteed that suitable design
choices can be made. However, from inspection of the permutation matrices and
through comparison of IDS values, it is concluded that the non-global design al-
gorithm succeeds in designing interleavers with desirable correlation properties.
Note that these interleavers were designed without any distance spectrum cri-
terion, that is, dgesign = 0. The effect of using too restricting distance spectrum
criteria is illustrated in Section B.4.

B.2 Design Order

The order in which the interleaver is designed, ¢.e. the one in which the positions
are chosen from the set M, is referred to as the design order. The result of using
three different design orders is illustrated here: (1) design in straight order, from

IThe correlation-designed interleavers were designed with the following paramters:
design = 0, ¢ =0.18, design order: last to first.
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Figure B.1: Permutation matrices and IDS-values for golden-, correlation

designed- and pseudo-random interleavers, 1000 bits (top) 500 bits (middle)
and 100 bits (bottom) long. The correlation-designed interleaver have good cor-
relation properties even though they are not designed with a global correlation
criterion. The IDS-values are normalized to the values corresponding to the
golden interleavers, for each interleaver size.
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one end to the other, (2) alternatingly choosing the smallest and the largest
element in M, and (3) choosing the elements from M in random order. For
the case of straight order design, the interleavers are designed from last to first,
i.e. in reversed order. The interleavers illustrated here are designed without
distance spectrum criteria, that is, dgesign = 0.

The permutation matrices and the corresponding IDS-values are shown in
Figure B.2, for 100-, 500- and 1000-bit interleavers. Judging from the IDS-
values, designing the interleavers in straight order succeeds the best for the
larger interleavers. For small interleavers, i.e. around 100 bits long, it might
be advantageous to design interleavers in random order. However, since the
differences compared to the straight-order design is small, the use of straight-
order design is adopted for the entire range of interleaver sizes (interleavers
smaller than 100 bits has not been considered).

B.3 Correlation Decay Rate

The correlation criterion (3.7) in the interleaver design algorithm includes the
empirically determined parameter c¢. Using Monte-Carlo simulations, it was
found that ¢ = 0.18 approximately describes the correlation decay for the gen-
erator polynomial (17/15)g. In this section, the influence of using faster and
slower decay in the correlation model is illustrated.

As before, interleavers of sizes 100, 500 and 1000 bits are used, for which
interleavers were designed using three different decay rates corresponding to
¢ =1{0.09,0.18,0.36}. All designs were performed without the distance spectrum
criterion, i.e. dgesign = 0. The resulting permutation matrices are shown in
Figure B.3.

The result of using a correlation model that decays too slowly is obvious
from inspecting the three left-most plots in Figure B.3, i.e. those obtained
with ¢ = 0.09. The positions near the edges are 'used up’ too fast, with the
consequence that towards the end of the design there are no edge positions left
to choose from. The influence of this on the iterative decoding suitability is
reflected in the IDS-values. As seen, the degradation is larger the smaller the
interleaver.

The effect of using a correlation model that decays too fast is not as obvious.
On the contrary, a fast decay generates interleavers with properties very similar
to those designed with the 'mormal’ decay rate. Nevertheless, for large inter-
leaver sizes the best IDS-values are achieved with the correlation decay that is
in accordance with the empirically found decay rate.

B.4 Distance Spectrum Design Restriction

In the interleaver design examples presented so far in this appendix, the corre-
lation-designed interleavers were all designed without distance spectra criteria,
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Figure B.2: Permutation matrices and IDS-values for correlation designed in-
terleavers, designed using three different design orders: (a) reversed order, i.e.
from last to first, (b) alternatingly last and first, and (c¢) random order. Three
interleavers sizes are shown: 1000 bits (top), 500 bits (middle) and 100 bits

(bottom).
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Figure B.3: Permutation matrices and IDS-values of correlation-designed inter-
leavers of length 1000 (top), 500 (middle) and 100 bits (bottom), designed with
various values of the correlation-decay coefficient c. (a) ¢ = 0.09, (b) ¢ = 0.18,

and (c) ¢ = 0.36.
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i.e. With dqesign = 0. In this section, the result of including a distance spec-
trum criterion is demonstrated; especially, the balance between the correlation
criterion and a distance spectrum criterion is illustrated.

Typically, using a dyesign that is too large will prevent the correlation crite-
rion from influencing the design and, as a consequence, the resulting interleavers
will be primarily designed based on distance spectrum considerations. Figure
B.4 shows the result of using different dqesien values, for 100-, 500- and 1000-bit
interleavers. The value of dgcsign increases from left to right and at the left-hand
side, the values are too low. They are too low since the distance spectrum cri-
terion hardly influences the design at all. Thus, the criterion is not helpful in
preventing mappings that generate low-weight codewords. On the other hand,
as dqesign 1S increased, eventually the distance spectrum criterion becomes too
restrictive, so that there is no room for correlation considerations, as seen to
the right in Figure B.4.
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Figure B.4: Permutation matrices and IDS-values of correlation-designed inter-
leavers of length 1000 (top), 500 (middle) and 100 (bottom) bits, designed with

various values of the dgesion parameter.
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Contributions

This part of the thesis consists of six papers, whose respective contributions to
the research field are described below.

I

II

II1

Methodical Interleaver Design for Turbo Codes.

This paper presents an interleaver design algorithm based on Turbo code
Hamming distance spectra. In essence, the algorithm strives to design
interleavers for the highest possible minimum distance, with the lowest
possible multiplicity. Interleavers produced with the presented algorithm
yield Turbo codes with very good distance properties. However, the com-
plexity of the algorithm limits its use to reasonably small interleavers,
typically less than 500 bits.

Although the algorithm presented in this paper yields very competitive
Turbo codes, it is observed that Turbo code performances do not always
rank as anticipated by the distance spectra, especially after only a few
number of decoding iterations. As a consequence, the performance of it-
erative decoding was investigated, with results reported in [Papers II-IV].

On the Convergence Rate of Iterative Decoding.

In this paper, the influence of the interleaver on the convergence rate of
iterative decoding is investigated. In particular, the approach of inves-
tigating correlation properties of encoder inputs and outputs, estimated
using Monte Carlo simulations, are proposed. It is found that these cor-
relation properties are clearly related to the convergence rate of iterative
decoding. It is also concluded that it is possible to design interleavers that
promote a faster decoding convergence.

Turbo Codes: Correlated Extrinsic Information and its Impact on Iterative
Decoding Performance.

This paper further investigates the correlation properties of the extrinsic
information, and the influence on the iterative decoding performance. An
analytical approximation of relevant correlation coefficients is proposed.
With this approximation, it is possible to assess the correlation properties
that a specific interleaver results in. Based on these observations, an
iterative decoding suitability (IDS) measure is presented. The IDS-value
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is a scalar that measures the correlation properties of an interleaver. The
IDS-measure has later been adopted and further investigated by others,
for example in [79, 80].

A Turbo Code Interleaver Design Criterion Based on the Performance of
Iterative Decoding.

In this paper, an interleaver design criterion based on the performance of
iterative decoding is proposed. The criterion uses the approximation of
the correlation coefficients presented in [Paper III]. This paper is the first
proposal® of an interleaver design criterion that targets the performance
of iterative decoding. Since then, similar proposals have followed, for
example in [19, 79, 80].

Interleaver Structures for Turbo Codes with Reduced Storage Memory Re-
quirement.

This paper deals with the implementation complexity of interleaver rules
stored as lookup tables. Two interleaver structures are proposed, which
decrease the amount of memory required for interleaver rule storage. The
first structure is useful for a single interleaver, while the second is useful
when a range of interleaver sizes are to be stored. Both structures offer
memory savings of approximately 50%, with an overall saving of approx-
imately 75%. Simulations indicate that these interleaver restrictions do
not imply any significant loss in error-correcting performance.

On the Theory and Performance of Trellis Termination Methods for Turbo
Codes.

This paper investigates different trellis termination methods for Turbo
codes. A method for calculating the distance spectrum of the ensemble
of Turbo codes using a specific trellis termination method is presented.
Using this method, it is shown that the performance differences between
different termination methods are small, except when no termination at
all is used. Further, the issue of custom design of interleavers for different
termination methods is addressed. It is shown that with proper interleaver
design, the performance degradation associated with no termination can
be significantly reduced, achieving performances comparable to codes us-
ing termination. At the writing of this thesis, the best non-terminated
Turbo code in this paper is still under simulation. It has reached over 6
billion frames at E,/Ng = 2 dB with only one decoding error. There is still
no evidence of an error floor. However, achieving statistical significance
at these error rates will require several months of simulations.

2The contents of this paper was originally presented in [46].
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Methodical Interleaver Design for Turbo Codes

Johan Hokfelt and Torleiv Maseng

Abstract

An interleaver design algorithm for parallel concatenated coding schemes which
utilizes the weight distribution as design criterion is presented. The qualities
of the algorithm is demonstrated by comparing the weight distributions of var-
tous turbo codes using a number of previously proposed interleaver techniques
(pseudo random, non uniform, block and block helical simile).

1 Introduction

The error correcting capability of a linear code is closely related to the Ham-
ming weights of its set of codewords, i.e. the weight distribution of the code.
In the turbo coding scheme proposed by Berrou et. al. [1], depicted in Figurel,
the Hamming weights of the codewords are composed of three parts; the weight
of the input word w and the weights of the parity words from each constituent
encoder, 2! and 22. The objective when designing interleavers for such parallel
concatenated coding systems is to match the parity sequences from the con-
stituent encoders so that overall codewords with low Hamming weights (orig-
inating from non-zero input sequences) are avoided. It has previously been
argued [2, 3] that it is primarily low weight input words (i.e. w = 2,3,4,...)
that result in low weight overall codewords. The way in which the parallel con-
catenated coding scheme responds to such input words is thus critical for the
code performance. This paper presents an interleaver design algorithm which
uses the weight distribution resulting from these low weight input words as
design criterion.

2 Role of Interleaver

In general, the error correcting capability of a linear code is related to the
weights of its set of codewords. The role of the interleaver in a turbo coding
scheme is to map the set of parity words from the second constituent encoder
(set C?) to the combined set of words consisting of the input words together
with their corresponding parity words from the first constituent encoder (set
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input word (weight w) codeword (weight w + 2! 4 22)

\ |

Interleaver

Figure 1: Basic principle of studied Turbo coding scheme

C'). If no precautions are taken, an element from set C! with low Hamming
weight (w + z!) might be combined with an element from set C? which also
has low weight (22). The resulting codeword will therefore have a low overall
weight and a deteriorating influence on code performance. These unfavorable
mappings may for example occur when a pseudo-random interleaver is used,
which maps words from C! and C? in a seemingly random fashion (with certain
limitations). The block interleaver, in which bits are written in rows and read
by columns, also exhibit such unfavorable mappings.

The constituent encoders in Figure 1 are recursive convolutional encoders,
examples of which are shown in Figure 2. For every feedback generator poly-
nomial gl, there exists input words that produce constituent parity words
of low weight. For g1=15(,.) as in Figure 2, examples of such words are
00...0100000010...00, 00...01000110...00 and 00...011010...00. These input words
all have one property in common; they return the recursive encoders to their
original state (i.e. the zero state). Words with this property are said to be self
terminating. This property is essential since an input sequence which is not self
terminating will produce a parity sequence of infinite weight (if no truncation is
performed), and will therefore not produce an overall codeword of low weight.
In practice, the input sequences are truncated to the size of the interleaver,
which results in interleaver edge effects. The consequence of the truncation is
that also non self terminating input words might produce parity sequences of
low weight, and thereby degrade code performance.

Interleaver structures that strives to avoid mappings of self terminating
input words to other self terminating words has been proposed, for example the
non-uniform interleaver [4] and the block helical simile interleaver [5]. These
interleavers are based on the ordinary block interleaver, but the output bits
are read in some modified fashion instead of just column by column. The
basic principle of the block helical simile interleaver is to read bits diagonally
instead of column by column, with certain limitations on the number of rows
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Figure 2: A Turbo encoder with feedback polynomials 15,y and 17, Te-
spectively. No puncturing is performed.

and columns in the matrix. The resulting interleaver is a so called simile
interleaver, which terminates both constituent encoders in the same state. The
non-uniform interleaver also read output bits diagonally, but with certain row-
and column jumps between each reading.

These more sophisticated interleavers succeed in avoiding several unfavor-
able mappings. They do however exhibit residual low weight codewords, and
there is reason to believe that there exists interleavers which results in still
better weight distributions.

2.1 Block code form of turbo codes

The interleaver design algorithm is best explained when considering the turbo
coding scheme in its equivalent block form. This text will follow the notations
used in [6], which are recited here in brief.

The generator matrix of a parallel concatenated code is obtained by merging
the generator matrices of each of the concatenated branches. The generator
matrices of the constituent encoders and the interleaver matrix are denoted P
and M respectively, both of size N x N, where N is the size of the interleaver.
M can be any permutation matrix, i.e. any matrix having exactly one 1 in
each row and column, all other elements being 0. For the systematic branch,
the generator matrix is simply the identity matrix I, also of size N x N. See
Figure 2 for reference. The generator matrix of the parallel concatenated code,
G, is then given by

Gr = [I|P|MP],

where it is assumed that the constituent encoders are identical.
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Figure 3: Generator matrix P and interleaver matrix M for given example of
Turbo encoder.

Example 1 A turbo encoder with blocklength 12 with feedback and parity poly-
nomials 15(,.1 and 17,1y respectively, as depicted in Figure 2, have constituent
generator and interleaver matrices as shown in Figure 8. A 1 in row i and col-
umn j in the interleaver matrix results in that bit number i in the input word
will be bit number j in the interleaved word.

