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Abstract

Diabetes Mellitus is a chronic disease, where the blood glucose concen-
tration of the patient is elevated. This is either because of missing insulin
production due to failure of the β-cells in the pancreas (Type 1) or be-
cause of reduced sensitivity of the cells in the body to insulin (Type 2).
The therapy for Type 1 diabetic patients usually consists of insulin injec-
tions to substitute for the missing insulin. The decision about the amount
of insulin to be taken has to be made by the patient, based on empirically
developed rules of thumb.

To help the patient with this task, advanced mathematical algorithms
were used in this thesis to determine intakes of insulin and counteracting
glucose that can bring the blood glucose concentration back to normo-
glycemia. The focus in this work was to determine insulin and glucose
intakes around mealtimes. These algorithms used optimization methods
together with predictions of the blood glucose concentration and mathe-
matical models describing the patient dynamics to determine the insulin
and glucose doses. For evaluation, the control algorithms were tested in-
silico using a virtual patient and are compared to a simple bolus calculator
from the literature. The aim was to increase the time spent in the safe
range of blood glucose values of 70 − 180 [mg/dL].
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Special thanks I owe to my fiancé Roger for his understanding, patience
and all the encouragement and support he gave me.

6



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 The DIAdvisor project . . . . . . . . . . . . . . . . . . 17
1.2 Problem Statement: Diabetic Impulse Control . . . . . 19
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . 19

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Blood Glucose Regulation in the Body . . . . . . . . . 21
2.2 Diabetes Mellitus . . . . . . . . . . . . . . . . . . . . . 23
2.3 Insulin . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Diabetes Treatment . . . . . . . . . . . . . . . . . . . . 24
2.5 Automatic Control for Diabetes . . . . . . . . . . . . . 25

3. The Virtual Patient . . . . . . . . . . . . . . . . . . . . . . 29

4. Patient Models and Predictions . . . . . . . . . . . . . . 37
4.1 State-Space Model . . . . . . . . . . . . . . . . . . . . . 38
4.2 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Controller Model . . . . . . . . . . . . . . . . . . . . . 40

5. Diabetic Glycemia Control via Optimization . . . . . . 43
5.1 The Asymmetric Cost Function . . . . . . . . . . . . . 44
5.2 The Optimization Problem . . . . . . . . . . . . . . . . 46
5.3 The Control Algorithm . . . . . . . . . . . . . . . . . . 48

6. Diabetic Glycemia Control via Selection . . . . . . . . . 49

7



Contents

6.1 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 The Selection-based Control Algorithm . . . . . . . . . 52

7. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1 Simulation Setup for the Optimization-based Controller 55
7.2 Simulation Setup for Selection-based Controller . . . . 57
7.3 Simulation Setup for the Bolus Calculator . . . . . . . 57
7.4 Evaluation Methods . . . . . . . . . . . . . . . . . . . . 58
7.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . 59

8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9. Conclusion and Future Work . . . . . . . . . . . . . . . . 73

A. Convexity of the Cost Function . . . . . . . . . . . . . . . 75

B. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 77

C. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8



List of Symbols

BG blood glucose

MDI multiple daily injections of insulin

MPC Model Predictive Control

PID proportional-integral-derivative control

T1DM Diabetes Mellitus Type 1

T2DM Diabetes Mellitus Type 2

NPH neutral protamine Hagedorn insulin

IOB insulin on board

Uid(t) insulin-dependent glucose utilization

Uii(t) insulin-independent glucose utilization

E(t) renal excretion

G(t) plasma glucose concentration of the virtual patient

Gp(t) glucose masses in plasma and rapidly equilibrating tissues

Gt(t) glucose masses in slowly equilibrating tissues

Ra(t) glucose rate of appearance in plasma

Vg distribution volume of glucose
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ȳBG mean value of the blood glucose concentration at the output
of the virtual patient

u vector representing insulin and glucose rate of appearance in-
puts

x states of the patient model in state-space form

y a blood glucose concentration

yBG blood glucose concentration at the output of the virtual patient

yM BG at the output of the estimated state-space model

Hp prediction horizon

p number of time steps into the future

11



List of Symbols
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1

Introduction

Diabetes Mellitus is a chronic disease caused either by the inability of
the body to produce insulin (Type 1) or because the cells in the body
do not respond to the effect of insulin (Type 2). In type 1 diabetes, a
failure of the β-cells in the pancreas caused by, e.g., injuries, infections
or autoimmune disorders, leads to a lack of insulin secretion. This lack of
insulin secretion leads to chronically elevated blood glucose levels, which
results in complications affecting, for example, the heart, liver, kidneys or
nerves [1].

Diabetes is one of the leading causes of blindness, amputation and
kidney failure in the world [2]. There are 331 million people with diabetes
worldwide and more than 55 million in Europe. The number of people
with diabetes is projected to increase from 8.3 % of the world population
in 2012 to 9.9 % of the world population in 2030 [3]. Although 85 − 95
% of adult people with diabetes are suffering from type 2 diabetes, the
number of people with type 1 diabetes is increasing around the world each
year. Furthermore, the majority of young people suffering from diabetes
have type 1 diabetes [4].

For treatment, patients with type 1 diabetes have to substitute the
missing insulin by administrating insulin externally. This is done either
through multiple insulin injections during the day (MDI) or by continu-
ous insulin infusion subcutaneously with a pump. Patients treated with
multiple daily injections usually take basal insulin to cover the body’s
basal insulin needs and additional bolus insulin doses at times when the
blood glucose (BG) concentration is high, e.g., around meal times. The
challenge in diabetes treatment is that the patient needs to self-reliantly

15



Chapter 1. Introduction

determine the doses of insulin required to maintain the blood glucose
concentration within the normoglycemia range. This means solving an
optimization problem several times throughout the day.

To help the patient with this task, blood glucose prediction algo-
rithms as well as many different control algorithms have been proposed [5]
[6]. These control algorithms reach from proportional–integral–derivative
(PID) control, pole placement over adaptive and run-to-run methods to
model predictive control (MPC) [7] [8] [9]. Many of the proposed con-
trollers aim at having a continuous insulin signal injected into the diabetic
patient via an insulin pump.

However, in the scope of the European project DIAdvisorTM [10] [11]
aiming at developing a blood glucose prediction and treatment advisory
system, the patient should be able to use, e.g., an insulin pen instead
of a pump. Whereas continuous insulin administration can be useful for
patients using an insulin pump, this is not suitable for patients using for
example insulin pens to administer insulin. Instead, insulin dose advices
should in such a case be in the form of impulses.

This thesis aimed at developing a control algorithm, that calculates
impulse-formed insulin and glucose dose advices. These advices should
not be given very frequently, but rather only a few times a day. Here the
need for insulin and glucose intakes was determined in case of a meal
or if the blood glucose concentration left a safe range. To determine the
amounts of insulin and glucose to be taken, two different approaches were
proposed. The first approach was to formulate an optimization problem,
whose solution gave the amounts of insulin and glucose to be taken. The
second approach was to evaluate a cost function for given sets of insulin
and glucose intakes. The insulin and glucose doses resulting in the lowest
cost were then chosen to be applied to the patient.

The thesis is structured in the following way:

• Chapter 1 gives an introduction, formulates the problem for this
thesis and presents the European project DIAdvisor, within which
this work was done.

• Chapter 2 gives a background about the Diabetes Mellitus disease,
how the blood glucose is regulated by the human body and how
Diabetes Mellitus is treated. Also, an overview of research about
automatic control in diabetes is given.

• Chapter 3 presents the nonlinear model used as a virtual patient to
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1.1 The DIAdvisor project

simulate a patient with type 1 diabetes.

• Chapter 4 introduces the mathematical models describing the pa-
tient dynamics used in the prediction and control algorithms, since
the proposed control algorithms are model-based.

• Chapter 5 describes the optimization-based control algorithm devel-
oped in this thesis. The cost function used as well as the formula-
tion of the optimization problem are presented. Furthermore, it is
described how this optimization problem was solved and how it was
embedded within an algorithm to form a controller.

