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Abstract

This thesis is divided into two separate parts. The first part is about Dy­
namic Programming for non­trivial optimal control problems. The second
part introduces some useful tools for analysis of stability and performance
of systems with time­varying delays.
The two papers presented in the first part attacks optimal control prob­

lems with finite but rapidly increasing search space. In the first paper we
try it reduce the complexity of the optimization by exploiting the structure
of a certain problem. The result, if found, is an optimal solution.
The second paper introduces a new general approach of relaxing the

optimality constraint. The main contribution of the paper is an extension
of the Bellman equality to a double inequality. This inequality is a suffi­
cient condition for a suboptimal solution to be within a certain distance to
the optimal solution. The main approach of solving the inequality in the
paper is value iteration, which is shown to work well in many different
applications.
In the second part of the thesis, two analysis methods for systems with

time­varying delays are presented in two papers. The first paper presents
a set of simple graphical stability (and performance) criteria when the
delays are bounded but otherwise unknown. All that is needed to verify
stability is a Bode diagram of the closed loop system.
For more exact computations, the last paper presents a toolbox for

MATLAB called JITTERBUG. It calculates quadratic costs and power spec­
tral densities of interconnected continuous­time and discrete­time linear
systems. The main contribution of the toolbox is to make well known
theory easily applicable for analysis of real­time systems.
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1

Introduction

This thesis consists of two major parts, and a total of four papers. The
first part describes research in optimal control design using dynamic pro­
gramming, and will be introduced in Chapter 2. The second part focuses
on systems with time­varying delays, and problems in real­time control.
It is introduced in Chapter 3.

1.1 Background and Motivation

In 1999, when I came to the department, the telecom industry was boom­
ing. The control community was, as always, curious to follow (and con­
tribute to) the development. Therefore, my work together with my advisor
at the time, Bo Bernhardsson, started around control and wireless net­
works; specifically the new Bluetooth network technology. We studied the
network technology in the perspective of using it to transfer real­time con­
trol data. This inspired us to formulate several theoretical problems, like
“How should a control network share the communication resources?”, and
“How are the individual control loops affected by this sharing?” One prob­
lem lead to another, and the two main topics of this thesis were formed:
Dynamic Programming of hard optimal control problems (such as resource
sharing) and analysis of systems with time­varying delays. Much of the
work has been carried out with my current advisor Anders Rantzer.
The individual motivations for those two subjects can be found in

Chapters 2 and 3. The rest of this chapter will be devoted to describing
the main contributions of the thesis.

1.2 Contributions of this Thesis

This section is the abstract of the abstract; for a slightly longer intro­
duction and motivation, read Chapters 2 and 3, and, for all the details,
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Chapter 1. Introduction

continue to Papers I–IV.

Paper I

Lincoln, B. and B. Bernhardsson (2002): ‘‘LQR optimization of

linear system switching.’’ IEEE Transactions on Automatic Control,
vol 47 pp. 1701–1705, October 2002.

This paper presents a switched optimal control problem, and attempts to
solve it through Dynamic Programming and by exploiting the structure
of the problem. The main contributions are:

• Presentation of a clean and relevant optimal control problem which
is provably hard to solve.

• Development of a tree pruning method which often reduces optimiza­
tion search space drastically. A “complexity parameter” is chosen by
the user. It is shown that if this is large enough, the optimal solution
will always be found.

• An algorithm to prove that a resulting switching sequence is optimal.

Paper II

An extended version of

Lincoln, B. and A. Rantzer (2003): ‘‘Relaxing Dynamic Program­
ming.’’ Submitted to IEEE Transactions on Automatic Control.

In this paper, similar types of problems as in Paper I are studied, but
another method is used to beat the complexity of the optimization. Here,
optimality is relaxed so that the algorithm tries to find a solution within
a user­specified distance from the optimal solution. This makes it possible
to find close­to­optimal solutions to problems which are usually considered
hopeless. The contributions are:

• An extension of the Bellman equality of Dynamic Programming to
a double inequality. This inequality is a sufficient condition for a
suboptimal solution to be within a certain distance from the optimal
solution.

• A value­iteration method to find solutions to the above inequality.
The solution error bound is specified by the user in advance, and
enables a time­versus­accuracy trade­off.

• Examples showing the feasibility of the above method in a number
of problem domains:

– Optimal control of switched linear systems

12



1.2 Contributions of this Thesis

– Optimal control of piecewise linear systems

– Partially Observable Markov Decision Processes (POMDPs)
– Network routing tables

Paper III

Kao, C­Y. and B. Lincoln (2003): ‘‘Simple Stability Criteria for
Systems with Time­Varying Delays’’ Submitted to Automatica.

This is the first paper in the second part of this thesis, where the topic is
“Systems with Time­Varying Delays”. This paper presents a set of simple,
graphical, stability criteria for control systems with bounded but other­
wise freely time­varying delays. The contributions are:

• Simple Bode­diagram­verifiable stability criteria for continuous­time,
discrete­time, and mixed continuous­discrete­time systems are pre­
sented. The theorems are simply based on the Small Gain Theorem.

• It is indicated that the criteria are not very conservative.

• A performance degradation bound is proven.

Paper IV

Lincoln, B. and A. Cervin (2002): ‘‘Jitterbug: A tool for analysis of
real­time control performance.’’ In Proceedings of the 41st IEEE
Conference on Decision and Control, pp. 1319–1324, December 2002.

Finally, on the practical side, a MATLAB toolbox named JITTERBUG is pre­
sented. It can be used to do the theoretically well­known but tedious per­
formance calculations for linear continuous­time and discrete­time inter­
connected systems with random time­delays. The contribution is:

• A MATLAB toolbox which can calculate the steady­state performance
of interconnected continuous­ and discrete­time linear systems dri­
ven by Gaussian noise. The toolbox includes support for adding ran­
dom events such as time­varying delays or data drop­outs.

Other Publications

A number of other papers which I choose not to include in this thesis have
been published as well. Several of these papers have “paved the way” to
the papers in this thesis, and can therefore be seen as intermediate steps.

• Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.­E. Årzén
(2003): “How does control timing affect performance?” IEEE Con­
trol Systems Magazine. To appear.

13



Chapter 1. Introduction

• Lincoln, B. and A. Rantzer (2003): “Relaxed Optimal Control of
Piecewise Linear Systems.” To be presented at the IFAC Conference
on Analysis and Design of Hybrid Systems, Saint­Malo, France, June
2003.

• Lincoln, B. and A. Rantzer (2002): “Suboptimal dynamic program­
ming with error bounds.” In Proceedings of the 41st Conference on
Decision and Control, pp. 2354–2359, December 2002.

• Lincoln, B. (2002): “A simple stability criterion for control systems
with varying delays.” In Proceedings of the 15th IFAC World Con­
gress, paper T­Th­A21, July 2002.

• Lincoln, B. (2002): “Jitter compensation in digital control systems.”
In Proceedings of the 2002 American Control Conference, pp. 2985–
2990, May 2002.

• Lincoln, B. and A. Rantzer (2001): “Optimizing linear system switch­
ing.” In Proceedings of the 40th Conference on Decision and Control,
pp. 2063–2068, December 2001.

• Lincoln, B. and B. Bernhardsson (2000): “Efficient pruning of search
trees in LQR control of switched linear systems.” In Proceedings of
the Conference on Decision and Control pp. 1828–1833, December
2000.

• Lincoln, B. and B. Bernhardsson (2000): “Optimal control over net­
works with long random delays.” In Proceedings of the International
Symposium on Mathematical Theory of Networks and Systems.

1.3 Future Work

Both research topics presented in this thesis are interesting, and many
open questions remain. Especially Papers II and III point out new direc­
tions of research.
Much remains to be done for the Relaxed Dynamic Programming in

Paper II. The method to find a steady­state solution presented in this the­
sis, value iteration, is only one way to go. Other methods, such as direct
solution of the steady­state inequality, policy iteration, etcetera, should
definitely be investigated. New types of value function parameterizations
should be developed, and maybe most importantly, new areas of appli­
cation remain to be found. Some promising applications should also be
investigated in­depth. One such example is the switched power controller
in Section 3.3, Paper II.

14



1.3 Future Work

The stability analysis for systems with time­varying delays presented
in Paper III could be extended. Robustness and uncertainty issues should
be added to the criterion. Also, robust design of time­varying delay com­
pensators based on the stability criterion is certainly a possibility. Work
in this direction has already been started in [Lincoln, 2002].
Finally, it would definitely be interesting to apply some of the theory

to real world systems, such as for example a switched power controller.
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2

Optimal Control and

Dynamic Programming

2.1 Introduction

Optimal control is the art of controlling a system using a set of control
actions from an initial state x0 in the best possible way with respect to
some cost function. The control may stop after a finite time or continue
for infinite time, and there may or may not be a fixed final state x f which
should be reached.
Some optimal control problems, such as the shortest­path problem in

graphs, or the LQG (Linear­Quadratic­Gaussian) problem can be solved
with simple, explicit, solutions. Other optimal control problems, with a
controllable uncertainty in the system (so called Dual Control problems)
are extremely hard to solve. In this thesis, problems in the gray zone
slightly outside of the simple problems are studied. These problems can of­
ten be shown to be hard in general. For many realistic problem instances,
though, it is possible to solve them in reasonable time by exploiting their
structure. This is the approach of Paper I. In Paper II, the approach is
to relax the optimality condition to close to optimality, and thereby ob­
tain less complex solutions. The basic methodology used in both papers is
Dynamic Programming.

2.2 Dynamic Programming

The term Dynamic Programming was introduced in the 1950’s with Bell­
man’s Principle of Optimality (see [Bellman, 1957]):

16



2.2 Dynamic Programming

An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision.

The Principle of Optimality simply states that if one step is taken along
an optimal path from A to O, then the remaining path is also optimal for
the new point B. See Figure 2.1.

A

B

O

x

t

Figure 2.1 Principle of Optimality: As B is on the optimal path from A to O, the
optimal path from B to O is what remains of the same path. t is time and x is the
state of the system.

The main use of the Principle of Optimality is that if we know all
optimal paths for any initial state x at time n + 1, then every optimal
path starting at time n must use one of these optimal paths from time
n+ 1 and onwards. See Figure 2.2 for an illustration.

Mathematical Formulation

Let us introduce some mathematical terms to be used next. We let the
state of our system be denoted x. This is usually a finite­dimensional
vector of real numbers, and in the illustrations we let it have dimension 1
for simplicity (i.e. x is a number). We let time evolve discretely, in steps.
At time n with a state of x(n), the controller has to choose a control action
u(n) that brings the system to state x(n + 1) at time n + 1 according to
the system dynamics f (x,u):

x(n+ 1) = f
(
x(n),u(n)

)
. (2.1)

To be able to discuss optimality of certain paths and control actions,
there must be a notion of cost (or, equivalently, reward). An optimal path
is a path from an initial state x(n) which minimizes some cost J. For
Dynamic Programming, we often use a time­additive cost, which consists

17



Chapter 2. Optimal Control and Dynamic Programming

A

O

x

t

u1

u2

u3

u4

n n+ 1

Figure 2.2 Optimal paths for all initial states x from time n+ 1 to O are known.
Which is of the actions ui is optimal to go from A to O?

of a sum of step costs l(x,u):

J
(
x(⋅),u(⋅)

)
=

N∑

n=0
l
(
x(n),u(n)

)
. (2.2)

A feedback control law
u(n) = µ(x, n), (2.3)

assigns an action for any time n and state x. When this control law is
applied to the system, it evolves as

x(n+ 1) = f
(
x(n), µ(x, n)

)
. (2.4)

An optimal control law µ∗(x, n) is one that minimizes the cost J for any
initial state.

Optimal Control Action

Having defined what an optimal control law should do, all that remains
is to find it. As stated before, if we know the optimal feedback law for any
state x at time n + 1, then all the controller has to decide at time n is
which action to take at the first step – the remaining steps are already
known. See Figure 2.2 for an illustration.
Let the total cost using the optimal control law from state x, at time

n+1 be V ∗(x, n+1). We call this function the optimal value function, and

18



2.2 Dynamic Programming

it will be referred to a lot throughout this thesis (see Figure 2.3). As we
know the optimal control law from time n+ 1, we also know V ∗(x, n+ 1).
The task of the controller at time n is to choose an action u such that

the sum of the step cost from n to n+1 and the remaining cost from n+1
is minimized. This is the essence of Bellman’s famous equation:

V ∗(x, n) = min
u(n)




V ∗
(
f
(
x(n),u(n)

)
, n+ 1

)

︸ ︷︷ ︸
Remaining cost

+ l
(
x(n),u(n)

)
︸ ︷︷ ︸
Step cost





. (2.5)

Given the value function V ∗(x, n+1) we can thus calculate both the value
function V ∗(x, n) and control law u(n) = µ(x, n) at time n. Therefore, the
optimal feedback control law can be found by iteration, starting at the
final step and solving backwards in time. This procedure is called value
iteration. We note that the only data that needs to be kept between each
iteration is the value function.
Another way to solve for a steady­state solution of Bellman’s equation

is policy iteration. This means the following two­step method is iterated:

• Given a steady­state control law µk(x), the corresponding infinite­
time value function Vk(x) is calculated.

• From a value function Vk(x), an improved control law µk+1(x) is
calculated.

This method can give very fast convergence when we have a good initial
value function (or control law).

Success Stories

In this section we will describe a classical optimization/optimal control
problem where Dynamic Programming provides a beautiful solution.

Shortest Path in Graphs. The problem of finding the shortest path in
a graph (see Figure 2.4) is very old and well known, and its most famous
solution is called Dijkstra’s algorithm (see e.g. [Cormen et al., 1989]). This
algorithm is an application of Dynamic Programming.
The problem is to find the shortest path to a final state O, given an

initial state x ∈ X , where X is the set of all nodes in the graph. This can
be viewed as finding an optimal control law which tells us which way to
take in each node. To find the shortest path, we define the cost function
to be

J =
N∑

n=0
l(x,u), l(x,u) =

{
1, if x �= O,
0, if x = O.

(2.6)

19



Chapter 2. Optimal Control and Dynamic Programming

A

O

x

x

t

n

V ∗(x, n+ 1)

Figure 2.3 The optimal value function V ∗(x, n + 1) corresponds to the best ob­
tainable cost starting at state x at time n+ 1.

where N is a number larger than the longest distance in the graph. This
cost is then equivalent to the length of the path.
The solution of the problem is the following: Let

V ∗(x, N) =
{

∞, if x �= O,
0, if x = O.

Now calculate V ∗(x, N−1) from V ∗(x, N) using (2.5). The interpretation of
(2.5) in this case is “for each node, check all neighboring nodes’ distance
to O, and let my distance to O be the shortest distance plus one.” The
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2.2 Dynamic Programming

A

B

C

D

O

V ∗(A) = 3

V ∗(B) = 2

V ∗(C) = 1

V ∗(D) = 1

V ∗(O) = 0

Figure 2.4 A simple shortest path problem. O is the target node. The steady state
value function V ∗(x) (i.e. the distance to O) is indicated at each node.

possible control action u for each node x is one of the outgoing edges from
that node.
After iterating for N steps or less, a steady­state solution V ∗(x) is

found. V ∗(x) is then the distance between any state x and the final state
O. The optimal control action (i.e., which outgoing edge to follow) for each
node x is obtained from the last iteration of (2.5).
Problems of huge size can easily be solved, thanks to the fact that the

value function can be represented by a vector of length hX h, where hX h is
the number of nodes. The complexity stays the same for each iteration.

Limitations

The shortest path problem in the previous section, as well as the LQG
optimal controller, and the Viterbi algorithm in coding theory are famous
examples of problems where Dynamic Programming gives beautiful solu­
tions. Unfortunately, these are exceptions.
As mentioned before, the most important entity of Dynamic Program­

ming is the value function V ∗(x, n). The value function stores all infor­
mation about the problem at the current iteration, and must therefore be
parameterizable in some way so that it can be stored. For most problems,
though, V ∗ is not easily described; it can be highly irregular, non­convex,
discontinuous and so on. Also, the curse of dimensionalitymakes the prob­
lem exponentially harder with the number of state variables.
The problems studied in this thesis have the property that the value

function V ∗(x, n) can be exactly parameterized by a finite but often rapidly
increasing number of functions. One common such parameterization is the
piecewise linear

V ∗(x, n) = max
π ∈P(n)

π T x, (2.7)

where P(n) is a set of vectors. V ∗(x, n) is thus the maximum of a number
of hyperplanes, see Figure 2.5. For problems with value functions of this
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V ∗(x, n)

Figure 2.5 A piecewise linear value function.

x x x

V ∗(x, 0) V ∗(x, N)V ∗(x, N − 1)

Figure 2.6 The complexity of a value function, growing over iterations.

kind, the difficulty is most often that the complexity (i.e number of func­
tions which the value function is made up of) grows with the number of
iterations; see Figure 2.6. For most practical problems, it grows rapidly,
and the complexity of the value function becomes prohibitive. One such
example can be seen in Figure 2.7, where a two­state double tank con­
trol problem with a piecewise linear step cost is being solved. Already
after three iterations, the parameterization of V ∗(x, n) has become very
complex, and the fourth iteration is almost unsolvable.

2.3 Beating Complexity 1: Exploiting Structure

The success of Dynamic Programming in Dijkstra’s algorithm as well as
the Viterbi algorithm stems from the fact that the problem they solve have
a finite state space, and thus the value function can be parameterized by
a vector of the same dimension.
For problems with continuous state space, which are common in con­

trol, this approach cannot be used. In some problems, though, the decision
space, i.e. the possible control actions the controller can take is finite. In
this way, the value function can be parameterized by a growing set of
control sequences. For example, if the controller can choose from only two
different control actions, 1 and 2, at each time step, the number of possible
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Figure 2.7 The value iteration for the double tank example starts with V ∗(x, N)
consisting of 8 hyperplanes. Shown in the image is V ∗(x, N − 3) which is parame­
terized by 157 hyperplanes. V ∗(x, N − 4) consists of more than 1000 hyperplanes,
and so on. Note: The gridding is for plotting purposes only.

control sequences is 2N for a time horizon of N time steps. Let K (n, N)
denote one such sequence from time step n to N, and let the set of all
possible sequences be denoted κ (n, N). One example of a sequence is

K (0, 5) = [ 1 1 2 1 2 ] ,

and κ (0, 5) consists of 32 sequences. As the number of possible sequences
grows exponentially with the time horizon, some sequences must be re­
moved (pruned) to keep the search complexity at a reasonable level.
For a given initial state x(0) (or probability distribution Px(0)), some

of the possible sequences in κ (n, N) may be obviously suboptimal. If these
are removed carefully, it may still be possible to prove optimality of the
best kept sequence. This is the topic of Paper I.

A Switching Control Problem

A specific optimal control problem which is inspired by Networked Control
Systems is described in this section. It is the main problem studied in
Paper I.
Networked Control Systems is a relatively new area of control where

the interconnection of control systems and computer networks are studied

23



Chapter 2. Optimal Control and Dynamic Programming

(or, at least, the interconnection of network theory and control theory).
In some cases it may be useful to have a wireless network to transmit
control data, for example if the different sensors and actuators are sep­
arated and moving independently. The problem of getting a time­slot to
send a packet on the network may be more significant than e.g. classical
CPU scheduling, as many networks are rather slow. Therefore, we study
a simple problem where one controller controls two plants by commu­
nicating over a network, see Figure 2.8. The network is assumed to be
time­slotted (such as e.g. Bluetooth [Haartsen, 1998]), and the controller
can only communicate with one plant each time slot. We would like to find

ControlControl

Controller

MeasureMeasure

Plant 1 Plant 2

Figure 2.8 A switching control problem: Which is the best sequence to control the
two plants if only one can be controlled each time step?

a static schedule, i.e. an access sequence, which is the best on average (i.e.
in presence of noise).
Assuming linear time­invariant models of the plants

x1(n+ 1) = ϕ1x1(n) + γ 1u(n) + n1v1(n), (2.8)
x2(n+ 1) = ϕ2x2(n) + γ 2u(n) + n2v2(n), (2.9)

where vi(n) are white, Gaussian noise sources. Note that the ϕ i etc. denote
matrices of arbitrary dimension in spite of the lower­case notation. The
whole system can then be written as

x(n + 1) = Φk(n)x(n) + Γk(n)u(n) + Gk(n)v(n), k(n) ∈ {1, 2} (2.10)

where

Φ1 =
[ϕ1 0

0 ϕ2

]
, Γ1 =

[γ 1
0

]
, G1 =

[n1 0

0 n2

]
, (2.11)

Φ2 =
[ϕ1 0

0 ϕ2

]
, Γ2 =

[
0

γ 2

]
, G2 =

[n1 0

0 n2

]
. (2.12)

The problem is to find a linear feedback law

u(n) = −Lx(n),
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for the continuous control action u(n), and a sequence

K (0, N) = [ k(0) k(1) . . . k(N − 1) ] ,

such that a cost function

J = Ev
{
N−1∑

n=0

[
x(n)
u(n)

]T
Q

[
x(n)
u(n)

]
+ x(N)TQN x(N)

}

is minimized. Q and QN are positive symmetric step cost matrices.
If the switching sequence K is fixed, it is easily solved as a standard

(time­varying) LQR problem. The problem is, as mentioned before, to
prune out unwanted candidate sequences from the exponentially growing
set of possible sequences.

