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Abstract—Spectral Doppler ultrasound imaging typically con-

sists of a spectrogram, showing the velocity distribution of the

blood, and a brightness (B-) mode image allowing the operator

to navigate. It is desirable to have both high spectral and velocity

resolution, so that details in the blood flow can be traced, as well

as a high B-mode frame rate to allow for tracking of movements

and to adjust the position of the transducer. The blood flow signal

is often sampled 1) using alternating transmissions for blood

flow estimation and for B-mode imaging, or, 2) by acquiring

a full Doppler spectrum and then parts of the B-mode image.

The former has the disadvantage that it halves the sampling

rate, making it likely that aliasing will occur when imaging fast

moving blood or deeply positioned vessels; the latter that gaps

appears in the spectrogram, and that if the frame rate of the

B-mode images is slow, it will be difficult to track movements.

Adaptive methods have been implemented to circumvent such

problems, but even so, to get an acceptable frame rate of the B-

mode images, the number of transmissions for Doppler estimation

will be limited, restricting the spectral resolution. Alternatively,

one may use an irregularly spaced emission pattern, but existing

work on the topic is limited and generally suffers from poor

resolution and spurious velocity components resulting from the

irregular sampling pattern. In this paper, we examine the BIAA

algorithm, showing that this approach allows for an accurate

velocity estimate even from irregularly sampled measurements.

Using an irregular emission pattern, with half the emissions

used to form the B-mode image, the remaining emissions are

found to yield accurate velocity estimates without reducing the

maximally measurable velocity and without the spurious velocity

components. Moreover, we show that the approach will allow for

the same maximal velocity without aliasing as if all emissions

would have been used for the velocity estimation.

Index Terms—Nyquist limit; Irregular sampling; Doppler ul-

trasound

I. INTRODUCTION

S

PECTRAL Doppler is an effective tool in medical ultra-
sound as it allows for non-invasive estimation of velocities

in blood vessels. The operator does not only get an image
of the blood vessel but also of the flow dynamics in it,
allowing for the diagnosis of several blood related diseases,
such as arteriosclerosis [1]. The data is obtained by focusing
the ultrasound transducer array along a single direction and
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sampling data at the depth of interest. The velocity of the
moving blood can be estimated by illuminating the same image
line repeatedly, and hereby follow the motion of the blood.
Taking out a single sample from each pulse emission produces
a signal sampled at the pulse repetition frequency, fprf , which
yields a sinusoidal signal with a frequency of

fp =
2vz
c

fc, (1)

where vz is the blood velocity along the ultrasound direction,
c = 1540 m/s is the speed of propagation, and fc the emitted
ultrasound (center) frequency (typically 3-10 MHz) [2]. The
velocity can then be found by estimating the spectral content
of the signal (this signal is often referred to as the slow-

time signal, as opposed to the fast-time signal which refers
to the sampling of the pulse emission). The spectrum is then
commonly estimated using Welch’s method (see, e.g, [2],
[3]) which has several well-known limitations. It requires,
for example, a large number of transmissions (about 100)
to form an acceptable estimate of the spectrum. This will
effectively reduce the temporal resolution, making it difficult,
for instance, to see the details of the rapid acceleration phases
of the cardiac cycle. Moreover, as the same system is used
to acquire the B-mode images necessary to navigate within
the blood vessel, the B-mode and the velocity estimation
transmission have to be interleaved. Typically, every second
transmission is a B-mode acquisition, thereby resulting in a
reduction of the measurable velocity range by a factor of two
due to the Nyquist frequency being halved [2]. For vessels with
high flow dynamics, one may instead choose to use blocks of
B-mode transmissions, but this will then result in holes in
the blood velocity spectrogram [4]. However, making us of
recent advances in sparse signal estimation, it is possible to
form spectrum estimates using irregular transmission schemes
where a high B-mode frame rate is kept without losing per-
formance in the velocity estimation. This method for velocity
estimation is named Blood Iterative Adaptive Approach, or
BIAA, and was originally presented in [5] as well as with a
more computationally effective version in [6]. In this paper,
we discuss how the (uniform sampling) Nyquist limit can be
overcome by using an irregular transmission scheme and give
an overview of the BIAA spectrum estimation method that can



handle this kind of sampling schemes. We will also review
an alternative definition of the Nyquist limit for irregularly
sampled sequences.

