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ON THE TURN OFF PHENOMENON IN ADAPTIVE CONTROL.T

B. Wittenmark

ABSTRACT,

"Turn off" is a phenomenon that can occur when using
adaptive controllers. The phenomenon means-that the cont-: -
rol unintentionally can be turned off for longer or
shorter periods of time. A zero order system with an
unknown gain is studied and it is discussed why the
control is turned off and then is turned on again.
The phenomenon can be explained through analysing the
stability properties of a special non-linear stochas-
tic process, Further is discussed how the turn off

phenomenon can be eliminated.

T This work has been supported by the Swedish Board
of Technical Development under Contract 69-631/Uu89,
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1. INTRODUCTION.

When using adaptive controllers a couple of strange
phenomena may occur [10] . The phenomena are difficult
to analyze because of the complexity of the adaptive
systems. But they can often be intuitively explained
by the <conflict:: between the identification part and
the control part of the adaptive controller. To make
a good identification of the unknown process parame-
ters it is desirable to have as large input signals
as possible, this in order to get a large signal to
noise ratio. But if the purposerwith the control is
to have minimum variance on the output then one has
to compromize in order to get a good overall perfor-

mance of the system. These thoughts were introduced by
Feldbaum [5] as dual control.

One of the phenomena is "burst". By this is meant
that the system makes good control over long periods
of time, but sometimes the output will be large and
oscillating. After this burst the system will again
return to normal conditions. The burst phenomenon
can be explained by the -conflict between :identifi-- 1@

caticon and control.

This report will discuss and explain another phenome-
non. This phenomenon is called "turn off" and is re-
ported when using minimum variance control strategies
in adaptive systems [41, [9], [10]. By this is meant
that the identification and the control is turned off
for long periods of time, but when the controller is

not turned off the performance of the system is good.

The purpose with this report is to give an explana-
tion to this phenomenon for a simple system. The turn
off phenomenon is further illustrated and a more pre-
cise formulation of the problem is given in Section 2.
The solution to the problem is obtained through stu-

dying the stability properties of a certain nonlinear




stochastic process. This is done in Section 3 where
also conditions are given when the system can
switch between control and no control. In Section 4
an example is given to illustrate the results from
Section 3. A discussion of how to avoid the turn off
phenomenon is given in Section 5. Finally, in Section

6 is given references,




2. FTORMULATION OF THE PROBLEM.

The turn off phenomenon has occured when using mini-
mum variance control laws. The general problem is ve-
ry difficult to analyse because of the nonlinearity
of the adaptive system. In order to get some insight
into the problem with turn off a simplified case will

be discussed. Let the system be

y(t) = x(t)u(e-1) + e(t) (2.1)
where

y(t) - output signal

u{t) - control signal

x(t) - unknown gain

e(t) - white noise normal distributed N(O,x)

The system has no dynamics, 1t is only characterized
by the unknown gain which is a scalar valued stochas-

tic process
x(t+1) = ax(t£) + v(t) (2.2)

where v(t) is white noise normal distributed N(0,1)
and a is a known constant greater than zero.

The gain is estimated from the measurements y(t) in
real time using an estimator based upon Kalman theo-

ry (see e.g, [2]).

[ %(t+1) = ax(t) + K(t) (y(t) - u(t-1)Ix(£))

K(t) iPtt)u(t—1)

) AP (tIut-1)2

(2.3)

2p0s v (4ot )2
P(t41) = a’P(t) + 1 - SEEults1)

\ A2+P () ult-1)72




x(t) is the estimate of x(t) based upon old inputs
and outputs up to and including time t-1. P{(t) is the
variance of the estimation error and is a measure of
the accuracy of the estimate.

The purpose with the control is to minimize

2
E{y(t) - 1} (2.4)

with respect to u(t-1), when u(t-1) is allowed to be
a function of old inputs u(t-2}, u{t-3), ... and out-
puts y(t=1), y(£=-2), ... :

The optimal control law is given by [3]:

~ A i
wt=1) = X . 69 (2.5)

x2(t) + P(t)  x(t) x(t)% + P(t)

Result from a simulation of the process (2.1) when

using the control law (2.5) is given in Figuvre 2.1.

