LUND UNIVERSITY

Recipe-Based Batch Control Using High-Level Grafchart

Johnsson, Charlotta

1997

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Johnsson, C. (1997). Recipe-Based Batch Control Using High-Level Grafchart. Department of Automatic
Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/1f74971a-1db9-4149-b02b-0dd88459ef07

Document name

Department of Automatic Control | 1ICENTIATE THESIS

Date of issue

June 1997

Lund Institute of Technology
Box 118

Document Number

S-221 00 Lund Sweden ISRN LUTFD2/TFRT--3217--SE

Author(s)
Charlotta Johnsson

Supervisor

Karl Erik Arzén

Sponsoring organisation
Swedish National Board for Industrial and Tech-
nical Development (NUTEK)

Title and subtitle
Recipe-Based Batch Control Using High-Level Grafchart

Abstract

High-Level Grafchart is a graphical programming language for control of sequential processes. Sequential
control is important in all kinds of industries: discrete, continuous and batch. Sequential elements show
up both on the local control level and on the supervisory control level.

High-Level Grafchart combines the graphical syntax of Grafcet/SFC with high-level programming lan-
guage constructs and ideas from High-Level Petri Nets. High-Level Grafchart can be used to control
sequential processes both on the local level and on the supervisory control level.

The main application area of High-Level Grafchart is control of batch processes, i.e., batch control. A
batch process is a special class of sequential processes frequently occurring in chemical, pharmaceutical
and food industries. Batch processes and batch control is currently the subject of large interest. A recent
standard, called ISA S88.01, provides an important step towards a formal definition of batch systems.
The specification of how to produce a batch is called a recipe.

In the thesis it is shown how High-Level Grafchart can be used for recipe structuring. By using the
features of High-Level Grafchart in different ways, recipes can be represented in a number of alternative
ways. They still however, comply with the standard ISA S88.01. The different structures are presented
and discussed. A simulation of a multi-purpose, network structured batch plant has served as a test
platform. High-Level Grafchart, the recipe-execution system and the batch plant are implemented in G2,
an object-oriented programming environment.

Key words
Grafcet, Sequential Function Charts, Petri Nets, Sequential Control, Batch Processes, Batch Recipes

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 206

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, S-221 00 Lund, Sweden
Fax +46 46 2224422 E-mail ub2@uub2.lu.se

Recipe-Based Batch Control
Using High-Level Grafchart

Recipe-Based Batch Control
Using High-Level Grafchart

Charlotta Johnsson

Department of Automatic Control
Lund Institute of Technology
Lund, June 1997

Department of Automatic Control
Lund Institute of Technology
Box 118

S-221 00 LUND
Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT-3217-SE

©1997 by Charlotta Johnsson. All rights reserved.
Printed in Sweden by Reprocentralen, Lunds Universitet.
Lund 1997

Contents

Acknowledgments L.
1. Introduction
1.1 Contribution of the Thesis
1.2 Published Papers
1.3 Outline of the Thesis
2. PetriNets,
2.1 BasicConcepts
2.2 Formal Definition
2.3 Petri Net Properties
2.4 Petri Net Analysis Methods
2.5 Generalized Petri Nets
2.6 Other Petri Netclasses
2.7 Summary e e
3. Grafcet
3.1 Syntax e
3.2 Interpretation Algorithm
3.3 Formal Definition

11

12
16
16
18

20
21
24
26
27
29
30
33

34
39
39
42

Contents

3.4 Grafcet vs Petri Nets
3.5 Grafcet vs Finite State Machines

3.6 Summary e

4., High-Level Nets
4.1 Coloured Petri Nets
4.2 Coloured Grafcet
4.3 Object Petri Nets and LOOPN
44 OBJSANets.
4.5 Other High Level Languages influenced by Petri Nets

4.6 SUummary o e e e e

5. Grafchart
5.1 Graphical Language Elements
5.2 Actions and Receptivities
53 Error Handling
5.4 Dynamic Behavior
5.5 Interpretation Algorithm
5.6 Formal Definition
5.7 Grafchart vs Grafcet
5.8 The G2 Implementation
59 Applications L Lo
510 Summary

6. High-Level Grafchart
6.1 Parameterization
6.2 Methods and Message Passing
6.3 ObjectTokens

47
48
48

49
49
56
60
62
64

Contents

6.4 Multi-dimensional Charts 119
6.5 Implementation. 122
6.6 Application 125
6.7 Summary e 127
7. Batch Control Systems 128
7.1 Batch Processing 129
72 BatchControl 131
7.3 The Batch Standard ISA-S88.01 132
7.4 Summary e e e 140
8. High-Level Grafchart and Batch Control 141
8.1 Related Activities 142
8.2 High-Level Grafchart for Batch Control 144
8.3 A Batch Scenario Implementedin G2 148
8.4 Summary 157
9. Recipe Structuring using High-Level Grafchart . .. 158
9.1 Control Recipes as Grafchart Function Charts 159
9.2 Control Recipes as Object Tokens 165
9.3 Multi-dimensional Recipes 171
9.4 Process Cell Structured Recipes 176
9.5 Resource Allocation 177
9.6 Distributed Execution 181
9.7 Other Batch Related Applications of High-Level Graf-
chart 183
9.8 Summary e 184
10. Conclusions L. 185

Contents

10.1 Future Research Directions 186
11. Bibliography 000 189
A. An introduction to G2 197
B. A Dynamic Simulator. 199
B.1 Total Mass Balance 200
B.2 Component Mass Balance 200
B.3 EnergyBalance 201
B.4 Leveland Volume 202
B.5 ReactionRates 202
B.6 Implementation. 203
B.7 Notation and Constants 205

10

Acknowledgments

Acknowledgments

My first contact with Petri Nets and Grafcet was in 1993, when I did
my master thesis in Grenoble, France. When I, later in 1993, started
my work at the Department of Automatic Control in Lund, as a PhD-
student, I was proposed a project where Grafcet was to be developed
into a more sophisticated high-level language. The main application
area of the project should be batch control. Since I had much liked
what I had learned to know about Grafcet and Petri Nets in France,
I agreed on the project. At the same time I was also automatically
assigned Karl-Erik Arzén as supervisor.

During the four years that have passed and in spite of moments of
blood, sweat and tears, I have not regretted my acceptance of this
project. It has been, and will hopefully continue to be, a very interesting
and inspiring project. Neither have I had any reason to be disappointed
in the allotment of supervisor, Karl-Erik has been, and will hopefully
continue to be, very inspiring, helpful, and encouraging. To work with
him has been a pleasure.

Tied to the project is an industrial steering committee: Tage Jonsson
— ABB Industrial Systems, Lars Pernebo — Alfa Laval Automation,
Stefan Johansson — Astra Production Chemicals, Bjorn Perned — Van
den Berghs Food, Carl-Erik Flodmark — Kabi Pharmacia. The feedback
from them has been very valuable and I hope the connection and the
cooperation with all of them will continue.

The work has been supported by NUTEK, the Swedish National Board
for Industrial and Technical Development, Project Regina, 97-00061.

11

1

Introduction

Sequential control is an important part of industrial control systems
that has long been disregarded by the control community. The main
part of the research has focused on control of continuous processes.
However, it is most often the sequential parts in a control system that
cause problems. Sequential control is often associated with discrete
manufacturing but also in the continuous process industry it consti-
tutes an important part, e.g., for control of start-up, shut-down, produc-
tion and/or mode changes. The increasing demand of small scale pro-
duction, quick product-changes, and order-based production increase
even further the importance of sequential control.

Grafcet, originally a French standard, has been accepted as an interna-
tional standard (IEC 848, IEC 1131-3) for representation of sequential
control logic at the local level. In the standard, Grafcet is refered to
as Sequential Function Charts (SFC). Grafcet has a graphical syntax
that has become well accepted in industry. The semantics, or the exe-
cution model of Grafcet is well specified. However, it is not always used
when implementing Grafcet in industrial control systems. Grafcet, is
based on Petri Nets. It can even be seen as a special class of Petri nets.
Formal analysis methods that can be used to find out or verify proper-
ties of a system exist for Petri Nets. In parallel with the development
of Grafcet, Petri Nets have been developed into High-Level Petri Nets
which is a richer and more elaborated version of Petri Nets.

The aim of this thesis is to show how Grafcet can be developed into
High-Level Grafcet. High-Level Grafcet can, unlike Grafcet, be used
to implement all levels in a control system, supervisory as well as

12

local. The development of High-Level Grafcet has, as much as possi-
ble, followed the Grafcet standard. High-Level Grafcet has a syntax
similar to Grafcet, i.e., it is based on the concepts of steps, represent-
ing the states, and transitions, representing the change of state. As
a first step, Grafchart was developed. Grafchart is a Grafcet-based
model with an extended syntax for abstraction facilities. A toolbox im-
plementation of Grafchart exists. In addition to the syntax of Graf-
chart, High-Level Grafcet contains high level programming language
constructs and features inspired by High-Level Petri Nets. A toolbox
for High-Level Grafcet has been defined and implemented. The tool-
box is called High-Level Grafchart. The aim of High-Level Grafchart
is to combine the execution model of Grafcet/SFC with the analysis
power of Petri Nets. Grafchart and preliminary versions of High-Level
Grafchart has been developed in Lund since 1991.

From a systems theoretic point of view sequential control logic belongs
to the area of Discrete Event Dynamic Systems (DEDS). This is an area
that is relatively new in the control community and where, currently,
a large amount of research is performed. A large number of alternative
approaches have been introduced for modeling, analysis, and, in cer-
tain restricted cases, also for synthesis of DEDS. The largest problem
with DEDS is the combinatorial complexity. This makes it very diffi-
cult to scale up DEDS approaches so that they can handle industrial
size applications.

The research on discrete event dynamic systems can be divided into
two main areas:

1. Formal methods for verification and synthesis.

2. Improved tools and languages for controller implementation.

In the first research area, formal specification languages and formal
modeling techniques are used to describe the desired behavior of the
system, and formal analysis techniques are used to verify that the ac-
tual behavior of the system satisfies certain critical properties. A num-
ber of approaches have been developed. They are based on, e.g., state
machines, Petri nets, logics, and process algebras. The approaches
must provide appropriate means for modeling the process and the con-
troller. The model must be able to represent the dynamic and reactive

13

Chapter 1. Introduction

nature of the process, and allow for proper expression of timing proper-
ties. Hence, a strong focus of formal methods is modeling and modeling
languages.

Most of the proposed approaches only concern verification. In verifica-
tion the verifier is presented with a formal model of the process and the
control system and a specification of how the process should behave.
The verification problem consists of demonstrating that the model sat-
isfies the specification. In the synthesis problem a specification is given
that the process should satisfy. The synthesis problem consists of the
construction of a controller that ensures the the combined model of the
process and the controller fulfills the specification.

In the control community the Supervisory Control Theory (SCT) [Ra-
madge and Wonham, 1989] has gained a lot of interest. This has also
been combined with Grafcet [Charbonnier, 1996], [Charbonnier et al.,
1995]. SCT has also been developed in to Procedural Control Theory
(PCT) [Sanchez et al, 1995]. Petri nets have also been used as the
basis for controller analysis and synthesis, in the form of Controlled
Petri Nets [Holloway and Krogh, 1994], [Holloway and Krogh, 1990].

The second research area instead focuses on providing more powerful
tools and languages for implementation of discrete event controllers.
With better abstraction and structuring possibilities the control prob-
lem that should be implemented becomes easier to handle. The focus
in this research area is on programming languages rather than on
modeling and specification languages. The situation, of having better
abstraction and structuring possibilities, can be compared with moving
from assembly languages to object-oriented high-level languages in or-
dinary programming languages. Grafcet can be compared to a simple
assembly language.

The two research areas complement each other. Most formal appro-
aches only support verification. Hence, the designer must himself de-
velop the controller. Therefore, it is important to have good structuring
mechanisms also in these frameworks. It is also important to be able
to use formal approaches for systems that have been designed with
high-level sequential languages.

This thesis belongs to the second area. The major aim is to provide
better abstraction and structuring possibilities for Grafcet. A secondary

14

aim of the work is to be able to make use of the available formal
methods that exists for Petri Nets. The approach taken is to show that
Grafchart and High-Level Grafchart can be translated into Grafcet
and/or into Petri Nets and High-Level Petri Nets and then use the
available analysis frameworks rather than to develop special analysis
frameworks for High-Level Grafchart.

The main application area of High-Level Grafchart and of this thesis
is control of batch processes, i.e., batch control. A batch-process is a
special class of sequential processes frequently occurring in chemical-,
pharmaceutical-, and food industries. These industries are often of the
multipurpose-, multiproduct- type, which means that different batches
of different products can be produced at the same time in the same
plant. The batch plants can have a network structure, i.e., the batch
can take several different paths when passing through the plant. The
combination multiproduct, network-structured batch plants are the
most difficult plants to control. The specification of how to produce
a batch is called a recipe. Recipe-based control is a special type of
sequential control.

Batch processes and batch control is currently the subject of large in-
terest. A recent international standard, called ISA S88.01, provides an
important step towards a formal definition of the terminology, models
and functionality of batch systems. The standard mentions the possi-
bility to use Grafcet to structure a recipe and to perform the actions
associated with it. However, it is only proposed to be used at the very
lowest level of control. No suggestions are made for how to do the
overall structuring.

In the thesis it is shown how High-Level Grafchart can be used for
recipe structuring. By using the features of High-Level Grafchart in
different ways, recipes can be represented in a number of alternative
ways. They still, however, comply with S88.01. The different struc-
tures are presented and discussed in the thesis. A simulation of a
multipurpose, network structured batch plant has served as a test-
platform. High-Level Grafchart, the recipe-execution system, and the
batch plant are implemented in G2, an object oriented programming
environment. G2 is also an industrial environment which makes it
possible to directly use the results in industry.

15

Chapter 1. Introduction

1.1 Contribution of the Thesis

The contributions of this thesis are the following:

e The semantics of Grafchart is defined and the translation be-

tween Grafchart and Grafcet is presented.

The current version of High-Level Grafchart is presented in de-
tail.

It is shown how High-Level Grafchart can be used in recipe based
batch control both at the recipe level and at the equipment control
level. A number of alternative ways of representing recipes are

presented and discussed. The presented approaches comply with
the S88.01 standard.

It is shown how resource allocation can be integrated with recipe
execution using ideas from concurrent programming and Petri
Nets.

1.2 Published Papers

The work presented in this thesis is primarily based on the following
conference presentations and journal articles:

16

o Johnsson C. and Arzén K.-E. (1994): “High-Level Grafcet and

Batch Control”, Presented at ADPM’94 (Automation of Mixed Pro-
cesses: Dynamical Hybrid Systems), Brussels, Belgium

Johnsson C. and Arzén K.-E. (1996): “Object-Tokens in High-
Level Grafchart”, Presented at CIMAT96 (Computer Integrated
Manufacturing and Automation Technology), Grenoble, France

Arzén K.-E. and Johnsson C., and (1996): “Object-oriented SFC
and ISA-S88.01 recipes”, Presented at World Batch Forum,
Toronto, Canada

Johnsson C. and Arzén K.-E. (1996): “Batch Recipe Structuring
using High-Level Grafchart”, Presented at IFAC’96 (International
Federation of Automatic Control) , San Francisco, USA

1.2 Published Papers

e Arzén K.-E. and Johnsson C. (1996): “Object-oriented SFC and
ISA-S88.01 recipes”, ISA Transactions, Vol. 35, p. 237-244

e Arzén K.-E. and Johnsson C. (1997): “Grafchart: A Petri Net/Gr-
afcet Based Graphical Language for Real-time Sequential Con-
trol Applications”, Accepted for SNART'97 (Swedish Real-Time
Systems Conference), Lund, Sweden

e Johnsson C. and Arzén K.-E. (1998): “On recipe-based structures
using High-Level Grafchart”, Submitted to ADPM’98 (Automation
of Mixed Processes: Dynamical Hybrid Systems), Reims, France

o Johnsson C. and Arzén K.-E. (1998): “Grafchart and its relations
to Grafcet and Petri nets”, Submitted to INCOM’98 (Information
Control Problems in Manufacturing), Nancy, France

High-Level Grafchart has also been used in other areas of batch con-
trol. This work is only presented marginally in this thesis. More in-
formation can be found in the following conference presentations and
journal articles:

e Johnsson C.,o Viswanathan S., Srinivasan R., Venkatasubrama-
nian V. and Arzén K.-E. (1996): “A Model Based Framework for
Automating Operating Procedure Synthesis for Batch Chemical

Plants”, Presented at Process Plant Safety Symposium, Houston,
USA

e Viswanathan S., Johnsson C., Srinivasan R., Venkatasubrama-
nian V. and Arzén K.-E. (1997): “Automating Operating Proce-
dure Synthesis for Batch Processes: Part 1. Knowledge Represen-
tation and Planning Framework”, Submitted to Computers and
Chemical Engineering

e Johnsson C., Viswanathan S., Srinivasan R., Venkatasubrama-
nian V. and Arzén K.-E. (1997): “Automating Operating Proce-
dure Synthesis for Batch Processes: Part 2. Implementation and
Application”, Submitted to Computers and Chemical Engineering

e Simensen dJ., Johnsson C. and Arzén K.-E. (1996): “A Framework
for Batch Plant Information Models”, Internal report, TFRT-7553,
Dept. of Automatic Control, Lund Institute of Technology

17

Chapter 1. Introduction

e Simensen J., Johnsson C. and Arzén K.-E. (1997): “A Multiple-
View Batch Plant Information Model”, Accepted for
PSE’97/ ESCAPE-7, Trondheim, Norway

1.3 Outline of the Thesis

The thesis consists of two parts. The first part, Chapter 2 — 6, describes
programming languages. It ends with a presentation of High-Level
Grafchart, which is the language used later in the thesis. The second
part, Chapter 7-9, describes the main application of High-Level Graf-
chart, recipe-based batch control. It describes batch control systems
in general and a recipe management system for batch processes in
particular.

Chapter 2 — 5, present the foundation on which High-Level Grafchart
is based. In Chapter 2, Petri Nets are presented. Petri Nets are a
mathematical and graphical model. One main characteristic of the nets
are their possibility to be theoretically analyzed. They can be used for
simulation, verification and analysis of discrete systems. Grafcet is
described in Chapter 3. Grafcet is a mathematical model aimed at
formal specification and realization of programmable logic controllers
(PLC). It uses a graphical and intuitively understandable syntax. Two
international standards exist, describing Grafcet and its use in PLC-
programming. In the standards, Grafcet is refered to as Sequential
Function Charts (SFC) Today, Grafcet or SFC are well known and well
accepted in industry. However, even though a strong relation exists
between Petri Nets and Grafcet, Petri Nets are not known nor used in
industry.

In order to model large systems efficiently, the Petri Net model has
been enlarged and developed into High-Level Petri Nets. In Chapter
4, these nets, and other closely related High-Level Nets are described.

Chapter 5 describes Grafchart. Grafchart is the name of a mathemat-
ical sequential control model. It is based on Grafcet but aimed, not only
at local level sequential control problems like PLC-programming, but
also at supervisory sequential control applications. Grafchart is also
the name of an implementation of the Grafchart model. The Grafchart
toolbox is implemented in G2.

18

1.3 Outline of the Thesis

Chapter 6 presents High-Level Grafchart, an extended version of
Grafchart. It combines the graphical features of Grafcet/SFC, with
high-level programming languages constructs, object-oriented progr-
amming structures and ideas from high-level Petri Nets. High-Level
Grafchart is, like Grafchart, both a mathematical model and an im-
plementation. The presentation of High-level Grafchart focuses on the
implementational aspects.

Chapter 7 — 9 present batch control systems, which is the main applica-
tion area of High-Level Grafchart. Chapter 7 describes batch control
systems in general terms. The chapter also gives an overview of ISA
S88.01, a recent international standard for batch control systems. The
description of how to produce a batch is called a recipe. Chapter 8 com-
bines High-Level Grafchart and batch control. It is shown how
the different features of High-level Grafchart can be used to implement
a batch control system and how they fit the ISA S88.01 standard.

In Chapter 9 the different recipe structures, all implemented with
High-level Grafchart, are presented and discussed. By combining dif-
ferent features of High-Level Grafchart, the recipe structures can be
largely variated. They all still however, comply with the ISA S88.01
standard. Advantages and drawbacks of the different structures are
given. The chapter also contains a discussion on resource allocation,
and a presentation of different possible strategies is given. Recipe
structuring using High-Level Grafchart allows an integration be-
tween Petri Nets based analysis methods and Grafcet/SFC based str-
ucturing and execution.

The last Chapter, Chapter 10, is dedicated to a summary of the thesis.

Some conclusions are drawn and possible future work is proposed.

Happy Reading!

19

2

Petri Nets

Petri Nets were proposed by the German mathematician Carl Adam
Petri in the beginning of the 1960s, [Petri, 1962]. C.A. Petri wanted to
define a general purpose graphical and mathematical model describ-
ing relations between conditions and events. The mathematical mod-
eling ability of Petri Nets makes it possible to set up state equations,
algebraic equations, and other models governing the behavior of the
modeled system. The graphical feature makes Petri Nets suitable for
visualization and simulation.

The Petri Net model has two main interesting characteristics. Firstly,
it is possible to visualize behavior like parallelism, concurrency, syn-
chronization and resource sharing. Secondly, there exists a large num-
ber of theoretical methods for analysis of these nets. Petri nets can
be used at all stages of system development: modeling, mathematical
analysis, specification, simulation, visualization, and realization. Petri
Nets have been use in a wide range of application areas, e.g., perfor-
mance evaluation, [Molloy, 1982]|, [Sifakis, 1978], distributed database
systems, [Ozsu, 1985], flexible manufacturing systems, [Murata et al.,
1986], [Desrochers and Al'Jaar, 1995], [Silva and Teruel, 1996], logic
controller design, [Silva and Velilla, 1982|, [Valette et al, 1983], multi-
processor memory systems, [Kluge and Lautenbach, 1982], and asyn-
chronous circuits, [Yoeli, 1987].

Petri Nets have during the years been developed and extended and

several special classes of Petri Nets have been defined. These include,
e.g.: generalized Petri Nets, synchronized Petri Nets, timed Petri Nets,

20

2.1 Basic Concepts

interpreted Petri Nets, stochastic Petri Nets, continuous Petri Nets,
hybrid Petri Nets, coloured Petri Nets, object-oriented Petri Nets, and
multidimensional Petri Nets.

In this chapter a brief overview of ordinary Petri Nets and generalized
Petri Nets is given as well as a short description of other Petri Net

classes. More detailed presentations can be found in [David and Alla,
1992|, [Murata, 1989], [Peterson, 1981].

2.1 Basic Concepts

A Petri Net (PN) has two types of nodes, places and transitions, see
Figure 2.1. A place is represented as a circle and a transition is rep-
resented as a bar or a small rectangle. Places and transitions are con-
nected by arcs. An arc is directed and connects either a place with a
transition or a transition with a place, i.e., a PN is a directed bipartite
graph.

place
P / token
transition
T
P 2
T T

Figure 2.1 A Petri Net.
The set of places is called P and the set of transitions 7'. Each place

contains a nonnegative integer of tokens. The number of tokens con-
tained in a placed is denoted M(P;) or m;. The marking of the net, M,

21

Chapter 2. Petri Nets

is defined by a column vector where the elements are the number of
tokens contained in the corresponding place. The marking defines the
state of the PN or the state of the system described by the PN. For the
PN given in Figure 2.1 we have:

Places: P = {P4,P;y}
Transitions: T ={T1, T2}
Marking: mi=1 my=20

=[]

The set of input (upstream) transitions of a place P; is denoted °P;
and the set of output (downstream) transitions is denoted P;. Similar
notations exist for the input and output places of a transition.

A transition without an input place is called a source transition and a
transition without an output place is called a sink transition.

Systems with concurrency can be modeled with Petri Nets using the
and-divergence and and-convergence structure, see Figure 2.2 (left).
Systems with conflicts or choices can be modeled using the or-diver-
gence and or-convergence structure, see Figure 2.2 (right).

|
|
t

fL\and—divergence
& or-divergence

-+ O O
_\ / :r—convergence
\ gd-convergence Q

B
1
1

O

Figure 2.2 Concurrency and conflicts.

22

2.1 Basic Concepts

State graphs and event graphs are special classes of Petri Net struc-
tures. An unmarked Petri Net is a state graph (state machine) if and
only if every transition has exactly one input and one output place. If
the Petri Net is marked its behavior will be equivalent to a classical
state machine if and only if it contains only one token. A Petri Net is
an event graph (marked graph, transition graph) if and only if every
place has exactly one input and one output transition. In a state graph
parallelism cannot be modeled whereas alternatives or conflicts cannot
be modeled in an event graph.

Some typical interpretations of transitions and places are shown in
Table 2.1, [Murata, 1989].

Input Places Transition Output Places
Preconditions Event Postconditions
Input data Computation step Output data

Input signals Signal processor Output signals
Resources needed Task or job Resources released
Conditions Clause in logic Conditions

Buffers Processor Buffers

Table 2.1 Some typical interpretations of transitions and places in Petri Nets.

Dynamic Behavior

A transition is enabled if each of its input places contains at least
one token. An enabled transition may or may not fire. The firing of a
transition consists of removing one token from each input place and
adding one token to each output place of the transition. The firing of
a transition has zero duration.

An autonomous PN is a PN where the firing instants are either un-
known or not indicated whereas a non-autonomous PN is a PN where
the firing of a transition is conditioned by external events and/or time.

23

Chapter 2. Petri Nets

2.2 Formal Definition

An unmarked ordinary PN is a 4-tuple @ =<P,T, Pre, Post >
where:

e P={P1,Py,..P,} is a finite, nonempty set of places.

T ={T1,Ts, ..., Ty} is a finite, nonempty set of transitions.

PNT =@, ie., the sets P and T are disjoint.

Pre: P x T — {0,1} is the input incidence function.

Post : P x T — {0,1} is the output incidence function.

A marked ordinary PN is a pair R =< @, My > in which Q is
an unmarked ordinary PN and M, is the initial marking.

Pre(P;, T;) is the weight of the arc connecting place P; with transition
T;. This weight is 1 if the arc exists and 0 if not. Post(P;,T}) is the
weight of the arc connecting transition 7; with place P;. This weight
is 1 if the arc exists and O if not.

ExaMPLE 2.2.1
Consider the Petri Net given in Figure 2.3.

The net is described by the 5-tuple

Q =<P,T,Pre, Post, My>

where

>
I

{P1,Py, Py, Py}
T = {T1,T5,Ts T4, T5}

24

2.2 Formal Definition

Q P1
o
P2

—~ T2 \——Ts
oryer”

—— T4 —— TH

Figure 2.3 A Petri Net.

100 0 0]
W= [PrePuT)] = |0 o+ o o
00010
00 00 1]
000 0 1 17
W+ = [Post(P;, T})] = L0000
01000
00 10 0]

e

1

My = |,

0]

25

Chapter 2. Petri Nets

2.3 Petri Net Properties

The marking of a PN is a column vector whose components are the
marking of place P;. The set of reachable markings from marking M,
is denoted #Mj. The firing of transition T; from marking M; will result
in marking M, 4, this is denoted:

M;[T; > My

The firing of more than one transition is called a firing sequence and
is denoted S.

Home State A PN has a home state M, for an initial marking M,
if, for every reachable marking M; € «M,, a firing sequence S; exists
such that M;[S; > M.

Reversible A PN is reversible for an initial marking M, if M, is a
home state.

Bounded A place P; is bounded for an intital marking M, if there
is a nonnegative integer k£ such that, for all markings reachable from
My, the number of tokens in P; is not greater than % (P; is said to be
k-bounded). A PN is said to be bounded for an initial marking M, if all
the places are bounded for M, (the PN is k-bounded if all the places
are k-bounded)

Safe A PN is safe for an initial marking M, if, for all reachable
markings, each place contains at most one token, i.e., the net is 1-
bounded.

Live A transition T} is live for an initial marking M, if, for every
reachable marking M; € «M,, a firing sequence S from M; exists, which
contains transition 7. A PN is live for an initial marking M, if all its
transitions are live from M,.

Deadlock-free A deadlock is a marking such that no transition is

enabled. A PN is said to be deadlock-free for an initial marking M, if
no reachable marking M; € «M, is a deadlock.

26

2.4 Petri Net Analysis Methods

2.4 Petri Net Analysis Methods

There are three main methods for analyzing a PN, i.e., to find out if
a certain property holds; (1) the reachability graph and the related
coverability tree, (2) linear algebra, and (3) reduction techniques.

(1) Reachability graph and Coverability tree The basic and
most simple method is to draw the reachability graph. In this graph the
nodes correspond to the reachable markings and the arcs correspond
to the firing of transitions. In Figure 2.4 a PN and its reachability
graph is shown. This graph can be used to find out that this PN is
safe, live, reversible and that it has two repetitive components 11757}
and T;75Ts. Another, equivalent name for the reachability graph is
the marking graph.

Py

(o) 0]
® 0
X :
T 0
L o T, |1
1 0 / 9]
P2 P3 0T |1

0l —= | 1|
Ty —T— —— T3 0 0 3
L0 L0 0
O (Ors 0
0
T4y —— 15 0
Ts X
L]

Figure 2.4 A Petri Net and its reachability graph.

In an unbounded net, the number of tokens in a place can be infi-
nite. An unbounded net is represented by associating the symbol @
with the places that might have an infinitely large number of tokens.
The resulting graph is now called the coverability tree, see Figure
2.5 (upper right). If the nodes that correspond to the same marking
are merged together the coverability graph is obtained, see Figure 2.5
(lower right).

27

Chapter 2. Petri Nets

2 10
1
P, 0 T\\] o1 L
T I
! b 1
B 1 1> 0
P2 [&))

Figure 2.5 A Petri Net and its coverability graph (lower) and coverability tree
(upper).

(2) Linear Algebra The linear algebra methods are mathematical
methods used to determine the properties of a net. The fundamental
equation of a net is given by:

MkzMi+W~§

where S is the characteristic vector of the firing sequence S that takes
marking M; to marking M. The j’th element in the column vector S
corresponds to the number of firings of transition j in the sequence S.
W is the incidence matrix defined as:

W = WH—-w-
W+ = [Post(P;,Tj)]
W = [Pre(Pi,Tj)]

The marking of a Petri Net can be changed through the firing of its
transitions. If a deadlock situation does not occur the number of firings

28

2.5 Generalized Petri Nets

is unlimited. However, not all markings can be reached and not all
firing sequences can be carried out. The restrictions are given by the
invariants of the net. A marking invariant is obtained if a weighted
sum of the marking of a subset of the places in a net is always constant,
no matter what the firing might be. The places contained in this subset
is a conservative component and the vector containing the weights is
the P-invariant. The conservative components of a net often have a
physical interpretation. If the firing of a certain sequence of transitions
results in the same marking as it was started from, the sequence is
called a repetitive component. The characteristic vector of the firing
sequence is the T-invariant.

The P-invariants and the T-invariants of a net can be deduced by linear
algebra methods, [David and Alla, 1992].

(3) Reduction methods Although the construction of the reachabil-
ity graph is an efficient way of determining the properties of a small-
size PN it is not a suitable method when a net has a large number of
reachable markings. However, reduction methods exist that transform
a large size PN into a PN of a smaller size. The idea of the reduction
methods is to successively apply local transformation rules that trans-
form the net into a simpler net, i.e., into a net with a smaller number
of places and transitions, while preserving the properties of the net
that one wants to investigate.

Four reduction rules exist that preserves the properties: live, bounded,
safe, deadlock-free, with home state and conservative. Two reduction

methods exist that preserves the invariants. The reduction methods
are described in [David and Alla, 1992].