• Chapter 6 describes the selection-based control algorithm. It is de-
scribed how different combinations of insulin and glucose intakes
were tested with the help of a cost function, in order to choose the
insulin and glucose dose combination leading to the smallest cost.

• Chapter 7 describes the simulation environment, the metrics used
for controller evaluation and presents the results. Moreover, a bo-
lus calculator serving as a comparative reference for the proposed
control algorithm is introduced.

• Chapter 8 discusses the results and Ch. 9 concludes the work.

1.1 The DIAdvisor project

The work presented in this thesis was done within the European Project
DIAdvisorTM [10] [12]. The goal of the project was to develop a mobile
short-term blood glucose predictor and treatment advisory system, that
helps diabetic patients to manage their therapy, minimize the time spent
outside the normal glycemic range and give them an improved quality of
life. The negative effects of long-term hyperglycemia, i.e. too high blood
glucose values, should be reduced without increasing the occurrence of hy-
poglycemia, i.e. too low blood glucose values. The objective of the project
was to develop a system, which predicts blood glucose levels and gives
treatment advice to the patient [10] [12].

The concept of the DIAdvisorTM project is shown in Figure 1.1. The
DIAdvisorTM system incorporates both a blood glucose predictor, pre-
dicting the future blood glucose development, and an advisor informing
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Chapter 1. Introduction

the patient about corrective actions needed to best reach a blood glucose
target range. It needs inputs provided by the patient, e.g., about meals
and insulin intakes and from sensors such as blood glucose sensors. With
the help of these inputs, the DIAdvisorTM system provides a prediction of
future blood glucose development and based on this calculates advices on
corrective actions in terms of insulin and food intakes. The blood glucose
prediction and advices are given to the patient as an instruction. The pa-
tient then has to administer the doses using, e.g., an insulin pen or pump.
The patient data are also sent to the health care provider.

Figure 1.1 The concept of the DIAdvisor mobile short-term blood glucose
predictor and treatment advisory system [11].

The DIAdvisorTM system was evaluated in clinical trials at three dif-
ferent sites, collecting data from 50 different patients [12].

Up to date patients decide upon insulin doses either using personal
experience, or using rules of thumbs to calculate the correct insulin dose
based on consumed carbohydrates and measured blood glucose values.
Simple bolus calculators can assist with the calculations. By giving infor-
mation about future blood glucose development and insulin intake recom-
mendations to the patient, the DIAdvisorTM system intends to empower
patients into taking own decisions in their diabetes treatment [12].

18



1.2 Problem Statement: Diabetic Impulse Control

1.2 Problem Statement: Diabetic Impulse Control

In the sense of the DIAdvisorTM project described in Sec. 1.1, the aim of
this thesis was to develop a control algorithm, which gives advice about
insulin injections to the patient while still allowing the patient some flex-
ibility during the day. In this context, to keep flexibility means that the
dose of insulin is determined when needed, e.g. at mealtime, and does not
need to be planned for the whole coming day. To fit the DIAdvisorTM

system, advices should not be given in a continuous manner, but instead
be in the shape of impulses, and they should be given rather seldom. The
control algorithm should determine the doses of insulin and glucose intakes
based on blood glucose predictions and measurements. Furthermore, the
control algorithm should be based on an individual mathematical patient
model describing the patient dynamics. Similar as described in Sec. 1.1,
the goal was to minimize time spent outside the normal glycemic range.

1.3 Publications

Publications which the thesis is based on:

• M. Cescon, M. Stemmann, and R. Johansson, “Impulsive predic-
tive control of T1DM glycemia: An in-silico study,” in 5th Annual
Dynamic Systems and Control Conference (ASME 2012), Ft. Laud-
erdale, FL, USA, October 17-19 2012

• M. Stemmann and R. Johansson, “Control of type 1 diabetes via
risk-minimization for multi dose injection patients,” in 5th Inter-
national Conference on Advanced Technologies and Treatments for
Diabetes (ATTD 2012), Barcelona, Spain, February 8-11 2012

• M. Stemmann and R. Johansson, “Diabetic blood glucose control
via optimization over insulin and glucose doses,” in 8th IFAC Sym-
posium on Biological and Medical Systems (IFAC BMS 2012), Bu-
dapest, Hungary, August 29-31 2012

Other publications:

• M. Stemmann, F. Stahl, J. Lallemand, E. Renard, and R. Johansson,
“Sensor calibration models for a non-invasive blood glucose mea-
surement sensor,” in 2010 Annual International Conference of the
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IEEE Engineering in Medicine and Biology Society (EMBC 2010),
Buenos Aires, Argentina, pp. 4979–4982, August 31 - September 4
2010
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2

Background

2.1 Blood Glucose Regulation in the Body

Glucose is one of the most important energy sources of the human body
and is used as fuel by almost all cells, e.g., muscles, adipose tissue or
the cells in the brain. A stable concentration of glucose in the blood is
essential. The healthy human body has an in-built, complex feedback
system to regulate the concentration of glucose in the blood and make
sure it remains in balance. The main regulator of this so called glucose
homeostasis is the hormone insulin, which is produced by the β-cells in the
pancreas [17]. It stimulates the uptake of glucose by the cells of insulin-
dependent tissue and the storage of glucose in the liver. In addition, there
are counter regulatory hormones such as glucagon, epinephrine, cortisol
or growth hormone, which work to prevent hypoglycemia, i.e., too low
blood glucose concentration [1] [18].

When a patient consumes a meal, the blood glucose concentration
increases, which stimulates the pancreas to secrete insulin. Insulin then
promotes the utilization of the glucose by insulin-dependent body tissues,
such as muscles and adipose tissue, as well as the storage of glucose in the
liver and muscles as glycogen, compare to Fig. 2.1. Moreover, it inhibits
the liver from producing more glucose and thus brings the blood glucose
back to normal. Between meals, when the blood glucose concentration
drops, the secretion of insulin from the pancreas is decreased, stimulated
by the counter regulatory hormones mentioned above. If the BG con-
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Chapter 2. Background

centration drops too low, glucose is released into the blood by splitting
glycogen from the liver back into glucose [1] [7].

Figure 2.1 Scheme of the insulin-glucose regulating system in the body [7]

In a healthy patient, the insulin production is a process that is very
closely controlled by the body, and in which the body closely monitors the
glucose levels. If the blood glucose levels drop too low nevertheless, there
are three mechanisms in the body that should protect from hypoglycemia,
i.e., too low blood glucose level [19]. When the blood glucose level drops
under the normal level of 80 mg/dL, the release of insulin is decreased and
kept at low levels. Moreover, the low glucose level stimulates the glucose
production in liver and kidneys in order to increase the blood glucose
levels. If the blood glucose level falls further, i.e., below 65 − 70 mg/dL,
the hormone glucagon is released from the alpha cells in the pancreas and
also epinephrine is released. Glucagon and epinephrine both stimulate
the production of glucose in the liver, while epinephrine also stimulates
glucose production in the kidneys. It also induces symptoms that can be
felt by the patient like increased heart rate, nervousness or anxiousness.
An increased release of cortisol and growth hormone occurs, if the blood
glucose level stays low for a prolonged time. If the blood glucose levels fall
below 50 mg/dL, cognitive dysfunction, seizures and loss of consciousness
may occur, since the delivery of glucose to the brain is insufficient [19].
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2.2 Diabetes Mellitus

2.2 Diabetes Mellitus

Due to either a deficiency of insulin or the inability of the body to use
insulin efficiently, the chronic disease Diabetes Mellitus, often only called
diabetes, leads to hyperglycemia. There are several kinds of diabetes, each
having different pathophysiological mechanisms. The two most common
kinds are type 1 and type 2 diabetes [20].