3 Design Algorithm

The basic idea of the algorithm is to make sure that at least one of the parity
words have "non-low” weight whenever the weight of the information word is
low. This ensures that the total weight of the codeword is kept ”non-low”,
which has the desired impact on the weight distribution of the overall turbo
code. The design process consists of row by row choosing the positions of the
1’s in the interleaver matrix M, whose elements are all zero from the beginning.
Once a 1 has been placed at a given position in a row, it is possible to locate
certain "bad” positions for the remaining rows, positions that would result in a
low weight codeword if chosen. Keeping track of all of the resulting codeword
Hamming weights of these bad positions in a cost matriz (denoted J) makes
it feasible to avoid undesired mappings between the sets C' and C?. Due to
the fast increase in complexity encountered when taking input words of larger
and larger weight into account, and to the fact that it is primarily low weight
input words that produce codewords with low weight, the algorithm has been
limited to take input words with weight smaller or equal to 4 into account.
Since the latter rows in the interleaver matrix have fewer and fewer columns
to choose among, its is plausible that a position resulting in a low weight
codeword is forced to be chosen towards the end of the design process. However,
as the cost matrix contains the lowest weight codeword that would exist in
the turbo code for every choice of position in the interleaver matrix (given
the positions already chosen), it is possible to locate appropriate swapping
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positions. After performing such a swap the entire cost matrix is updated
which allows for identification of new swapping alternatives, a process that is
continued until no further swaps can be found. The algorithm is clarified by
an example.

3.1 Algorithm example

Assume we are to design an interleaver of size 16 bits, to be used in the turbo
encoder depicted in Figure 2. The algorithm is initialized with an all-zero
interleaver matrix and an empty cost matrix.

A column in which to place the 1 in the first row in the interleaver matrix
is chosen randomly, after which an update of the cost matrix is performed.
Figure 4a shows the cost matrix after this step, where the first 1 was placed in
the 14th column, indicated by a circle in the cost matrix. The cost matrix tells
us that if a future 1 is placed in position (8, 7), a codeword with Hamming
weight 14 will exist in the overall turbo code. This low weight codeword would
arise because the corresponding interleaver would permute the input word d =
1000000100000000 to the interleaved word d! = 0000001000000100, which are
both self terminating sequences for the constituent encoders in Figure 2, and
thus produce low weight parity words. When interleaver edge effects are taken
into account, the cost matrix shown in Figure 4c arises. In this small size
interleaver the edge effect impacts a major portion of the cost matrix, which
is not the case for large interleavers. Interleaver edge effects are not taken
into account in the rest of this example, since they conceal the role of the self
terminating sequences.

The next step is to place a 1 in the second row of the interleaver matrix.
The eligible columns are the still unoccupied ones with the highest calculated
Hamming weights in the cost matrix. Since the second row of the cost matrix
is still empty, we choose among all the columns not yet occupied. Figure 4b
shows the updated cost matrix after choosing the third column in the second
row in the interleaver matrix.

Figure 5 shows the cost matrix after all the positions in the interleaver has
been chosen. The very last position to be chosen where forced to be in column
6, which resulted in a codeword with Hamming weight 11. This codeword is a
result of the positions in the interleaver matrix indicated by the thicker circles,
at rows 13, 14 and 16. These positions correspond to the permutation of the
input word d = 00000000000001101 to d/ = 1000110000000000, which both are
self terminating and thus result in an overall codeword of low weight. However,
this low weight codeword can be avoided by performing the swap indicated by
the shaded circles. By moving any of the thicker circles the above permutation
is eliminated, in the suggested case replaced by d! = 1000100100000000 which
is no longer a self terminating word.

After performing a suitable swap an update of the cost matrix is performed,
so that further swap candidates can be identified. The updated cost matrix
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5= A

21 23 19 20 18 19 18 17 19 15 16 14 15 15 13

Figure 4: (a) and (b): Cost matrices after choosing positions for the first and
second row in the interleaver matrix. Chosen positions are indicated by circles.
(c): Same as (a), except that interleaver edge effects are taken into account.

is shown in Figure 6, where it can be seen that the weight of the minimum
weight codeword has increased from 11 to 15. Again, further improvements
through swaps of positions are investigated, for example as again indicated by
grey circles. However, updating the cost matrix after performing these swaps
reveals a minimum distance of 14, i.e. a deterioration of the weight distribution.
This is a result of the fact that the calculation of the cost matrix is carried out
for specific positions of the 1’s in the interleaver matrix; if any of these 1’s are
moved, the cost matrix is no longer completely valid. This is why the existence
of the codewords with Hamming weight 14 were not discovered until after the
update of the cost matrix. In this particular example no further suitable swaps
were found, and the design process is terminated. The minimum weight of the
resulting turbo code is 15 (for input words ranging from 2 to 4). However, in
this example the interleaver edge effects were not taken into account, which
may very well result in lower weight codewords in this particular case. Edge
effects are taken into account in the full implementation of the algorithm.
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Figure 5: Cost matrix when every position in the interleaver matrix has been
chosen. Thicker circles marks positions that together results in a low weight
codeword, which can be eliminated by performing the swap indicated by the

grey circles.

4 Results

The described algorithm was evaluated by designing a 105 bit interleaver,
to be used with the component encoders depicted in Figure 2 (91:15(000,
92:17<0Ct)). The designed interleaver were compared to other interleavers by
means of their weight distributions for input words of weight 6 and less (re-
stricted by complexity considerations), which are reported in Table 1 and il-
lustrated in Figure 7. It is apparent that the weight distribution achieved with
the constructed interleaver is preferable to the other weight distributions. The
block helical simile interleaver has however the advantage that both constituent
encoders are terminated in the zero state. A description of the designed inter-
leaver is given in Table 2.
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Figure 6: Cost matrix after performing the suggested swap, which increased
the dy,;, from 11 to 15. A new swapping candidate is again indicated by grey
circles.

Hamming distance: 10 11 12 13 14 15 16 17 18
. Block (5x21) 1 3 1 2 4 6 2 2 5
. Pseudo random (105 bits) - 1 0 0 3 2 4 9 7
. Non uniform (10x10) - - - - 1 0 1 8 2

. Block Helical Simile (5Xx21) - - - -
. New (105 bits) - - - - - - - -

Tt o= W N~

19 20 21 22 23 24 25 26 27 28 29
12 11 16 191 45 123 74 268 301 474 603
13 11 22 41 36 52 94 170 204 328 466
7 1 31 55 31 29 69 155 181 304 409
24 0 0 71 206 36 183 169 132 905 574
- - - 8 20 36 87 122 177 241 286

Ll

ot

Table 1: Weight distributions of the sample interleavers, for input words with
weights ranging from 2 to 6.

(10399 11 36 75 64 65 34 55 69 7 17 98 84 88 18 19 49 37 8 43
61 89 81 47 6 72 96 33 27 24 60 90 66 22 52 1 32 93 3 101 53
79526 13 46 71 76 42 87 68 31 58 83 21 102 48 51 74 38 20 91
12 25 86 57 97 23 4 45 73 78 94 28 40 16 29 82 59 70 2 92 41
100 15 54 14 56 39 85 62 9 35 50 30 77 10 80 44 63 95 67 105 104]

Table 2: Representation of the designed 105 bit interleaver. The number in
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Figure 7: Weight distribution (logarithm of multiplicity) of 5 sample inter-
leavers, for codewords stemming from input words with weight ranging from 2
to 6. The interleaver numbers (1-5) correspond to the interleavers reported in
Table 1.

position ¢ holds the position that input bit nr ¢ will have in the interleaved
sequence. For example will input bit number 3 be permuted to bit number 11
in the interleaved sequence.

5 Conclusions

A methodical interleaver design algorithm has been presented, and its advan-
tages in terms of resulting weight distribution for a turbo code has been con-
firmed by constructing a 105 bit interleaver. The size were chosen to match
the block helical interleaver, which were the second best interleaver considered.
The described algorithm has no limitations on the interleaver size, which is
the case for the block helical interleaver. The disadvantages of the algorithm
is its rapid increase in complexity as the interleaver size grows. It is therefore
believed that the algorithm is primarily significant for shorter interleaver sizes,
suitable for e.g. speech communication.
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On the Convergence Rate of Iterative Decoding

Johan Hokfelt and Torleiv Maseng

Abstract

The convergence rate of iterative decoding of turbo codes for various interleaver
strategies is studied. It is found that the convergence rate is related to the corre-
lation between the extrinsic inputs and outputs of the component decoders in the
iterative decoding scheme. These correlation properties are in turn dependent
on the specific interleaver used, which explains why the interleaver influence
the convergence rate. It is found that it is possible to design interleavers which
achieve a faster convergence of the iterative decoding than achieved using a
variety of other commonly used interleaver strategies.

1 Introduction

Since the introduction of turbo codes, quite an effort has been made to find
good interleaver design strategies. Most of these efforts have been directed
towards finding interleavers which results in codes with better weight distribu-
tion, e.g. [1, 2, 3, 4]. There are also design strategies that include termination
on the trellis of the second encoder, e.g. [5]. Few of the proposed strategies
employs the fact that turbo codes are decoded iteratively, and that the weight
distribution of a code is a sufficient design criterion only for codes which are
decoded with a maximum likelihood decoding algorithm. In order to achieve
the best performance for turbo codes it is necessary to optimize with respect
to the behavior of the iterative decoding as well.

In this paper the interleaver influence on the convergence rate of the iter-
ative decoding is investigated. This investigation is based upon input-output
correlation properties of the constituent decoders. It turns out that these cor-
relation properties affect the performance of iterative decoding, both in terms
of convergence rate and degree of non-maximum likelihood decisions. It is fur-
thermore exemplified that it is possible to design interleavers which improve
the convergence rate and the error correcting capabilities of turbo codes, by
taking the correlation properties into account in the interleaver design.
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Figure 1: Inputs and outputs of component decoder performing decoding step
k.

2 Decoder Correlation Properties

2.1 The First Decoding Step

This section treats the correlation properties between the inputs and outputs of
a single decoder producing a posteriori probabilities. The component decoders
considered have three inputs and three outputs as depicted in Figure 1. The
three inputs are the extrinsic outputs from decoding step k — 1, Le(*=1) the
systematic inputs, , and the parity inputs, y. The received sequences x and y
have been transmitted on an additive white Gaussian noise channel. The three
outputs are the extrinsic outputs, Le(*), a weighted version of the systematic
inputs and a weighted version of the extrinsic inputs [6]. The decoder decision
variables are the sum of the three outputs.

In the iterative decoding scheme, the sequence of extrinsic outputs are
passed on to the next component decoder after a permutation defined by the in-
terleaver. The interleaver is defined by N elements, d(m),m =0,1,... ,N —1,
which point to the position in the original sequence which is to be permuted
to position m in the interleaved sequence. The deinterleaver is correspondingly
defined by the elements d=*(m),m = 0,1,... ,N — 1. The size of the inter-
leaver is N, which is also the length of all the input and output sequences to
the component decoders.

Since it is only the extrinsic part of the decoder outputs that is passed
on to the next decoder in the iterative decoding scheme, this presentation is
focused on the correlation between these extrinsic outputs and the decoder in-
put sequences. Let p L™z, denote the correlation coefficient between extrinsic

output 7 after decoding step k and systematic input j, i.e.

Cov[LeEk) . Z5)
Pr et

= ~ : (1)
' \/Var[LeZ(-k)]Var[xj]

The above entity can be estimated empirically by repeatedly transmitting the
same codeword. Example of such estimations after the first decoding step for a
recursive convolutional encoder with generator polynomials (g feedback, Gparity) =
(155¢t, 174¢t) are shown in Figure 2. The decay of Pred 4, 3 |7 — 7| grows is
roughly exponential, as indicated in Figure 2. The rate of decay is weakly de-
pendent on the number of memory elements in the encoder: additional memory
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Figure 2: Empirically found correlation coefficients p, o) = between extrinsic
i L
output 7 and systematic inputs j =¢ — 30, ...,7 + 30.

elements result in slightly lower rate of decay.
Note that p, ) = 0. This is a result of the implementation of the

component decoders, which have a weighted version of the systematic input as
output. Some decoder implementations include the weighted systematic output
in the extrinsic output, and for those implementations there would be a strong
correlation between extrinsic output ¢ and systematic input ¢, i.e. p Let® #0.

2.2 The Second Decoding Step

The difference between the first and second decoding step is the presence of the
extrinsic inputs. Without these, each extrinsic output from the second decoder
would be correlated to the systematic input sequence in the same way as after
the first decoder, expect for the permutation of the input sequence performed
by the interleaver.

The inputs to the second decoder in the vicinity of time i are the sequence
of triplets ..., {Le,(il(z,l)axd(i—1),yz,i—1}, {Ley(z),xd(i),yz,i}, {Leél&ﬂ),xd(iﬂ),
Y2.i+1} etc. As in the case of the first decoder, extrinsic output ¢ is correlated
to the permuted systematic inputs zg(;+1), Ta(i+2), Ta(i+3), €tc. in an exponen-
&)

tially decaying fashion. In addition, Le;™ will also be correlated to the extrinsic

inputs Le&l& 41y Le&l(z 12) Legll(g 13); etc. in a similar fashion. These extrinsic
inputs are in turn correlated to the systematic sequence according to Figure 2.
They will thus provide extrinsic output Le§2) with correlation to parts of the
systematic sequence to which the second component code itself is not capable of

providing. Examples of the correlation coefficients p, = _,j=0,1,...,499,
25077

for a ratel/3 turbo code composed by a block interleaver and the same gen-
erator polynomials as before is shown in Figure 3b. The black line shows the
correlation between extrinsic output 250 and the original systematic sequence,
while the grey line shows the correlation to the permuted systematic sequence.
The latter illustrates the high correlation to the permuted systematic inputs in
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Figure 3: Empirically found correlation coefficients between extrinsic output
250 and the systematic sequence after 1, 2, 3 and 4 decoding steps. The grey
lines are offset by 0.1 in the plots in order to not visually interfere with the
black lines.

the vicinity of bit 250, i.e. Zg(i+1), Ta(i+2), Ta(i+3), etc. Similarly, the dark line
illustrates how the extrinsic inputs to the second decoder provide information
about parts of the systematic sequence which the second component code itself
is not capable of providing. This is seen as a slight increase in the correlation
coefficients in the vicinity of each spike. The grey line is offset by 0.1 in order
to not visually interfere with the black line.