2.5 Generalized Petri Nets

In a generalized PN weights (strictly positive integers) are associated
with the arcs. w(pj, ¢;) denotes the weight associated with the arc from
place p; to transition ¢; and w(t;, p;) denotes the weight associated
with the arc from transition #; to place p. In a generalized Petri Net
a transition ¢; is enabled if each input place p; of ¢; contains at least

29

Chapter 2. Petri Nets

w(pj,t;) tokens. A firing of an enabled transition #; consists of remov-
ing w(p;,t;) tokens from each input place p; of ¢; and adding w(t;, pz)
tokens to each output place p; of ¢;, see Figure 2.6. If a weight is not
explicitly specified it is assumed to be 1.

P1 P1

2 Firing of T1

T1 T1

P2\ @® P2le ®

T2 —— T2 ——

Figure 2.6 A Generalized Petri Net.

All generalized PN can be transformed into ordinary PN.

2.6 Other Petri Net classes

A number of special classes of Petri Nets have been defined. They are
briefly described in this section.

Synchronized PN

In ordinary PN an enabled transition may or may not fire , i.e., the
ordinary PN are asynchronous. In synchronized Petri Nets external
events are associated with the transitions. If a transition is enabled
and the associated event occurs, the transition will immediately fire. It
is assumed that two external events can never occur simultaneously.

A synchronized PN is a triple <R, E,Sync > where:
e R is a marked PN
e E is the set of external events

e Sync is a function from T to EU{e}, where e is the always
occurring event, i.e., an event that is always true.

30

2.6 Other Petri Net classes

Timed PN

Using timed PN, systems with time dependent behavior can be de-
scribed. The timing can either be associated with the place or with the
transition. These nets are called P-timed PN and T-timed PN respec-
tively.

A P-timed PN is a couple <R, Time > such that:
e R is a marked PN

e Time is a function from the set P of places to the
set of positive or zero numbers. Time(P;) = d; =
the timing associated with place P;.

When a token arrives in place P; of a P-timed PN, the token must
remain in this place at least d; time units. During this time the token
is unavailable. When time d; has elapsed, the token becomes available
again and can now participate in the enabling of a transition.

A Ttimed PN is a couple <R, Time> such that:
e R is a marked PN

e Time is a function from the set T of transitions to
the set of positive or zero numbers. Time(T;) = d; =
timing associated with transition T;.

When a token arrives in a place of a T-timed PN, it directly enables
the output transition of this place. Before the firing of the output tran-
sition can take place the token has to be reserved for at least d; time
units. During this time the token is unavailable for any other activity.
When d; time units has elapsed the transition can fire and the token is
removed from the preceding place and placed in the succeeding place
of the transition.

interpreted PN

An interpreted PN is a synchronized, P-timed Petri Net. Associated
with the places are operations O = {01, Og,---}. The interpreted PN

31

Chapter 2. Petri Nets

has a data processing part whose state is defined by a set of variables
V = {V1,Vy, --}. This state is modified by the operations. The vari-
ables determine the value of the condition (predicate) C associated
with the transition. The operation of an interpreted PN together with
its environment is shown in the left part of Figure 2.7. The right part
of the same figure shows that the timing d; and the operation O; are
associated with the place P; while the event E; and the condition C;
are associated with transition 7. The behavior of an interpreted Petri
Net is strongly related to Grafcet.

Interpreted Petri Net

Data Processing Part

Computation

of variables
and conditions |

O;

C;

Control Part

Synchronized i ! U
and P-timed
Petri Net

Vk E;

Environment

Figure 2.7 An interpreted Petri Net.

Stochastic PN

In a timed PN a fixed duration is associated with each place or with
each transition. In stochastic PN a random time is associated with
the transition. The most common hypothesis is that the timing is dis-
tributed according to an exponential law. The marking at time ¢, M(¢)
of a stochastic PN is then an homogeneous Markov process. A Markov
chain can thus be associated with every stochastic PN and the proba-
bilities of states in stationary behavior can be calculated.

32

2.7 Summary

Continuous PN and Hybrid PN

In a continuous PN the numbers of tokens in a place is given by a real
number. It is possible to put weights on the arcs and thereby have a
generalized continuous PN, the weights can also be real numbers. A
hybrid PN contains one discrete part and one continuous part.

2.7 Summary

Petri Nets can conveniently be used to model systems with e.g., concur-
rency, synchronization, parallelism and resource sharing. The graph-
ical nature of Petri Nets also makes them suitable to use for visual-
ization and simulation of systems. In addition to this, the nets can be
theoretically analyzed with different analysis methods.

33

3

Grafcet

Grafcet was proposed in France in 1977 as a formal specification and
realization method for logical controllers. The name Grafcet was de-
rived from graph, since the model is graphical in nature, and AFCET (As-
sociation Francaise pour la Cybernétique Economique et Technique),
the scientific association that supported the work.

During several years, Grafcet was tested in French industries. It fast
proved to be a convenient tool for representing small and medium scale
sequential systems. Grafcet was therefore introduced in the French
educational programs and proposed as a standard to the French asso-
ciation AFNOR where it was accepted in 1982. In 1988 Grafcet, with
minor changes, was also adopted by the International Electrotechnical
Commission (IEC) as an international standard named IEC 848, [IEC,
1988]. In this standard Grafcet goes under the name Sequential Func-
tion Chart (SFC). Seven years later, in 1995, the standard IEC 1131-3,
with Grafcet as essential part, arrived, [IEC, 1995]. The standard con-
cerns programming languages used in Programmable Logic Controllers
(PLC). It defines four different programming language paradigms to-
gether with SFC. No matter which of the four different languages that
is used, a PLC program can be structured with SFC.

Because of the two international standards, Grafcet, or SFC, is today
widely accepted in industry where it is used as a representation format
for sequential control logic at the local PLC level.

In this chapter a brief overview of Grafcet is given. A more thoroughly
presentation can be found in [David and Alla, 1992].

34

3.1 Syntax

3.1 Syntax

Grafcet has a graphical syntax. It is built up by steps, drawn as
squares, and transitions, represented as bars. The initial step, i.e.,
the step that should be active when the system is started, is repre-
sented as a double square. Grafcet has support for both alternative
and parallel branches, see Figure 3.1.

]
Initial
step —
Alternative paths
T "
= ransition L Parallel paths
Token
\
[
® ®
lﬁj
Step

Figure 3.1 Grafcet graphical syntax.

Steps

A step can be active or inactive. An active step is marked with one (and
only one) token placed in the step. The steps that are active define the
situation or the state of the system. To each step one or several actions
can be associated. The actions are performed when the step is active.

Transitions

Transitions are used to connect steps. Each transition has a receptiv-
ity. A transition is enabled if all steps preceding the transition are

35

Chapter 3. Grafcet

active. When the receptivity of an enabled transition becomes true the
transition is fireable. A fireable transition will fire immediately. When
a transition fires the steps preceding the transition are deactivated
and the steps succeeding the transition are activated, i.e., the tokens
in the preceding steps are deleted and new tokens are added to the
succeeding steps.

Actions

There are two major categories of actions: level actions and impulse
actions. A level action is modeled by a binary variable and has a finite
duration. The level action remains set all the time while the step, to
which the action is associated, is active. A level action may be condi-
tional or unconditional. An impulse action is responsible for changing
the value of a variable. The variable can, but must not, be a binary
variable. An impulse action is carried out as soon as the step changes
from being inactive to active. A variable representing time may be
introduced to create time-delayed actions and time-limited actions. A
level action can always be transformed into an impulse action. The
opposite is, however, not always true.

A situation can be stable or unstable. If the transition following a step
is immediately fireable when the step becomes active, the situation
is said to be unstable. An impulse action is carried out even if the
situation is unstable whereas a level action is performed only if the
situation is stable. Between two different external events it is assumed
that there is always enough time to reach a stable situation.

B*

Figure 3.2 Level and impulse actions.

36

3.1 Syntax

In Figure 3.2 two steps are shown. A level action, A, is associated with
the upper step and an impulse action, B, is associated with the lower
step.

Receptivities

Each transition has a receptivity. A receptivity may either be a logical
condition, an event, or an event and a condition. In Figure 3.3 three
transitions and their receptivities are shown. The receptivity of the
first transition is an event, Tx. The receptivity of the second transi-
tion is a condition, y, and the receptivity of the last transition is a
combination of a condition and an event, x - 1z.

oty

— x-?z

Figure 3.3 Three receptivities.

Macro Steps

To facilitate the description of large and complex systems macro steps
can be used. A macro step is a step with an internal representation
that facilitates the graphical representation and makes it possible to
detail certain parts separately. A macro step has one input and one
output step. When the transition preceding the macro step fires the
input step of the macro step is activated. The transition succeeding
the macro step does not become enabled until the execution of the
macro step reaches its output step. The macro step concept is shown
in Figure 3.4.

37

Chapter 3. QGrafcet

M Action

N

Figure 3.4 A macro step.

Dynamic behavior
The dynamic behavior of Grafcet is defined by five rules, [David, 1995].

1. The initial situation of a Grafcet is determined by its initial steps.

2. A transition is enabled if all of its previous steps are active. A
enabled transition is fireable if its associated receptivity is true.
A fireable transition is immediately fired.

3. Firing of a transition results in deactivation of its previous step
and a simultaneous activation of its following steps.

4. Simultaneously fireable transitions are simultaneously fired.

5. If a step is to be simultaneously activated and deactivated it
remains active.

ExampLE 3.1.1

In Figure 3.5 (left) a system consisting of a tank is shown. The tank
has an inlet valve V; and an outlet valve V3. There are two level
sensors Lo and Li, one temperature sensor 7' and one heater Q.

The Grafcet for controlling the tank system is shown in Figure 3.5
(right). When the system is started, valve V; should open and the fill-
ing should start. When the level in the tank reaches Ly, the heating
should start. The tank is now heated and filled in parallel. When the

38

3.2 Interpretation Algorithm

X1

™ T 41 Start

X2 v

- 1

T2 +LO
|

X3 x4
e E Il

T3 T T4 —- Ly
0. Start ” 06
1. Fill to L1 |
2. Heat to T. Start at LLO s |1
3. Empty to LO
T6 ——fo

Figure 3.5 A tank example.

level in the tank reaches L; the filling is stopped and when the tem-
perature reaches T' the heating is stopped. When both the right level
and the right temperature are reached, the tank is emptied. This is
done by opening the outlet valve V,. When the system is empty, the
sequence can be restarted. All the actions shown in Figure 3.5 (right)
are level actions, e.g., the valve V5 is open (boolean variable V2=1) as
long as step x7 is active.

3.2 Interpretation Algorithm

A Grafcet describes a logic controller (which is a sequential machine),
i.e., it specifies the relation between the input sequence and the output

39

Chapter 3. Grafcet

sequence. The interpretation of a Grafcet must be without ambiguity,
i.e., the same input sequence applied to a Grafcet must result in the
same output sequence, independently of the person interpreting the
Grafcet. The output sequences must be equivalent both with respect
to the relative order between the actions and with respect to the tim-
ing. The aim of the interpretation algorithm given below, [David and
Alla, 1992], is to define exactly how a Grafcet should be interpreted so
that there will never be any ambiguities. The algorithm describes the
theoretical understanding of the behavior of the Grafcet.

The interpretation algorithm is based on two assumptions:
1. The system to be controlled by the Grafcet is assumed to be slower
than the logic controller implemented by the Grafcet.

2. Two external events do never occur simultaneously.
Algorithm:

1. Initialization: activate the initial steps and execute the associated
impulse actions. Go to Step 5

2. When a new external event occurs, determine the set 7} of tran-
sitions fireable on occurrence of this event. If 7} is not empty,
go to Step 3. If T} is empty, modify, if necessary, the state of the
conditional actions associated with the active steps. Go to Step 2
and wait for a new external event.

3. Fire all the fireable transitions. Go to Step 6 if the situation
remains unchanged after this firing.

4. Execute the impulse actions associated with the steps that be-
came active at Step 3.

5. Determine the set of transitions, T, that are fireable on the oc-
currence of the event e, i.e., the transitions that have a receptivity
that is always true. Go to Step 3 if T; is not empty.

6. A stable situation is reached
(a) Determine the set Ag of the level actions which should be

deactivated.

40

3.2 Interpretation Algorithm

(b) Determine the set A; of the level actions that should acti-
vated.

(c) Set all the actions that belong to Ay but not to A; to 0. Set
all the actions that both belong to Ay and to A; to 1. Go to
Step 2.

The algorithm searches for stable situations (step 6). However, the
algorithm is based on the assumption that a finite number of iteration
always results in a stable situation. Therefore, it might seem as if it
is not necessary to do the search. Another simpler algorithm exists
where the search is not done.

However, the shorter algorithm does not give a correct result if the net
contains unstable situations. Even though the shorter algorithm does
not always give a correct output, this algorithm is the one used most
often in industrial implementations of Grafcet, [Gaffe, 1996].

An interpretation algorithm that works in a synchronous manner has
been developed, [Gaffe, 1996]. The output of a Grafcet interpreted with
the synchronous algorithm will in most cases be equivalent to that
of the algorithm with search for stability. However, since the output
sometimes differ, a Grafcet together with a synchronous interpretation
algorithm has been given a special name, SGrafcet.

Implementational aspects

The interpretation algorithm to chose when implementing a Grafcet
is the algorithm where a search for stable situations is done. How-
ever, certain practical aspects must be taken into consideration if the
real behavior should be consistent with the interpretation (theoretical
behavior). The algorithm is based on the assumption that no exter-
nal events can occur simultaneously. However, when a logic controller,
i.e., a Grafcet, is implemented, two events may occur so close in time
that there is no technical mean to distinguish which event occurred
the first. This might cause problems in a conflict situation (alternative
path). Situations like this should therefore be avoided. This is done by
making the receptivities mutually exclusive.

41

Chapter 3. Grafcet

3.3 Formal Definition

A Grafcet can formally be defined in many ways. The definition does
only describe the structure of a Grafcet, its actions and its receptivi-
ties. To execute a Grafcet an interpretation algorithm must be applied.
In other words, the formal definition defines the syntax whereas the

interpretation algorithm defines the semantics.

A Grafcet can be defined as a 5-tuple G =< V.V, X, T, I>

where:

V. is the set of variables given by: V. = { Vs U Vins).
V..: is the set of variables originating from the plant. Vi
is the variables corresponding to the internal states of the
Grafcet. V. and Vi can either be conditions, i.e., vari-
ables that are true or false, or events, i.e., variables that
change values.

V., is the set of variables issued to the plant. V, can either
be continuous, i.e., a variable that is set to true or false, or
discontinuous, iL.e., a variable that is given a new value.

X is the set of steps, X = {x1, x2,x3,...}.

A step x; € X is defined by {action(x;)}, where
action(x1) € V, defines the actions associated with the
step x;.

T is the set of transitions, T = {t1,ts,ts,...}.

A transition t € ‘T is defined by the 3-tuple
{Xpr(t),Xro(t), ¢(t)}, where Xpr(t) is the set of previ-
ous steps of t, Xpo(t) is the set of the following steps of t,
and @(t) is the receptivity associated with t. Xpr(t) € X,
Xro(t) €X and ¢(t) € V..

e [is the set of initial steps, I C X.

ExAMPLE 3.3.1
The Grafcet given in Figure 3.5 is represented by the 5-tuple G.

42

G=<7V.,Y,X,T,I>

3.3 Formal Definition

rVI‘ = {TStarta LO: T: Llyf()-}

Vo = {V1,Q,V2}

X = {X1,X2,X3,X4,X5X6,X7}
action(X2) =V,
action(X3) = Q
action(X4) = V;

action(X7) = Vy

T = {T1,T2,T3,T4,T57T6}

Xpr(T1) =X1 Xro(T1) =X2
Xpr(T2) = X2 Xro(T2) = {X3,X4}
Xpr(T3) = X3 Xro(T3) = X5
Xpr(T4) =X4 Xro(T4) =X6
Xpr(T5) = {X5,X6} Xro(T5)=XT
Xpr(T6) = X7 Xro(T6) = X1

@ (T1) =1 Start

@(T2) = Lo

p(T3)=T

@(T4) =Ly

p(T5)=1

¢(T6)=Lo
I = {X1}

43

Chapter 3. Grafcet

If the macro steps are to be considered, the definition will be as follows:

A Grafcet, with macro steps taken into consideration, can be

defined as a 6-tuple G =<V,, V, X, T, M, >, where:

e V. is defined as before.
V. can be divided into two subsets, V.x and V.qr. Vix are
the variables associated with the transitions not included
in the macro steps. ‘V.qs are the variables associated with
the transitions included in the macro steps. The two sub-
sets are not necessarily disjoint.

e 1V, is defined as before.
V. can be divided into two subsets, Vyx and Vyar. Vix
are the variables associated with the steps not included
in the macro steps. V,9s are the variables associated with
the steps included in the macro steps. The two subsets are
not necessarily disjoint.

e X is defined as before.
action(x;) € Vix.

o T is defined as above.
Xpr(t) e (X UMY, Xpo(t) € (X UMY} and ¢(t) € Vix.

o M is the finite set of macro steps, M = {M, My, --}.
A macro step M; is defined as a 7-tuple M; =<
(Vrh [Vai,xi, (Z_Lj, M: Inia Outl >) U)here.'

- V., Vi, Xo, T; are defined as V.,V,,X,T defined

above.

— M, is the set of macro steps, M; = {M;1, M;o, --}.
The macro steps are not allowed to be infinitely re-
cursive.

— In; is the input step of the macro step, In; C X..
- Out; is the output step of the macro step, Out; C X;.

“[/,‘MZ{‘VrlU‘VrzU”'}.
Vr ={Va UV U}

e [is the set of initial steps, I C X.

44

3.3 Formal Definition

EXAMPLE 3.3.2
The Grafcet given in Figure 3.6 is represented by the 6-tuple G.

G :<V7‘a VaaxaT9M7I>

X1
T - a
xe | [,
T2 +—0b
M1
X3 o 5 X4 || c
L J i
T3 “"—"]‘ X6
¢ T6 —b
M1 X7 c
| 77 +d
X8
T4 — 1 0
T8 1= %e

Figure 3.6 A Grafcet with a macro step.

V, = {VrXuVrM}
V.x = {a,b,Tc,Te}

Va = {VGXUVaM}
VaX = {A,B*,C}

45

Chapter 3. Grafcet

X = {X1,X2 X3 X4X5)
action(X2) = A action(X3) = B+
action(X4) =C action(X5) = A

T = {T1,T27T3,T47T5}

Xpr(T1) =X1 Xrpo(T1) = X2
Xpr(T2) = X2 X7o(T2) = {X3,X4}
Xpr(T3) = X4 Xro(T3) = M1
Xpr(T4) = {X3,M1} Xro(T4) = X5
Xpr(T5) = X5 Xrpo(T5) =X1

¢(T1)=a o(T2)=b
o(T3)=1c ¢(T4)=1
¢(T5) =Te

M = {M1}

V. =V, =1{b,d}

Vst = Va1 ={C}

X; ={X6,X7,X8}
action(X7) =C

T, ={T6,TT}
Xpr(T6) = X6 Xro(T6) =XT7
Xpr(TT7) =XT7 Xro(T7)=X8
p(T6)=">b o(T7)=d

M =D

Iny = X6

Out; = X8

I = {X1}

46

3.4 Grafcet vs Petri Nets

3.4 Grafcet vs Petri Nets

Grafcet and Interpreted Petri Nets, see Chapter 2.6, have several sim-
ilarities:

1. Both models have two types of nodes: steps and transitions for
Grafcet and places and transitions for Petri Nets.

2. In both models, the net execution is synchronized by external
events.

However, there are also some differences:

1. The marking of a Grafcet is boolean whereas the marking of a
Petri Net is numerical. However, a Petri Net like formalism with
boolean marking, called Condition/Event Nets, has been defined
by C.A. Petri [Petri, 1962].

2. All simultaneously fireable transitions will be simultaneously
fired in a Grafcet whereas in an Interpreted Petri Nets the tran-
sitions will be fired in a sequence, called the complete firing se-
quence. If the sequence is not maximal all the fireable transitions
will not be fired. This difference means that, for a Grafcet, in
an or-divergence situation, with all receptivities being true, the
transitions in both branches will be fired and both the "alterna-
tive" branches will be executed. This is often not the designers
intention and it is recommended that these transitions are made
mutually exclusive. An Interpreted Petri Net treats the situation
by nondeterministically choosing one of the branches.

3. The conditions used in Grafcet can depend on the state of the
marking, this is not the case in an Interpreted Petri Net.

The first two differences are the most fundamental ones. The third
difference can be avoided by rewriting the Interpreted Petri Net.

47

Chapter 3. Grafcet

3.5 Grafcet vs Finite State Machines

The classical models for describing sequential systems are state ma-
chines. Two different types exist; Mealy machines and Moore machines,
[Mealy, 1955], [Moore, 1956]|. The output from a Mealy-machine de-
pends only on the internal state whereas the output from a Moore
machine depends both on the internal state and the inputs.

Both Mealy and Moore machines can directly be transformed into a
Grafcet whereas a transformation the other way is not always possible.
Moreover, it can be shown that the number of steps (and transitions)
required in a Grafcet is at most equal to the number of states (and
transitions) required for the description by the corresponding state
machine.

3.6 Summary

Grafcet was developed in France in the mid seventies. It was proposed
as a formal specification and realization method for logical controllers.
Grafcet has since become well known worldwide through the two in-
ternational standards, IEC 848 from 1988 and IEC 1131-3 from 1995.
In these standards Grafcet, with minor changes, is referred to as Se-
quential Function Charts (SFC). The aim of Grafcet, or SFC, in the
standards has gradually shifted from being a representation format for
logical controllers towards being a graphical programming language for
sequential control problems at the local level. One main advantage of
Grafcet, or SFC, is its simple and intuitively understandable graphical
syntax. There are steps, representing the states and there are transi-
tions, representing the change of states. Today Grafcet is widely used
and very well accepted in industry.

48

4

High-Level Nets

If a system has several parts that are identical these parts should,
using ordinary nets, be modeled by as many identical nets as there are
parts. This kind of problem is of no importance for small systems but it
might be catastrophic for the description of a large system. Real-world
systems are often large and contain many parts which are similar but
not identical [Jensen, 1992|. Using ordinary nets, these parts must be
represented by disjoint subnets with a nearly identical structure. This
means that the total net becomes very large and it becomes difficult to
see the similarities between the individual subnets representing the
similar parts. To make the representation more compact, efficient, and
manageable the different identical parts could be modeled by one net
where each part is represented by an individual token. In order to
distinguish the different tokens, i.e., the different parts, an identifier
is associated with each token. This is the main idea behind all High-
Level Nets, [Jensen and Rozenberg, 1991].

In this chapter some different High-Level Nets are described. The dif-
ferent models presented are not supposed to give a complete overview
of the field but a rough idea of what has been done in the area.

4.1 Coloured Petri Nets

Coloured Petri Nets exist in two main different versions. The first ver-
sion was developed in 1981, [Jensen, 1981|, and the second version,

49

Chapter 4. High-Level Nets

which is richer and more advanced, was developed in 1986, [Jensen,
1992]. In both versions, the identifier, associated with each token is
called the token colour. Petri Net models were the tokens can be iden-
tified, like coloured Petri Nets, are called High-Level Petri Nets.

Jensen compares the step from ordinary low-level Petri Nets to high-
level nets with the step from assembly languages to modern program-
ming languages. In low level nets there is only one type of token which
means that the state of the place is described by an integer (or by a
boolean). In high-level nets, each token can carry complex information
or data. The state of the system can therefore be more precise [Jensen,
1992].

ExamMPLE 4.1.1
An example taken from [David and Alla, 1992] illustrates the idea of

coloured Petri Nets. Figure 4.1 represents two identical systems. In
each system, the truck can move either to the left or to the right. As
soon as the truck reaches one end, it changes direction and sets of
again towards the other end.

O O

O _Q

@ Movement to ‘>© Movement to
the right the right

—1— Right end reached —1— Right end reached
Movement to ® Movement to
the left the left
—1— Left end reached —1— Left end reached
Upper truck Lower truck

Figure 4.1 Two identical systems and their associated Petri Nets.

50

4.1 Coloured Petri Nets

The two systems can be modeled by two separate nets, as indicated in
Figure 4.1. Each net contains one token. The two nets can also be mod-
eled in one single net as shown in Figure 4.2. In order to distinguish
the two trucks from each other, the tokens are given individual names
or colours. The token corresponding to the upper truck is labeled < U >
and the truck corresponding to the lower truck is labeled < L >.

<Us\ Movement to

the right
—T1— Right end reached
Movement to
@9 the left
—1— Left end reached

Figure 4.2 One coloured Petri Net representing two identical systems.

#

The operation performed when transforming an ordinary Petri Net to
a Coloured Petri Net is called folding. The reverse operation is called
unfolding.

The properties of a coloured Petri Net are the same as those for an
ordinary Petri Net, i.e., firing sequences, bounded, live, deadlock-free,
etc.

Coloured Petri Nets version 1981

To each transition a set of firing colours is associated. These repre-
sent the different firing possibilities. A transformation of colours may
occur during the firing of a transition. To be able to represent colour
transformations the concept of arc inscriptions is introduced. The arc
inscriptions are functions associated with the input and the output arc
of a transition. The functions on the input arcs determine the num-
bers and the colours of the tokens that will be removed from the input
places when the transition fires with respect to a certain firing colour.
Similarly, the functions on the output arcs determine the colours and

51

Chapter 4. High-Level Nets

the number of the tokens that will be added in the output places of the
transition. The identity function is associated to arcs without colour
transformation. The identity function is however, very often not explic-
itly written out.

EXAMPLE 4.1.2

An example of a small coloured PN is given in Figure 4.3. In the figure
it is shown how the colour functions, associated with the arcs, can be
used.

® o Q@
/-\

f 9 f g
Colour functions:
T1 (m,b) T1 (m,b)

f Id f Id

Figure 4.3 A simple coloured PN.

Transition 7'1 is enabled with respect to the firing colour m since the
input places contains at least f(m) and g(m) tokens, respectively. The
transition is not enabled with respect to the firing colour b. This is due
to the left input place that does not fulfill the condition of containing
f(b) tokens. When the transition fires with respect to the firing colour
m, f(m) and g(m) tokens will be removed from the respective input
place and f(m) and Id(m) = 1m tokens will be added to the respective
output place.

#

Complex colours consisting of two or more subcolours can be defined.
This can further reduce the size of the model of a system. However,
if the system is to much compactified, it becomes hard to read and
understand.

ExXAMPLE 4.1.3
In Figure 4.2 a single colour is used to identified each truck. The system
can however be even more compactly described using complex colours.

52

4.1 Coloured Petri Nets

The upper and the lower truck can both move either to the left or to the
right. In Figure 4.2 the two directions are represented by two separate
places. If each truck instead is represented by a complex colour where
the first subcolour indicates if it is the upper, U, or lower, L, truck
and the second subcolour indicates if the truck moves to the right, r,
or to the left, [, the system can be described by only one place and one
transition, see Figure 4.4.

f(<L,I>) = <L,r>

fl<L,r>) = <L,1> £
f(<R,1>) = <R, r>

i
T1 {<L]><Lx><U]l><Ur>}
f(<R,r>) = <R 1>

Figure 4.4 A coloured Petri Net with complex colours.

Formal definition

A coloured PN is a sextuple R =< P,T,Pre, Post, My, C >
where:

e P is the set of places.
e T is the set of transitions.

e Pre and Post are functions relating the firing colours to
colours of the tokens.

e My is the initial marking.

e C ={C41,Cs,...} is the set of colours.

EXAMPILE 4.1.4

The coloured Petri Net shown in Figure 4.4 can be described by the
sextuple R.

R ={P,T,Pre,Post, My, C}

53

Chapter 4. High-Level Nets

where
P = {P}
T = {Tv}
Pre = [Id]
Post = |[f]
My = [<U,r> <L,1>]"
C = {<U,r><U,l><L,r><L,l>}

Coloured Petri Nets version 1986

The difference between the second version of Coloured Petri Nets and
the first one is the representation of the arc inscriptions. Coloured Petri
Nets version 1981, relies on a function representation. The arc inscrip-
tions are functions that are associated with the input and output arcs
of a transition. Associated with a transition is a set of firing colors that
indicate the firing possibilities of a transition. Coloured Petri Nets ver-
sion 1986 relies on an expression representation where arc expressions
are used in combination with guards. It has been shown that the two
representations can be transformed into each other.

The token colour is a data value, that might be of arbitrarily complex
type, e.g., a record where the first place is an integer and the second
place a boolean variable. Each place in the net have a colour set that
specifies the possible colours of tokens that might reside in this place.

The concept of guards is introduced. A guard is a boolean expressions
restricting the conditions under which the transition can fire. The
guard must be fulfilled before the transition can fire. Each arc has an
associated arc expression that determines which and how many tokens
that will be affected by a transition firing. A declaration is associated
with each net specifying the different colour sets and variables.

Presentations of practical applications with Coloured Petri Nets can
be found in [Jensen, 1997]. A formal definition of Coloured Petri Nets
version 1986 can be found in [Jensen, 1995].

54

4.1 Coloured Petri Nets

EXAMPLE 4.1.5

A example, inspired by [Jensen, 1995], illustrates how this type of net
works. In Figure 4.5 there are two types of processes, called p and
q. Three g-processes start in place pl and cycle through the places
(p1,p2,p3). Two p-processes start in place p2 and cycle through the
places (p2,p3). Each of the five processes is represented by a token,
where the token colour is a pair such that the first element tells
whether the token represents a p-process or a g-process and the sec-
ond element is an integer telling how many full cycles that process has
completed. In the initial marking there are three (g, 0)-tokens at place
p1 and two (p,0)-tokens at place p2. There are two different types of
resources, one r-resource and three s-resources.

In the arc expressions and in the guards different variables are used.
The variables are specified in the declaration that is associated with

_— declaration

colour U: with p|q;
colour I = int;

colour P = product UL /, initial expression
colour E: with e;
var x: U; 8(g,0)
vari: I colour set —— P @
. ifx=q
(x,1) then 1q,i+1)
TiL— J&x=d Y else empty
2(p,0) g"” guard
P P%
‘) ifx=p
e ﬂ (x,0) then 1(p,i+1)
case x of T2 l____—_:] else empty
p => 2% (x.4)
| q=> 1% ’ arc expression
b (73
if x=p then
3% 1'e else (x,1)
empty T3
\ case x of j;
E p=> 3‘e
| q=>2%

Figure 4.5 A coloured Petri Net describing a resource allocation system.

55

Chapter 4. High-Level Nets

the net. The variable i is allowed to be of type I where I is a colour
declared as an integer. The variable x is allowed to be of type U where
U is a colour either equal to p or q. A guard might restrict the possible
types of variables that can enable a transition. This is, e.g., the case
for transition 7'1 where the variable x is only allowed to be of type
q. The colour set, P, associated with the places, indicates the possible
token colours allowed in a place. The colour P is composed of one part
of type U and one part of type I. The resources are of token type E.

Transition 7'1 is enabled if there is a token of type (q,7) in place P1,
a token of type e in place R and a token of type e in place S. When
the transition fires the tokens that enabled the transition are removed
and a token of type (qg,7) is added in place P2. Transition T'3 does not
have a guard, this means that the transition can be enabled by a token
of type (p,i) or a token of type (g,i) in place P3. If the transition is
enabled with respect to a token of type (p,), the firing of the transition
will remove a token of type (p,i) from place P3 and add one token of
type e in place R, three tokens of type e in place S and one token of
type (p,i + 1) in place P2. If the transition instead is enabled with
respect to a token of type (g, 1), the firing of the transition will remove
a token of type (q,i) from place P3 and add two tokens of type e in
place S and one token of type (¢,i + 1) in place P1.

