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1. IntroductionWhen presenting discrete-time linear quadratic Gaussian (LQG) control mosttextbooks [AM90, BH69, FPW90, Kai80, MG90, Oga87, PN84] do not pursuecross-terms in the loss function and/or the noise description. This may be wellmotivated for ease and clarity, especially since the cross-term in the loss func-tion can be removed through an appropriate state-input transformation. It isstill, however, interesting to explore the structure of the complete formulae,since cross-terms arise naturally when sampling continuous-time loss functionsor when using an innovation's representation for the noise. The paper [Kwo91]claims to be the �rst complete treatment.Åström and Wittenmark have considered some of the cross-term issuesin [ÅW90], but the complete case is not treated. Our presentation aims atsummarizing the formulae for LQG control with cross-terms, and it could beregarded as a generalization of the results in [ÅW90]. The presentation is terseand the reader is referred to [ÅW90, Ch. 11{12] for the basic material.2. The ProcessThe discrete-time process is given by [ÅW90, p. 335]x(k + 1) = �x(k) + �u(k) + v(k)y(k) = Cx(k) + e(k) (1)where v(k) and e(k) are discrete-time Gaussian white-noise processes with zeromean and [ÅW90, p. 336]E 8>>: v(k)e(k)9>>;8: vT (k) eT (k)9; = 8>>: R1 R12RT12 R2 9>>;The initial state x(0) is Gaussian distributed with [ÅW90, p. 336]E x(0) = m0; E x(0)xT(0) = R0Underlying continuous-time processConsider the continuous-time process [ÅW90, p. 182]dx = Axdt+Budt + dv (2)where v is a Wiener process with zero mean and uncorrelated increments. Theincremental covariance of v is R1c dt. By sampling (2) with a zero-order holdand sampling interval h we obtain [ÅW90, pp. 43{46]x(k + 1) = �(h)x(k) + �(h)u(k) + v(k)where �(h) = eAh�(h) = Z h0 eA�B d� 1



The process noise v(k) is a discrete-time Gaussian white-noise process withzero mean and covariance [ÅW90, p. 182]R1(h) = Z h0 eA�R1ceAT � d�The actual measurements are often modeled asy(k) = Cx(k) + e(k) (3)where e(k) is a sequence of independent random variables modeling the mea-surement noise; E e(k) = 0 and E e(k)eT (k) = R2. The measurement noisee(k) is often considered independent of the process noise v(k), i.e. R12 = 0.If the measurement noise is colored the state vector has to be extendedwith states modeling the noise characteristics. Then, R12 will have non-zerocomponents. Similarly, R12 is also nonzero when using an innovation's repre-sentation for the noise.Sometimes the measurements have been modeled using integrating sam-pling [Åst70]. This approach normally leads to R12 6= 0.3. Optimal State FeedbackThe discrete-time loss function is given by [ÅW90, p. 337]J = E N�1Xk=0 nxT (k)Q1x(k) + 2xT (k)Q12u(k) + uT (k)Q2u(k)o+ ExT (N)Q0x(N)= E N�1Xk=0 8: xT (k) uT (k)9;8>>: Q1 Q12QT12 Q2 9>>;8>>: x(k)u(k)9>>;+ E xT (N)Q0x(N)(4)The discrete-time loss function can either be constructed directly or be ob-tained by sampling the continuous-time loss function [ÅW90, p. 336]J = E Z Nh0 nxT (t)Q1cx(t) + 2xT (t)Q12cu(t) + uT (t)Q2cu(t)o+ E xT (Nh)Q0x(Nh) (5)If (4) were obtained by sampling then [ÅW90, p. 337]Q1 = Z h0 �T (�)Q1c�(�) d�Q12 = Z h0 �T (�) [Q1c�(�) + Q12c] d�Q2 = Z h0 ��T (�)Q1c�(�) + 2�T (�)Q12c +Q2c� d�When the stochastic case is considered, one additional term dependingon the noise is obtained when sampling (5). This term readsN�1Xk=0 tr�Q1c Z h0 R1(�) d�� = N �J 2



