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1. Introduction

When presenting discrete-time linear quadratic Gaussian (LQG) control most
textbooks [AM90, BH69, FPW90, Kai80, MG90, Oga87, PN84] do not pursue
cross-terms in the loss function and/or the noise description. This may be well
motivated for ease and clarity, especially since the cross-term in the loss func-
tion can be removed through an appropriate state-input transformation. It is
still, however, interesting to explore the structure of the complete formulae,
since cross-terms arise naturally when sampling continuous-time loss functions
or when using an innovation’s representation for the noise. The paper [Kwo91]
claims to be the first complete treatment.

Astréom and Wittenmark have considered some of the cross-term issues
in [AW90], but the complete case is not treated. Our presentation aims at
summarizing the formulae for LQG control with cross-terms, and it could be
regarded as a generalization of the results in [AW90]. The presentation is terse
and the reader is referred to [AW90, Ch. 11-12] for the basic material.

2. The Process
The discrete-time process is given by [AW90, p. 335]

z(k+ 1) = dz(k) + Tu(k) + v(k)

y(k) = Ca(k) + e(k) W

where v(k) and e(k) are discrete-time Gaussian white-noise processes with zero
mean and [AW90, p. 336]

v(k) Ri Ry

E T T —

[t) (e ) = (g %)
The initial state (0) is Gaussian distributed with [AW90, p. 336]

Ez(0) =mo, Ez(0)z7(0)= R

Underlying continuous-time process

Consider the continuous-time process [AW90, p. 182]
der = Az dt + Budt + dv (2)
where v is a Wiener process with zero mean and uncorrelated increments. The

incremental covariance of v is Rq.dt. By sampling (2) with a zero-order hold
and sampling interval h we obtain [AW90, pp. 43-46]

z(k + 1) = ®(h)a(k) + T(h)u(k) + v(k)

where



The process noise v(k) is a discrete-time Gaussian white-noise process with
zero mean and covariance [AW90, p. 182]

h
Rl(h):/ eATRlceATTdT
0

The actual measurements are often modeled as
y(k) = Ce(k) + e(k) (3)

where e(k) is a sequence of independent random variables modeling the mea-
surement noise; Ee(k) = 0 and E e(k)eT (k) = R,. The measurement noise
e(k) is often considered independent of the process noise v(k), i.e. R13 = 0.

If the measurement noise is colored the state vector has to be extended
with states modeling the noise characteristics. Then, R, will have non-zero
components. Similarly, R15 is also nonzero when using an innovation’s repre-
sentation for the noise.

Sometimes the measurements have been modeled using integrating sam-
pling [Ast70]. This approach normally leads to Ri3 # 0.

3. Optimal State Feedback

The discrete-time loss function is given by [AW90, p. 337]

J = Ez{ B)Qua(k) + 227 (k)Quyu(k) + u¥ (k)Qzu(k)}

k=0
+ ExT(N)Qoz(N)

N—
e o) (8 %) (28] -

(4)
The discrete-time loss function can either be constructed directly or be ob-
tained by sampling the continuous-time loss function [AW90, p. 336]

Nh
J=E /0 {7 (1)Que2(t) + 227 (1) Quacu(t) + uT (H)Qacu(t)}
+ E2T(NRh)Qoz(Nh)

(5)
If (4) were obtained by sampling then [AW90, p. 337]
h
Q1 :/ 3T(7)Q1.8(7) dr
0
h
Qu= [ #7(r)(Qul(r) + Qua dr
0

h
Q2= /0 [P7(7)Q1eL(7) + 27 (7)Q12c + Q2c] dr

When the stochastic case is considered, one additional term depending
on the noise is obtained when sampling (5). This term reads

N-1

D ot (Qlc /Oh Ri(T) dT) =NJ

k=0



and should be added to (4). This noise term is the extra term mentioned in
the text [AW90, p. 337]. It depends on h but is unaffected by the choice of
control signal.