2.3 Further Decoding Steps

The reasoning above applies also to the decoding steps to follow. The difference
compared to the second decoding step is again in the extrinsic inputs. The
extrinsic inputs to the second decoder were found to be roughly exponentially
correlated to the systematic sequence. The previous subsection showed that
the extrinsic outputs from the second decoder, which serves as inputs to the
third, are correlated to a larger part of the systematic sequence. This will allow
each new extrinsic output from the third decoder to be correlated to an even
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larger part of the systematic sequence. This is verified in Figure 3c, showing the
correlation coefficients after the third decoding step. The peak in the vicinity
of bit 250 is slightly lower than it was after the second decoder, while the
correlation to parts further away from bit 250 has increased. This tendency
will proceed as further decoding steps are carried out, which is indicated in
Figure 3d, showing the correlation coefficients after the fourth decoding step.

3 Convergence

When the iterative decoding converges, each extrinsic output Legk) will become
more and more correlated to the sequence of extrinsic inputs, Le*~1), and less
and less correlated to the systematic sequence x. This is a natural consequence
of the concept of convergence; the entities being passed around in the loop
should after convergence not alter significantly when further decoding steps are
carried out. Therefore the correlation between the extrinsic outputs and inputs
will become high, while the correlation to the systematic and parity sequences
becomes low. Thus it is natural to investigate how the correlation between the
extrinsic outputs and inputs develops as the iterative decoding proceeds. Let
PLe®, Lt~ denote the correlation coefficient between extrinsic output ¢ after

decoding step k and extrinsic output j after decoding step k — 1. The extrinsic
outputs are ordered in the order they leave each decoder, i.e. for odd k’s in

the original order and for even k’s in permuted order. After the first decoder
©
_ J
will be mainly correlated to the extrinsic outputs from the first decoder which
serve as inputs in the vicinity of bit i. However, as in the case as for p LoV g
i ]

extrinsic output Le§2) will not be correlated to extrinsic input Le&l&), for the

same reasons as given for p, ) earlier. There will however be a decaying

i

Pro o0 =0,since Le ) = 0,Vj. Extrinsic output ¢ from the second decoder

correlation to the extrinsic inputs Leél(g +1) Leél(g 12) Legll(g 13) etc. Each of
these inputs are in themselves correlated to their neighbors, i.e. Legll(g 1)
Legll()i+1)i2, Le&zﬂ)ﬂ, etc. This follows from the fact

is

correlated to Lefil()

i+1)+1°
that Leg& 1) and Lefil()i +1)41 AT€ both correlated to the same part of the channel

inputs, i.e. the sequences x and y. Thus, they will also be correlated to each
other. A consequence of this is that since extrinsic output Le?

; is correlated
to Legll&._i_l), it will also be correlated to Leél<2+1)i1, Leél()i+1)i2, Leél()i+1)i3, etc.

It is obvious that the choice of interleaver will influence the correlation
properties of the extrinsic output from the second decoder, since the inter-
leaver defines the values of d(m), m = 0,1,... , N —1. To clarify this influence,
we present a comparison of four different interleavers, all of size 500 bits: a
block interleaver, a pseudo-random interleaver, an S-random interleaver [1],

and finally an interleaver designed based on the discussed correlation proper-
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Block Random
m || d(m) d=t(m) | d(m) d=*(m)
246 138 410 382 270
247 163 430 61 185
248 188 450 332 87
249 213 470 130 314
250 238 490 493 376
251 263 11 46 175
252 288 31 403 3
253 313 51 393 197
254 338 71 282 384
S-random Correlation design
m || dm)  dl(m) | d(m)  d(m)
246 429 160 261 261
247 326 260 104 104
248 386 18 168 168
249 368 232 48 48
250 232 400 354 354
251 170 305 409 409
252 146 323 291 291
253 341 36 202 202
254 127 77 22 22

Table 1: Interleaver and deinterelaver rules in the vicinity of bit 250 for the
compared interleavers.

ties [7]. For these interleavers we compare the correlation between extrinsic
output 250 and the sequence of extrinsic outputs from the previous decoder,
i.e. Pro) o= ,0=0,1,...,499.

250744€;
Study first the block interleaver, which has 20 rows and 25 columns. For
this interleaver d(250) = 238, d(250 4+ 1) = 213 and 263 and so on, as shown in

the first column for the block interleaver in Table 1. Following the reasoning in

the previous paragraphs, we confirm in Figure 4a that Leg)o is not particularly

correlated to Le%)s, nor to the extrinsic outputs in the vicinity of Le%)g. Fur-
thermore, we note a high correlation to Legl):i, Le%)g, Le%)g, Le%)s, etc., and to
the outputs in the vicinity of these.

Moving on to the correlation coefficients for the random interleaver, shown
in Figure 4b, we observe the same behavior: low correlation to extrinsic output

1

Lefé)3 (d(250) = 493) and high correlation to extrinsic outputs Leil()%o L)

Leill()%o Loy etc. Note the pronounced peak around extrinsic output Le%)o. The
origin of this peak is clear: Table 1 reveals that extrinsic outputs 382, 403
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Figure 4: Correlation coefficients between extrinsic output 250 from the sec-
ond decoder and the sequence of extrinsic outputs from the first decoder,
Pro@ ot =0,1,... N —1, for four different interleavers.

2507 K3

and 393 from the first decoder are used as inputs to the second decoder at
positions 246, 252 and 253 respectively, i.e. all very close to position 250.
It is thus consistent with the previous reasoning that extrinsic output 250
has high correlation to the extrinsic outputs from the first decoder around
positions 370 — 410. The effect seen here is the result of so called short cycles.
Short cycles occur when two bits are close to each other both before and after
interleaving. For example, bit 252 and 253 constitute a cycle of length 11, since
|252 — 253| + |d(252) — d(253)] = 11.

The S-random interleaver is effectively removing all cycles shorter than a
certain value, namely S + 2. Naturally there is an upper limit on how large S
can be, dependent on the size of the interleaver. In [1], S < /N/2 was given
as a reasonable choice for S, N being the interleaver size. In this interleaver
comparison we used an S-interleaver with S = 14, which was the highest value
of S for which we found a valid S-interleaver. The empirically found correlation
coefficients for this interleaver are shown in Figure 4c. The main characteristics
of these coeflicients are rather similar to those of the random interleaver, except
that there are no peaks on a distance smaller than 16, i.e. S + 2. It is again
confirmed that the peaks appear at the positions given by d(m) as shown in
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Table 1.

The last compared interleaver is designed based on an algorithm described in
[7]. The basic principle of this algorithm is to spread out the correlation peaks
as much as possible, instead of just making sure that they are at least S+ 2 bits
apart as in the case of the S-random interleaver. Furthermore, Table 1 shows
that d(m) = d~1(m) for this particular interleaver, implying that the deinter-
leaving rule is identical with the interleaving rule. This property has no general
impact the performance of the turbo code, but it has implementation advan-
tages since it require only half the memory to store the interleaver/deinterleaver

rules. The correlation coefficients p, ) ,j=0,1,... ,N—1, for this in-

(k—1
250.L€;

terleaver are shown in Figure 4d.

Figure 5 shows the same correlation coefficients as Figure 4 for decoding
steps 2-7, marked on the right hand side of each plot. Observe first the cor-
relation coefficients after the third decoding step. The extrinsic outputs from
the second decoder serving as input close to bit 250 are shown in Table 1, in
the columns headed d—!(m). For the block interleaver, for example, extrinsic
output Lefé)o serves as input at position 250, while Leg)o and Leﬁ) are inputs
at positions 249 and 251 respectively. It is thus expected that extrinsic output
Leé‘?o will have high correlation to the positions in the vicinity of 470, 450, 430,
410, ..., as well as 11, 31, 51, 71, etc. That this really is the case is seen in
Figure 5a.

Consider the random interleaver, whose correlation coefficients are shown
in Figure 5b. The set of correlation coefficients PLeg?o,Le@vi =0,1,...,499
exhibit an extra high and wide peak near position 185. From Table 1 it is
clear that this peak origins from the extrinsic outputs Le%%, Le§27)5 and Le%)7,
which serve as inputs at position 247,251 and 253 respectively. What is the
drawback of having such a peak in the set of correlation coefficients? To an-
swer this question, observe the correlation coefficients as the iterative decoding
converges. For all compared interleavers the correlation plots become more
and more smooth as the iterative decoding proceeds. It is thus reasonable to
expect that the faster this smoothness is achieved, the faster will the iterative
decoding converge. It would then be favorable to avoid unnecessarily high and
wide peaks in the correlation coefficients, peaks which again are a result of
short cycles created by the interleaver.

Both the S-random and the correlation designed interleaver avoid the short
cycles which has been concluded to produce extra high and wide peaks in the
correlation coefficients. The basic difference between the two interleavers are
that while the S-random type guarantees that two peaks are separated by at
least S + 2 bits, the correlation designed seeks to place peaks at positions
with the lowest (previous) correlation. This is an attempt to make the set of
correlation coefficients as smooth as possible, even after only two and three
decoding steps. That this is somewhat achieved is seen in Figure 5c and d.

In order to compare of the smoothness of the correlation coefficients of the
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Figure 5: Correlation coefficients between extrinsic output 250 and the se-
quence of extrinsic inputs after 2-7 decoding steps, for four different inter-
leavers.

studied interleavers, we compare the standard deviation of the correlation co-
efficients showed in Figure 5. These standard deviations, denoted 02@250, are
reported in Table 2 together with the percentage of successfully decoded frames
for decoding steps 2-7. The percentage of successfully decoded frames is re-
lated to the number of correctly decoded frames after 30 decoding steps (15
iterations). We note a clear agreement between low values on the standard
deviations and fast convergence. The interleavers resulting in the fastest con-
vergence are, as expected, the S-random and correlation designed interleavers.
Also shown in Table 2 are the frame error rates after fifteen decoding iterations
and the minimum Hamming distances of the compared codes. Fortunately, the
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|| Block | Random | S-random | Correlation design |
Dec. Dec. Dec. Dec.
k o (Lke)zm frames | O (Lke)zr,() frames (Lke)zm frames (Lke)zm frames
2 0.018 2.5% 0.029 2.3% 0.024 2.6% 0.018 2.8%
3 0.034 48.2% 0.047 43.7% 0.030 50.0% 0.024 50.4%
4 0.038 84.2% 0.049 80.2% 0.032 85.1% 0.021 86.1%
) 0.024 96.2% 0.033 94.8% 0.020 97.3% 0.016 97.5%
6 0.020 98.5% 0.023 98.2% 0.012 99.2% 0.012 99.2%
7 0.012 99.4% 0.016 99.3% 0.012 99.8% 0.011 99.7%
FER 10.4-10~% 12.4-10~% 1.2-107% 0.7-10~%
doin 28 14 19 24

Table 2: Comparison of (J'(Lke)%o, k=2-7, with the percentage of successfully
decoded frames (at E,/Ng = 1.5dB). Also listed are the final frame error rates
(after 15 iterations) and minimum Hamming distances of the compared codes.

interleaver resulting in the fastest convergence also result in the code with the
best error correcting performance. The rate of convergence for the different
interleavers are also illustrated in Figure 6.

Note that the reported values in Table 2 are for extrinsic output 250 only. A
complete investigation of the iterative decoding performance requires studying
all of the extrinsic outputs, i.e. U(Lke)i fori =0,1,..., N—1, not only output 250
as exemplified here. However, due to the design rules of the block-, S-random
and correlation based interleavers, these quantities are rather similar for the
majority of the extrinsic outputs. This is however not necessarily the case for
the pseudo-random interleaver, which exhibits larger variations in the standard
deviations U(Lke)i. These variations stem from the fact that each position in the
interleaver is involved in different number of short cycles, which of course also
vary in lengths.

The 20 x 25 block interleaver used in the comparison has no cycles shorter
than 21. Although these cycles are longer than the shortest cycles of the S-
random interleaver, which has no cycles shorter than 16, the S-random in-
terleaver converges faster. This may seem contradictive at first. However,
the block interleaver has a very large number of cycles of length 21 while the
S-random interleaver is probable to have only few of its short length cycles.
Furthermore, the block interleaver has also a very large number of short sec-
ondary cycles, cycles which require more than one interleaving or deinterleav-
ing to complete. These secondary cycles exist also for the other interleavers in
the comparison, but in very small numbers. They are therefore not believed
to have a significant influence on the iterative decoding performance of these
interleavers. For the block interleaver however, there are approximately N sec-
ondary cycles of length 4, and even more of length 5,6,7 etc. These cycles
may be a part in the explanation of the slower convergence rate of the block
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Figure 6: Percentage of correctly decoded frames as a function of the number
of completed decoding steps (Ey/No = 1.5 dB).

interleaver.

4 Conclusions

The interleaver influence on the convergence rate of iterative decoding of turbo
codes has been investigated. The intuitively appealing approach of studying the
correlation between the extrinsic inputs and outputs of the component decoders
reveal interesting properties of the iterative decoding process. Specifically, the
standard deviation of these correlation coefficients show upon a relationship
with the convergence rate of the iterative decoding. Furthermore, it is found
that it is possible to design interleavers which achieve a faster convergence than
achieved with for example pseudo-random interleavers. The fastest converging
interleavers found are S-random interleavers and interleavers designed with
a related algorithm based on the discussed correlation properties [7]. These
interleavers are also competitive in terms of error correcting performance.
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Turbo Codes: Correlated Extrinsic Information
and its Impact on Iterative Decoding
Performance

Johan Hokfelt, Ove Edfors and Torleiv Maseng

Abstract

The performance of a turbo code is dependent on two properties of the code: its
distance spectrum and its suitability to be iteratively decoded. The performance
of iterative decoding depends on the quality of the extrinsic inputs; badly corre-
lated extrinsic inputs can deteriorate the performance. While most turbo coding
literature assumes that the extrinsic information is uncorrelated, we investigate
these correlation properties. An iterative decoding suitability measure is pre-
sented, intended to serve as an indication on the degree of correlation between
extrinsic inputs. The suitability measure can be used as a complement to the
weight distribution when ranking interleavers.