and should be added to (4). This noise term is the extra term mentioned inthe text [ÅW90, p. 337]. It depends on h but is una�ected by the choice ofcontrol signal.To get the optimal control law, solve the Riccati equation [ÅW90, p. 341]S(k) = �TS(k+ 1)�+ Q1� ��TS(k + 1)� +Q12� ��TS(k + 1)� +Q2��1 ��TS(k+ 1)� +QT12�S(N) = Q0and calculate (generalization of [ÅW90, p. 357] to Q12 6= 0)L(k) = ��TS(k+ 1)� +Q2��1 ��TS(k + 1)� +QT12�Lv(k) = ��TS(k+ 1)� +Q2��1 �TS(k+ 1)Using these expressions, the total loss J can be rewritten as (generalization of[ÅW90, p. 342] to Q12 6= 0)J = N �J +E nxT (0)S(0)x(0)+ N�1Xk=0 [u+ Lx]T ��TS� + Q2� [u+ Lx]+ N�1Xk=0 vTSv + N�1Xk=0 vTS [�x+ �u] + N�1Xk=0 [�x+ �u]T Svo (6)= N �J +E nxT (0)S(0)x(0)+ N�1Xk=0 [u + Lx+ Lvv]T ��TS� + Q2� [u+ Lx+ Lvv]+ N�1Xk=0 vT �S � LTv ��TS� +Q2�Lv	 v+ N�1Xk=0 vTS [�� �L] x+ N�1Xk=0 xT [�� �L]T Svo (7)where x, u, v, and L within the summations have time argument k, while Shas argument k + 1.In addition, the recursion for S can be writtenS(k) = [�� �L(k)]T S(k + 1) [�� �L(k)]+8: I �LT (k)9;8>>: Q1 Q12QT12 Q2 9>>;8>>: I�L(k)9>>;which gives the loss for any u(k) = �L(k)x(k).Di�erent optimal control lawsDepending on if the disturbance v(k) is regarded as unknown or known whenforming u(k), we get two di�erent optimal control laws, i.e.u(k) = �Lx(k)a) u(k) = �Lx(k)� Lvv(k)b) 3



These two choices give rise to di�erent J values. Using the expressions foru(k) and performing the expectation in (6) and (7), respectively, results inJa = N �J + trR0S(0) + N�1Xk=0 trR1SJb = N �J + trR0S(0) + N�1Xk=0 trR1 �S � LTv ��TS� + Q2�Lv�= Ja � N�1Xk=0 trLvR1LTv ��TS� +Q2� (8)As can be seen the total loss decreases when v(k) can be measured and usedwhen forming u(k).4. Optimal Kalman FilterTo obtain the Kalman �lter, solve the Riccati equation [ÅW90, p. 352]P (k + 1) = �P (k)�T +R1� ��P (k)CT +R12� �CP (k)CT + R2��1 �CP (k)�T +RT12�P (0) = R0and calculate Kf(k) = P (k)CT �CP (k)CT +R2��1Kv(k) = R12 �CP (k)CT + R2��1K(k) = �Kf(k) +Kv(k)The Kalman �lter is then given by [ÅW90, p. 353]x̂(k + 1jk) = �x̂(kjk) + �u(k) + v̂(kjk)= [��K(k)C] x̂(kjk� 1) + �u(k) +K(k)y(k)v̂(k + 1jk) = 0x̂(0j � 1) = m0x̂(kjk) = x̂(kjk � 1) +Kf (k) [y(k)� Cx̂(kjk � 1)]v̂(kjk) = Kv(k) [y(k)� Cx̂(kjk� 1)] (9)withE 8>>: ~x(kjk � 1)~v(kjk � 1)9>>;8: ~xT (kjk� 1) ~vT (kjk� 1)9; = 8>>:P (k) 00 R19>>;E 8>>: ~x(kjk)~v(kjk)9>>;8: ~xT (kjk) ~vT (kjk)9;= 8>>:P (k) 00 R19>>; �8>>:P (k)CTR12 9>>;8:CP (k)CT +R29;�18:CP (k) RT129;where P = P (k). 4



In addition, the recursionP (k + 1) = [��K(k)C]P (k) [��K(k)C]T+8: I �K(k)9;8>>: R1 R12RT12 R2 9>>;8: I �K(k)9;Tgives the error variance in case of any observer gain K(k), and not just theoptimal one.5. The Complete ControllerThe separation property [ÅW90, pp. 356{357] follows directly from (6) and(7). It implies that the estimated state and disturbance should be used in theoptimal control law. Due to orthogonality between u+Lx̂ and ~x (u+Lx̂+Lv v̂and [~x, ~v]) the cross-terms vanish when substituting u + Lx = u + Lx̂ + L~xinto (6) and u+Lx+Lvv = u+Lx̂+L~x+Lv v̂+Lv~v into (7), see e.g. [Åst70,p. 282].There are two main cases: u(kjYk�1), where the control signal is based onmeasurements up to time k� 1, and u(kjYk), where the control signal is basedon measurements up to time k. We get (generalization of [ÅW90, p. 357] toQ12 6= 0)u(kjYk�1) = �Lx̂(kjk� 1)� Lvv̂(kjk � 1) = �Lx̂(kjk � 1)u(kjYk) = �Lx̂(kjk)� Lvv̂(kjk)= �Lx̂(kjk� 1)� [LKf + LvKv] [y(k)� Cx̂(kjk � 1)]= � [L� LKfC � LvKvC] x̂(kjk� 1)� [LKf + LvKv] y(k)= � [L�MC] x̂(kjk� 1)�My(k)where L, Lv , Kv, and Kf all have time argument k, andM = LKf + LvKv:Substituting the expressions for u(k) into (6) and (7), respectively, andperforming the expectation results inJ(Yk�1) = N �J + trR0S(0) + N�1Xk=0 trR1S + N�1Xk=0 trPLT ��TS� +Q2�L= Ja + N�1Xk=0 trLPLT ��TS� +Q2�J(Yk) = N �J + trR0S(0) + N�1Xk=0 trR1S + N�1Xk=0 trPLT ��TS� +Q2�L� N�1Xk=0 tr �CPCT +R2��1 �LPCT + LvR12�T��TS� +Q2� �LPCT + LvR12�= J(Yk�1)� N�1Xk=0 trM �CPCT + R2�MT ��TS� + Q2� (10)
5



It is quite clear that the total loss decreases when the current measurement isused when forming u(k).Reference valueThe reference value can be introduced in many di�erent ways [ÅW90, pp.264{271]. The most simple way is to add the term Lryr(k) to the expressionfor u(k), i.e.u(kjYk�1) = Lryr(k)� Lx̂(kjk � 1)u(kjYk) = Lryr(k)� [L�MC] x̂(kjk � 1)�My(k)By choosing the parameter Lr such thatLrC (I � �+ �L)�1 � = Ithe static gain from yr to y equals I .Transfer function of the controllerThe complete controller can be summarized as"(k) = y(k)� Cx̂(kjk� 1)u(k) = Lryr(k)� Lx̂(kjk � 1)�M"(k)x̂(k + 1jk) = �x̂(kjk� 1) + �u(k) +K(k)"(k) (11)where M = (0; u(kjYk�1)LKf + LvKv; u(kjYk)The form (11) is well suited for implementation. It is easy to include extrafeatures such as saturation models for the control signal and validation of themeasurements through comparisons between "(k) and P (k).From (11) it is not too di�cult to calculate the transfer function of thecontroller. Some calculations giveu(k) = Hff(q)yr(k)�Hfb(q)y(k)whereHff(q) = [L�MC] [qI � �+ �L+KC � �MC]�1 [��Lr] + LrHfb(q) = [L�MC] [qI � �+ �L+KC � �MC]�1 [K � �M ] +M (12)Closed loop systemIntroduce ~x(k) = x(k) � x̂(kjk � 1). Then, both for the controller withu(kjYk�1) and u(kjYk), (generalization of [ÅW90, p. 358])8>>: x(k + 1)~x(k + 1)9>>; = 8>>:�� �L �L� �MC0 ��KC 9>>;8>>: x(k)~x(k)9>>;+8>>:�Lr0 9>>; yr(k) +8>>: II 9>>; v(k) +8>>:��M�K 9>>; e(k) (13)It is interesting to note that the closed loop poles are the same for bothcontrollers. 6



6. Polynomial Formulation of SISO LQGFrom (13) it is clear that the closed loop poles are de�ned by the roots of thetwo polynomialsP (z) = det(zI � �+ �L); C(z) = det(zI � �+KC)The process (1) can also be expressed in polynomial form (we now assumethat the process is SISO) B(z)A(z) = C (zI � �)�1 �and similarly for the controller (12)Hfb(z) = S(z)R(z)These polynomials are related through the Diophantine-Aryabhatta-Bezoutidentity A(z)R(z) + B(z)S(z) = P (z)C(z): (14)It is now not necessary to solve the state feedback and Kalman �lter problemin state space to obtain P (z) and C(z). IntroduceCTx Cx = Q1 � Q12Q�12 QT12; �v�Tv = R1 � R12R�12 RT12;�2 = Q2; �2 = R2q2 = �TS� + Q2; r2 = CPCT + R2The monic stable polynomials P (z) and C(z) are then obtained by solving thespectral factorizations (generalization of [ÅW90, p. 385]q2P (z)P (z�1) = BT1 (z)B1(z�1) + [B2(z) + �A(z)] �B2(z�1) + �A(z�1)�r2C(z)C(z�1) = B3(z)BT3 (z�1) + [B4(z) + �A(z)] �B4(z�1) + �A(z�1)�where B1(z)A(z) = Cx (zI � �)�1 �; B2(z)A(z) = ��1QT12 (zI � �)�1 �;B3(z)A(z) = C (zI � �)�1 �v ; B4(z)A(z) = C (zI � �)�1R12��1Note that B1(z) and B3(z) are column/row vectors with number of elementsequal to rank(Q1) and rank(R1), respectively.In the case of minimum variance control, Q2 = 0 (and thus Q12 = 0), thespectral factorization for P (z) changes toq2P (z)P (z�1) = BT1 (z)B1(z�1)Similarly, when perfect measurements are available, R2 = 0 (and thus R12 =0), the spectral factorization for C(z) changes tor2C(z)C(z�1) = BT3 (z)B3(z�1) 7