The most common form is type 2 diabetes (T2DM). It mostly appears
in adults, but has lately also occurred in children and adolescents [4].
It is caused by a combination of insulin resistance and relative insulin
deficiency with increased glucose production in the liver. This means,
that the body can usually produce its own insulin, but either the amount
is not sufficient, or the body is not responding to its effects, due to a
decreased sensitivity of the insulin-dependent tissues to insulin [1] [21]
[22]. Some important factors that may promote T2DM are obesity, poor
diet, physical inactivity or increasing age. Not all patients require daily
insulin injections, instead they are treated with a combination of diet
advice, oral medications and physical activity [4]. In later stages of T2DM,
deterioration of the pancreas can occur so that daily insulin treatment is
necessary.

Type 1 diabetes (T1DM) is characterized by absolute insulin defi-
ciency. Through an autoimmune reaction, the body’s own immune system
attacks the insulin-producing β-cells in the pancreas and destroys them.
This decreases the ability of the body to produce insulin and eventually
leads to hyperglycemia. The first symptoms appear when approx. 80 %
of the β-cells are destroyed. Patients suffering from T1DM need to sub-
stitute the missing insulin with externally injected insulin every day to
control their blood glucose concentration. To achieve good control, they
need to closely monitor their blood glucose concentration and adjust in-
sulin intakes and diet to achieve normal blood glucose levels every day [1]
[21] [22].

During long-term high levels of blood glucose concentration, diabetes
leads to diseases affecting the heart and blood vessels, eyes, kidneys and
nerves. It is one of the main causes of cardiovascular disease, blindness
and kidney failure in high-income countries [4].
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Chapter 2. Background

2.3 Insulin

To control hyperglycemia in diabetes, insulin has been used since the
1920s. Pioneering efforts to use insulin in diabetes treatment were made
in 1922 [23]. Initially, insulin was extracted from animal pancreatic tissue,
but nowadays a recombinant DNA technique employing microorganisms
is used to produce insulin [24].

There are different kinds of insulin available with different on-set and
duration times. For regular insulin, it takes about 30 to 60 minutes until
it starts having an effect. Its peak effect is reached after 2 − 3 hours
and the total duration is 8 to 10 hours [24]. It is a short acting insulin
that is used to cover meal-time glucose excursions. Through modification
and combination with additives at the molecular level, the insulin can
be modified to be absorbed more quickly. Such modified insulin analogs
reach the maximum peak in less time and have a higher maximum insulin
concentration [24].

Regular insulin can also be modified to prolong its pharmacokinetic
profile. This modification is called long-acting insulin and is used to re-
place the body’s long acting insulin requirements. One such long-acting
insulin is for example NPH (neutral protamine Hagedorn), with an onset
action after 2 to 4 hours, a peak action after 4 to 10 hours and a duration
of 10 to 16 hours [24]. There are also other long-acting insulins available,
which have different maximum peak or half-life. Glargine for example has
a reduced peaking effect, an on-set of 1-2 hours and a duration of 20-30
hours [25].

2.4 Diabetes Treatment

For both T1DM and T2DM, lifestyle treatment consisting of a healthy diet
and regular physical exercise is important. Because of the absolute insulin
deficiency in patients with T1DM, these patients need to be treated with
externally administered insulin intakes [24].

The conventional therapy consists of one or two injections of inter-
mediate and rapid-acting insulin per day, and includes self-monitoring of
urine or blood glucose as well as education about diet and exercise. This
therapy approach does not include daily adjustments of insulin doses [26],
which means that a strict daily schedule of meal times with little flexibility
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2.5 Automatic Control for Diabetes

is required.
A more intensive approach [26] consists of long-acting insulin analogs,

that are administered one to two times per day, to cover the body’s basal
insulin requirements and rapid-acting insulin analogs to cover meal-times.
The amount of rapid-acting insulin is determined according to the amount
of carbohydrates in a meal, considering the measured blood glucose con-
centration at mealtime. The total amount of insulin injections needed each
day are larger than with the conventional approach, but the intensive ap-
proach replicates more closely the body’s insulin secretion. It also allows
for a greater flexibility concerning mealtimes [24].

A major risk for patients treated with any kind of insulin therapy
is hypoglycemia, which can be life threatening [18]. While the intensive
insulin treatment is associated with a decrease in micro vascular com-
plications and decreased risk of kidney failure, it increases the risk for
hypoglycemia [26]. The drop of blood glucose can be induced not only
by too large insulin administration, but also by increased activity or de-
creased appetite among others. To prevent hypoglycemia, patients are
presented with the task to match the rate of insulin into the bloodstream
with the rate of glucose entering the bloodstream, only by subcutaneous
insulin injections. Usually patients estimate the amount of glucose in the
meal and use a carbohydrate-to-insulin ratio to determine the amount of
insulin that is needed to cover the meal. Furthermore, patients calculate
the amount of insulin necessary to lower the blood glucose concentration
using an insulin sensitivity factor. These ratios and factors are determined
with the help of the health care provider. Factors like stress and physical
activity can alter the amount of insulin needed. This means that these
patients have to solve an optimization problem every day [19].

2.5 Automatic Control for Diabetes

Many efforts have been made to develop control algorithms that help with
the therapy for diabetic patients. The first closed-loop algorithms were es-
tablished in the ’60s and ’70s and used intravenous glucose measurements
and insulin infusion. In [27] and [28] for example, a hyperbolic tangent
function relating BG concentration and rate of change to insulin infusion
rate is used as a control law. The first product commercially available was
the Biostator [29] [30].
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Chapter 2. Background

In [31], the feasibility of using subcutaneous glucose measurements
and insulin infusions for closed-loop control of diabetes was shown using
PID control, which became a widely researched algorithm for control of
diabetes [32] [33] [34].

More recently, the most commonly used algorithm for closed-loop con-
trol in diabetes is the model predictive control (MPC) algorithm [7] [8] [9]
[30]. As the name suggests, it includes a model of the patient metabolic
system. Since predictions of the future development of the blood glucose
concentration are possible, the effect of insulin on the future blood glu-
cose concentration can be determined. Furthermore, constraints can be
included to take into account limitations on, e.g., insulin delivery and the
permitted blood glucose concentration of the patient.

MPC has in earlier years been developed for intravenous insulin infu-
sions and glucose measurements, e.g., in [35], [36], where an MPC with
constraints on the insulin infusion rate was used. In [36], glucose infusion
was added as an additional controlled variable. Furthermore, an asymmet-
ric cost function was used to take into consideration that hypoglycemia is
much more dangerous than hyperglycemia.

Later, MPC was mainly used with subcutaneous glucose measurements
and insulin infusions. Using an unconstrained MPC controller gave perfor-
mance improvements over PID control [37] in in-silico trials. To include a
prediction of the amount of insulin available in the blood over time after an
intake of insulin, insulin on board (IOB) was incorporated into the MPC
controller [38]. An approach to combine the advantages of MPC control
with conventional therapy to cover disturbances like meals was presented
in [39]. The conventional therapy was used as a feed-forward compensa-
tion, while the MPC controller provided feedback control to cover, e.g.,
meal uncertainties. A way to adjust the controller parameters on a day
to day basis was done in [40] by adapting the MPC controller parameters
with a run-to-run strategy.

An advisory algorithm based on fuzzy control, which determines the
amounts of insulin to be injected by patients using multiple insulin doses
per day instead of a pump, was developed in [41]. Using expert knowledge
about diabetes treatment, the amounts of insulin to be injected were de-
termined on a day to day basis. Another algorithm aimed at determining
insulin doses for patients using multiple daily insulin injections based on
run-to-run control was developed in [42], which assumed a prescribed diet
regime for the patient.

26



2.5 Automatic Control for Diabetes

In [43], basal insulin infusion rate and bolus insulin intakes were cal-
culated using inversion via interval analysis, which determined a set of
bolus intakes and basal infusion rates guaranteeing a good postprandial
blood glucose response.