The Pruning Method of Paper I

It is rather straightforward to see that the optimal value function in the
switching problem is on the form

V ∗(x, n) = min
K∈κ (n,N)

{
xTSK x + cK

}
, (2.13)

where the set of SK matrices represent the state­dependent cost, and the
constants cK represent the expected costs due to noise.
First, we note that for two sequences K1 and K2, if

SK1 ≥ SK2 and cK1 ≥ cK2 ,

then sequence K1 is worse than sequence K2 for all initial states, and
therefore it can be pruned without loss of optimality. Unfortunately, for
most problems, this case rarely occurs. Secondly, if

SK1 �≥ SK2 but cK1 ≫ cK2 ,

then for small initial states x(0) it is not very likely that K1 will ever
be optimal due to the very high average noise cost (usually because only
one plant was given attention for a long time). The main idea promoted
in Paper I is to prune the tree while expanding, and to save information
on pruned sequences. The pruning rule in this paper allows a proof of
optimality of the best found sequence by using the information on pruned
sequences. The proof is based on calculating a lower bound on the ob­
tainable cost from a pruned sequence, and comparing this to the actual
best cost obtained. If the lower bound is worse, we know that the pruned
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Time step

n N0

Kcand

Kprune

Lower bound

Figure 2.9 At time step n, the sequence Kprune has a significantly worse noise
cost cK than Kcand and is therefore pruned. By combining its cost by a lower bound
on the cost from time 0 to time n, a lower bound on all sequences ending in Kprune
is obtained. In the illustration the lower bound cost was proven to be higher than
the lowest found cost, and therefore optimality is preserved.

sequence could not be optimal. The idea is illustrated graphically in Fig­
ure 2.9.
The method in Paper I works fine in many cases, but it may still run

in exponential time as the problem is actually NP­hard. The method of
beating complexity in the next section has better chances of solving hard
Dynamic Programming problems.

2.4 Beating Complexity 2: Relaxing Optimality

The contribution of Paper II in this thesis is a method to relax the optimal­
ity requirement of our problems. By allowing us to search for a solution
which is close to the optimal solution, in many cases a much less complex
value function can be found. Throughout the thesis, we will denote such
a non­optimal value function V (x, n). For a lack of a better name, we will
use general term Relaxed Dynamic Programming or RDP for the specific
relaxation method in Paper II.
The approach of suboptimal Dynamic Programming has been tried

before in many ways, most of which imply that not only optimality is lost,
but also that the solution has no guaranteed close­to­optimality properties
what so ever. The RDP method in this thesis allows the user to pre­specify
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V (x, n)

V (x, n) x

V (x, n)

Figure 2.10 A simplified value function V (x, n) between the upper and lower
bounds.

an error bound, and the algorithm will search for a solution within that
bound.

Approximating the Value Function

In all methods described in this section, including our method, the relax­
ation of the Dynamic Programming is done by approximating the value
function. In the RDP method, this is done by fitting a new function in
between upper some and lower bounds, V (x, n) and V (x, n), respectively.
See Figure 2.10. For many of the other methods the idea is simply to get
as good fit as possible without guarantees. In this section, some of the
most common value function approximations are explained.

Gridding of the State Space. The most immediate way to approxi­
mate a general value function is to sample it in a uniform or non­uniform
grid of the state space, see Figure 2.11. This works fine for low­dimension­
al problems (up to two or three), but the complexity grows exponentially
with problem dimension. For example, for a simple two­dimensional sys­
tem with, say, 20 grid points along each dimension, the value function
consists of 202 = 400 points. Increasing the state space to dimension four
gives 160,000 points, and so on.
Solving the Bellman equation (2.5) in the value iteration is conceptu­

ally trivial (loop through all grid points), but computationally expensive.
In some cases, it is also possible to solve for the steady­state solution im­
mediately, without value iteration. This is done in [Hedlund and Rantzer,
2002].

Linear Combination of Basis Functions. Neuro­Dynamic Program­

ming is a Dynamic Programming method, where the approximation of
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x

V ∗(x, n)

Figure 2.11 Approximation of the value function V ∗(x, n) by gridding the state
space x.

x

V ∗(x, n)

b1(x) b2(x) b3(x)

Figure 2.12 Approximation of the value function V ∗(x, n) by using basis functions
bi(x).

the value function is based on a linear combination of a set B of basis
functions bi(x).

V (x, n) =
∑

i∈B
λ i(n)bi(x) (2.14)

These basis functions usually have to be chosen in advance by the user,
and must be based on a priori knowledge of the the nature of the value
function. The gridding method in the previous section is one specific ba­
sis function, but generally more smooth basis functions are used. See
Figure 2.12 for an illustration. For references on Neuro­Dynamic Pro­
gramming, see e.g. [Roy, 2001; de Farias and Roy, 2002; Bertsekas and
Tsitsiklis, 1996].
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The Main Idea

The RDP method presented in Paper II applies to any value function
approximation method. Its main contribution is to give upper and lower
bounds within which the approximation must stay to guarantee the pre­
specified error bound.
Briefly, the idea is the following: We define upper and lower step costs,

l(x,u) and l(x,u) respectively, as

l(x,u) = α l(x,u) α ≥ 1 (2.15)
l(x,u) = α l(x,u) α ≤ 1 (2.16)

where α and α are relaxation bounds, chosen by the user. Note that

αV ∗(x, n) = α min
u

N∑

i=n
l
(
x(i),u(i)

)
= min

u

N∑

i=n
l
(
x(i),u(i)

)
(2.17)

i.e. the step cost l(x,u) gives a value function which is scaled by α , and
similarly for l(x,u) and α . These α and α will be used as our upper and
lower relative error bounds, respectively.
Now assume we have a V (x, n+ 1) which satisfies

αV ∗(x, n+ 1) ≤ V (x, n+ 1) ≤ αV ∗(x, n+ 1), (2.18)

i.e. is within the relative error of α and α from the optimal value function.
Then any function V (x, n) that satisfies

min
u

{
V
(
f
(
x,u
)
, n+ 1

)
+ l(x,u)

}

≤ V (x, n) ≤

min
u

{
V
(
f
(
x,u
)
, n+ 1

)
+ l(x,u)

}
(2.19)

also satisfies
αV ∗(x, n) ≤ V (x, n) ≤ αV ∗(x, n). (2.20)

Thus, if (2.19) is satisfied, no matter which specific parameterization,
the close­to­optimality property (2.20) is also satisfied. This procedure
can then be iterated just like the common value iteration, and thanks
to the fact that the “slack” is introduced in the step cost and not in the
previous value function, the relative error bound will stay the same for
each iteration.
In Paper II the method is presented more thoroughly and with many

applications from different domains.
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2.5 Conclusions

This chapter has introduced Paper I and Paper II. The papers both try
to solve optimal control problems using Dynamic Programming, and use
different methods to reduce complexity. Paper I exploits the structure of
a certain switched linear system problem, whereas Paper II uses a novel
general technique to relax the optimality constraint. The latter method
has proven to work well for many different problems.
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3

Time-Varying Delays

3.1 Introduction

The second part of this thesis consists of two papers on analysis of con­
trol systems with time­varying delays. Paper III, “Simple Stability Cri­
teria for Systems with Time­Varying Delays” presents simple, graphical
criteria for stability of control systems with time­varying delays. The pa­
per also presents a performance degradation bound based on the same
analysis. Paper IV presents a Matlab toolbox used to analyze intercon­
nected continuous­time and discrete­time linear systems with random
time­delays (or other random events).
In this chapter, the research on time­varying delays will be motivated

by pointing out some reasons for time­varying delays, after which some
earlier work will be described, and finally the main ideas from the two
papers will be explained.

A Control Loop with Delays

First, let us introduce the type of delay problems we are studying. A
typical control loop with delays can be seen in Figure 3.1. Data both from
process to controller and from controller to process can be delayed, and
we assume that this delay is time­varying. In Paper III, these delays are
assumed to be bounded but otherwise freely changing (randomly or worst­
case). In Paper IV, more structure is imposed on the delays; it is assumed
the delays are random and that the probability distributions are known.
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P

C

y

y′u

u′

τ1(t)τ2(t)

Figure 3.1 A control loop with a process P and a controller C with time delays
τ (t). The delayed outputs are y′(t) = y(t− τ1(t)) and u′(t) = u(t− τ2(t)).

3.2 Where Do Time-Varying Delays Come From?

There exists a lot of theory for time­delay systems, but often the papers
in the field only cover systems with a fixed but possibly unknown delay.
As we will show in this section, there are many cases where the delays
are actually time­varying. This motivates the analysis methods presented
in this thesis.

Networked Control Systems

Thanks to the development of computer networks after the break­through
of the Internet, there are many cheap and reliable network technologies
available. At the same time, controllers are most often implemented in
computers, and cheap micro­controllers make it possible to connect almost
every sensor to a network. A shared network means flexibility and lower
costs, as well as better logging and maintenance features. Therefore, it is
increasingly popular to use networks to transfer real­time control data.

Sensor

Sensor

Actuator

Controller

Sensor

Network

Figure 3.2 A control network: The sensors and actuators may be at different
locations, but share a common bus (network). For example, a modern car often uses
this technology.
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Most network technologies are not designed to do a good job on real­
time data. Rather, they are most often designed to maximize the average
throughput. As we will see, the result is that real­time data will often
exhibit random (or at least time­varying) delays.

Ethernet. This section will briefly describe Ethernet, as it includes most
of the common delays in todays network technologies. Ethernet is an ex­
tremely popular LAN (Local Area Network) technology, thanks to its low
price tag and simplicity. The original idea is that all devices share a com­
mon bus or network, and that CSMA/CD (Carrier Sense Multiple Ac­
cess/Collision Detect) is used for bus arbitration. This means that if a
host (computer, sensor etc.) wants to send a packet, it listens for activ­
ity on the network. If there seems to be none, it starts sending a packet
(carrier sensing). At the same time, it listens to the resulting traffic on
the network, and if it detects some other transmission it will immediately
stop (collision detection). Before it will try again, it will wait for a random
amount of time τ in the range

0 ≤ τ ≤ 2N � 51.2 µs (3.1)

where N is the number of retries. This counter will increase for every
failed attempt to send the same packet, and thanks to this, probability of
a collision will decrease as the random interval increases. This procedure
is called exponential back­off.
The shortest allowed packet is 512 bits, and for a normal Ethernet

transmission rate of 10 Mbit/s it implies a minimum transmission time
of 51.2 µs. This packet holds 46 bytes of data, which is more than enough
for most control applications. The total delay for sending some data is
thus a sum of delays from

• waiting for free time on the network (resource sharing time). This
depends on how many hosts are connected to the network and the
amount of data generated from each host. Because of other random
traffic, but also because the hosts have different sending periods,
this delay may be time­varying.

• random waiting after a collision (see above). This delay is by design
randomly time­varying.

• data transmission time (see above). This delay is more or less fixed.
In the Ethernet version 10Base­T, all communication takes place over

twisted pair copper wires. This means that physically, all wires are point­
to­point as opposed to a common bus. Logically, though, the network acts
as one bus if the different hosts are connected by hubs. A hub simply
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SwitchSwitch

Figure 3.3 An Ethernet network with switches. As opposed to hubs, which are
simply mirroring data, switches act as real CSMA/CD hosts with buffers. Therefore
much fewer collisions can be expected.

mirrors data from any port to all others without actually reading the data,
implying that collisions can take place although hosts are on different
physical wires.
One way of removing the risk of exponential back­off delays because of

collisions is to use full­duplex switches instead of hubs, see [Martinsson,
2002]. A switch acts as a real CSMA/CD host in the network, and it
contains data buffers. It waits until the network is free before sending
data from one port to the others, thus avoiding collisions. The twisted­
pair wires in 10Base­T contains one pair for sending data and one for
receiving, and therefore the communication will always be collision­free.
Also, a switch sends data only on the wire where the destination host is
located (if the packet is not a broadcast packet). This further decreases
the amount of traffic on each wire. See Figure 3.3 for an illustration.

CPU Scheduling

Just like Networked Control Systems introduce delays due to resource
sharing, the same thing happens when several computer tasks share
a single processor. All modern operating systems contain some kind of
scheduling mechanism to share the available processing time between ac­
tive tasks. General­purpose operating systems such as Linux or Windows
may introduce a lot of varying delays as they are designed without focus
on hard deadlines, whereas specific real­time operating systems such as
QNX, VxWorks, or RT­Linux may have more deterministic delay behavior.
Some scheduling frameworks such as TTA [Kopetz, 1997] are designed

to give as deterministic scheduling behavior as possible. This comes at a
cost, though, as it is more efficient with respect to resource utilization to
use a dynamic scheduling such as e.g. Earliest Deadline First (EDF) (see
e.g. [Liu, 2000]). For a control process with highly varying execution time,
it may be favorable to let it actuate the control signal immediately when

34



3.3 Previous Work

done. This does of course lead to time­varying delays, but if the worst­case
delay is long it can still be beneficial for the average process performance.

3.3 Previous Work

This section will present a small subset of the previous research on anal­
ysis of systems with time­varying delays. Most often, stability analysis is
considered, but in some cases it is also extended to performance analysis.

Analysis — Stability and Performance

The classical Nyquist theorem [Nyquist, 1932] gives a necessary and suf­
ficient condition for stability for a SISO linear time­invariant system in
either discrete or continuous time. As constant time delays are linear and
time­invariant, they can also be incorporated in the system and therefore
analyzed by the Nyquist theorem. Thus, it is straightforward to find the
delays for which the closed loop system is stable. Note that this theorem
is not usable for time­varying delays (except for some special cases such
as known periodic delay variations).
One common approach to show stability is to assume bounded and

sometimes derivative­bounded delays τ (t), and to use LMIs to find Lyapu­
nov­like stability proofs. Examples of this technique can be found in e.g.
[Kharitonov and Niculescu, 2002; Mehdi et al., 2002; Bugong, 2002; Su
et al., 2000; Phoojaruenchanachai and Furuta., 1990]. In [Fridman and
Shaked, 2002], a nice overview on conservatism of such approaches is
presented followed by a new method to find a stabilizing feedback for
time­varying delay systems.

[Liu and Su, 1999; Goubet­Bartholomeus et al., 1997; Goubet et al.,
1995] among others use matrix norm criteria for robust stability of time­
varying delay systems. Usually, these criteria are relatively simple and
require little or no numerical optimization. Unfortunately, when the un­
certainty of the system description is removed (not the varying time­delay,
though), the criteria become conservative.
In many papers, such as [Ekanayake et al., 2001; Kolmanovsky and

Maizenberg, 2000; Nilsson, 1998], the time­varying delays are modeled by
a Markov chain. In the linear case, this forms a Jump Linear System, for
which a lot of analysis theory exist. This method is also used in Paper IV
in this thesis.
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+
− P

C

∆

Figure 3.4 The delay set­up in Paper III, where ∆ is the time­varying delay oper­
ator. Note that this is equivalent to the loop in Figure 3.1 as long as the controller
does not use any information on the delay τ1.

3.4 Simple Stability Criteria — Paper III

As mentioned in the previous section, a lot of research has been done
in analysis of systems with time­varying delays. Many of the recent re­
sults are formulated as Linear Matrix Inequalities (LMI), which are often
nicely solvable. The stability criteria often give yes/no answers, though,
and cannot tell the control designer how to change the design to improve.
The main contribution of Paper III in this thesis is a set of simple graphi­
cal stability criteria for continuous­time, discrete­time and mixed systems.
The stability can be checked in a Bode diagram of the closed loop system
Gcl = CP

1+CP , making it very easy to adjust the controller to improve the
stability margin. The paper also indicates that the criteria are not very
conservative, and finally gives a simple performance degradation bound
in presence of delays.

Problem Formulation

In Paper III, the delay loop in Figure 3.4 is studied for three cases:
continuous­time process and controller, discrete­time process and con­
troller and finally a continuous­time process and a discrete­time controller
(which is the most realistic case). The delay operator ∆ simply delays a
signal u(t) to u′(t) as

u′(t) = u(t− τ (t)), 0 ≤ τ (t) ≤ τmax. (3.2)

There are no restrictions on how τ (t) may vary, except that it has to be
bounded by τmax.

Stability Through Small Gain Theorem

The main idea of the paper is to use the Small Gain Theorem to prove
stability. The delay is transformed to a direct feedthrough path and an

36



3.4 Simple Stability Criteria — Paper III

error path; see Figure 3.5.
In all three cases, it turns out that the delay error path can be written

as an operator Λ in series with a differentiator. For the continuous­time
case, the operator Λ is simply

Λ = (∆ − 1) ○ 1
s

(3.3)

with a slight abuse of operator notation for the integrator. It is assumed
that the closed loop system without delay is stable. The Small Gain The­
orem can then be used to prove stability of the whole system.
The gain of the subsystem from point A in Figure 3.5 to point B is

easily calculated, as the system is linear. In the continuous­time case, it
is also time­invariant, and thus the gain is

γ AB = sup
ω

∣∣∣∣
P(iω )C(iω )
1+ P(iω )C(iω )ω

∣∣∣∣ (3.4)

In all three cases, the gain of the operator Λ is relatively straight­forward
to calculate. In the continuous­time case the L2­gain is

γ BA = τmax. (3.5)

Thus, the Small Gain Theorem guarantees stability if

γ loop = γ AB ⋅ γ BA < 1 ;
∣∣∣∣
P(iω )C(iω )
1+ P(iω )C(iω )

∣∣∣∣ < 1
τmaxω

∀ω (3.6)

This criterion is easily checked in a Bode diagram of the closed loop
system without delays. For the designer of the controller, it is also imme­
diately clear how to alter the design if the criterion does not hold. Finally,
in the paper, it is indicated that this criterion is not very conservative.

Performance

Thanks to the fact that an upper bound on the total loop gain is calculated
in the stability analysis, a simple bound on performance deterioration due
to time­varying delays can be obtained.
The performance measure that is considered in this thesis is the L2­

gain γ xd from a disturbance d to the output x in Figure 3.6. For the system
without delays, the gain is simply

γ xd = sup
ω

∣∣∣∣
W(iω )

1+ P(iω )C(iω )

∣∣∣∣ , (3.7)
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d
dt

Figure 3.5 The system in Figure 3.4 with the delay ∆ expanded to a direct
feedthrough path and a delay difference operator. It turns out that this delay dif­
ference is best written as an operator Λ in series connection with a differentiator.

W

+
− P

C

d

x

∆

Figure 3.6 Performance measured as gain from a disturbance d to the filtered
output x.

i.e. the maximum gain of the sensitivity function filtered by the weight­
ing function W. Using small gain arguments, it is easy to show that the
performance gain γ xd with time­varying delays is at most

γ xd ≤ sup
ω

∣∣∣∣
W(iω )

1+ P(iω )C(iω )

∣∣∣∣
1

1− γ loop
. (3.8)

Thus, performance is at most degraded by a factor of 1
1−γ loop . For example,

if the maximum delay is half of what is allowed for stability, the gain will
at most increase by a factor of 1

1−0.5 = 2.
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3.5 The JITTERBUG Toolbox — Paper IV

When more details on the system, and in particular the delays, are known,
it may be interesting to do exact computations of the system behavior
and performance. For linear systems, Gaussian noise, and independent
random events (such as delays), things like state variance and quadratic
costs are in theory easily calculated. The problem is that solving a specific
problem often requires a lot of special program code. Writing and debug­
ging this program is usually very tedious. Therefore, the MATLAB toolbox
JITTERBUG was developed and presented in Paper IV. The theory used in
the paper is old and well known, and the contribution of the toolbox is
mainly to make the theory easily applicable.

A Typical JITTERBUG Problem

Typically, when analyzing the effects of delays, there is a mix of con­
tinuous­time components and discrete­time components in the system. If
there were no continuous­time (real­world) components, the delays would
typically not be meaningful. On the other hand, if there were no discrete­
time components, there would in many cases be no jitter. Therefore, one
of the main features of JITTERBUG is the ability to interconnect any com­
bination of discrete­time and continuous­time components.
A typical JITTERBUG problem can be seen in Figure 3.7. The system

consists of a continuous­time plant P(s), a periodic sampler (period h
seconds), a delay τ from sampler to controller, a discrete­time controller
C(z) and finally an actuator. This set­up could model a Networked Control
System, where the delays are introduced by sending data over a network,
or simply a controller implemented in a shared processor which introduces
computation delays due to other competing processing tasks.
In JITTERBUG, time is discretized to a grain of δ seconds, which is

chosen by the user. This means that the delay probabilities are discrete,
and can be given as vectors Pτ :

Prob(τ = kδ ) = Pτ (k), Pτ = [ p(0) p(1) . . . ] . (3.9)

Note that this assumption of time­discrete delay probabilities does not
change the fact that all calculations in JITTERBUG are exact, including
continuous­time systems and noise.

Signal Model. As JITTERBUG deals with both signals and timings, two
different model concepts are needed. The first is the usual signal model,
which tells JITTERBUG how signals and systems are connected – see Fig­
ure 3.8a. All inputs to the system are described by white noise (which can
of course be colorized by adding filters).
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++
replacements

P(s)

C(z)

SamplerActuator

y

ev

u
τ (t)

Figure 3.7 A typical problem for JITTERBUG. The system consists of a continuous­
time plant P(s) and a discrete­time controller C(z), with a time­varying delay in
between. Typical problems are: What is the quadratic performance of the system?
What if the controller is “gain­scheduled” on the delay τ ?

H(z)H(z)

C(z)

C(z)

P(s)y

u

v

e

1

2

τ

(a) (b)

Figure 3.8 The JITTERBUG models for the system in Figure 3.7, where the sampler
is introduced as the block H(z). (a) is the signal model, and (b) is the timing model.
The double­circled timing node is a periodic node, which means that it is restarted
once every sample period.

Timing Model. The second model is the timing model. It consists of a
number of timing nodes (or execution nodes), to which the execution of the
discrete­time components can be bound. The timing model can be seen as
a Markov graph with delays and transition probabilities. See Figure 3.8b.
In the toolbox, also more advanced Markov graphs can be constructed.

Performance Measures. The toolbox calculates two performance mea­
sures:

• A quadratic cost function

J = lim
T→∞

1
T

∫ T

0
xT(t)Qx(t) dt

where Q is a positive semidefinite matrix chosen by the user, and
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x are all states in the system. Both continuous­time and discrete­
time states use this continuous­time cost. This kind of performance
measure is very common in control.

• The Power Spectral Density (PSD) for all output signals. This can be
used to get a hint on what changes in the system when, for example,
delays are introduced.