Provided A and B coprime, the solution R, S to (14) is unique forcontrollers with u(kjYk�1), i.e. degS � degR � 1. The case u(kjYk), i.e.deg S � degR, is more complicated. The identity (14) gives 2n� 1 equationswhile S(z) and R(z) contain 2n free variables. For Q12 = 0 or R12 = 0 it canbe shown that S(0) = 0. In the special case where A and B are coprime, andA(0) 6= 0, this reduces the number of unknown variables by one, making theproblem directly solvable. The general case is, however, more involved and[ÅW90, p. 392] gives another approach.7. Loss Function Dependence on the Sampling In-tervalAs a numerical example we will investigate how the total loss J depends onthe sampling interval h for a simple �rst order process (the example is dueto Bo Bernhardsson [Ber91]). The LQG control problem is solved with a setof Matlab routines [TFRT-7454] developed at the Department of AutomaticControl in Lund. The routines are able to handle both cross-terms in the lossfunction as well as in the noise description.Consider the continuous-time processdx = ax dt+ u dt+ dv;with m0 = 0, R0 = 0, and R1c = 1. The process is controlled using a discrete-time controller minimizing minu E(y2 + 10�4u2)i.e. Q1c = 1, Q12c = 0, and Q2c = 10�4. The measurement noise is modeledas discrete-time Gaussian white noise with R2 = 10�2 and R12 = 0.The problem was solved for a set of di�erent sampling intervals using theMatlab routine in Listing 1. The total loss J can be written as (cf. (8) and(10)) J = Jsamp + Jinit + Jload + JmeasThe �rst term Jsamp is the continuous-time process noise contribution that isindependent of the control law. It is a consequence of using a discrete-timecontroller to control a continuous-time process. The second term depends onthe initial state x(0). In our example this term is zero since m0 = 0 andR0 = 0. The third term Jload comes from the contribution of the processnoise that can be inuenced with the control signal. The last term Jmeas isthe contribution due to imperfect measurements. It comes in two versionsdepending on if u(k) is based on Yk�1 or Yk .Case 1, a = �1 Figure 1 depicts the di�erent contributions to J normalizedwith h for the case a = �1. The component Jsamp decreases when h ! 0,as the di�erence between the discrete-time controller and a correspondingcontinuous-time controller gets smaller. As h ! 1 the correlation betweenconsecutive output measurements tends to zero and Jsamp reaches a stationaryvalue (k1=(s+ 1)kH2 = 1=2). The process is stable and for sampling intervalsthat are larger than the dominating process time constants, it is not possibleto �nd a control signal that reduces the variance of the output. The stationaryvalue of Jsamp corresponds to no control. 8