An approach to fit the MPC control scheme to optimize therapy for
patients using multiple insulin doses per day was presented in [44]. The
control signal determined by the MPC controller was approximated by
single control outputs at single time points through summation of the
MPC controller’s output signal. To take into account different patient
dynamics for different blood glucose concentrations, gain scheduling was
used. In an in-silico study it was found that approximating the insulin
signal determined by the MPC by single insulin injections did not reduce
the performance significantly.
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3

The Virtual Patient

In order to test the developed control algorithm in closed-loop, a type
1 diabetes Virtual Patient [45] was implemented. The Virtual Patient is
a complex, nonlinear model simulating the glucose-insulin system in the
body. Originally developed for meal simulation, it describes the physiolog-
ical events happening in the glucose-insulin system after a meal intake by
using compartment modeling [45]. The parameters were identified using
measurements of various fluxes and plasma concentrations of insulin and
glucose [46].

This nonlinear model was implemented in Matlab and Simulink [47],
serving as a simulated patient with type 1 diabetes to allow control algo-
rithms to be tested in closed-loop. Three different sets of parameters were
provided though the DIAdvisorTM project, so that three different patients
could be simulated.

Figure 3.1 shows how the whole system is divided into several parts,
connected through fluxes of insulin and glucose.

Glucose System The glucose system consists of two compartments.
The first compartment describes the insulin-independent glucose utiliza-
tion in, e.g., the brain, kidneys and red blood cells. The second com-
partment describes insulin-dependent glucose utilization in, e.g., muscle
and adipose tissue. Equation (3.1) shows the model describing the glucose
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Chapter 3. The Virtual Patient

Figure 3.1 Scheme of the glucose-insulin system. The continuous lines de-
note fluxes of insulin or glucose, the dashed lines denote insulin or glucose
signals controlling the sub-parts of the virtual patient. [46]

kinetics in the glucose system [46].

Ġp(t) = max{0, ĠEGP(t)} + Ra(t) + Uii(t) + E(t) (3.1)

+ k1 · Gp(t) + k2 · Gt(t)

Ġt(t) = −Uid + k1 · Gp(t) − k2 · Gt(t)

G(t) =
Gp(t)

Vg

The glucose masses in plasma and rapidly equilibrating tissues, and in
slowly equilibrating tissues are denoted by Gp(t) and Gt(t) [mg/kg], re-
spectively. The plasma glucose concentration is denoted by G(t) [mg/dL],
the endogenous glucose production by ĠEGP(t) [mg/kg/min], the glucose
rate of appearance in plasma by Ra(t) [mg/kg/min] and the renal excre-
tion by E [mg/kg/min]. The insulin-independent and insulin-dependent
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glucose utilization are denoted by Uii and Uid [mg/kg/min], respectively.
The distribution volume of glucose is Vg [dL/kg] and k1 and k2 are pa-
rameters [min−1] [46].

Renal Excretion of insulin occurs when the glucose in plasma exceeds
the threshold ke2. This is modeled as follows:

E(t) =

{

ke1[Gp(t) − ke2] if Gp(t) > ke2

0 if Gp(t) ≤ ke2

(3.2)

Insulin System The Insulin System consists of two compartments as
well. The first compartment represents the liver and the second compart-
ment the plasma. Degradation of insulin happens in both compartments.
Eq. (3.3) shows the insulin kinetics.

İl(t) = −(m1 + m3) · Il(t) + m2 · Ip(t) (3.3)

İp(t) = −(m2 + m4) · Ip(t) + m1 · Il(t) + S(t)

I(t) =
Ip(t)

Vi

The insulin masses in plasma and liver are denoted by Ip and Il

[pmol/kg], respectively, and the plasma insulin concentration by I [pmol/l].
The insulin secretion is denoted by S [pmol/kg/min], the distribution vol-
ume of insulin by Vi [l/kg] and m1, m2, m3 and m4 are rate parameters
[min−1].

Gastro-Intestinal Tract It provides the glucose rate of appearance
for the glucose system after a meal intake, describing the transit of glucose
through the stomach and the upper small intestine with three compart-
ments [48]. The first two compartments represent the solid and the liquid
phase of the stomach and the third one represents the intestine. The model
equations for the glucose absorption are shown in Ep. (3.4)

Qsto = Qsto1 + Qsto2 (3.4)

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = kgriQsto1(t) − kgut(t, Qsto)Qsto2

Q̇gut(t) = kgut(t, Qsto)Qsto2 − kabsQgut(t)

Ra(t) =
fkabs

Wbody
Qgut
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Chapter 3. The Virtual Patient

Here Qsto [mg] is the amount of glucose in the stomach, where Qsto1

[mg] represents the solid phase and Qsto2 [mg] the liquid phase. The glu-
cose mass in the intestine is denoted by Qgut [mg], kgri [min−1] denotes
the rate of grinding and kabs [min−1] the rate constant of intestinal ab-
sorption. The fraction of intestinal absorption that appears in the plasma
is f , and d [mg/min] is the rate of ingested glucose. The body weight is
denoted by Wbody [kg] and the rate of appearance of glucose in the plasma
by Ra [mg/kg/min]. The rate constant of gastric emptying kgut(t, Qsto)
[min−1] is a nonlinear function of Qsto:

kgut(t, Qsto) = kmin +
kmax − kmin

2
· {tanh[α(Qsto − bD̄(t))] (3.5)

− tanh[β(Qsto − aD̄(t))] + 2}

with

α =
5

2D̄(t)(1 − bv)

β =
5

2D̄(t)av

D̄(t) = Qsto +

∫ t̄f

t̄s

d(τ)dτ

where t̄s and t̄f are the initial and final time of the last glucose ingestion
and av, bv, kmin and kmax are model parameters. For details see [48].
Figure (3.2) shows the glucose rate of appearance Ra(t) as a response to
10 g carbohydrate intake for the three different virtual patients.

Endogenous Glucose Production The endogenous glucose produc-
tion by the liver is controlled by a glucose and an insulin signal. The model
equations are shown in Eq. (3.6).

ĠEGP(t) = kp1 − kp2Gp(t) − kp3Id(t) (3.6)

The delayed insulin signal Id [pmol/l] is given through Eq. (3.7).

İ1(t) = −kins(I1(t) − I(t)) (3.7)

İd(t) = −kins(Id(t) − I1(t))

Here I [pmol/l] is the plasma insulin concentration, kp1 [mg/kg/min] is

the extrapolated ĠEGP(t) at zero glucose, kp2 [min−1] is the liver glucose
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Figure 3.2 Glucose rate of appearance Ra(t) (lower panel) as a response to

10 g glucose intake (upper panel).

effectiveness, kp3 [mg/kg/min/(pmol/l)] is a parameter that influences the
amplitude of insulin action on the liver and kins [min−1] is a parameter
describing the delay between the insulin signal and insulin action.

Muscle and adipose tissue The glucose is utilized by the muscle
and adipose tissue, which is as well controlled by insulin and glucose
signals. The model equations are shown in Eq. (3.8).

Uid(t) =
Vm(t)Gt(t)

Km + Gt(t)
(3.8)

Vm(t) = Vm0 + VmxX(t)

Ẋ(t) = −p2UX(t) + p2U [I(t) − Ib]

Here X(t) [pmol/l] denotes the remote insulin, Ib is the basal insulin, I
denotes the plasma insulin, p2U is a rate constant of insulin action on pe-
ripheral glucose utilization and Km, Vm0 and Vmx are model parameters,
see [48] for details.

Subcutaneous Insulin Infusion The insulin secretion by the β-cell
is controlled by a glucose signal. However, since the virtual patient is to
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Figure 3.3 Insulin rate of appearance Ri(t) (lower panel) as a response to

1 unit insulin intake (upper panel).

be used to simulate a patient with type 1 diabetes, the β-cell secretion
block is substituted by a module describing subcutaneous insulin infusion.
This module introduces a higher endogenous glucose production as well.
All other parameters are kept unchanged, assuming the patient is in good
control [45]. The model equations for the subcutaneous insulin kinetics
are shown in Eq. (3.9).