As the calculations in JITTERBUG are usually very fast, it is easy to
sweep over one or several parameters in the system and plot performance
graphs. One such graph is shown in Figure 3.9, where the mean delay in
the system from sampler to actuator is varied, as well as the “variance”
of the delay around the mean time.

0
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Mean delay (% of h)Jitter (% of h)
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os

t J

Figure 3.9 The cost of delay and jitter a control example. The controller is de­
signed assuming a constant delay equal to the mean delay.

Internal Workings of JITTERBUG

As mentioned before, JITTERBUG requires that all delays are discretized
to a user­definable grain of δ seconds. Thanks to this, all continuous­
time states, as well as costs and noises can be discretized to this grain
(without approximation), and the system can be written as a Jump Linear
System [Krasovskii and Lidskii, 1961]. If the system is periodic, i.e. has
some timing node which is executed periodically, the variances, and thus
costs, can be calculated algebraically. In the case of aperiodic systems,
JITTERBUG also has an iterative solver.
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3.6 Conclusions

This chapter has introduced Papers III­IV, which deal with analysis of
systems with time­varying delays. The former paper presents a set of
simple graphical stability criteria for systems with bounded but other­
wise unknown time­delays. It is indicated that the criteria are not very
conservative. Paper IV presents JITTERBUG, a MATLAB toolbox which does
exact performance calculations on systems with random events. The time­
varying delays must be independent and have known probability distri­
butions. The main contribution of the toolbox is to make known theory
easily applicable to common real­time problems.
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Paper I

LQR Optimization of Linear System

Switching

Bo Lincoln, Bo Bernhardsson

Abstract

This paper considers off­line optimization of a switching sequence
for a given finite set of linear control systems, together with joint opti­
mization of control laws. A linear quadratic full information criterion
is optimized and dynamic programming is used to find an optimal
switching sequence and control law. The main result is a method for
efficient pruning of the search tree to avoid combinatoric explosion. A
method to prove optimality of a found candidate switch sequence and
corresponding control laws is presented.

c&2002 IEEE. Reprinted, with permission, from IEEE Transactions on
Automatic Control, vol 47 pp. 1701–1705, October 2002.
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1. Introduction and Motivation

Optimal hybrid control problems arise in many applications, see e.g. [Bran­
icky and Mitter, 1995; Branicky et al., 1998]. An interesting subclass of hy­
brid systems consists of piecewise linear systems where either controlled
or uncontrolled switches between linear systems are used, see [DeCarlo
et al., ]. The main question in most optimal hybrid control problem for­
mulations is how to avoid the combinatorical explosion associated with
exploring all possible switching alternatives. The problem area combines
the traditionally separate research areas of search over graphs and control
theory. In most papers on optimal hybrid control, this issue is generally
not dealt with. The problem is sometimes solved by exhaustive search.
In this paper we propose and evaluate a promising pruning method for
efficient tree search, obtained by using information about the search ob­
jective.
The motivation for our work has mainly come from real­time control

systems, where there often are restrictions on common resources such as
communication bandwidth or CPU power. The different control loops have
to share some media. This is often done by time­division­multiplexing, i.e.
using some time slots for one loop and some other for another loop. One
example where this problem is found is control over a wireless network
environment such as Bluetooth [Haartsen, 1998]. The data packets are
long and the maximum sample rate is restricted. In Bluetooth only one
network device can be accessed every 1.25 ms, so the controller has to
choose which device to control (or sample). See Figure 1.

ControllerPlant 1 Plant 2

Measure Measure

Control Control

Figure 1. A simple problem. The controller can only access one plant each time
slot. Which sequence gives the best expected cost?

The scheduling, i.e the choice of control and measurement sequences,
is normally optimized off­line. The possibility to use on­line information in
the scheduling algorithms, such as local information about signal values,
has also been suggested recently, see [Årzén et al., 2000]. Such on­line
scheduling will not be studied here.
Off­line scheduling of linear control systems under quadratic criteria

has been treated recently in [Skafidas and Nerode, 1998; Skafidas et al.,
1997; Rehbinder and Sanfridson, 2000]. These references, however, do not

48



2. Problem Formulation

present any efficient solving methods and lead to search problems over
large trees. When the control horizon increases, the size of the trees grows
exponentially. The purpose of the present paper is to present a pruning
method which often decreases this complexity drastically.

2. Problem Formulation

The problems we are interested in can be formulated as finding the best
switching sequence of system matrices for a discrete­time linear system

z(n+ 1) = Φ(n)z(n) + Γ(n)u(n) + G(n)v(n). (1)

Here z is the (extended) state space vector, u the control signals, and
v standard stochastic, independent, disturbances with zero mean and
unit covariance. The system matrices Φ(n), Γ(n) and G(n) are chosen
by the controller in each step from a small set of M alternative systems
{(Φk, Γk,Gk,Qk)} , k ∈ {1, . . . ,M} (where Qk has to do with the cost of
the system). Note that the system is time varying only since the con­
troller can choose system matrices from a set at every control instant.
The set of possible matrices does not change over time, so the problem is
time­invariant.
The problem is to find a linear feedback law

u(n) = −L(n)z(n),

and a sequence

K (0, N) = [ k(0) k(1) . . . k(N − 1) ]

corresponding to choosing Φ(n) = Φk(n), Γ(n) = Γk(n), G(n) = Gk(n), and
Q(n) = Qk(n) that minimize the cost

V
(
Pz(0), 0, N , L(⋅), K (0, N)

)
=

E
v

{
N−1∑

n=0

[
z(n)
u(n)

]T
Q(n)

[
z(n)
u(n)

]
+ z(N)TQN z(N)

}
, (2)

where E{z(0)} = 0, E{z(0)z(0)T} = Pz(0), Q(n) ≥ QN ≥ 0.
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3. Finding an Optimal Sequence

We will find an optimal scheduling sequence and control law by doing
backwards recursion of the cost (dynamic programming), evaluating all
possible choices of K (n, N). See Figure 2 for an illustration. If this is
done without care, the tree will of course grow exponentially. Therefore,
we present a pruning algorithm which aims at keeping the tree size down
to a reasonable level. The whole optimization of the sequence is done
off­line, so no feedback information is used in the scheduling.
We will use the notation “optimal sequence” for a sequence which

achieves the optimal cost. There may be more than one sequence which
does this, and we will aim at finding at least one.
Notation: Throughout the rest of the paper, the cost function V will

be written as
V
(
start, end, sequence

)
,

where start and end denote the first and last time­step of the cost. Se­
quence is either a sequence of choices (such as e.g. K (0, N)) from the
start to the end time­step, a set of such sequences, or omitted. If sequence
is a set, V denotes the minimum over all sequences in the set, and if
omitted V denotes the minimum over all possible sequences. The initial
variance Pz(0) is omitted for notational convenience.

3.1 Cost Representation and Feedback Gain

For a fixed choice of K (0, N), the problem is a standard time­varying
linear­quadratic control problem. Under standard assumptions, it is well
known that the best achievable cost can be written as

V
(
0, N , K (0, N)

)
= z(0)TSK (0,N)z(0) + cK (0,N), (3)

where SK (0,N) is a positive symmetric matrix and cK (0,N) is a constant
term due to the noise. The optimal feedback law is

u(n) = −LK (n,N)z(n) = FuuK (n,N)
−1
F zuK (n,N)

T
z(n), (4)

where

FK (n,N) =
[
F zzK (n,N) F zuK (n,N)
FuzK (n,N) FuuK (n,N)

]
= Q+[ Φk Γk ]T SK (n+1,N) [ Φk Γk ] .

(5)

As the minimization of L is straightforward, it will be left out in the
remaining sections.
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1

1
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1 = Γk, Φk,Gk,Qk

S1, c1

S2, c2

N − 3 N − 2 N − 1 N

QN

Time slot

Figure 2. The control sequence tree for M = 2 when expanding all possibilities
from N − 3 to N (except for two nodes, dashed, where the tree was pruned).

3.2 Finding a Candidate Sequence

Finding a candidate sequence is, as mentioned before, done by backwards
iteration. One “step” in the iteration means expanding the set of can­
didate sequences one step in time. This is done by first expanding the
search tree with new possible sequence choices (see Figure 2), and then
pruning (removing branches) using the algorithm described below. The
set κcand(n + 1, N) of possible control sequences from time n + 1 to N is
expanded by

κexpand(n, N) = {1, 2, . . . ,M} � κcand(n+ 1, N). (6)

Let Kprune ∈ κexpand(n, N) be a sequence in the set. The corresponding
cost is parameterized by Scand = SKprune(n, N) and ccand = cKprune(n, N).
The idea of the algorithm is to remove Kprune if another sequence Kcand ∈
κexpand(n, N) will perform better for all states. The algorithm calculates
an α ∈ [0, 1] showing how close the quadratic cost Sprune is to be worse
than Scand, with α = 1 meaning that Kprune is worse for all states. If α
is close enough to 1, and the noise cost cprune is sufficiently much larger
than ccand, then Kprune is removed (tested by the inequality in step 3 of
the algorithm in Table 1).
“Sufficiently much larger” is here represented by one parameter, R > 0,

which must be chosen by hand. The exact meaning of R is shown in
Theorem 1.
The algorithm creates a set M(n, N), called motivation set, which con­

tains data on every pruned sequence and on the candidate sequences
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which were judged better. This data is used in Section 3.3 to prove opti­
mality of the found sequence. The algorithm is described in Table 1.

1. Start with κprune(n, N), κcand(n, N), and M(n, N) being empty
sets and calculate cmin = min

K∈κexpand(n,N)
cK .

2. If κexpand(n, N) is empty then, quit else choose Kprune ∈
κexpand(n, N) for possible pruning.

3. If ∃Kcand ∈ κexpand(n, N) ∪ κcand(n, N) such that for

α = max{0 ≤ λ ≤ 1 h (SKprune − QN) ≥ λ(SKcand − QN)}

it holds that

cprune − ccand − (1− α )(cmin + R − ccand) ≥ 0

then Kprune is pruned, i.e.

– Move Kprune from the set κexpand(n, N) to the set
κprune(n, N).
– If Kcand �∈ κcand(n, N), move it there from κexpand(n, N).
– Let M(n, N)=M(n, N) ∪ {(cprune,α , ccand)}.
– Go to step 2.

4. Else move Kprune from the set κexpand(n, N) to κcand(n, N). Go
to step 2.

Table 1. The branch­and­bound algorithm

By using this tree pruning, the number of sequences in κcand(n, N) can
be kept reasonably low when recursing backwards if R is chosen small
enough. After N iteration stages, the final proposed sequence is

Kcand(0, N) = argmin
K∈κcand(0,N)

(tr(Pz(0)SK ) + cK ) , (7)

with cost Vcand = V (0, N , Kcand(0, N)).

3.3 Optimality of the Candidate Sequence

The candidate sequence found by the algorithm above may or may not be
optimal, depending on the choice of R. A method will now be presented
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which can prove optimality of the proposed sequence if R is large enough.
The idea of the proof is to show that a lower bound on the obtainable
cost by using one of the pruned sequences is still higher than the cost
of the found sequence. If this holds for every pruned sequence, the found
candidate is optimal. Throughout the rest of the section, M(n, N) is the
motivation set from the tree pruning, and consists of

M(n, N) =
{

(cprune,α , ccand)1, (cprune,α , ccand)2, . . .
}

.

We will also use Vlowb
(
0, N ,κcand(n, N)

)
, which fulfills

min
K (0, n)

K (n, N) ∈ κcand(n, N)

V
(
0, N , [ K (0, n) K (n, N) ]

)
≥ Vlowb

(
0, N ,κcand(n, N)

)
.

(8)
Thus Vlowb(0, N ,κcand(n, N)) is a lower bound on the optimal cost using
one of the sequences in κcand(n, N) for steps from n to N (from now on
passing κcand(n, N)).

LEMMA 1—BEST COST INCLUDING PRUNED SEQUENCES
It holds that

V
(
0, N ,κcand(n, N) ∪ κprune(n, N)

)
≥

min
(cprune ,α ,ccand)∈M ′(n,N)

{
(1− α )Vlowb(0, n)+

α
(
Vlowb

(
0, N ,κcand(n, N)

)
− ccand

)
+ cprune

}
=:

Vlowb

(
0, N ,κcand(n, N) ∪ κprune(n, N)

)
, (9)

where Vlowb(0, n) is a lower bound on the optimal cost in the length­n­
problem, and M ′(n, N) = M(n, N)∪

{
(0, 1, 0)

}
to include the current lower

bound.
Thus Vlowb

(
0, N ,κcand(n, N)∪κprune(n, N)

)
is a lower bound for the cost

achieved if no sequences were pruned at step n. If

Vcand = Vlowb
(
0, N ,κcand(n, N) ∪ κprune(n, N)

)

then Vcand is also the optimal cost passing κcand(n, N) ∪ κprune(n, N).
For notational convenience we put

σ n−10 =
n−1∑

i=0

[
z(i)
u(i)

]T
Qk(i)

[
z(i)
u(i)

]

in what follows:
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PROOF OF LEMMA 1
First, we notice that (8) gives

min
K (0, n)

K (n, N) ∈ κcand(n, N)

V
(
0, N , [ K (0, n) K (n, N) ]

)
=

min
...
E
v

{
σ n−10 + z(n)TSK (n,N)z(n) + cK (n,N)

}
≥ Vlowb(0, N ,κcand(n, N))

;

min
K (0,n)

E
v

{
σ n−10 + z(n)TSK (n,N)z(n)

}
≥

Vlowb(0, N ,κcand(n, N)) − cK (n,N), ∀K (n, N) ∈ κcand(n, N).

Second, for two sequences from n to N, Kprune(n, N) and Kcand(n, N), for
which

SKprune(n,N) − QN ≥ α
(
SKcand(n,N) − QN

)
, (10)

and Kcand ∈ κcand(n, N) it holds that

min
K (0,n)

E
v

{
σ n−10 + z(n)TSKprune(n,N)z(n)

}
≥

min
K (0,n)

E
v

{
σ n−10 + z(n)TQN z(n) + α z(n)T (SKcand(n,N) − QN)z(n)

}
≥

α min
K (0,n)

E
v

{
σ n−10 + z(n)TSKcand(n,N)z(n)

}
+

(1− α ) min
K (0,n)

E
v

{
σ n−10 + z(n)TQN z(n)

}
≥

α
(
Vlowb

(
0, N ,κcand(n, N)

)
− cKcand(n,N)

)
+ (1− α )Vlowb(0, n). (11)

Thus, we can put a lower bound on the optimal cost passing a pruned
sequence Kprune(n, N) ∈ κprune(n, N) using lower bounds for the cost of
the length­n­problem and for the cost of sequences passing κcand(n, N):

min
K (0,n),

V
(
0, N , [ K (0, n) Kprune(n, N) ]

)
=

min
K (0,n)

E
v

{
σ n−10 + z(n)TSKprune(n,N)z(n)

}
+ cKprune(n,N) ≥

α
(
Vlowb

(
0, N ,κcand(n, N)

)
− cKcand(n,N)

)
+ (1− α )Vlowb(0, n) + cKprune(n,N).

(12)
A lower bound of all sequences passing κcand(n, N) ∪ κprune(n, N) is ob­
tained by taking the minimum of lower bounds for all pruned sequences
and the remaining sequences, yielding Equation (9).
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LEMMA 2—LOWER BOUND ON FULL COST
Given

• the candidate sequence Kcand(0, N) from equation (7)
• lower bounds Vlowb(0, i) for the length­i­problems, i ∈ {0, . . . , N − 1}
• the pruned sequence motivations M(i, N) i ∈ {0, . . . , N}

a lower bound Vlowb(0, N) on the optimal cost can be found by iterating
equation (9) from n = 1 to n = N. The iteration is started from

Vlowb

(
0, N ,κcand(0, N) ∪ κprune(0, N)

)
= Vcand,

and after the Nth iteration we define

Vlowb(0, N) = Vlowb
(
0, N ,κcand(N , N) ∪ κprune(N , N)

)
.

If Vcand = Vlowb(0, N), then Kcand(0, N) is a sequence that gives the opti­
mal cost.

PROOF OF LEMMA 2
Since all sequences K (n, N) ∈ κcand(n, N) ∪ κprune(n, N) pass κcand(n +
1, N), the iteration can use that

Vlowb

(
0, N ,κcand(n, N)∪κprune(n, N)

)
= Vlowb

(
0, N ,κcand(n+1, N)

)
. (13)

Let Vlowb(0, N ,κcand(0, N)) = Vcand. Equation (13) and Lemma 1 gives
Vlowb(0, N ,κcand(i, N)), i ∈ {0, . . . , N}. A lower bound on the cost for the
length­N­problem is then Vlowb(0, N) = Vlowb(0, N , ∅).
Using Lemma 2 iteratively, lower bounds (or optimal costs) for the length­
N­problem can be found by starting with a length­1­problem and iterat­
ing. The lower bound on the solution for each problem is found and used
in the calculation of lower bounds for larger problems. The sequence tree
can be kept from the previous problem length and expanded by one step
for each iteration, keeping complexity low.

THEOREM 1—OPTIMAL SEQUENCE FOR FINITE R
If

R ≥ V (0, N) −
(
V (0, n) + cmin(n, N)

)
, ∀n ∈ {0...N}, (14)

then an optimal sequence will be found. Also, if the optimal costs for
problem lengths 1, . . . , N − 1 have been found before s.t. Vlowb(0, n) =
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Vcand(0, n) = V (0, n), ∀n ∈ {0, . . . , N−1}, then the found cost for problem
length N will also be proven optimal by Lemma 2.

Note: This theorem cannot be used to choose R directly, as V (0, N) is not
known before the optimization. It only states that for large enough R,
we will find and prove the optimal cost. The second assumption in the
theorem, that optimal costs must be found for all shorter problems, is
automatically satisfied if the tree is expanded iteratively and (14) holds
in each step.

PROOF OF THEOREM 1
To show that all optimal sequences cannot be pruned, we note that the
lower bound on costs of pruned sequences in Eq. (9) holds also when all
lower bounds on candidate sequence costs are replaced by optimal costs.
We want to show that these lower bounds are all worse than the optimal
cost:

∀(cprune,α , ccand) ∈ M ,
(

(1− α )V (0, n) + α
(
V (0, N) − ccand

)
+cprune

)
− V (0, N) ≥ 0, (15)

and expanding the left hand side

(1− α )
(
V (0, n) − V (0, N)

)
− α ccand + cprune ≥

(1− α )
(
V (0, n) − V (0, N)

)
− α ccand + ccand+

+ (1− α )(cmin(n, N) + R − ccand)︸ ︷︷ ︸
From pruning rule

=

(1− α )
({
V (0, n) + cmin(n, N) + R

}
− V (0, N)

)
≥ 0:

R ≥ V (0, N) −
(
V (0, n) + cmin(n, N)

)
. (16)

This shows the role of R: V (0, n) is the cost for the problem from 0 to
n and cmin(n, N) is the cost for the problem from n to N without initial
variance. If we add the costs of these two shorter problems together it
will be lower than the cost from 0 to N (V (0, N)), and R has to be larger
than the difference for the inequality to hold.
Thus, if (14) holds, the optimal sequence is found, i.e. Vcand(0, N) =

V (0, N). If also Vlowb(0, n) = V (0, n), then the lower bound on cost from
pruned sequences in Eq. (15) equals the one in (9) and from the latter
we obtain

Vlowb(0, N ,κcand(n, N) ∪ κprune(n, N)) = Vlowb(0, N ,κcand(n, N)).
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Thus, Lemma 2 will prove that our candidate sequence is optimal.

By keeping R small, the number of branches in the tree can be kept down
to a reasonable level. If R is chosen too small, the optimal solution might
however not be found, or at least not be proven optimal using Lemma 2.
A lower bound on the optimal case is always found, though.

4. Time Complexity of the Algorithm

The described algorithm does not run in polynomial time (unless possibly
if P=NP). In fact, one special version of the problem (which was not con­
sidered in the design of the algorithm) is easily shown to be NP­hard. The
proof is based on solving an N­mortality problem which is NP­complete
(see [Blondel and Tsitsiklis, 1997]).

5. Examples

To show the feasibility of the method, two examples have been constructed.
They are based on the select­which­system­to­control problem, with dif­
ferent properties. The optimization times range from seconds to minutes
in Matlab code on a standard computer.

5.1 Example 1

Consider the following two simple linear systems:

x1(n+ 1) =
[
1 0.4
0.3 0.8

]
x1(n) +

[
0

1

]
u(n) +

[
0

0.8

]
v1(n),

x2(n+ 1) =0.9x2(n) + 1u(n) + 1v2(n),

Q =diag
(

[ 1 1 10 1 ]
)

.

The problem is to find the control access sequence which yields the lowest
cost. In this problem, the control signal will only be held at the actuator
for one sample period. If the system is not being controlled during the
next sample period, the control signal is zero. Running the described tree
optimization algorithm with R = 23 and N = 300 produce candidate
sequences for all length­i­problems, i ∈ {0, . . . , 300}, which all prove to be
optimal. For illustration, the algorithm has been run with R = 15, and
R = 10 as well. Optimality could not be shown for these choices of R, but
for R = 15 the same cost as for R = 23 was achieved. See Figure 3 for the
optimal sequence, and Figure 4 for the number of sequences left in each

57



Paper I. LQR Optimization of Linear System Switching

5 10 15 20

1

1.5

2

Optimal controller sequence, zoomed

Time step

S
ys

te
m

 c
on

tr
ol

le
d

Figure 3. The optimal controller sequence for Example 1, which is “periodic” with
period 5. Generally, the algorithm often finds sequences with short period, but not
always.
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Number of sequences left after each iteration
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R=23
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R=10

Figure 4. The number of sequences left after pruning in each iteration for Ex­
ample 1. The R = 15 case is almost the same as for R = 23 and therefore not
visible.

iteration of the algorithm. Figure 5 compares found costs and guaranteed
lower bounds for the different choices of R.