#

A toolbox, called Design/CPN, has been developed for Coloured Petri
Nets, [Met, 1993|. The user graphically draws the net and textually
specifies the colour sets, arc expressions and guards. The inscription
language of the toolbox is Standard ML, [Harper, 1986].

4.2 Coloured Grafcet

Coloured Grafcet is a graphical model similar to Grafcet. Coloured
Grafcet was introduced by Agaoua in a PhD-thesis in 1987 [Agaoua,
1987]. It has also been used to realize a model for simulation and
real-time control, [Suau, 1989].

Grafcet is used to control a system. In order to be able to control large
systems composed of several identical, or similar, subsystems, the con-

56

4.2 Coloured Grafcet

cept of Coloured Grafcet is introduced, i.e., the main reason for intro-
ducing Coloured Grafcet is the same as that for the introduction of
Coloured Petri Nets.

A Coloured Grafcet is built up by steps and transitions in the same
way as Grafcet. Associated with the arcs are functions that specify
the numbers and the colours of the tokens that should be removed or
added to a step, the functions are called Pre and Post, respectively. A
step may contain at most one token of each colour. The set of different
token types is denoted C. All possible combinations of token types that
may reside in a step is called Cgs. Each action associated with a step
is bound to a colour. When a token enters the step, the action, if any,
associated with the step and with the colour of the token is effectuated.
The action types are the same as those for Grafcet, see Chapter 3.1
(Actions). A transition can be enabled with respect to different colours.
A transition can have several receptivities. Each receptivity is bound
to a colour. The set of different receptivity types is called Cr and is
a product of C and R where R is the set of conditions and events
that enable a change of state. The colour-function is denoted C and is
defined as C = {Cs UCr}.

The new concepts in Coloured Grafcet, compared to Grafcet, are the
introduction of colours and the colour-functions.

ExaMPLE 4.2.1

Consider the case were there are two machines, M; and Ms. Each
machine can be in either of two states: idle or busy. If the machine is
in the state idle and the button start is pushed the machine switches
state and starts to work. If the machine is in state busy and the button
stop is pushed the machine stops working and becomes idle. The two
machines can be modeled by two separate Grafcets, see Figure 4.6
(left), or by one Coloured Grafcet, see Figure 4.6 (right).

57

Chapter 4. High-Level Nets

S1 S1 g1
Idle Sb Idle
<ml>
@ <m2>
—1 - Préq;
a9 T1 49 T1 > T-l——t {<ml;startl>, <m2;start2>}
pos
Busy Busy S2 21
L] L M1 Work
Work Work Mo Work
— — T2 9 P22
T2 T2 L {<m1;stopl>, <m2;stop2>}
post |,
Machine 1 Machine 2

pre ;<mlstartl> = <ml>
pre 11<m2;start2> = <m2>
pre go<ml,stopl> = <m1>
pre go<m2;stop2> = <m2>
post ;,<ml;stopl> = <ml>
post 12<m2;stop2> = <m2>

post gy<ml;startl> = <ml>
post 21<m2,startZ> = <m2>

Figure 4.6 Two Grafcets transformed into a Coloured Grafcet.

Formal Definition
A Coloured Grafcet, [Agaoua, 1987], is a 6-tuple
CG =<8,T,C,Pre,Post, My>
where:
e S ={S1,8s,...5,} is a finite, nonempty, set of steps.

o T ={T,Ts,..., Ty} is a finite, nonempty, set of transitions.

e SNT =0, i.e., the sets S and T are disjoint.

58

4.2 Coloured Grafcet

e C is the colour-function defined for SUT in the non-empty
set {CS; UCT;} such that CS; € Cs and CT; € Cp. The
elements of {CS; U CT;} are called colours.

e Pre is the input incidence function defined for S x T such
that pre;; is a function CS; — CT).

e Post is the output incidence function defined for S x T
such that post;; is a function CT; — CS,.

o M, is the initial marking defined for S such that VS; € S,
My(S;) € Cs.

EXAMPLE 4.2.2
The Coloured Grafcet in Figure 4.6 (right) is described by the sextuple:

CG =<S8,T,C,Pre, Post, My>

where
S = {S1,Sq2}
T = {T1,Ts}
C = {CsuCr}
C = {<ml><m2>}
Cs = {<ml><m2><ml>+ <m2>}
R = {startl,start2,stopl,stop2}
Cr = {<ml;startl>, <ml;start2>,<ml;stopl>, <ml;stop2>,
<m2;startl>, <m2;start2>,<m2;stopl>, <m2;stop2>}
[0
Pre = |PToM }
0 press
0 t
Post = pos 12}
| posta; 0
My = [<ml>+<m2> 0]F
#

59

Chapter 4. High-Level Nets

4.3 Object Petri Nets and LOOPN

The difference between ordinary Petri Nets (PN) and Coloured Petri
Nets (CPN) is the expressive comfort. A Coloured Petri Net can be
transformed into an ordinary PN, but the structure of the CPN is more
compact and most often easier to read and understand. CPN therefore
constitute a significant advance over PN, but the absence of powerful
structuring primitives is still a weakness, [Jensen, 1990].

Object Petri Nets are a class of Petri Nets where object-oriented ideas
are applied to Coloured Petri Nets, [Lakos, 1994]. Two class hierarchies
exists: one for tokens and one for subnets or modules. So far, the object
Petri Nets have only focused on object-oriented structuring of the token
types. The components of a class are drawn within a frame marked
with the class name. A place is a data field which can supply values. All
data fields are drawn as circles. Transitions and functions are drawn as
rectangles. The export of fields and functions from a class is indicated
by an undirected arc from the object to the class boundary. A class can
be made a subclass of another class and thereby inheriting from it.
The Object Petri Nets have retained the traditional Petri Net style with
tokens as passive data items and their life cycles specified by the global
control structure of the net. This means that, unlike ordinary object-
oriented programming, it is not possible to let the call to a function, or
method, depend on the type of data within the token and it is neither
possible to affect the response of an operation. The Object Petri Nets
can be proven to be behaviorally equivalent to Coloured Petri Nets
and thus also to ordinary Petri Nets. This means that the analysis
techniques developed for PN can be applied.

Object Petri Nets provides a simple way to model multi-level systems,
i.e., systems where the components that move through the system have
their own internal life cycles. Real-life situations generally have a num-
ber of layers of data activity, [Lakos, 1994|. For example, in modeling a
traffic intersection, the cars which move through the intersection can
be considered as data objects. The cars also have internal activities
such as consumption of petrol, mechanical failure, etc, which may be
of interest in the simulation.

60

4.3 Object Petrt Nets and LOOPN

EXAMPLE 4.3.1

A small example will illustrate how the OBJSA nets work. Figure 4.7
illustrates a truck that can move either to the left or to the right. The
truck is driven by driver. Inside the truck there is food. As soon as the
driver becomes hungry, he stops the truck and starts to eat, when he
is no longer hungry he continues to drive.

O ___> ﬂ

QO

Figure 4.7 A truck and a driver.

The token type for a driver is called Driver and is shown in Figure 4.8
(left). The driver contains data e.g., an identity number given by an
integer. The state of the driver is described by the net named Driver-
Action shown in Figure 4.8 (middle). The net has two functions, Drive
and Eat, that are exported. The two functions depend on the marking
of place P1 and P2 respectively, as shown by a special arc, known as
the compound arc. This arc has the effect of binding the variable y to
the marking of P1 or P2 and then the function returns the boolean
value y = 1. The token moving around in this net is of the type Driver.

——| Driver } | DriverAction | Truck

@ y: Driver @ v: Driver
id: integer = 7564 drivi
© g Y y Driving [y.driving]
—Jl driving() = boolean : Driving drive()= Right
Action.drive() bool; lyl=1
Eating
—Jli eating() = boolean : T T2 [y.eating]
Action.eat() _ — .
gat()_ [y.driving]
bool: lyl=1 Drivin
‘ Action : DriverAction _ —Y O | | Left
Eating
Eating
VY [y.eating]

Figure 4.8 Class definitions for Driver, DriverAction and Truck.

The net describing the truck is shown in Figure 4.8 (right). The token
moving around in this net is of type Driver. Associated with the tran-

61

Chapter 4. High-Level Nets

sitions are receptivities from which it is possible to check the data of
the token.

#

Modeling a multi-level system with CPN will often result in a big and
complicated net whereas the modeling with OPN will be easier and the
resulting structure of the net becomes easy to read and understand.

The formal definition of OPN as well as the relation to CPN are given
in [Lakos, 1994]. LOOPN++, a textual language for Object Petri Nets
is defined in [Lakos and Keen, 1994].

4.4 OBJSA Nets

High-Level Nets all have individual tokens. In the OBJSA Nets this
is combined with algebraic specification techniques, [Battiston et al,
1988]. OBJSA net systems is a class of high level Petri Nets. The
OBJSA nets can be decomposed into state-machine components. The

individual tokens are defined as abstract data types. To modify the
data a language called OBJ2 or OBJ3 is used.

EXAMPLE 4.4.1

A small example will demonstrate the idea behind the OBJSA Nets.
The example is a modified version of an example first published in
[Battiston et al., 1988|.

Consider a system that consists of one sender (S) and one receiver (R).
The receiver has a mailbox (M) consisting of a one-cell buffer where
the sender asynchronously put messages. The receiver asynchronously
reads the messages and removes them from the mailbox. The system
can be modeled by an ordinary PN or by a coloured PN (CPN). In
the CPN the tokens carry an identifier permitting the tokens to be
distinguished from each other. The messages from a sender can be
represented by the token < msg > where msg is the message to be
sent. The tokens representing the messages in the mailbox is either of
the type empty <—> or of the type message <msg >.

However, usually mailboxes are not one-cell buffers but list of mes-
sages. This can conveniently be modeled using algebraic nets, i.e., nets

62

4.4 OBJSA Nets

where the information associated with the token is algebraically spec-
ified and algebraically modified. Figure 4.9 shows the sender and the
mailbox represented by an algebraic net. The token representing the
mailbox is now a list, either empty <eL > or nonempty < L>. When a
new message comes the mailbox modifies its list of messages by placing
the new message in the end of the old list. This operation is performed
by the @-operator in the OBJ3 language. There exists a large number
of operators defined in the OBJ3 language e.g., tail(L), an operator
that returns all elements in the list L but the first.

Sender Mailbox
@ /
{
\
<> Empty /
> Mailbox \
<el> |
Ej ,I\D/,roduce a "
essage
9 Zel > | 5
\ 2
<msg> I8
<eL@msg> \ 8
Zmsg> Send <taillL)>\ T
(
<l> <L> |}
<msg> Mailbox with {
Send Messages \)
{

\

Figure 4.9 A sender and a receiver represented by an algebraic net.

A formal definition a more thoroughly presentation of the OBJSA Nets
and the OBJ2 and OBJ3 languages can be found in [Battiston et al,
1988].

63

Chapter 4. High-Level Nets

4.5 Other High Level Languages influenced by Petri Nets

Petri Nets have also influenced some other high-level programming
languages.

Cooperative Objects

Cooperative Objects is an object-oriented language influenced by the
language Eiffel and by High-Level Petri Nets, [Bastide et al, 1993].
Cooperative Objects aims at modeling a system at various abstraction
levels as a collection of concurrent objects. The objects cooperate in a
well defined way to provide the services expected from the system.

In this language concurrency, object behavior and inter-object commu-
nication are described in terms of High-Level Petri Nets. The language
relies on a client-server organization of objects and it retains the most
important features in object-oriented languages: classification, encap-
sulation, inheritance, instantiation and dynamic use relationship.

In Eiffel, the contract that the server object should fulfill for its client
1s expressed by a set of preconditions, postconditions and invariants.
In Cooperative Objects, the contract is expressed by a High-Level Petri
Net. Also the implementation of a class is given by a High-Level Petri
Net as well as the semantics of a service invocation.

The language can be used both for specification of a concurrent class
and for implementation. Results from the PN theory can be used to
ensure the compatibility between a specification and its implementa-
tion.

Moby

MOBY (MOdellierung von BiirosYstemen) is a tool which supports
modeling and analysis of systems by hierarchical timed high level Petri
nets with objects, [Fleischhack and Lichtblau, 1993]. The tool should
assist in the modeling, analysis and simulation of processes in various
application areas. The tool consists of editors for the specification of the
net part, and of a simulator for the validation of constructed models.
The simulator contains a conflict resolution component, which reduces
the combinatorial complexity of possible behaviors of a model by us-
ing specific knowledge about the system, [Fleischhack and Lichtblau,
1993].

64

4.6 Summary

The nets considered in MOBY combines features from algebraic high
level nets and coloured Petri Nets with concepts of time and hierarchy.
The tokens are structured in an object oriented manner. A transition
may be refined and the can be seen as a kind of macro expansion. From
a transitions subnets can be called.

To each place in an object net one of the four types: multiset, stack,
queue or priority queue, is assigned. This means that the objects in
a place are handled according to the rules of the corresponding data
type. Multiset places may contain tokens belonging to different types
whereas other places are bound to one token type.

Arcs are either of standard type or of inhibitor type. In order to acti-
vate a transition, inhibitor arcs require that its input place does not
contain certain objects. The arcs can be either activating or consum-
ing. Activating arc behave like standard ones as far as the activation is
concerned, however, the firing of the transition does not remove objects
from the place. Consuming arcs enable a transition to empty a place.

GINA

Gina is an object-oriented language concept for parallel, hierarchically
structured, data driven programs. It is also a Petri Net language based
on dynamically modified, interpreted nets, [Sonnenschein, 1993].

4.6 Summary

Real-world systems are often very large and do often contain many
parts which are similar but not identical. Using ordinary low level
nets, these parts must be represented by disjoint subnets with nearly
identical structures. This means that the total net becomes very large
and it becomes difficult to see the similarities between the individual
subnets representing similar parts. To make the representation more
compact, efficient and manageable the different identical parts could
be modeled by one net where each part is represented by an individual
token. To be able to distinguish the different tokens, i.e., the different
parts, an identifier is associated with each token.

65

5

Grafchart

Grafcet, or Sequential Function Charts (SFC), has been widely ac-
cepted in industry as a representation format for sequential control
logic at the local level through the standards IEC 848 and IEC 1131-3,
as described in Chapter 3. There is, however, also a need for a common
representation format for the sequential elements at the supervisory
control level. Supervisory control applications receive increasing atten-
tion both from the academic control community and the industry. The
reasons for this are the increasing demands on performance, flexibil-
ity, and safety caused by increased quality awareness, environmental
regulations and customer-driven production.

Sequential elements show up in two different situations in supervisory
control. The first situation arises due to the fact that the processes in
the process industry are typically of a combined continuous and se-
quential nature. All processes have different operation modes. In the
simplest case these can consist of start-up, production and shut-down.
The second situation concerns the case when the problem that the su-
pervisory system should solve itself can be decomposed into sequential
steps.

Grafcet was developed for logic controllers. It is a mathematical model
whose semantics is determined by an interpretation algorithm. Since
Grafcet was developed for sequential control logic at the local level it
lacks many features needed to structure and implement the complex
applications that are found on the supervisory control level.

Grafchart is the name of a mathematical sequential control model. It

66

is based on Grafcet but aimed, not only at local level applications, but
also at supervisory level applications. Grafchart has been developed
at Lund Institute of Technology, Sweden, since 1991, [Arzén, 1991],
[Arzén, 1994b], [Arzén, 1993].

Grafchart is also the name of an implementation of the Grafchart
model in G2, an object-oriented graphical programming environment,
[Moore et al., 1990], see Appendix A. By using Grafchart the same lan-
guage can be used both on the local control level and on the supervisory
control level, see Figure 5.1.

Supervisory Control Level:

Grafchart for e.g.
monitoring,
diagnosis and
recipe structuring

v 1

Local Control Level:

Grafchart for
sequential control

SEQUENTIAL
PROCESS

Figure 5.1 Supervision of sequential processes.

This chapter begins with a presentation of the Grafchart model and its
graphical elements, followed by a description of the G2 implementation
of Grafchart.

67

Chapter 5. Grafchart

5.1 Graphical Language Elements

The graphical syntax of Grafchart is similar to that of Grafcet. It
supports alternative branches and parallel branches. The graphical
language elements of Grafchart are: steps, transitions, macro steps,
procedure steps, process steps, Grafchart procedures and Grafchart
processes. Each element is represented by an object. The icon of this
object defines the graphical presentation of the language element. The
language element are interconnected using graphical connections.

Grafchart processes

An entire function chart can be represented as a Grafchart process
object, see Figure 5.2. The function chart is encapsulated by the Graf-
chart process object. In the G2 implementation the function chart is
placed on the subworkspace, see Chapter 5.8, of the Grafchart process.

/ i
y, -
=
E .
=
\
\ =

Figure 5.2 A Grafchart process.

A Grafchart can be closed or open, as shown in Figure 5.3. However,
the function chart always starts with one or several initial steps.

Closed chart Open chart
I

= s

j ==

Figure 5.3 One closed and one open function chart.

68

5.1 GQGraphical Language Elements

Steps

A step is an object that has actions associated with it. A step is rep-
resented as a square, see Figure 5.4. An active step is indicated by a
token placed in the step. A step is shown in Figure 5.4.

Action

Figure 5.4 A step.

Initial step

The graphical representation of an initial step, i.e. a step that should
be active when the function chart is started, is a double square, see
Figure 5.5.

Figure 5.5 An initial step.

Transitions

A transition is represented by an object. The graphical representation
of a transition is shown in Figure 5.6. Each transition has two at-
tributes: event and condition. These are used for the receptivity of

the transition.

— event

condition

Figure 5.6 A transition.

69

Chapter 5. Grafchart

Parallel bars

A parallel bar is used to indicate the beginning and the end of a parallel
branch. To indicate the beginning of such a branch a parallel bar of type
and-divergence (parallel split) is used and to indicate the end a parallel
bar of type and-convergence (parallel join) is used, see Figure 5.7.

I___lf / and-divergence

K

and-convergence

Figure 5.7 A parallel branch.

Macro steps

Macro steps are used to represent steps that have an internal structure
of (sub)steps, transitions and macro steps. In the G2 implementation
a macro step is represented by an object that has a subworkspace.
The internal structure is placed on the subworkspace. In Figure 5.8, a
macro step and its internal structure is shown.

L =
/

=
® ™

=
+\
\| <

Figure 5.8 A macro step.

70

5.1 Graphical Language Elements

Enter steps and Exit steps

Special step objects, called enter-step and exit-step, are used to indi-
cate the first and the last sub-step of a macro step. When the tran-
sition preceding a macro step becomes true, the enter-step upon the
subworkspace of the macro step and all the transitions following that
enter-step are activated. The transitions following a macro step will
not become active until the execution of the macro step has reached
its exit-step. An enter step and an exit step are shown in Figure 5.9.

e T

o <

Figure 5.9 An enter step (left) and an exit step (right).

Grafchart procedures

Sequences that are executed in more than one place in a function
chart can be represented as Grafchart procedures, see Figure 5.10. The
Grafchart procedure object has a subworkspace on which the procedure
body is placed. The enter-step and exit-step objects are used to indicate
the first and the last sub-step of a procedure. Only one enter step is
allowed in each Grafchart procedure.

&
/
=
: “
=
\
\ g

Figure 5.10 A Grafchart procedure and its subworkspace.

The Grafchart procedures are reentrant. Each procedure invocation ex-
ecutes in its own local copy of the procedure body. This makes recursive
procedure calls possible.

71

Chapter 5. Grafchart

Procedure steps

A Grafchart procedure is started from a procedure step. The proce-
dure step has a procedure attribute in which the name of the Graf-
chart procedure that should be called is specified. Immediately when
a procedure step is activated, the Grafchart procedure is called and
a new token is placed in the enter step of the Grafchart procedure.
The transitions following a procedure step do not become active until
the execution of the Grafchart procedure has reached its exit step. In
Figure 5.11 a procedure step is shown.

'_—I:' a procedure-step

name
parameters

procedure | gp1

Figure 5.11 A Procedure step and its attribute.

Process steps

A procedure step is the equivalent of a procedure call in an ordinary
programming language. Sometimes it is useful to start a procedure as
a separate execution thread, i.e., to start the procedure as a separate
process. This is possible with the process step, see Figure 5.12. The
transitions after a process step become enabled as soon as the execution
has started in the Grafchart procedure. An outlined circle token is
shown in the process step as long as the process is executing. It is
possible to have more than one process executing at the same time
from the same process step.

Tokens

Tokens are represented as black filled circles. They act as boolean in-
dicators indicating whether or not a step is active.

72

5.2 Actions and Receptivities

| a process—step

name

parameters

/O N
NN Vi
ér_l procedure | gp1

T

Figure 5.12 A Process step and its attribute.

5.2 Actions and Receptivities

Actions are associated with steps and receptivities are associated with
transitions.

Actions

The main difference between Grafcet and Grafchart concerns the way
actions are represented. Grafcet was developed as a logical controller.
The actions that can be performed in a step are of a boolean or im-
pulse nature. Two different kind of actions exist: level actions and
impulse actions. The actions can be conditional or unconditional and
it is possible to introduce a time-delay, see Chapter 3.1. In Grafchart,
the actions, that can be associated with a step, are more general, they
can be compared with the statements of a conventional programming
language.

Four different types of actions exists: always, initially, finally and
abortive. An initially action is executed once immediately when the
step becomes active. This gives a behavior similar to the impulse ac-
tion in Grafcet. A finally action is executed once immediately before the
step is deactivated. An abortive action is executed once immediately
before the step is aborted. An always action is executed periodically
while the step is active. All actions can be conditional or unconditional.
Which actions that may be performed in a step action depends on the
underlying implementation language. The minimum requirement is

73

Chapter 5. Grafchart

that it should be possible to assign values to variables and that is
should be possible to execute macro actions, see Chapter 5.8.

Actions can also be associated to macro steps and Grafchart proce-
dures. In this case, the initially actions are executed before the actions
of the enter step of the macro step or the Grafchart procedure and
the finally actions are executed after the actions of the exit step of the
macro step or the Grafchart procedure. Always actions are executed
periodically all the time while the macro step or Grafchart procedure
1s active. Abortive actions that are associated with a macro step, are
executed if the execution of the macro step is aborted for some reason.
Abortive actions can also be associated with a Grafchart procedure and
they are executed if the Grafchart procedure is aborted.

All the actions types of Grafchart are of impulse nature. This is how-
ever, not a restriction compared with Grafcet, since all level actions in
Grafcet can be transformed into corresponding impulse actions.

Receptivities

Each transition has two attributes, condition and event. These are
used to enter the event expression and/or the logical condition telling
when the transition should fire. The event expression and the logical
condition are expressed in the underlying implementation language.

5.3 Error Handling

A common problem with Grafcet is how the logic for the normal oper-
ating sequence best should be separated from the error detection and
error recovery logic. A separation is necessary, otherwise, the function
chart will rapidly be very large, its clear structure will disappear and
the function chart will be hard to read and understand.

Grafchart contains a number of assisting features for separation of
error handling logic and normal operating logic.

Exception transitions

An exception transition is a special type of transition that only may
be connected to macro steps and procedure steps. An ordinary tran-
sition connected after a macro step will not become enabled until the

74

5.3 Error Handling

execution has reached an exit step. An exception transition is enabled
all the time that the macro step is active. If the exception transition
condition becomes true or the exception transition event occurs, the
exception transition will fire, abortive actions, if any, will be executed,
and the step following the exception transition will become active. Ex-
ception transitions cannot be connected to a process step. The reason
for this is that a Grafchart procedure can be started more than once
from such a step and it is therefore not clear which ones of the proce-
dures that should be aborted.

Macro steps and procedure steps remember their execution state from
the time they were aborted and it is possible to resume them in that
state. An exception transition is shown in Figure 5.13. Exception tran-
sitions do not exist in Grafcet. It was first proposed in [Arzén, 1991].
It has proved to be very useful when implementing error handling.

1 /] Jy
/ Enter
/ step
. / =
Exception /
transition —~—
® [_
\ =
\ Exit
\ step
\ g

Figure 5.13 Macro step with exception transition.

Connection posts

A connection post is a special G2 item used to break a graphical connec-
tion, e.g., a connection between a step and a transition. This enhances
the readability of the chart and can be used to separate error handling
from normal operating logic. The use of connection posts is shown in
Figure 5.14. The normal operating sequence has been separated from
the error handling logic. Connection posts with the same name estab-
lish a logical connection.

75

Chapter 5. Grafchart

E Connection posts

e

m; Pl CP1
= e /
@ CP1

. 7

@ cP2 /
I I CP2

Error handling

Normal operating sequence

Figure 5.14 Two nets connected by connection posts.

Macro actions

Grafchart contains a number of macro actions. The macro actions affect
the operation of an entire function chart. The macro actions can be
called from step actions. There exist macro actions that cause a step
to be deactivated, force a step to be active, force a transition to fire,
abort an entire chart, freeze a transition or a whole chart, release a
transition or a whole chart, and resume a macro step. Similar macro
actions exist in Grafcet, [David and Alla, 1992]. The macro actions can
be used to separate the error handling logic from the normal operation
logic into separate Grafcharts without loosing the interactions between
the two parts.

Step fusion sets

Grafchart also supports step fusion sets, [Jensen and Rozenberg, 1991].
Each step in a fusion set represents one view of the same conceptual
step. Using fusion sets a step can have multiple graphical representa-
tions. When one of the steps in the fusion set becomes active (inactive)
all the steps in the set will become activated (inactivated). Fusion sets
can conveniently be used to separate normal operation logic from er-

76

5.4 Dynamic Behavior

ror handling logic. A small example of a step fusion set is shown in
Figure 5.15.

Set containing
F1 and F3

Set containing
F2 and F4

T | O o3
T & o

T @ rs

o T

Figure 5.15 A step fusion set.

5.4 Dynamic Behavior

The dynamic behavior of Grafchart is given by the following rules.

Fireable transitions

A transition is fireable if and only if
e All the steps preceding the transition are deactiveable.

e The receptivity of the transition is true.

A step, initial step, enter step, exit step, and process step is deactive-
able if and only if it is active.

77

Chapter 5. Grafchart

A macro step is deactiveable if and only if an exit step upon the sub-
workspace of the macro step is active.

A procedure step is deactiveable if and only if the exit step in the
Grafchart procedure started by the procedure step is active.

An exception transition is fireable if and only if

e The macro step or the procedure step preceding the ex-
ception transition is active.

e The receptivity of the exception transition is true.

A macro step is active if at least one of the steps upon the subworkspace
of the macro step is active.

A procedure step is active if at least one of the step in the Grafchart
procedure started by the procedure step is active.

Firing of a transition

The firing of a transition consists of deactivating the steps preced-
ing the transition, de-enabling all transitions following the preceding
steps, activating the steps succeeding the transition and enabling the
transitions following the succeeding steps.

Firing rules
The firing rules that apply to Grafchart are similar to those of Grafcet.

e Rule 1: All fireable transitions are immediately fired.
This rule applies both to Grafcet and to Grafchart.

¢ Rule 2: Several simultaneously fireable transitions are simulta-
neously fired.
In Grafcet, this can cause problems in an or-divergence situation
since the transitions in more than one branch can be simultane-
ously enabled. In this case all enabled transitions will fire and
several different branches will be executed. This is often not the
intention of the designer and it is therefore recommended that
these transitions are made mutually exclusive. For Grafchart,

78

5.5 Interpretation Algorithm

the rule applies in all situations except for the or-divergence sit-
uation where Grafchart treats the situation by nondeterministi-
cally choosing one of the branches. In order to have an interpre-
tation algorithm without ambiguities, situations like this must
be avoided. It is therefore required, also for Grafchart, that the
user makes all branches of an or-divergence situation mutually
exclusive.

e Rule 3: When a step must be simultaneously activated and deac-
tivated, it remains active.
This rule apply to Grafcet but not to Grafchart. For Grafcet, this
means that the level actions associated with the step remain
constantly active and the impulse actions are not carried out a
second time. For a Grafchart, however, the finally actions and
the initially actions will be executed.

5.5 Interpretation Algorithm

The interpretation algorithm of Grafchart describes the theoretical un-
derstanding of a Grafchart and guarantees that everyone faced with
the same Grafchart understands it in the same way.

As in the case of Grafcet, multiple interpretation algorithms or seman-
tics are possible for Grafchart. The following algorithm corresponds to
the search for stability algorithm for Grafcet, see Chapter 3.2.

Algorithm

1. Initialization. Activate the initial steps and execute the associ-
ated initially actions. Go to Step 13.

2. Wait for a new external event. It might be necessary to start
or stop the execution of the always actions associated with the
active steps since the conditional part of the always action might
change.

3. When a new external event occurs, determine the set of the fire-
able transitions T1. If T1 is empty go to Step 2.

79

Chapter 5. Grafchart

10.

11.
12.

13.

14.

80

. Stop executing the always actions of the steps (and their acti-

vated substeps) preceding the transitions in T1. If T1 contains
no exception transitions go to Step 10.

Determine the set T2, which is the set of exception transitions
contained in the set T1, T2 C T1. Let T1 be the set of all tran-
sitions contained in the set T1, except the exception transitions,
i.e. T1:=T1\ T2.

Carry out the abortive actions associated with the steps (and
their substeps) preceding the transitions of T2.

. Fire the transitions in T2.

. Carry out the initially actions of the steps (and their activated

substeps) succeeding the transitions in T2.

_ Let T1 be the set of transitions contained in T1 and that are still

enabled. If T1 is empty go to Step 13.

Carry out the finally actions of the steps (and their activated
substeps) preceding the transitions in T1.

Fire the transitions in T1.

Carry out the initially actions of the steps (and their activated
substeps) succeeding the transitions in T1.

Determine the set of fireable transitions and exception transi-
tions T1. If T1 is non empty go to Step 5.

A stable situation is reached. Start executing the always actions
associated with the active steps (and their activated substeps).
Go to step 2.

5.6 Formal Definition

5.6 Formal Definition

A Grafchart can be defined as an 9-tuple
G =< er (Vaax, T: M: ?procedurw Tprocess» gT, I>

where:

o 1. is the set of variables given by: V, = Vo U Vs
1.+ is the set of variables originating from the plant. Vit
is the variables corresponding to the internal states of the
Grafchart. V. can be divided into three, not necessarily
disjoint, subsets.

V, = {Vix UV U Voo }

— V.x are the variables associated with the transitions
not included in a macro step or a Grafchart proce-
dure.

~ V.4r are the variables associated with the transitions
included in a macro step.

- Vygp are the variables associated with the transi-
tions included in a Grafchart procedure.

e 71/, is the set of variables issued to the plant. V., can be
divided into three, not necessarily disjoint, subsets.

‘Va = {(Vax U rVaM U rVagT}

- 71/.x are the variables associated with the steps not
included in a macro step or a Grafchart procedure.

— V,9¢ are the variables associated with the steps in-
cluded in a macro step.

- Vage are the variables associated with the steps in-
cluded in a Grafchart procedure.

e X is the set of steps, X = {x1, x2, X3, ... }.
A step x; € X is defined by {action(x;)}, where
action(x1) € V,x defines the actions associated with the
step x;.