We see that the estimate and control signal for long
periods of time are almost zero. During the turn off
periods the estimate &s of order 107" - 1077, we al-
so see that under these periods the variance is close

to its steady state value

Notice the rapid decrease in the variance when the
control turns on again.

There are now several questions which are of great

interest to answer:

o Why does the control switch between the two diffe-

rent behaviours?




o Can the control be turned off for all future?

o Which conditions are sufficient to ensure that the

control will be turned on?

The purpose with the report is to answer these ques-

tions for the simple system (2.1).
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(2.3) and (2.5) when a = 0,9 and » = 0.5,

(From [31)




3. SOLUTION OF THE PROBLEM,

The equations (2.1) - (2.3) and (2.5) describe a sys-
tem which is very difficult to analyse in detail, .
This because of the stvong nonlinearity of the‘equa—
tions. We will first give some heuristic arguments
which will give some insight into the behaviour of

the system,

From Figure 2.1 it seems as if the system jumps bet-
ween two modes. First when there is a reasonable good
tracking of the unknown state variable, x(t), and se-
cond when the estimates of x(t) is almost equal to
zero. When x(t) is small u(t) also will be small

{see equation (2.5)) and the control is turned off.
How can these two modes be explained? When using Kal-
man theory the estimation of the state variables is
done in such a way that the variance of the estima-
tion error, P(t), is minimized [2]. But we can also
interpret the equations in the following way: From
all old data is formed an estimate in such a way
that the prediction of the output at the next samp-
ling point, &(t), is as good as possible. This means
that the estimator tries to make the residuals equal

to the measurement noise, i.e. to make
e(t) = y(t) ~ y(t) = y(t) - x(t)ult=1)

equal to white noise. Using (2.5) we get

e(t) = y(t) - x(tdult-1) =
x(t)

5 s (x(t) - x(£)) + e(t)
% ()2 + P(t)




The residuals can now be "whitened" in two ways.
First make a good estimate of x(t), i.e. x(£) = x(t),
then the residuals almost become equal to the mea-
surement noise, e(t). Second put g(t) = 0 then again
the residuals become almost equal to e(t). It is these
two preferable states that correspond to the turned
on respectively the turned off situations. In normal
cases when using Kalman filter the turned off situa-
tion does not exist. But with the special control law
used in this report it is possible to make the cont-
rol signal almost equal to zero through making the

estimate almost equal to zero.

How a turn off may start can be explained by looking

at the following situation:

Assume that the estimator makes a good tracking and
that the true state, x(t), and then also %(t), become
small over a longer or shorter interval of time. But
if x(t) is small then u(t) and K(t) will be small too
and the next estimate may be smaller. Then P(t+1) will
increase and u(t+1) and K(t+1) will be still smaller
and so on. Using this type of arguments we heuristi-
cally can explain why a turn off may occur. But why
is the control turned on again? The answer to this
must be that the turn off 1s an unstable mode of the
Kalman equations. But because of the complexity of
the system it is difficult to directly analyse its
stability properties,

To simplify the problem we use that during the turn
off the estimates are very small, therefore expand
the Kalman equations (2.3) around x = 0., When omitting

terms of magnitude [§i2 (2.3) is reduced to

xCt+1) = a{l + e(t)/22)x(t) (3.1)




This is a simpler, but still nonlinear stochastic
process. The problem to explain why the control is
turned on again is thus reduced to analyse the sta-

bility properties of the special stochastic process
(3.1)-

How to define the stability of stochastic processes?
There are several ways to do this. The processes may
be stable in probability, in mean square, in norm or
with probability one (w p 1). In this case we have
to use stability with probability one which is the
strongest bonception and the most difficult one to

handle. We will use the following definitions:

Definition 1 [71:

The origin is stable with probability one if and only

if for any ¢ > 0 and € > 0 there is a 6(p,e) > 0 such
that if ||x(0)}] < 6(p,e) then

P(sup ||x(t)]] 2 &) g o
Ogt<m

Definition 2:

The origin is unstable with probability one if and

only if for any ¢ > 0 and ||x(o)|]| > o

P(sup ||x(t)]] 2 ) = 1
Dgt<o

These definitions suit our purposes. We want to de-
termine whether a realization of (3.1) can give large,
positive or negative, values, because in that case

the control will be turned on again. More explicitly

we are interested in probabilites such as
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Py(t) = POx(E)] > M) (3.2)
and
M(t) = P(sup |x(s)| > N) (3.3)
Ossst -
We will now state
Theorem 1:
The solution ;(t) = 0 to the stochastic process
x(t+1) = al1 + e()/22)x(t), e & N(O,)) (3.1)

is stable with probability one if and only if

m = E log |a(1 + e(t)/hz)l <0 (3.4)
To prove the theorem we will use

Lemma:

The process z(t) defined by

z(t+1) = z(t) + log la(l + e(t)/r?)] (3.5)

is asymptotically normal with mean equal to mt and

variance czt, where m and o2 are defined by (3.4) and

62 = Var log |a{1 + e(t)/kz)l] (3.6)
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Proof of Lemma:

If m and o exist the central limit theorem will prove
the lemma as z(t) is a sum of independent equally
distributed random variables. It is thus sufficient
to show that |m| < « and E{log[a(1 + e(t)/xz][]z =

- 62+ < o

E logla(1 + e(t)/kz)l =

=
1

7 2,2
=1 . J 1og“a(1 + s/lzjﬂens 12" gs =

o

[+

2
[ logﬁ1 + X/Aqeﬁx 124 =

- 00

1
/2n

+

2 2 2 a2
[e Vx#1)2/2 2% (x=1) /z]dx

= loglal| + i__[ log x
Vom
g
The only crucial part of the integral is when x = 0,

but the integral

xz(x+a)2

E e
J log xse dx < J log xdx
4] 0

is bounded and thus it is clear that |m| < e.

In the same way it can be shown that 02 + m2 < =,
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Proof of Theorem 1:

Define the new stochastic process

z(t) = logf;(t)l

then from (3.1)

z(t+1) = z(t) + v(t)

where

v(t) = logla(1 + e(t)/lz]l

is a sequence of independent equally distributed ran-
dom variables., The process z(t) is thus a random walk.

As, from the lemma, z(t) is asymptotically normal
then

P (t) = P(|x(t)] > N} = P(log|x(t)| > log N)
= P{z(t) > log N] =1 - ¢ log N__ mt
avt

where ®#(x) is the normal distribution function., This
means that if m > 0 then PN(t) - 1 when t » «, But as
MN(t) > Py(t) this implies that MN(t) + 1 as t + =,
Thus (3.1) is unstable w p 1 if m > 0.

To fully prove the theorem we also have to investi-
gate the two cases m = 0 and m < 0. These two cases
can be treated using a theorem from [6 , theorem 1,

p 379]. This theorem states that if m = 0 then z(t)
will oscillate between +« and -= with probability one
and thus the process is unstable. The theorem also
states that if m < 0 then




13.

-t
sup ) vi(s) = M < =
t s=0

exists w p 1. It is then always possible to choose a

starting value, ﬁ(O), such that

P[sup]ﬁ(t)l > e} = Plsup } v 2 log € - 1og[;(0)l £ p
t t

for any € and p. E.g. choose [x(0)] < & = ¢ = e,

Comparing with Definition 1 we thus find that if

m < 0 then the process is stable with probability
one, Thus m < 0 is both a necessary and sufficient
condition for stability w p 1 for the process (3.1).

Theorem 1 can now be used to understand when and why
the control will be turned on again after a turn off.
When the control is turned off the estimator can be
approximated by the process (3.1) which is indepen-
dent of the actual value of the gain, x(t). From
Theorem 1 we have that if m > 0 then the process (3.1)
is unstable and the magnitude of any realization will
be large with probability one. This means that x(£)=0
is an unstable solution to the estimator if m % 0.
Thus !%{ will increase and the control will be turned
on again. As soon as u(t) is not too small then very
quick the Kalman filter will improve the estimate of
x(t) and the accuracy will increase rapidly, i.e.
that P(t) will decrease rapidly (see Figure 2.1).