1 Introduction

The interleaver used in turbo codes [1] has two major tasks. The first is to
ensure a good distance spectrum of the code by breaking up so called self-
terminating input sequences, see e.g. [2]. In the case of maximum likelihood
decoding this would be the natural and single task of the interleaver. How-
ever, turbo codes are decoded iteratively which is not optimal in the sense of
making maximum likelihood decisions. The performance of iterative decoding
compared to maximum likelihood decoding is dependent on the quality of the
extrinsic information, which is the information being exchanged between the
constituent decoders in the iterative decoding scheme. The choice of inter-
leaver affects the degree of correlation between extrinsic inputs, and thereby
the performance of iterative decoding. In this paper we present and investigate
an iterative decoding suitability (IDS) measure, which indicates the degree of
correlation between nearby extrinsic inputs.

The outline of the paper is as follows. In Section II the correlation properties
of the extrinsic information are studied. Based upon this investigation, an
iterative decoding suitability measure is proposed. In Section III, this measure
is applied on a large number of interleavers, in order to evaluate its usefulness.
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Figure 1: Structure of the iterative decoder.

2 Correlated Extrinsic Inputs

The iterative decoding scheme studied in this paper is depicted in Figure 1.
Each soft-input/soft-output constituent decoder has three inputs and three
outputs, according to e.g. [3]. The three inputs at decoding step k are the
systematic input, z, the parity input, y™) or ¥y, and the extrinsic input from
the previous decoder. The three outputs are a weighted version of the sys-
tematic input, a weighted version of the extrinsic input, and finally the new
extrinsic output. These extrinsic outputs are used as input a priori probabil-
ities in the next decoding step. The decision variables after each decoder is
achieved as the sum of the three outputs, for each time instant. All input and
output sequences are N bits long, which is also the size of the interleaver. Each
constituent decoder employs the maximum a posteriori probability (MAP) al-
gorithm as described in [3].

The systematic and parity inputs for each decoding step depend only on
the received values for each specific bit. The extrinsic inputs, however, are de-
pendent on a range of symbols in the received systematic and parity sequences.
The following subsections investigate the nature of these dependencies.

2.1 The First Decoding Step

We start by investigating the dependencies between the outputs from the first
constituent decoder and the input sequences. Since the extrinsic inputs to
the first decoder are all zero, the decoder outputs are only dependent on the
systematic and parity input sequences. Consider, for example, the decision
variable at position ¢. This output is naturally dependent on the decoder in-
puts at position ¢, i.e. x; and yfl). Furthermore, as a result of the trellis code,
it is also (decreasingly) dependent on the inputs at time i +1, ¢ +2, i +3 and so
on. In the following, these dependencies are investigated by the corresponding
correlation coefficients. Examples of such correlation coefficients are depicted
in Figure 2, showing the correlation between the systematic inputs and both
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Figure 2: Correlation coefficients between the inputs and outputs of the first
decoder. Solid: correlation between decision variable i and systematic bit j.
@) and systematic bit j.

%

Dashed: correlation between extrinsic output Le

a decision variable (solid) and an extrinsic output (dashed). These coefficients
were empirically obtained by simulating the decoding of a recursive convolu-
tional code with feedback and parity polynomials 15,.; and 17,.¢, respectively,
repeatedly transmitting the all-zero code word.

The correlation coeflicients between the extrinsic outputs from the first de-
coder and the sequence of systematic inputs are in the following represented by
the matrix P(Lle)x Element (i, j) of p(Lle)’$7 denoted p(Lle)i,m,,7 is the correlation co-
efficient between extrinsic output 7 after the first decodijng step and systematic
input j. Note that p<Lle),-,a:j is primarily dependent on the distance between ¢ and
j, and not on their absolute values, except for edge effects near the beginning
and end of the sequences.

2.2 The Second Decoding Step

The difference between the first and second decoding step is the presence of
extrinsic inputs. Output ¢ from the second decoder is not only dependent
on the sequence of systematic and parity inputs in the vicinity of position 7,
but also on the extrinsic inputs in the same vicinity. Each of these extrinsic
inputs are in turn correlated to the channel inputs in the vicinity of its origin,
before interleaving. Therefore, these extrinsic inputs provide output ¢ from the
second decoder with correlation to various parts of the systematic and parity
sequences. Provided that the interleaver is suitably chosen, output i from the
second decoder will thus be correlated to a wide range of channel inputs, not
only to those in the vicinity of 7. Intuitively, the decoding performance will be
positively influenced by an increase in the number of channel inputs that affect
each decoder output.

The dashed line in Figure 3 shows an example of the correlation between
extrinsic output 50 from the second decoder and the entire sequence of system-
atic inputs, for a turbo code constructed with a 105-bit interleaver. The solid
line shows the corresponding correlation coefficients between decision variable
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Position in systematic input sequence

Correlation coefficient

Figure 3: Correlation coefficients between the inputs and outputs of the second
decoder. Solid: correlation between decision variable 50 and the sequence of
systematic inputs. Dashed: correlation between extrinsic output 50 and the
sequence of systematic inputs.

50 and the same sequence of systematic inputs. The peak around position 92
stems from the fact that extrinsic output 92 from the first decoder, for this
particular interleaver, is interleaved to position 50 in the input sequence to the
second decoder.

When it comes to investigating the performance of iterative decoding, we
are primarily interested in the correlation coefficients between the extrinsic
outputs and the input sequences, since it is the extrinsic outputs that are
passed on to the next decoder in the iterative decoder. As in the case for
the first decoder, the correlation coefficients between the extrinsic output from

the second decoder and the systematic input sequence are represented by the
(2

matrix p; . .

2.3 Iterative Decoding Suitability

Above we have discussed the correlation between the outputs of the constituent
decoders and the received sequences, exemplified by the correlation coefficients
to the systematic sequence. These correlation coefficients after the second
decoder are dependent on the specific interleaver choice; by changing the in-
terleaver, we change the correlation properties of the extrinsic information.
Especially, interleavers with short cycles' result in high correlation to some
parts of the received sequence, and lower correlation to other parts. Intu-
itively, we would like to spread this correlation as evenly as possible, since an
output highly correlated to a few positions is very sensitive to channel noise at
these positions.

Following the above discussion, we use the standard deviation of the cor-
relation coefficients between extrinsic outputs and the sequence of systematic
inputs as a quality measure. Denoting this standard deviation for extrinsic

LA short cycle occurs when two bits in a sequence are close to each other both before and
after interleaving.
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output ¢ with V;, we get

N 1 Z (pLeL,J:J - pLeL,x) ) <1)

j=1
(2 _ 1N (2 ; ; .
where py ;. =% > J=1PLesn; b€ the average value of the correlation coefhi

(2)

cients on row ¢ of py; .. A low value on V; indicates a good quality of extrinsic

output Le( ), since it is then evenly correlated to the sequence of systematic
inputs. An interleaver well suited for iterative decoding should thus have low
values on all V;:s.

The above standard deviations indicate the quality of the extrinsic inputs
to the second decoder. However, they do not reveal anything about the quality
of the extrinsic information used as inputs in the third decoding step. The
correlation properties of these extrinsic inputs are instead influenced by the
deinterleaving rule. Therefore, the above calculations are performed for both

the interleaver and the deinterleaverz. The corresponding correlation matrix
(2)

for the deinterleaver is denoted p! Le »» Which is substituted for py/ . in (1) to

calculate the standard deviations V’ We now have two sets of measures, the
Vi:s and the V/:s, representing the quality of the extrinsic inputs to each of the
two constituent decoders. To obtain a single measure on the iterative decoding
suitability for an interleaver, we calculate the average of all the V;:s and V/:s%.
The iterative decoding suitability (IDS) measure is thus achieved as

1 N N )
IDS—W(;VHL;%)- (2)

2.4 Analytical Approximation of Correlation Coefficients

It is not straightforward to derive analytical expressions of the correlation ma-
trices p(LQe)m and p(LQe):m, which are needed to form the iterative decoding suit-
ability measure. However, we have investigated a simple model in which the
desired coeflicients are expressed as a linear combination of the correlation after
the first decoder, p(Lle)x The correlation coefficients after the first decoder are

in turn approximated by an exponentially decaying function given by

R ae~°li=il i j £,
(1) _{ 0 J# (3)

Lei,z; otherwise.

2A block interleaver with a large unbalance in the number of rows and columns is an
example of an interleaver that result in large differences in the quality of the extrinsic inputs
to the constituent decoders.

3In an earlier investigation [4], IDS was defined as max(V, V7). Later, we have found that
the average is more conceptually appealing.
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Figure 4: Comparison of approximated (dotted) and empirically found (solid)
correlation coefficients between extrinsic output 50 and the sequence of sys-
tematic inputs, after a) the first decoder and b) the second decoder.

The constants a and ¢ are adjusted so that the height and rate of decay of
the approximation matches the empirically found coefficients. Figure 4a shows
the approximated values (dotted line) with @ = 0.23 and ¢ = 0.18, together
with the empirically found coefficients (solid line). The correlation coefficients
between the extrinsic outputs of the second decoder and the received sequence
z is in turn approximated as

. 1, .
p(LQe),m - §p(Lle),xP (I+p(Lle),x) ’ (4)

where P is a permutation matrix representing the interleaver. The interleaved
sequence is obtained by multiplying the original sequence by P, ¢.e. as xP. The
two terms in (4) stems from the two input sequences to the second decoder that
result in correlation between the new extrinsic outputs and the systematic in-
puts, i.e. the systematic and extrinsic input sequences. The relevance of (4) is
evaluated by comparing the approximated values with empirically found cor-
relation coefficients, both shown in Figure 4b. The plot depicts the correlation
coefficients between extrinsic output 50 from the second decoder and the se-
quence of systematic inputs. The proposed approximation is naturally not an
exact description of the decoding process, but it captures the main features of
the empirically found correlation coefficients.
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Figure 5: Scatter plot of the IDS values and truncated Union Bounds for 200
105-bit pseudo-random interleavers. The truncated union bound and the simu-
lations are performed at Ep/Ng = 2.5 dB. The 10% best and worst performing
interleavers, during simulation, are marked with rings and diamonds respec-
tively.

3 Evaluation of IDS

To evaluate the iterative decoding suitability measure we compared simulated
error rate performances (on an AWGN channel) of a large number of pseudo-
random interleavers to their IDS values. In addition, truncated union bounds
on the frame-error rate probability for each interleaver was calculated. Two
interleaver sizes were used, 105 and 500 bits.

Figure 5 shows a scatter plot of the truncated union bounds? and IDS
values for 200 105-bit interleavers. The IDS values are normalized with the
lowest found value, since the IDS is a relative comparison. It is observed that
the best performing interleavers have low values on both the IDS measure and
the truncated union bound. It is further noted that interleavers that have a
low value on one measure but high on the other, perform, in this case, among
the 10% worst performing interleavers. This result stress the fact that both the
distance spectrum of a turbo code and its suitability to be iteratively decoded
are important issues when it comes to ranking the performance of interleavers
used in turbo codes. The frame-error rates of the 200 turbo codes range from
1-1073 to 4-10~2 at a signal-to-noise ratio of 2.5 dB, after 20 decoding iterations.
The constituent encoders have generator polynomials (1, 17/15),c;.

The convergence rate of the iterative decoding is also affected by the corre-
lation properties of the extrinsic information. Figure 6 shows a scatter plot of

1The bound is truncated after Hamming distance 22.
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Figure 6: Scatter plot of the IDS values and the required number of decoding
iterations for a frame-error rate of 5 - 1073, for 200 105-bit pseudo-random
interleavers.

the normalized IDS values and the required number of decoding iterations for
a frame-error rate of 5- 1073,

As pseudo-random interleavers increase in size, the variation in their IDS
values tend to diminish. Therefore, the IDS measure is mostly suitable for small
pseudo-random interleavers, in the range of 100 to 500 bits. The corresponding
scatter plots in Figures 5 and 6 for the 500-bit pseudo-random interleavers
are similar to the ones shown for the 105-bit interleavers, but with a lower
significance of the IDS measure.

Figure 7 shows the frame-error rate performances and IDS values of four
designed 640-bit interleavers evaluated for the UMTS standardization [5] (Int.
#1 is a pseudo-random interleaver, the others are designed). Also in this case,
there is a correspondence between low IDS values and good error correcting
performances. The turbo codes in this example use 8-state encoders and 8
decoding iterations.

4 Conclusions

The correlation properties of the extrinsic information in an iterative decoder
have been studied. These correlation properties depends on the particular
choice of interleaver, which therefore influence the performance of iterative
decoding. An iterative decoding suitability measure was presented and inves-
tigated, intended as a complement to the distance spectrum when ranking
interleaver performances. Simulation results indicate that the IDS is related to
both the convergence rate and final frame-error rate of turbo codes. It is given
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Figure 7: Simulated frame-error rates of designed 640-bit interleavers, and their
IDS values.

in a closed form expression and requires no simulations which makes it useful
for interleaver design and ranking.
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A Turbo Code Interleaver Design Criterion
Based on the Performance of Iterative Decoding

Johan Hokfelt, Ove Edfors and Torleiv Maseng

Abstract

The performance of a Turbo code is dependent on two code properties: its dis-
tance spectrum and its suitability to be iteratively decoded. Both these properties
are influenced by the choice of interleaver used in the turbo encoder. This pa-
per presents an interleaver design criterion that focuses on the performance of
iterative decoding, based on the correlation properties of the extrinsic inputs.
Interleavers designed with the proposed criterion achieve very competitive per-
formances, both in terms of convergence rates and error correcting capabilities.