function loss = lqgloss(A,B,C,Q1c,Q12c,Q2c,R1c,R12,R2,h)%LQGLOSS Calculates loss per timeunit for LQG control%% loss = lqgloss(A,B,C,Q1c,Q12c,Q2c,R1c,R12,R2,h)%% The different contributions to the total loss is calculated for% the sampling intervals in h. loss contains the components% [Jsamp Jload Jmeas1 Jmeas2]. They are all normalized with h.loss = [];for hcur=h[Phi,Gam,Q1,Q2,Q12,R1,Je] = lqgsamp(A,B,hcur,Q1c,Q2c,Q12c,R1c);[L,Lv,lr,S] = lqrd(Phi,Gam,C,Q1,Q2,Q12);[K,Kf,Kv,P,Pf] = lqed(Phi,C,R1,R2,R12);Jsamp = Je/hcur;Jload = trace(R1*S)/hcur;Jmeas1 = trace(P*L'*(Gam'*S*Gam+Q2)*L)/hcur;Jmeas2 = Jmeas1-..trace((L*Kf+Lv*Kv)*(C*P*C'+R2)*(L*Kf+Lv*Kv)'*(Gam'*S*Gam+Q2))/hcur;loss = [loss; ..Jsamp Jload Jmeas1 Jmeas2 Jsamp+Jload+Jmeas1 Jsamp+Jload+Jmeas2];endListing 1. A listing of the Matlab routine used to solve the example. The routineis based on the LQG-routines described in [TFRT-7454].For h of medium size the term Jload decreases as h. As h gets smaller it ispossible to eliminate more and more of the e�ect from v, and Jload decreases.For very small h values Jload reaches a steady state value due to Q2c. Thepenalty on the control signal makes it impossible to further reduce Jload. IfQ2c = 0, Jload continues to decrease as h when h ! 0. Jload also decreaseswhen h ! 1. This should not be interpreted as if the controller manages toeliminate the e�ect from v; it merely demonstrates that for sampling intervalslarge enough the control signal can not inuence the e�ects of v (the e�ect ofv is captured in Jsamp).The term Jmeas behaves similarly to Jload. The number of measurementsper time unit increase when h decreases, and Jmeas also decreases. In contrastto Jload, the asymptotic behavior for Jmeas is ph instead of h. As expectedJmeas is larger for u(kjYk�1) than for u(kjYk). The di�erence is more pro-nounced for large sampling intervals.Case 2, a = 1 Figure 2 depicts the di�erent contributions to J normalizedwith h for the case a = 1. The behavior is quite similar to the case a = �1except for large h. The process is unstable and it has to be controlled activelyalso when h gets large. Due to the instability the di�erent components of Jgrow exponentially a h!1. This phenomenon gets pronounced as h exceedsthe dominating time constants of the process.The total loss for both Case 1 and Case 2 is depicted in Figure 3. The lossis smallest when complete state information is available, e.g. no measurementnoise, and largest for the control law u(kjYk�1). The case u(kjYk) is somewherein between.The way J depends on h gives information about reasonable samplingintervals. For our example we note that it does not pay o� to sample fasterthan h � 0:005. The value on J will not get smaller even if h is decreased. Thereason is the penalty on the control signal. In addition, it is no use having9
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Figure 1. Di�erent contributions to the total loss J as function of the samplinginterval h for the case a = �1.h > 0:5. For the stable process such slow sampling makes it impossible toa�ect J constructively, and in the unstable case the sampling is already toslow to handle the instability reasonably well.It is worth noting the overall behavior for J as h! 0. Bo Bernhardssonconjectures [Ber91] that for small hJ = c1 + c2ph+ c3h (15)where c1 = 0 if Q2c = 0, and c2 = 0 if R2 = 0. This behavior is demonstratedin our example, but di�ers from what is claimed in [ÅW90, p. 360]. It is, how-ever, important to realize that our result hinges strongly on the assumptionsmade. We have assumed that the measurement noise is independent betweenconsecutive