81

Chapter 5. Grafchart

e 7T is the set of transitions, 7 = {¢3, to, t3,...}.
A transition t € 7 is defined by the 3-tuple:

{Xpr(2), Xro(t), (1)}

— Xpr(t) is the set of previous steps of ¢,
Xpr (t) € {x U M U Tprocedure U ?process}

— Xro(t) is the set of the following steps of ¢,
XFO(t) € {-X U M U ?procedure U (-Pprocess}

— @(t) is the receptivity associated with ¢,
o(t) € Vix.
e M is the set of macro steps, M = {My, My, --}.

— V.qr is the set of variables associated with the tran-
sitions in M

— Vg is the set of variables associated with the macro
steps and the steps in M.

® Porocedure 18 the set of procedure steps, P ={Py,Psy, - }.
The name of the procedure that should be called from the
procedure step is given by Procedure(P;) € GP.

® Ppocess is the set of process steps, P = {P4,Py,--}.
The name of the procedure that should be called from the
process step is given by Process(P;) € GP.

e GP is the set of Grafchart Procedures, GP =
{GP1,GPy,- -} that can be called from the Grafchart.

— Vg is the set of variables associated with the tran-
sitions in GP

~ Vage is the set of variables associated with the Graf-
chart procedure and the steps in GP.

e [is the set of initial steps, I C X.

82

5.6 Formal Definition

A macro step M; is defined as a 10-tuple
M; =< (Vri, q/aiaxi: {Z;, Ma Q)procedure,b Tprocess,i: gTi, Enter;, Exit; >

where:
o V., V.., X:,T; are defined as V,, V,,X, 7T, for a Grafchart.

M. is the finite set of macro steps, M; = {M;1,M;2, -}
The macro steps are not allowed to be infinitely recursive.
The actions associated with a macro step M;; € M, are
given by the set action(M;;) € V,ar.

= Vg = {Vsir U V2 U }.

- Vot = {‘Vail UV iaU- - -Uaction(M;1) Uaction (M) U

1.

Pprocedure,i 18 the finite set of Procedure steps, Pprocedure =

{P,Py---}.
® Pprocess; is the finite set of Process steps, Pprocess =
{PI,PZ"'}-

GP, are the set of Grafchart procedures that can be called
from the set of M.

Enter; is the enter step of the macro step, Enter; C X;.

Exit; is the exit step of the macro step, Exit; C X;.

83

Chapter 5. Grafchart

A Grafchart procedure, GP; is defined by the 10-tuple
GP; =< rVris ‘Vai:xia T, Ma Tprocedure,ia Tprocess,ia QTL-, Enter;, Exit; >

where:
o V. 1. X, T are defined as V., V,,X,T for a Grafchart.
e M, is the finite set of macro steps, M; is defined as for a

Grafchart.

® Porocedure; is the finite set of Procedure steps, Py ocedure =
{Pq,Pq---}.

® Pyrocess; 1s the finite set of Process steps, Pprocess =
{P,Py---}.

e GP. are the finite set of Grafchart procedures.
GP, = {GP;1,GP;y, ---}. The calls to Grafchart proce-
dures are not allowed to be infinitely recursive.
The actions associated with a Grafchart procedure GP;; €
GP, are given by the set action(GP;;) € Vage,.

- rTi:{‘VriIU(VriZU'”}'

- Vage, = Vi1 U Vg U - U action(GP;1) U
action(GP;g) U - }.

e Enter; is the enter step of the Grafchart procedure,
Enter; C X;.

e FExit; is the exit step of the Grafchart procedure, Exit; C
X;.

84

5.6 Formal Definition

EXAMPLE 5.6.1
The Grafchart function chart in Figure 5.16 is given by the tuple

G =< ‘V,., (VCL)'X) Ta M: Tprocedurea Tprocess; g?, I>

V, = {VxUVarUVige}
rVrX = {a>b’C7Td}

(Va = {(VaX U rVaM U rVag?}
V.x = {Initially A, Finally C, Initially C}

X = {x1,x2,x3,x4}
action(x2) = Initially A action(x3) = Finally C
action(x4) = Initially C

| / V4
x1 gpix1
/
/
T + a gpiT1=p e
gpdx2
z : €
Initially A \ 12 ':IE' 5
T2 b Grafchart \ o
procedure gpix3
\
] [gp1 \ N2

name P2 X3 . .\ P2
procedure gp2 Finally C

~
P / gp2x1
P @ @

name
procedure | gp1 T gr2T1 o e

. :
x4
- 2T2
Initially C Grafchart \ 2T 8

procedure \ gp2x3
V4

—
w
.___{]_
(o]
~

Figure 5.16 A Grafchart.

85

Chapter 5. Grafchart

T = {T1,T2,T3 T4 T5}
Xpr(T1) = x1 Xpo(T1) = x2 6(T1) = a
Xpr(T2) = x2 Xro(T2) = {x3 P2} ¢(T2)=0b
Xpp(T3) = x3 XFO(TZ) 6(T3) = c
Xpr(T4) = {P1,P2} Xpo(T4)=x4 ¢(T4) =10
XPR (T5) = x4 XF()(T5) = ¢(T5) ZT d

M = O

Tprocedure = {P]-}

Procedure(P1) = gpl

?process = {PZ}
Process(P2) = gp2

GP = {grl gp2}
q/"gi” = {q/r gp1 U YV, ep2)
‘Vang = {{Va gp1 U ‘Va gp2 }
I =x1

The Grafchart Procedure gpl in Figure 5.16 is given by the tuple
gpl =< ‘Vr gpls rI/OL gp19x7 T: M> Tprocedur& Tprocess; QT, I>

where:
(Vrgpl = {e, b}
Vigpp = O
X = {gplxl,gplx2,gplx3}

86

T

5.6 Formal Definition

{gp1T1, gp1T2}

Xpr(gplT1) = gplxl Xpo(gplT1)=gplx2 ¢(gplT1)=e
Xpr(gplT2) = gplx2 Xrpo(gplT2)=gplx3 ¢(gplT2) =10

M

Pprocedure
Pprocess
GP
Enter
Exit

The Grafchart Procedure gp2 in Figure 5.16 is given by the tuple

gpz =< r[/r gp2s ‘Va gp2>xa Ta Ma prrocedureafpprocess, GT, I>

where:

Vr ep2
Va ap2
X
T

{e,a}

%)

{gp2x1, gp2x2, gp2x3}
{gp2T1, gp2T2}

Xpr(gp2T1) = gplxl Xpo(gp2T1) = gplx2 ¢(gp2T1) =e
Xpr(gp2T2) = gplx2 Xro(gp2T2) = gplx3 ¢(gp2T2)=a

M

Py rocedur
P rogess
GP
Enter
Exit

I

I

87

Chapter 5. Grafchart

5.7 Grafchart vs Grafcet

The structure of a Grafchart can be transformed into that of a Grafcet.
A Grafchart and a Grafcet are identical if, applied to the same input
sequence, their output sequences are identical.

The transformation consists of two steps. First, the graphical elements
must be changed to those of Grafcet. Secondly, the action types of Graf-
chart must be changed to those of Grafcet. Special care has to be taken
to structures effected by the third firing rule.

Graphical element transformation

If the Grafchart contains only steps and transitions, the structure of
the corresponding Grafcet will be identical to that of the Grafchart.

If the Grafchart contains macro steps, the macro step icon of Grafchart
must be changed to that of Grafcet. The enter step and the exit step
of the initial structure of the macro step must be replaced by an input
step and output step of Grafcet. Alternatively, the macro step icon
can be replaced by its internal structure in which the enter step and
exit steps are replaced by ordinary steps, i.e., an in-line expansion is
performed.

If the Grafchart contains procedure steps these should be replaced by
a Grafcet macro step. The internal structure of the macro step should
be that of the Grafchart procedure called by the procedure step.

If the Grafchart contains process steps, these should be replaced by
a parallel construct (and-divergence) with two branches. One branch
contains an empty step. The step is followed by the transition suc-
ceeding the process step. The second branch contains an empty step
followed by an alternative structure (or-divergence) where each path
contains a macro step followed by a sink transition. The macro steps
are all identical and their internal structure is that of the Grafchart
procedure called by the process step. The number of paths in the al-
ternatives structure are equal to the number of processes that can run
at the same time. This number has to be finite. The transformation of
a process step is shown in Figure 5.17.

If the macro step or procedure step has an exception transition con-
nected to it, the macro step icon or procedure step icon has to be re-

88

-

:

Grafchart ™\
procedure

gp1

o

o+ -

B

name

l a process step l

o

parameters

procedure | gpi

T

5.7 Grafchart vs Grafcet

M1, M2, ..., MK

| o

Il
EY
8l

¥

Figure 5.17 A Grafchart (left) and an identical Grafcet (right).

M1.M2... MK

MK

L

placed by its internal structure. To each of the internal steps an extra
transition has to be added containing the events and conditions of the
exception transition.

Action transformation

Each step in Grafchart, that contains actions can be replaced by a
larger number of steps with actions in Grafcet, see Figure 5.18.

Tnitially A

— Always B

Finally C

1

a

-

£
-

1

T
|5

A
_‘-_r_'l: scaninterval
k

1

Figure 5.18 A Grafchart (left) and an identical Grafecet (right).

89

Chapter 5. Grafchart

The transformation of a macro step with actions, or procedure step
or process step for which the corresponding Grafchart procedure has
actions, is possible but results in a huge and complex Grafcet.

Firing rules

The firing rules are not exactly identical in Grafchart and in Grafcet. A
step that has to be simultaneously activated and deactivated remains
active in Grafcet. This means that an impulse action associated with
such a step in Grafcet will not be executed whereas an initially action
associated with such a step in Grafchart will be executed. Some Graf-
chart structures therefore has to be extended with an extra step in the
corresponding Grafcet, see Figure 5.19. The activation of the extra step
assures that the step containing the impulse action is deactivated. A
transition with a receptivity that is always true follows the extra step.
When this transition fires the step with the impulse action is activated
again and its impulse action is executed.

|
®
|
@ [[inialy 4] Ti o 2 oH]

Figure 5.19 A Grafchart and an identical Grafcet.

5.8 The G2 Implementation

An implementation of Grafchart has been made in G2, an object ori-
ented programming language, [Moore et al, 1990], see Appendix A. The
Grafchart objects are implemented as G2 objects and the connections
are represented by G2 connections.

90

5.8 The G2 Implementation

The implementation of Grafchart is based on the G2 concept of acti-
vatable subworkspaces. A workspace is visualized as a virtual, rect-
angular window upon which various G2 items such as rules, pro-
cedures, objects, displays, and interaction buttons can be placed. A
workspace can also be attached to an object, see Figure 5.20. In this
case the workspace is called a subworkspace of that object. When a
subworkspace is deactivated, all the items on the workspace are inac-
tive and invisible to the G2 run-time system.

- Subwork-
space

Object -

Figure 5.20 An object and its subworkspace.

Steps and actions

The actions associated with a step are placed on the subworkspace of
the step. The actions are represented by G2 rules. The subworkspace
of the step is only active when the step itself is active, this means
that the rules, placed on the subworkspace, are only executed when
the step is active. The actions that may be performed are the action
types provided by G2. For example, it is possible to assign values to
variables, to start procedures, to create and delete objects, hide and
show information, perform animation actions, etc.

The actions are written in the G2’s built in rule language. Sometimes,
however, the syntax of G2 can be somewhat annoying. To facilitate
for the user, the actions are therefore entered as action templates.
These are text strings that during compilation are translated into
the corresponding G2 rules. The entire syntax of G2 can be used in
the action templates together with additional constructs of syntactical
sugar nature. For example, the sometimes long and complicated syn-
tax of certain G2 expressions can be replaced by a shorter and simpler
expression using a Pascal-like dot notation, e.g. instead of referring
to an attribute of an object using the standard syntax of G2 as the

91

Chapter 5. Grafchart

subworkspace of
the step

Action-template

/
subworkspace of

| Initially .
conclude that s10.X =5} the action-template
T T / G2-rule
Tnitially
| conclude that the x of s10is5 | |

Figure 5.21 A step, an action template and the corresponding G2 rule.

Name | S10
: |

attributel of objectl the shorter notation objectl.attributel can
be used. In Figure 5.21 a step and its subworkspace is shown. On
the subworkspace an initially action template is placed. During com-
pilation a subworkspace of the action template is created where the
corresponding G2 rule is placed. In Figure 5.21, the subworkspace of
the action template and the corresponding G2 rule is shown under the
subworkspace of the step.

Transitions and receptivities

The condition and event of a transition is entered as attributes of the
transition. During compilation the attributes are automatically trans-
lated into an appropriate G2 rule (compare step actions), which is
placed on the subworkspace of the transition. The subworkspace is
only active when the transition is enabled. A transition that only con-
tains a logical condition is translated into a scanned when rule with
the shortest scan interval possible. A transition that contains only an
event expression and/or an event expression and a logical condition is
translated into a whenever rule that will fire asynchronously when the
event occurs.

When the transition fires, i.e., when the G2 rule condition becomes true

92

5.8 The G2 Implementation

subworkspace of
the transition

G2-rule

| a transition] e
| When n>4 then start fire(the
Name T2 —— generic-transition superiour to

Event | this workspace)

Condition| n>4

Figure 5.22 A transition, its attributes and the corresponding G2 rule.

and/or the event occurs, the G2 rule starts a procedure that takes care
of the activation and deactivation of steps and transitions.

In Figure 5.22 a transition is shown together with its event and condi-
tion attributes. The corresponding G2 rule is placed on the subwork-
space of the transition as shown in the same figure.

Class hierarchy

The objects in Grafchart are defined in classes. The relation between
different classes is described by a class hierarchy. Attributes and meth-
ods can be associated with a class. A class defined above another class
is called a superclass and a class defined below another class is called a
subclass. G2 supports, like most object-oriented languages, inheritance
and polymorphism.

The graphical language elements in Grafchart are defined in a class
hierarchy, shown in Figure 5.23.

During compilation the action templates defining the actions of a step
and the attributes defining the receptivity of a transition are trans-
lated into the corresponding G2 rules. Each class has a method, called
compile, that describes how this class should be translated. The trans-
lation of a function chart is initialized by a call to one procedure called
compile. This procedure traverses the function chart and calls the
compile-method of each object in the function chart.

93

Chapter 5. Grafchart

VAN

GRAFCHARTLOBJECT

//\\

AN AN 7 N 7\

GEMERIC-TRANS TIOH GRLFCHART-PROCES S GEMERIC-$TEP GRAFCHART-PROCEDURE FARALLEL-EAR

AAE /\ E/A/

TRAMEITION EXCEPTION-TRAMSITIOHN noN MACRO-STEF GENERIC-LBSTRACTIONS TEP FARALLEL-SFLIT PARRLLEL-JOIM

A \\

VANGANY/ANY/ANANS/AN

EXT-3TEF ENTER-STEF STEF |NITIQL-STEP MACROSTEP GENERIC-PROCEDIRE-STEFR

D O0oo o |
L A

PROCEOUFE-STEF PROCESS-STEP

O

Figure 5.23 The class hierarchy in Grafchart.

Interpretation algorithm

The interpretation algorithm used in the implementation of Grafchart
is based on the one given in Chapter 5.5. However, the algorithm given
in Chapter 5.5 is a global algorithm whereas the one implemented in
G2 is local. When a new external event occurs, the global algorithm
searches through all receptivities to see which transitions that have
become fireable. Since the implementation is based on activatable sub-
workspaces and G2 rules such a search is not performed. When a new
event occurs or a condition becomes true the the G2 rule, that corre-
sponds to a receptivity, immediately becomes true and a G2 procedure,

94

5.8 The G2 Implementation

called fire is automatically started, see Figure 5.22. This procedure
takes care of the deactivation and activation of steps and the enabling
and de-enabling of transitions. The local algorithm that is used in the
implementation is more efficient and less time demanding than the
global algorithm. In almost all cases the behavior is equivalent to the
behavior of the global algorithm.

EXAMPLE 5.8.1

Figure 5.24 shows a part of a function chart. The function chart has
two steps, named S1 and S2, and two transitions, named 7'1 and 7T'2.
Step S1 is active and step S2 is inactive.

|
|

S1| @

1. deactivate-step

TT ——— _<=— 3. de-enable

2. activate-step
S2

T2 T =— 4. enable

Figure 5.24 Firing of transition T'1.

When the receptivity of transition T'1 becomes true the procedure fire
is started. The procedure calls, in the given order, the following meth-
ods: deactivate-step, activate-step, de-enable and enable. In Fig-
ure 5.24 this corresponds to deactivation of step S1, activation of step
S2, de-enabling of step T'1 and enabling of step T'2.

#

Firing of a transition The deactivation and activation of steps as
well as the de-enabling and enabling of transitions can be more com-

95

Chapter 5. Grafchart

plicated if there are more than one input or output step or transition
and/or if a parallel path or an alternative path is affected by the firing.

When a transition is fired, the following will happen (action execution
not taken into account).

96

1. Deactivate-step

(a)

(b)

()

(d)
(e)

If the Grafchart object preceding the transition is a parallel-
join the deactivation will be done for all Grafchart objects
preceding the parallel-join.

If the Grafchart object preceding the transition is a macro
step the deactivation will done for the macro step and the
exit step of the macro step.

If the Grafchart object preceding the transition is a proce-
dure step the deactivation will be done for the procedure
step and for the exit step of the corresponding Grafchart
procedure.

If the Grafchart object preceding the transition is a process-
step, it will not be deactivated.

If the Grafchart object preceding the transition is a step, the
step will be deactivated.

2. Activate-step

(a)

(b)

(¢)

(d)

If the Grafchart object succeeding the transition is a parallel-
split the activation will be done for all Grafchart objects suc-
ceeding the parallel-split.

If the Grafchart object succeeding the transition is a macro
step the activation will be done for the macro step and for
the enter step of the macro step.

If the Grafchart object succeeding the transition is a pro-
cedure step the activation will be done for the procedure
step and for the enter step of the corresponding Grafchart
procedure.

If the Grafchart object succeeding the transition is a process-
step the activation will be done for the process step, if it is

5.8 The G2 Implementation

not already active, and for the enter step of the correspond-
ing Grafchart procedure.

(e) If the Grafchart object succeeding the transition is a step,
the step will be activated.

3. De-enable

(a) The de-enable message is sent to the Grafchart object pre-
ceding the transition.

i. If, however, this Grafchart object is a parallel-join the
de-enable message will be sent to each Grafchart object
preceding the parallel-join.

(b) This object transmits the message to each succeeding Graf-
chart object.

i. If, however, this Grafchart object is a parallel-join the
de-enable message will be sent to each Grafchart object
succeeding the parallel-join.

(¢) The Grafchart object is now a transition, this transition is
de-enabled.

4. Enable

(a) The enable message is sent to the Grafchart object succeed-
ing the transition.

i. If, however, this Grafchart object is a parallel-split the
enable message will be sent to each Grafchart object
succeeding the parallel-split.

(b) This object transmits the message to each succeeding Graf-
chart object.

i. If, however, the Grafchart object is a parallel-join the en-
able call will be sent to each Grafchart object succeeding
the parallel-join.

(¢) The Grafchart object is a transition, this transition is en-
abled.

i. If, however, this Grafchart object preceding the transi-
tion is a parallel-join the transition will only be enabled
if all input places to the parallel-join are active.

97

Chapter 5. Grafchart

EXAMPLE 5.8.2

Consider the function chart in Figure 5.25. Transition 7T'1 and T'2 are
enabled. If transition 7'1 fires, the following will happen.

Deactivate S1.

1.

2. Activate the parallel bar PB1, i.e activate the steps S3 and S4.
3. De-enable the transitions T'1 and T'2.

4. Enable the transitions T'3 and T4. Transition 75 will not be

enabled since S5 is not active.

|
1

@ |S1
—— T1 :‘:l T2
| PB1
E S2
S5 S3 S4 |
PB2 —=— T3 T4
|
—— T5H I.

Figure 5.25 The firing of a transition.

5.9 Applications

Grafchart has been used in some applications.

Training simulator

Grafchart has been used to implement a prototype of a training simu-
lator for a sugar crystallization process, [Nilsson, 1991]. In this appli-
cation Grafchart is used both to structure the simulation model of the
process and to implement the control system of the process.

98

5.10 Summary

Hydrogen balance advisory control

Grafchart has been used to implement a knowledge-based system,
(KBS), that generates on-line advice for operators regarding the dis-
tribution of hydrogen resources at the Star Enterprise Delaware City
Refinery [Arzén, 1994a]. The system uses KBS techniques coupled with
numerical optimization. The specific problem that is solved is to meet
the needs of the hydrogen consuming units in the refinery while min-
imizing the hydrogen that is wasted. A catalytic reformer unit and a
continuous catalytic reformer unit produce hydrogen as by-products. A
hydro cracker unit consumes high purity hydrogen and vents low pu-
rity hydrogen. Hydrogen from these units is used to satisfy the needs
of the hydrogen consuming hydro treaters, sulphur recovery, methanol,
and naphtalene units. Any additional hydrogen needs must be met by
a hydrogen production unit.

Flexible manufacturing cell

In [Lopez Gonzalez et al., 1994] a system is described were Grafchart
is used to implement a flexible manufacturing cell. Grafchart is used
in a four-layered hierarchical structure to represent the plant-wide
operating phases of the control system, to describe the sequences of
tasks to be executed to manufacture the parts, to describe the tasks
at the workstation level and, finally, to describe the different services
offered by the device drivers in the cell.

5.10 Summary

Grafchart is the name of a mathematical sequential control model and
a toolbox. Grafchart is based on a syntax similar to that of Grafcet.
The graphical elements are: steps, transitions, macro steps, procedure
steps, process steps, Grafchart procedures and Grafchart processes.
Grafchart is aimed at sequential control application at local and su-
pervisory level.

99

o

High-Level Gratchart

High-Level Grafchart (HL- -Grafchart) is an extended version of Graf-
chart, [Johnsson and Arzén, 1996b], [Arzén, 1996b], [Arzén, 1994a]. Tt
combines the graphical language of Grafcet/SFC with high-level pro-
gramming language constructs and ideas from High- Level Petri Nets.

This widely increases the expression power and structuring facilities
of Grafchart.

High-Level Grafchart adds four new features to Grafchart;

1. Parameterization
2. Methods and message passing
3. Object tokens

4. Multi-dimensional charts

High-Level Grafchart is available in two different versions. The first,
called HL-Grafchart I, uses only the first two of the four new features,
i.e., HL-Grafchart I is closer in spirit to Grafchart. The second version,
HL Grafchart I1, uses all four features and is closer in nature to High-
Level Petri Nets with the graphical syntax of Grafcet.

Grafchart is the name both of a formal model and of a G2 implemen-
tation of this model. The same situation applies to HL-Grafchart. In
this chapter the focus will be the G2 implementation of HL-Grafchart.

100

6.1 Parameterization

6.1 Parameterization

Parameterization denotes the possibility for an object to have parame-
ters. In HL-Grafchart, Grafchart processes, Grafchart procedures, mac-
ro steps and steps can be parameterized.

Ordinary Grafchart has no means for parameterization. This means
that, e.g., the rules within a step have to be specific, i.e., they have
to contain references to global variables and objects. This makes it
difficult to reuse steps from one application to another. In High-Level
Grafchart this is resolved by utilizing the fact that the steps are objects
defined by a class definition. The user can specialize the step class
by making a subclass in which additional attributes can been added.
These attributes act as parameters which can be referenced from the
actions within the instances of the step subclass.

The same technique is used for Grafchart processes, Grafchart pro-
cedures and macro steps. These object classes can be specialized by
adding attributes which act as parameters. The parameters of a Graf-
chart process, Grafchart procedure or a macro step can be referenced
from within all steps and all transitions placed on the subworkspace of
the object. To reference a parameter, a special Pascal-like dot notation
is introduced.

e sup.attributel
refers to the attributel attribute visible in the current context.

e sup.attributel”
refers to the object named by the attributel attribute visible in
the current context.

e sup.attributel”.attribute2
refers to the attribute2 attribute of the object given by the
attributel attribute visible in the current context.

Consider the example shown in Figure 6.1. The class named fill-tank
is a specialization of a macro step with two new attributes: tank and
limit. FT1 is an instance of fill-tank. A fill-tank macro step contains
the logic for the control and monitoring of the filling of a tank. The

101

Chapter 6. High-Level Grafchart

; | initially
RERELISELL -} | startfill-tank(sup.tank?)
name FT1 ‘
tank tank-12 \ Condition:
limit 10 | "sup.tankAlevel > sup.limit”

Figure 6.1 Parameterization of a macro step.

tank attribute contains the name of the tank that should be filled, i.e.,
the value of this attribute acts as a pointer. The limit attribute con-
tains the limit up to which the tank should be filled. The macro step
contains an enter-step that contains a rule that initiates the filling.
This rule refers to the value of the tank attribute, i.e., tank-12, using
the notation sup.tank” (sup is short for superior). Similarly the tran-
sition condition refers to the level of the tank referenced by the tank
attribute and to the value of the limit attribute. The sup.attribute
notation is translated and replaced by a corresponding G2 expression
during compilation as described in Chapter 5.8.

Lexical scoping is used when searching for the attribute of an object
replacing the sup notation. Consider the example shown in Figure 6.2.
The macro step M1 has an attribute named x with value 156. The
substructure of the macro step contains among other a transition and
another macro step, M2. The macro step M2 has an attribute named
x with value 12. The substructure of M2 contains a transition that
reference to an x-attribute using the sup.X notation. The reference will
be to the x-attribute of the macro step M2. The transition placed on the
subworkspace of the macro step M1 also refers to an x-attribute using
the sup.X notation. In this case the reference will be to the x-attribute
of M1, see Figure 6.2. If, however, the macro step M2 would not have
had an attribute named x, the sup.X reference of the transition of M2
would have refered to the x attribute of M1 as well.

102

6.1 Parameterization

- sup.X >10

el

Figure 6.2 Lexical scoping.

Grafchart Procedure Parameterization

A Grafchart procedure is started from a process step or a procedure
step. The actual values of the parameters of a Grafchart procedure
are set in the procedure step or the process step. The procedure or
process step has an attribute named procedure in which the name of
the Grafchart procedure to call is given. They also have an attribute
named parameters which contains a list of assignments to the formal
parameters of the Grafchart procedures being called.

The assigned values can either be constants (numbers, strings or sym-
bols), as in Figure 6.3 or the value of a parameter that is visible in the
process or procedure step context, as in Figure 6.4. Using the latter
form, it is possible for a Grafchart procedure to return values to the
process or procedure step. In order to specify the direction in which the
parameter is passed, one of the keywords IN, OUT or INOUT is added af-
ter the value of the parameter. It is also possible to determine which
Grafchart procedure that should be called from the value of a param-
eter. In Figure 6.4 the parameters sup.val, sup.v and sup.q are all
visible in the context of the parameter step. The parameter proc is also
a parameter visible in the context of the procedure step, this param-

103

Chapter 6. High-Level Grafchart

' a Grafchart procedure ‘
name gpt

U
\
W
a procedurestep
name P1
parameters | "u = true .
v =100
w = ok"

procedure “gp1"

;

N
Grafchart N

procedure

Procedure
call

Initially

if sup.U then
start count(sup.V,
sup.W)

Figure 6.3 Parameterization of a Grafchart procedure.

eter determines the Grafchart procedure that should be called. When
the Grafchart procedure is called U is assigned the value of sup.val
and W is assigned the value of sup.q. When the execution of the Graf-
chart procedure ends, sup.v is assigned the value of V, and sup.q, 1s
assigned the value of W.

a Grafchart procedure

name

U

\

W

- a procedurestep - +

name P1
parameters | "u sup.val IN

v sup.v OUT

w sup.g INOUT"
procedure "sup.proc”

T

:

Grafchart
procedure

Procedure
call

Initially

Figure 6.4 Parameterization of a Grafchart procedure.

104

6.2 Methods and Message Passing

Implementation and compilation

During compilation the action templates are translated into the corre-
sponding G2 rules and the sup notations are changed to the correct G2
expression. An example of this is shown in Figure 6.5. The step, named
510, has an attribute x. From the action associated with this step one
would like to set the global variable n to the value of the attribute x.
Both the action template written by the user and the corresponding
automatically generated G2 rule are shown in the figure.

subworkspace of
the step
action-template
| Initially o
conclude that n = sup.x

subworkspace of
the action-template

G2-rule

Name| S10
X 5

A

\

| Initially
| conclude that n = the x of the object superiour |
to the workspace of the action-template
superior to this workspace

attributes associated
with the step

Figure 6.5 Compilation of steps and transitions.

Since lexical scoping is used, the user does not have to be concerned
about which object that has the attribute x. If, e.g., step s10 would
have been a step inside a Grafchart procedure, then x could instead
have been an attribute of that Grafchart procedure. When referring to
x from the action of the step, the user would have written exactly the
same string but the translated G2-rule would have been different.

6.2 Methods and Message Passing
Methods and message passing are supported by allowing Grafchart

procedures to be methods of general G2 objects. For example, an object
representing a batch reactor can have Grafchart methods for charging,

105

Chapter 6. High-Level Grafchart

discharging, agitating, heating etc. Inside the method body, it is possi-
ble to reference the object itself and the attributes of this object using
a Smalltalk influenced notation.

e self

refers to the object that the method belongs to, i.e., this object.

e self.attributel
refers to the attributel attribute of this object.

e self.attributel”
refers to the object named by attributel of this object.

e self.attributel”.attribute?2
refers to the attribute2 attribute of the object named by the
attributel attribute of this object.

References to attributes of the object that the method belongs to can
be combined with parameter references using the sup.attribute no-

tation.

Procedure
step

106

[

—

‘ I ‘ capacity 100
1 charge a grafchart-
‘ method

r1 — a reactor

R1: a reactor

a grafchart—-method

procedure | "reactor-—

charge"”
7/
/
7/
yd
Grafchart
a procedure step procedure// .
Parameters =
Procedure " R1 charge"
&5
reactor— \\
charge i

Figure 6.6 Grafchart methods.

6.3 Object Tokens

The method of an object is called through a procedure or process step
in the same way as if the procedure was stand-alone. Instead of giving
a procedure reference, the procedure that will be called is determined
by an object reference and a method reference. An example of a Graf-
chart method is shown in Figure 6.6. The reactor object R1 contains the
method charge. The method is implemented by the Grafchart proce-
dure reactor-charge. The procedure step invokes the charge method
of the R1 object. The method that will be called can also be determined
by parameters.

6.3 Object Tokens

In ordinary Grafchart a token is simply a boolean indicator telling
whether a step is active or not. In High-Level Grafchart, the object
token feature allows a token to be an object. This means that the
token is defined in the class hierarchy and subclasses can be made
where new attributes can be added. To indicate if a token is present in
a step or not a grafchart marker is used. The grafchart marker appears
as a black or a coloured filled circle and it acts as a pointer to an object
token. The grafchart marker is implemented in the class hierarchy and
subclasses, with different-coloured icons, can be created. The pointer
between the grafchart marker and the object token is implemented as a
G2 relation. The object token also contains an attribute specifying the
type of the grafchart marker that should be used to animate the object
token. Since the object token is never visible for the HL-Grafchart user
its icon is the default G2 icon. The reason for letting the grafchart
marker be a pointer to an object token with attributes and not letting
the grafchart marker itself contain the attributes is the way parallel
structures are handled, see Chapter 6.3 (Parallelism).

The class definitions of grafchart marker and object token are shown
in Figure 6.7. The grafchart-marker class has a subclass named graf-
chart-marker-x and the object-token class has a subclass called object-
token-A. Each grafchart-marker-x points at an instance of an object-

token-A.