1 Introduction

Since the introduction of turbo codes [1], quite an effort has been made to
find good interleaver design methodologies. Most of these efforts have been
directed towards finding interleavers that yield codes with improved distance
spectra, a natural design criterion when maximum likelihood decoding is em-
ployed. Turbo codes are however decoded iteratively, which is suboptimal to
maximum likelihood decoding. This prompts for an additional design criterion:
minimization of the performance deterioration due to iterative decoding.

Some previously proposed interleaver design criteria result in good itera-
tive decoding performance, for example S-random interleavers [2]. These are
semi-random interleavers for which permutations resulting in ‘short cycles’ are
avoided. A short cycle occurs when two bits are close to each other both before
and after interleaving. It was concluded in [3] that these short cycles impair the
performance of iterative decoding. In this paper we investigate the influence
of short cycles using correlation properties of the extrinsic information. These
correlation properties are then exploited to form an interleaver design criterion
that strives to make nearby extrinsic inputs as uncorrelated as possible.
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2 Correlation Properties of the Extrinsic Infor-
mation

The soft output from each constituent decoder can be divided into three parts;
the extrinsic output, a weighted version of the systematic input, and a copy of
the input a priori information [1, 4]. In this context we focus on the properties
of the extrinsic output, since this is the part that is used as a priori information
in the next constituent decoder. The correlation properties of these extrinsic
outputs have received little attention in the literature. Most often, the extrinsic
outputs/inputs are assumed to be independent of each other. In this section we
investigate the correlation properties of the extrinsic information, and motivate
their use as part of a design criterion in an interleaver design algorithm. In
the following, we use the notation Le; for extrinsic output 4, x; for information
symbol ¢ (z; € {£1}), and n; for the noise sample added to systematic symbol
i.

Due to the structure of a trellis encoder/decoder, each decoder output de-
pends on a range of input noise samples. These dependencies after the first
decoding step are illustrated in Fig. 1(a), where the solid line shows simu-
lated! correlation coefficients between extrinsic output 50 (out of 105) and the
sequence of noise samples added to the systematic sequence. Since nearby
extrinsic outputs depend on partially the same inputs, they are likely to be
correlated. This is confirmed in Fig. 1(b), showing the correlation between
extrinsic output 50 and the entire sequence of extrinsic outputs.

Now consider the second decoding step. The extrinsic outputs from the
second decoder becomes correlated with the noise samples through two of the
input sequences: the systematic inputs and the extrinsic inputs. Consequently,
the correlation between the extrinsic output from the second decoder and the
input noise samples is more complicated than after the first decoder. The solid
line in Fig. 1(c) depicts examples of such correlation coefficients, achieved with
a pseudo-random interleaver. The systematic inputs give rise to the correlation
spikes, while each extrinsic input increases the correlation to positions in the
neighborhood of each spike. Two spikes that are close to each other indicate
a short cycle, resulting in increased correlation to the noise samples near these
spikes, at the expense of lower correlation to other positions. If short cycles
are avoided, the correlation between extrinsic outputs and the noise samples is
instead distributed among a larger part of the sequence of noise samples. This
will be used in the following to form an interleaver design criterion.

IThe sought correlation coefficients are proportional to the expectations E [Le;z; - n; ],
which were estimated by averaging simulated values of Le;x; - njz; over a large number of
frames.
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Figure 1: (a) Correlation between extrinsic output 50 from the first decoder
and the noise samples added to the systematic symbols. (b) Autocorrelation of
the extrinsic output sequence after the first decoder. (c) Correlation between
extrinsic output 50 from the second decoder and the noise samples added to
the systematic symbols. The solid lines correspond to empirically found coeffi-
cients, while the dotted lines are closed form approximations. All were obtained
for a rate-1/3 turbo code with generator polynomials (17/15),. and a 105-bit
interleaver, transmitting over an AWGN channel at E,/Ny = 1.0 dB.

3 Interleaver Design

The investigation in the previous section indicates a useful relationship between
short interleaver cycles and the correlation properties of the extrinsic outputs.
For the purpose of interleaver design, we desire a short form expression for
the correlation between extrinsic outputs (from the second decoder) and the
sequence of noise samples. After studying the simulated correlation, we have
chosen to use the following approximation®

(1) { ae~ U if j # 4 i,j=1,2,... N, (1)

t

Pii =Y 0 otherwise

for the correlation between Le;x; and n;z; after the first decoder. The dotted
line in Fig. 1(a) shows p{y);,j = 1,2,... ,105, with a = 0.23 and ¢ = 0.18, which

“Compare with the exponentially decaying autocorrelation function of an Auto-Regressive
process driven by white Gaussian noise.
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Figure 2: Tllustration of the interleaver mappings d (m) and d~! (5) , contribut-
ing to the correlation between noise sample j and extrinsic output .

is to be compared to the solid line showing the simulated correlation coefficients.
For the corresponding coefficients after the second decoder, a linear model of
the decoder in which the correlation from the two relevant inputs are averaged
yields the approximation

systematic input

2 1 —ecld () —i

pgd? — 5(1,551,1@%)@@ =" (@)=l
1 Y .
: X aZeclldlm)—jl+li=ml) 2)
m#i,d(m)#j

extrinsic inputs

where 6 is the Kronecker delta-function. The interleaver is present in the form
of d(m), as illustrated in Fig. 2. pé%)’j is plotted in Fig. 1(c) with a dotted
line, again to be compared to the solid line representing simulated correlation
coefficients. Even though (2) is a heuristic approximation of the true correla-
tion coefficients, it is reasonably accurate and proves to be very useful for the
purpose of interleaver design.

A straightforward interleaver design procedure is to assign the elements
d(i),i € {1,2,..., N}, element by element until the whole interleaver is defined.
When choosing each new interleaver mapping d(i), a position in the original
sequence is chosen for which the correlation stemming from the already defined
mappings is low. This correlation is approximated using (2), which need only
be calculated for positions j not already chosen. For these positions, d~!(j) is
not yet defined, and hence the first term of (2), ae—cld” (=il does not exist.
As a consequence, the minimization is performed as

d(i) = argmin Y e~ cldlm)=il+li-m]) 3

(i) = arg iy 3

where the summation is carried out over the already defined interleaver ele-
ments d(m). The set L is the permissible positions to choose from. It contains
the still not assigned positions in the original sequence, except for those elim-
inated by other (optional) design criteria. Other design criteria can include



A TURBO CODE INTERLEAVER DESIGN CRITERION 139

(a) (b) (c)

Figure 3: Illustration of permutation matrices for three types of interleavers
(500 bits). Each dot corresponds to a one in the permutation matrix. (a)
Pseudo-random, (b) S-random, and (c) correlation designed interleaver.

specific distance spectrum restrictions and/or trellis termination considerations
[5]. The use of such criteria is however beyond the scope of this paper.

The result of using the correlation criterion in the design is illustrated in Fig.
3, which shows the permutation matrices for a pseudo-random, an S-random
and a correlation designed interleaver. Each dot in these plots indicate a one in
the permutation matrix; two dots that are near each other correspond to a short
cycle, which in turn indicates that two nearby extrinsic inputs are correlated.
In general, pseudo-random interleavers create a large amount of short cycles,
whereas these are avoided with S-random and correlation-designed interleavers.

4 Performance Evaluation

The proposed design criterion was evaluated by comparing bit and frame error
rate performances of rate-1/3 turbo codes using various well known types of
interleavers, such as pseudo-random, S-random [2], block helical simile [6], or-
dinary block interleavers, as well as interleavers designed for optimized distance
spectrum. The correlation-designed interleavers resulted in both the fastest de-
coding convergence (also studied in [7]) and the best asymptotic performance.
This is exemplified in Fig. 4(a), showing the frame-error rate performances of
two 512-bit interleavers: one correlation-designed and one distance spectrum
designed. Note that the correlation-designed interleaver yields a significantly
lower error floor, despite its lower minimum Hamming distance (27 versus 32).

While Fig. 4(a) presents results for 512-bit interleavers only, it is of course
interesting to investigate the performances for a wide range of interleaver sizes.
This is done in Fig. 4(b), where we show required SNRs for interleaver sizes
ranging from 105 to 4096 bits, at a frame error rate of 10~*. The performance
gains achieved with correlation designed interleavers over the S-random® in-

3(N, S) € {(105,7), (200, 9) , (500, 12), (1000, 17) , (4096, 42)}
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terleavers are approximately 0.1 dB for small and medium size interleavers.
Since good interleavers tend to perform close to the lower bound?, the room
for improvements is small.
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Figure 4: (a) Comparison of convergence rates and frame error rates for a
correlation designed and a distance spectrum designed interleaver, both 512
bits long. (b) Performance comparison of turbo codes using three types of
interleavers. The plot shows the minimum required signal-to-noise ratio for a
frame error rate of 10™* using 8-state constituent encoders and 10 decoding
iterations, as well as a sphere-packing lower bound.

1Sphere-packing lower bounds for unconstrained-input, unconstrained-output channels 8]
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5 Conclusion

A new interleaver design criterion for turbo codes has been presented. In con-
trast to previous design criteria, which concentrate on the distance spectra,
the basis of the proposed criterion is the correlation properties of the extrin-
sic information. The correlation criterion can be thought of as a soft-version
of the S-random design criterion. The spreading associated with these design
criteria results in two favorable properties: competitive distance spectra and
low correlation between nearby extrinsic inputs. Simulation results indicate a
faster decoding convergence as well as an improved asymptotic performance
for interleavers designed with the presented criterion. The computational com-
plexity of the proposed criterion is very low, which allows for quick design of
large interleavers.
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Interleaver Structures for Turbo Codes with
Reduced Storage Memory Requirement

Johan Hokfelt, Ove Edfors and Torleiv Maseng

Abstract

This paper describes two interleaver structures that reduce the memory require-
ment for the storage of interleaver rules. The first structure offer memory
reductions of more than 50%, compared to storing the entire interleaver vec-
tor. The second structure is useful when a range of interleaver sizes are to be
stored, offering memory reductions asymptotically approaching 50%. By com-
bining the two structures, a total memory reduction of approximately 75% is
achieved. This is obtained without any significant reduction of the error cor-
recting performance of the codes.

1 Introduction

A turbo code typically consists of two recursive encoders in parallel, separated
by an interleaver [1] as shown in Fig. 1. The design parameters of a turbo code
are primarily the generator polynomials of the constituent encoders, normally
chosen to be identical, and the particular choice of interleaver mapping. The
issue of choosing generator polynomials is discussed in for example [2, 3, 4],
while for interleaver design strategies and interleaver structures, see for example
[5, 6, 7,8, 9]

In some applications, when many, and possibly large, interleavers are used,
the implementation complexity to generate the interleaver rules is of impor-
tance. For example, in the standardization of UMTS, such considerations have
achieved significant attention. There are basically two approaches that can
be used to lower the implementation complexity of interleaver rules: either by
using algebraic interleavers that can be generated in real time, or by impos-
ing structures on the interleavers, which reduce the storage requirement of the
interleaver rules.

This paper presents two interleaver structures that reduce the amount of
memory required to store interleaver rules. The first structure is referred to as
an odd-even symmetric structure, which reduces the memory requirement with
slightly more than 50% compared to storing the entire interleaver vector. The
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Interleaver

Figure 1: Example of a turbo code encoder, using constituent encoders with
generator polynomials (17/15) 4.

second structure, expanded interleavers, is useful when a series of interleavers
with sizes of the form 2¢z, k = 0,1,2,..., where x is the size of the smallest
desired interleaver, are to be stored. When a series of interleavers are designed
with the expansion criterion, it is sufficient to store the largest interleaver
only, offering memory savings approaching 50%. Fortunately, the interleaver
structures can be combined, with a total memory requirement reduction of
approximately 75%, compared to storing all the interleaver vectors.

Naturally, every interleaver restriction reduces the design freedom, and
hereby, possibly, deteriorates the performance of the interleavers. However,
simulations show that interleavers with the structures presented in this paper
perform essentially the same as unconstrained interleavers, if designed appro-
priately.

2 Interleaver structures

Let the interleaver rule be represented by a vector of N integers, m=[mr(1)
m(2)... w(N)], where 7(¢) = j indicates that input position ¢ is interleaved
to position 7, and N is the size of the interleaver. The interleaver structures
presented in this paper impose certain restrictions on the permissible choices
of the mappings 7 (7). First, we describe two different restrictions that individ-
ually offer implementation simplifications, and thereafter these restrictions are
merged into a combined structure, offering total storage savings of as much as

75%.

2.1 Odd-even symmetric interleaver structure

Consider an interleaver rule that swaps pairs of positions, i.e. a symmetric
interleaver. If all the pairs are known, the interleaver rule is known. Since
there are only N/2 such pairs, if organized properly, the storage of these pairs
requires less memory than storing an entire interleaver vector with N addresses.
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input
position™ =1 213 45 67 8 7=[63278145]

interleaved —> 632781145 7=[3142]

position

Figure 2: Example of an 8-bit odd-even symmetric interleaver. Each odd po-
sition in the input sequence is mapped to an even position, and vice versa.
Further, if input 4 is mapped to position j, then input 7 is mapped to position
i (symmetry).

One possible organization strategy is to require every position in the first half of
the input sequence to be swapped with a position in the second half. However,
this restriction severely reduces the design freedom of the interleaver, notably
deteriorating the error correcting performance of the code. There are however
other sequence partitions that yield a simple organization of the swapping pairs,
without degrading the interleaver performance. One such partition is to swap
every odd position with an even position, and vice versa. This interleaver
structure, denoted odd-even symmetric, is thus achieved with the following
two restrictions:

1. imod2 # 7 (i) mod 2, Vi (odd to even),

2. (i) =j = w(j) =i (symmetry).

With these restrictions, it is sufficient to store the interleaver rules for all the
odd positions, since by performing swaps, the even positioned bits are auto-
matically interleaved.

Assume that only the odd positions in the interleaver vector are stored. All
the stored addresses are then even integers, implying that the least significant
bit (LSB) in the binary representation of each address is always zero. Thus,
the LSB need not be stored, which offers additional memory savings if the
interleaver rule is stored with custom made memory cells. This shift of the
binary representation corresponds to dividing each number by 2, so that the
stored vector consists of N/2 integers ranging from 1 to N/2. This vector
will in the following be denoted 7, and it is given by 7 (i) = 7 (2i — 1) /2,i €
{1,2,...,N/2}.