To get the optimal control law, solve the Riccati equation [AW90, p. 341]

S(k)=3TS(k+1)® + Q

— [87S(k+1)T + Qua] [[TS(k+ )0 + Qo] [T7S(k+1)% + Q1)
S(N) = Qo

and calculate (generalization of [AW90, p. 357] to Q12 # 0)

L(k) = [T75(k+ )0 + Q2] " [T75(k+ 1) + Q%]
[TTS(k+ 1T + Qs] ' TTS(k+1)

b~
<
—~

Ey

I

Using these expressions, the total loss J can be rewritten as (generalization of
[AW90, p. 342] to Q15 # 0)
N-—
J=NT+E{27(0)5(0)2(0)+ Y [u+ La]" [[TST + Qo] [u+ La]
k=0
N-1 N-1 N-1

+ Z vT Sv + z_: vT S [®z + Tu] + Z [®z + Tu]” Sv} (6)
k=0 k= k=0

Jary

= NJ + E {27(0)5(0)2(0)

+ [u+ Lz + va]T [I‘TSI‘ + Qz] [u+ Lz + L,v]

k=0
N-1
+ ) T {S - LT [TTST + Q,] L, } v
k=0
N-1 N-1
+ N WTS[@-TLe+ S 278 -TLT Sv} (7)
k=0 k=0

where z, u, v, and L within the summations have time argument k, while S
has argument k& + 1.
In addition, the recursion for S can be written

S(k) = [® — TL(k)]T S(k+1)[® — TL(k)]
Ql le
(o) g, o) [Law)

which gives the loss for any u(k) = —L(k)z(k).

Different optimal control laws

Depending on if the disturbance v(k) is regarded as unknown or known when
forming u(k), we get two different optimal control laws, i.e.

a) u(k) = —Lz(k)
b) u(k) = —Lz(k) — L,v(k)



These two choices give rise to different J values. Using the expressions for
u(k) and performing the expectation in (6) and (7), respectively, results in

N-1
Jo=NJ+trRoS(0)+ > trRyS
k=0

N-1

Jo=NJ +trRoS(0)+ Y  trRy (S — LI [TTST + Q] L,) (8)
k=0
N-1
=Jo.— Y trL,Ry L] [TTST + Q]
k=0

As can be seen the total loss decreases when v(k) can be measured and used

when forming u(k).

4. Optimal Kalman Filter

To obtain the Kalman filter, solve the Riccati equation [AW90, p. 352]

P(k+1)=3P(k)®T + R,
— [8P(k)CT + Ry [CP(R)CT + Ry] ™' [CP(k)3T + RE)]
P(0) = Ry
and calculate
K4(k) = P(k)CT [CP(k)CT + Ry)
Ky(k) = Ryz [CP(k)CT + Ry) ™"
K(k) = 8K (k) + Ky (k)
The Kalman filter is then given by [AW90, p. 353]
i(k + 1|k) = 3&(k|k) + Tu(k) + 9(k|k)
= [& — K(k)C(k|k — 1) + Tu(k) + K (k)y(k)
0

a(k + 1[k) =
#(0] = 1) = mq ()
2(k|k) = 2(k|k — 1) + Kz(k) [y(k) — C&(k|k - 1)]
o(k|k) = Ko(k) [y(k) — C(k|k — 1)]
with
E [:E::::i;] (& (ki —1) #T(klE-1)) = [Pf)k) 1(2)1]
E [:EZ:I’:;] (& kik) o7(kIR) )
T -1
= [Pf)k) 1(2)1] = [P(}’;f ] (cP)c™ + r,)  (cP() BE)
where P = P(k)



In addition, the recursion

P(k+1)=[®— K(k)C] P(k)[® — K(k)C]*

+ (1 K@) [}Z{Z };2122] (1 —K(k)]T

gives the error variance in case of any observer gain K (k), and not just the
optimal one.

5. The Complete Controller

The separation property [AW90, pp. 356-357] follows directly from (6) and
(7). It implies that the estimated state and disturbance should be used in the
optimal control law. Due to orthogonality between u+ L& and & (u+ L& + L, 0
and [&, 9]) the cross-terms vanish when substituting v + Lz = u 4+ L& + L&
into (6) and u+ Lz + Lyv = u+ L&+ L&+ L,v+ L,7 into (7), see e.g. [Ast70,
p. 282].

There are two main cases: u(k|Yx—_1), where the control signal is based on
measurements up to time k — 1, and u(k|Y%), where the control signal is based
on measurements up to time k. We get (generalization of [AW90, p. 357] to

Q12 #0)
w(k|Ye1) = —La(k|k — 1) — Lyo(k|k — 1) = —La(k|k — 1)
w(k|Yz) = —Lé(k|k) — Loo(k|k)
_Lé(klk— 1) — [LK; + Ly K] [y(k) — Ca(k|k — 1)]
= —[L - LKC — LyK,C)é(klk — 1) — [LK; + L, K,] y(k)
— _[L - MC)a(klk - 1) — My(k)

where L, L,, K,, and Ky all have time argument k, and
M =LK;+ L,K,.