The attributes of an object token can be referenced from the actions
of the step that the corresponding grafchart marker is placed in and

107

Chapter 6. High-Level Grafchart

/\

grafchart-marker object-token

JAN

grafchart-marker—x object-token-A

oint
*} - an object token A -
name tokeni1

marker | grafchart-marker-x
X
y

Figure 6.7 A grafchart marker and an object token.

from the receptivities of the transitions that the grafchart marker is
currently enabling. There might be several grafchart markers, of the
same or of different classes, pointing to different object tokens, in the
same step.

One of the ideas of introducing object tokens is that the description
of a system can be made more compact. Imagine a system with two
identical tanks which both should be filled with water, heated and
then emptied. The tanks operate independently of each other. Each
tank system can be controlled by a separate Grafchart and information
about e.g., the temperature, the level etc., can be stored as attributes
of the entire chart, see Figure 6.8.

If however, HL-Grafchart is used, the two tanks can be controlled by
one chart in which there are two object tokens, one for each tank. The
information about, e.g., the temperature, the level etc., can no longer
be stored in the attributes of the chart since they do not have the same
values for the two tank systems. Instead the information is stored as
attributes of the object tokens, see Figure 6.9.

The corresponding grafchart markers can move around in the function
chart independently of each other as in Figure 6.9 where the behav-
ior of one tank does not depend on that of the other tank. However,
applications also exist where the object tokens are not independent
of each other, e.g., a production line where the different parts move

108

6.3 Object Tokens

a grafchart process a grafchart process

name gpi name gp2
V1 vii V1 v21
V2 vio V2 v22
Q qi Q 92
Lo 0 Lo 1
B 0 L~ ~ L1 0 L~ ~
T 100 S T 500 N
e N s A ~
e ~ - ~
/ ~ e >~
Vi1
Tank1
ey] O
= Start —— Start
T _[nitially Initially
o] [H %
LO == L0 — L0
ql
W Inmally
Va1 start Q start Q
% 0
mmauy | itall
L Tank2 stop Q close V1 nsltlc?p{)
T Initially 1 it
V22 start V2 Irggilrl\yvz
L0 Finally | Finally
- close V2 close V2
q2 Lo LO

Figure 6.8 A system composed of two identical tanks, each controlled by a
Grafchart.

between different stations but where it is impossible for one part to
pass another. This means that grafchart markers in a chart can not
pass each other and a grafchart marker may therefore have to wait for
another grafchart marker to leave a step. Another example with de-
pendencies between the object tokens is batch production. The batches
in a batch production cell are effected by different recipe operations
and they share the same equipment. One batch might, e.g., have to
wait for an other batch to release a resource. High-Level Grafchart
can be used to model structures with dependency between the object
tokens.

A grafchart marker, or a grafchart marker together with its object
token, will most often be refered to by the shorter term token. Only
when we want to stress the fact that the grafchart marker and the
object token are two different objects their correct names will be used.

109

Chapter 6. High-Level Grafchart

Vi
% - ~<
~ ~ ~
) T e I el
name 1
T tank tank1
L s viz Vi vii
0 @I V2 vi2
qi Q q1
p: tank-token 10 1
Initially
open p.vi L1 50
T 100
vat p: tank—token
- Initially
start p.Q
L — T L1
p: tank-token p: tank-token
T Initially | initially
- stop p.Q close p.V1 name t2
tank tank2
L0 —e 1 p: tank-token 7 V1 vod
initially
—— open p.vV2 V2 v22
Finally
close p.V2 80 q:
L1 25
T 500

Figure 6.9 A system composed of two identical tanks, controlled by one
HL-Grafchart.

Steps and Actions

A step may contain several tokens of the same or of different classes.
To each step, actions can be associated. The action types are the same
as in Grafchart, i.e., initially, finally, always and abortive. The differ-
ence is that in High-Level Grafchart each action is associated with a
token class. An initially (finally) action is executed when an instance
of its token class enters (leaves) the step. An always action is executed
when an instance of its token class is present in the step. The action
may contain conditions that depend on the presence of tokens of other
classes and on the values of their attributes.

In Figure 6.10 a step and its associated actions are shown. Two tokens
are placed in the step, one of class P-token and one of class Q-token.
One initially and one always action are associated with the token

class P-token and one finally action is associated with the token class
Q-token.

110

6.3 Object Tokens

/ Token class "P-token” Token class "P-token"
D tokon // Action type "INITIALLY" Action type "ALWAYS"
name | token22 / Forany "p:P—token" Forany "p:P—token"
There exists " " There exists " "
marker| grafchart-marker—x Condition™ " Condition" "
v 3 L. Action text "conclude that Action text "conclude that
O py=0" p.y =p.y+1"
-] — Token class "Q—token"
Action type "FINALLY"
Forany "q:Q-token"
-ﬂ Q_token i \\ There exists " p:P-token”
name | token34 \ Condition" p.y > 10"
marker| grafchart—-marker-z \ Action text c(g CCZIUS_?/.Fhat
v 20 \

Figure 6.10 Step actions.

The action-templates are built up by six different parts. In the token
class part, the class of the token to which the rule applies is spec-
ified. The action type indicates if the action is an initially, finally,
always or abortive action. In the for any part, the token to which
the rule applies is given a temporary name, this name can be used
in the action-template to refer to the token. The there exists part
can be used to check the presence of other tokens and the condition
part can used to check if certain conditions apply. The last part of the
action-template is the action text where the action that should be
performed is specified.

When a token of type P-token enters the step in Figure 6.10 its y at-
tribute is assigned the value zero, as specified by the initially action-
template. If the token does not directly leave the step, the always
action-template will assure that the y attribute is incremented peri-
odically. The finally action-template associated with the token class
Q-token specifies what should happen with a token of type Q-token
when it leaves the step. If a token of type P-token exists in the step,
and, if the value of the y attribute of the P-token is greater than ten,
then, when a token of type Q-token leaves the step, the value of its v
attribute will be assigned the same value as the value of the y attribute
of the P-token.

The actions are, during compilation, translated into the corresponding
G2 rules.

111

Chapter 6. High-Level Grafchart

Transitions and Receptivities

Each transition has a receptivity for each token class that the transi-
tion can be enabled by. The condition and/or the event of the receptiv-
ity may refer to the attributes of the token class instance that enables
the transition. It may also refer to the presence of other tokens in the
input step and the value of their attributes.

In Figure 6.11 a transition and its receptivities are shown. The transi-
tion has two receptivities, one associated with the token class P-token
and one associated with the token class Q-token.

AN
a P-token
name token22 |
marker| grafchart—marker—x
y 3 @) ,
/
// @ // Token class "P-token” Token class "Q-token"”
-~ // Forany "p: P-token" Forany "q: Q-token "
5 O-token =|= There exists " " There exists " p:P-token"
name | token34 \ Condition p){:) 10" /(\)ondition "q.v > 10"
— - \ Action "move(p) " ction "move(q)
marker| grafchart-marker-z N delete(p)"
v 20 N\

Figure 6.11 Transition with multiple receptivities.

The receptivity template is built up by six parts. The token class, for
any and there exists parts are used in the same way as those of the
action-template. The event and condition parts are used to specify
the event and conditions of the receptivity. When a transition becomes
fireable an operation is performed on the tokens that are referenced
by the receptivity. The operation is specified in the action part of the
receptivity-template.

In the standard case the operation would be to move the token from
the input step to the output step. However, it is also possible to delete
and create tokens and to change the value of the attributes of the
tokens. The latter is useful primarily for initializing the values of a
newly created token. The operations can also be more complex, e.g.,
an attribute of the token can be changed at the same time as the
token is moved from the input step to the output step, another token
placed in the input step can be deleted or a new token can be created
and placed in the output step. It is also possible to move, not only the

112

6.3 Object Tokens

token that enables the transition but also to move one or several of
the tokens refered to in the condition or event part of the receptivity.

The action move(p) implies that the grafchart marker that is placed
in the input step of the transition and that points on the object token
named p is moved from the input step of the transition to the output
step. The action create(P-token) implies that an instance of a P-
token is created. A grafchart marker, of the class that can animate a
P-token is also created and placed at the output step of the transition.
The pointer from the grafchart marker to the P-token is created. The
action delete(p) deletes the grafchart marker that is placed in the
input step of the transition and that points to the object token named
p and deletes the object token named p.

In Figure 6.11, two tokens are placed in the step preceding the tran-
sition, one token of class P-token and one token of class Q-token. The
transition is enabled with respect to both token classes but it is only
fireable with respect to the token of class Q-token. When the transition
fires the token of class Q-token will be moved from the input step to
the output step of the transition and the token of class P-token will
be deleted.

Parallelism

The reason for having a grafchart marker that acts as a pointer to the
corresponding object token is the way parallel structures are handled.

When the transition preceding a parallel-split (and-divergence) is fired,
a grafchart marker is moved from the input step of the transition, to
the first step in each parallel branch. The grafchart markers, that are
added in a step, are all copies of the grafchart marker removed from
the input step. The grafchart markers in all the parallel branches will
therefore point to the same object token according to Figure 6.12. If the
value of an attribute is changed in one of the branches it will directly
be visible in all branches.

The transition after a parallel-join (and-convergence) is only enabled
with respect to a token class if all the input steps of the transition
contain grafchart markers that point at the same object token. When
the transition is fired, one grafchart marker from one of the preced-
ing steps in the parallel branch is moved to the output step, the rest

113

Chapter 6. High-Level Grafchart

an Object Token

name

attribute1

_

Before firing

attribute2

NI |

' |
After firing

Figure 6.12 An and-divergence situation.

of the grafchart markers are deleted. Since all grafchart marker, in
the parallel branch, point to the same object token it does not mat-
ter which one that is moved and which is deleted. The parallel-join
(and-convergence) situation is shown in Figure 6.13.

an Object Token

name
attribute1

attribute2

Before firing

an Object Token

name
attribute1

attribute2

w
T
|

After firing

Figure 6.13 An and-convergence situation.

114

6.3 Object Tokens

The reason for letting the grafchart marker point to an object token,
containing the attributes, and not letting the grafchart marker itself
contain the attributes, is the parallel-join structure. If the grafchart
marker would contain the attributes and if the value of an attribute
of one of the grafchart markers, in one of the parallel-branches, is
modified, it would be unclear how the parallel-join (and-convergence)
should be treated. Which value of the modified attribute should be
kept and which should be ignored? By letting the grafchart markers
be pointers to an object token containing the attributes, problems like
this are avoided. This is also a natural way to model a system since
a grafchart marker in a chart is a marker visualizing the state of
only one object. For example, the grafchart markers in Figure 6.9 each
represent the state of one tank. Even if the state is visualized by a
parallel-branch (the tank is heated and filled at the same time) the
markers still represent one tank.

Arc inscriptions

Most of the existing work on High-Level Petri Nets and Coloured
Grafcet, [Agaoua, 1987], [Suau, 1989, is based on arc inscriptions. Arc
inscriptions can be of two main types: the function representation and
the expression representation, see Chapter 4.1.

In High-Level Grafchart explicit arc inscriptions are used very rarely.
This does however not restrict the different ways of firing a transition.
By instead allowing the receptivities of the transition to be written
in several different ways, the same performance, as the one achieved
using arc inscriptions in H-L Petri Nets, can be achieved. Color trans-
formations, attribute changes, and deletion and creation of tokens are
all possible to do. Using arc inscriptions one easily loses the clarity
of the net. Since one of the main advantages of Grafcet is its clear
and intuitively understandable way of representing sequences, it is
undesirable to use arc inscriptions in HL-Grafchart.

PN-transition

A major reason why arc inscriptions are necessary in High Level Petri
Nets is that transitions may have multiple input places and multi-
ple output places, i.e., and-convergence and and-divergence structures,
where different tokens are involved and where different tokens follow

115

Chapter 6. High-Level Grafchart

different branches. A PN situation like this is shown in Figure 6.14.

The arc inscriptions are needed to specify how the different input

places should contribute to the enabling of the transition and how

the different output places should be affected when the transition is
Flrlng

fired.
P
f(P)=1P+1Q
g(P)=1P
e 0 0

Figure 6.14 A Petri Net and-divergence structure.

The transition is enabled with respect to the colour P. When firing the
transition one token of colour P and one token of colour Q should be
removed from the preceding place, the P token should follow the left
path and the Q token should follow the right path.

In HL-Grafchart situation like this can be handled in two different

name token22

marker| grafchart-marker—x |\
y | @ |

-a P-token -‘><

O @ Token class "P-token"
-M // F r any up P token"
o] P~
name | token34 «— | There exists "q: Q—-token"
marker| grafchart-marker-z Event "
v 20 Condition ""
Dummy Action "move(p); move(q)"

Token class "P-token”]

Token class "Q-token"
For any "p:P-token" - = - . - o
There exists " or any "q: Q-token

Event " 'éher? ﬁa"xists e
Condition " Cver&‘t_
Action "move(p)" ondition

Action "move(q)"

Figure 6.15 An and-divergence situation transformed into an or-divergence
situation.

116

6.3 Object Tokens

ways. The first solution involves a structure transformation. The and-
divergence case is transformed into an or-divergence case and an extra
empty dummy step is introduced, see Figure 6.15. The first transition
contains a receptivity that checks if there is a token of each class in
the input step, if this is the case the two tokens will be moved to
the dummy step. Two transitions follow the dummy step, one that is
immediately fireable with respect to one of the classes and one that is
immediately fireable with respect to the other class.

In some applications, however, this structure transformation can be
undesirable. Therefore a special kind of transition, named PN-transi-
tion, is introduced. A PN-transition can have more than one incoming
arc and more than one outgoing arc. The arcs are numbered and the
numbers can be used to specify from which step and to which step the
token should be moved. The arc numbers of PN-transitions is the only
case of arc inscriptions in HL-Grafchart.

In Figure 6.16 a PN-transition is shown.

name token22 | I
marker| grafchart-marker—x \

y 3 I~ O - @
Token class "P-token"
1 2
For any "p: P-token"
There exists "q: Q—token”
1 2 Event ™
- . Conditon "py =
name | token34 Action "move(p,1,1); move(q,2,2)"

marker| grafchart-marker-z T
v 20

Figure 6.16 An and-divergence situation using a PN-transition.

Macro steps

As soon as a grafchart marker enters a macro step a copy of the graf-
chart marker is placed in the enter-step of the macro step, i.e., the
grafchart marker placed in the macro step and the grafchart marker
placed in the enter-step points at the same object token. Several token
can be in a macro step at the same time.

117

Chapter 6. High-Level Grafchart

Procedure- and Process steps

In ordinary Grafchart a procedure or process step has an associated at-
tribute that specifies the name of the Grafchart procedure that should
be called. In High-Level Grafchart the call to a Grafchart procedure is
more flexible.

Associated to each procedure or process step is a procedure-call-temp-
late. A procedure-call-template is built up by three parts. The token
class part specifies the class of the token to which the templates apply.
The parameter part specify the attributes to the procedure, if any, and
the procedure part determines the name of the Grafchart procedure
to be called. The name of the Grafchart procedure can either be given
explicitly or implicitly through a reference. It is possible to reference
attributes visible in the procedure step or process step context through
the sup. notation. In a similar way, attributes of the token itself can
be referenced.

e inv.attributel
refers to the attributel attribute of the token

In Figure 6.17 a procedure step is shown. Two tokens are placed within
the procedure step, one token of class P-token and one token of class
Q-token. Tokens of class P-token cause calls to a Grafchart procedure
named gpl whereas tokens of class Q-token cause calls to a Grafchart
procedure named by the proc attribute of the token itself. One of the
attributes of the Grafchart procedure gpi is named x. This attribute
is given the value of the x attribute of the P-token giving rise to the
call.

Each call is executed in its own copy, i.e., when a call is done to a
Grafchart procedure a copy of the Grafchart procedure body is created
and this copy is executed, when the execution reaches its end the copy
is deleted. This means that there can never be more than one token
in each Grafchart procedure and therefore the Grafchart procedures of
ordinary Grafchart can be used also in HL-Grafchart. The attributes of
the token are, if necessary, transformed into attributes of the Grafchart
procedure called by the token.

118

6.4 Multi-dimensional Charts

Grafchart
procedure
Grafchart

procedure §

procedure
call

,/ Token class; "P-token’
| Parameters: "x inv.x
z4"

Procedure: "gpt®

Token class: "Q-token"
Parameters: "x ok;
y 12"

Procedure: "inv.proc"

call

{
procedure @
=
.:l‘:

Figure 6.17 Two tokens placed in a procedure step.

6.4 Multi-dimensional Charts

Since a token is an object and since objects are allowed to have meth-
ods also tokens may have methods. This is the basis for the multi-
dimensional chart feature, whereby a token moving around in a chart
may itself contain one ore more charts. This gives several interesting
structuring possibilities.

A part of a multi-dimensional function chart is shown in Figure 6.18.
It consists of one step and one process step. A token of class P-token is
placed in the step and a token of type Q-token is placed in the process
step. The name of the Grafchart procedure to be called from the process
step is given by the reference inv proc, i.e., the Grafchart procedure
to be called is a method named proc of the token.

The Q-token, placed in the process step, in Figure 6.18 has caused a
call to the Grafchart procedure gp2. The Q-token can however, continue
its execution independently of the execution of gp2. When the P-token

119

Chapter 6. High-Level Grafchart

// \\
ol A\
s gp2 gpi
/
/
/
name
X 5 \ \
proc | a grafchart- \ \
method @
®
T =
name I:F +
proc | a grafchart—
method a grafchart-method {} {}
procedure gp2
Token class: "Q-token" Token class: "P-token"
Parameters: "x ok; Parameters: "x inv.x
y 12" Z 4II
Procedure: “inv proc" Procedure: "inv proc”

Figure 6.18 A multi-dimensional chart.

enters the process step a call to the Grafchart process gpl will be
effected.

The reference to the attributes of an object token is done in differ-
ent ways depending from where the reference is done, see Figure
6.19. If the attribute of an object token should be referenced from
within the chart where the corresponding grafchart marker is placed,
the temporary-token-name.attribute notation is used, and, if the at-
tribute should be referenced from within a method that belongs to the
object token, the self.attribute notation is used.

The different levels in a multi-dimensional function chart can commu-

120

6.4 Multi-dimensional Charts

><

name
X 5
pro¢ | a grafchart-

method a grafchart—-method

procedure gpt ,

gpt /

N
// AN
/ \\
=
1 ..selfx>5]
+
<

Figure 6.19 Different references to an attribute of an object token.

nicate with each other through the different dot notations that exist,
see Figure 6.20.

Four different dot notations exist:

1. The sup notation, described in Chapter 6.1
2. The self notation, described in 6.2

3. The temporary-token-name notation, described in 6.3 (Steps and
Actions)

4. The inv notation, described in 6.3 (Procedure- and Process steps).

121

Chapter 6. High-Level Grafchart

X 14

L 1 name @
// y true X 5 \

/ > pro¢ | a grafch
/ \\ \ ?netho a grafchart-method
~
/ ~ @
/ ~ @ : procedure

% a Grafchart procedure
name
/ N
7 z 56
e
Ve N A
]
=
self ~
—| Initially L
wepx=1t0 | —/—/— ¢+ I i
- Finally .
{} .. 8Up.Z ...

Figure 6.20 The communication between the different levels in a multidimen-
sional function chart.

6.5 Implementation

HL-Grafchart is implemented in G2, [Moore et al, 1990], see Ap-
pendix A.

Class Hierarchy

The graphical language elements in HL-Grafchart are defined in a
class hierarchy, see Figure 6.21. The class names are extended with
-0’ to indicate that these classes are used in HL-Grafchart.

To specify the actions associated with a step the user uses an object
called action-o, to specify the receptivities associated with a transition
the uses uses an object called receptivity-o and to specify the name of
the Grafchart procedure that is to be called from a procedure or process
step an object called procedure-call-o is used. The class hierarchy of

122

6.5 Implementation

A

06 ECTGRAPCHART-OGJECT

e B

AN A A A

GEMERIGTRLME ITIOHO GRAFCHART-H ARKER-O GEHERIG-ATER-O 05 ECT-TOHEH FARALLE LOKSTRICTO

TV R 'S

™, ™, ¢ b
/ 5 fﬁ’-\ .'/ "-,‘l‘ 4 \.‘ o /\
i L Ly Lay
TRALLG TN LD PH-TREME TIOND HOM-KALCROSTERD MG TRACTIEOHSTERLD PYRLLLELGPLITO P ARALLE L-J0 B2

e \Y__’—

AAAA”\ A A

EX[MaTER 2 EMTER-ATEP 22 STER.O IMMIALL-ATEP 0 HMCROSTERD PROGEDIRCSTERLD PRICGESS-GTER-O

X

Jooo o 0o oD

Figure 6.21 The class hierarchy in HL-Grafchart.

these three "help-elements" and their icons are shown in Figure 6.22
and 6.23.

Relations

The implementation relies on the use of G2 relations. The following
relations are used.

The relation between a grafchart marker and an object token is called
animating. A grafchart marker may be animating at most one object
token. The inverse relation is called animated-by. An object token may
be animated-by more than one grafchart marker.

The relation between a grafchart marker and a step is called placed-at
and the inverse relation is called holding. A grafchart marker may be
placed-at at most one generic-step but a generic-step may be holding
more than one grafchart marker.

123

Chapter 6. High-Level Grafchart

/N

Ob ECTRRLFCHMTOEJEST

VAN JAN PN

MCTIO R FECEPTIVITY O PROCEDURECALL D

Figure 6.22 The class hierarchy in HL-Grafchart.

Token class "" Token class " Token class "
Action type ""
For any " Parameters ""
For any ™" There exists ™"
There exists ™" Event "" Procedure "
Condition "" Condition "
Action text ™" Action "
Action-o Receptivity-o Procedure-call-o

Figure 6.23 The class hierarchy of the "help-elements" in HL-Grafchart.

A relation exists between grafchart markers and receptivities. This re-
lation is called activating, the inverse relation is called activated-by.
A grafchart marker may be activating more than one receptivity. A re-
ceptivity may be activated-by more than one grafchart marker.

A relation exists between object tokens and receptivities. This relation
is called enabling, the inverse relation is called enabled-by. An object
token may be enabling more than one receptivity. A receptivity may
be enabled-by more than one object token.

The relation between an object token and an action is called action-
invoking. The inverse relation is called action-invoked-by. An object
token may be action-invoking more than one action. An action may be
action-invoked-by more than one object token.

A relation exists between a grafchart marker and a Grafchart-proce-
dure. This relation is called marker-invoking and the inverse rela-
tion is called marker-invoked-by. A grafchart marker may be marker-
invoking more than one Grafchart procedure. A Grafchart procedure
may be marker-invoked-by at most one grafchart marker.

124

6.6 Application

Compilation

Before a HL-Grafchart can be executed it has to be compiled. Dur-
ing compilation all actions and all receptivities are translated into the
corresponding G2 rules. This means that all sup notations and self
notations are replaced by a G2 expression. Most often the G2 expres-
sions become very complex and hard to read, this explains why the dot
notation was introduced.

The finally action in Figure 6.10 and its corresponding G2 rule is shown
in figure 6.24.

subworkspace of

/ the action-template
//" _ G2 rule

action-template

for and Q-token q that is action~invoking the
action—-o superior to this workspace

| Token class "Q-token"
| Actiontype "FINALLY"

For any "g:Q-token"
There exists " p:P-token”
Condition” p.y > 10"
Action text " conclude that

q.v=p.y"

when (there exists a grafchart-marker-o g—gmo
that is animating g such that (g—gmo is placed-at
the generic—step—o superior to the workspace of
the action-o superior to this workspace))

and (the status of g—gmo is final)

and (there exists a P-token p such that (the
grafchart-marker—o that is animating p is placed-at
the generic-step—o superior to the workspace of
the action—o superior to this workspace))

and (the y of p >10)

then conclude that the vof g=the y of p

Figure 6.24 Step action and G2 rule.

6.6 Application
High-Level Grafchart has been used in some applications.

Lego car factory

A High-Level Grafchart model of the control system for a LEGO car
factory has been implemented. The LEGO car factory is a small car fac-
tory model built in LEGO that assembles toy LEGO cars. The factory

125

Chapter 6. High-Level Grafchart

itself is built in LEGO and consists of four conveyor belts, three stor-
ages for chassis, car frames, and car bodies respectively; two pressing
machines, three machines that take parts from storage, and one ma-
chine that turns the car on the conveyer belt. The factory is supplied
with several position sensors.

The model of the control system consists of two function charts. The
car-controller is a straight sequence where each token represents a car.
Each macro-step represents a certain operation that is performed on
the car. The machine-controller has one token for each machine. The
actions and conditions in the car-controller depend on the presence
of a car in a certain step. The control system is structured into one
machine part and one media part. The media in this case is the cars.
Similar structuring concepts can also be applied to general discrete

manufacturing problems. The LEGO car factory is presented in [Arzén,
1994a].

Alarm filtering

High-Level Grafchart has been used to implement alarm filters. In-
formation overload due to large numbers of warnings and alarms is a
common problem in, e.g., the process industry. This typically occurs in
fault situations when a primary alarm is accompanied by large num-
bers of secondary alarms. Another case is nuisance alarms caused by
improperly tuned alarm limits. One way of handling excess alarms is
to use alarm filters. The task of the alarm filter is to filter out alarms
and to aggregate multiple alarms into high-level alarms. In many cases
it is the combination of multiple alarms that have occurred within a
certain time period that gives the best indication of what is happening
in the process.

Grafchart can be used to represent alarm (event) patterns. The ap-
proach is based on the possibility to use a finite state machine as an
acceptor for strings in a formal language. Since Grafchart is an ex-
tended state machine with temporal facilities it is possible to accept
more general expressions than the regular expressions that are possi-
ble with ordinary state machines.

Due to the sampled nature of the control system and to measurement
noise, in some cases the relative ordering between a pair of low-level

126

6.7 Summary

alarms may be unimportant. Situations also exist when one wants to
specify that n out of m alarms should have occurred, or that some
alarms in a pattern could be omitted. By utilizing the possibilities in
Grafchart for parallel and alternative paths, different sequence pat-
terns of these types can be easily expressed. Situations with temporal
constraints between alarms is important can also be expressed with
Grafchart. Representation of different event patterns in Grafchart is
presented in detail in [Arzén, 1996a).

Batch recipe structuring

Batch recipe structuring is the main application area of High-Level
Grafchart. High-Level Grafchart is used at two levels, to represent
the sequential structure in the recipes and to represent the sequence
control logic contained in the equipment units. A number of different
ways to structure the recipes have been investigated, see Chapter 9.
Different recipe structures are also presented in [Johnsson and Arzén,
1996a], [Arzén and Johnsson, 1996], and [Johnsson and Arzén, 1994].

6.7 Summary

High-Level Grafchart is an extended version of Grafchart. It combines
the graphical language of Grafcet/SFC with high-level programming
language constructs and ideas from High-Level Petri Nets. This widely
increases the expression power and structuring facilities of Grafchart.
High-Level Grafchart adds four new features to Grafchart; parameter-
ization, methods and message passing, object tokens and multidimen-
sional charts. High-Level Grafchart is implemented in G2.

127

7

Batch Control Systems

Industrial manufacturing and production processes can generally be
classified as continuous, discrete or batch, [Fisher, 1990]. How a process
is classified depends mainly upon how the output from the process
appears.

In continuous processes, products are made by passing materials thro-
ugh different pieces of specialized equipments. Each of these pieces of
equipment ideally operates in a single steady state and performs one
dedicated processing function. The output from a continuous process
appears in a continuous flow, [SP88, 1995].

In discrete manufacturing processes, products are traditionally manu-
factured in production lots based on common raw materials and pro-
duction histories. In a discrete manufacturing process,a specified quan-
tity of products moves as a unit (group of parts) between workstations
and each part maintains its unique identity, [SP88, 1995]. The out-
put from a discrete manufacturing process appears one by one or in
quantities of parts.

A continuous process might be, e.g., water purification plants, paper
mills or the generation of electricity from a power plant, whereas a
discrete manufacturing process could be, e.g., the production of cars.

In batch manufacturing the output appears in lots or in quantities of
materials. The product produced by a batch process is called a batch.
Batch processes are neither continuous nor discrete, yet they have
characteristics from both.

128

7.1 Batch Processing

An example of a batch process, [Rosenhof and Ghosh, 1987]|, taken
from our daily life, is the preparation of a good cake. The work can
be divided into three major tasks: preparation, cooking, and cooling
and storing. The three tasks can be broken down into a sequence of
substeps. The steps in each task should be done in a proper order to
make a good cake. If not done in this way, the cake might not be very
tasty and, as explained below, do not adhere to the formal definition
of a batch process.

Batch processes define a subclass of sequential processes. The differ-
ence is that sequential processes not necessarily have to generate a
product whereas batch processes do. In industry, batch and sequen-
tial process are used in many ways and in many areas: food, bev-
erages, dairy processing, pharmaceutical, biotechnical manufacturing
and chemical plants.

A formal definition of batch process is given by [Shaw, 1982]:

A process is considered to be batch in nature if, due to physical
structuring of the process equipment or due to other factors, the
process consists of a sequences of one or more steps that must be
performed in a defined order. The completion of this sequence
of steps creates a finite quantity of finished product. If more of
the product is to be created, the sequence must be repeated.

An other definition is given by [SP88, 1995]:

A batch process is a process that leads to the production of
finite quantities of material by subjecting quantities of input
materials to an ordered set of processing activities over a finite
period of time using one or more pieces of equipment.

7.1 Batch Processing

Continuous processes have been used to produce many products that
were originally produced by batch processes. One reason for this is
that batch processes have typically been labor intensive and experi-
enced operators have been necessary to produce batch products with

129

Chapter 7. Batch Control Systems

consistent quality. Since continuous plants were those that produced
the largest volume of products this is where most of the research and
development money were spent. However, increasing demands on flex-
ibility and customer-driven production has led to an increased interest
in batch processes. This is because batch processes are more economi-
cal for small scale production, as fewer pieces of process equipment are
needed, and intermediate storage are not very expensive. Batch plants
can also be made highly flexible, and thereby well suited for manufac-
turing of special products. For example, high quality malt whisky is
produced in batch processes whereas grain liquor, the basis for blended
whisky, is produced in continuous processes.

There are also processes that are not easily amenable to continuous
operations. Some examples are given in [Rosenhof and Ghosh, 1987]:

1. Processes with feedstocks and/or products that can not be han-
dled efficiently in a continuous fashion, such as solids and highly
viscous materials;

2. Processes in which the reactions are slow, requiring the reactants
to be held in process vessels for a long time (e.g. fermentation
for beer and wine);

3. Processes in which only small quantities of products and/or dif-
ferent grades of the same product are required in limited quan-
tities (e.g. dyestuff and specialty chemicals);

4. Processes that need precise control of raw materials and pro-
duction along with detailed historical documentation (e.g. drug
manufacturing).

Typically, batch plants are used to manufacture a large number of
products. Within each product a number of different grades often exist.

Batch processes can be classified by: (1) the number of products they
can make and (2) the structure of the plant, [Fisher, 1990].

1. A batch process can be single-product, multi-grade or multi-prod-
uct. A single product batch plant produces the same product in
each batch. The same operations are performed on each batch and

130

7.2 Batch Control

the same amount of raw materials is used. A multi-grade batch
plant produces products that are similar but not identical. The
same operations are performed on each batch but the quantities
of raw materials and/or processing conditions such as, e.g., tem-
peratures, may vary with each batch. The multi-product batch
plant produces products utilizing different methods of production
or control. The operations performed, the amount of raw materi-
als and the processing conditions may vary with each batch.

2. The basic types of batch structures are series (single-stream),
parallel (multistream) and a combination of the two. A series
structure is a group of units through which the batch passes se-
quentially. If the plant has several serial groups of units placed
in parallel but without interaction the plant has a parallel struc-
ture. If interactions exists between the parallel branches a se-
ries/parallel structure is achieved. Other names for the series,
parallel and series/parallel structures are single-path,multi-path
and network-structure, [SP88, 1995].