A. The Nyquist Frequency

The Nyquist-Shannon sampling theorem states that a uni-

formly sampled signal can be perfectly recovered if the signal
does not contain frequencies larger than half the sampling
frequency, the so-called Nyquist frequency. However, for an ir-
regularly sampled signal, the corresponding Nyquist frequency
is not that clearly defined. One possible definition is through
the spectral window, as suggested in [7] (see also [8]), defined
at a frequency, f , as

W (f) =

�����
1

N

NX

n=1

e

i2⇡ftn

�����

2

, (2)

where {tn}Nn=1 are the sampling instances. We note that
W (0) = 1 and W (f)  1, 8f 6= 0. For regular sampling
schemes, W is a periodic function with a period of two times
the Nyquist frequency, i.e.,

W (f) = W (f + 2PfNyq), (3)

where P 2 Z and fNyq denotes the Nyquist frequency for
a regularly sampled signal. We therefore define the Nyquist
frequency for an irregularly sampled signal, f̂Nyq , as the
smallest frequency for which W (2f̂Nyq) ⇡ 1.

II. METHOD

The noise-free (slow-time) data acquired from ultrasound
transmission n at depth k, for blood scatterers with (axial)
velocity v, is generally modeled as [2], [9]

x̃k(n) = ↵

(k)
v e

j�ck+j vn
, (4)

where ↵(k)
v is the (complex-valued) amplitude of the sinusoidal

signal at frequency  v (at depth k), which is directly related
to v, as

 v = � 2!c

cfprf
v = �2v

c

!cTprf , (5)

where !c = 2⇡fc and Tprf = f

�1
prf is the time between pulse

repetitions. Furthermore, �c is the demodulating frequency,
relating the samples along each emission (the so-called fast-
time), defined as �c = !c/fs, where fs is the sampling
frequency. We can rewrite the signal in (4), describing it as
a sum of the contributions from all frequency grid points
{ vm}Mm=1 (with vm denoting the m:th (axial) velocity),

xk(n) = e

j�ck
MX

m=1

↵

(k)
vme

j vmn + wk(n), (6)

where wk(n) denotes a residual term consisting of all signals
at velocities different from the M considered velocities as well
as additive noise. From (5) and (6), it is clear that the spectral
density of xk(n) with respect to  v is equivalent to the blood
velocity distribution at the examined location. The problem of
estimating the blood velocity distribution can thus be seen to

be equivalent to the estimation of |↵v|2 for all velocities of
interest. We can also exploit the fact that the blood flow profile
is rather smooth over the neighboring depths, so that ↵(k)

v , for
k = k1, . . . , kK , is almost constant. We therefore form

y(n) =
1

K

kKX

k=k1

e

�j�ck
xk(n), (7)

in order to increase the signal to noise ratio (SNR) of the
processed signal.

A. The BIAA Method

Assuming uniform pulse emissions for either velocity esti-
mation or B-mode imaging, the slow-time measurements may
be viewed as exhibiting a reoccurring block structure, such
that each block consists of the pattern of velocity and B-mode
transmissions, typically having the form

yNg (p) =
⇥
y(pNs) · · · y(pNs +Ng � 1)

⇤T
, (8)

where Ns = Ng + Nm and Ng and Nm denote the number
of velocity emissions (given samples) and the number of B-
mode emissions, here simply treated as missing samples, re-
spectively. For the traditional case with every second emission
being a B-mode acquisition, Ng = Nm = 1, but more general
sampling patterns can also be used [4], [5]. The measurements
used for velocity estimation at time p is then formed as the
concatenation of the Nb most recent sub-blocks, i.e.,

zN (p) =
⇥
yT
Ng

(p�Nb + 1) · · · yT
Ng

(p)
⇤T

, (9)

with the last sub-block being the most current measurements,
and where N = NbNg denotes the total number of available
measurements in the observation window. Clearly, N will be
limited by the stationarity of the examined blood velocity
signal, bounding how many emissions that may be used to
form the resulting blood velocity spectral estimate.