Substituting the expressions for u(k) into (6) and (7), respectively, and
performing the expectation results in

N-1 N-1
J(Yeo1) = NJ +trReS(0)+ Y trRiS+ Y tr PLT [ITST + Q,) L
k=0 k=0
N-1
=Jo+ Y tr LPL" [TTST + Q]
k=0
N-1 N-1
J(Y) = NJ 4 tr RoS(0 tr R, S tr PLT [TTST L
(Yx) +T0()+I§)T1+I§T [ ‘|‘Q2] (10)
N-1 ) T
— Y tr [CPCT + Ry]  [LPCT + L, Ry,
k=0
[TTST + Q3] [LPCT + L, R1,]
N-1
= J(Yi-1) = Y tr M [CPCT + Ry] MT [T7ST + Q]
k=0



It is quite clear that the total loss decreases when the current measurement is
used when forming u(k).

Reference value

The reference value can be introduced in many different ways [AW90, pp.
264-271]. The most simple way is to add the term L,y,(k) to the expression
for u(k), i.e.

w(k|Yi-1) = Lyyn(k) — Li(k|k - 1)
w(k|Ys) = Loyn(k) - [L — MC)a(klk — 1) — My(k)
By choosing the parameter L, such that
L,C(I-®+TL)y'T =1
the static gain from gy, to y equals I.

Transfer function of the controller

The complete controller can be summarized as

e(k) =y(k)— Cz(klk—1)
u(k) = Lyy-(k) — L&(k|k — 1) — Me(k) (11)
(k4 1k) = ®z(k|k — 1) + Tu(k) + K(k)e(k)
where
{0, u(k|Ye—1)
M =
LKf + L, K,, u(k|Yk)

The form (11) is well suited for implementation. It is easy to include extra
features such as saturation models for the control signal and validation of the
measurements through comparisons between e(k) and P(k).

From (11) it is not too difficult to calculate the transfer function of the
controller. Some calculations give

u(k) = Hyz(9)y-(k) — Hpp(q)y(k)

Hyp(q) =L — MC)[g] —® +TL+ KC —~TMC| ™' [-TL,] + L,

Hp(q) = [L - MC)[g] -3 +TL+KC-TMC) ' [K ~-TM]+ M (12)

Closed loop system

Introduce #(k) = z(k) — &(k|k — 1). Then, both for the controller with
u(k|Yi_1) and u(k|Y%), (generalization of [AW90, p. 358])

Gein)= (%07 ke ) w)
TM (3

3 i FZORY H EORS Il EO

It is interesting to note that the closed loop poles are the same for both
controllers.



6. Polynomial Formulation of SISO LQG

From (13) it is clear that the closed loop poles are defined by the roots of the
two polynomials

P(z) = det(z] — ® +TL), C(z) =det(zI —® + KC)

The process (1) can also be expressed in polynomial form (we now assume
that the process is SISO)

B(z)
A(2)

and similarly for the controller (12)

C(2I-@)'T

5(2)
R(z2)

Hpp(z) =

These polynomials are related through the Diophantine-Aryabhatta-Bezout
identity
A(2)R(z) + B(z)S(z) = P(2)C(z2). (14)

It is now not necessary to solve the state feedback and Kalman filter problem
in state space to obtain P(z) and C(z). Introduce

Crc, = Q1 — Q1:05'Q%,, r,IT = R, — R;,R;'RY,,
PZ - QZ: 0'2 = RZ
¢ =TTST + Q,, r? = CPCT + R,

The monic stable polynomials P(z) and C(z) are then obtained by solving the
spectral factorizations (generalization of [AW90, p. 385]

¢*P(2)P(z7") = B{ (2)B1(27") + [Ba(2) + pA(2)] [Ba(27") + pA(z )]
r2C(2)C(z71) = B3(Z)B?1:(Z_1) + [Ba(z) + 0 A(2)] [B4(z_1) + O'A(Z_l)]

where
il((zz)) =Cp (2 - &)7'T, iz((zz)) =p'Qy (2] - 3)7'T,
Bs(z) _ 2] — )L Ba(z) — O (2] — &)t s
A - C(zI — 2) " Ty, 4(2) C (2 — &) " Ry

Note that By(z) and Bjs(z) are column/row vectors with number of elements
equal to rank(Q;) and rank(R;), respectively.