Theorem 1 gives a necessary and sufficient condition
for stability of the special stochastic process (3.1).
It is also possible to derive only necessary condi-
tions for stability w p 1. Using the theory of super-
martingales it is possible to derive conditions which
are very similar to the conditions in the Liapunov
theory for deterministic systems. This approach is




Th,

therefore often called the stochastic Liapunov func-

tion approach [7 ].

For discrete time processes we have

Theorem 2 (Kushner [81):

Let V(x) and h{(x) be nonnegative scalar~valued func-
tions. Let V(0) = 0, h(0) = 0, h{x) > 0 if x % 0 and
h(x) continuous and nondecreasing. Let Q be the set
in which V(x) € q < = and V(x) = q on the boundary
of Q. Let in Q, with probability one

Efv{x(n)) |xtn=1)1 - V{x(n=1))== - k{x(n-1)) < 0

Then for A' s q

A

Plsup V(x(n)]
n

W

At < EV(x(Q)}/A°

A

For 0 s ||x|] £ r let V(x) = h(]|x]|]).

Then for A' ¢ v

Plsup h(||x(n)}|} 2 A'1 s Plsup V(x(n)} 2 a']
n n

For any p.,A' > 0 let there be a 8(p,A') > 0 such
that EV(x,) < pA' if ||x0][ ¢ 8(p,2'), Then the ori-

gin 1s stable w p 1.

Notice that the stochastic Liapunov theory has the
same disadvantage as ordinary Liapunov theory in the

sense that the choice of Liapunov function is crucial.

It can be interesting to compare the necessary condi-
tion for stability of the process (3.1) given by Theo-
rem 2 with the results given by Theorem 1.
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To use Theorem 2 the Liapunov function is chosen to
vix) = |x|F r >0
Then the necessary condition for stability w p 1 is
E(V[x(t+1)lx(£)) - v(x(t))=

= [Ela(t + e()/A2) [P 11x() [T < 0
or
Ela(1 + e(t)/22)17 < 1

It is possible to get an analytic solution for the
left hand side

Ela{t + e(t)/lz)]r z

r 32
= {2 . l_ - e? /u{U(r+0.5,A) .
Y2u

* {1 + sin 7(r+0.5)) * T(r+1) + 7 + V(p+0,5,1)}
(3.7
where U and V are parabolic cylinder functions and T
is the gamma function. Values of U, V and T are found

e.g. in [1]. For certain values of r the expression
(3.7) is reduced to a much simpler form, e.g.:

2
Ela(1 + e(t)/2?)] = a%c1+1%)
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| 2
Ela(1 + e(t)/2%}] = a{Z@(A) -1 1Y[2 2 /2]

A T

A smaller value on r will for fixed a ensure asympto-
tic stability for processes with a smaller value on A,
But when using the stochastic Liapunov functions it

is not possible to say when the process (3.1) becomes
unstable,

That m < 0 is a stronger condition than (3.7) can be

shown using Jensen's inequality.

rE log|x] = E log|x|¥ 5 log Elx|¥

The condition given by Theorem 2 is equivalent to

2 T
log Ela(1 + e(t)/2%}] < 0

and we find that

r
rm s log Ela{1 + e(t)/12)|
Thus for any r, a and * which makes

9, T
log Ela{1 + e(t)/27)]|

less than zero we also have that m < 0.

Using stochastic Liapunov theory it is possible to
get an upper bound on My (t). From [7 , theorem 3,
p 861 we have that

t
R

=

when R = E(}x(t+1) |7 |x(t)]) > 1
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The probability M,(t) is thus limited by

ot

Py(t) € M (t) ¢

N (3.9)

Zi%
5

The turn off phenomenon for the simple procéss (2.1) =
- (2.3) and (2.5) can thus be explained through ana-
lysing an approximation of the estimator when the mag-
nitude of the estimate is small., Depending on the pa-
rameters a and A this simplified process is stable or
unstable with probability one. If the estimate, ﬁ(t),
once has become small then it can be approximated by
(3.1). If m defined by (3.4) is greater than or equal
to zero then we know that the system is forced away
from x = 0 and the control will be turned on again.

If m < 0 the solution ; = 0 is stable solution and

the control may be turned off for ever. But even if

m < 0 there is a possibility that ;(t) may be large
and that the control is turned on. An upper bound for
this probability is given by Theorem 2.
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4, EXAMPLE.