The batch plant classification by product and by structure can be com-
bined in a matrix to show the degree of difficulty in automating the
various combinations. The single-product, single-path batch plant is
the simplest whereas the multi-product, network-structure combina-
tion is the most difficult.

7.2 Batch Control

Batch control projects have traditionally been among the most diffi-
cult and complex to implement [ARC, 1996]. Typically, batch control
projects span over a wider scope of functionality than that required
for either continuous or discrete manufacturing processes. With con-
tinuous and discrete processes, a reasonable level of automation can
be attained merely by implementing basic regulatory or logic control.
Batch operations typically require basic regulatory and logic control
operating under sequential control; which in turn, is operating un-
der basic recipe management in order to achieve process automation.
The complexity of control within a process cell depends on the equip-
ment available within the process cell, the interconnectivity among this

131

Chapter 7. Batch Control Systems

equipment, the degree of freedom of movements of batches through this
equipment, and the arbitration of the use of this equipment so that the
equipment can be used most effectively [SP88, 1995].

The discussion about batch control systems and the progress in batch
process control has been hampered by the lack of a standard terminol-
ogy. In the last years, there have been three major initiatives with the
aim to provide a common language. The first major effort was an out-
growth of a Purdue University workshop on batch control in the mid
1980s, [Williams, 1988]. The second was made by NAMUR, [NAMUR,
1992|. The third major effort is sponsored by the Standards and Prac-
tices division of ISA (Instrument Society of America), the International
Society for Measurement and Control, [SP88, 1995|. The standard is
divided into two parts, Part 1, called S88.01 deals with models, termi-
nology and functionality. This part of the standard was approved by
the main committee of ISA and ANSI in 1995. Part 2 will deal with
data structures and language guidelines. It is anticipated that an IEC
(International Electrotechnical Commission) approval of the first part
of S88 will appear soon without any substantial changes. This will
make S88.01 an international standard for batch control. The ISA S88
standard is also known under the name SP88.

7.3 The Batch Standard ISA-S88.01

The first part of the standard describes Batch Control from two differ-

ent viewpoints: the process view and the equipment view, see Figure
7.1.

The process view is represented by the process model and is normally
the view of the chemists. The equipment view is represented by the
physical model and is normally the view of the product engineer or the
process operator.

Process Model

A batch process can be hierarchically subdivided as shown in Figure
7.1 (left).

132

7.3 The Batch Standard ISA-S88.01

Process General Site Master Control Equipment Physical
Model Recipe Recipe Recipe Recipe Control Model
Process Process Process Procedure Procedura Procedurd P IECTISS
e
Process Process Process Unit Unit Equipment .
g g S P J P q Unit Unit
tage tage tage rocedure rocedure Procedure
Process Process Process Operation Operation Equipment| Equipment
Operation Operation| Operation Operation| Module
Process Process Process Phase Phase Equipment Control
Action Action Action Phase Module
Process Equipment
View Procedural Control View

Figure 7.1 Relations between SP88 models and terminology.

¢ The process consists of an ordered set, serial and/or parallel, of
process stages. A process stage is a part of a process that usu-
ally operates independently from other process stages. It usually
results in a planned sequence of chemical or physical changes in
the material being processed. Typical process stages can be, e.g.,

drying or polymerization.

e Each process stage consists of an ordered set of one or more pro-
cess operations. Process operations describe major processing ac-
tivities. It usually results in chemical or physical change in the

133

Chapter 7. Batch Control Systems

material being processed. A typical process operation is, e.g., re-
act.

Each process operation can be subdivided into an ordered set of
one or more process actions that carry out the processing required
by the process operation. Process actions describe minor process-
ing activities that are combined to make up a process operation,
Typical process actions are, e.g., add reactant, hold.

In the process model, the procedure for making a product does not con-
sider the actual equipment for performing the different process steps.

Physical Model

The physical model of SP88 defines the hierarchical relationships be-
tween the physical assets involved in batch manufacturing. The model
has seven levels, starting at the top with an enterprise, a site and an
area. In Figure 7.1 (right) only the four lower levels are shown, with
the following interpretation:

e A process cell contains one or more units.

e A unit can carry out one or more major processing activities such

134

as react, crystallize or make a solution. Units operate relatively
independently of each other. A unit is made up of equipment
modules and control modules.

An equipment module can carry out a finite number of minor
processing activities like weighting and dosing. It combines all
necessary physical processing and control equipment required to
perform those activities. Physically, an equipment module may be
made up of control modules and subordinate equipment modules.
An equipment module may be part of a unit or may be a stand-
alone equipment grouping within a process cell. It may be an
exclusive use resource or a shared resource.

A control module is typically a collection of sensors, actuators or
controllers. Physically, a control module can be made up of other
control modules.

7.3 The Batch Standard ISA-S88.01

Recipes

To actually manufacture a batch in a process cell the standard pro-
poses a gradually refinement of the process model based on four recipe
types; general recipe, site recipe, master recipe and control recipe. A
recipe contains administrative information, formula information, re-
quirements on the equipment needed, and the procedure that defines
how the recipe should be produced. The procedure is organized ac-
cording to the procedural control model, see Chapter 7.3 (Procedural
control).

e General recipe
The general recipe is an enterprise level recipe that serves as a
basis for the other recipes. The general recipe is created without
specific knowledge of the process cell equipment that will be used
to manufacture the product.

e Site recipe
The site recipe is specific to a particular site. The language in
which it is written, the units of measurements, and the raw ma-
terials are adjusted to the site.

e Master recipe
The master recipe is targeted to a specific process cell. A master
recipe is either derived from a general recipe or created as a
stand-alone entity by people that have all the information that
otherwise would have been included in the general or the site
recipe.

e Control recipe
The control recipe is originally a copy of the master recipe which
has been completed and/or modified with scheduling, operational
and equipment information. A control recipe can be viewed as an
instantiation of a master recipe.

The four recipes are gradually refined to the stage where all necessary
aspects for the execution of the recipe on a certain type of equipment
are taken into account. The general and site recipes are equipment
independent whereas the master and control recipes are equipment
dependent. In order to distinguish between equipment independent

135

Chapter 7. Batch Control Systems

and equipment dependent process steps different terminology is used.
The terms Procedure, Unit Procedure, Operation, and Phases are in-
troduced for the equipment dependent process steps, see Figure 7.1.

Procedural control

The four recipe levels together with the equipment control constitute
the link between the process model and the physical model, denoted
procedural control, see Figure 7.1. Procedural control is characteristic
for batch processes. It directs equipment-oriented actions to take place
in an ordered sequence in order to carry out a process-oriented task.

Procedure

Unit
Procedure

Operation

Phase

Figure 7.2 Procedure Control.

The procedural structure is hierarchical, see Figure 7.2. A procedure
can gradually be broken down into smaller parts.

e The procedure is the highest level in the hierarchy and defines
the strategy for accomplishing a major processing action such as
making a batch. It is defined in terms of unit procedures, and/or
operations, and/or phases. An example of a procedure is "Make
a batch of product A".

136

7.3 The Batch Standard ISA-S88.01

e A unit procedure defines a set of related operations that causes a
production sequence to take place within a unit. Examples of unit
procedures are, e.g., polymerize, recover or dry. A unit procedure
must be executed within a single unit process.

e An operation is a sequence of phases that defines a major pro-
cessing sequence that takes the material being processed from
one state to another. An operation usually involves a chemical or
physical change. Examples of operations are, e.g., reaction and
preparation.

e The smallest element that can accomplish a process oriented task
is a phase. It defines a product independent processing sequence.
A phase may be decomposed into steps and transitions according
to Grafcet/SFC. Examples of phases are, e.g., add catalyst.

The IEC 1131-3 standard, which was published in 1993, specifies pro-
gramming languages for controllers. This standard fills an important
void since part 1 of ISA-S88 does not specify languages for configur-
ing the sequential and batch control functions. Many suppliers have
already incorporated the IEC 1131-3 standard in their products.

Sequential Function Charts (SFC) are gaining acceptance for config-
uration of the procedural part of recipes. The main reasons for this
are that SFC are graphical, easy to configure and easy to understand.
SFC is also the basis for Procedural Function Charts (PFC), a graph-
ical language for recipe representation currently being defined in the
SP88 working group.

Equipment control

The control recipe itself does not contain enough information to operate
a process cell. On some level it must be linked to the process equipment
control, i.e., the control actions that are associated with the different
equipment objects. SP88 offers large flexibility with respect to at which
level the control recipe should reference the equipment control. It is
also allowed to omit one or more of the levels in the procedural model.
The situation is shown in Figure 7.3. The dashed levels could either
be contained in the control recipe or in the equipment control. Several
examples of how this can be done will be given in Chapter 9.

137

Chapter 7. Batch Control Systems

Control Recipe Equipment
Procedure Control
e p—

ecipe |
Procedure I Procedure I

1
| Unit I
| Procedure |

Lo [— RN

<o I T

<~ ve
- T |
I Operation :
I_—_I___l
R :
| Equipment
I Phase I Phase

Figure 7.3 Control recipe/ Equipment control separation.

Control Activity Model

To successfully manage batch production many control functions must
be implemented. The control activity model shown in Figure 7.4, iden-
tifies the major batch control activities and the relationships amongst

them. This model was outlined in SP88 [SP88, 1995], and provides an
overall perspective on batch control.

The control activities shown relate to real needs in a batch manufac-
turing environment.

e Recipe Management
The need to have control functions that can manage general, site,
and master recipes implies a need for the recipe management
control activity.

e Production Planning and Scheduling
Production of batches must occur within a time domain that is
planned and subsequently carried out. Production planning and

138

7.3 The Batch Standard ISA-S88.01

Production Production
Planning and Information
Scheduling Management

Recipe
Management

Process
Management

Unit
Supervision

Process
Control

Outside the scoop

Personnel and of SP88
Environmental
Protection

Figure 7.4 The control activity model of SP88.

scheduling is the control activity where these control functions
are implemented.

Production Information Management

Various types of production information must be available and
the collection and storage of batch histories is a necessity. The
production information management control activity in the model
covers these control functions.

Process Management
Control recipes must be generated, batches must be initiated and
supervised, unit activities require coordination and logs and re-

139

Chapter 7. Batch Control Systems

ports must be generated. These control functions fall under the
process management control activity.

e Unit Supervision
The need to allocate resources, to supervise the execution of op-
eration and phases, and to coordinate activities taking place at
the process control level are examples of control functions needed
at the unit supervision control activity level.

e Process Control
The Process Control control activity discusses control functions
that deal directly with equipment actions.

7.4 Summary

Industrial manufacturing and production processes can be classified
as continuous, discrete or batch. Traditionally, continuous and discrete
processes have been the areas where most research has been per-
formed. However, increased demands on production flexibility, small
scale production and customer-driven production has led to an in-
creased interest for batch processes and batch control. A batch pro-
cess is neither continuous nor discrete, yet it has characteristics from
both. A batch cell can be made highly flexible, both with respect to the
number of different products it can produce and with respect to the
structure of the plant. The multi-product, network structured batch
cell is the most flexible but also the most difficult type of plant to con-
trol. The recent batch control standard ISA-S88.01, formally defines
the terminology, models and functionality of batch control systems.
The standard mentions the possibility to use Grafcet but only at the
very lowest level of control. However, there is also a need for a com-
mon representation format, complying with the standard, at the recipe
level.

140

3

High-Level Grafchart and
Batch Control

The SP88 standard is an important step towards a formal definition
of the terminology, models and functionality of batch control systems
for multi-product batch processes. The standard defines, e.g., the pro-
cedural structure of a recipe. The structure is hierarchical. Sequential
Function Charts (SFC) is used for representing sequence control in
the PLC standards IEC 848 and IEC 1131. Although the possibility to
use SFC is mentioned in SP88, it is only presented as a formalism that
may be used at the very lowest level, i.e, the PLC level, of the recipes.
The standard mention nothing about the implementation of the higher
procedural levels in the recipe.

The aim of this thesis is to shown various ways in which the concepts of
High-Level Grafchart can be used in the context of recipe-based batch
control. The aim is not to present a complete batch control system. As
will be shown High-Level Grafchart can be used at all levels in the
hierarchical procedure model, from the PLC level sequence control to
the representation of entire recipes. High-Level Grafchart also facili-
tates the linking that has to exist between the control recipe procedural
elements and the equipment control procedural elements.

A batch scenario, consisting of one batch cell, has been defined and
implemented in G2. The batch scenario is used as a test platform to
investigate how High-Level Grafchart can be used in a batch control
system.

141

Chapter 8. High-Level Grafchart and Batch Control

This chapter starts with a presentation of related activities. The com-
mon point of the activities presented, is that they are all based on
Petri Nets or Grafcet. The chapter also contains a presentation of how
High-Level Grafchart can be used in a batch control system and, it
contains a description of the defined batch scenario.

8.1 Related Activities

Batch processes receive increasing interest in industry as well as the
academic control community. This can be noticed by the increased num-
ber of researchers in the field. The control of batch processes can be
attacked in various ways. In this section an overview of related work
and activities, all with Petri Nets or Grafcet as a basis, is presented.
The presentation does not try to cover the field completely, other ac-
tivities, not presented in this section, but yet interesting, most likely
exist.

By modeling batch plants and recipes mathematically and by applying
design methods to these models control laws can be generated. The
generated control laws should ensure safe and correct operations. The
PhD-thesis by Tittus, [Tittus, 1995], proposes both models, frameworks
and design methods for this task.

The plant is modeled by a Petri Net describing all physically possible
connections between the process units. Each process unit is modeled
by an individual PN presenting the state of this unit. The recipe for
a batch, is modeled by a PN describing all possible execution paths
through the plant. If more than one batch is to be produced at the
same time, the transitions of the Petri Nets of all recipes are inter-
leaved and one PN describing all possible intermixings of the recipes
is achieved. This net is synchronized with that of the plant, forming
the control recipe (Note: the terminology is not the same as that of
S88.01). The control recipe is reduced to all physically possible inter-
mixings of the recipes and the plant by considering the fact that each
resource can only be used by one recipe at a time. Further reduction
can be done by removing the places and transitions that can lead to
an unsafe or a deadlock situation. From the reduced control recipe, a

142

8.1 Related Activities

discrete supervisor, that guarantees correct and parallel execution of
the recipes, can be generated.

The work by Tittus differ from that of this thesis in that it is more
focused upon formal verification and synthesis, see Chapter 1. The
aim is to generate a safe control recipe and no effort is put into the
representation or implementation of the recipes.

Wollhaf and Engell have developed an object-oriented tool for modeling
and simulation of the production process in a recipe-driven multipur-
pose batch plant, [Engell and Wollhaf, 1994]. Models of the production
plant, the recipes and the batches of material are developed. Both con-
tinuous and discrete aspects of the simulation are included in order
to support the supervision of the plant and the scheduling produc-
tion tasks. The work follows the German NAMUR standard, [NAMUR,
1992], see Chapter 7.2. The control recipe, represented with Sequen-
tial Function Charts, essentially contains the discrete model which
describes the production steps and the transitions. The plant model
together with the batches of material, constitute the continuous sys-
tem. By substituting the basic functions of the recipe by the technical
functions of the plant, a hybrid system, possible to use for simulations,
is created.

The focus of the work by Woéllhaf and Engell is modeling and sim-
ulation. They focus upon the mathematical algorithms used to solve
the differential and algebraic equations for simulation of the materi-
als. A large database for physical and chemical properties of the most
common substances is included in their tool. However, they do not fo-
cus upon the recipe management system and the issue of making the
recipes reusable and flexible.

The aim of the work by Hanisch and Fleck is to join the theoretic work
on resource allocation problems with the need of such strategies in
recipe-control framework (recipe-based control systems), [Hanisch and
Fleck, 1996]. They use high-level Petri Nets to model both the recipe-
based operations and the resource allocation strategy. The resource
allocation module is implemented separately within the process control
system. The strategy of the resource allocation module is to optimize
the productivity. Simulation of the system allows the control engineer

143

Chapter 8. High-Level Grafchart and Batch Control

to answer questions about the utilization of resources, bottlenecks and
resource dimensions.

Not many tools nor methods exist that allows to verify the recipe be-
fore it is used to control a chemical process. Hazardous processes exist
and motivate the need for such methods. The idea of the approach
of Brettschneider, Genrich and Hanisch, [Brettschmeider et al, 1996],
is to model the recipe, the plant and the device control (equipment
control) by means of high-level Petri Nets. By merging the nets, verifi-
cation and performance analysis can be performed using the analysis
methods of Petri Nets.

8.2 High-Level Grafchart for Batch Control

The physical and procedural models of SP88, as well as the different
recipe types, can all be nicely represented in High-Level Grafchart and
the G2 environment.

Physical Model

The physical model of SP88 defines the hierarchical relationships be-
tween the physical units involved in batch control. Only the lower four
levels will be considered as shown in Figure 8.1 (left).

The hierarchical structure of the physical model is straightforward
to implement in an object-oriented environment such as G2. The at-
tributes of a G2 object can either be values (numbers, strings, or sym-
bols) or other objects. The latter case gives a hierarchical object struc-
ture that well matches the physical model. A G2 object representing
an equipment unit may have attributes that contain other G2 objects
representing the equipment modules in the unit. The equipment mod-
ules may have attributes containing the control modules and other
equipment modules within the module. The equipment unit object may
itself be a part of an object representing the batch cell. The situation
is shown in Figure 8.1 (right).

144

8.2 High-Level Grafchart for Batch Control

attribute of Process Cell Object

Process :
Cell |
an-instance-of
) G2 object
Must contain
Unit Equipment Unit
Object
T 0| o] @
-t el -
, E|E|E
May contain I || <
Equipment an insténce of
Module y an-instance-of
ay

P
contain .
+ —I: G2 objec/ G2 °bl>[\
Equinment Module Equipment Module
May contain qmpgbject Object

Control
Module

May
contain

——|Attribute
__ —Attribute

T

Figure 8.1 SP88 Physical Model (left) and its G2 representation (right).

~——|Attribute
__—|Attribute

~
—_—
—

Procedural model

The procedural model of SP88 is also hierarchical, see Chapter 7.3
(Procedural control). The structure of the procedural model is shown

in Figure 8.2 (left).

The hierarchical levels of the procedural model can conveniently be
described with the hierarchical abstraction facilities of Grafchart. A
procedure can be represented as a function chart composed of macro
steps representing the unit procedures. These macro steps may con-
tain other macro steps or procedure steps representing the operations.
Similarly, the macro steps representing the operations contain other
macro steps representing the phases. Finally, the phase macro steps
contain ordinary steps with associated step actions. The situation in
shown in Figure 8.2 (right).

145

Chapter 8. High-Level Grafchart and Batch Control

Function chart =

Procedure Procedure
I Subworkspace
. Subworkspace
consists of an /
ordered set of + / /
Macro Step +
Unit procedure Unit Procedure\ ® Macro Step
Operation ® Macro Step
F ‘:||= Phase)
\ VA
consists of an \ |
ordered set of \ |
| \ | \
Operation \ | \\
\ | \
T | \
consists of an Subworkspace \
ordered set of |
Phase Step
consists of an le:
ordered set of
Step l

Figure 8.2 SP88 Procedural Model (left) and its representation in Grafchart
(right).

Recipes

SP88 defines four recipe types: general recipes, site recipes, master
recipes and control recipes. Here, only the master and control recipes
are considered. A recipe contains administrative information, formula
information, requirements on the equipment needed to produce the
recipe and the procedure that defines how the recipe should be pro-
duced. The procedure is organized according to the procedural control
model. The master recipe is targeted to a process cell. Each individual
batch is represented by its control recipe. The control recipe is orig-
inally a copy of the master recipe which has been completed and/or
modified with scheduling, operational and equipment information. A
control recipe can be viewed as an instantiation of a master recipe.

With HIL-Grafchart, recipes can be represented in two main ways: as
function chart objects or as object tokens. In the first case a recipe
is represented as a function chart with parameters (attributes). The

146

8.2 High-Level Grafchart for Batch Control

procedure part of the recipe is represented by the function chart and
the formula information and equipment requirements are represented
by parameters (attributes) of the Grafchart process encapsulating the
function chart. This information can be accessed from the recipe pro-
cedure using the sup.attribute notation. This way of representing
a recipe is shown in Figure 8.3 (left). In the second case a recipe is
represented as an object token. This object token contains the for-
mula information and equipment requirements as attributes and the
recipe procedure as a Grafchart method, see Figure 8.3 (right). The
procedure method can access the formula information and equipment
requirements using the self.attribute notation.

Procedure
/ an object token
/
// |:| Equipment
- Formula q‘:

¢ :

Procedure ja Grafchart method \

®
T =
a Grafchart process
Equipment
Formula \\

|
I
I
[
I
I
|
|
|
|
| yZ
|
I
[
I
l
!
|
I
I
!

Figure 8.3 Control recipe as a function chart (left) and as an object token
(right).

Recipe and Equipment control Separation

The control recipe does not contain enough information to operate the
process cell. At some level it must be linked to the equipment control
that is responsible for the actual operation of the process equipment.
The separation between the control recipe procedure and the equip-
ment control is illustrated in Figure 7.3. The dashed levels could either
be contained in the control recipe or in the equipment levels. The link-
ing could either be done on the procedure level, unit procedure level,
operation level, or phase level.

147

Chapter 8. High-Level Grafchart and Batch Control

Using High-Level Grafchart the linking is implemented using meth-
ods and message passing according to Figure 8.4. The element in the
control recipe where the linking should take place is represented by
a procedure step. Depending on at which level the linking take place,
this procedure step could represent a recipe procedure, recipe unit pro-
cedure, recipe operation or recipe phase. This procedure step calls the
corresponding equipment control element which is stored as a Graf-
chart method in the corresponding equipment object. If the linking
takes place at the unit procedure level then the equipment control ele-
ment corresponds to a equipment unit procedure. If the linking is done
at the operation level the equipment control element is an equipment
operation.

Grafchart for representing
equipment sequence logic

a reactor

name | R1

Grafchart for representing
the recipe procedure

Y

charge| a grafchart-method

T |
s %

\ | Method callm———>>

Figure 8.4 Control recipe/Equipment Control linking.

8.3 A Batch Scenario Implemented in G2

A batch scenario consisting of one batch cell has been defined and
implemented in G2. The batch scenario is used as a test platform to
investigate how High-Level Grafchart can be used for recipe handling.

In the batch cell, different products can be made. The batch cell is
structured as a network, which means that for each batch that will

148

8.3 A Batch Scenario Implemented in G2

be produced there are several possible ways through the plant. It is
possible to have several batches in the plant at the same time, the
batches may be of the same or of different types. The batch cell is thus
of the multi-product, network-structure type, see Chapter 7.

The cell consists of three raw material storage tanks, two mixers, three
buffers, two batch reactors, and three product storage tanks. The units
are interconnected through valve batteries. The cell can produce two
products named D and E using three reactants A, B and C. A schematic
of the batch cell is shown in Figure 8.5.

Slorage
tanks

Mixers

Buffers

Reactors

Product
tanks

Figure 8.5 The batch cell.

149

Chapter 8. High-Level Grafchart and Batch Control

The scenario is divided into three major parts: a dynamic simulator
that simulates the dynamics of the scenario, a process control system
and an operator interface. Figure 8.6 shows the three parts of the batch
cell.

Operator Interface Process Control System Dynamic Simulator

.
| T
n n
A b
X1 L
i |

Figure 8.6 The three parts of the batch scenario.

Unit processes

Storage tanks The storage tanks contain the raw materials, i.e the
reactants. Since there are three different reactants there are three
storage tanks in the cell, one for each reactant. Each storage tank has
a level-transmitter and a temperature-transmitter. Each storage tank
also has an output on-off valve and pump connected to the outlet of the
tank. The storage tanks are assumed never to be empty. The schematic
of a storage tank is shown in Figure 8.7 (left).

Mixers The main task of a mixer is to mix different substances, but
a mixer can also be used to store substances while waiting for some
other unit. The mixer is equipped with an agitator. The mixer has two
inlets, each controlled by an on-off valve. In this way it is possible

150

8.3 A Batch Scenario Implemented in G2

Storage tank

Figure 8.7 A storage tank (left). A mixer (middle). A buffer (right).

to fill the mixer in parallel. The outflow of a mixer is controlled by a
pump and an on-off valve. The mixer has three transmitters: a level-
transmitter, a temperature-transmitter and a pressure-transmitter. In
Figure 8.7 (middle) a mixer is shown.

Buffers The task of the buffer is to store substances and if necessary
maintain the temperature of the substance. A buffer can also be used
to heat or cool a substance. The inflow of the buffer is controlled by
an on-off valve and the outflow is controlled by a pump and an on-
off valve. As shown in Figure 8.7 (right) a buffer has a level and a
temperature transmitter. The temperature transmitter is connected to
a PID-controller. The PID-controller adjust the flow of hot or cold liquid
to the heater of the buffer and, thus, controls the temperature of the
content of the buffer.

Reactors A reactor has two inlets and one outlet. It has an agitator
and four transmitters: level, temperature, pressure and flow. The out-
flow is, as before, controlled by a pump and an on-off-valve. The inflow,
and thereby the level in the reactor, is controlled by control valves us-
ing a PID-controller. A schematic of the reactor is given in Figure 8.8

151

Chapter 8. High-Level Grafchart and Batch Control

- Produst tank &

Resdctor i

Figure 8.8 A reactor (left). A product tank (right).

(left).

The main task of the reactor is to perform chemical reactions. This
is done by heating or cooling the substance inside the reactor. The
reactor has a jacket which can be filled with a hot or cold liquid. The
temperature in the reactor is controlled by two cascade coupled PID-
controllers that adjust the flow through the jacket.

Product Tanks The product tanks are used for storing the finished
products. They are assumed never to be full. Each product tank has
an inlet valve and a level transmitter. A schematic of a product tank
is shown in Figure 8.8 (right).

Valve-batteries Valve-batteries, see Figure 8.9, are placed in be-
tween the different units. A valve battery is organized in a matrix
structure with n rows and m columns where n is the number of inlets
and m is the number of outlets. By opening the valve placed in position
(i, j), inlet i will be connected to outlet j.

152

8.3 A Batch Scenario Implemented in G2

@@ T @ 5]

e
e o fo e
BT N S
B B BB
% P by B
E%ﬁ% i
B S R
o be Le bwey o

Figure 8.9 A valve-battery.

The Operator Interface

The operator interface, see Figure 8.5, provides the operator with a
userfriendly interface, through which he or she can get information
about the status of the plant. Through the interface the operator can
also interact with the plant.

By clicking on any of the units the internal structure of this unit is
shown. The operator can open and close the valves manually by clicking
on them. The pumps can be turned on and off manually. Some of the
units also have PID-controllers, these can be operated manually or
automatically. When clicking on any of the sensors a trend-curve of
the measured signal is shown, see Figure 8.10.

As the batch moves through the plant, its actual position is highlighted.
A unit currently used by a batch is marked with a black dot placed
at the upper right corner. The level indicator of this unit shows the
actual level in the unit. If the batch is using a pipe, i.e. is on its way
from one unit to an other, this pipe is marked with a colour.

The Dynamic Simulator

The dynamic simulator is used as a substitute for a real plant. It sim-
ulates the mass balances, energy balances and the chemical reactions.
All simulations are done in real-time.

153

Chapter 8. High-Level Grafchart and Batch Control

I BATCH-SCHEMATIC

Storage A
fanks

Mixers

Bufters

Reactors

Figure 8.10 The operator interface showing the internal structure of a mixer
and a trend curve.

Two reactions can be simulated in the scenario:

A+B — 2D
C+D — E

The total mass balance, the component mass balances and the energy
balance for the reactions are calculated and simulated. A detailed de-
scription of the dynamic simulator is found in Appendix B.

The Process Control System

The process control system implements the basic control functions. It
both receives information from and sends information to the simulator.
For example, if the operator starts a pump this information must be
propagated to the simulator and the pump should be turned on. Simi-
larly, information about, e.g., the actual level in a unit should be sent
from the simulator to the process control system.

The process control system contains equipment objects (unit processes)
representing the units in the plant, i.e. the tanks, mixers, buffers and

154

8.3 A Batch Scenario Implemented in G2

reactors. The equipment objects have an internal structure of sensors,
actuators and PID-controllers. These correspond to the equipment and
control modules of SP88.

These objects are stored as attributes of the unit process objects, see
Figure 8.11.

CONTROL SYSTEM

M2, a mixer-proceas

Motes | OK

Htem configurstion | none
Mames | M2 “

Reserved | falze

I Invelvel | the on-off-valvefh INVALVET-M2
Invalve2 | the on-off-vslvefb INVALVE2-M2
Qutvalve | the on-cff-valve-la OUTVALVE-M2
Pump | the pump-fb PUMP-M)
INV ALVE2-M2, an on-cff-valve-f, the inyalve? of
Il Level sensor | the level-sensordf LT M2

Temperature zensor | the tempearattre-zensd

Notes | OK

Prezsure sensor | the pressure-zensor{y

ltem configurstion | none
Names | INVALVER-M2
Open | false

Agitator | the sgitator-switch AG
Il Charge | a grafchart-nethod

Agitate | & grafchart-method

Dizcharge

s grafchart-method

Figure 8.11 The process control system with its equipment objects and their
internal structure.

To each unit process a number of methods are associated. These meth-
ods are descriptions of the operations or phases that the unit can per-
form, i.e., the methods are detailed descriptions of how to perform
a certain task on one particular unit. The names of the methods are
found in the attribute table of each object whereas the implementation
of the different methods are found on the subworkspace of the class
definition it belongs to. A mixer can, e.g., perform the following tasks:
charge, agitate and discharge as shown in Figure 8.12. The methods
are implemented as Grafchart methods.

155

Chapter 8. High-Level Grafchart and Batch Control

2N

UNIT-FROCESS

>

5§ TORAGE -TANKFROCESS A A A

MIXER_CHARGE KIXER_AGITATE KIXER_DISCHARGE

>

MIXER-PAOCESS § § §

MIXER_CHARGE_METHOD MIXER_AGITATE_WETHCO WIXER_DIS CHARGE_ME THOD

>

BUFFER-PROCESS

>

REACTOR-FROCE$$

>

PRODUCT-TANK-PROCESS

Figure 8.12 The methods of the class ‘'mixer-process’.

Recipes

Two reactions can be simulated in the scenario:

A+B — 2D
C+D — E

Recipe A+ B — 2D : First the same amount of the two reactants
are filled into a mixer. The filling can be done either in parallel or
in sequence. When the filling is completed the agitation is started.
When the two reactants are well mixed the content of the mixer is
transfered into a reactor. In the reactor the reaction takes place. This
reaction needs to be heated for the reaction to start. Finally the reactor
is emptied and the substance is stored in a product-tank.

Recipe C + D — E: The production of substance E can be done in
either of two ways. Both start with producing substance D as described

above.

e Substance D is transported from the reactor to a buffer and then
reactant C is added. The content of the buffer is emptied into a

156

8.4 Summary

reactor and the reaction is started by heating the content. When
the reaction is completed the reactor is emptied and the product
is stored in a product-tank.

e Reactant C is filled into a buffer and heated to the same tem-
perature as substance D at the same time as product D is being
produced. Then the content of the buffer is transfered to the reac-
tor and the two substances are agitated, and, if needed, further
heated. When the reaction is completed, the product, i.e., sub-
stance E, is stored in a product-tank.