5.2 Example 2

We now show a larger example consisting of the two systems in Example
1 plus another unstable second order system. The control signal is held
at the actuator if the system is not controlled, so extra “control­signal”
states have been added, making the original order 5 system grow to order
8. The optimal controller sequence for the length­100­problem can be seen
in Figure 6, and the tree size can be seen in Figure 7.
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Figure 5. Found sequence costs and lower bounds when running the tree pruning
algorithm with different R’s.
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Figure 6. The optimal controller sequence for Example 2, with three choices in
each time step (left). The control signal is held when the system is not controlled,
so the augmented system is of order 8. The sequence is periodic with period 8.

6. Conclusions

Amethod to find the optimal switching sequence in a linear­quadratic full­
information problem has been presented, together with a method to prove

0 20 40 60 80 100
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100

200

300
Number of sequences left after each iteration

Problem length

Figure 7. The number of sequences left after pruning in each iteration of Exam­
ple 2. Note that although the tree becomes rather large, it is still solvable, and a
length­100­problem should give us a good insight in the steady­state behavior.
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optimality in each case. Empirically, the method works well in that it finds
the solution in reasonable time. Future work could include formulating
other problems in the same framework, such as for example choosing
among distributed sensors. The infinite horizon problem and the problem
of joint actuator scheduling and sensor scheduling are open.
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Paper II

Relaxing Dynamic Programming

Bo Lincoln, Anders Rantzer

Abstract

The idea of dynamic programming is general and very simple,
but the “curse of dimensionality” is often prohibitive and restricts
the fields of application. This paper introduces a method to reduce
the complexity by relaxing the demand for optimality. The distance
from optimality is kept within prespecified bounds and the size of the
bounds determines the computational complexity.
Several computational examples are considered. The first is op­

timal switching between linear systems, with application to CPU
scheduling as well as design of a DC/DC voltage converter. This
example is followed by several others such as control of piecewise
linear systems, and Partially Observable Markov Decision Processes
(POMDPs).

This paper is based on “Relaxed Dynamic Programming” by the same
authors, submitted to IEEE Transactions on Automatic Control, 2003.
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1. Introduction

1.1 Motivation

Since the 1950’s, the idea of dynamic programming [Bellman, 1957; Bert­
sekas, 2000] has propagated into a vast variety of applications. This in­
cludes as diverse problems as portfolio theory and inventory control in
economics, shortest path problems in network routing and speech recog­
nition, task scheduling in real time programming, and receding horizon
optimization in process control.
For many optimal control problems, dynamic programming could have

been used to solve the problem if there had been an efficient way to param­
eterize the optimal value function V ∗(x). Unfortunately, this is most often
not the case. This paper presents a way of relaxing Dynamic Programming
(DP) to make it possible to find a more easily parameterized suboptimal
value function V (x) within a strict, pre­specified, distance from the opti­
mal V ∗(x).
The paper first introduces some background, followed by the main DP

relaxation method in Section 2. Then five different applications are pre­
sented. Section 8, finally, contains some theoretical convergence results.

1.2 Dynamic Programming

Let x(n) ∈ X be the state of a given system at time n. u(n) ∈ U is the
value of the control signal. Given these, the state of a system evolves as

x(n+ 1) = f (x(n),u(n)). (1)

Also, given a cost function

J =
∞∑

n=0
l(x(n),u(n)), (2)

we would like to find an optimal control policy u = µ(x), such that the
cost J is minimized from any initial state. A function which returns the
the resulting cost from any state x for a specific control law µ is called a
value function and is denoted V µ(x). The best value function describing
the optimal cost for each x is denoted V ∗(x).
A common method to solve for the optimal value function is value iter­

ation, i.e. to start at an initial value function V0(x) and update iteratively
using Bellman’s equation:

Vk+1(x) = min
u

{
Vk
(
f (x,u)

)
+ l(x,u)

}
. (3)
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This can be seen as solving a finite­time­horizon dynamic programming
problem of length k + 1 from the solution of length k. Under general
conditions, it can be shown that the iteration converges to V ∗(x), which
satisfies

V ∗(x) = min
u

{
V ∗
(
f (x,u)

)
+ l(x,u)

}
. (4)

For a more extensive treatment of dynamic programming, see e.g. [Bert­
sekas, 2000].

1.3 Relaxed Value Function

The main contribution of this paper is to give a method to approximate
the optimal value function V ∗(x), which guarantees that the suboptimal
solution is within a user­specified distance from the optimal solution.
Approximating value functions has been done before in a variety of

ways. One popular approach is neuro­dynamic programming; see e.g. [Roy,
2001] or [Bertsekas and Tsitsiklis, 1996] for an introduction. Specifically,
[de Farias and Roy, 2002; Schweitzer and Seidmann, 1985] present meth­
ods where the approximate value function is parameterized as a linear
combination of a set of basis functions. The problems studied are often
Partially Observable Markov Decision Processes (see Section 6) of very
high dimension, and the methods give no error bounds on the obtained
solutions.
It should also be mentioned that many formal verification techniques

of nonlinear or hybrid systems are related to this work. For example, the
toolbox HYTECH, presented in [Henzinger et al., 1995], calculates over­ and
under­approximations of a reachable set. This can be viewed as calculating
upper and lower bounds of a value function.
In this paper we focus on problems where Vk(x) has a finite descrip­

tion whose complexity grows rapidly with iteration number k. Again, the
contribution of the paper is a simple algorithm to find a sub­optimal value
function V (x) which is within a pre­specified distance from the true V ∗(x).
Using this method, some problems for which dynamic programming has
been considered hopeless can now be practically solved.

1.4 An Example

To illustrate the main idea, consider the following: Let A1 and A2 be two
system matrices and let let a discrete­time dynamical system evolve as

x(n + 1) = Aix(n), i ∈ {1, 2}.

The goal is to find a control law, that given the current state x(n) assigns
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A1

A2

V ∗
k (A1x) + xTQx

V ∗
k (A2x) + xTQx

V ∗
k (x)

Figure 1. Iterating the Bellman equation one step, which can be viewed as going
backwards in time.

Π1

Π2Vk(x)

Figure 2. The piecewise quadratic value function Vk(x).

an i (i.e. system matrix) for this time step so as to minimize

J =
∞∑

k=0
x(k)TQx(k).

Let us consider value iteration for this problem, starting with V0(x) = 0.
At each time step, there are two choices; use A1 or A2 (see Figure 1). This
leads to a sequence of functions Vk(x) of the form

Vk(x) = min
Π∈Pk

xTΠx

where Pk is a set of positive matrices (see Figure 2 for an illustration).
Typically, the size of Pk grows exponentially with k due to the two choices
in each time step. In the following section we present a method of finding
an approximate value function for this problem.

2. Relaxed Dynamic Programming

This section will describe a method to find a V (x) which fulfills

min
u

{
V
(
f (x,u)

)
+ l(x,u)

}
≤ V (x) ≤ min

u

{
V
(
f (x,u)

)
+ l(x,u)

}
. (5)
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The inequalities imply that

min
u

∞∑

n=0
l(x(n),u(n)) ≤ V (x) ≤ min

u

∞∑

n=0
l(x(n),u(n)). (6)

Here l and l are chosen to satisfy l(x,u) ≤ l(x,u) ≤ l(x,u), for example

l(x,u) = α l(x,u), α ≥ 1 (7)
l(x,u) = α l(x,u), α ≤ 1. (8)

With this relaxation of Bellman’s equation, we can search for a solution
V (x) that is more easily parameterized than V ∗(x).

2.1 Relaxed Value Iteration

Given Vk−1(x) satisfying

min
u

k−1∑

n=0
l(x(n),u(n)) ≤ Vk−1(x) ≤ min

u

k−1∑

n=0
l(x(n),u(n)), (9)

define V k(x) and V k(x) according to

V k(x) = min
u

{
Vk−1

(
f (x,u)

)
+ l(x,u)

}
. (10)

and
V k(x) = min

u

{
Vk−1

(
f (x,u)

)
+ l(x,u)

}
. (11)

The expressions for V k(x) and V k(x) are generally more complicated than
for Vk−1(x). From this, a simplified Vk(x) which satisfies

V k(x) ≤ Vk(x) ≤ V k(x) (12)

is calculated. This Vk(x) satisfies

min
u

k∑

n=0
l(x(n),u(n)) ≤ Vk(x) ≤ min

u

k∑

n=0
l(x(n),u(n)), (13)

and the procedure can be iterated.
The iteration of (10–12), which we call relaxed value iteration, can

often be used to find a solution of (5). A strict criterion for convergence is
given in Section 8.

α and α (as well as l and l) are chosen as a trade­off between com­
plexity (time and memory) and accuracy. Note in particular that if l is
chosen as in (7)–(8), then the relative error in the value function defined
by α and α is independent of the number of iterations.
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2.2 Stopping Criterion

If the value function Vk(x) at iteration k satisfies (5) for V (x) = Vk(x),
then it also satisfies (6), and a solution to the problem has been found. If
the iteration is stopped before (5) holds, it is possible to calculate l(x,u)
and l(x,u) for which it does hold and thus test for which relaxation the
current Vk(x) holds as a solution. This is done in Section 5.5.
Remark: This method of calculating the slack to optimality can be used

no matter how V (x) was obtained. For example, a V (x) obtained using
a receding­horizon method for some optimal control problem of length N
could be used.

2.3 Parameterization of V

As mentioned before, the aim of this paper is problems where the value
function V (x) can be described by a finite parameterization, typically
growing fast with time. The problems which will be presented in this
paper all have value functions which can be written as

Vk(x) = select
p∈Pk

p(x), (14)

where Pk is a set of (simple) functions on x, and the “select” operator
selects one of the functions according to some criterion (e.g. “maximum”,
“minimum”, or “feasible region”). In this paper, we define the complexity
of the representation as hPkh, i.e. the number of elements in the set Pk. If

Vk(x) = min
p∈Pk
p(x),

we will denote the value function “minimum­type”. Note that adding a
new function p to Pk decreases (or leaves unchanged) V (x) for all x if V
is minimum­type. This will be used in the next section.

2.4 A Simple Algorithm to Calculate V

The value iteration in Section 2.1 does not tell us how Vk(x) is calculated
to satisfy (12). Doing this in an optimal way with respect to complexity of
the optimization may be a very hard problem. In this section we present
a simple and efficient (albeit not optimal) algorithm to obtain Vk(x) for
the minimum­type parameterization defined in the previous section. The
algorithm is described in Procedure 3.1.
The algorithm simply adds elements from the lower bound V k(x) until the
resulting value function Vk(x) satisfies the upper bound Vk(x) ≤ V k(x).
The resulting value function satisfies (12) by construction. Naturally, the
algorithm can be made more efficient by changing details such as re­
moving functions in Pk(x) once they have been tested as non­active. For
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PROCEDURE 3.1—GENERATING Vk FROM Vk−1 (MINIMUM­TYPE)

1. Calculate V k and V k from Vk−1:

V k(x) = min
u

{
Vk−1

(
f (x,u)

)
+ l(x,u)

}

V k(x) = min
u

{
Vk−1

(
f (x,u)

)
+ l(x,u)

}

Define Pk and Pk such that

V k(x) = min
p∈Pk
p(x) and V k(x) = min

p∈Pk
p(x)

2. Let Pk = ∅.

3. Define

Vk(x) =




min
p∈Pk
p(x) if Pk �= ∅

∞ if Pk = ∅
.

If possible, find x0 ∈ X such that

Vk(x0) > V k(x0).

If not, Vk(x) satisfies (12) ; Done.

4. Let
p = argmin

p∈Pk
p(x0)

and add p to the set Pk. Go to step 3.

maximum­type value functions the procedure is simply changed to add
from V k(x) until the lower bound holds.
Procedure 3.1 can now be iterated until (5) or some other stopping

criterion is satisfied.
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3. Application: Switched Linear Systems with Quadratic
Costs

In this section, a linear system switching problem will be described. Given
a set of alternative system matrices for a linear system, the problem is
to find a control law both for the continuous inputs and for switching
between system matrices at each time step. All switches are initiated
by the control law; there is no autonomous switching. The example in
Section 1.4 is a special case of this problem.
For the N triples of system matrices

{(
Φ1, Γ1,Q1

)
, . . . ,

(
ΦN , ΓN ,QN

)}
,

consider the linear system

x(n+ 1) = Φw(n)x(n) + Γw(n)u(n), (15)

and cost function

J =
∞∑

n=0

[
x(n)
u(n)

]T
Qw(n)

[
x(n)
u(n)

]

︸ ︷︷ ︸
l(x(n),u(n))

, (16)

for w = 1, . . . , N. The problem is to find a feedback control law

u(n) = µ(x(n)),
w(n) = ν(x(n)), w(n) ∈ {1, 2, . . . , N},

(17)

such that the closed loop system system

x(n + 1) = Φν(x(n))x(n) + Γν(x(n))µ(x(n)), (18)

minimizes J for every initial state.

3.1 Value Function

We assume Vk−1(x) at iteration k− 1 to be on the form

Vk−1(x) = min
Π∈Pk−1

xTΠx, (19)

where P is a set of non­negative, symmetric matrices (see Figure 2 for an
illustration). To obtain a relaxed value function, the procedure in Section 2
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is used with α = 1 and α = α > 1 as the relaxation parameter. The lower
bound V k(x) is calculated as in (11):

V k(x) = min
u,w

{
min

Π∈Pk−1

[
x

u

]T
[ Φw Γw ]T Π [ Φw Γw ]

[
x

u

]
+
[
x

u

]T
Qw

[
x

u

]}
=

min
w,Π∈Pk−1

min
u

[
x

u

]T {
[ Φw Γw ]T Π [ Φw Γw ] + Qw︸ ︷︷ ︸

Fw,Π

}[
x

u

]
=

min
w,Π∈Pk−1

[
x

−Lw,Π ⋅ x

]T
Fw,Π

[
x

−Lw,Π ⋅ x

]
= min

Π∈Pk
xTΠx. (20)

This is on the same form as Vk−1(x), and thus we can theoretically con­
tinue the value iteration. The size hPkh can be up to N ⋅ hPk−1h, though, so
worst­case complexity of Vk(x) grows exponentially with k. This is why
the proposed relaxed dynamic programming is needed.
The upper bound V k(x) is calculated in the same way as V (x). The

two sets of matrices Pk and Pk are stored as ordered sets and Pk is sorted
so that

tr Π i ≤ tr Π j ∀i < j.
Pk is ordered like Pk, i.e. such that Πi and Πi correspond to the same dis­
crete choice w(n). This implies that Πi ≥ Π i, ∀i. After that, Procedure 3.2
(which is a special case of Procedure 3.1) is used to calculate Vk.
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PROCEDURE 3.2—RELAXED Vk(x), SWITCHED SYSTEM
1. Let Pk = ∅ and define

Vk(x) = min
Π∈Pk

xTΠx.

2. Pick the first Π ∈ Pk and remove it from Pk.
3. If there exists x s.t.

xTΠx < xTΠx ∀Π ∈ Pk

(tested using S­procedure [Yakubovich, 1971]) then

– Pick the first Π ∈ Pk.
– Add this Π to Pk and remove Π from Pk.
– Go to step 2.

4. Remove the first Π from Pk.
If Pk �= ∅, go to step 2.

Remark: The sorting of Pk on trace ensures that small Π’s are added first
to Pk. In practice it means that more Π’s can be discarded and thus a
smaller set Pk is found.

3.2 Example — Scheduling of Inverted Pendulums

Consider the classical inverted pendulum. As the system is unstable, the
controller needs to give the system constant attention to stabilize it. As­
sume there are several pendulums to be controlled by one controller si­
multaneously. If the controller has limited computing or communication
resources and can only make one control decision per time unit, one ob­
vious problem is to choose which pendulum to control each time.
We can pose such a problem based on a linearized model of a rotating

inverted pendulum (“the Furuta pendulum”) from a student lab i Lund.

dx

dt
(t) =




0 1 0 0

31.3 0 0 0

0 0 0 1

−0.588 0 0 0


 x(t) +




0

−71.2
0

191


u(t) (21)
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The step cost matrix is set to

Q = diag
(

[ 1 0.1 1 0.1 1 ]
)

.

A reasonable sample period for this pendulum is around 20–50 ms. As
several pendulums are to be controlled, the controller “time­slot” is set
to h = 20 ms. The sampled system matrices are denoted Φ and Γ. We
assume that a pendulum which does not get attention in the current time
slot holds its previous control signal. This increases the system order.
For the two­pendulum­problem, the system matrices become

Φ1 =




Φ Γ 0 0

0 1 0 0

0 0 Φ 0

0 0 0 0


 , Γ1 =




0

0

Γ
1


 ,

Φ2 =




Φ 0 0 0

0 0 0 0

0 0 Φ Γ
0 0 0 1


 , Γ2 =




Γ
1

0

0


 ,

(22)

which is essentially the augmented system consisting of two pendulums
plus states for holding the control signal.
For the two pendulum problem, a reasonable α is α = 1.1, mean­

ing we have at most a 10% slack to the optimal solution. The resulting
complexity­over­iterations graph can be seen in Figure 3. As the system
is unstable and also sampled quite fast, the value iteration takes about
100 steps to converge (the steady state V (x) is on the magnitude of 1000
times l(x, 0)). As can be seen, the complexity stays under 10 for all itera­
tions, though. The result of the optimization is a feedback control law for
choosing which of the two pendulums to control, as well as linear feedback
laws for the continuous control signal u.
Extending the problem to three pendulums, the dynamic programming

gets harder. Setting α = 1.5, the problem is still solvable, and the result­
ing complexity graph can be seen in Figure 4. Note that the state­space
for this problem is 15­dimensional (or, effectively, 14­dimensional)!

3.3 Example — A Switched Power Controller

A naturally switched control problem is the design of a switched power
controller for DC to DC conversion. The idea is to use a set of semicon­
ductor switches to effectively change polarity of a voltage source. The
controller has to decide which polarity to use each time slot (at a high
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Figure 3. The complexity of the value function for the example of controlling two
Furuta pendulums with α = 1.1.
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Figure 4. The complexity of the value function for the example of controlling three
Furuta pendulums with α = 1.5.

frequency) so that the load voltage and current are kept as constant as
possible. See Figure 5 for the setup. This kind of DC/DC­converter is used
in practice, often with a PWM control for the switch.

Modeling. Except for the switch, all components in the power system
can be viewed as linear. For the purpose of control optimization, the load
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+
Vin

R

C

x2 L

x1Switch Load

Iload

Figure 5. The setup for the switched DC/DC­converter.

is modeled as a constant current sink. The model becomes

ẋ1 = 1
C

(
x2 − Iload

)
, (23)

ẋ2 = − 1
L
x1 − R

L
x2 + 1

L
s(t)Vin, (24)

where s(t) is the sign of the switch as set by the controller. To obtain
integral action in the controller, a third state is added as the integral of
the voltage error

ẋ3 = Vref − x1. (25)
Using the affine extension

xe(n) =
[
x(n)
1

]
,

and a sample period of h seconds, the model can be described in discrete
time as

xe(n+ 1) = Φixe(n), i ∈ {1, 2}, (26)
where Φi is a 4x4 matrix due to the integral state and the affine extension
of the state vector.

Cost Function. The objective of the controller is to keep the voltage
x1 as constant as possible around Vref. To avoid constant errors, but also
strong harmonics, a combination of average, current and derivative devi­
ations are punished. This is done by using the step cost

l(x) = qP(x1 − Vref)2 + qIx23 + qD(x2 − Iload)2. (27)

With the extended state vector this can also be written on standard form

l(x) = xTe Qxe. (28)

The switching controller will never be able to bring the system to a steady
state at the set­point. Therefore, the standard cost function will grow
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Figure 6. Complexity of the value function in the power controller example.

indefinitely. In this example, a “forgetting factor” λ ≤ 1 is introduced in
the cost function to cope with this problem:

J =
∞∑

n=0
λnl(x(n)). (29)

Finding a Controller. The above example is now on standard form,
and the algorithm in this section can be used to find a controller. Gener­
ally, a forgetting factor λ simplifies the problem solution a lot, but also
disqualifies V (x) as a Lyapunov function. The example has been tried
with λ in the range 0.95 to 1. For λ ’s less than 1, the value function
complexity stabilizes on a reasonable level. We set the parameters to

R = 1 C = 4 L = 0.1
λ = 0.95 α = 2 h = 0.1
Vin = 1 Vref = 0.5 Iload = 0.3
qP = 1 qI = 1 qD = 0.3

and again note that the Iload is only nominal and will change in the sim­
ulation later. The value iteration is done for 200 steps. For all steps, the
complexity of the value function, i.e. number of quadratic functions, stays
below 60, as can be seen in Figure 6.
The controller defined implicitly by V200(x) is used in the simulation

shown in Figure 8. The explicit controller, evaluated each time step, is

s(n) = R
(
argmin

Π∈P200

{
x(n)TΠx(n)

})
, (30)
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Figure 7. The resulting switching feedback law is monotonous in the current x2
(by observation), and therefore it can be plotted in 3D. The plot shows at which
current x2 the switch from s(n) = +1 to s(n) = −1 takes place for varying voltages
x1 and integral states x3. Note that the gridding is only for plotting purposes.

where R(Π) is simply a table lookup mapping one specific member of
P200 to a switch position (+1 or −1). Note that calculating this control
action on­line is not very computationally intensive, compared to solving
the off­line DP. A plot of the explicit control law is shown in Figure 7.
In the simulation in Figure 8, the load current Iload is changed at

several points in time, but the controller keeps the voltage well thanks to
the integral action.

4. Application: Piecewise Linear System

In this section a different version of the previous application is shown.
Here, the switchings between different systems are not controlled by the
controller, but are state­dependent. This may seem like a small change,
but makes the problem quite different. The problem formulation is the
following:
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Figure 8. A simulation of the power system example with the obtained controller.
At n = 100, the load current Iload is changed from its nominal 0.3A to 0.1A, at
n = 200, to −0.2A and at n = 300 back to the nominal 0.3A.