To illustrate the results from the previous section

we will use the system

[ x(t+1) = 0,9 x(t) + v(t) v(t) € N(0,1)
[ y(e) = x(iult~1) + e(t) e(t) € N(0,x)
u(t-1) = L2
x(t) +P(t)

where x(t) and P(t) are given by equation (2.,3).

A simulation of this system was shown in Section 2.
In that case X was equal to 0.5 and the control was
turned off over rather long intervals of time. During
the turn off periods the estimate was of order 10"& -
- 10-7. Simulations have verified that for small |;|
the process (3.1) is a good approximation of the es-
timate x. (By small |x| is in this case meant that
Ixi is less than 0.1 - 0.05.) It can thus be reason-
able to investigate the probability that the process
(3.1) will increase by a factor 10%. If this happens
the estimate and the control signal will no longer

be small and the contrel is turned on.

The parameters m and ¢, see equations (3.4) and (3.6),
have been obtained through numerical integration over
the normal density function., The values of m and o are

given in Table 4.1 for different values of A.

From Table 4.1 it is seen that the process (3.1) is
stable with probability one for values of X greater
than about 0.55. This limit is also verified by simu-

lations of the process.
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A m . A
0.50 0.0726 1.1064
0.52 0.0u827 1.1087
0.54 0.0146 1.1050
0.56 -3.0118 1.1041
0.58 ~03,0366 1.1033
0.60 -0.0600 1.1022-

Table L.1,

N r
1.00 0,50 0.25 0,10 0.08

0.50 1.6120 | 4.1699 | 1.0531 | 1.0131 | 1.0051
0.52 1.5636 | 1.152u | 1,0u52 | 1.0101 | 1.0036
0.54 1.5191 1.1361 1.0379 | 1.0073 | 1.0022
0.56 1.4783 1 1.1208 | 1.0310 1.0046 11,0009
0.58 1.44%07 | 1.1068 | 1.0245 | 1.06021 | 0,9996
0.60 1.4060 | 1.0937 | 1,0185 }0.9997 | 0.9985

Table 4.2 - E{]%(t+1)]r];(t)} for the process (3.1)

when a = 0.9.

For the process (3.1) with a = 0.9 values of

E{|x(t+1)]7]x(£)}

are given for different values of r and A in Table
4.2, Using r = 0.10 Theorem 2 states that the process
is stable w p 1 if A 2 0,680. But using r = 0.05 the
same theorem states that * > 0.58 gives a stable pro-
cess. It would be possible to use a still smaller r

in order to move the stability boundary further against
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the critical value A = 0,55, But using stochastic Lia-
punov theory we do not know if any other Liapunov

function would give a still larger stability area.

The values in Table 4,2 can together with (3.8) be
used to get an upper bound of MN(t); Further PN{t)
gives a lower bound of MN(t). These two boupds of
MN(t) are shown in Figure 4,1, In the figure PN(t)

is approximated with

1 - % log N - mt

on
for all values of t. It is possible to recursively
compute the exact value of PN(1), PN(Z), « e, but af-
ter a few steps there is no greater difference bet-

ween the true and the approximated values of PN(t).

In Figure 4,1 is also shown an estimate of MN(t).
This estimate 1is obtained through repeated simulation
of the process (3.1). The estimated MN(t) gives that
for t = 150 the probability is 0.75 that the process

has increased its value by a factor 1Du.

A couple of simulations of the system have also been
done with X = 0.6, The simulations were done over
2500 steps. After a short period of time the control
was turned off, but it could be turned on again once
or twice for a short while whereafter it was turned
off definitely. This result is expected since for

A = 0.6 the process (3.1) is stable w p 1. Theorem 2
then gives an upper bound of MN(t). Using A = 0.6 and
E{{x(t+1)|¥{x(£)} with r = 0.1 from Table 4.2 we get

p[supié<t)| : 10”1&(0);} -
t

= P{sup!ﬁ(t)]0'1 2 100'q]£(0}|0'1] < = 0,40
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5, DISCUSSION.