samples. In the case of very fast sampling this assumption seemsunrealistic, and the noise model should be changed, e.g. [Åst70] uses integrat-ing sampling and assumes independent increments in the measurement noise.Depending on how this is done the result (15) may or may not change.8. Concluding RemarksWe have presented complete formulae for discrete-time LQG with cross-termsin both the loss function and the noise description. The complete case leadsto a moderate increase of complexity compared to the standard case, and it issurprising that most textbooks do not present it. 10
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Figure 2. Di�erent contributions to the total loss J as function of the samplinginterval h for the case a = 1.When designing discrete-time LQG controllers it is good practice, if pos-sible, to use an underlying continuous-time loss function. This makes thecontroller minimize a criterion based on the whole sampling interval and notjust what happens at the sampling instances. In addition, a continuous-timeloss function provides a means to compare controllers with di�erent samplingintervals. Even if the continuous-time loss function does not include cross-terms, its sampled version most certainly will, and then it is practical to haveaccess to the complete formulae.When allowing the Kalman �lter to use the most recent measurements forits state estimates, you get a direct path from the measurement to the controlsignal. This path is given by the matrix M (cf. Section 5), which consistsof two terms: LKf and LvKv. The most recent measurement provides for acorrection of the state estimate and the �rst term corresponds to a feedbackfrom this correction. The second term, which is omitted in many presentations,like for an innovation realization, is more subtle. If the measurement noise andthe process noise are correlated, then the most recent measurement providesindirect information about the process noise. The second term in M includesthis information into the control signal.The di�erent contributions to J have di�erent stepsize dependence, andplotting them us function of h is quite informative. Such plots reveal quiteclearly in what region h should be chosen. 11
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Figure 3. Total loss as function of h when a = �1 and a = 1.9. References[AM90] Anderson, B. D. O. and J. B. Moore. Optimal Control LinearQuadratic Methods. Prentice-Hall, Englewood Cli�s, New Jersey,1990.[Åst70] Åström, K. J. Introduction to Stochastic Control Theory. Aca-demic Press, New York, 1970.[ÅW90] Åström, K. J. and B. Wittenmark. Computer Controlled Sys-tems { Theory and Design. Prentice-Hall, Englewood Cli�s, NewJersey, second edition, 1990.[Ber91] Bernhardsson, B. 1991. Private communication.[BH69] Bryson, Jr., A. E. and Y.-C. Ho. Applied Optimal Control { Op-timization, Estimation, and Control. Blaisdell Publishing Company,1969.[FPW90] Franklin, G. F., J. D. Powell, and M. L. Workman. DigitalControl of Dynamic Systems. Addison-Wesley, second edition, 1990.[Kai80] Kailath, T. Linear Systems. Prentice-Hall, Englewood Cli�s, 1980.[Kwo91] Kwong, R. H. \On the linear quadratic gaussian problem with cor-related noise and its relation to minimum variance control." SIAMJ. Contr. & Opt., 29:1, pp. 139{152, Jan. 1991. 12
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