Given a piecewise linear, discrete­time system, defined as

x(n + 1) = f (x(n),u(n)) =
{

Φ1x(n) + Γ1u(n), if x(n) ∈ Ω1,

Φ2x(n) + Γ2u(n), if x(n) ∈ Ω2,
(31)

where Ω1 = {xhxTGx ≥ 0} and Ω2 = {xhxTGx < 0}. Throughout the pa­
per, we will assume this special case of only two different linear dynamics
for simplicity. In general, it is easy to extend to an arbitrary number of
regions. Note that this system is linear, but can be generalized to affine
by using an extended state vector

xe(n) =
[
x(n)
1

]
. (32)

This is done in some of the examples.
The objective is to find a feedback controller u = µ(x) which minimizes

the piecewise quadratic cost function

J =
∞∑

n=0
l(x(n),u(n)) =

∞∑

n=0

{[
x(n)
u(n)

]T
Q(n)

[
x(n)
u(n)

]}
, (33)

where

Q(n) =
{
Q1, if x(n) ∈ Ω1,
Q2, if x(n) ∈ Ω2.

(34)

78



4. Application: Piecewise Linear System

−0.5 0 0.5
0.2

0.4

0.6

0.8
Piecewise quadratic value function

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4
Piecewise quadratic value function

Figure 9. Examples of piecewise quadratic cost functions. The left plot shows
a 1­D function, and the right plot shows a level set of a 2­D function. Note the
discontinuities at the switching surfaces.

4.1 Finding a Relaxed Value Function

To get some intuition on the structure of the value function in the piece­
wise linear system, we start by a quadratic function V0(x) = xTΠx and
calculate the next iteration V1(x) exactly. Bellman’s equation gives

V1(x) =





min
u

(
V0(Φ1x + Γ1u) +

[
x

u

]T
Q1

[
x

u

])
= xTΠ1x, x ∈ Ω1,

min
u

(
V0(Φ2x + Γ2u) +

[
x

u

]T
Q2

[
x

u

])
= xTΠ2x, x ∈ Ω2.

(35)
This is not on the same form as V0(x), as it contains the condition x ∈ Ωi
(see Figure 9 for an illustration). Using exact value iteration, the number
of regions may grow exponentially.

4.2 The Relaxed Value Function

We have two requirements for a suitable approximating value function
parameterization:

1. The Bellman iteration (i.e. (10) and (11)) must be computationally
feasible.

2. There must be a computationally feasible algorithm to find a simple
Vk(x) that satisfies (12).

For the rest of this section we will focus on one specific such value
function parameterization, namely

V (x) = min
Π∈P
xTΠx. (36)
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Figure 10. Examples of value functions V (x) = min
Π∈P
xTΠx. The left plot shows

a 1­D function, and the right plot shows the level sets of a 2­D function. In this
example, hPh = 2.

See Figure 10 for an illustration of level sets of this V (x). This function
satisfies requirement 1 above as the solution to the Bellman iteration step
is simply a two­region min­of­quadratics as will be shown in Section 4.3.
It also satisfies requirement 2, which, again, will be shown in the Sec­
tion 4.4. Note that this function cannot, in general, describe the exact
value function.
In the following two sections, the two steps leading to a full value

iteration are presented.

4.3 Upper and Lower Bounds

We assume that after iteration k− 1,

Vk−1(x) = min
Π∈Pk−1

xTΠx.

Using Bellman’s equation the upper and lower bounds

V k(x) =





min
Π∈P1k

xTΠx, x ∈ Ω1,

min
Π∈P2k

xTΠx, x ∈ Ω2,
(37)

and

V k(x) =





min
Π∈P1k

xTΠx, x ∈ Ω1,

min
Π∈P2k

xTΠx, x ∈ Ω2,
(38)

are calculated similarly to (35).
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4.4 Finding a Simple Vk+1

The final, and most important step in the iteration is to find a simple­to­
represent Vk(x) in between the upper and lower bounds. Doing this in an
optimal way with respect to parameterization size is a very hard problem.
In this section, an ad­hoc algorithm to find Vk(x) is presented.
The algorithm is based on the following reasoning:

1. Since Vk(x) is a minimum of quadratic functions, each additional
quadratic function will decrease the value of Vk(x).

2. The upper bound consists of several quadratic functions. If the up­
per bound holds for some of those quadratic functions, then due to
point 1, this will not change when adding more functions to Vk(x).

3. Due to points 1 and 2, it is possible to check one Π ∈ P jk at a time,
and if the upper bound inequality does not hold, add one quadratic
function to Vk(x) as far away from Π as the lower bound permits.

The following algorithm starts with Vk(x) and Vk(x) and will try to
find a Vk(x) such that (12) is satisfied.

PROCEDURE 3.3—RELAXED REPRESENTATION
1. Let Pk = ∅.

2. Define Vk(x) = min
Π∈Pk

xTΠx.

If there exists a j ∈ {1, 2}, a Π ∈ P jk, and x ∈ Ω j such that
xTΠx < Vk(x) (i.e. the upper bound does not hold) then solve

min
Π,γ

γ s.t.

xTΠx ≤ γ xTΠx ∀x ∈ Ω j
xTΠx ≥ xTΠx ∀x ∈ Ω1, Π ∈ P1k
xTΠx ≥ xTΠx ∀x ∈ Ω2, Π ∈ P2k

for Π and γ . If γ ≤ 1, add this Π to Pk, otherwise the procedure
fails (which is discussed later in this section).

3. Repeat from 2.

The optimization of Π (and γ ) in Procedure 3.3 can be relaxed to the
following LMI, using the S­procedure [Yakubovich, 1971]. Again, the sign
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Figure 11. The phase plot of the “flower” example. The control input direction
direction is x1, i.e horizontally.

of xTGx defines the regions Ω1 and Ω2.

min
γ ,Π≥0,λ i≥0

γ s.t.

Π ≤ γ Π ± λ1G (∗)
Π ≥ Π + λ2G ∀Π ∈ P1k
Π ≥ Π − λ3G ∀Π ∈ P2k,

where the sign at (∗) depends on j, − for j = 1 and + for j = 2.

4.5 Examples

This section will show two optimal control examples where the method
has been used to find close­to­optimal solutions. The algorithm has been
implemented in Matlab with SeDuMi (see [Sturm, 1999]) to solve the
LMIs.

Example 1: The Flower System. This example is a version of the
“flower” example from [Johansson, 1999]. In this case, the piecewise linear,
oscillative system has been extended with a control input. The name of
the example stems from the phase plot, see Figure 11.
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Figure 12. The level functions of the resulting V (x) in the “flower” example, as
well as level sets of the seven quadratic functions.

The system matrices are

Φ1 =
[
1 −0.001
0.005 0.9999

]
, Γ1 =

[
0.01
0

]
,

Φ2 =
[
1 −0.005
0.001 0.9999

]
, Γ2 =

[
0.01
0

]
,

Q1 = Q2 = I, G =
[−1 0

0 1

]
.

Using the relaxation α = 2 and α = 1
2 , a value function V (x) satisfy­

ing (5) is found in less than 100 iterations. The resulting V (x) consists
of seven quadratic functions. See Figure 12 for a cost plot.
One interesting property of the min­of­quadratics value function pa­

rameterization is that the switching surfaces for the relaxed optimal con­
trol law are found implicitly. Thus, they do not have to coincide with the
switching surfaces for the system dynamics nor be chosen in advance, as
opposed to e.g. the method in [Johansson, 1999].
To illustrate the controller in action, some trajectories of the controlled

system are shown in Figure 13.

Example 2: A Piecewise Affine System. As long as we stick to piece­
wise linear systems (as in the previous example), modeling of nonlinear
behavior from the real world is quite limited. Extending to piecewise affine
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Figure 13. Some trajectories of the “flower” system with the obtained controller.
Note that the arrows show the direction of the uncontrolled system.

systems, though, increases the chance of being able to model something
useful. In this approach, affine terms are added by extending the state
vector to

xe =
[
x

1

]
.

This enables us to use the same machinery at the cost of one extra state
variable. As the problem now contains constant, linear, and quadratic
terms, it is most often necessary to limit the state space where V (x) is to
be valid. Otherwise, at “large” states, the quadratic terms totally dominate
the linear and constant terms, and the problem may be very different
from what was intented. For example, when optimizing a control law for
a linear system with bounded input, large initial states are meaningless
as the bounded control signal can do almost nothing.
In this example the dynamics consists of stable oscillating dynamics in

x1 < 0.2 and unstable dynamics in x1 ≥ 0.2 (0.2 chosen only because it is
not zero). Using the extended state vector above, the state space becomes
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Figure 14. The phase plot of the affine example system. The control input is in
x1 (horizontal) direction.

3­dimensional. The system matrices are

A1 =



0 0.1 0

−0.2 −0.1 0

0 0 0


 , B1 =



1

0

0


 ,

A2 =



0 0.1 0

0.3 −0.1 −0.1
0 0 0


 , B2 =



1

0

0


 ,

Q1 = Q2 = diag [ 1 1 0 1 ] ,

xTe Gxe = (0.2+ 3)2 − (x1 + 3)2,
with Φi and Γi as discrete­time versions of A1 and B1 with sample period
h = 0.1 s and a zero­order­hold. Note that the switched system is defined
in discrete­time, and switches will thus occur outside of the region bound­
aries. A phase­plane plot is shown in Figure 14. As the region­dividing
function xTe Gxe is quadratic and thus symmmetric (in this case around
−3), it is necessary to restrict the state­space for which V (x) is valid. In
this example state­space is restricted to the ball ixi ≤ 3.
Using the proposed algorithm withα = 2 andα = 1

2 , the value function
after 100 iterations, V100(x), consists of 9 quadratic functions. The level
sets of V100(x) are shown in Figure 15.
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Figure 15. Level sets of V100(x) in the affine example.

By visual inspection, not much changes in the cost function after
100 iterations, but the formal stopping criterion (5) is not satisfied. As
value­iteration can be interpreted as solving finite­time­horizon problems,
V100(x) can be seen as the value function for a 100­time­step problem, and
this might be enough for practical purposes.
To satisfy (5), we can either continue the iteration, or increase the

slack until V100(x) does in fact satsify (5). For this example, the latter
method requires α = 2.8 and α = 1

2.8 .

4.6 Problems and Discussion

The optimal control problem focused on in this section does not yet have
a simple explicit solution. The approach taken here is to use an approx­
imating value function and dynamic programming. This approach does
simplify the problem a lot, but it is not without problems. In this section,
some of the most apparent issues are discussed.

Algorithm Fails to Return a Vk(x). There are two main problems
that can make Procedure 3.3 fail; the first is due to the problem formula­
tion itself, and the second is due to the S­procedure used in the LMI.
The first problem is that the value function is often discontinuous. This

is due to the discrete­time nature of the problem. The Vk(x) representa­
tion is always continuous, but thanks to the introduced slack it is still
possible to satisfy the inequalities. If the slack is too small, though, the
non­overlapping situation illustrated in Figure 17 may occur. This makes
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Figure 16. Trajectories of the controller obtained for the affine example. Note that
the arrows show the uncontrolled system dynamics.

it impossible to find an approximating Vk(x), and the only way out is to
increase the slack.

V

V

Figure 17. A case where an approximating value function is impossible to find as
the upper and lower bounds are non­overlapping.

The second problem is the S­procedure that transfers the region­dep­
endent LMI in the algorithm to a global LMI. This LMI may not have a
solution with γ ≤ 1 even if the original problem does.
In the Matlab implementation for the examples, the slack is automat­

ically increased upon detection of any of the above problems.

Is Minimum of Quadratics a Good Choice? In Section 4.2 two prop­
erties for a good value function are listed, and the minimum­of­quadratics
representation has these properties. There is one obvious question that
we have not yet not asked: Is a minimim­of­quadratics function a good
approximator of the kind of value functions generally obtained in optimal
control of piecewise linear systems? Some insight is given in Figure 18.
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In general, disregarding the desired properties from Section 4.2, the min­
of­quadratics function is probably not the best approximator choice, but
it works as a compromise.

a b

Figure 18. In a, the true function (solid line) is well represented by a small
number of quadratic functions. In b, on the other hand, the true function requires
a large number of quadratic functions to be approximated well.

5. Application: Linear System with Piecewise Linear Cost

This section describes yet another version of the optimal control problem.
The plant to be controlled is an LTI system, and the cost to be minimized is
piecewise linear. This makes it possible to punish states in more elaborate
ways than the usual quadratic cost. For example, it is possible to make the
cost asymmetric such that negative states are more costly than positive.

5.1 Problem Formulation

The controlled system is LTI

x(n+ 1) = Φx(n) + Γu(n), (39)

where x ∈ X , u ∈ U and X and U are polyhedra. The cost function is on
the form (2), with

l(x,u) = max
π ∈Q

π T


x

u

1


 , (40)

where π is a vector and Q is a finite set of vectors. l(x,u) is thus piecewise
linear, convex, and of “maximum­type” (see Section 2.3). The goal of the
controller is to minimize the cost.

5.2 Value Function

Assume the value function Vk−1(x) at some time k− 1 is on the form

Vk−1(x) = max
Π∈Pk−1

ΠT
[
x

1

]
. (41)

88



5. Application: Linear System with Piecewise Linear Cost
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Figure 19. The piecewise linear cost function l(x,u).

Bellman’s equation is used to calculate Vk(x)

Vk(x) = min
u∈U

{
max

Π∈Pk−1
ΠT
[Φx + Γu

1

]
+max

π ∈Q
π T


x

u

1



}

=

min
u∈U
max
r∈R

{
FTr x + GTr u+ Hr

}
. (42)

For the iteration to work, we need to rewrite this on the form (41). This
can be done by writing Vk(x) as the linear program

Vk(x) =min
u, f
f s.t

FTr x + GTr u+ Hr ≤ f ∀r ∈ R, (43)

where the x ∈ X and u ∈ U constraints have been removed for clarity
(they can easily be added). Solving this for any initial position x yields a
value function that can again be written on the form (41). The solution
can either be found by solving a Multi­Parametric Linear Programming
(MPLP) problem (see e.g. [Borrelli et al., 2002]), or by doing explicit enu­
meration of the dual extreme points as is shown below.
Introducing Lagrange multipliers λ , we rewrite (43) as

Vk(x) = min
u, f
max
λ i≥0

{
f +

∑

r∈R
λ k
(
FTr x + GTr u+ Hr − f

)}

= max
λ i≥0
min
u, f

{(
1−

∑

r∈R
λ r
)
f +

∑

r∈R
λ r
(
FTr x + Hr

)
+
∑

r∈R
λ rGTr u

}
, (44)

where the last equality is due to strong duality for linear problems. From
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this we see that

∑

r∈R
λ r = 1, (45)

∑

r∈R
λ rGTr = 0, (46)

and
Vk(x) = max

λ∈L

∑

r∈R
λ r
(
FTr x + Hr

)
, (47)

where the set L is defined by λ r ≥ 0 and (45) and (46).
As Vk(x) is linear in λ , the maximum can be found in one of the

extreme points of L. L is a hRh − 2 dimensional set bounded by hRh hy­
perplanes, and thus we can find at most hRh(hRh − 2)/2 extreme points.
This can be done by selecting all pairs of

{
(i, j) ∈ R2

∣∣ i �= j
}
, setting all

other λ r = 0, r �= i, r �= j. If λ i and λ j have positive solutions in (45)
and (46), the resulting λ is an extreme point in L. Note that the extreme
points do not depend on the state x.
The extreme points of L form the new set of vectors Pk, and again the

value function is on the form

Vk(x) = max
Π∈Pk

ΠT
[
x

1

]
. (48)

5.3 Parsimonious Representation

Vk(x) can usually be represented by a much smaller set than the Pk ob­
tained by the above extreme point enumeration. A set Pk is called a par­
simonious representation, if only the members of Pk which are ever active
(maximum for some state) are included. Such a set can be obtained from
Procedure 3.4 (which is well known [Cassandra, 1998a], and, again, a
special case of Procedure 3.1).
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PROCEDURE 3.4—PARSIMONIOUS Vk(x)
1. Let Pparsk = ∅.

2. Pick one Π ∈ Pk. Find an x where

ΠT
[
x

1

]
> π T

[
x

1

]
, ∀π ∈ Pparsk .

3. If such an x exists, find the π ∈ Pk with the highest cost π T
[
x

1

]
.

Add π to Pparsk .
Remove π from Pk.

4. If no such x exists, remove Π from Pk.

5. Repeat from 2 until Pk is empty.

Note that after this procedure, naturally

max
Π∈Pk

ΠT
[
x

1

]
= max

Π∈Pparsk

ΠT
[
x

1

]
∀x(n). (49)

5.4 Relaxed Value Function

To be able to use the proposed relaxed DP, we define the relaxed cost

l(x,u) = l(x,u) = α 1l(x,u) − α 2, (50)

and
l(x,u) = l(x,u), (51)

where α 1 ≤ 1 and α 2 ≥ 0. Choosing α 1 < 1 is of course only meaningful
if l(x,u) ≥ 0, ∀x,u. The procedure in Section 2 is used to find a relaxed
Vk(x). Assume Vk−1(x) satisfies (9) for time step k−1. From this Vk−1(x),
Bellman’s equation gives the upper and lower bounds

V k(x) = max
Π∈Pk

ΠT
[
x

1

]
= min

u

{
Vk
(
f (x,u)

)
+ l(x,u)

}
. (52)

and

V k(x) = max
Π∈Pk

ΠT
[
x

1

]
= min

u

{
Vk
(
f (x,u)

)
+ l(x,u)

}
. (53)
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Now, finding a Vk in between V k(x) and V k(x) is done by adding one
element from Pk at a time according to Procedure 3.5 (which is again a
special case of Procedure 3.1, but for maximum­type).

PROCEDURE 3.5—RELAXED Vk(x)
1. Let Pk = ∅.

2. Pick one Π ∈ Pk. Find a state x where ΠT
[
x

1

]
> π Ti

[
x

1

]
, ∀π ∈

Pk.

3. If such an x exists, find the π ∈ Pk with the highest cost π T
[
x

1

]
.

Add π to Pk.

4. If no such x exists, remove Π from Pk.

5. Repeat from 2 until Pk is empty.

5.5 Example — Stock Order Control

To illustrate the capability to have non­symmetric cost functions, this sec­
tion presents an example of a stock of some product. The control problem
is to meet customer demand while not storing too many products nor
running out of products when there is customer demand.

Stock ConsumerSupplier

Control signal Disturbance
vu

Figure 20. The stock controlling the orders u to the manufacturer and the con­
sumer controlling orders v from the stock in the example. As seen from the stock,
u is the control signal and v is a disturbance.

The system is modeled in discrete time, where the sample period h
is one day. In one sample period, the stock controller can order from 0
to 0.5 units of the product (where one unit is a batch of products), and
anything in between. The order control signal is denoted u(n) at day k.
It takes three days for the order to arrive at the stock.
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Step−cost for stock problem

Units in stock
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t

Figure 21. The step cost for the stock example. Negative stock (backlog) is more
expensive than storing.

After the stock order has been placed, the consumers buy v units of
the product from the stock (and the products are removed immediately,
without delay). The amount v(n) at day n is random and independent
with the following probabilities:

v(n) =





1 with probability 0.1
0.3 with probability 0.2
0 with probability 0.7.

(54)

The cost of the system is a sum of the backlog cost when the stock is
negative and the storing cost when the stock is positive. For each day
with negative stock y, the cost is l = −10y. For each day with positive
stock, the cost is l = y (see Figure 21).

Problem formulation. This problem can be written as

x(n + 1) =



1 1 0

0 0 1

0 0 0


 x(n) +



0

0

1


u(n) −



1

0

0


 v(n),

y(n) = [ 1 0 0 ] x(n),

0 ≤ u(n) ≤ 1
2

.

(55)

The step cost is

l(x,u) = max([ −10 0 0 ] x, [ 1 0 0 ] x), (56)

and the objective is to minimize the cost

J = lim
N→∞

N∑

n=0
λnl(x(n),u(n)), (57)
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Figure 22. The complexity of the value function for the stock example over iter­
ations.

where the “forgetting factor” λ = 0.9. This factor ensures a finite value
function, and, loosely speaking, weighs future versus immediate costs.

Solution. The method in Section 5.4 is used to solve for a steady­
state value function (and thus a control law). The relaxation parameters
α 1 = 0.5 and α 2 = 0.1 turn out to give a good trade­off between solution
complexity and accuracy for this problem. With these parameters, our
solution is guaranteed to have

V ∗
k (x) ≥ Vk(x) ≥ 0.5V ∗

k (x) − 0.1
1− λ

= 0.5V ∗
k (x) − 1 (58)

for each iteration k. The value function has been iterated 32 times and
the resulting complexity plot is shown in Figure 22. As can be seen, at
this level of accuracy, the value function can be described by less than 30
hyperplanes for all iterations. Using V (x) = V32(x) as the infinite­time
horizon solution, it can be shown to obey

V ∗(x) ≥ V (x) ≥ 0.5V ∗(x) − 1.51, (59)

as V (x) satisfies (5) when α 2 is increased to α 2 = 0.151.
As the problem is three­dimensional, the resulting value function is

somewhat hard to visualize. In Figure 23, the two delay­states have been
set to zero, resulting in a one­dimensional value function in “units­in­
stock” (x1). Apparently, with no units in the delay pipeline, a stock of
about 1 unit is good.
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Figure 23. The relaxed value function and corresponding control law for the stock
control problem. This curve corresponds to x2 = x3 = 0, i.e. there are no units in
the “pipeline”.

6. Application: POMDPs

Partially Observable Markov Decision Processes (POMDPs) have been
around for a long time (see e.g. [Åström, 1965; Cassandra, 1998a]). Lately,
it has mostly been investigated in the AI/robotics fields, e.g. robot navi­
gation problems where limited sensor information is available. A POMDP
is basically a Dual Control problem [Feldbaum, 1960 1961] where the
state­space X is finite, as is the control signal (or action) space U and
observation space Y. As for dynamic programming, the problem is very
similar to the piecewise linear cost application in Section 5.
The state x(n) is a Markov state and, and the dynamics is specified

by transition matrix π (u), where element m, l denotes the probability to
move to state m if the system is currently in state l. This probability can
be controlled by u. See Figure 24 for an illustration.