The report has shown that for a simple system the

turn off phenomenon can be explained through investi-
gation of a certain nonlinear stochastic process, Ne-
cessary and sufficient conditions for this process to
be stable with probability one are given. If the pro-
cess is unstable the control will be turned on again
with probability one. But also if the process is stable
there is a probability greater than zero that the cont-
rol may be turned on again, Even if the control will

be turned on again with probabiiity one it can be an
unsatisfactory behaviour of the system that the cont-
rol is switched between on and off, We will therefore
give a few comments on how to avoid the turn off phe-

nomenon.,

In Section 3 it was mentioned that it is the special
type of control law that can give rise to the two pre-
ferable modes of the Kalman equations. The control law

was derived through minimization of

E(y(t) - 1)2 (2.4)

With this loss function the contrel-law only acts to re-

duce the predicted error one step ahead. But it does
not make any attempt to get better estimates in or-
der to be able to make a better control in future
steps. This type of control is called non-dual, To
get a dual control law "5 +the loss function must be cho-
sen in such a way that the minimization is done over

several steps. Such a loss function is

N
E (t) - 1)? ¥
t;1[y ) (5.1)

= |-
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By dual control is meant that the controller acts in
a two-fold way. First it makes the control action
which shall minimize the loss. Second it also makes
the control in such a way that the estimation of the

process parameters is as good as possible,

When using the loss function (5.1) the solution leads
to a functional equation which has to be solved using
dynamic programming. This reduces the number of sys~
tems for which the optimal controller can be derived.
The dimension of the dynamic programming problem is

increasing with n2, where n is the order of the sys-
tem [3] .

;n'ﬂuﬂ the functional equation is solved for the simple
protess described by (2.1) and (2.2). Simulations show
that the behaviour of the system ig widely different
when using the dual controller than when using the
non-dual controller (2.5) (see [3] or [10] ). Especial-
1y there is no turn off of the control and the esti-
mate of the gain is good all the time. The dual cont-
roller thus ensures that the estimate is good and

then it is easy to make a good control action,

The disadvantage with the optimal dual controller is
the time consuming solution of the functional equa-
tion, But it is possible to make a suboptimal dual
controller., This can be done using the following ar-
guments: if the estimate of the unknown process para-
meters is accurate then a good control law is obtained
through minimization of (2.4). A way to ensure good
estimates is to superimpose a small perturbation sig-
nal, This perturbation may be a square wave or a ran-
dom signal, e.g. a pseudo random binary sequence.

The perturbation can be used all the time o¥ only
when the estimate is poor. In the latter case the va-
riance, P(t), can be used to determine when the per-
turbation signal shall be switched on., This simple
type of suboptimal dual controllers have a good effect
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on the discussed system., Let the control law be

ult=1) = = "x';“' s (-1 s (5.2)
x(t) +P(t)

then the effect of the perturbation signal can be
seen in Figure 5.1, where the accumulated loss is
shown for the three discussed control laws. When
using (2.5) the control becomes only slightly better
than making no control at all. But when using the
control law (5.2) the loss is reduced almost as much
as can be done with the optimal dual control law.
The control law (5.2) is thus a very simple way to
eliminate the turn off of the control.

In this report the turn off has only been discussed
for a very simple system. But the turn off phenome-
non can also occur when controlling more complex sys-
tems. It is then more difficult to analyse what hap-
pens when the control is turned off, but the prin-
ciple behaviour seems to be the same. If a higher or-
der system has a tendency to turn off the control it
is impossible, because of the immense computations to
avoid the turn off by deriving an optimal dual cont-
rol law. A more practical way is instead to use a per-
turbation signal of small amplitude, The perturbation
signal will ensure that the process parameters are sa-
tisfactorily estimated all the time. Thus in order to
avoid the turn off phenomenon it can be justified to
introduce extra signals into the system. But the ext-
ra loss introduced by the perturbation signal is com-
pensated by the better control that is possible to do

when the parameter estimates are good.

«
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Figure 5.1 - Accumulated loss

& 2
vit) = §  (u(s-1)x(s) - 1)
s=1
for
I u(t"'1) = Y x;t)
x{(t)“+P(t)
IT  ult=1) = = xét) + (- - 0,15
x{t) +P(t)

III optimal dual control law (see [9])
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