As an example, the swapping pairs of an 8-bit odd-even symmetric inter-
leaver are illustrated in Fig. 2. The shown interleaver vector is 7=[6 32 7 8 1
4 5], and the reduced memory-requirement vector is 7=[3 1 4 2].

The implementation of the interleaving rule of an odd-even symmetric inter-
leaver is straightforward: elements at even positions are interleaved by storing
them sequentially and reading them in the order specified by 7; elements at odd
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Figure 3: Implementation example of an 8-bit odd-even symmetric interleaver.
The interleaver rule is stored by the 4-element vector 7=[3 1 4 2].

positions are interleaved by storing them in the order specified by 7 and reading
them sequentially. As an example, we study the interleaving of the extrinsic
outputs produced by the first constituent decoder. For illustrative purposes, it
is suitable to partition the memory used to store the extrinsic information be-
tween the decoders into two logically separated memory areas, A and B. With
these, odd extrinsic outputs on the form 2n —1, n € {1,2,..., N/2} are stored
at address 7 (n) in memory A, while even outputs, 2n, n € {1,2,...,N/2},
are stored at address m in memory B. The second constituent decoder per-
forms a similar action when reading its extrinsic inputs: odd inputs are read
from memory B at address 7 (n), and even inputs are read from memory A at
address n. Such an interleaver implementation is illustrated in Fig. 3. The
deinterleaver implementation is identical, due to the symmetric property.

2.2 Expanded interleaver structure

The expanded interleaver is also a structure where the mappings are restricted
to two separate partitions of the input sequence. In the case of the odd-even
partitioning in the previous section, the mappings were constrained to be from
one set to the other. We will now study the benefits of instead requiring the
mappings to be within each of the two sets. The advantage of this restriction
is that the resulting interleaver can be viewed as a combination of two separate
interleavers, each half the size of the combined interleaver. Assume that the two
sets consist of the odd and even positions respectively. Then, by using every
second element in the stored interleaver vector, an interleaver half as large as
the original interleaver is achieved. Naturally, it is possible to require that
also the mappings of the new, smaller interleaver are restricted to additional,
similar, partitions. As long as this requirement is fulfilled, smaller and smaller
interleavers can be produced, by simply using every second element in the
nearest larger interleaver.

A straightforward way of constructing a series of expanded interleavers is
to start with the smallest desired interleaver size, and expand this by inserting
undefined elements between the already existing positions in the interleaver.
The new, undefined positions are then assigned with mappings according to
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Figure 4: (a) Expansion of a 4-bit interleaver to an 8-bit interleaver, and (b)
Expansion of the 8-bit interleaver to a 16-bit interleaver. Both the original
4-bit and the intermediate 8-bit interleavers can be retrieved from the final
16-bit interleaver.

some interleaver design criteria, independent of the restrictions imposed by the
expansion structure. After the expanded interleaver is designed, further ex-
pansions can be performed until the largest desired interleaver size is obtained.
Two such expansions are shown in Fig. 4, first from a 4-bit interleaver to an
8-bit, and then from the 8-bit to a 16-bit interleaver.

The advantage of expanding interleavers as described is the reduction of
storage memory required for the interleaver rules; the expanded 16-bit inter-
leaver in Fig. 2(b) can be used to interleave 4-bit, 8-bit and 16-bit sequences.
This interleaver structure is thus useful when a range of interleaver sizes are
to be stored. The amount of storage memory saved approaches 50%, as the
number of interleaver sizes increases.

2.3 Expanded odd-even symmetric interleavers

The described structures can be merged into a combined interleaver structure
which is both expanded and odd-even symmetric. Due to the contradictory
constraints on the odd/even subsets, the expansion need to be modified com-
pared to the description above. One way to maintain the odd-even property in
an expanded interleaver is to insert two undefined elements after every second
entry in the original interleaver. This modification ensures that each element
on an even position in the original interleaver remains on an even position
after expansion, and vice versa. Thus, if the original interleaver meets the
odd-even symmetric constraints, and if the assignment of the inserted elements
is performed with these restrictions, the new interleaver will be an expanded,
odd-even symmetric interleaver. The expansion of an 8-bit odd-even symmetric
interleaver to a 16-bit odd-even symmetric interleaver is illustrated in Fig. 5.
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Figure 5: An interleaver expansion that preserves the odd-even symmetric
properties of an interleaver. Instead of inserting one unassigned element after
every original interleaver entry, two unassigned elements are inserted after every
second original entry.

The expanded and designed 16-bit interleaver in Fig. 5 can be stored on
hardware as T16=[5 8 7 6 1 2 3 4]. For these small interleaver sizes, the re-
strictions imposed on the interleavers reduce the design freedom substantially.
However, when designing interleavers with more reasonable sizes (at least one
hundred bits), the imposed restrictions do not severely reduce the design free-
dom of the interleavers.

The implementation of expanded odd-even symmetric interleavers is iden-
tical to the odd-even symmetric implementation — with the addition that the
same hardware can be used for a range of interleaver sizes. Interleaving of 16-,
8- and 4-bit sequences with the interleaver in Fig. 5 are illustrated in Fig. 6.
The only difference between interleaving an 8-bit sequence instead of a 16-bit
sequence is that the interleaver index-counter is clocked twice between each new
bit to be stored/read. This holds also for the index-counter for the sequentially
stored/read bits, which now use addresses 1,3, 5, ..., instead of 1,2,3,....

3 Simulation results

The error correcting performances of turbo codes using interleavers with the
described structures have been simulated for AWGN channels. We use rate-1/3
turbo codes with up to 15 decoding iterations, where each constituent decoder
employ the log-MAP decoding algorithm. The generator polynomials of the
constituent encoders were (1, 17/15),ct. The first encoder was terminated with
tail bits, while the second encoder was truncated in an unknown state.
Simulations were performed with interleavers of sizes 320, 640, 1280, 2560
and 5120 bits. The 320-bit interleaver is an odd-even symmetric interleaver,
while all the rest are expanded, odd-even symmetric. Aside from these in-
terleaver restrictions, the interleavers were designed to yield good correlation
properties of the extrinsic information [9], as well as good distance properties
of the resulting turbo codes. The bit- and frame-error rate results after 8 and
15 decoding iterations are shown in Fig. 7 and Fig. 8 respectively. In these
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Figure 6: Implementation of a 16-bit expanded odd-even symmetric interleaver,
used to interleave (a)16-bit-, (b) 8-bit- and (c) 4-bit input sequences. For each
step down in input sequence length, the clock speed of the index counter for 7 is
doubled. For example, when interleaving the 4-bit sequence, the only addresses
used in 7 is 5 and 1.

figures, the structured interleavers are denoted EOES-CDI; expanded odd-even
symmetric, correlation designed interleaver. As a performance reference, we use
interleavers designed completely without structure restrictions, denoted CDI.
This type of interleavers have shown very competitive performances in compar-
ison to interleavers designed by many other design strategies, see for example
[9, 10]. When only one line is visible in the performance plots, it is because the
performances are right on top of each other. The results indicate that the pre-
sented interleaver structures have essentially no influence on the performance
of the compared turbo codes, as long as the interleavers are properly designed.

We present here only the performances of interleavers designed with both
the expanded and the odd-even symmetric restrictions. However, interleavers
designed with only one of the constraints, as presented in Section 2.1 and 2.2
respectively, perform the same as the performances shown in Fig. 7 and Fig.
8.

4 Discussion and conclusions

The concept of pruning interleavers were discussed in [7]. When pruning inter-
leavers, very high interleaver size granularity is achieved by disregarding the
interleaver mappings to positions above the size of the desired interleaver. For
example, a 570-bit interleaver is obtained by disregarding all the elements that
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Figure 7: Simulated bit- and frame-error rates after 8 decoding iterations of
rate-1/3 turbo codes of various interleaver sizes, on an AWGN channel. The
expanded odd-even symmetric (EOES-CDI) interleavers perform essentially
as well as the interleavers designed entirely without the structure restrictions

(CDI).



INTERLEAVER STRUCTURES

Bit-error rate

Frame-error rate

10°

1074

1072 L

1072 f

1074 L

107°

153

EOES-CDI
- --- CDI

Interleaver size, bits

2.0
E, /Ny (dB)

EOES-CDI
- --- CDI

Interleaver size, bits

1.0 1.5 2.0
Ey/No (dB)

(b)

Figure 8: Simulated bit- and frame-error rates after 15 decoding iterations,
of rate-1/3 turbo codes of various interleaver sizes, on an AWGN channel.
The expanded odd-even symmetric (EOES-CDI) interleavers perform essen-
tially as well as the interleavers designed entirely without the structure restric-

tions (CDI).



154 INTERLEAVER STRUCTURES

are larger than 570 in the nearest larger interleaver, i.e. the 640-bit interleaver
in our case. However, for the interleavers evaluated in this paper we found that
the correlation properties of the extrinsic information are better preserved, if
the pruning is performed at both ends of an interleaver. This means that
elements both below and above a certain number, depending on the desired
interleaver size, are disregarded.

The storage of an expanded odd-even symmetric interleaver of size 5120
bits requires 2560 addresses to be stored, each address represented by 12 bits.
This amounts to approximately 3.1-10* memory cells. As described, this inter-
leaver can be used to interleave all sequences with lengths on the form 5120 /2%
k=0,1,2,..., down to the size of the original interleaver used for the first ex-
pansion. Assuming instead that interleavers with sizes ranging from 320 to 5120
bits are to be stored using unstructured interleavers, these interleavers require
a total of Zi:o 320 - 2F [logz (320 . 2’”)] ~ 1.2 - 10° memory cells for storage.
The reduction using the expanded odd-even symmetric interleaver is thus 74%
in terms of storage area. Furthermore, switching between interleaver sizes is
very easily implemented by shifting the bits in the interleaver index counter to
the left, one position for each step down in interleaver size. Simulations show
that the presented interleaver constraints have essentially no influence on the
error correcting performances of the codes.
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Termination Methods for Turbo Codes

Johan Hokfelt, Ove Edfors and Torleiv Maseng

Abstract

The performance of a Turbo code is in general severely degraded if no trellis
termination is employed. This paper investigates the implications of the choice
of trellis termination method for Turbo codes, and explains the origin of the
performance degradation often experienced without trellis termination. An effi-
cient method to derive the distance spectrum of Turbo codes for different trellis
termination methods is presented. Further, we present interleaver design rules
that are tailored to each termination method. Using interleavers designed with
these restrictions, we demostrate that the performance difference between var-
tous termination methods are very small, including no trellis termination at
all. For example, we demonstrate a Turbo code with a 500-bit interleaver that
exhibit no sign of an error floor for frame error rates as low as 1078, even
though no trellis termination is employed.

1 Introduction

Turbo codes are in general implemented as two recursive convolutional encoders
in parallel, where the input to the second encoder is an interleaved version of
the original information sequence [1, 2]. At the beginning of each information
block, the encoders are initialized to their zero-states. Similarly, it is desirable
to force the encoders back to the zero-state at the end of the information
block, an operation known as trellis termination. For feedforward convolutional
encoders, this is readily achieved by appending zeros, known as tail bits, at the
end of the encoder input sequence. However, the recursive property of the
constituent encoders used in Turbo codes implies a state-dependency on these
tail bits, and hence, individual tail sequences are required for each constituent
encoder.

The problem of trellis termination for Turbo codes has been addressed by
many authors. In the original Turbo code proposed by Berrou et al. [2], the
trellis of the first encoder was terminated in the zero state while the second
encoder was truncated in an unknown state. Since then, various techniques
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have been presented which allow both encoders to be terminated in their zero
states. Examples of such techniques are: location of input positions that sep-
arately influence the final states of both encoders [3], interleaver restrictions
that terminate the second encoder in the same state as the first encoder [4, 5],
tail-biting Turbo codes [6], and post interleaver flushing [7]. Naturally, it is
also an option to truncate both encoders without any trellis termination at all,
as investigated for example in [8, 9]. Additional reports on trellis termination
for Turbo codes are found in, among others, [10, 11].

The performance of a trellis termination methods is, to various extents,
dependent on the particular interleaver used in the Turbo encoder — a fact rarely
acknowledged in the literature. This dependency is the result of interleaver edge
effects [12]. These edge effects degrade the distance spectrum of Turbo codes in
situations where at least one of the encoder trellises is truncated in an unknown
state. The degree of distance spectrum degradation is highly dependent on the
particular choice of interleaver. Thus, the performance of a trellis termination
method is the result of the combination of the termination method and the
edge effects present for the particular interleaver used.

This paper describes interleaver edge effects in detail, and demonstrates
how different termination methods are unequally sensitive to the phenomenon.
A method to calculate the distance spectrum of Turbo codes for different trel-
lis termination methods is presented. Further, we describe how the interleaver
edge effects can be avoided by means of sophisticated interleaver design, hereby
significantly reducing the need for trellis termination. Using interleavers de-
signed specifically for each termination method, we investigate the error cor-
recting performances of different termination schemes. The investigated trellis
termination methods are: no termination at all, termination of the first encoder
only, termination of both encoders with post interleaver flushing [7], termina-
tion of both encoders using both self-terminating interleavers [4, 5] and dual
termination [3].

A typical Turbo code encoder is depicted in Fig. 1. The constituent en-
coders are rate 1/1 recursive convolutional encoders with m memory elements
and M = 2™ states. The two encoders are linked by an interleaver of length NV,
so that every block of N information bits entering the second constituent en-
coder is an interleaved, or permuted, version of the original N-bit information
block. Depending on the degree of puncturing performed on the two parity
sequences, the overall code rate can be varied from 1/3 to 1/1.