1 2

π11(u) π21(u)

π12(u)

π22(u)

Figure 24. An example POMDP Markov graph with a set of transition matrices
π (u), one for each control action u.
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A specific observation y(n) ∈ Y will be obtained with probability

P
(
y(n) h x(n) = m

)
= Ωm(y(n),u(n)), (60)

where Ω is the observation probability vector (note that it may depend on
the action u(n)). Thus, the controller never really knows exactly in which
state the process is (if it would, the problem would be a Markov Decision
Process and easily solved). To be able to use DP, the state is changed to
the belief state z(n) : zm(n) = P

(
x(n) = m

)
. Note that state space is

closed as zm(n) ≥ 0, ∀m and
∑
m zm(n) = 1. The dynamics of the belief

state is linear,
z(n+ 1) = π (u)z(n). (61)

and for each observation y ∈ Y, our belief state is changed according to
Bayes’ rule:

zm(n+ 1 h y(n)) = P
(
x(n) = m h y(n)

)
=

P
(
x(n) = m ∩ y(n)

)

P
(
y(n)

) =

P
(
y(n) h x(n) = m

)
⋅P
(
x(n) = m)

P
(
y(n)

) =

Ωm(y(n),u(n)) ⋅ zm(n)
P
(
y(n)

) . (62)

The expected state over all possible observations is then

E
y(n)∈Y

{
z(n+ 1)

}
=
∑

y(n)
P(y(n)) Ω(y(n),u(n))z(n)

P
(
y(n)

) =
∑

y(n)
Ω(y(n),u(n))z(n).

(63)
Thus, the dynamics of the belief state z is linear.
The cost in a POMDP problem is usually replaced by a reward, so we

will stick to that. The reward J is defined as

J = E
∞∑

n=0
λnl(x(n),u(n)) =

∞∑

n=0
λnR(u(n))T z(n), (64)

where R(u(n)) is a vector of rewards of using control signal u(n) for each
Markov state x(n), and λ ≤ 1.
For each time step, the controller has to make a control decision u(n)

based on the current belief state z(n). After the control decision, an ob­
servation y(n) based on z(n) and u(n) is obtained. We would like to find
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an optimal control policy u = µ(z) which maximizes the reward J for any
initial state. As it turns out, the value function Vk(z) is again of the form

Vk(z) = max
Π∈Pk

ΠT z, (65)

where Pk is a finite index set and Πk is a vector. Thus the value function
is piecewise linear in the state z.
If the value function Vk−1(z) is known and in the form (65), we can

calculate the value Vk(z) from Bellman’s equation:

Vk(z) = max
u
E

{
Vk−1

(
π (u)z

)
+ l
(
x,u
)}

=

max
u
E

{
max

Π∈Pk−1

(
ΠTπ (u) + R(u)T

)
z(k h y(n))

}
=

max
u

∑

y∈Y
max

Π∈Pk−1

(
ΠTπ (u) + R(u)T

)
Ω(y,u)z = max

Π∈Pk
ΠT z(n). (66)

Note that the “raw” size of Pk is significantly larger than Pk−1 (actually
hPkh = hPk−1hhYhhU h, where hU h denotes the number of elements in U).

6.1 Parsimonious Representation

Just like for the control problem problem in Section 5.3, the set Pk is often
unnecessarily large and may be pruned without changing the value of
Vk(x). Procedure 3.4 can be used to obtain a parsimonious representation.

6.2 Relaxed Value Function

Analogous to Section 5.4, a modified pruning procedure can be used to
obtain an α ­optimal value function. The relaxed step cost is the same as
in (50) and (51).

6.3 Example

There is a wide variety of reference POMDP problems defined in litera­
ture. In this section we focus on the 4x3 maze problem found in [Cassan­
dra, 1998b], which is a modified version from [Russell and Norvig, 1994];
see Figure 25. The state x is a position in a square 4x3 maze where one
state is inaccessible, and therefore the state space X has size 11 (z is 11­
dimensional). Y consists of six observations, and there are four actions in
U . The immediate reward is

l(x) =





+1 if x = good
−1 if x = bad
−0.04 otherwise.

(67)
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Good

Bad

Figure 25. The 4x3 maze with one good and one bad state. The black state is
inaccessible, and the initial position is randomly selected from the 9 neutral states.

After reaching the “good” or “bad” state, the state is reset to a random
initial position. The problem is solved over an infinite horizon using value
iteration with a discount factor λ = 0.95.
Running POMDP­SOLVE from [Cassandra, 1998b] with incremental

pruning and searching for the optimal solution fails to return within a
reasonable time as the set P grows too fast (after 10 iterations and 36
CPU­minutes on a fast PC the set size hP10h is 3393).
Setting α 1 = 1 and α 2 = 0.01, the algorithm keeps a value function

V of complexity (set size) of about 150 after reaching steady state. The
algorithm was run with a finite horizon of 50 time steps, and the resulting
average value (for random initial states) is � 1.7. Using our α and the
discount factor λ , we can bound the optimal value V ∗(x) by

V (x) ≤ V ∗(x) ≤ V (x) +
∞∑

i=0
λ iα = V (x) + 0.2. (68)

A smaller α 2 produces a larger search and a tighter bound, and vice versa.

7. Application: Network Routing Tables

In this final example, a different view on DP is shown. Here, the itera­
tion is done over links in a network instead of over time, and it is also
decentralized with one value function at each node in the network.
In a huge computer network like the Internet, there are hundreds

of millions of computers with unique addresses. We assume that every
computer want to be able to send data to any other computer on the
network. Doing optimal routing (using some cost) forces each computer
to keep a vector of N entries, where N is the number of computers, with
the cost to every other computer on the net. This is of course not realistic,
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and maybe also not desirable – routing does not have to be optimal, just
good enough.
This example applies the relaxed dynamic programming method to

decrease the number of entries in the cost vector. As usual in path­finding,
this can be done distributively so that each computer iteratively asks its
neighbors about their knowledge of costs to other computers.
The idea is to use the fact that in practice, network addresses (or at

least IP addresses) are often semi­hierarchically selected. Two neighbor­
ing nodes x and y have addresses that with large probability only differ
in the least significant bits. A node z, far away from both x and y may be
able to treat x and y as having the same cost, and represent this in the
vector as the common bits in x’s and y’s addresses.

101

100

100/2

Figure 26. Two nodes, with binary addresses 101 and 100 may be treated as one
node, 100/2 (indicating that the two most significant bits are used) if the costs are
close enough.

7.1 Value Function

The value function V (x) for a certain node corresponds to the cost to send
data to another node x in the network. The relaxed DP is very dependent
on having a suitable value function representation. In this case, we would
like to be able to group sets of addresses together, but still have the ability
to break out some addresses in a range and give them special values (as
the network addresses are not completely hierarchical).
Without going into details, in this example a value function represen­

tation is used where both the address and a the number of significant bits
are stored in each entry. This way, a range of addresses can be represented
by one entry with less significant bits. To be able to handle “outliers”, it is
also possible to give some specific address ranges within a larger range of
addresses special values. For example, if the cost to go to nodes 1–12, 14–
16 is approximately the same then this can be represented as the range
1–16 with a special value for address 13.

7.2 Value Iteration

In this network example, the value function can be viewed as being iter­
ated over links, instead of time. The step cost l(x) is some cost between
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101

100

100/2

V = 2.5
V = 2V = 3

V = 3V = 2.2

V = 2.2

Figure 27. The two nodes, 101 and 100 have overlapping cost intervals. The nodes
are therefore replaced by one node with the common interval as cost.

two links, calculated from e.g. delays, bandwidth, or some other Quality­
of­Service measure. The step cost will be relaxed to

l(x) = α l(x) (69)

for α ≥ 1 and
l(x) = α l(x) (70)

for α ≤ 1. In this application, the iteration will be done such that both a
lower bound V and an upper bound V are kept.
Let Vk(x) be the value function at iteration k for a certain node in

the network. Let node have neighboring nodes n ∈ N, and let the cost to
send data to n be C(n). V nk (x) is the value function of neighbor n at this
iteration. The aim for the relaxed DP is to find Vk+1(x) satisfying

min
n∈N

{
V nk(x) + αC(n)

}
≤ Vk+1(x) ≤ min

n∈N

{
V
n

k(x) + αC(n)
}

. (71)

Note that node itself is a member of N as well, with zero cost added.
The algorithm to find the simplified Vk(x) is conceptually similar to

what has been presented in the preceding sections. The idea is, as men­
tioned before, to merge entries in Vk+1(x) which are neighbors in address
space and have overlapping upper and lower bounds on the cost. See Fig­
ure 27.

7.3 Example

To test the above procedure, random networks of various sizes have been
produced. The results presented in this section do of course depend a
lot on the properties of the network (and in particular network address)
generator.

The Network Generator. The relaxed shortest­path algorithm de­
scribed above does, as mentioned before, depend on a network with semi­
hierarchical address space. This means that two neighboring nodes should
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have addresses that are “close” in address space with high probability. The
network graph should also be tree­like, but with some cycles to make it
more interesting and realistic.
The network generator used in this example will not be described in

full detail, but here is an outline:

PROCEDURE 3.6—NETWORK GENERATION FOR M NODES

Generate a first node with a random address between zero and M . Let
the graph G consist of only this node. Then loop the following until N
nodes are in the graph G:

1. Draw number­of­neighbors d from the probabilities 90%, 8% and
2% for 1, 2 and 3 neighbors, respectively.

2. Draw one node n from G, as a first neighbor candidate. Create a
new address from n’s address by altering the least l significant
bits, where l is chosen randomly with a larger probability for
lower numbers. If this address is not used in the network, keep
n as the first neighbor. Otherwise, do step 2 again.

3. Draw the remaining neighbors and add the new node to the
graph.

The graph designed by the algorithm does not have a simple 2D­structure,
and is thus hard to visualize.

Dynamic Programming. The relaxed cost optimization algorithm is,
just like the optimal algorithm, decentralized. In this simulation, the op­
timization has been performed by simulating all M nodes simultaneously,
exchanging information at certain time ticks. If D is the largest distance
(in number of links) between two nodes in the network, at most D itera­
tions are required for the value function to converge.
To fill up the address space completely, network sizes of M = 2m have

been generated, for M up to 2048 nodes. The output data from the opti­
mization is the total number of entries Ek in all routing tables of all nodes
at iteration k. A smaller number means that the average node keeps a
smaller number of nodes in its routing table.
Using α = 1.5 and α = 1

1.5 , a typical Ek graph for 40 iterations of
a N = 1024 network is shown in Figure 28. For optimal routing a total
number of N2 � 106 entries would be needed in the routing tables, and
thus about 7­8 times fewer entries are needed with this relaxation. This
generally holds for this relaxation and network generator.
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Figure 28. The total number of entries in all routing tables for a N = 1024
network, over iterations from 1 to 40. To do optimal control, a total number of
N2 � 106 entries would be needed in the routing tables.

The maximum distance of this network is 31, so the value function
Vk(x) satisfies (5) for all k ≥ 31. Note that since this is an inequality, the
value function may still change, but it will stay within the limits.

8. Value Function Convergence

It is well known that under mild conditions, V ∗
k (x) defined by

V ∗
k (x) = min

u

k∑

n=0
l(x(n),u(n))

converges to V ∗(x) as k→ ∞ in the standard value iteration

V ∗
k+1(x) = min

u

{
V ∗
k ( f (x,u)) + l(x,u)

}
. (72)

This is stated in Theorem 1 on the next page, for completeness. In Sec­
tion 2 it was shown that the relaxed value iteration guarantees a value
function Vk(x) in the range

min
u

k∑

n=0
l(x(n),u(n)) ≤ Vk(x) ≤ min

u

k∑

n=0
l(x(n),u(n)) (73)
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Vk(x)

Vk(x)

V (x)

k

V ∗(x)
αV ∗

αV ∗

Figure 29. An illustration of two different value functions Vk(x) converging to
the close­to­optimal­set.

for iteration k. If, for example, l and l are defined by α and α as in (7)–(8),
then

αV ∗
k (x) ≤ Vk(x) ≤ αV ∗

k (x). (74)
Thus, the convergence of V ∗

k (x) implies convergence of Vk(x) to the desired
region close to V ∗(x) as well (see Figure 29).

THEOREM 1—VALUE ITERATION CONVERGENCE
Assume that there exists a constant γ < ∞ such that

V ∗( f (x,u)) ≤ γ l(x,u) x ∈ X ,u ∈ U . (75)

Define β = 1+ 1/γ . If there exists an index p and a constant P such that
that

V ∗(x)
V ∗
p(x)

− 1 ≤ P < ∞ and V ∗
0 (x) ≤ V ∗(x)

then
∣∣∣∣
V ∗(x)
V ∗
k (x)

− 1
∣∣∣∣ ≤ P

β k−p
k ≥ p. (76)

Remark 1 The constant γ gives a measure on how “stable” the optimally
controlled system is, i.e. how close the optimal cost is to the step cost. The
smaller γ is, the faster convergence.
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PROOF OF THEOREM 1
First, we note that since V ∗

0 (x) ≤ V ∗(x), then

V ∗
k (x) ≤ V ∗(x) ∀k ≥ 0 (77)

by induction. Then, for any x, let uk, and u∗ be (implicitly) defined by

V ∗
k (x) = min

u

{
V ∗
k−1( f (x,u)) + l(x,u)

}
= V ∗

k−1( f (x,uk)) + l(x,uk)

V ∗(x) = min
u

{
V ∗( f (x,u)) + l(x,u)

}
= V ∗( f (x,u∗)) + l(x,u∗).

Then

V ∗(x) − V ∗
k (x) ≤ V ∗( f (x,u∗)) + l(x,u∗) − V ∗

k−1( f (x,uk)) − l(x,uk)
≤ V ∗( f (x,uk)) + l(x,uk) − V ∗

k−1( f (x,uk)) − l(x,uk)
= V ∗( f (x,uk)) − V ∗

k−1( f (x,uk)). (78)

Thanks to (75), (77), it holds that

V ∗
k−1( f (x,uk)) ≤ V ∗( f (x,uk)) ≤ γ l(x,uk),

and thus

V ∗
k (x) = V ∗

k−1( f (x,uk)) + l(x,uk) ≥ V ∗
k−1( f (x,uk)) + 1

γ
V ∗
k−1( f (x,uk))

= (1+ 1
γ

)
︸ ︷︷ ︸

β

V ∗
k−1( f (x,uk)).

Both sides of (78) can be divided by V ∗
k (x) and we obtain

V ∗(x) − V ∗
k (x)

V ∗
k (x) ≤ V

∗( f (x,uk)) − V ∗
k−1( f (x,uk))

V ∗
k (x)

≤ V
∗( f (x,uk)) − V ∗

k−1( f (x,uk))
βV ∗

k−1( f (x,uk))
;

(
V ∗(x)
V ∗
k (x)

− 1
)

≤ 1
β

(
V ∗( f (x,uk))
V ∗
k−1( f (x,uk))

− 1
)

. (79)

Finally, denote

f n(x,u) = f ( f (⋅ ⋅ ⋅ f (x,uk),uk−1) ⋅ ⋅ ⋅ ,uk−n+1),
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where
u j(x) = argmin

u

{
V ∗
j ( f (x,u)) + l(x,u)

}
.

It then follows directly that

(
V ∗(x)
V ∗
k (x)

− 1
)

≤ 1
β

(
V ∗( f (x,u))
V ∗
k−1( f (x,u)) − 1

)

≤ 1
β k−p

(
V ∗( f k−p(x,u))
V ∗
p ( f k−p(x,u)) − 1

)
≤ P

β k−p
.

9. Conclusions

A novel method for reduction of the computational complexity in dynamic
programming has been presented. The method allows the user to specify
an error bound on the solution, enabling a trade­off between complexity
and accuracy. Therefore, many problems which may be very hard to solve
optimally can be effectively solved.
Applications to several well known classes of optimal control problems

show that the method has a potential for significant improvement com­
pared to other approaches. Most likely, the same is true for many other
application areas which still remain to be investigated.
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Paper III

Simple Stability Criteria for Systems

with Time­Varying Delays

Chung­Yao Kao1 and Bo Lincoln

Abstract

This paper considers the problem of stability of linear feedback
systems with time­varying but bounded delays. Simple but power­
ful criteria of stability, as well as a simple performance bound, are
presented for both continuous­time and discrete­time systems. Using
these criteria, stability can be checked in a Bode plot of the closed
loop system. This makes it easy to design the system for robustness.

This paper is based on “Simple Stability Criteria for Systems with Time­
Varying Delays” by the same authors, submitted to Automatica, 2003.

1Authors in alphabetic order
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Paper III. Simple Stability Criteria for Systems with Time­Varying Delays

1. Introduction

This paper presents a simple stability criterion for linear systems with
time­varying but bounded delays.
Varying time delays (sometimes termed jitter) is a common problem in

real­time implementations of control systems. Often several tasks share
the same resource, such as a CPU or a network, and some kind of schedul­
ing is needed. The scheduling can be of static and periodic type (see e.g.
[Kopetz, 2002]), such that delays are constant and known. This simplifies
control synthesis and analysis, but can give very bad resource utiliza­
tion and inflexibility. Dynamic scheduling on the other hand is flexible
and gives efficient resource utilization. It can lead to varying and un­
known time delays, though, which may be bad for a real­time controller
in a closed loop (see e.g. [Cervin et al., 2003]). Using computer networks
to send control data can also give rise to varying delays. For example,
Ethernet’s Media Access Control introduces explicit randomness after a
packet collision on the network. This paper presents some simple graph­
ical criteria for stability under such time­varying delays, which can be
used to analyze time delay robustness.
Time­delay robustness is a large research topic, and many sub­pro­

blems have been extensively explored. One such problem is “stability
independent of delay”, where the system stability is tested for delays
of arbitrary length; see [Chen and Latchman, 1995; Huang and Zhou,
2000; Verriest et al., 1993]. Another problem is “delay­dependent stabil­
ity” (implying restrictions on the delays), which has been explored in [Gu
and Han, 2000; Verriest, 1994; Yan, 2001] among others. Most of these ref­
erences study the problem of unknown but constant delays. In this paper,
which is based on the results in [Kao and Rantzer, 2003; Lincoln, 2002],
the delays are assumed to be bounded but otherwise freely time­varying.
The main advantage of the method is that the stability criterion is a sim­
ple graphical check in a closed loop Bode plot, which makes design for
robustness easy.
The paper is organized as follows: in Section 2 the main theorems

are presented, followed by proofs in Section 3. Section 4 contains some
extensions of the main theorems, and Section 5 contains a performance
degradation bound. Finally, in Section 6 an example is shown to illustrate
the theory.

Notation

We use L2 and l2 to denote spaces of square summable functions and
sequences, respectively.
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2. Main Result

2. Main Result

Consider the systems in Figures 1 and 2. P is a plant and C is a controller,
and the control system is perturbed by the delay ∆. The delay can be
placed anywhere in the loop, but for the rest of the paper we will assume
it to be after the controller as shown in the figures. We assume that
the closed loop system of P and C is stable for zero delay. The following
theorems give simple criteria of stability for the system with an arbitrarily
time­varying but bounded delay. The proofs of the theorems are presented
in Section 3.

THEOREM 1—CONTINUOUS TIME CASE
For the closed loop system in Figure 1 with continuous­time P(s) and
C(s), the system is stable for any time­varying delays defined by

∆(v) = v(t− δ (t)), 0 ≤ δ (t) ≤ δmax, (1)

if ∣∣∣∣
P( jω )C( jω )
1+ P( jω )C( jω )

∣∣∣∣ < 1
δmaxω

∀ω ∈ [0, ∞]. (2)

THEOREM 2—DISCRETE TIME CASE
For the closed loop system in Figure 1, with discrete­time P(z) and C(z),
the system is stable for any time­varying delays defined by

∆(v) = v(n− k(n)), k(n) ∈ {0, 1, ⋅ ⋅ ⋅ , N}, (3)

if ∣∣∣∣
P(ejω )C(ejω )
1+ P(ejω )C(ejω )

∣∣∣∣ < 1
N
∣∣ejω − 1

∣∣ ∀ω ∈ [0,π ]. (4)

THEOREM 3—MIXED CT­DT CASE
For the closed loop system in Figure 2, with continuous­time, strictly
proper and stable P(s), and discrete­time C(z) sampled with a period of
h seconds, the system is stable for any time­varying delays defined by

∆(v) = v(t− δ (t)), 0 ≤ δ (t) ≤ Nh (5)

for some integer N if
∣∣∣∣
Palias(ω )C(ejω )

1+ PZOH(ejω )C(ejω )

∣∣∣∣ < 1
N
∣∣ejω − 1

∣∣ ∀ω ∈ [0,π ]. (6)
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+

PSfrag

w

− P

C

∆

Figure 1. Linear time invariant system with an uncertain time­varying time delay
in the feedback loop. P represents the plant to be controlled, C represents the
controller, and ∆ represents the time­delay operator. w is the input to the system
(a disturbance or reference).

+
w

− P(s)

C(z) ShZOH

∆

Figure 2. The control system with continuous­time plant P(s), a discrete­time
controller C(z), the sample­and­hold Sh with a sample period of h seconds, a Zero­
Order­Hold, and finally a time­varying delay ∆.

where PZOH(z) is the ZOH discretization of P(s), and

Palias(ω ) =

√√√√
∞∑

k=−∞

∣∣∣∣P
(
j(ω + 2π k)1

h

)∣∣∣∣
2

. (7)

Remark 1 Note that the delay ∆ in expressions (1) and (5) is defined on
space of functions, while in (3) ∆ is defined on space of sequences.

Remark 2 There are no other restrictions on the delay than (1), (3),
(5); the delay could be constant or infinitely fast time­varying within the
interval.