8.4 Summary

An object oriented language is well suited to represent the hierarchical
structure of the physical model. High-Level Grafchart can be used to
represent all the levels in the hierarchical procedural control model
and, by using the support for methods and message passing, the linking
between the control recipe procedural elements and the equipment
procedural elements can be nicely represented.

157

9

Recipe Structuring using
High-Level Grafchart

The main application of High-Level Grafchart is recipe structuring and
resource management in multi-product, network-structured batch pro-
duction cells. A number of different ways of how to structure the recipes
and how to incorporate resource allocation have been investigated.

High-Level Grafchart is used at two levels, to represent the sequen-
tial structure in the recipes, i.e., the step by step instructions of how
to go from raw material to product, and to represent the sequential
control logic contained in the equipment units. To link the two parts
together, method calls are used, as discussed in Chapter 8.2 (Recipe
and Equipment control Separation).

In this chapter, four alternative representations of recipe structures
are given. The structuring alternatives have large differences and they
therefore have different advantages and disadvantages. Each major
structuring alternative is presented in a separate section. Drawbacks
and advantages are presented for each alternative. The first struc-
turing alternatives, Section 9.1, use High-Level Grafchart version I
whereas the reminding alternatives, Section 9.2, 9.3, and 9.4, use High-
Level Grafchart version II. The two versions are described in Chapter
6.

In all structuring alternatives, a batch can be followed through the
plant and it is possible to record its history in logs. This has, however,
not yet been fully implemented and is therefore not described.

158

9.1 Control Recipes as Grafchart Function Charts

As a common example, the simple recipe for producing product D, see
Chapter 8.3, will be used. The production is assumed to be performed
in the process cell described in Chapter 8.3.

9.1 Control Recipes as Grafchart Function Charts

The alternatives given in this section use High-Level Grafchart ver-
sion I, i.e., the Grafchart model is extended with parameterization and
methods and message passing.

Master recipe Control recipe - d =
Instance =
=
a Grafchart process a Grafchart process ==
name Recipe1 name Recipe1
mixer mixer M1
reactor reactor R1
size size 0.7
batch-id batch-id a412

Figure 9.1 Master and control recipes.

A master recipe is represented by a Grafchart process. The Grafchart
process has attributes specifying the type of equipment needed when
producing the batch. The control recipe is a copy of the master recipe
where the attributes are given their actual values, i.e., the equipment
that will be used is specified. The situation is shown in Figure 9.1 .

From the steps and transitions within the control recipe the attributes
can be referenced using the sup notation, see Chapter 6.1.

Recipes based on recipe phases

In the first example the control recipe procedure consists solely of
phases. Each phase references the associated equipment phase through
a method call according to Figure 9.2.

159

Chapter 9. Recipe Structuring using High-Level Grafchart

Control Recipe Equipment
Procedure Control
Recipe
Procedure
ReCipe ———————————————— — Eaqui t
Ph quipmen
ase References Phase

(method call) ¥

Equipment
Step

Figure 9.2 Recipes based on recipe phases.

The resulting control recipe is shown in Figure 9.3. The different unit
processes that the batch passes through are indicated by the column-
based organization of the recipe. The recipe starts by an assignment
step in which the resources necessary to produce the recipe are allo-
cated. Two version of the recipe have been implemented. One where the
operator manually assigns all the equipment before starting the proce-
dure and one where the equipment is assigned automatically through a
simple search algorithm immediately before the equipment is needed.
After the assignment step the two reactants A and B are filled into
a mixer. This is done in parallel, since the mixers have two inlets.
Then the agitation is started. When the agitation is finished the mixer
is emptied and at the same time the reactor is charged. This is ex-
pressed with the Grafchart parallel construct. When the charging is
finished, the reaction is started by heating the batch. Finally, the con-
tent of the reactor is transfered to the product tank and the production
of the batch is completed.

Each recipe phase is represented by a procedure step that calls the
corresponding equipment phase. In Figure 9.3 the attribute table for
the agitate step is shown. The procedure step calls the agitate meth-

160

9.1 Control Recipes as Grafchart Function Charts

MIXING REACTICN STORAGE

Assignment

-

Fill-A Fill-8
L L

T

Parameters | 'time 1°

Procedure | 'sup.mixer agitate’

Em
Py [] Charge
i Heat

==

| l
Discharge

Figure 9.3 Control recipe based on recipe phases.

ods in the mixer that has been assigned to the batch. This mixer is
contained in the mixer attribute of the recipe. The parameter time is
given the value 1. This denotes how long the agitation will take. The
agitate equipment phase consists of two steps where the agitator mo-
tor is active until the defined time has elapsed. The situation is shown
in Figure 9.4.

161

Chapter 9. Recipe Structuring using High-Level Grafchart

PROCESS CONTROL SYSTEM

MIXING REACTION STORAGE

2.
ofs

Fill-

a procedure-step

Parameters | "time 1"

Fill-A

I Procedure | "sup.mixer agitate"

i] Aghate Calling the agitatelmethod
of mixer M1

M1-AGITATE

t
Emply Charge

Heal

Discharge ¢ Charge

—(H+

g
-
=

Figure 9.4 Recipe - Equipment linking.

Recipes based on recipe operations

In the second recipe structuring alternative the control recipe is struc-
tured into operations that internally are decomposed into recipe phas-
es. The linking between the control recipe and the equipment control

still takes place at the phase level. The structure is shown in Figure
9.5.

The resulting control recipe is shown in Figure 9.6. The control recipe
is a straight sequence of recipe operations. Each recipe operation is rep-
resented as a macro step that contains the recipe phases. The phases
are represented as procedure steps that call the corresponding equip-
ment phases.

A problem with this approach is how to handle the parallelism between
the operations. The emptying of the mixer and the charging of the re-
actor should be performed in parallel. Here this is solved using process

162

9.1 Control Recipes as Grafchart Function Charts

Control Recipe Equipment
Procedure Control
Recipe
Procedure
Recipe
Operation
Recipe | ___ _ ____ __ _ ______ — Equipment
Phase quipme
References Phase
{method call) T
Equipment
Step

Figure 9.5 Recipes based on recipe operations.

steps. The Empty phase of the mixer operation is started through a pro-
cess step, i.e., as a separate execution thread. The result will be that
the Empty phase will execute at the same time as the Charge phase
of the reaction operation. A drawback with this approach is that the
parallelism is not expressed explicitly with the Grafchart constructs
and therefore not directly visible to the operator as in the previous
example. The recipe structure in Figure 9.6 could also be used if the
linking was done at the operation level. In that case the equipment
operations are internally structured as equipment phases.

Recipes based on equipment operations

In the third example the control recipe and the equipment control are
linked at the operation level according to Figure 9.7.

In the previous examples, the control recipe has explicit information
about which type of unit processes that the batch should be processed
in, e.g., a mixer, buffer or reactor. Another possibility is to let the con-
trol recipe be completely independent from which unit type it should
use. This can be achieved by defining a number of generic equipment
independent operations. Examples of generic operations could be store,
store-with-agitation, mix, mix-with-agitation, store-under-heating, ex-

163

Chapter 9. Recipe Structuring using High-Level Grafchart

Control Recipe

Procedure
. Mixer operation --
Mix A +B
Assignment Reactor operation --
: Q A+B->D

Mixer operation — @
Mix A + B Fill-A @ Fil-g

T Charge
Reactor operation
A+B->D Agltate

Heat
Storage operation Empty
Store Discharge
Finish recipe Ej

Figure 9.6 Control recipe based on recipe operations.

othermal-reaction ete. It is possible to mix two reactants in both mix-
ers, buffers and reactors. However, it is preferred to mix reactants
in a mixer. The mix-with-agitation operation cannot be performed in
a buffer. The store-under-heating operation can be performed in both
buffers and reactors but it is preferred to use the buffers for this.
Hence, for each generic operation a preference ordering must be given.
It is the task of the resource allocation scheme to find the best suited
unit processes for each recipe operation and to assign this to the recipe
when it is needed. The equipment operations are represented as equip-
ment object methods. These methods calls the equipment phases which
also are methods of the equipment objects. This structure has not been
implemented and tested in the batch scenario.

Advantages and Disadvantages

Structuring a recipe management system with control recipes repre-
sented by Grafchart function charts, has advantages and drawbacks.
The main advantage is that the system is easy to comprehend, one

164

9.2 Control Recipes as Object Tokens

Control Recipe Equipment
Procedure Control
Recipe
Procedure
/
Recipe [Equipment
Operation | =7~~~ T T T T T T - Operation
References ==
(method call)
Equipment
Phase
Equipment
Step

Figure 9.7 Recipes based on equipment operations.

batch equals one Grafchart process. Each control recipe, i.e., each Graf-
chart process can be modified independently of the other control recipes
simply by changing the parameters of the procedure steps or by chang-
ing the function chart. However, the drawback is that it is not easy to
get simultaneous information about all batches being produced in the
cell.

9.2 Control Recipes as Object Tokens

The recipe structuring alternatives presented in this section use High-
Level Grafchart version II, see Chapter 6. They utilize parameteriza-
tion, method and message passing, and the object token extensions of
HL-Grafchart.

In the previous section, one copy of the master recipe was needed for
each batch that was produced. The reason for this is not that the
batches are produced in different ways or that they use different types
of equipment, but that they do not necessarily use the same equipment
or have the same batch-identity number. Since the attributes, in the

165

Chapter 9. Recipe Structuring using High-Level Grafchart

last section, were global in the context of the function chart, the same
control recipe cannot be used simultaneously by more than one batch.
If, however, the batch specific information is stored locally, e.g., in the
tokens, the same function chart can be used by more than one batch.
Information that the batches share is represented globally, whereas
batch specific information is represented locally. Since the token con-
tains the batch specific information, the token represents the control
recipe and the function chart that the token is reside in is the common
master recipe. This way of structuring a recipe is shown in Figure 9.8.

Master recipe

|
// ° Control recipe

/
///’

E - name Recipe1
mixer M1
reactor
\ . R1
\ size 0.7
\ =4 batch—id a412

Figure 9.8 Control recipes as tokens.

The recipe alternatives presented in this section are all based on recipe
phases and each phase calls the associated equipment phase through
a method call. It is also possible to build up the recipe using operations
instead of phases, in the same way as described in Chapter 9.1 (Recipes
based on recipe operations).

The recipe shown in Figure 9.3 can be structured with object tokens.
The attributes previously contained in the control recipe function chart
will now be contained in the tokens. It is possible to have several to-
kens in the same master recipe. Each token corresponds to one control
recipe, i.e., one batch.

Recipes extended with resource allocation

Using the object token structuring possibility it is possible to combine
resource allocation with recipe execution in a Petri Net fashion, see
Figure 9.9.

166

9.2 Control Recipes as Object Tokens

_g_n_u

% Hew betch|

@; _—

Crente pesiotom |

]

B —
o9

L

Figure 9.9 Master recipe with resource allocation.

In the recipe two batches are under production. One batch is currently
filling reactant A and reactant B in one of the mixers and the other is
heating the content in one of the reactors. At the moment there is thus
only one mixer (out of two) and one reactor (out of two) reserved by a
batch.

167

Chapter 9. Recipe Structuring using High-Level Grafchart

In this approach an available equipment unit is represented as a token
residing in a step. The token correspond to a semaphore that guaran-
tees a batch exclusive access to the resource (equipment unit). PN-
transitions with multiple input and output arcs are used to express
the resource synchronization. If a batch has specific resource require-
ments, these can be expressed and checked against the equipment
capacity in the transition receptivity.

The chart can also be extended with more equipment oriented oper-
ations such as cleaning (CIP - clean in place). In Figure 9.10 an ex-
tremely simple master recipe is shown. Here, a CIP-operation must be
performed on each unit after it has been used by a batch.

CiP

Master recipe

Free
o mixers

Control recipes — "batches”

L
—
..
4
) |

Figure 9.10 A master recipe with combined equipment oriented operations.

Combined network

Using the token object structuring possibility combined with resource
allocation it is possible to merge all different master recipes into one
single High-Level Grafchart. This chart visualizes the resources shar-
ing that exists between the batches. The chart can be analyzed with
Petri Nets analysis methods to detect if there is a risk for deadlock.
The case for two simple master recipes is shown in Figure 9.11.

168

9.2 Control Recipes as Object Tokens

Master recipe A Master recipe B
e —————
O Free
O | mixers
[N : 1
| R P ¥
@ Free
® reactors @
| . | - |
— —
Y | |
@ ®
h 4 A4
-+ —+—
B

Figure 9.11 Combined net with all master recipes.

The combined network of the two recipes A+ B — 2D and C+D — E,
see Chapter 8.3, is shown in Figure 9.12. The recipe A + B — 2D
is represented to the left in the figure and the more complex recipe,
C + D — E is represented to the left. The resources needed are shown
in the center of the figure. The tokens representing mixers reside in
the upper step, the tokens representing the buffers in the mid-step and
the tokens representing the reactors in the bottom-step. The buffers
are only used by the recipe C + D — E. This net is large and complex
and therefore not suitable for representation.

A combined net can however be represented in a more attractive way
by using connection posts. Each master recipe function chart is repre-
sented separately. The different function charts are connected through
connection posts and analysis can be performed in the same way as
previously.

Advantages and Disadvantages

The structuring alternative presented in this section gives a more com-
pact representation compared with the structuring alternative given
in Chapter 9.1. This structuring alternative makes it easy to see how
many batches of a certain type that are under production. The recipes

169

Chapter 9. Recipe Structuring using High-Level Grafchart

MIXING AEACTION BUFFER STORAGE

Figure 9.12 Combined net with all master recipes.

have been structured using phases. It can however also be structured
using operations, in the same way as in Chapter 9.1. If the master
recipe function chart is changed this will affect all control recipes. This
can be both an advantage and a disadvantage. A drawback is that it is
not possible to modify the procedure of one control recipe alone. This
can however be resolved by using one HL-Grafchart function chart for
each batch, according to Section 9.1, together with connection posts.
This situation is shown in Figure 9.13.

170

9.3 Multi-dimensional Recipes

Master recipe A Master recipe B
' i
]) Free
O | mixers
—a @ |o—m0
A | M g
® Freet
reactors
A4 4
—0 @ |g—J
p— Y
]
W Vi
T o [
@Q B

Figure 9.13 Combined net with all master recipes using connection posts.

9.3 Multi-dimensional Recipes

The recipe structuring alternatives presented in this section use all
four features of HL-Grafchart, i.e., parameterization, methods and
message passing, object tokens, and multi-dimensional charts.

The multi-dimensional feature of Grafchart fits nicely into the batch
control problem. In the first recipe structuring alternative, Section 9.1,
only one token, representing one batch, could reside in one chart. In
the second recipe structuring alternative, Section 9.2, several tokens,
each representing one batch, could reside in a chart, provided they
were all of the same type. The tokens shared the structure of the
master recipe but contained specific information about the equipment
to use when being produced. Another, more sophisticated structuring
alternative is to let the token contain, not only information about the
equipment but also a method describing how it is produced. The chart
in which the tokens reside now becomes more general and allows for

171

Chapter 9. Recipe Structuring using High-Level Grafchart

tokens of different types to reside in the same chart. The idea is shown
in Figure 9.14

a Recipe_A

name batch 123
X 5
pro¢ | a grafchart-

method ‘
NV \

|name | batch 326 Methods describing how
z true _~ to produce the batch
proc | a grafchart— ~
method
N/
name | batch 583
X 5
Pro¢ | a grafchart— | 4/
method

Figure 9.14 A multi-dimensional chart.

Multi-dimensional recipes with implicit resource allocation

The first multi-dimensional recipe is shown in Figure 9.15. The func-
tion chart of the base-level of the multi-dimensional recipe is very gen-
eral and applies to all batches, independently of their type. In Figure
9.16, this chart consists of one initial step, two steps and one procedure
step. The tokens in the initial step can represent the orders effected to
the plant. The step following the initial step contains initializational
tasks that have to be performed before the production can start. The
batches currently under production reside in the procedure step and
the finished batches in the last step.

When a token enters the procedure step a call is performed and a
method of the token is started. This method describes how this spe-
cific batch should be produced and constitutes a part of the second
level in the multi-dimensional recipe. The method is implemented as a
Grafchart procedure, see Chapter 6.2. The attributes of the Grafchart
procedure contain the equipment specification of the batch. The dif-
ferent levels of the multi-dimensional chart communicate through the
different dot notations, see Chapter 6.4.

172

Procedure | a grafchart-method
Size | 2
!Néw recipe-A l /%
INEW recipe-B
e
—
Mixer | m1
® o Initialization)) Bufer | none
- 1| Reactor | none
——1 MIXING REACTION Size 2
Batch id | a415

9.3 Multi-dimensional Recipes

Assignment

Production
® Token class "recipe-token"
Parameters "size inv.size"

Fill-A Fill-B
Procedure "inv procedure”

Agitate

Assignment

Batch ready

¢ Charge
Heat
¢Dischalgs ¢ Charge

" ¢

Figure 9.15 Multi-dimensional chart with resource allocation.

Each control recipe, i.e., each token, is represented by an object to-
ken and visualized by a grafchart marker. When a new batch is to be
produced a new control recipe object token is created and a grafchart
marker of the correct type is placed in the initial-step of the function
chart. A master recipe is represented as an object token with attributes

173

Chapter 9. Recipe Structuring using High-Level Grafchart

and a method. A control recipe object token is created by copying the
master recipe object token.

The resource allocation of this recipe structuring alternative is done
implicitly. Immediately before an equipment is needed a simple search
algorithm is executed and the correct equipment is automatically as-
signed to the batch.

Multi-dimensional recipes with explicit resource allocation

In this structuring alternative the resource allocation is explicitly rep-
resented. The function chart of the base-level contains an initial-step,
a process step, two circular path (one for the batch and one for the
equipments) and a final step, see Figure 9.16.

After initialization of a new batch, which is done in the initial step,
the production of the batch is started. This is done in the process step,
from which the method of the token is called. The method represents
the recipe procedure. A multi-dimensional structure of the chart is
now achieved. When the call has been performed the token directly
moves to the next step. It enters a circular path where it sequentially
requests resources and continues its recipe execution in that resource.
The token does not leave the circular path until the execution of the
batch has reached its end, i.e., until the batch is ready.

The resources (equipment units) in the plant are also represented by
tokens. These tokens are included in another circular path, describing
the state of the resources. A resource can either be available, occupied
by a batch or in cleaning mode (cip). A batch requiring a resource
can only reserve a resource if the resource is available. If the resource
required by the batch is not available the batch has to wait until it
becomes available. When a batch releases a resource, the resource has
to be cleaned before it can be utilized again by another batch.

Advantages and Disadvantages

The recipe structures presented in this section are more advanced, and
maybe harder to understand at a first glance, than those previously
presented. However, the structures have advantages that the previ-
ously ones do not have. All types of control recipe tokens are allowed
to circulate in the base-level function chart, and as a consequence of

174

9.3 Multi-dimensional Recipes

{
New recipe-A

New recipe-Bi

o
i
3

N Spawns recipe
N] procedure CIP

Waits for nAvailable
resource gl resources
'I > Y
Occupied
] Exgcutes resources
recipe
L
} Resource % Batch ready
needed

L

Figure 9.16 Multidimensional chart with resource allocation.

this only one chart is needed for a production cell. The base-level func-
tion chart gives complete information about: (1) the number of ordered
batches, (2) the number of batches in production, (3) the ready pro-
duced batches and, (4) the status of the equipment units. If more spe-
cific information about a particular batch is required, this can easily
be obtained since the information is well structured and placed within
the token.

175

Chapter 9. Recipe Structuring using High-Level Grafchart

9.4 Process Cell Structured Recipes

An alternative to the previous solutions is to represent the process
units as steps instead of tokens. This gives a resource allocation chart
that resembles the physical structure of the process cell according to
Figure 9.17 where a simplified process cell is shown.

Mixer
M1 ®
| | 1 |
Buifer Buffer
Bl1J © ® 5o
Reactor Reactor
R1 ® R2

Figure 9.17 Process cell structured recipe.

Each batch is represented as a control recipe token that moves around
in the resource allocation net. The presence of a control recipe token in
an equipment step indicates that the recipe is executing an operation in
that unit process. The resource allocation mechanism is hidden in the
transitions between the equipment steps. The net structure obtained
is very similar to the Petri net structures used for analyzing batch
control cells in [Genrich et al, 1994], [Yamalidou and Kantor, 1991].
The difference is that here the resource allocation is integrated with
recipe execution through the multi-dimensional chart nature.

A problem with this approach is how to handle the parallelism between

176

9.5 Resource Allocation

operations performed in different units, e.g., the emptying of a mixer
which is done in parallel with the charging of a reactor. One solution
could be the following: When the emptying/charging is started, the
token placed in the mixer step is transformed into a real number,
e.g., the number 1.0 indicating that all of the content is contained in
the mixer. At the same time the number 0.0 is placed in the reactor
indicating that nothing of the content is in the reactor. As the mixer
is emptied the token number of the mixer is decreased and the token
number in the reactor is increased. When the mixer is empty, i.e., the
number equals 0.0, and all of the content is in the reactor the number
of the mixer is deleted and the number in the reactor, which is equal
to 1.0, is transformed in to a black dot again.

In the Petri Net field, nets with tokens as real numbers are known as
continuous Petri Nets, see Chapter 2.6.

Advantages and disadvantages

The recipe structure presented in this Section focuses more upon the
process cell then on the recipe itself. An advantage can be the similar-
ities to Petri Nets.

9.5 Resource Allocation

Resource allocation is an important part in a recipe management sys-
tem, as in many other areas. If the resource allocation is not done in
a correct way things can get mixed up, e.g., if a mixer is allocated to
more than one batch their contents will be mixed and might have to
be thrown away, which could be very costly for the company. Improper
handle of exclusive-use common resources, such as the process units,
might also lead to a deadlock situation, i.e., a situation were two or
more processes are waiting indefinitely for an event that can be caused
only by one of the waiting processes.

The resource allocation problem is treated in two main ways: implicitly
and explicitly. In the implicit way, the resources are not represented
by any token, instead the allocation is hidden in the actions of a step.
This is the case of the structures presented in Section 9.1 (Recipes

177

Chapter 9. Recipe Structuring using High-Level Grafchart

based on recipe phases) (Recipes based on recipe operations), Section
9.2 (Recipes with several tokens), and Section 9.3 (Multi-dimensional
recipes with implicit resource allocation). There are two versions of
the implicit resource allocation. The first and most basic version is
to let the operator prespecify, before starting the recipe execution, all
the equipment that the batch will use. If the specified resource is not
available when needed, the recipe execution will pause and wait until
it becomes available. In the second version of implicit resource alloca-
tion, the resources are automatically allocated. A simple search algo-
rithm looks for an available resource of the correct type, and, if found,
allocates it to the recipe.

In explicit resource allocation, resource tokens are used to represent
the resources, i.e., the state of the resources in the plant are graphi-
cally presented for the user. This is the case of the structures in Section
9.2 (Recipes extended with resource allocation) (Combined network),
and Section 9.3 (Multi-dimensional recipes with explicit resource allo-
cation).

Resource allocation of exclusive-use resources and deadlock analysis
have been looked at in other areas and their results might be useful
also for a recipe management system in the batch control field.

Semaphores and Monitors

In real-time programming the concept of semaphores are used to obtain
mutual exclusion, [Dijkstra, 1968]. A semaphore is a flag indicating if
a resource is available or not. If a process requests a nonavailable
resource its request can be placed in a queue. When the requested
resource is released the first process in the queue can allocate it. The
queue is maintained by a monitor. Different processes can be given dif-
ferent priorities. This means that a process requesting a non-available
resources might be placed in the first position of the queue even if there
are already other processes, assumed its priority is higher than that
of the other processes. The task of the monitor is to adjust the order
in the queue and to indicate for the first process when the resource
in question becomes available. For further reading about semaphores
and monitors see [Burns and Wellings, 1996].

The resource token in the recipe structures with explicit resource al-
location can be compared with a semaphore. The fact that different

178

9.5 Resource Allocation

recipes could be given different priorities and that they could be put
in a waiting queue is however relevant also for batch processes. One
way of approaching this would be to introduce special FIFO-steps that
maintain a queue of tokens.

In Figure 9.18 a small example of a system with mutually exclusive
resources is shown.

€ O 3 reactors

Figure 9.18 A Grafchart structure representing three mutually exclusive re-
sources.

Shared resources

The semaphore construct can also be used for shared resources, i.e.,
resources that can be used by maximum n simultaneous users. A sit-
uation like this can be implemented in Grafchart. Each sharable re-
source is represented by as many tokens as its maximum usage limit,
see Figure 9.19.

Max. 3 simultaneous
@) O users of e.qg.,
© | the steam system

Figure 9.19 A Grafchart structure representing a limited sharable resource.

179

Chapter 9. Recipe Structuring using High-Level Grafchart

Sharable resources might also have real-value capacity constraints.
This can be implemented in HL-Grafchart, according to Figure 9.20.

—
O _ Capacity

Need

e e e —————————_—

! b: batch;
1. resource

|

}If b.need <= r.capacity

| then

l move(b,1);

| r.capacity = r.capacity — b.need;
! move(r,2);

Figure 9.20 A HL-Grafchart structure representing a sharable resource with
real-valued capacity constraints.

Situations were the resource has to fulfill certain constraints, e.g., the
resource has to have a volume not less than a certain value, can be
implemented in HL-Grafchart using the same structure as in Figure
9.20 extended with a receptivity checking the constraint.

Banker’s algorithm

An algorithm commonly used for resource allocation in real-time sys-
tems is Banker’s algorithm. The algorithm is used for deadlock-avoid-
ance, [Silberschatz and Galvin, 1995]. When a new process enters the
system it must declare the maximum number of instances of each re-
source type that it might need. This number may not exceed the total
number of resources in the system. When a process requests a set of
resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If so, the resources are
allocated, otherwise, the process must wait until some other process
releases enough resources.

Ideas from this algorithm might be useful if implementing a deadlock-
detecting system within the recipe management system.

180

9.6 Distributed Execution

PN-analysis

A Petri Net can formally be analyzed with respect to deadlocks, using
the analysis methods described in Chapter 2.4. However, the analy-
sis can only be done for autonomous PN, see Chapter 2.1 (Dynamic
Behavior). If a PN is non-autonomous the sub-adjacent PN, i.e., the
corresponding autonomous PN, will be investigated.

Since the structure of a Grafchart or a HL-Grafchart can be trans-
formed into that of a Grafcet and thereby also into that of a Petri
Net, these analysis methods can be applied to the Grafchart and HL-
Grafchart structured recipes, if explicit resource allocation is used.

For example, if batches of the two types A+ B - 2D and C+D — E
should be produced in the same plant at the same it could be good
to know how many batches that can concurrently be in production
without the risk of entering a deadlock situation. By transforming the
combined network of the two recipes, i.e., the network shown in Fig-
ure 9.12, into a Petri Net, analysis methods can be applied. However,
the analysis methods do not take into account the receptivities of the
transitions in the net. This means that specific demands that a batch
can have on a resource, e.g., that the resource has to have a certain
volume, and that are represented within a receptivity, see Figure 9.20,
are not considered. To solve this problem, resources with different ca-
pacity, must reside in different steps.

9.6 Distributed Execution

The recipe alternatives proposed implicitly assumes a centralized ex-
ecution environment where the recipe execution and the equipment
controllers all reside within the same computer. In an industrial batch
control system this is very seldom the case. Instead, a distributed envi-
ronment is used where, e.g., each equipment controller is implemented
as a separate node. The different nodes communicate with each other
over a network. The question is then how well the presented recipe
alternatives are suited for distributed execution.

The simplest way to obtain distributed execution is to assume that
all recipe management, including recipe execution, is performed in a

181

Chapter 9. Recipe Structuring using High-Level Grafchart

single supervisory node. The linking between the recipe level and the
execution control level, that previously was realized by a Grafchart
method call, will now be implemented as a remote procedure (method)
call (RPC). A drawback with this approach is that it is still, by large,
centralized in nature. If the supervisory recipe execution node fails all
recipe execution in the entire batch cell will stop.

True distributed recipe execution can only be obtained by sending
recipe information between the different equipment controller. Assume
that all the equipment units that a control recipe will use are prespec-
ified by the operators before the recipe is started. This is done in one of
the nodes of the system. When the recipe is started the recipe is sent
to the first equipment node. When the execution in the first equipment
node is finished, the recipe (or only the remaining part of the recipe)
is sent to the next equipment node, etc.

Depending on which structuring alternative that is used different am-
ount of information has to be passed between the equipment nodes. If
each control recipe is represented by a separate function chart, then
the function charts have to be passed between the nodes. If, however,
function charts are used only to represent the master recipes and object
tokens are used for representing the individual batches, then things
become a bit simpler. It is now possible to store a copy of each master
recipe function chart in each node, and to pass only the object token
information together with information about the current step of an
object token, between the nodes.

If the resource allocation should be integrated with the recipe execution
as, e.g., in Figure 9.9 or 9.11, things become more complicated. One
possibility is to let one equipment nodes for each equipment type, be
responsible for the allocation of resources of that type. When a recipe
needs to allocate a resource of a certain type, a request is sent to the
resource allocation node for the equipment type. The batch will wait in
the preceding equipment unit until a suitable equipment unit becomes
available. Information about the identity of the new equipment unit is
sent back to the equipment node where the batch is currently waiting,
and the transfer to the new equipment unit can start. A rather elabo-
rate handshaking procedure is needed to implement this synchroniza-
tion. Distributed recipe execution of this nature is available in modern

182

9.7 Other Batch Related Applications of High-Level Grafchart

commercial batch control system such as, e.g., the batch control system
in SattLine from Alfa Laval Automation.

9.7 Other Batch Related Applications of High-Level
Grafchart

Grafchart and HL-Grafchart has been used in other batch related ap-
plications.

Automating Operating Procedure Synthesis

Plant personnel often spend considerable amount of time and effort,
preparing and verifying the recipes, i.e., the operating procedures. It
would therefore be valuable to automate the synthesis. A framework
for this task is presented in [Viswanathan et al, 1997]. The framework
is based on Grafchart. Grafchart is used to represent the procedural
knowledge. The declarative knowledge, i.e., the plant and process spe-
cific knowledge, is represented in an object-oriented way. Grafchart is
also used to model the information that is incrementally generated dur-
ing operating procedure synthesis, the so called inferred knowledge. An
hierarchical planning strategy is presented that processes the declar-
ative knowledge, utilizing the procedural knowledge, to generate the
inferred knowledge incrementally, which leads to the synthesis of the
operating procedures.

The implementation of this framework, named iTOPS (Intelligent Tool
for Operating Procedure Synthesis), is described in [Johnsson et al,
1997|. iTOPS is implemented in G2. The application of iTOPS to an

industrial case study is also presented.

An Integrated Batch Plant Operation System

The activities involved in batch plant operation are of a diverse nature
and call for a range of different views to be solved efficiently. However,
the activities interact strongly with each other and it is therefore not
possible to treat the different activities as different problems.

In [Simensen et al., 1996] an integrated batch plant operation system
1s presented. The information model underlying this system is based on

183

Chapter 9. Recipe Structuring using High-Level Grafchart

a knowledge base containing different models of the plant. The models
depicts the problem area in terms of functions, domain and dynamics.
To structure the system both user-views and representation-views are
used. The system has the ISA-S88.01 standard as a basis.

A prototype of the integrated batch plant operation system has been
implemented and it has been applied to a simulated batch scenario.
Depending on what kind of activity the user would like to perform,
different views are desirable. The user uses an extended version of the
Control Activity Model of ISA-S88.01 as a navigator metaphor. The
integrated batch plant operation system is implemented in G2.