We form the gapped block Fourier vector, taking into
account the missing samples, as

f̄ vm
= aNs,Nb ⌦ a1,Ng , (10)

where ⌦ denotes the Kronecker product and

a`1,`2 =
⇥
1 e

j vm`1 · · · e

j vm`1(`2�1)
⇤T

. (11)

The BIAA algorithm, as given in [6], is then formed, using
the measurements up to time p, by iteratively estimating

↵̂p,vm =
f̄H vm

R�1
N (p)zN (p)

f̄H vm
R�1

N (p)f̄ vm

, (12)

RN (p) =
MX

m=1

|↵̂p,vm |2 f̄ vm
f̄H vm

, (13)

until practical convergence (typically 10 to 15 iterations),
with (·)H denoting the conjugate transpose. In the interest of
brevity, the details for the more computationally efficient, as
well as for the time-recursive, implementations of the BIAA
algorithm are omitted here (see [5], [6] for these details). The
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Fig. 1: The Nyquist limit for (a) transmission pattern [v b] and
(b) [v v v v v b b b b b]. Using the former pattern, aliasing will
occur for velocities larger than around 0.25 m/s whereas the
latter pattern allows for the double, provided the estimation
method can handle irregular sampling.

Matlab code for these implementations can be found on the
second author’s webpage, http://www.maths.lth.se/
matstat/staff/aj/Publications.htm.

III. RESULTS

In order to demonstrate the usefulness of having an irregular
transmission scheme for velocity estimation, we will compare
the sampling patterns [v b] and [v v v v v b b b b b], where v

denotes an emission aimed at estimating the blood velocity and
b an emission aimed at forming the B-mode image. We will use
the in vivo data set originally published in [10], acquired using
the experimental scanner RASMUS [11] and a B-K Medical
8804 7 MHz linear array transducer, with fprf = 9.3 kHz.
Further details on the setup is found in [10]. Assuming our
data is stationary over 130 transmission instances, we will
have either 65 blocks or 13 blocks of transmissions for the
two cases, with an equal amount of transmissions available
for velocity estimation in both cases (65 transmissions). Fig. 1
displays the spectral window computed according to (2) from
which the Nyquist limit can be obtained. We see that for the
commonly used emission pattern [v b], wherein every second
emission is aimed at forming the velocity estimate and the
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(a) Welch’s method.
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(b) BIAA method.

Fig. 2: Spectrogram estimates using (a) Welch’s method with
transmission pattern [v b] and (b) the BIAA method from
pattern [v v v v v b b b b b]. The figure illustrates the strengths
of having an irregular transmission scheme to overcome the
(regular) Nyquist limit.

other at forming the B-mode image, which is then repeated,
the maximum velocity that can be estimated using this setup
is around 0.25 m/s. For the pattern [v v v v v b b b b b], formed
as five consecutive emissions aimed at forming the velocity
estimate followed by five to form the B-mode image, the
maximum velocity is around 0.5 m/s, i.e., twice as much. It
should be stressed that each of the patterns are then repeated
such that both setups are formed using the same number of
emissions, with 50% of the emissions being used to form the
B-mode image in both cases.

Fig. 2 shows the spectrograms produced by (a) Welch’s
method using 65 blocks with emission pattern [v b] and
(b) the BIAA method using 13 blocks with emission pat-
tern [v v v v v b b b b b], both using K = 40 regularly spaced
measurements along depths (fast-time samples) and using a
dynamic range of 45 dB. Clearly, the data is aliased in Fig. 2a
which is not the case in Fig. 2b. The gaps occurring in the
spectrograms represent transmissions used for the necessary
B-mode images during the data acquisition as the data set
was obtained to evaluate the BAPES estimator [9] which
requires regular emissions; thus, the B-mode emissions for this
data set differ from the ones assumed in the here examined

http://www.maths.lth.se/matstat/staff/aj/Publications.htm
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example. If the B-mode emissions would be done according to
the assumed sampling pattern over emissions, no gaps would
occur.

IV. CONCLUSION

In this paper, we have demonstrated the benefits of us-
ing an irregular scheme for interleaving the B-mode image
transmissions with transmissions for velocity estimation. With
an irregularly spaced transmission scheme, it is possible to
maintain the highest possible Nyquist limit, dictated by the
pulse repetition frequency, without suffering from aliasing. We
have also shown an alternative, more general, definition of the
Nyquist frequency which, while still being easy to compute,
also holds in the case of irregular sampling. As commonly
used methods for velocity profile estimation, such as Welch’s
method, will not provide accurate estimates for the irregular
emission patterns needed to overcome the classical Nyquist
limitation, one needs to employ alternative spectral estimation
methods, e.g., the BIAA method. This form of estimates allows
for reliable blood velocity estimates without a reduction in
the achievable velocity range, while maintaining the B-mode
sampling rate and still yielding highly accurate blood velocity
estimates without aliasing.
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