Remark 3 For a well chosen sample period h, the aliasing sum (7) con­
verges to

Palias(ω ) � PZOH(ejω ),
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3. Proofs

and therefore essentially (4) and (6) are the same.
Remark 4 If the closed loop system has a resonance peak, then this is
usually where the inequalities (2), (4), (6) are most likely to fail. For
a system with a non­complicated Nyquist curve, the resonance peak is
usually around the cut­off frequency ω c, i.e. where hC( jω c)P( jω c)h = 1.
Then ∣∣∣∣

P( jω c)C( jω c)
1+ P( jω c)C( jω c)

∣∣∣∣ = 1
hejϕm − 1h = 1√

ϕ 2m + O(ϕ 4m)
,

where ϕm is the phase margin (which is assumed to satisfy ϕm < 1).
Relaxing (2) to only one point, ω c, it becomes

∣∣∣∣
P( jω c)C( jω c)
1+ P( jω c)C( jω c)

∣∣∣∣ � 1
ϕm

< 1
δmaxω c

<

ϕm > δmaxω c,

which is the exact stability criterion for a constant time delay δmax ac­
cording to the Nyquist theorem. Note that this delay is allowed according
to (1). This indicates that the stability criterion is not very conservative.
Remark 5 In light of the previous remark, a natural question is whether
a time­varying delay is really a problem when δ (t) � δmax is most often
the worst for stability. The answer is that the time­varyingness may not
make a “non­complicated” system (see above) less stable, but it does make
it harder to compensate for the time­delays in the controller.

Remark 6 In this paper, all subsystems we consider are signal­input­
single­output and, as to be show in the next session, the stability criteria
we derive are based on the small gain theorem. These criteria can be easily
generalized to the multiple­input­multiple­output case. In the multiple­
input­multiple­output case, using the idea presented in the next session
together with IQC theory [Megretski and Rantzer, 1997] and S­procedure
[Megretski and Treil, 1993; Yakubovich, 1971], one can derive stability
criteria which can be posed as linear matrix inequalities and can be easily
verified using computers.

3. Proofs

The proofs of Theorems 1–3 are simply based on the small gain theorem.
The basic idea is to transform the delay into a direct feedthrough and
an error path. The gains of the time­varying delay­error operator and the
remaining linear system are calculated, and the small gain requirement
of γ < 1 gives the criteria.
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+

w

−−
e

d

P(s)

C(s)

1
s

s

∆ − 1

∆F

Figure 3. Loop transformation of the time­delayed system in Figure 1.

3.1 Proof of Theorem 1

The proof of Theorem 1 mainly relies on the following technical result.

LEMMA 1
Consider the operator ∆F := (∆ − 1) ○ 1

s
, where 1

s
denotes the integration

operator. Then the L2 induced norm of ∆F is bounded by δmax.

PROOF OF LEMMA 1
Let w = ∆F(v), and

y(t) =
∫ t

0
v(τ )dτ .

Then

w(t) = y(t− δ (t)) − y(t) = −
∫ t

t−δ (t)
v(τ )dτ .

Hence, the following inequalities hold

w(t)2 =
(

−
∫ t

t−δ (t)
v(τ )dτ

)2

≤ δ (t)
(∫ t

t−δ (t)
v(τ )2dτ

)
≤ δmax

(∫ t

t−δmax
v(τ )2dτ

)
,

using the Cauchy­Schwarz inequality. The L2 norm of w(t) can be bounded
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as follows

iwi2L2 ≤
∫ ∞

0
δmax

(∫ t

t−δmax
v(τ )2dτ

)
dt

= δmax
∫ ∞

0

(∫ 0

−δmax
v(t+ s)2ds

)
dt

≤ δmax
∫ 0

−δmax

∫ ∞

0
v(t)2dtds

= δmaxivi2L2
∫ 0

−δmax
1ds = δ 2maxivi2L2 .

Therefore the L2­gain of (∆ − 1) ○ 1
s
is bounded by δmax.

Remark 7 We note that the upper bound δmax is actually tight; i.e.,
i∆FiL2 = δmax. The proof is given in the appendix.
Now, consider the system in Figure 3. This transformed system is

equivalent to the system in Figure 1 in the sense that the L2­gain from
w to any other signal is the same. BIBO stability of the original system
can be verified by checking whether the transformed system is stable. The
stability criterion in Theorem 1 follows the small gain theorem applied to
the transformed system: the transformed system is stable if

sup
ω

∣∣∣∣
jωP( jω )C( jω )
1+ P( jω )C( jω )

∣∣∣∣ < 1
δmax

,

which in turn gives the condition stated in (2).

3.2 Proof of Theorem 2

Again, the delay operator ∆ can be transformed to a direct feedthrough
path and a delay error (see Figure 4). The gain calculations of ∆F and the
linear loop are very similar to the Proof of Theorem 1. Note that in this
case ∆F is an operator defined on the space of sequences.

LEMMA 2
The operator ∆F := (∆ −1)○ z

z−1 has an l2 induced gain bounded by N.

PROOF OF LEMMA 2
Let w = ∆F(v). Then

w(n) =
n−k(n)∑

i=0
v(i) −

n∑

i=0
v(i) = −

n∑

i=n−k(n)+1
v(i),
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+

w

−−
e

d

P(z)

C(z)

z
z−1

z−1
z

∆ − 1

∆F

Figure 4. Loop transformation of the delayed discrete­time system.

and

w(n)2 =
( n∑

i=n−k(n)+1
v(i)

)2
≤ N

( n∑

i=n−N+1
v(i)2

)
,

using the Cauchy­Schwarz inequality and k(n) ≤ N. The output energy
is then

iwi2l2 ≤
∞∑

n=0
N
( n∑

i=n−N+1
v(i)2

)
= N

∞∑

n=0

( 0∑

i=1−N
v(i+ n)2

)

= N
0∑

i=1−N

( ∞∑

n=0
v(n)2

)
= N2ivi2l2 .

The gain of the the linear part of the system from e to d in Figure 4 is
simply

γ (Ged) = sup
ω∈[0,π ]

∣∣∣∣
P(ejω )C(ejω )
1+ P(ejω )C(ejω )(1− e− jω )

∣∣∣∣ ,

and, again, the small gain theorem proves Theorem 2.

3.3 Proof of Theorem 3

The proof of the mixed continuous­time discrete­time Theorem 3 is very
similar to the proof of Theorem 2. The main difference is that the signals
d and e are now continuous­time signals (see Figure 5), and thus all gains
are calculated in continuous­time.
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LEMMA 3
The operator ∆F in Figure 5 has an L2 induced gain bounded by N if the
class of input signals is restricted to ZOH signals of period h; i.e., signals
of the following form:

v(t) =
∞∑

i=0
viθ (t− ih), (8)

where vi are real numbers and

θ (t) =
{
1, t ∈ [0, 1),

0, otherwise.

PROOF OF LEMMA 3
Let w = ∆F(v). Then for any fixed t,

w(t) =
p2(t)∑

i=0
vi −

p1(t)∑

i=0
vi =

p1(t)∑

i=p2(t)+1
−v(ih),

where p1(t) =
⌊
t
h

⌋
, p2(t) =

⌊
t−δ (t)
h

⌋
, and exg denotes the greatest integer

≤ x. Since δ (t) ≤ Nh and N is an integer, we have p2(t) = e t−δ (t)
h

g ≥
e t−Nh
h

g = e t
h
g − N and

w(t)2 =




p1(t)∑

i=p2(t)+1
v(ih)



2

≤ N




p1(t)∑

i=p1(t)−N+1
v(ih)2


 . (9)

The output energy is then

iwi2L2 ≤
∫ ∞

0
N




p1(t)∑

i=p1(t)−N+1
v(ih)2


 dt

= N
0∑

i=1−N

(∫ ∞

0
v((p1(t) + i)h)2dt

)

= N2ivi2L2 ,

(10)

where the last equality follows the fact that v is in the form of (8).
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w

−− P(s)

C(z) ShSh

ZOH

ZOH

ZOH

+

z−1
z

z
z−1

∆ − 1

∆F

e

d

Figure 5. The continuous­discrete control system with the delay transformed to
a feedthrough path and an error path.

The gain of the operator Ged is more complicated than in the proof of
Theorem 2, as it consists of both continuous­time and sampled systems.
This gain can be calculated in a number of ways, but the most useful
result for our purposes is presented in [Yamamoto and Araki, 1994]. The
gain of Ged is

γ (Ged) = sup
ω∈[0,π ]

{√√√√
∞∑

k=−∞

∣∣∣∣P
(
j(ω + 2π k)1

h

)∣∣∣∣
2

∣∣∣∣
C(ejω )

1+ P(ejω )C(ejω ) (1− e− jω )
∣∣∣∣

}
.

Again, the small gain theorem proves Theorem 3.

4. Extensions

This section contains some handy extensions of Theorems 1–3.

4.1 Sub-Sampleperiod Delay Margins

Theorem 3 states that if the inequality (6) holds for a certain integer N,
then the system is stable for any (time­varying) delays up to a maximum
of Nh seconds. In this section we will relax this N to be any positive real
number.
Let n := N − eNg, i.e. the fractional part of N. Consider the kth sam­

118



4. Extensions

pling period and let t ∈ [kh, (k+ 1)h). Then it can be easily verified that

⌊
t− δ (t)
h

⌋
≥





e t
h

g − eNg − 1, if t ∈ T1,

e t
h

g − eNg, if t ∈ T2,

where T1 = [kh, (k+ n)h) and T2 = [(k+ n)h, (k+ 1)h). Hence, inequality
(9) can be replaced by

w(t)2 ≤





(eNg + 1)




p1(t)∑

i=p1(t)−eNg
v(ih)2


 , t ∈ T1,

eNg




p1(t)∑

i=p1(t)−eNg+1
v(ih)2


 , t ∈ T2.

The above inequalities hold for any sampling period. Now, since v is re­
stricted to be the ZOH signal of the form (8), inequality (10) can be rewrit­
ten as

iwi2L2 ≤ n
∫ ∞

0
(eNg + 1)




p1(t)∑

i=p1(t)−eNg
v(ih)2


 dt

+ (1− n)
∫ ∞

0
eNg




p1(t)∑

i=p1(t)−eNg+1
v(ih)2


 dt

=
(
eNg2 + 2eNgn + n

)
ivi2L2 . (11)

This leads to the following corollary:

COROLLARY 3.1
Theorem 3 holds for all delays

0 ≤ δ (t) ≤ Nh,

where N is a real number if ∀ω ∈ [0,π ]
∣∣∣∣
Palias(ω )C(ejω )

1+ PZOH(ejω )C(ejω )

∣∣∣∣ < 1/
√

eNg2 + 2eNgn + n∣∣ejω − 1
∣∣ ,

with n = N − eNg.
The proof is given by (11) and the small gain theorem.
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+

w

−− P(s)

C(s)1
s s

(∆̄ − 1)

∆F
e−sδe−sδ

Figure 6. The transformed system in Figure 3 with a nominal delay of δ seconds
included.

4.2 Nominal Time Delay

In many cases, the controller in the loop is designed for a nominal time
delay. For these cases, a more interesting stability region is a stability
interval around this nominal delay. This section presents three corollaries
which are extensions of Theorems 1–3 for this purpose. Throughout the
section, we assume that the closed loop system including the nominal
delay is stable.

COROLLARY 3.2
For the closed loop system in Figure 1, with a continuous­time, strictly
proper plant P(s) and a continuous­time compensator C(s), the system is
stable for any time­varying delays defined by

∆(v) = v(t− δ − δ (t)), hδ (t)h ≤ δmax ≤ δ ,

if ∣∣∣∣∣
P( jω )C( jω )

1+ P( jω )C( jω )e− jωδ

∣∣∣∣∣ < 1√
2δmaxω

, ∀ω ∈ [0, ∞].

Proof. Define ∆̄ and ∆F to be

∆(v) = v(t− δ (t)), hδ (t)h ≤ δmax

∆F = (∆̄ − 1) ○ e−sδ ○ 1
s

.

Then the original system can be equivalently expressed as the one in
Figure 6, and the corollary follows the proof of Theorem 1 as long as the
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L2 gain of ∆F is
√
2δmax. Since

(∆̄ − 1) ○ e−sδ ○ 1
s

= (∆̄ − 1) ○ 1
s

○ e−sδ ,

hence i∆FiL2 ≤ i(∆̄ − 1) ○ 1
s
iL2 . Furthermore, it can be shown that i(∆̄ −

1) ○ 1
s
iL2 ≤

√
2δmax. For the details, see Appendix 7.

COROLLARY 3.3
For the closed loop system in Figure 1, with discrete­time P(z) and C(z),
the system is stable for any time­varying delays defined by

∆(v) = v(n− δ − k(n)), k(n) ∈ {−N , ⋅ ⋅ ⋅ , N}

for N ≤ δ , if
∣∣∣∣∣

P(ejω )C(ejω )
1+ P(ejω )C(ejω )e− jδ ω

∣∣∣∣∣ < 1√
2Nhejω − 1h

, ∀ω ∈ [0,π ].

Proof. The proof is very similar to the proof of Corollary 3.2 and of
Theorem 2, and is therefore omitted.

COROLLARY 3.4
For the closed loop system in Figure 2, with continuous­time, strictly
proper and stable P(s), and discrete­time C(z), the system is stable for
any time­varying delays defined by

∆(v) = v(t− δ − δ (t)), hδ (t)h ≤ Nh ≤ δ ,

if ∀ω ∈ [0,π ]
∣∣∣∣
Palias(ω )C(ejω )

1+ Pdelay(ejω )C(ejω )

∣∣∣∣ < 1/
√

eNg2 + 2eNgn + n√
2hejω − 1h

,

where n = N − eNg, Pdelay(z) is the ZOH discretization of P(s)e−sδ , and
Palias(ω ) is defined in (7).

Proof. Again, the proof follows the line of that of Corollary 3.2. The
gain calculation of ∆F is given in Appendix 7.
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5. Performance

There are many possible performance measures for a control system. Here,
we will define the L2 gain (or l2 gain in the discrete­time case) γ wx from
w to x in Figure 7 as the performance measure. We say that the system
has good performance if the gain is small. For the system without delays,
this gain is simply

γ wx = sup
ω

1
1+ PCW, (12)

i.e., the maximum gain of the weighted sensitivity function.

+

−

w

x

∆

P

C

W

Figure 7. The performance measure is defined as the L2/l2 gain from w to x. W
is a weighting function.

For systems with time delay, the stability criteria presented in the pre­
vious section can be used to estimate an upper bound on the performance
measure. In the rest of this section, we consider only the case where both

++

w

−−
P(s)

C(s)

1
s

s

∆ − 1

∆F

v x

Figure 8. The feedback system in Figure 7 is transformed in the same way as for
the stability criteria.
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the plant and the controller are continuous­time systems. The discrete­
time and the mixed continuous­time discrete­time cases can be treated
similarly.
We note that the system in Figure 7 can be equivalently expressed

as the one in Figure 8. The L2­induced gain from w to x will now be
estimated in two steps. First we compute an upper bound of the L2 gain
from w to v. Notice that signals w and v satisfy the following equation

v = w+ (G ○ ∆F)v,

where G is the linear time­invariant system sP(s)C(s)
1+P(s)C(s) . Therefore,

iviL2 ≤ iwiL2 + γ iviL2 ,

where

γ = sup
ω

{∣∣∣∣
ωP( jω )C( jω )
1+ P( jω )C( jω )

∣∣∣∣
}

⋅ δmax.

Thus, for γ < 1 (i.e. when the closed­loop system is stable), we have

iviL2 ≤ 1
1− γ

iwiL2 .

Now we can easily obtain an upper bound on ixiL2

ixiL2 ≤ sup
ω

∣∣∣∣
W( jω )

1+ P( jω )C( jω )

∣∣∣∣ iviL2

≤
(
sup

ω

∣∣∣∣
W( jω )

1+ P( jω )C( jω )

∣∣∣∣
)(

1
1− γ

)
iwiL2 ,

and hence

γ wx ≤
(
sup

ω

∣∣∣∣
W( jω )

1+ P( jω )C( jω )

∣∣∣∣
)(

1
1− γ

)
.

The impact of the delay on performance is simply the scaling factor
of 1
1−γ on the disturbance gain γ wx. The same performance degradation

bound applies for both discrete­time and mixed continuous­time discrete­
time systems.
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6. Example

The following example illustrates the theorems presented in this paper.
One of the most important control loops in a DVD player is the radial

positioning loop. It keeps the laser pick­up­head centered over the track
while the disk is spinning. In this example we will analyze the timing
stability of such a control loop.
The process model of the electromechanical pick­up is given in contin­

uous time as

ẋ(t) =
[
13.48 −613.3
160.4 −221.6

]
x(t) +

[ −9.57
−1046

]
u(t),

y(t) = [ 3354 5.395 ] x(t).

This model is obtained the system identification of a real­world DVD
servo. The continuous­time transfer function of the process is denoted
P(s). Using this model, a fourth order continuous­time LQG controller
is designed (the two extra states model the noise). The bandwidth of the
controller is about 2.1 kHz, and we denote the transfer function of the con­
troller C(s). In this example, the control loop stability has been analyzed
for the three cases (corresponding to Theorems 1–3)
1. Continuous­time plant and controller: P(s) and C(s) defined above
are used.

2. Discrete­time plant and controller: The controller is obtained by dis­
cretizing the C(s) to C(z) using the matched pole­zero method, and
the P(z) is obtained by discretizing P(s) using a zero­order­hold.

3. Continuous­time plant and discrete­time controller: This is the most
realistic case. The controller is the same as in case 2. It should be
mentioned that for a real implementation, the LQG controller should
of course be designed in discrete­time instead.

The discrete­time components of the system are running at a sample rate
of 80 kHz, corresponding to a sample period h = 12.5 µs.

6.1 Stability

Applying Theorems 1–2 and Corollary 3.1 to the example, we get the
following maximum delays to guarantee stability:

Case δmax δ const
1 50 µs 57 µs
2 25 µs 25 µs
3 32 µs 37 µs
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Figure 9. Proving stability for the longest possible delay of the three cases in the
DVD control example.

The column δmax indicates the maximum time­varying delay allowed ac­
cording to the theorems, and, for comparison, δ const is the maximum con­
stant delay allowed according to the Nyquist theorem. The graphical proofs
of the maximum time­varying delays are shown in Figure 9.
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Figure 10. The sensitivity function S( jω ) for the continuous­time controller and
radial servo in the example. The line corresponds to the upper bound on the gain
with a maximum delay of h = 12.5 µs and no weighting function W .

6.2 Performance

The performance bound from Section 5 can be used to calculate the degra­
dation of performance in the control loop due to delays. The measure of
performance is the sensitivity gain, as defined in Section 5. We assume
that a maximum delay of h = 12.5 µs can be guaranteed in the loop. The
total loop gain γ can then be calculated, and from that the increase in
sensitivity gain, 1

1−γ .
For the continuous­time controller, the loop gain γ = 0.25, which

implies that the sensitivity gain can be increased by up to a factor of
1

1−0.25 � 1.3. See Figure 10.
For the discrete­time controller and continuous­time plant (the real­

istic case), the loop gain is γ = 0.39, implying a increase in sensitivity
gain by a factor of � 1.6. To get a hint on the conservativeness of this fac­
tor, numerical calculations has been performed for the system using the
Matlab Toolbox JITTERBUG [Lincoln and Cervin, 2002]. Modeling the input
signal d as shaped noise, and fixing the delay at the maximum value, an
actual sensitivity gain increase of a factor of � 1.4 is obtained.
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7. Conclusions

7. Conclusions

In this paper we have presented simple but powerful stability criteria
for linear systems with time­varying bounded delays. Stability is checked
graphically in a Bode plot, and therefore the criteria can be easily used
for robust loop­shaping design. It has been indicated that the criteria are
not very conservative.
A performance degradation bound which is directly calculated from

the stability margin has also been presented.
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Appendix A: Proof of i∆Fi = δmax

To show that i∆Fi = δmax, let δ (t) = δmax for all t. Then operator ∆F is
an LTI operator with transfer function ∆F(s) equal to

e−sδmax − 1
s

.

The L2 induced norm of ∆F satisfies

i∆Fi2L2 ≥ lim
ω→0

∣∣∣∣
e− jωδmax − 1

jω

∣∣∣∣
2

= δ 2max.

Hence, i∆FiL2 ≥ δmax which in turn implies that i∆Fi = δmax.

Appendix B: Proof of i(∆ − 1) ○ 1
s
i ≤

√
2δmax

Define ∆G to be (∆ − 1) ○ 1
s
. Let w = ∆G(v), and

y(t) =
∫ t

0
v(τ )dτ .

Then w(t) is equal to

y(t− δ (t)) − y(t) = −
∫ t

t−δ (t)
v(τ )dτ .
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Hence,

w(t)2 ≤ hδ (t)h
(∫ t

t−hδ (t)h
v(τ )2dτ

)
,

if δ (t) ≤ 0, and

w(t)2 ≤ hδ (t)h
(∫ t+δ (t)

t

v(τ )2dτ
)

,

if δ (t) > 0. In either case,

w(t)2 ≤ δmax

(∫ t+δmax

t−δmax
v(τ )2dτ

)
.

The L2 norm of w(t) can be estimated as follows

iwi2L2 ≤ δmax
∫ ∞

0

(∫ t+δmax

t−δmax
v(τ )2dτ

)
dt

= δmax

(∫ δmax

−δmax

∫ ∞

0
v(t+ s)2dt

)
ds

= 2δ 2maxiviL2 .

Therefore the L2­gain of (∆ − 1) ○ 1
s
is bounded by

√
2δmax.