In the case of minimum variance control, @2 = 0 (and thus @12 = 0), the
spectral factorization for P(z) changes to

¢’P(2)P(z7") = BY (2)Bi(27")

Similarly, when perfect measurements are available, Ry = 0 (and thus Rqp =
0), the spectral factorization for C(z) changes to

r2C(z)C(z™") = BY(2)Bs(z™")



Provided A and B coprime, the solution R, S to (14) is unique for
controllers with u(k|Ye_1), i.e. degS < degR — 1. The case u(k|Y%), i.e.
deg S < deg R, is more complicated. The identity (14) gives 2n — 1 equations
while S(z) and R(z) contain 2n free variables. For Q15 = 0 or Ry3 = 0 it can
be shown that S(0) = 0. In the special case where A and B are coprime, and
A(0) # 0, this reduces the number of unknown variables by one, making the
problem directly solvable. The general case is, however, more involved and
[AWO0, p. 392] gives another approach.

7. Loss Function Dependence on the Sampling In-
terval

As a numerical example we will investigate how the total loss J depends on
the sampling interval h for a simple first order process (the example is due
to Bo Bernhardsson [Ber91]). The LQG control problem is solved with a set
of Matlab routines [TFRT-7454] developed at the Department of Automatic
Control in Lund. The routines are able to handle both cross-terms in the loss
function as well as in the noise description.

Consider the continuous-time process

de = az dt + udt + dv,

with mg = 0, Rg = 0, and R;. = 1. The process is controlled using a discrete-
time controller minimizing

min E(y* + 10~ *u?)

ie. Qic =1, Qi2c = 0, and Qo = 10~%. The measurement noise is modeled
as discrete-time Gaussian white noise with Ry = 1072 and Rq5 = 0.

The problem was solved for a set of different sampling intervals using the
Matlab routine in Listing 1. The total loss J can be written as (cf. (8) and

(10))
J = Jsamp + Jinit + Jload + Jmeas

The first term Jgamp is the continuous-time process noise contribution that is
independent of the control law. It is a consequence of using a discrete-time
controller to control a continuous-time process. The second term depends on
the initial state (0). In our example this term is zero since mg = 0 and
Ry = 0. The third term Jj,aq comes from the contribution of the process
noise that can be influenced with the control signal. The last term Jpyeqs is
the contribution due to imperfect measurements. It comes in two versions
depending on if u(k) is based on Y3_1 or Y.

Case 1, a = —1 Figure 1 depicts the different contributions to J normalized
with h for the case a = —1. The component Jgamp decreases when A — 0,
as the difference between the discrete-time controller and a corresponding
continuous-time controller gets smaller. As h — oo the correlation between
consecutive output measurements tends to zero and Jsamp reaches a stationary
value (||1/(s+ 1)||g, = 1/2). The process is stable and for sampling intervals
that are larger than the dominating process time constants, it is not possible
to find a control signal that reduces the variance of the output. The stationary
value of Jsamp corresponds to no control.



function loss = lqgloss(4,B,C,Q1c,Q12¢,Q2¢,R1c,R12,R2,h)
%LQGLOSS Calculates loss per timeunit for LQG control
%

% loss = lqgloss(4,B,C,Q1c,Q12¢,Q2¢c,R1c,R12,R2,h)

%

% The different contributions to the total loss is calculated for
% the sampling intervals in h. loss contains the components

% [Jsamp Jload Jmeasl Jmeas2]. They are all normalized with h.
loss = [1;

for hcur=h
[Phi,Gam,Q1,Q2,Q12,R1,Je] = lqgsamp(4,B,hcur,Qic,Q2¢,Q12¢c,Ric);
[L,Lv,1r,S] = 1qrd(Phi,Gam,C,Q1,Q2,Q12);
[X,kKf,Kv,P,P£f] = 1qed(Phi,C,R1,R2,R12);
Jsamp = Je/hcur;
Jload = trace(R1*S)/hcur;
Jmeas1 = trace(P*L’*(Gam’*S*Gam+Q2) *L) /hcur;
Jmeas2 = Jmeasi-..
trace ((L*Kf+Lv*Kv) % (C¥P*C’+R2) * (L*Kf+Lv*Kv) ’* (Gam’*S*Gam+Q2) ) /hcur;
loss = [loss; ..
Jsamp Jload Jmeasl Jmeas2 Jsamp+Jload+Jmeasl Jsamp+Jload+Jmeas2];
end

Listing 1. A listing of the Matlab routine used to solve the example. The routine
is based on the LQG-routines described in [TFRT-7454].