Due to the interleaver, the overall state space of the encoder becomes pro-
hibitively large for maximum likelihood decoding. However, a reasonably low
complexity decoding is obtained by iteratively decoding the codes generated
by the first and second constituent encoders, respectively. The decoding of the
constituent codes requires a soft-in/soft-out decoding algorithm, providing a
posteriori probabilities (APPs) of the symbols in the decoded sequence. One
such algorithm is the BCJR algorithm [13], which provides optimal APPs on a
symbol-by-symbol basis. Due to the comparably high complexity of the BCJR
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Interleaver

Figure 1: Turbo encoder structure.

algorithm, soft-output algorithms based on the Viterbi algorithm (SOVA) has
been developed [14, 15]. In our simulations of Turbo codes, we use 15 decoding
iterations employing the full BCJR algorithm, implemented in the logarithmic
domain [16]. Further, all transmission is over the additive white Gaussian noise
(AWGN) channel.

This paper is organized as follows. In Section 2, we restate the theory
required to obtain the distance spectrum of the ensemble of Turbo codes, and
present an efficient method to include the effects of different trellis termination
methods in these calculations. In Section 3, we investigate the implications of
using specific interleavers, whose performances deviate significantly from that
of the ensemble of all interleavers. In Section 4, we discuss the issue of decoder
initialization for the case when the trellis is truncated in an unknown state.
Finally, we summarize our investigation in Section 5, which is followed by an
appendix describing interleaver design restrictions that are tailored for specific
choices of trellis termination methods.

2 Influence of Trellis Termination on the Dis-
tance Spectrum

The standard method used for performance assessment of Turbo codes, as for
conventional block- and convolutional codes, is to calculate the Hamming dis-
tance spectrum of the code. With the distance spectrum, or, equivalently, the
weight distribution, lower and upper bounds on the error correcting perfor-
mance can be derived. However, the calculation of the distance spectrum of a
Turbo code involves taking the particular interleaver used into account, a task
that becomes prohibitively complex for reasonably large interleaver sizes. A
less computationally demanding method was introduced by Benedetto et al. in
[17], where they presented a method to derived the average distance spectrum
for the ensemble of all interleavers of a certain length. In this section we sum-
marize the method presented in [17], and present an efficient method to include
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the influences of different trellis termination methods.
Benedetto et al. introduced [17] the input-redundancy weight enumerating
function (IRWEF)

N n—N

AW, Z) &3> Ay ;W 27, (1)

w=0 7=0

for an (n, N)-code, where N is the length of the interleaver and n is the code-
word length. A, ; is the number of codewords with input weight w and parity
weight 7, and W and Z are dummy variables. At this point, we restrict the
coefficients A, ; to include trellis paths that start from the zero state and end
in the zero state after IV trellis transitions. The trellis paths that do not end
in the zero state will be treated separately in Section 2.1.

Since both constituent encoders in a Turbo code share the same input weight
w, every codeword that belong to a Turbo code is a combination of two con-
stituent code codewords that both result from weight w input sequences. It
is therefore convenient to define the conditional weight enumerating function
(CWEF)

Aw; 23, w=0,1,... k

n—N
Ay (2) £
=0

J

which enumerates the number of codewords of various parity weights j, con-
ditioned on a certain input-weight w. The CWEF of the first and second
constituent encoders are denoted AS' (Z) and A$? (Z) respectively, and the
CWEF of the overall Turbo code ALY (Z). Introducing a probabilistic inter-
leaver construction called a uniform interleaver, for which all distinct mappings
are equally probable, Benedetto et al. obtained the CWEF of the ensemble of
all Turbo codes using interleavers with length NV as

A9 (2)AS (2)
() ’

where 1 / (g ) is the probability that a specific weight-w sequence is mapped to

A (2)

another, specific, weight-w sequence. Finally, the multiplicities a4 of codewords
with Hamming weight d is achieved as

N
TC
dd = Z Awd—w: (2)
w=1
where Ag%w are the coefficients in the Turbo code CWEF, i.e. ALC (Z) £
Z;:év ALCZi. Note that, due to the averaging of the ensemble of distance
spectra, each multiplicity ag and AT are not necessarily integers.
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Figure 2: Example of an interleaver and an information sequence producing
two low weight parity sequences, and thus a low weight code word.

The distance spectrum obtained with (2) can be used to derive an upper
bound on the error correcting performance. For AWGN channels and maximum
likelihood decoding, the error rate performance is upper bounded by

2RE,
Prer < Xd:adQ ( d N ) , (3)

where Prgg is the frame or block error rate, @ (-) is the upper tail probability
of a normalized Gaussian random variable, R is the code rate, Ej is the energy
per information bit and Ny is single-sided noise spectral density. Note that the
bound (3) is valid for the ensemble of all interleavers with a certain length; a
single specific interleaver may perform both worse and better than the ensemble
upper bound. For the bit error rate performance, the union bound is

w ~ 2RE},
Ppgr < ZZ NAEC; ( (w+7) No ) . (4)
w g

When deriving the CWEF of the constituent codes of Turbo codes, it is
common to take only the error events that end up in the zero state into ac-
count. This corresponds to taking only zero-terminating input sequences into
consideration. Figure 2 depicts such a combination of interleaver and input
sequence, for which a weight-3 input sequence is zero-terminating both before
and after interleaving. Depending on the method of trellis termination, code-
words might also exist that originate from trellis paths that do not end up in
the zero state after N trellis transitions. Since these codewords can be thought
of as being the result of the truncation imposed by the interleaver, they are
referred to as interleaver edge effects [12]. In the next section we describe an
efficient method for taking the interleaver edge effects into account, for various
Turbo code trellis termination methods.
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2.1 Interleaver Edge Effects

Interleaver edge effects refer to the implications on the distance spectrum re-
sulting from the block partitioning of the input sequence, as the result of a
limited-length interleaver. Due to this truncation, low weight parity words can
be generated even though the encoder input sequences do not force the encoders
back to the zero states. In terms of weight enumerating functions, this means
that we require knowledge not only of the number of trellis paths that lead to
the zero state after the last transition, but also of the number of paths that lead
to the other states. This can be obtained by partitioning the IRWEF in (1)
into a state-dependent counterpart, which enumerates the number of paths that
lead to trellis state s, having input weight w and parity weight j. An efficient
method to find the state-dependent IRWEF of a convolutional encoder valid
after ¢ trellis transitions is to extend the IRWEF of the same encoder obtained
for t — 1 transitions. Let At s, ; denote the number of paths that lead to state
s after t trellis transitions, having input weight w and parity weight j. Based
on the encoder trellis, the state dependent IRWEF is recursively calculated as

1
At,s,w,j = Z Atf1,S(s,u),wfu,ij(S(s,u),u)7
u=0
where S (s,u) is the state that leads to state s when the input symbol is u,
and P (S (s,u),u) is the parity weight of the corresponding trellis transition.
The recursive procedure is initialized with Agsw; = 0 Vs,w,j, except for
Ap,0,00 =1, which corresponds to an encoder initialized in the zero state.

Let Egl] and ESZJ denote the multiplicities of codewords that correspond to
trellis paths that do not end up in the zero state after encoding length-/N input
blocks, for constituent code C; and Cs respectively. These multiplicities form
the corresponding CWEFs according to ES! (Z) = Z;Zév ngij ,1=1,2. The
overall CWEFSs, including both zero-terminating codewords and edge effects,
are then obtained as A (Z) = AS (Z) + E$' (Z), and the resulting CWEF
for the Turbo code is

(AL (2) + Eg' (2)) (A (2) + Eg? (Z))

() '
When comparing different termination methods, it is illustrative to separate
the part of the distance spectrum that originates from edge effects, i.e.
_ AV (Z) B (2) + By (2) AL (2) + BG (2) B2 (Z)
- (o) ’
so that ATC (Z) = ATC (Z) 4+ ELC (Z). The difference in the AZC (Z):s for
different trellis termination methods is in the way the Eg’ ;s are calculated.

This is treated in the subsequent paragraphs.
We separate the trellis termination methods into three principal classes:

A (2) = ()

ELC(2) (6)
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1. No termination of either constituent encoder.
2. Termination of the first constituent encoder.

3. Termination of both constituent encoders.

Note that these classes refer to the trellis situations after encoding sequences
that are N bits long, i.e. the length of the interleaver.

Class 1. No trellis termination

With no trellis termination of either constituent encoder, the multiplicities of
codewords that correspond to interleaver edge effects are calculates by summing
the number of paths that end in non-zero states after N trellis transitions, i.e.

S

C] _ Cl

Eyy = Y AN, and
s=1
a1

CQ _ CQ

Ey = Y A us
s=—1

where m; and mg are the number of memory elements in encoder 1 and 2,
respectively. The overall distance spectrum including edge effect codewords,
ATC (Z), as well as the edge effect distance spectrum only, ELC (Z), is calcu-
lated using (5) and (6).

An important and frequently used subclass of no trellis termination is post
interleaver flushing, proposed in [7]. With this method, both encoders are
flushed independently of each other, after encoding their N-bit input sequences.
The combination of the weight spectra of the constituent encoders is then
similar to the case of no trellis termination, since the trellises are not terminated
by the end of their length- N input sequences. However, extra codeword weight
is added as a consequence of the encoder flushings. This is accounted for by
adding the weight of the flush bits and the corresponding parity bits to the
parity weight in the IRWEFs. More precisely,

2717,1_1

Cl _ Cl

Egi = ) ARwioms)
s=1
s

Cz — CZ

Ey = ) AR wi me
s=1

where Fj (s), 1 = 1,2, is the sum of the weight of the flush bits and parity bits
generated when forcing the encoder to the zero state from state s.



166 TRELLIS TERMINATION

Class II. Termination of the first encoder

By appending mq tail bits to the input sequence so that the first encoder is
terminated in the zero state, the edge effect codewords are entirely removed
from the first encoder. Note that the tail bits are included in the sequence that
enters the interleaver, and that their Hamming weight is included in the input
weight w. For the second encoder, the situation is identical to the case of no
trellis termination. Hence,

C _
vaj = 0
om2 _q
Cz _ Cz
By = ) AVews
s=1

Class III. Termination of both encoders

It is also possible to terminate both constituent encoders in the zero states.
Two different ways of achieving this is reported in the literature:

1. By imposing interleaver restrictions, the second encoder can be forced to
end up in the same state as the first encoder [4, 5]. It is then sufficient to
append tail bits according to termination class II, in order to terminate
both encoders in the zero states. The necessary interleaver restrictions
are

7({)modL=14¢, ¢=1,2,...,N, (7)

where 7 (7) is the position of input bit ¢ after interleaving, and L is the
period of the impulse response of the constituent encoders (assumed to
be identical). Following the terminology in [5], this method is referred to
as using self-terminating interleavers.

2. By identifying specific, interleaver dependent, input positions it is possi-
ble to force the constituent encoders to their zero states independently
of each other [3]. This is achieved without any restrictions on the choice
of interleaver, but with a slight increase in the number of input bits
dedicated for trellis termination (n termination bits are required, where
max (mq1,mg) < n < my + mg). Following the terminology in [3], this
method is referred to as dual termination.

Even though the second method result in a slightly higher rate loss, it has
the advantage of not imposing restrictions on the interleaver design.

With both encoders terminated in their zero states, all edge effect codewords
are entirely removed. Consequently, Eglj = Egg =0, so that ELC(Z) = 0
and ATC (Z) = ATC (7).

Figure 3(a) shows the lower parts of the edge effect distance spectra for the
described termination methods, for a Turbo code with interleaver length 500
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bits and constituent encoders with feedback and generator polynomials 15g and
17g, respectively. As expected, "no termination” results in the worst distance
spectrum, significantly improved by terminating the first encoder and post
interleaver flushing. Naturally, since termination of both encoders entirely re-
moves the interleaver edge effects, there exist no edge effect codewords. Figure
3(b) shows the corresponding total distance spectra, including both ordinary
and edge effect codewords. Figure 4 shows the union bound on the frame error
rates achieved with (3), corresponding to the distance spectra in Figure 3(b).
As expected, the union bound diverges at a signal-to-noise ratio close to the
cut-off rate, which is 2.03 dB for rate 1/3 coding. Also shown in Figure 4 are
the simulated performances of a large number of randomly chosen interleavers,
using the described trellis termination methods. The simulated performances
rank in the same order as predicted by the derived distance spectra; however,
the simulation results are actually above the derived union bounds. This is not
an inconsistency, bearing in mind that the union bound is valid for maximum
likelihood decoding, while the simulation results are obtained with suboptimal
iterative decoding.

3 Interleaver Edge Effects with Non-Uniform
Interleavers

Even though calculating the average distance spectrum for the different termi-
nation methods gives a good insight to the issues of trellis termination, it is
important to keep in mind what the method does — i.e. the averaging over the
entire ensemble of interleavers having a certain length. As an example of when
the averaging method coincide poorly with individual interleaver performances,
we study in this section ordinary block interleavers. With such interleavers, in
which the input sequence are written row-wise and read column-wise, the very
last input position remains at the last position also after interleaving. Hence,
with no trellis termination, the minimum distance of the code is 3 regardless
of the interleaver length and the choice of component encoders. If post in-
terleaver flushing is employed, the minimum distance is increased to 13 (for
feedback and generator polynomials 15g and 17g, respectively), again regard-
less of the interleaver length. Even though 13 is considerably larger than 3,
it is still a poor minimum distance for interleavers of reasonable lengths, say
above 100 bits. As a comparison, the minimum distances when terminating
the first encoder and terminating both encoders is 28 (with multiplicity 473),
when using a 500-bit block interleaver with 20 rows and 25 columns. Figure 5
shows simulated frame error rate performances for these codes, along with their
respective free distance asymptotes [18]. The poor performance for no trellis
termination follows, as described, from the severe edge effect that an ordinary
block interleaver results in.