İsc1(t) = RInf (t) − (kd + ka1)Isc1(t) (3.9)

İsc2 = kdIsc1(t) − ka2Isc2(t)

Ri(t) = ka1Isc1(t) + ka2Isc2(t)

Here Isc1 is the amount of nonmonomeric insulin in the subcutaneous
space, Isc2 is the amount of monomeric insulin in the subcutaneous space,
RInf (t) [pmol/kg/min] is the infusion rate of exogenous insulin, kd [min−1]
is the rate constant of insulin dissociation and ka1 [min−1] and ka2 [min−1]
are rate constants connected to nonmonomeric and monomeric insulin
absorption. The rate of appearance of insulin in plasma is denoted by
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Figure 3.4 blood glucose concentration of the three virtual patients as a

response to 10 g of glucose intake (upper panel) and 1 unit of insulin (lower
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Ri(t). Figure 3.3 shows the insulin rate of appearance Ri(t) [pmol/kg/min]
as an answer to an intake of 1 unit insulin for the three virtual patients.
Note that Ri(t) does not start at zero, since the effect of the bolus insulin
of 1 unit given to the virtual patient on the insulin rate of appearance is
added to a basal level of insulin.

Insulin Rate of Appearance Since the virtual patient simulates a
patient with type 1 diabetes, in Eq. (3.3) the insulin rate of appearance
Ri in the blood after subcutaneous insulin infusion is used instead of the
insulin secretion S, so that:

S(t) = Ri(t) = ka1Isc1 + ka2Isc2(t) (3.10)

Figure 3.4 shows the blood glucose concentration of the three virtual pa-
tients as a response to 10 g of carbohydrates (upper panel) and 1 unit
of insulin (lower panel). Note that throughout this thesis, the basal rate
needed to stabilize the virtual patient without insulin or glucose intakes
is provided to the virtual patients.
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Chapter 3. The Virtual Patient

The model presented in this chapter will be used as a virtual patient
to simulate patients with type 1 diabetes. Using this virtual patient allows
for closed-loop testing of proposed control algorithms.
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4

Patient Models and
Predictions

The control algorithms proposed in this thesis to calculate the doses of
insulin and glucose were based on a mathematical model of the patient
dynamics. Moreover, they used predictions of the blood glucose concen-
tration to take decisions about insulin and glucose intakes. Hence, models
of the glucose-insulin dynamics of the diabetic patient were needed.

Two different model structures were used to describe the dynamics
of the diabetic patient to be controlled. While the model in the previous
chapter served as a simulator of virtual patients, the models presented here
were used in the control and prediction algorithms. These models are lower
in complexity than the nonlinear model used as a virtual patient. A linear
state-space model was used in a prediction algorithm to predict future
blood glucose concentration. A hybrid model structure, describing the
same dynamics, was used within an opimization-based control algorithm
to determine the amounts of insulin and glucose to be applied to the
virtual patient. The second, selection-based, control algorithm presented
in this thesis used the state-space model as well to describe the patient
dynamics.

In this chapter, these two models and the prediction algorithm are
presented.
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4.1 State-Space Model

The linear state-space model used in the prediction algorithm and in one
of the control algorithms to describe the insulin-glucose dynamics of a
diabetis patient is shown in Eq. (4.1).

xk+1 = Axk + Buk + Kek (4.1)

yM,k = Cxk + ek

Here, the input uk is a vector including the insulin rate of appearance
Ri(t) and glucose rate of appearance Ra(t) as in Eq. (3.10) and Eq.
(3.4), respectively. The output yM,k is the blood glucose concentration
in [mg/dL].

Since a discrete time model was to be estimated, the rates of ap-
pearance and the blood glucose concentration at the output of the virtual
patient were sampled with 1 minute sampling time. For model estimation,
the function n4sid.m from the Matlab System Identification Toolbox [49]
was used, following guidelines in [50].

The estimation data consisted of 24 glucose intakes ag [g] distributed
over 9 days and 24 insulin intakes ai [IU] for all three patients, which
were placed in between the glucose intakes. The data for patient 2 is
shown in Fig. 4.1. The sizes and times of the intakes were not chosen in
a physiologically correct manner, but in order to get a good fit between
the output of the estimated model and the output of the virtual patient.
A discussion about identifying patient models using data measured from
real patients can be found in, e.g., [50] and [51].

For validation data, a data set of 3 days was taken, with meals three
time per day and reasonable amounts of glucose in the meals. The insulin
dose was given with the meal and its size was chosen in order to cover the
carbohydrate amount of the meal, according to, e.g., [52].

A state-space model was estimated using n4sid for model orders be-
tween 1 and 12 for the three virtual patients. The model with the model
order leading to the best FIT value for a 300 steps ahead prediction for
both estimation and validation data was chosen. The FIT value FIT [%] =
(1− (||yBG − yM ||)/(||yBG − ȳBG||)) · 100, where yBG is the blood glucose
concentration at the output of the virtual patient, ȳBG its mean value and
yM the output of the estimated model, represents the percentage of the
output variation that is explained by the estimated model [49] and was
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Figure 4.1 The data used for estimating the state-space model for patient
2.

calculated for the 300 step ahead prediction using the Matlab function
compare.m. For the validation data, a FIT of 86%, 88% and 87% could
be reached for virtual patients 1, 2 and 3, respectively.

4.2 Predictions

Since the control algorithms used predictions of the blood glucose concen-
tration to determine the amounts of glucose and insulin to be applied to
the patient, a prediction algorithm was needed. This prediction algorithm
used the state-space model in Eq. (4.1) to estimate the blood glucose
concentration at the output of the virtual patient for a future horizon Hp.

With the state-space model in Eq. (4.1), the blood glucose concentra-
tion p time steps ahead can be determined, where k is the actual time
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step, see Eq. 4.2.

ŷk+p = CApxk +

p−1
∑

m=0

CAp−1−mBuk+m (4.2)

Collecting the predictions for p = 1...Hp in one vector ŶHp
results

in Eq. (4.3), representing all blood glucose predictions for the prediction
horizon Hp.

ŶHp
= Sxxk + SuUHp

(4.3)

with

ŶHp
= ( ŷk+1 ... ŷk+Hp

)T

UHp
= (uk ... uk+Hp

)
T

Sx = (CA CA2 ... CAHp )T

Su =

















CB D 0 0 . . . 0

CAB CB D 0 . . . 0
...

...
. . .

. . .
. . .

...

CAHp−1B CAHp−2B . . . CB D 0

CAHpB CAHp−1B . . . CAB CB D

















where here D = 0.
The states xk of the patient model were estimated using a Kalman

filter [53]. The inputs ui for i = k...k + p− 1 were the glucose and insulin
rate of appearance calculated for the future horizon Hp. The rates of
appearance were determined from the insulin and glucose intakes using
Eq. (3.4) and Eq, (3.9), respectively.

4.3 Controller Model

The optimization-based control algorithm proposed in this thesis nedded
a model having single insulin and glucose intakes as inputs, not their
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rates of appearance, and the change in blood glucose concentration as a
response to those inputs over time as an output. A model in this form can
be found in [54] [55], which was used here.

For use in a discrete optimization problem, this model was discretized
with sampling time h, here h = 1 min. The sampling instant is denoted
by k.