For h of medium size the term Ji,,q decreases as h. As h gets smaller it is
possible to eliminate more and more of the effect from v, and Jy,.q decreases.
For very small h values Jj,.q reaches a steady state value due to @s.. The
penalty on the control signal makes it impossible to further reduce Jigaq. If
Q2. = 0, Jioaq continues to decrease as b when A — 0. Jy,.q also decreases
when h — oco. This should not be interpreted as if the controller manages to
eliminate the effect from v; it merely demonstrates that for sampling intervals
large enough the control signal can not influence the effects of v (the effect of
v is captured in Joamp).

The term Jyeas behaves similarly to Jigaq. The number of measurements
per time unit increase when h decreases, and Jyeqas also decreases. In contrast
to Jload, the asymptotic behavior for Jyeqs is Vh instead of h. As expected
Jmeas 18 larger for u(k|Ye—1) than for u(k|Yz). The difference is more pro-
nounced for large sampling intervals.

Case 2, a =1 Figure 2 depicts the different contributions to J normalized
with A for the case a = 1. The behavior is quite similar to the case a = —1
except for large h. The process is unstable and it has to be controlled actively
also when h gets large. Due to the instability the different components of J
grow exponentially a b — co. This phenomenon gets pronounced as h exceeds
the dominating time constants of the process.

The total loss for both Case 1 and Case 2 is depicted in Figure 3. The loss
is smallest when complete state information is available, e.g. no measurement
noise, and largest for the control law u(k|Yx_1). The case u(k|Y%) is somewhere
in between.

The way J depends on h gives information about reasonable sampling
intervals. For our example we note that it does not pay off to sample faster
than h ~ 0.005. The value on J will not get smaller even if h is decreased. The
reason is the penalty on the control signal. In addition, it is no use having
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Figure 1. Different contributions to the total loss J as function of the sampling
interval h for the case a = —1.

h > 0.5. For the stable process such slow sampling makes it impossible to
affect J constructively, and in the unstable case the sampling is already to
slow to handle the instability reasonably well.

It is worth noting the overall behavior for J as A — 0. Bo Bernhardsson
conjectures [Ber91] that for small h

J = C1 + 62\/5—|- Cgh (15)

where ¢; = 0 if Q3. = 0, and ¢y = 0 if Ry = 0. This behavior is demonstrated
in our example, but differs from what is claimed in [AW90, p. 360]. It is, how-
ever, important to realize that our result hinges strongly on the assumptions
made. We have assumed that the measurement noise is independent between
consecutive samples. In the case of very fast sampling this assumption seems
unrealistic, and the noise model should be changed, e.g. [Ast70] uses integrat-
ing sampling and assumes independent increments in the measurement noise.
Depending on how this is done the result (15) may or may not change.

8. Concluding Remarks
We have presented complete formulae for discrete-time LQG with cross-terms
in both the loss function and the noise description. The complete case leads

to a moderate increase of complexity compared to the standard case, and it is
surprising that most textbooks do not present it.

10
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Figure 2. Different contributions to the total loss J as function of the sampling
interval A for the case a = 1.

When designing discrete-time LQG controllers it is good practice, if pos-
sible, to use an underlying continuous-time loss function. This makes the
controller minimize a criterion based on the whole sampling interval and not
just what happens at the sampling instances. In addition, a continuous-time
loss function provides a means to compare controllers with different sampling
intervals. Even if the continuous-time loss function does not include cross-
terms, its sampled version most certainly will, and then it is practical to have
access to the complete formulae.

When allowing the Kalman filter to use the most recent measurements for
its state estimates, you get a direct path from the measurement to the control
signal. This path is given by the matrix M (cf. Section 5), which consists
of two terms: LKy and L, K,. The most recent measurement provides for a
correction of the state estimate and the first term corresponds to a feedback
from this correction. The second term, which is omitted in many presentations,
like for an innovation realization, is more subtle. If the measurement noise and
the process noise are correlated, then the most recent measurement provides
indirect information about the process noise. The second term in M includes
this information into the control signal.

The different contributions to J have different stepsize dependence, and
plotting them us function of h is quite informative. Such plots reveal quite
clearly in what region h should be chosen.

11
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