Appendix C: Proof of Corollary 3.4

Define ∆G to be

(∆ − 1) ○ ZOH ○ z

z− 1 ○ Sh,

where ZOH and Sh denote Zero­Order­Hold operator and Sample­and­
hold operator with a sampling period of h seconds. Let w = ∆G(v). By
arguments similar to those in Section 4.1, one can verify that the following
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a)

b)

n ⋅ h

n ⋅ h0 h

Figure 11. The two cases n < 0.5 (a) and n ≥ 0.5 (b). The gray areas where the
longer delay eNg + 1 can be active.

inequalities hold in every sampling period [kh, (k+ 1)h)

w(t)2 ≤





(eNg + 1)




p1(t)∑

i=p1(t)−eNg
v(ih)2


 ,

p1(t) ∈ T1
δ (t) ≥ 0,

eNg




p1(t)∑

i=p1(t)−eNg+1
v(ih)2


 ,

p1(t) ∈ T2
δ (t) ≥ 0,

(eNg + 1)



p1(t)+eNg∑

i=p1(t)
v(ih)2


 ,

p1(t) ∈ T3
δ (t) < 0,

eNg



p1(t)+eNg−1∑

i=p1(t)
v(ih)2


 ,

p1(t) ∈ T4
δ (t) < 0,

where p1(t) = e t
h
g, T1 = [kh, (k + n)h), T2 = [(k + n)h, (k + 1)h), T3 =

[(k+ 1− n), (k+ 1)h), and T4 = [kh, (k+ 1− n)h).
Now consider the two cases n < 0.5 and n ≥ 0.5 (see Figure 11). In

the former case, the long delay eNg + 1 (compared to eNg) can only be
active in the beginning and end of the sample interval, and only in one
direction. In the latter case, there is an interval of length 2(1− n) in the
center of the sample interval where the long delay can be active in both
directions.
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For n < 0.5, the energy of the output is bounded as

iwi2L2 =
∫ ∞

0
w(t)2dt ≤

(
2n
(

(eNg + 1)2 + eNg2
)

+ (1− 2n)
(
2eNg2

))
ivi2L2

=2
(

eNg2 + 2eNgn + n
)

ivi2L2 ,

and for n ≥ 0.5

iwi2L2 ≤
(
2(1− n)

(
(eNg + 1)2 + eNg2

)

+ (2n − 1)
(
2(eNg + 1)2

))
ivi2L2

=2
(

eNg2 + 2eNgn + n
)

ivi2L2 .

Thus, the L2 induced gain of ∆G is

γ (∆G) ≤
√
2
(

eNg2 + 2eNgn + n
)

.
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Paper IV

Jitterbug: A Tool for Analysis of

Real­Time Control Performance

Bo Lincoln and Anton Cervin

Abstract

The paper presents JITTERBUG, a MATLAB­based toolbox for real­
time control performance analysis. The control system is described
using a number of connected continuous­time and discrete­time lin­
ear systems driven by white noise. The control performance is mea­
sured by a continuous­time quadratic cost function. A stochastic tim­
ing model is used to describe when the different discrete­time systems
are updated during the control period. Building different models, the
tool makes it easy to investigate how the control performance is af­
fected by e.g. delay, jitter, lost samples, aborted computations, and
jitter compensation. Aperiodic and multi­rate controllers may also be
studied. The tool is also capable of computing the spectral densities
of the different signals in the system.

c&2002 IEEE. Reprinted, with permission, from Proceedings of the 41st
IEEE Conference on Decision and Control, Las Vegas, NV, 2002.
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1. Introduction

Controllers are often designed with little regard for the real­time imple­
mentation. In the case of continuous­time design, it is typically assumed
that the controller can be subsequently discretized and executed at a suf­
ficiently high frequency. In the case of discrete­time design, it is commonly
assumed that the computing platform can provide deterministic sampling
and that the task execution will introduce negligible or at least constant
computational delay.
In systems with limited computing resources (e.g. embedded control

systems), however, a combination of slow sampling and other timing prob­
lems may lead to significant performance degradation. Often, the con­
troller is implemented as a task in a (more or less real­time) operating
system, and the task scheduling can introduce additional delays as well as
sampling and actuation jitter (depending on how the I/O is implemented).
In real­time operating systems which enforces hard deadlines, a control
task may be aborted before it has finished its computations and produced
a control signal. Networked control systems are another source of tim­
ing problems. The network can introduce delay and jitter, and messages
(measurement or control signals) may be lost.
To achieve good performance in systems with limited computer re­

sources, the constraints of the implementation must be taken into ac­
count at design time. Typically, trade­offs between different activities in
the system must be made. For instance, boosting the priority of one task
will improve its responsiveness but may introduce delay and jitter in other
tasks. The periods of all tasks must be chosen such that the CPU is not
overloaded, and so on. Having a quality­of­service measure which takes
the timing effects into account can be a help when allocating system re­
sources to the different tasks.

1.1 Contribution of This Paper

This paper presents a MATLAB­based toolbox called JITTERBUG which fa­
cilitates the computation of a quadratic performance criterion for a linear
control system under various timing conditions. The tool helps to quickly
assert how sensitive a control system is to delay, jitter, lost samples, etc,
without resorting to simulation. The tool is quite general and can also
be used to investigate for instance jitter­compensating controllers, ape­
riodic controllers, and multi­rate controllers. The toolbox is built upon
well­known theory, and its main contribution is to make it easy to apply
this type of stochastic analysis to a wide range of problems. The toolbox
and a reference manual are available at

http://www.control.lth.se/~lincoln/jitterbug/
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2. System Description

The analysis in this paper is based on jump linear systems, which
were first studied in [Krasovskii and Lidskii, 1961]. Discrete­time jump
linear systems are treated in e.g. [Ji et al., 1991]. Analysis similar to this
paper, but more specific, has been done in [Nilsson, 1998]. It is focused on
optimal control of time­delay systems.
An alternative to analysis is simulation. For example, the MATLAB/Sim­

ulink­based tool TRUETIME [Henriksson et al., 2002] can be used for de­
tailed co­simulation of plant dynamics, control task execution, and real­
time scheduling of CPU and network.

2. System Description

In JITTERBUG, a control system is described by two parallel models: a
signal model and a timing model. A simple model of a computer­controlled
system is shown in Figure 1. The plant is described by the continuous­time
system G, and the controller is described by two discrete­time systems, H1
and H2. The system H1 could for instance represent a periodic sampler,
while H2 could represent the computation and actuation of the control
signal. The associated timing model says that, at the beginning of each
control period, H1 should first be executed (updated). Then there is a
(possibly random) delay τ1 until H2 is executed. This simple model could
be used to investigate for instance the impact of delay and jitter on control
performance. We will return to this example in Section 4.1.

H1(z)H1(z)

H2(z)

H2(z)

G(s)y

u

v

e
1

2

τ1

(a) (b)

Figure 1. A simple JITTERBUG model of a computer­controlled system: (a) signal
model, and (b) timing model.

2.1 Signal Model

The signal model consists of a number of inter­connected continuous­time
and discrete­time linear systems driven by white noise.
A continuous­time system is described by

ẋc(t) = Axc(t) + Bu(t) + vc(t),
y(t) = Cxc(t),
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where A, B, and C are constant matrices, and vc is a continuous­time
white noise process with covariance2 R1c. The cost of the system is defined
as

Jc = lim
T→∞

1
T

∫ T

0
xTc (t)Qcxc(t) dt,

where Qc is a positive semidefinite matrix.
A discrete­time system is described by

xd(tk+1) = Φxd(tk) + Γu(tk) + vd(tk),
y(tk) = Cxd(tk) + Du(tk) + ed(tk),

where Φ, Γ, C, and D may be time­varying matrices (see below). The
covariance of the discrete­time white noise processes vd and ed is given
by

Rd = E


vd(tk)
ed(tk)





vd(tk)
ed(tk)



T

.

The input signal u is sampled when the system is updated, and the output
signal y is held between updates. The cost of the system is defined as

Jd = lim
T→∞

1
T

∫ T

0
xTd (t)Qdxd(t) dt,

where Qd is a positive semidefinite matrix. Note that the update instants
tk need not be equidistant in time, and that the cost is defined in contin­
uous time.
The total system is formed by appropriately connecting the inputs

and outputs of a number of continuous­time and discrete­time systems.
Throughout, MIMO formulations are allowed, and a system may collect
its inputs from a number of other systems. The total cost to be evaluated
is summed over all continuous­time and discrete­time systems:

J =
∑
Jc +

∑
Jd. (1)

2.2 Timing Model

The timing model consists of a number of timing nodes. Each node can
be associated with zero or more discrete­time systems in the signal model
which should be updated when the node becomes active. At time zero,
the first node is activated. The first node can be declared to be periodic
(indicated by an extra circle in the illustrations), which means that the
execution will restart in this node every h seconds. This is useful to model

2By this we mean that vc has the spectral density φ(ω ) = 1
2π R1c.
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periodic controllers and also simplifies the cost calculations a lot, see Sec­
tion 3.3.
Each node is associated with a time delay τ which must elapse before

the next node can become active. (If unspecified, the delay is assumed to be
zero.) The delay can be used to model computational delay, transmission
delay in a network, etc. A delay is described by a discrete­time probability
density function

Pτ = [ Pτ (0) Pτ (1) Pτ (2) . . . ] ,

where Pτ (i) represents the probability of a delay of iδ seconds. The time
grain δ is a constant which is specified for the whole model.

Node­ and Time­Dependent Execution. The same discrete­time sys­
tem may be updated in several timing nodes. It is possible to specify
different update equations (i.e. different Φ, Γ, C and D matrices) in the
different cases. This can be used to model e.g. a filter where the update
equations look different depending on whether a measurement value is
available or not. An example of this type is given in Section 4.2.
It is also possible to make the update equations depend on the time

since the first node became active. This can be used to model e.g. jitter­
compensating controllers.

Alternative Execution Paths. For some systems, it is desirable to
specify alternative execution paths (and thereby multiple next nodes). In
JITTERBUG, two such cases are possible to model, see Figure 2:

(a) A vector n of next nodes can be specified with a probability vector p.
After the delay, node n(i) will be activated with probability p(i). This
can be used to model e.g. a sample being lost with some probability.

(b) A vector n of next nodes can be specified with a time­vector t. If
the total delay since the first node exceeds t(i), node n(i) will be
activated next. This can be used to model e.g. time­outs and different
compensation schemes.

Periodic vs Aperiodic Systems. For periodic systems (i.e., for sys­
tems where the first timing node is periodic), the cost J can be calculated
algebraically. The solver is fast and produces an exact solution. For ape­
riodic systems, the cost must be computed iteratively until it converges
(if ever). From this point of view, periodic systems are clearly preferable.
In periodic systems, the execution is preempted if the total delay

∑
τ

in the system exceeds the period h. Any remaining timing nodes will be
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11

22

3

3

4

τ1τ1

τ2∑
τ < t ∑

τ ≥ t

p(2) p(3)

(a) (b)

Figure 2. Alternative execution paths: (a) random choice of path, and (b) choice
of path depending on the total delay from the first node.

skipped. This models a real­time system where hard deadlines (equal to
the period) are enforced and the control task is aborted at the deadline.
An aperiodic system can be used to model a real­time system where

the task periods are allowed to drift if there are overruns. It could also be
used to model e.g. a controller which samples “as fast as possible” instead
of waiting for the next period.

3. Internal Workings

Inside JITTERBUG, the states and the cost are considered in continuous
time. The inherently discrete­time states, e.g. in discrete­time controllers
or filters, are treated as continuous­time states with zero dynamics. This
means that the total system can be written as

ẋ(t) = Ax(t) +w(t), (2)

where x collects all the states in the system, and w is continuous­time
white noise process with covariance R̃. To model the discrete­time changes
of some states as a timing node n is activated, the state is instantaneously
transformed by

x(t+) = Enx(t) + en(t),

where en is a discrete­time white noise process with covariance Wn.
The total cost (1) for the system can be written as

J = lim
T→∞

1
T

∫ T

0
xT(t)Q̃x(t) dt, (3)

where Q̃ is a positive semidefinite matrix.
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3.1 Sampling the System

JITTERBUG relies on discretized time to calculate the variance of the states
and the cost. No approximations are involved, however. Sampling the
system (2) with a period of δ (the time­grain in the delay distributions)
gives

x(kδ + δ ) = Φx(kδ ) + v(kδ ), (4)
where the covariance of v is R, and the cost (3) becomes

J = lim
N→∞

1
Nδ

N−1∑

k=0

(
xT (kδ )Qx(kδ ) + q

)
.

The matrices Φ, R, Q, and q are calculated as

Φ = eAδ ,

R =
∫ δ

0
eA(δ −τ ) R̃eA

T (δ −τ ) dτ ,

Q =
∫ δ

0
eA
T tQ̃eAt dt,

q = tr
(
Q̃

∫ δ

0

∫ δ

0
eA(t−τ ) R̃eA

T (t−τ ) dτ dt
)

,

or, equivalently, from



P11 P12

P21 P22


= exp

(


−AT Q̃

0 A


δ
)

,

and 


M11 M12 M13

M21 M22 M23

M31 M32 M33


= exp







−A I 0

0 −A R̃T

0 0 AT


δ


 ,

so that
Φ = P22,
Q = PT22P12,
R = MT33M23,
q = tr

(
QMT33M13

)
.
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τ = [ 0 0.1 0.2 0.3 0.4 ]

0.4 0.3 0.2 0.1

111

1

1 2

2

Figure 3. A random delay (above)modeled as a jump linear system (below), where
the delay is represented by additional Markov nodes in between the timing nodes.

21

Continuous dynamics

+ discrete dynamics

Figure 4. The continuous­time dynamics is active between all Markov nodes,
whereas the discrete­time dynamics is activated only before a timing node.

3.2 Timing Representation

As time is discretized, we can transform the system description into a
jump linear system, where the Markov state represents the current timing
state of the system. Each timing node is represented by one Markov node.
In between timing nodes additional Markov nodes representing the delay
are inserted as illustrated in Figure 3.
Consider following one path in the Markov chain. For each node which

is not a timing node, only the continuous states of the system change.
In each time­step, they evolve as in (4), and thus the state covariance
P(kδ ) = E

{
x(kδ )xT(kδ )

}
evolves as

P(kδ + δ ) = ΦP(kδ )ΦT + R.

At each timing node n, the system is additionally transformed as in (3),

P(kδ +) = EnP(kδ )ETn +Wn,

where Wn is the covariance of the discrete­time noise en(kδ ) in node n.
See Figure 4 for an illustration. Combining the above, we define Φn as

Φn =
{

Φ, if n is not a timing node,
EnΦ, if n is a timing node,
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and similarly Rn as

Rn =
{
R, if n is not a timing node,

EnRE
T
n +Wn, if n is a timing node.

3.3 Calculating Variance and Cost

Now consider all possible Markov states simultaneously. Let πn(kδ ) be
the probability of being in Markov state n at time kδ , and let Pn(kδ ) be
the covariance of the state if the system is in Markov state n at time kδ .
Furthermore, let the transition matrix of the Markov chain be σ , such
that

π (kδ + δ ) = σπ (kδ ).
The state covariance then evolves as

Pn(kδ + δ ) =
∑

i

σ niπ i(kδ )
(

ΦnPi(kδ )ΦTn + Rn
)

, (5)

and the immediate cost at time kδ is calculated as
1
δ
∑

n

πn(kδ )
(
tr
(
Pn(kδ )Q

)
+ q
)

.

For systems without a periodic node, equation (5) must be iterated until
the cost and variance converge. For periodic systems, the Markov state
always returns to the periodic timing node every h/δ time steps. As equa­
tion (5) is affine in P, we can find the stationary covariance P1(∞) in the
periodic node by solving a linear system of equations. The total cost is
then calculated over the timesteps in one period. The toolbox returns the
cost J = ∞ if the system is not mean­square stable.

3.4 Calculating Spectral Densities

For periodic systems, the toolbox also computes the discrete­time spec­
tral densities of all outputs as observed in the periodic timing node. The
spectral density of an output y is defined as

φ y(ω ) = 1
2π

∞∑

k=−∞
r y(k)e−ikω .

The covariance function r y(k) is given by

r y(k) = E
{
y(t)yT(t+ kh)

}
= E

{
Cx(t)xT(t+ kh)CT

}

= E
{
CΦ̄hkhx(t)xT(t)CT

}
= CΦ̄hkhP1(∞)CT ,

where Φ̄ is the average transition matrix over a period, and P1(∞) is
the stationary covariance in the periodic node. The spectral density is
returned as a linear system F(z) such that φ y(ω ) = F(eiω ).
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Ptau = [0 1 1 1 0]/3; Define delay distribution
load G; Load state­space model of the plant
H1 = tf(1,1,-1); Define the sampler
H2 = lqgdesign(G,Q,R1,R2,h,m); Design the controller

N = initjitterbug(delta,h); Set time­grain and period

N = addtimingnode(N,1,Ptau,2); Define timing node 1
N = addtimingnode(N,2); Define timing node 2

N = addcontsys(N,1,G,3,Q,R1,R2); Add plant
N = adddiscsys(N,2,H1,1,1); Add sampler to node 1
N = adddiscsys(N,3,H2,2,2); Add controller to node 2

N = calcdynamics(N); Calculate internal dynamics
J = calccost(N); Calculate the cost J

Figure 5. An example MATLAB script showing the commands for a JITTERBUG cost
calculation.

4. Examples

4.1 Delay and Jitter in a DVD Controller

Delays are a common problem in real­time control systems. In this ex­
ample we examine the effect of randomly time­varying delays, or jitter.
Generally, it is straight­forward to compensate for a constant delay, while
jitter compensation is a harder issue.
In this example a DVD player focus control loop is considered. The

JITTERBUG model of the system is shown in Figure 1. The plant G(s) is
given by a resonant sixth order continuous­time model of a DVD focus
servo which has been obtained by system identification. The plant should
be controlled by a discrete­time LQG controller with a sampling period of
h seconds. The system H1(z) = 1 represents a periodic sampler, while the
system H2(z) = H(z) describes the control algorithm and the actuator.
There is both process noise and measurement noise.
The sampler is executed at the beginning of each period. Then there is

a random delay τ until the control signal is calculated and actuated. The
LQG controller is designed to compensate for the mean delay. To study
the combined effect of delay and jitter, the probability distribution for τ
is given by a uniform distribution in the range [m− j/2,m+ j/2], where
m is the mean delay and j is the jitter. An example script showing the
MATLAB commands for a cost calculation is shown in Figure 5.
A plot showing the cost as a function of the mean delay and the jitter

is given in in Figure 6. We can see that, in this case, the controller is
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quite sensitive to jitter. Naturally, the results are dependent on all model
and design parameters. With JITTERBUG, it is easy to evaluate the effects
of delays and jitter exactly for any parameters without resorting to sim­
ulations.

0
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Mean delay (% of h)Jitter (% of h)

C
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Figure 6. The cost of delay and jitter in the control loop. The controller is designed
assuming a constant delay equal to the mean delay.

4.2 Lost Samples in Notch Filters

Removing disturbances from signals using e.g. notch filters is important
in many applications. In some cases these filters are very sensitive to lost
samples due to the very narrow­band characteristics, and in real­time
systems lost samples are sometimes inevitable. In this example JITTERBUG
is used to evaluate the effects of this problem on different filters.
The setup is as follows. A good signal x (modeled as low­pass filtered

noise) is to be “cleaned” from an additive disturbance e (modeled as band­
pass filtered noise), see the signal spectra in Figure 7. An estimate x̂ of
the good signal should be found by applying a digital notch filter with the
sampling interval h = 0.1 to the measured signal x + e. Unfortunately, a
fraction p of the measurements are lost.
A JITTERBUG model of the system is shown in Figure 8. The signals x

and e are generated by white noise being filtered through the continuous­
time systems G1 and G2. The digital filter is represented as two discrete­
time systems: Samp and Filter. The good signal is buffered in the system
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Figure 7. The spectral densities of the good signal x (full) and the disturbance e
(dashed).

Delay and is compared to the filtered estimate in the system Diff. In the
timing model, there is a probability p that the Samp system will not
be updated. In that case, it is possible to execute an alternate version,
Filter(2), of the filter dynamics.
Two different filters are compared. The first filter is an ordinary se­

cond­order notch filter with two zeros on the unit circle. The same update
equations are used regardless if a sample is available or not. The second
filter is a second­order Kalman filter based on a simple model of the signal
dynamics. In the case of lost samples, only prediction is performed in the
filter.
The spectral density of the estimation error x̃ = x− x̂ in the two filter

cases is shown in Figure 9. It has been assumed that p = 10% of the
samples are lost. It is seen that the ordinary notch filter performs well
around the disturbance frequency while the lost samples introduce a large
error at lower frequencies. The time­varying Kalman filter is less sensitive
towards lost samples and has a more even error spectrum. Overall, the
variance of the estimation error is about 40% lower in the Kalman filter
case.

5. Conclusion

This paper has presented a MATLAB toolbox called JITTERBUG, which is
used to compute a quadratic performance index for a real­time control
system. The control (or signal processing) system is described using a
number of continuous­time and discrete­time linear systems. A stochastic
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Figure 8. JITTERBUG model of the notch filter: (a) signal model, (b) timing model.

timing model with random delays is used to describe the execution of
the system. Some of the things that can be investigated using the toolbox
are delays, jitter, jitter compensation, lost samples, aborted computations,
aperiodically sampled controllers, and multi­rate controllers.
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Figure 9. The spectral density of the error output x̃ when 10% of the samples are
lost, using a notch filter (full) or a time­varying Kalman filter (dashed).

References

Henriksson, D., A. Cervin, and K.­E. Årzén (2002): “Truetime: Simulation
of control loops under shared computer resources.” In Proceedings
of the 15th IFAC World Congress on Automatic Control. Barcelona,
Spain.

Ji, Y., H. Chizeck, X. Feng, and K. Loparo (1991): “Stability and control
of discrete­time jump linear systems.” Control­Theory and Advanced
Applications, 7:2, pp. 247–270.

Krasovskii, N. and E. Lidskii (1961): “Analytic design of controllers in
systems with random attributes, I, II, III.” Automation and Remote
Control, 22:9–11, pp. 1021–1025, 1141–1146, 1289–1294.

Nilsson, J. (1998): Real­Time Control Systems with Delays. PhD thesis
ISRN LUTFD2/TFRT­­1049­­SE, Department of Automatic Control,
Lund Institute of Technology, Sweden.

146