The model takes the doses and times of glucose or insulin intakes
as inputs and has the change of blood glucose concentration over time
as an output. Equation (4.4) shows this model for insulin and glucose
intakes, where yh,g(k, kg, ag) is the change in blood glucose concentration
as response to a glucose intake of size ag [g] at time tg = h · kg [min]
and yh,i(k, ki, ai) the change in blood glucose concentration for an insulin
intake with the size ai [IU] at time ti = h · ki [min]. The model is linear
in the intake doses ai and ag.

yh,g(k; kg, ag) =

{

n1e
−n2h(k−kg)hn3(k − kg)

n3ag if k ≥ kg

0 else
(4.4)

yh,i(k; ki, ai) =

{

n4e
−n5h(k−ki)hn6(k − ki)

n6ai if k ≥ ki

0 else

The parameters n1 to n6 were estimated individually for the patient
to be controlled. This was done using nonlinear constrained optimization
[56], solving the optimization problem (4.5). The blood glucose concen-
tration at the output of the virtual patient is denoted by. An initial offset
coffset,BG in the blood glucose data yBG was subtracted from yBG. The
parameters n1 and n4 were constrained to ensure a physiologically correct
gain of the model considered.

min
n1...n6

N
∑

k=0

|yh,g(k; kg, ag) + yh,i(k; ki, ai) − (yBG(k) − coffset,BG)|2 (4.5)

n1 > 0

n4 < 0

41



Chapter 4. Patient Models and Predictions

0 500 1000 1500 2000

0

20

40
Change in BG for 10 g glucose

time [min]

[m
g/

dL
]

0 500 1000 1500 2000
−8

−6

−4

−2

0

2
Change in BG for 1 unit insulin

time [min]

[m
g/

dL
]

Figure 4.2 Output of the nonlinear model for patient 2. Upper panel:
Change of BG as response to 10 g of Glucose intake at time tg = 100. Lower
panel: Change of BG as response to 1 unit of insulin intake at time ti = 100.

Figure 4.2 shows yh,g(k, kg, ag) and yh,i(k, ki, ai) with ag = 10 g and
ai = 1 unit at times kg = ki = 100 as inputs for a sample patient. To
form the total change of blood glucose concentration from an initial value
when both insulin and glucose are taken at different times, those two
functions were added.

Note that both yh,g(k, kg, ag) and yh,i(k, ki, ai) start at zero, since they
descibe the deviation of the blood glucose concentration caused by intakes
of insulin or glucose.

The model presented here was used in the optimization-based con-
trol algorithm to describe the effects of intakes of insulin and glucose on
the blood glucose concentration. Based on this and predictions of future
blood glucose concentration, the optimization-based control algorithm cal-
culated doses of insulin and glucose.
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5

Diabetic Glycemia Control
via Optimization

The proposed control algorithm determined the amounts of insulin and
glucose a patient with type 1 diabetes should take in order to bring the
blood glucose concentration back to normoglycemia through solving an
optimization problem. This optimization problem was solved at distinct
points in time, e.g., when a meal occurs or when the blood glucose con-
centration left the normal range of 70 − 180 [mg/dL]. Hence, the insulin
and glucose control signals were pulse shaped.

While insulin treatment is important in most of the every day sit-
uations, additional glucose intakes can be important to prevent hyper-
glycemia under special conditions like exercise or stress [1]. Therefore,
apart from insulin dose advice, also glucose dose advices were determined
by the control algorithm proposed in this chapter.

The structure of the control loop is shown in Fig. 5.1. A virtual patient
as described in Sec. 4.3 was used to simulate the diabetic patient to be
controlled. A prediction algorithm (see Sec. 4.2) determined the blood
glucose concentration in a future horizon using information about the
blood glucose concentration at the output of the virtual patient and the
insulin and glucose applied to the virtual patient. The controller used
the blood glucose predictions and the blood glucose concentration at the
output of the virtual patient in an optimization algorithm to determine the
amount of insulin and glucose the patient should take. The optimization
problem was solved at specific points in time. When a meal occured or
when the blood glucose concentration was predicted to leave the normal
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Figure 5.1 The structure of the control algorithm.

range of 70 − 180 [mg/dL], the optimization was called to determine the
dose of insulin and glucose that should be administered to the virtual
patient.

This chapter is organized as follows. First, the cost function used by
the optimization problem is introduced. Next, the optimization problem
is formulated and last, the control algorithm invoking the optimization
problem is described.

5.1 The Asymmetric Cost Function

The cost function used in the optimization problem had an asymmetric
shape over the blood glucose concentration. The reason for this was that
low blood glucose values were associated with much worse complications
than high blood glucose values. Through the asymmetric shape, the cost
function in Eq. (5.1) [57] used here took this circumstance into account.

J =

Hp
∑

k=k0

L(k) (5.1)

L(y(k)) = a · y(k) + b + c · max{(d − y(k))3, 0}

44



5.1 The Asymmetric Cost Function

y [mg/dL]

L

0
0

50

50

100

100

150

150

200

200

250

250 300 350 400

Figure 5.2 The asymmetric cost function in Eq. (5.1).

The advantage of an asymmetric over a quadratic cost function for
control was already addressed in [58] and [59] for example.

The BG concentration is denoted by y(k). The time at which the op-
timization algorithm is called is denoted by k0 and the prediction horizon
over which the blood glucose concentration y(k) is predicted is Hp = 120
[min] (compare to Sec. 4.2). The parameters a, b, c and d have been ad-
justed to have a the minimum of the asymmetric cost L(y(k)) at 126
[mg/dL], so that a = 0.237, b = −32.66, c = 6 · 10−5 and d = 162. Figure
5.2 shows L over the blood glucose concentration y. One of the advantages
of the cost function (5.1) over, e.g., the asymmetric cost presented in [60]
is that it is convex. The convexity is shown in Appendix A.

For the optimization problem convexity means that the optimal solu-
tion to the problem is guaranteed to be found [61].

A technical advantage of the cost function (5.1) is that it handles
negative blood glucose values [57]. This is valuable because large insulin
intakes, which the prediction algorithm expects to lead to negative blood
glucose values, need to be taken into account in order to be avoided.
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5.2 The Optimization Problem

In order to determine the amounts of insulin and glucose to be taken by
the diabetic patient, an optimization problem was solved. The solution
to this problem was calculated if a meal occured, if the blood glucose
concentration was predicted to fall below 80 [mg/dL] or if it rose over
180 [mg/dL], see also Sec. 5.3. The optimization used the predicted blood
glucose values ŷ from Eq. (4.2) and added the effect of insulin and glu-
cose intakes on the blood glucose concentration according to Eq. (4.4).
Together, they form the expected future blood glucose concentration as
shown in Eq. (5.2):

y(k; ag, ai) = yh,g(k; kg, ag) + yh,i(k; ki, ai) + ŷ(k) (5.2)

The effect that intakes of insulin and glucose have on the blood glucose
concentration is denoted by yh,i(k; ki, ai) and yh,g(k; kg, ag), respectively.
The size of the insulin intake ai and the size of the glucose intake ag are
the optimization variables to be determined by the optimization problem.
The times of insulin and glucose intake ki and kg were set before the
optimization problem was solved. Hence, in Eq. (5.2), y(k; ag, ai) depends
linearly on the dose sizes and not on the intake times.

The optimization problem to be solved is shown in Eq. (5.3).

minimize
ai,ag

Hp
∑

k=1

[a · (yh,g(k; kg, ag) + yh,i(k; ki, ai) + ŷ(k)) + b (5.3)

+c · max{(d − (yh,g(k; kg, ag) + yh,i(k; ki, ai) + ŷ(k)))3, 0}
]

+ c3 · |ai| + c4 · |ag|

subject to

0 < ai < clim,i

0 < ag < clim,g

It used the cost function (5.1), where the blood glucose concentration y(k)
was substituted by Eq. (5.2). This gives a cost function, which depends on
the size of the insulin dose ai [IU] and the size of the glucose dose ag [g].
Since Eq. (5.2) is affine in ai and ag and the cost function (5.1) is convex,
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the composition is convex as well [61]. Linear constraints were added to
the optimization problem, which constrained the amount of insulin and
glucose determined by the optimization. The convex cost function and the
linear constraints on the optimization variables give a convex optimization
problem.

Solving the Optimization Problem

To solve the optimization problem (5.3), the Optimization Toolbox from
Matlab [56] was used. This toolbox offers algorithms to solve constrained
and unconstrained optimization problems. Among others, functions for
linear, quadratic and nonlinear optimization are available.