9.8 Summary

The main application of High-Level Grafchart is recipe structuring
and recourse management in multi-product, network-structured batch
production cells. High-Level Grafchart is well suited for these tasks.
By using the features of High-Level Grafchart in different ways, large
variations can be made when structuring the recipes. They still how-
ever, comply with the ISA S88.01 standard. The simplest way is to rep-
resent each control recipe with a Grafchart function chart with batch
specific information represented as attributes of the function chart. The
recipes can also be structured using object tokens. In this case, control
recipes of the same type, move around in the same chart. Batch specific
information is stored within the token. By using the multi-dimensional
structure of High-Level Grafchart, the chart in which the tokens re-
side can be given a general structure. Tokens of different types, i.e., of
different master recipes, can now reside in the same chart. The token
contains its own recipe-procedure as a method.

Resource allocation can be made in two ways: implicitly or explicitly.
If the resource allocation is done explicitly, i.e., if each resource is
represented by a token, formal analysis methods can be applied to the
net, and properties like deadlocks can be detected. Resource allocation
of exclusive-use resources and deadlock-analysis have been looked at
in other areas, e.g., Petri Nets, and their results can be useful also for
a recipe management system in the batch control field.

184

10

Conclusions

This thesis has presented High-Level Grafchart and its application to
recipe based batch control. High-Level Grafchart is a toolbox aimed at
supervisory control. It has its roots in several areas:

e Grafcet: The syntax of Grafcet is clear and has been very well
accepted in industry for sequence control.

e Petri Nets: Formal analysis methods for Petri Nets exist for ver-
ification of properties such as deadlocks.

o High-Level Petri Nets: High-Level Petri Nets allow a compact
description of systems with several similar parts.

¢ Object-oriented programming languages: Object-oriented progr-
amming languages have powerful abstraction facilities.

High-Level Grafchart is based on Grafchart. Grafchart is both a math-
ematical model and a toolbox. It is based on the well accepted syntax
of Grafcet, i.e., steps and transitions. In addition to this Grafchart has
extended abstraction and error handling facilities. High-Level Graf-
chart adds four new features: parameterization, methods and message
passing, object tokens, and multi-dimensional charts. This features in-
crease the abstraction and structuring possibilities and thereby make
the implementation of a control system easier. High-Level Grafchart
can be used both on the local PLC control level and on the supervisory
control level. High-Level Grafchart is implemented in G2, an object-
oriented programming environment.

185

Chapter 10. Conclusions

The main application area of High-Level Grafchart is batch control
in general and recipe structuring and resource management in multi-
product, network-structured batch production cells in particular. In
the thesis it is presented how High-Level Grafchart can be used for
recipe structuring. By using the features of High-Level Grafchart in
various ways, recipes can be given different structures with different

advantages and disadvantages. All structures comply with the recent
batch standard ISA S88.01.

An object oriented language, such as High-level Grafchart, is well
suited for representing the hierarchical structure of the physical batch
plant. High-Level Grafchart can be used to represent all the levels in
the hierarchical procedural control model, i.e., the entire recipe. By us-
ing the support for methods and message passing, the linking between
the control recipe procedural elements and the equipment procedural
elements can be nicely represented.

Resource allocation can be made in two ways: implicitly or explicitly.
If the resource allocation is done explicitly, i.e., if each resource is
represented by a token, formal analysis methods can be applied to the
net, and properties like deadlocks can be detected.

10.1 Future Research Directions

There are several directions in which the current work can be contin-
ued. They can be divided into topics that concern High-Level Grafchart
and topics that concern recipe-based batch control.

Formal Definition of High-Level Grafchart

A formal definition of High-Level Grafchart should be developed. This
should include both syntax and semantics.

Formal Analysis Power

The relationship between High-Level Grafchart and the existing Petri
Net based formal analysis tools needs to be clarified. Subsets of High-
Level Grafchart, where the correspondence is exact, can be found. It
would also be possible to develop an interface between High-Level

186

10.1 Future Research Directions

Grafchart and some existing analysis framework. Using this it should
be possible to automatically generate, e.g., reachability or coverability
graphs for a function chart.

Improvements in the Implementation of High-Level Grafchart

The version of High-level Grafchart that is currently implemented
can still be viewed as a prototype. Several improvements are possi-
ble concerning, e.g., execution speed, action and transition syntax, etc.
It would also be possible to change the local interpretation algorithm
of Grafchart into a global interpretation algorithm.

Alternative Implementation Platforms

G2 is currently used as implementation platform. However, there is
nothing that prevents High-Level Grafchart from being migrated to
other platforms.

Batch Scheduling and Resource Allocation

The current recipe management system performs dynamic resource
allocation. By applying Petri Net based methods one can ensure that
no deadlocks may occur. Conventional scheduling tools are based on
off-line resource allocation. An interesting question that could be in-
vestigated is the relationships between dynamic and static resource al-
location and how they should be combined. For example, a pre-defined
schedule could be used as long as no unexpected events occur. If some
event occurs the system switches to dynamic resource allocation. In-
teresting analogies can be found in the concurrent programming area
where, also, both dynamic (priority-based) and static (off-line) schedul-
ing can be used. It is likely that results derived in real-time program-
ming can be applied also for batch scheduling.

Formal analysis of recipe-based batch control

It would be interesting to apply formal methods to the batch control
application. This can be done in a number of different ways. Indepen-
dently of which way that is used it is necessary to be able to model
the batch cell. The current recipe execution system contains no explicit
model of the batch cell and the equipment units. One possibility is to
model the equipment as finite automata or a hierarchical automata. By

187

Chapter 10. Conclusions

translating the Grafchart controllers into Grafcet and then further into
finite automata it may be possible to apply Supervisory Control Theory
combined with Grafcet according to [Charbonnier, 1996] to ensure that
the recipes are correct. Another possibility is to use continuous Petri
Nets to model the batch plant and to translate Grafchart and High-
level Grafchart into ordinary Petri Nets. The combined controller and
batch cell model would now constitute a hybrid Petri net which could
be formally analyzed.

Monitoring of Batch and Discrete Systems

Monitoring of batch control and discrete manufacturing systems is an
interesting area. In batch control this task consists both of the moni-
toring of the ordinary components, compare monitoring of continuous
processes, and monitoring of the recipe execution. The approach will be
based on a model of each equipment component. This model will be ex-
pressed as a hierarchical automaton represented by Grafchart. When
a recipe wants to perform an operation on an equipment object, it is
first checked that the equipment is in a state that allows the opera-
tion. When the operation is performed, one, or several, state transition
are performed in the equipment model. The equipment model will also
contain the basic, non-recipe oriented, safety interlocks.

188

11

Bibliography

AcAOUA, S. (1987): Spécification et commande des systémes a événe-
ments discrets, le grafcet coloré. PhD thesis, Institut National poly-
technique de Grenoble.

ARC (1996): “Batch process automation strategies.” Industrial Au-
tomation Strategies for Executives. Automation Research Corpo-
ration, Memorandum.

ArzEN, K.-E. (1991): “Sequential function charts for knowledge-based,
real-time applications.” In Proc. Third IFAC' Workshop on Al in
Real-Time Control. Rohnert Park, California.

ArzEN, K.-E. (1993): “Grafcet for intelligent real-time systems.” In
Preprints IFAC 12th World Congress. Sydney, Australia.

ArzEN, K.-E. (1994a): “Grafcet for intelligent supervisory control
applications.” Automatica, 30:10.

ArzEN, K.-E. (1994b): “Parameterized high-level Grafcet for structur-
ing real-time KBS applications.” In Preprints of the 2nd IFAC Work-
shop on Computer Software Structures Integrating A/KBS in Pro-
cess Control Systems, Lund, Sweden.

ArzEN, K.-E. (1996a): “A Grafcet based approach to alarm filtering.”
In Proc. of the IFAC World Congress 1996.

ArzEN, K.-E. (1996b): “Grafchart: A graphical language for sequential
supervisory control applications.” In Proc. of the IFAC World
Congress 1996.

189

Chapter 11. Bibliography

ArzEN, K.-E. and C. JOHNSSON (1996): “Object-oriented SFC and ISA-
S88.01 recipes.” In WBF'96—World Batch Forum. Toronto, Canada.

BASTIDE, R., C. SIBERTIN-BLANC, and P. PALANQUE (1993): “Cooperative
Objects: A concurrent, Petri-net based, object-oriented language.” In
Proceeding of IEEE Conference on Systems, Man and Cybernetics.
Le Touquet, France.

BATTISTON, E., F. DE CINDIO, and G. MAURI (1988): “OBJSA: A class
of high level nets having objects as domains.” In ROZENBERG, Ed.,
Advances in Petri Nets 1988, vol. 340 of Lecture notes in computer
science, pp. 20-43. Springer Verlag, Berlin Heidelberg, New York.

BRETTSCHMEIDER, H., H. GENRICH, and H. HANISCH (1996): “Verification
and performance analysis of recipe based controllers by means
of dynamic plant models.” In Second International Conference on

Computer Integrated Manufacturing in the Process Industries.
Eindhoven, The Netherlands.

BURNS, A. and A. WELLINGS (1996): Real-time systems and program-
ming languages. Addison-Wesley.

CHARBONNIER, F. (1996): Commande supervisée des systémes a événe-
ments discrets. PhD thesis, Institut National Polytechnique de
Grenoble.

CHARBONNIER, F., H. ArrA, and R. Davip (1995): “The supervised
control of discrete event dynamic systems: A new approach.” In
34th Conference on Decision and Control. New Orleans.

Davip, R. (1995): “Grafcet: A powerful tool for specification of logic
controllers.” IEEE Transactions on Control Systems Technology,
3:3.

Davip, R. and H. Arura (1992): Petri Nets and Grafcet: Tools for
modelling discrete events systems. Prentice-Hall International
(UK) Ltd.

DESROCHERS, A. A. and R. AUJAAR (1995): “Applications of Petri nets
in manufacturing systems: Modelling, control and performance
analysis.” IEEE Press.

190

DIJKSTRA, E. (1968): “Cooperating sequential processes.” In GENUYS,
Ed., Programming languages. Academic Press N.Y.

ENGELL, S. and K. WOLLHAF (1994): “Dynamic simulation for improved
operation of flexible batch plants.” In Proc. CIMPRO 94, pp. 441—
455. Rutgers University, New Jersey, USA.

FisHER, T. G. (1990): Batch Control System, Design, Application, and
Implementation. Instrument Society of America.

FLEISCHHACK, H. and U. LICHTBLAU (1993): “MOBY - A tool for high
level Petri nets with objects.” In Proceeding of IEEE Conference on
Systems, Man and Cybernetics. Le Touquet, France.

GAFFE, D. (1996): Le modele Grafcet: réflextion et intégration dans une

plate-forme multiformalisme synchrone. PhD thesis, Université de
Nice-Sophia Antipolis.

GENRICH, H. J., H.-M. HANISCH, and K. WOLLHAF (1994): “Verification
of recipe-based control procedures by means of predicate/transition
nets.” In 15th International Conference on Application and Theory
of Petri nets, Zaragoza, Spain.

HaniscH, H.-M. and S. FLECK (1996): “A resource allocation scheme
for flexible batch plants based on high-level Petri nets.” In IEEE
SMC, CESA96. Lille, France.

HARPER, R. (1986): “Introduction to standard ML.” Technical Report.
Dept. of Computer Science, University of Edinburgh. ECS-LFCS-
86-14.

HoLLoway, L. and B. KrRoGH (1990): “Synthesis of feedback control
logic for a class of controlled Petri nets.” IEEE Transactions on
Automatic Control, 35:5, pp. 514-523.

HorLoway, L. and B. KrRoGH (1994): “Controlled Petri nets: A tuto-
rial survey.” In 11th International Conference on Analysis and Op-
timization of Systems - Discrete Event Systems. Springer-Verlag.

number 199 in Lecture Notes in Control and Information Science,
pages 158-168, DES94, Ecole des Mines de Paris, INRIA.

IEC (1988): IEC 848: Preparation of function charts for control
systems. International Electrotechnical Commission.

191

Chapter 11. Bibliography

IEC (1995): “IEC 1131-3.” Technical Report. International Electrotech-
nical Commission.

JENSEN, K. (1981): “Coloured Petri Nets and the invariant method.”
Theoretical Computer Science, North-Holland, 14, pp. 317-336.

JENSEN, K. (1990): “Coloured petri nets: A high level language for
system design and analysis.” In ROZENBERG, Ed., Advances in Petri
Nets 1990, vol. 483 of Lecture notes in Computer Science, pp. 342—
416. Springer Verlag, Berlin Heidelberg, New York.

JENSEN, K. (1992): Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use., vol. 1, Basic Concepts. Springer-Verlag.

JENSEN, K. (1995): Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use., vol. 2, Analysis Methods. Springer-
Verlag.

JENSEN, K. (1997): Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use., vol. 3, Practical Use. Springer-Verlag.

JENSEN, K. and G. ROZENBERG (1991): High-level Petri Nets. Springer
Verlag.

JomuNssoN, C. and K.-E. ArzEN (1994): “High-level Grafcet and batch
control.” In Symposium ADPM’94—Automation of Mixed Processes:
Dynamical Hybrid Systems. Brussels, Belgium.

JonNssoN, C. and K.-E. ARZEN (1996a): “Batch recipe structuring using
high-level Grafchart.” In IFAC"96, Preprints 13th World Congress
of IFAC. San Francisco, California.

JomunssoN, C. and K.-E. ArRzEN (1996b): “Object tokens in high-level
Grafchart.” In CIMAT96—Computer Integrated Manufacturing
and Automation Technology. Grenoble, France.

JOHNSSON, C., S. VISWANATHAN, R. SRINIVASAN, V. VENKATASUBRAMA-
NIAN, and K.-E. ArzEN (1997): “Automating operating procedure
synthesis for batch processes: Part 2. implementation and applica-
tion.” Computers and Chemical Engineering. Submitted to.

KLUGE, W. and K. LAUTENBACH (1982): “The orderly resolution of

memory access conflicts among competing channel processes.” IEEE
Trans. Comp., C-31:2, pp. 194-207.

192

LAKOS, C. (1994): “Object petri nets - definitions and realtionship to
coloured nets.” Technical Report R94-3. Dept. of Computer Science,
University of Tasmania.

LAKOS, C. and C. KEEN (1994): “Loopn++: A new language for object-
oriented petri nets.” Technical Report R94-4. Dept. of Computer
Science, University of Tasmania.

LOPEZ GONZALEZ, J. M., J. I. LLORENTE GONZALEZ, J. M. SANTAMARIA
YUGUEROS, O. PEREDA MARTINEZ, and E. ALVAREZ DE LOS MO0zOs
(1994): “Graphical methods for flexible machining cell control using
G2.” In Proc. of the Gensym FEuropean User Society Meeting,
Edinburgh, October.

MEALY, G. (1955): “A method for synthesizing sequential circuits.” Bell
System Technical Journal, 5:34, pp. 1045-1079.

META SOFTWARE CORPORATION, Cambridge, MA,USA (1993): De-
sign/CPN Tutorial for X-Windows. version 2.0.

MoLLOY, M. (1982): “Performance analysis using Stochastic Petri nets.”
IEEFE Trans. Computers, C-31:9, pp. 913-917.

MOORE, E. (1956): “Gedanken experiments on sequential machines.”
Automata Studies, pp. 129-153. Princeton University Press.

MOORE, R., H. ROSENOF, and G. STANLEY (1990): “Process control using
a real time expert system.” In Preprints 11th IFAC World Congress.
Tallinn, Estonia.

MURATA (1989): “Petri nets: Properties, analysis and applications.”
Proceedings of the IEEE, 77:4.

MuRrATa, T., N. Komopa, K. MaTsuMoro, and K. HARUNA (1986): “A
Petri net-based controller for flexible and maintainable sequence
control and its application in factory automation.” IEEE Transac-
tion Ind. Electron., 33:1, pp. 1-8.

NAMUR (1992): NAMUR-Emphehlung: Anforderungen an Systeme
zur Rezeptfaheweise (Requirements for Batch Control Systems).
NAMUR AK 2.3 Funktionen der Betriebs- und Produktionsleit-
ebene.

193

Chapter 11. Bibliography

NILSSON, B. (1991): “En on-linesimulator fér operatorsstod,” (An on-
line simulator for operator support). Report TFRT-3209. Depart-
ment of Automatic Control, Lund Institute of Technology.

Ozsu, M. (1985): “Modelling and analysis of distributed database con-
currency control algorithms using an extended Petri net formal-
ism.” IEEFE Transaction Software Engineering, SE-11:10, pp. 1225
1240.

PETERSON, J. (1981): Petri net theory and the modeling of systems.
Prentice-hall.

PETRI, C. A. (1962): “Kommunikation mit automaten.” Technical Re-
port. Institut fur Instrumentelle Mathematik, Universitat Bonn.
Schriften des IIM Nr. 3. Also in English translation, Communica-
tion with Automata, New York: Griffiss Air Force Base. Tech. Rep.
RADC-TR-65-377, vol. 1, Suppl. 1, 1966.

RAMADGE, P. and W. WONHAM (1989): “The control of discrete event
systems.” In Proceedings of the IEEE, vol. 77, pp. 81-98.

RoseENHOF, H. P. and A. GHOSH (1987): Batch Process Automation,
Theory and Practice. Van Nostrand Reinhold.

SANCHEZ, A., G. ROTSTEIN, and S. MACCHIETTO (1995): “Synthesis of
procedural controllers for batch chemical processes.” In Proc. of
4th IFAC Symposium on Dynamics and Control of Chemical Re-
actors, Distillation Columns and Batch Processes (DYCORD+95),
Denmark.

SHaw, W. (1982): Computer Control of Batch Processes. EMC Controls
Inc, Cockeysville, MD.

SIFAKIS, J. (1978): “Use of Petri nets for performance evaluation.” Acta
cybernet., 4:2, pp. 185-202.

SILBERSCHATZ, A. and P. GALVIN (1995): Operating System concepts.
Addison-Wesly.

SiLvA, M. and E. TERUEL (1996): “Petri nets for design and operation of
manufacturing systems: An overview.” In First International Work-
shop on Manufacturing and Petri Nets, Osaka Japan, International
Conferences on Application and Theory of Petri Nets (ICATPN96).
Universidad de Zaragoza, Spain.

194

SILvA, M. and S. VELILLA (1982): “Programmable logic controllers and
Petri nets: A comparative study.” In IFAC Software for Computer
Control, Madrid, Spain, pp. 83—-88. Ferrate, G. and Puente, E.A,,
Pergamont Press, Oxford England.

SIMENSEN, J., C. JoHNsSON, and K.-E. ArzEN (1996): “A framework
for batch plant information models.” Report ISRN LUTFD2/TFRT-
-7553--SE. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

SONNENSCHEIN, M. (1993): “An introduction to Gina.” In Proceding of
IEEFE Conference on Systems, Man and Cybernetics. Le Touquet,
France.

SP88 (1995): “Batch control.” Instrument Society of America.

SuAu, D. (1989): Grafcet coloré: Conception et realisation d’un outil de
generation de simulation et de commande temps réel. PhD thesis,
Universite de Monpellier.

TirTUSs, M. (1995): Control synthesis for Batch processes. PhD thesis,
Chalmers University of Technology.

VALETTE, R., M. COURVOISIER, J. BEGOU, and J. ALBUKERQUE (1983):
“Petri net based programmable logic controllers.” In 1st Int. IFIP
conference: Comp. appl. in production and engineering, pp. 103—
116.

VISWANATHAN, S., C. JOHNSSON, R. SRINIVASAN, V. VENKATASUBRAMA-
N1AN, and K.-E. ARZEN (1997): “Automating operating procedure
synthesis for batch processes: Part 1. knowledge representation and
planning framework.” Computers and Chemical Engineering. Sub-
mitted to.

WiLLiams, T. (1988): “A reference model for Computer Integrated
Manufacturing (CIM).” In International Purdue Workshop on
Industrial Computer Systems, ISA.

YaMmaLipou, E. C. and J. C. KANTOR (1991): “Modeling and optimal
control of discrete-event chemical processes using Petri nets.”
Computers Chem. Engng, 15, pp. 503-519.

195

Chapter 11. Bibliography

YorL, M. (1987): “Specification and verification of asynchronous
circuits using marked graphs.” In Concurrency and Nets, pp. 605—
622.

196

A

An introduction to G2

G2, developed by Gensym Corporation in the USA, was originally de-
veloped as a real-time expert system. It has however evolved into a
very powerful object oriented programming environment with strong
graphical features. G2 is written in Common LISP which is automat-
ically translated into C. However, all user programming is done in
G2’s built in programming language using either rules, functions or
procedures. G2 runs on a variety of UNIX and Windows platforms.

Classes and objects The programming language of G2 is strictly
object oriented. This means that objects are implemented in classes
defined in a class hierarchy. Each class has an icon and a number of
specific attributes. The icon can be defined either textually with the
text editor or graphically using the icon editor in G2. The attributes
contain the data associated with a class. Subclasses inherit properties
from its superclasses, multiple inheritance is allowed.

An application is built up by placing objects (instances of a class) on a
workspace. By connecting the objects their relationship is shown. Asso-
ciated with each object is its attribute table. The table is automatically
created from the definition of the object’s class.

Composite objects are objects that have an internal structure. As other
objects, composite objects are represented by one icon and have an at-
tribute table. The values of these attributes may be other objects. It is,
however, not possible to have a graphical representation of the com-
posed object and its internal objects at the same time. If such a repre-
sentation is desired this can be implemented using the subworkspace

197

Chapter A. An introduction to G2

concept. In G2 all objects may have an associated subworkspace and
on this subworkspace other objects may be positioned, i.e., the internal
structure of an object can be represented on its subworkspace.

Rules and procedures G2-rules can be used to indicate how to
respond to and what to conclude from changing conditions within the
application. There are five different types of rules; if-, when- initially-
whenever- and unconditionally rules. Rules can be scanned or invoked
in a number of ways.

Procedures are written in a Pascal like language. The roles of pro-
cedures are dual, either they can be used as ordinary procedures or
they can function as processes. Procedures are called from rules, from
other procedures or from user actions, e.g., from buttons. Procedures
can have input parameters and they can return one or several val-
ues. When a procedure operates as a process it is reentrant and each
invocation of the procedure execute as a separate task. Since the lan-
guage of G2 is object oriented it also contains methods. A method is a
procedure that implements an operation for an object of a particular
class.

Simulator G2 has a built in simulator which can provide simulated
values for variables. The simulator allows the simulated expressions to
be algebraic equations, difference equations , or first order differential
equations.

G2 provides a powerful graphical interface and easy ways to manip-
ulate and reason about objects. It is particularly well fitted for appli-
cations which need graphical representations like the batch scenario.
For more information about G2 see [Moore et al., 1990].

198

B

A Dynamic Simulator

The dynamic simulator is used as a substitute for a real plant. It sim-
ulates the mass balances, energy balances and the chemical reactions.
All simulations are done in real-time.

A table over the notation and the constants used in the dynamic sim-
ulator is given in the end of the appendix, Chapter B.7.

Two reactions can be simulated in the scenario:

A+B — 2D
C+D — E

The total mass balance, m(t), the component mass balances, x(¢), and
the energy balance, T'(¢), see Figure B.1, for the reactions are calcu-
lated.

e

\/\/\/\/

Win® m(t) Wour (O

Xin(® X(t) X(1)

Tin® T() T()

Figure B.1 Mass balance, component mass balance and energy balance.

199

Chapter B. A Dynamic Simulator

B.1 Total Mass Balance

The total mass balance of a unit is given by a differential equation
together with an initial condition.

dm(t)
— Wi - Wout
dt ~—~— N~
incoming massflow outgoing massflow
m(0) = m,

The equation comes from the principle of the conservation of mass.
m(t) is the weight of the content in the unit, i.e. the mass. The mass
is increased if there is an inflow to the unit and it is decreased if there
is an outflow of the unit. W;, is the mass flowing in to the unit per
time unit and W,,; is the mass flowing of the unit per time unit.

B.2 Component Mass Balance

The component mass balance tells how much there is of a specific
substance within a unit, it is given in percentage of the total mass.
Unlike mass, chemical components are not conserved. If a reaction
occurs inside a system, the weight of an individual component will
increase if it is a product of the reaction or decrease if it is a reactant.
The mass fraction, x(¢), changes continuously and is therefor given by
a differential equation together with an initial condition.

dx(t) W, M-V
g7 = m (xin — x)/+ r
in:;ut m
x(0) = x,

where M is the molweight of the substance, V is the volume and r is
the reaction rate.

200

B.3 Energy Balance

B.3 Energy Balance

The energy balance gives a differential equation for the temperature
in the unit, T'(¢). The equation is based on the first law of thermody-
namics, the conservation of energy.

dr) Wi . 1 1
dt m(TL _T)+cp.me cp.ch
T0) = &

@, is the energy produced during the reaction, €. is the energy that
is removed by, e.g., a cooling jacket, and ¢, is the heat capacity.

Energy Balance for the reactor jacket

The equations given above, apply to all units in the batch scenario. The
reactor, however, needs one more equation that describes its jacket.

Produced reaction rate, @,:
Qp =AHypqc- V-1

If @, < 0 the reaction consumes energy, i.e., it is an endotherm re-
action. If @, > 0 the reaction generates energy, i.e. it is an exotherm
reaction.

Cooling heat, Q.:

Q. = H A -(T-T.)

m
Ac - w
kp-A

The cooling heat is the energy that is removed due to, e.g., a cooling
jacket.

Energy balance for the jacket of the reactor:

dT. (t) Wi. 1
= T, — T,
dt Me ()+ Cp - Me

Qe

201

Chapter B. A Dynamic Simulator

A
/

Iil

W [

Figure B.2 Reactor with a jacket.

—

B.4 Level and Volume

Equations for calculating the level and the volume for all the units are
also part of the dynamic simulator.

B.5 Reaction Rates

The reaction rates, r; and ry, of the reactions can be calculated by
using the Arrenius equation:

A+B — 2D (B.1)
C+D — E (B.2)
Eq. B.1 gives:
ra = nri
re = nn
rp = —27’1
Eq. B.2 gives:
re =rg
p =ro
' = —rg
rp = —2ri1+ro

202

The

B.6 Implementation

constants r1 and r are given by:

ri

r2

E
= _Kl . @ ER(T+273)

E
= _K2 . ¢ E(T+273)

E

__5
= —Ki-e ETH0) .cy - Cp

_ B
— —KZ . @ R(T+273) -Cc - CD

B.6 Implementation

The objects are defined in a simulation class hierarchy, see Figure B.3.

AN

YOLUME

N\

TUBE-SIM NGON-TUBE-SIM

[\

MIXER-5IM REACTOR-5IM

AN

TANK-SIM BUFFER-SIM

> >

Figure B.3 Simulation classes.

The top class, volume, has two subclasses, tube-sim’ and 'non-tube-
sim’. ’tube-sim’ corresponds to the pipes in the cell whereas 'non-tube-
sim’ corresponds to the units. The class names are extended with ’-sim’
to indicate that these classes are used in the dynamic simulator.

203

Chapter B. A Dynamic Simulator

On the subworkspace of each class the equations specific for this class
are placed. Equations that are common to all units are placed on the
subworkspace of ‘non-tube-sim’, these are e.g. the equations for the
volume, the level, the component-mass-balances, the energy-balances,
the total mass balance and the reaction-rates. In Figure B.4 two of the

eight equations associated with the class 'mixer-sim’ are shown.

SIMULATION-CLASSES

TUBE-SIM

7N

VOLUME

7N

NOMN-TUBE-SIK

VANWAN

REACTOR-SIM MIXER-SIM

| Equation of MIXER-SIM l

Component balanoces:

Energy-balance:

state variable :

d f dt (the x-out-a of any mixer-sim v) =

(the w of the inpipe-a of v/ the m of v) ¥ (
the x-a of the inpipe-a of v - the x-out-a
of v) + (the w of the inpipe-b of v / the
m of v) * (the x-a of the inpipe-b of v -
the x-out-a of v)

state variable :

d / dt (the t-out of any mixer-sim v) =

(the w of the inpipe-a of v/ the mof v) *
{the t of the inpipe-a of v - the t-out of
V) + (the w of the inpipe-b of v/ the m
ot v} ¥ (the t of the Inpipe-b of v - the t-
out of v} + (17 (op * the m of W)} * (the

+ (Ma™ the vol of v/ the m of v) * the r-a-
and-b-to-d of v, with initial value O

prod of v - the cool of v), with initial
value 20

VANRAN

TANK-SIM BUFFER-SIM

Figure B.4 Equations associated with the class "mixer".

To each class a number of attributes are associated. The attributes
common to all classes are defined in the class 'volume’, whereas certain
attributes specific to only one class are defined within the class itself.
Attributes shared by the classes are e.g. the name, the mass fraction
of each substance, the volume and the level, the reaction rates of the
two reactions and the temperature. Attributes specific to a class are,
e.g., be the number of inpipes.

When the program is started the equations are calculated and the
differential equations are updated periodically. The results are show
as values of the attributes to the objects. In Figure B.5 the simulation
view of the batch scenario is shown together with the attribute table
of one of the mixers. The table contains the values of the simulated
parameters.

204

B.7 Notation and Constants

SIMULATION-SCHEMATIC

@
b

‘v&:

Notes

0K

Item configuration

none

I Names

M-2

»outa

0.507

Xouth

0.507

Xoutc

0.0

»outd

4451e-4

Xoute

-0.014

!

Z79.4

z

Vol

0.279

Level

0.116

Wout

0.0

Raandhtod

-7.307e-4

Rcanddtoe

-0.0

Tout

20.0

Prod

Area

0.0

Cool

Qutpump

0

Outvalve

1]

Inpipe a

a pipe-connection

Inpipe b

a pipe-connection

Figure B.5 Attribute table of the mixer-sim named "M-2".

B.7 Notation and Constants

Notation | Unit Notation in Batch scenario
\Y% m? Volume Vol

' kg [sek mass flow Wout

X (kg /total kg) mass fraction | x-out-(a,b,c,d,e)

M kg /kmol mole weight MA ,MB,MC,MD,ME

m kg mass M

r kmol/(sek - m?®) | reaction rate | r-a-and-b-to-e etc.

c kmol /m? concentration | (Cy = 574)

D kg /m?3 density density

205

Chapter B. A Dynamic Simulator

R

mol-weights:

Ma

Mb

Mc

Md

Me
reaction-constants:
k-a-and-b-to-d
k-c-and-d-to-e
activation-energy:
e-a-and-b-to-d
e-c-and-d-to-e
reaction-energy:
h-a-and-b-to-d
h-c-and-d-to-e

8314 J /(kmol - K)

50 kg /kmol
60 kg /kmol
40 kg /kmol
50 kg /kmol
40 kg /kmol

2107 m3/(kmol - sek)
7-10% m3/(kmol - sek)

69.418 - 108 J /kmol
75.00 - 108 J /kmol

—6.99 10" J /kmol
—75900 J /kmol

206

E J /kmol activation energy e-a-and-b-to-d etc
K m?/(kmol - sek) | reaction-constant k-a-and-b-to-d etc
R J/kmol - K gas law constant r

T °C temperature t out

h J kg enthalpy (h=c, -T)

u J internal energy (u~H=c, T)
Q) J [sek produced reaction rate | Prod

Q. J [sek cooling heat Cool

AH,., | J/kmol — h-a-and-b-to-d etc
H J/(sek-m? . K) | heat transfer cooling-coefficient
Ry m wall coefficient wall-area-coefficient
Cp J/(kg - K) heat capacity Cp

Constant

Cp 4180 J /(kg - K)

density 1000 kg /m?

wall-area-coef. 40 m