The particular influence from the edge effect that arise when using ordi-
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Figure 3: Average weight distributions for Turbo codes using the ensemble of
all 500-bits interleavers, for four different trellis termination methods. The con-
stituent encoders use feedback and parity polynomials 15g anf 17g, respectively.
(a) The part of the weight distribution that result from interleaver edge effects
only. (b) The entire weight distribution, including both edge effect codewords
and ordinary codewords for which both encoders end in the zero state.

nary block interleavers can be singled out by comparing with the performances
achieved with reversed block interleavers [19]. When using reversed block in-
terleavers, the interleaved sequence is read in reversed order, starting from the
last column and the last row. This procedure effectively removes the interleaver
edge effects, thereby significantly improving the performance of no termination
and post interleaver flushing. The performance of a 500-bit reversed block in-
terleaver, using the different termination methods, are shown in the upper part
of Figure 6. As seen, there is essentially no difference in the performances of
the different termination methods.

It is well known that it is possible to design interleavers that perform better
than both ordinary block interleavers and reversed block interleavers. Most in-
terleaver design methods described in the literature are based on design criteria
that strive to avoid interleaver mappings that correspond to low weight code-
words produced by zero-terminating input sequences, as exemplified in Figure
2. However, interleavers designed without considerations to the edge effects
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Figure 4: Union bound off the frame error rate performances achieved with the
different trellis termination methods, for 500-bit interleavers. The constituent
encoders use feedback and generator polynomials 15g anf 17g, respectively. Also
shown are simulated performances, achieved by simulating a large number of
randomly chosen interleavers.

may result in low weight edge effect codewords. As a consequence, compar-
isons between different trellis termination methods may be corrupted due to
the stochastic presence of the edge effects.

In order to evaluate the performances of the trellis termination methods
when using interleavers with good performance, we have designed interleavers
with specific criteria that target the interleaver edge effects. The edge effect
criteria are used as a supplement to an interleaver design algorithm that use
both ordinary distance spectrum criteria (such as in [20]), as well as a crite-
rion based on the correlation properties of the extrinsic information [21]. The
interleaver design restrictions that avoid interleaver edge effects are described
in Appendix A.

The performance of 500-bit interleavers designed specifically for each ter-
mination method are shown in Figure 6, by the two lower sets of curves. The
best performances are achieved with dual termination, termination of the first
encoder, and post interleaver flushing. The error floors of these codes are not
reached even for bit error rates as low as 107%. The slight degradation in per-
formances achieved with no termination and self-terminating interleavers are
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Figure 5: Simulated frame error performances for Turbo codes using 500-bit
block interleavers (20 rows by 25 columns) and feedback and parity polynomials
15 and 17g. Three termination methods are shown: no termination, post
interleaver flushing, and termination of the first encoder.

both due to implications regarding the interleaver design. For the case of no
termination, the number of edge effects codewords to avoid in the interleaver
design becomes very large, resulting in a high computational complexity. On
the other hand, when designing self-terminating interleavers, the interleaver
restrictions (7) severely limit the design freedom. Therefore, it becomes diffi-
cult to design self-terminating interleavers that perform as well as interleavers
designed without these restrictions.

An important parameter regarding the computational complexity of inter-
leaver design is the length of the period of the encoder impulse responses, i.e.
L. The larger the length of the period L, the smaller the computational com-
plexity required to design an interleaver with a specified minimum distance.
Further, the multiplicities of codewords with weights just above the minimum
distance will in general be larger for a code with lower L. Figure 7 shows the
performances of two Turbo codes that use constituent encoders with 3 and 4
memory elements respectively. The corresponding periods of the encoder im-
pulse responses are 7 and 15. This indicates that we should expect a better
asymptotic performance for the Turbo code with 4 memory elements, which is
supported by the performances shown in Figure 7. Note that there in no indi-
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Figure 6: Error rate performances of Turbo codes using 500-bit interleavers
that do not result in interleaver edge effects. The constituent encoders use
feedback and parity polynomials 15g and 17g, respectively.

cation of an error floor for this Turbo code, even though no trellis termination
is employed. Further, note that the Turbo code with fewer memory elements,
and thus lower decoding complexity, perform better for a rather large and im-
portant part of the SNR range. This behavior has been observed for example in
[22]; however, the explanation for this somewhat surprising behavior remains
to be presented.

4 Discussion on Decoding Initialization

One of the issues of trellis termination for Turbo codes is the initialization of
the backward recursion in the BCJR, algorithm, see for example [23, 24, 25]. In
essence, the a posteriori probabilities produced by the BCJR algorithm for a
certain trellis transition is influenced by three quantities used in the decoding,
usually denoted «, 8 and . The a- and (-values can be interpreted as state
probabilities, while the y-values represent branch transition probabilities in the
trellis. The y-values at a given time ¢ are based solely on the channel statistics
received for symbol ¢. In contrast, the state probabilities a at time ¢ summarizes
the received channel statistics from time 0 up to t. Similarly, the G-values are
based on the channel statistics from time ¢ 4 1 till the end of the block, i.e. to
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Figure 7: Performance of Turbo codes without trellis termination, for consti-
tutent encoders with 3 and 4 memory elements. Both encoders use 500-bit
interleavers designed for no trellis termination.

time N. The o~ and B-values are computed recursively, a procedure referred
to as the forward and the backward recursion, respectively.

Since the constituent encoders are initialized in their zero states before each
information block is encoded, it is straightforward to initialize the a-values
for time 0: state zero is assigned probability 1, while all the other states are
assigned probability 0. If the constituent encoders are terminated in their zero
states, the (B-values are initialized in the same manner. However, when using
no trellis termination, or termination of the first encoder only, there are at least
one trellis for which the final state is unknown.

At least two methods to deal with the state-uncertainty has been proposed
in the literature. In the original Turbo code paper [1], Berrou et al. proposed
to initialize the (-values with equal probabilities, i.e. 1/M, where M is the
number of states in the trellis. Another possibility is to use the final a-values
obtained from the forward recursion, as evaluated for example in [23]. However,
this method is in violation with the derived expression for the B-values, which
states that they should depend only on channel statistics from the present time
up to the end of the block. By using the final a-values for initialization, the
(B-values become dependent on the channel statistics received during the entire
block.
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Figure 8: Comparison of the frame- and bit error rate performances for two
different initialization methods for the backward recursion in the BCJR, algo-
rithm, when no trellis termination is employed. Interleaver length: 500 bits,
encoder polynomials: (17/15)s.

Figure 8 shows simulated error rate performances of the previously used
Turbo code using a 500-bit interleaver with no trellis termination and con-
stituent encoders with polynomials 155 (feedback) and 175 (parity). The ini-
tialization for the backward recursion, i.e. the 8-values, are performed with the
aforementioned methods. For low signal-to-noise ratios, there is no detectable
difference in the error correcting performances. However, at medium and high
SNRs, the decoder that uses equiprobable initial states perform better than
the decoder that use the final a-values for initialization, especially in terms of
bit error rate. These simulations are in agreement with the above reasoning,
claiming that the initial B-values should not depend on the a-values from the
forward recursion.

5 Conclusions

In this paper, we have discussed central aspects of trellis termination meth-
ods for Turbo codes. An efficient method to calculate Turbo code distance
spectra for the ensemble of interleavers, including the effects of the choice of
termination method, has been presented. This method illustrates the result of
interleaver edge effects, thus allowing for basic understanding of the properties



174 TRELLIS TERMINATION

that govern the performance of a specific termination method. For the ensem-
ble of interleavers, it is evident that it is essential for the code performance
that some kind of trellis termination is used.

The performance differences between commonly used termination methods,
such as termination of the first encoder only, post interleaver flushing, and dual
termination, is in general small. However, examples are shown for which the
differences are substantial, explained by the fact that the different methods
are not equally sensitive to interleaver edge effects. Hence, we stress the im-
portance of the combination of the choice of trellis termination method and
the choice of interleaver. In particular, we present interleaver design guidelines
that are tailored to the chosen termination method. It is demonstrated that
for interleavers designed with such design criteria, the performances of the dif-
ferent termination methods are nearly indistinguishable, also when using no
trellis termination at all. In fact, we demonstrate Turbo codes using no trellis
termination and 500-bit interleavers that show no sign of an error floor, even
at frame error rates as low as 1075,

Appendix A

In this appendix we present interleaver design restrictions that aim to avoid
interleaver edge effects. The restrictions on the interleaver design depends on
the chosen method of trellis termination. To start with, since termination of
both encoders completely removes all edge effects, this method requires no
interleaver design restrictions. For the other two classes of trellis termination,
the interleaver design includes restrictions based on the particular choice of
termination method.

For the purpose of describing the interleaver design restrictions, we dis-
tinguish between three principal types of interleaver edge effects: (Type I)
truncation where the first encoder is in a non-zero state, (Type II) truncation
where the second encoder is in a non-zero state, and (Type III) truncation
where both encoders are in non-zero states. The three types of edge effects are
illustrated in Figure 9.

Let the component encoders be represented by the generators Gi (D) =

%% and Gy (D) = %};E_g;’ respectively, and their input sequences by X (D)
and X’ (D) (X' (D) is thus the interleaved version of X (D)). All zero-termi-
nating input sequences are divisible by the feedback polynomial, i.e. X (D) =
Y (D)Gy (D), where degY (D) < deg X (D). Thus, the parity sequence is
X (D) Gy (D) = Y (D) Gyp (D). Further, let iy,iz,is,... and i},i, i}, ... de-
note the positions of the first, second, third, and so on, input ones before and
after interleaving, so that X (D) = g;ol D% and X' (D) = fcv;ol Dix. Fi-
nally, the Hamming weight of a sequence, or the corresponding polynomial
representation, is denoted wyy (+).
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175

Figure 9: Examples of three types of interleaver edge effects: truncation of
the first trellis in a non-zero state (Type I), truncation of the second trellis in
a non-zero state (Type II), and truncation of both trellises in non-zero states

(Type III).
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The total codeword weight of a Turbo code codeword is
d=w+wn (X (D)G1(D))y) +wa (X' (D) G2 (D))y)

where w is the input weight, and (-), denotes truncation of all terms in a
polynomial for which the D-exponent is larger than or equal to N. The com-
plexity required to check (and avoid) all the necessary interleaver mappings
grows rapidly with increasing input weight w. Fortunately, the probability of
edge effects resulting in low weight codewords decreases with increased input
weight. This is especially true when designing interleavers with some sort of
spreading criterion, such as the S-random design [12] or the correlation crite-
rion [21]. With such criteria, we have found it sufficient to check for mappings
of input sequences with weight w = 2,3 and 4. Further, the spreading criterion
relieve the number of input sequences that need to be checked for w = 3 and
4. Consequently, the interleaver design restrictions we present in the following
relies on a spreading criterion being used in the interleaver design.

Figure 10 shows the principal appearances of Type I edge effect interleaver
mappings that a spreading criterion fails to avoid. For all such input sequences,
the interleaver design should ensure that

wH ((X (D) G1 (D)>N) +wH (X/ (D) GQ (D)) < ddesig;n —w,

where dgegign is the targeted minimum distance of the overall Turbo code. The
input sequences X (D) and X’ (D) are constrained to be on the forms given
in the upper part of Table 1, which summarizes the characteristics of Type 1
edge effect input sequences. For weight-2 and weight-4 input sequences, the
sequence characterization is based solely on the periods of the encoder im-
pulse responses, i.e. Ly and Ls. For weight-3 inputs, the zero-terminating
sequences are instead characterized by a set of fundamental zero-terminating
weight-3 sequences. All the existing weight-3 zero-terminating input sequences
can be expressed using one of these fundamental sequences. These are in turn
represented by the sets of constants ¢, and ¢p,0 = 1,2,...  Inaxwhere lmax
is the number of such fundamental sequences that exist for a certain feed-
back polynomial. More precisely, every zero-terminating weight-3 input can
be written as D" (14 D?utkiE 4 Doetkel) where n, ki and ky are inte-
gers. Values of ¢, ¢;9, for the most common encoders with 2-4 memory
elements, are given in Table 2. For example, an encoder with feedback polyno-
mial 1+ D3+ D* (23 in octal representation), every zero-terminating weight-3
input sequence can be written on one of the forms D™ (14 D7k 4 pi2+Th)
D" (1 +D2+7k] +D9+7k2) or D" (1 +D5+7k] +D10+7k2).

Type IT and Type III edge effects are treated the same way as Type I edge
effects. The characterization of the input sequences that correspond to Type
II and Type III edge effects is given in the middle and lower part of Table 1.

The interleaver design constraints presented here can be implemented with
sufficiently low computational complexity to allow for design of large inter-
leavers. The most demanding constraints arise when no trellis termination is
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Figure 10: Examples of Type I edge effect interleaver mappings not avoided by
a spreading interleaver design criterion, for (a) weight-2, (b) weight-3, and (c)
weight-4 input sequences.
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| w | Characteristics of X (D) | Characteristics of X’ (D) |
2 ig —i1mod Ly # 0 th —#imod Ly =0
D% 4+ D% + D
Type I 3 ig — il HlOdL1 =0 = Dn(1+
D(ﬁ,l+k1L2 + Drf?,2+k2L2)
4 19 —tymodL; =0 t5 —i#imodLs =0
i4—i3modL17éO ig—i%mOdLQZO
2 ig—i1mOdL1:0 ZIQ—Z/lmOdL27éO
DZI + DZQ + DZS
Type Il | 3 =D"(1+ i, —iimod Ly =0
D‘f’n +ki1 Ly + D(f)12+k2L] )
4 ig—i1mOdL1:0 Z'IQ—Z',lmOdLQZO
14 —igmod L1 =0 iy —ihmod Lo # 0
2 io —iymod Ly #0 i, — i) mod Ly #£ 0
Type IIT | 3 i9—tymodL; =0 th—#imod Ly =0
4 9 —tymodL; =0 15—ty mod Ly =0
i4—i3modL17éO ZZ—Z%mOszfo

Table 1: Characterization of low weight input sequences that can cause low
weight edge effect codewords, not avoided by using a spreading criterion in the

interleaver design.

used, since all the types of edge effects must be avoided. When terminating the
first encoder, both Type I and Type III edge effects are removed, thus reducing

the interleaver design complexity considerably.
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