The optimization problem (5.3) had a smooth and nonlinear cost func-
tion with more than one optimization variable. The constraints were
bounds on the optimization variables. Therefore, the function fmincon

was used to solve (5.3). This function solves constrained optimization
problems in the form shown in Eq. (5.4).

minimize
z

f(z) (5.4)

subject to

Gi(z) = 0, i = 1, ..., me

Gi(z) ≤ 0, i = me + 1, ..., m

The function f(z) is the cost function to be minimized over the optimiza-
tion variables in the vector z, where f(z) can be nonlinear. The constraints
Gi(z) represents the constraints on the optimization problem. There are
me equality constraints and m− me inequality constraints, which can be
nonlinear as well. Comparing this to the optimization problem (5.3), the
cost function f(z) was the nonlinear function J in Eq. (5.1), where y(k)
was substituted by y(k; ai, ag) in Eq. (5.2). The optimization variables
were the doses of insulin and glucose, i.e., z = [ag ai]. There were no
equality constraints, but linear inequalities to limit the allowed doses for
insulin and glucose.

The active-set algorithm was used here within fmincon to solve the
optimization problem. The active-set algorithm does not need a gradient
to be provided and it can take large steps, to improve simulation speed
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[56]. The optimization variables, i.e. the amount of insulin and glucose,
were constrained to be positive.

5.3 The Control Algorithm

The control algorithm took predictions ŷ of the blood glucose concen-
tration during a future horizon, as produced by the predictor (see Sec.
4.2), and the actual measured blood glucose concentration as inputs, and
gave out values for the amount of insulin and glucose to be taken. Meals
taken by the virtual patient were, if not stated otherwise, assumed to be
unknown disturbances.

The amount of glucose and insulin to be taken was determined through
the optimization problem (5.3). This was solved in the following cases:

1) A meal occured,

2) The blood glucose concentration increased over 180 [mg/dL] and
was rising,

3) The blood glucose concentration was predicted to drop lower than
80 [mg/dL] within the next 15 minutes.

Note that since the blood glucose concentration increases after a meal, no
optimization was performed within the two hours following a meal insulin
bolus. An exception was a too low blood glucose concentration.

The amounts of insulin and glucose determined by the optimization
(5.3) were applied to the virtual patient. Moreover, they were applied to
the prediction algorithm. In this way, future predictions take past glucose
as well as insulin intakes into account. Hence, the blood glucose predictions
ŷ included information about the effect of past insulin intakes on the future
blood glucose concentration. Through the predictions, the optimization
problem within the controller had access to this information and could
determine new intakes accordingly.
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6

Diabetic Glycemia Control
via Selection

The approach used for the control algorithm proposed in this chapter was
based on selecting doses of insulin and glucose to be applied to the diabetic
patient from given sets. The criteria for selection was an asymmetric cost
function.

To model the patient dynamics, the state-space model from Eq. (4.1)
was used. This model had the rates of appearance of insulin and glucose as
inputs, while the sets contained insulin and glucose doses. Hence, the doses
of insulin and glucose were recalculated into their rates of appearance.

Using the rates of appearances, the patient model (4.1) and predictions
of the blood glucose concentration described in Sec. 4.2, the asymmetric
cost function was evaluated for every combination of insulin and glucose
intakes from the given sets. The combination leading to the smallest cost
was then applied to the virtual patient.

6.1 Predictions

The control algorithm proposed in this chapter used blood glucose pre-
dictions as they were calculated in Sec. 4.2. There, the blood glucose con-
centration was predicted employing past input and output data. However,
it did not include the effect that insulin and glucose intakes suggested by
a control algorithm within the prediction horizon have on the predicted
blood glucose concentration. This effect has to be added to the predicted
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blood glucose concentration for the control algorithm presented in this
chapter.

The patient model (4.1) had rates of appearance as inputs, while the
doses of insulin and glucose were to be compared using the asymmet-
ric cost function. Hence, the insulin and glucose doses from the given
sets were recalculated into their rates of appearance with Eq. (3.9) and
Eq. (3.4), respectively. The rate of appearance of glucose at time k is

denoted by u
(1)
RA(k) and the rate of appearance of insulin at time k by

u
(2)
RA(k). Both rates of appearance were collected into one vector uRA(k) =

[u
(1)
RA(k) u

(2)
RA(k)]T , which was the input vector for the patient model (4.1).

The input vector was then further divided into the rate of appearance
from a meal and the rates of appearance from insulin and glucose intakes
to be suggested by the control algorithm, see Eq. (6.1).

uRA(k) =

(

ū
(1)
RA(k)

0

)

+

(

ũ
(1)
RA(k)

ũ
21)
RA(k)

)

(6.1)

= ūRA(k) + ũRA(k)

The rate of appearance of glucose from a meal input is denoted by ū
(1)
RA(k)

and the rate of appearance from a glucose intake suggested by the con-

trol algorithm by ũ
(1)
RA(k). Similarly, ũ

(2)
RA(k) is the rate of appearance of

insulin from an insulin intake suggested by the controller. Furthermore,

it is ūRA(k) = [ū
(1)
RA(k) 0]T and ũRA(k) = [ũ

(1)
RA(k) ũ

(2)
RA(k)]T .

Denoting the blood glucose concentration at the output of the model
in Eq. (4.1) at time k with ys(k), the blood glucose concentration p time
steps ahead is, similarly as in Sec. 4.2, as shown in Eq. (6.2).

ys(k + p) = CApx(k) +

p−1
∑

m=0

CAp−1−mB uRA(k + m) (6.2)

The matrices of the state-space model (4.1) are denoted by A, B and C.
The state x(k) is estimated using a Kalman filter.

50



6.1 Predictions

Dividing the input uRA(k + m) as in Eq. (6.1) leads to Eq. (6.3).

ys(k + p) = CApx(k) +

p−1
∑

m=0

CAp−1−mB ūRA(k + m) (6.3)

+

p−1
∑

m=0

CAp−1−mB ũRA(k + m)

The first two parts of the sum on the right hand side are the predicted
output ŷ(k + p), which the prediction algorithm in Sec. 4.2 calculates, so
that

ys(k + p) = ŷ(k + p) +

p−1
∑

m=0

CAp−1−mB ũRA(k + m) (6.4)

(6.5)

Since ũRA(k) = [ũ
(1)
RA(k) ũ

(2)
RA(k)]T and B = [B1 B2], the sum in Eq. (6.4)

can be separated into the effect of glucose and insulin on the future blood
glucose, as shown in Eq. (6.6).

ys(k + p) = ŷ(k + p) +

p−1
∑

m=0

CAp−1−mB1 ũ
(1)
RA(k + m) (6.6)

+

p−1
∑

m=0

CAp−1−mB2 ũ
(2)
RA(k + m)

Collecting the future blood glucose values ys(k + p) for p = 1, ..., Hp

in a vector results in Eq. (6.7).

Ys,Hp
= ŶHp

+ Su,1Ũ1,Hp
+ Su,2Ũ2,Hp

(6.7)

The vector of blood glucose predictions over the prediction horizon Hp as

in Eq. (4.3) is denoted by ŶHp
. It is provided by the prediction algorithm

described in Sec. 4.2. The rates of appearance of glucose and insulin to be
suggested by the control algorithm over the prediction horizon are Ũ1,Hp
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and Ũ2,Hp
, respectively. The matrices Su,1 and Su,2 are, for i = 1, 2,

Su,i =

















CBi 0 0 . . . 0

CABi CBi 0 . . . 0

...
...

. . .
. . .

...

CAHp−1Bi CAHp−2Bi . . . CBi 0

CAHpBi CAHp−1Bi . . . CABi CBi

















To test different combinations of insulin and glucose doses, Eq. (6.7)
was used to calculate the blood glucose prediction within the prediction
horizon for the insulin and glucose doses to be tested. As described in the
next section, this will be used to evaluate which insulin and glucose doses
lead to a minimum value of the asymmetric cost function from Sec. 5.1.

6.2 The Selection-based Control Algorithm

In the initialization phase of the control algorithm, some matrices and
vectors were calculated in advance. The matrices Su,1 and Su,2 could be
calculated in the initialization phase, since they depend on the patient
model and not on the insulin and glucose doses to be given. Moreover,
Su,1Ũ1,Hp

and Su,2Ũ2,Hp
were calculated in advance for all combinations

of glucose and insulin doses in the given sets and stored for later usage.
Shifting the rates of appearance for the glucose and insulin intakes Ũ1,Hp

and Ũ2,Hp
k time steps into the future corresponds to taking the glucose or

insulin intakes k time steps further into the future during the prediction
horizon. For time shifts of 0, 10, 20, ..., Hp time steps into the prediction

horizon, Su,1Ũ1,Hp
and Su,2Ũ2,Hp

were calculated as well, for all the insulin
and glucose dose combinations in the given sets and stored for later usage.

Motivated by intensified therapy used in diabetes treatment [26], the
insulin and glucose intakes were determined at mealtime and when the
blood glucose concentration was predicted to fall under 80 [mg/dL]. The
algorithm determining the insulin and glucose doses was implemented as
follows. For all insulin and glucose doses in the given sets and the time
shifts to be tested, the asymmetric cost function in Eq. (6.8) was evaluated
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and stored.

J =

Hp
∑

k=0

[a · ys(k) + b + c · max{(d − ys(k))3, 0}] (6.8)

+ c3||ai||
2 + c4||ag||

2

Here, the blood glucose concentration k time steps into the prediction hori-
zon ys(k) is the k-th entry of the vector Ys,Hp

in Eq. (6.7), with Su,1Ũ1,Hp

and Su,2Ũ2,Hp
taken from the stored data according to the insulin and

glucose doses and the time shifts to be tested. The value of the cost func-
tion (6.8) for all the tested doses and time shifts was compared, and the
insulin and glucose doses and the time shifts leading to the smallest J
were chosen to be applied to the virtual patient.
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Simulations

In order to test and evaluate the proposed control algorithms in a closed-
loop manner, the virtual patient described in Sec. 3 was used. The control
algorithms, the predictor and the virtual patient were implemented in
Matlab Simulink [47].

In this chapter, the simulation setup for both control algorithms is
presented. Furthermore, a bolus calculator formula from the literature is
described. The bolus calculator is used to compare the two control algo-
rithms proposed in this thesis to. Moreover, the results of the simulations
are given.

7.1 Simulation Setup for the Optimization-based

Controller

The simulation setup used for the optimization-based controller described
in Ch. 5 is shown in Fig. 7.1. The virtual patient takes glucose ug(t) and
insulin ui(t) as inputs and gives out the blood glucose concentration signal
yBG(t). All these signals are used by a prediction algorithm to predict the
measured blood glucose concentration over a future horizon. The predictor
uses a linear model of the patient, here a virtual patient, and a Kalman
filter to calculate the predictions, see Sec. 4.2. The predictions of the
blood glucose concentration and the blood glucose concentration at the
output of the virtual patient are used by the optimization-based control
algorithm to determine the doses of insulin and glucose to be given to the
virtual patient, as described in Ch. 5.
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Virtual

Patient

Predictor

Controller

yBG(t)

ŷ(t)

ui(t)

ug(t)

meal [g]

Figure 7.1 The simulation set-up.

The parameters to be set within the control algorithm are the weights
c3 and c4, which punish the norm of the insulin and glucose dose sizes in
the optimization problem (5.3). Table 7.1 shows these parameters for the
virtual patients.

Table 7.1 Parameters used for the optimization-based controller presented
in chapter 5

Virtual Patient c3 c4

1 0 0

2 100 10

3 60 70

The algorithm was first tested without constraints on insulin and glu-
cose intakes to test the ability of the controller to keep the blood glucose
concentration in the safe range of 70 − 180 [mg/dL]. Furthermore, the
control algorithm was tested with constraints on insulin intakes to reduce
the amount of glucose and insulin given to the patient per day.
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7.2 Simulation Setup for Selection-based Controller

The setup used to simulate the controller presented in Chapter 6 is shown
as well in Fig. 7.1. The prediction of the blood glucose concentration ŷ(t)
as well as the blood glucose concentration at the output of the virtual
patient yBG(t) were inputs to the control algorithm. The outputs of the
control algorithm were the determined glucose and insulin doses. The
doses and times tested for insulin were [1, 2, 3, ..., 20] at [0, 10, 20, ..., Hp]
time points after the optimization was called. For glucose the tested doses
were [10, 20, 30, ..., 80] at [0, 10, 20, ..., Hp] time points after the optimiza-
tion was called. The prediction horizon was Hp = 180.

The parameters c3 and c4 punishing the size of the insulin doses in the
cost function (6.8) are shown in table 7.2.

Table 7.2 Parameters used for the selection-based controller

Virtual Patient c3 c4

1 0.1 5

2 1 10

3 10 10

7.3 Simulation Setup for the Bolus Calculator

To compare the performance of the control algorithms presented in this
thesis, an insulin bolus calculation formula as described in [62], [52] or
[63] is used to determine the amount of insulin to be taken with meals. As
shown in Eq. (7.1), this formula uses the current measured blood glucose
concentration yBG of the virtual patient, the amount of carbohydrates
in the meal M [g] and a reference blood glucose concentration yr, here
yr = 126 [mg/dL], to determine the meal insulin bolus.

ui,BC =
M

cITC
+

yBG − yr

cISF
(7.1)
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The patient’s insulin-to-carbohydrate ratio cITC [g/IU] and insulin sen-
sitivity factor cISF [mg/dL/IU] can be determined using the total dose
of insulin cTDD a patient takes per day through cITC = 500/cTDD and
cISF = 1800/cTDD [64], [65]. If the total dose of insulin per day for a pa-
tient is not known through previous treatment, as it is the case for the
virtual patients here, it can be approximated using cTDD = 0.66 · Wbody,
where Wbody is the patient’s body weight in [kg] [64].

7.4 Evaluation Methods

To evaluate the glycemic control for the different control algorithms pre-
sented and compare them, the low blood glucose and high blood glucose
indices as presented in [60], [66], [7] and the percentage of time spent in
the normal blood glucose range of 70 to 180 [mg/dL] Tsafe[%] are used.

The low blood glucose index (LBGI) and high blood glucose index
(HBGI) evaluate the glycemic control of a diabetic patient considering
the risk for hypoglycemia and hyperglycemia, respectively [60]. The LBGI
gives a measure of the frequency and magnitude of low blood glucose
readings, while the HBGI gives a measure of the frequency and magnitude
of high blood glucose readings [66]. They are calculated based on a risk
function, which emphasizes the higher risk connected to low blood glucose
readings compared to high blood glucose readings. This risk function is
given in Eq. (7.2) [66], [7].

r(yBG) = 10 · f(yBG)2 (7.2)

f(yBG) = 1.509 · ((ln(yBG))1.084 − 5.381)

The left branch rl(yBG) of the risk function (7.2) is connected to the
risk for hypoglycemia and its right branch rh(yBG,i) to the risk of hypo-
glycemia. These branches are calculated as given in Eq. (7.3) [66], [7].

rl(yBG) =

{

r(yBG) f(yBG) < 0

0 otherwise
(7.3)

rh(yBG) =

{

r(yBG) f(yBG) > 0

0 otherwise
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With this, the LBGI and HBGI are calculated as stated in Eq. (7.4) [66],
[7].

LBGI =
1

n

n
∑

i=1

rl(yBG,i) (7.4)

HBGI =
1

n

n
∑

i=1

rh(yBG,i)

In order to avoid both hypoglycemia and hyperglycemia, both LBGI
and HBGI should be small. According to [66], patients can be classified
according to the clinical risk connected to their measured blood glucose
concentration into three zones representing low, medium and high risk for
hypoglycemia and hyperglycemia for both LBGI and HBGI, as shown in
Table 7.3.

Table 7.3 Clinical risk of a a measured blood glucose concentration obtained
through LBGI and HBGI, to classify the quality of the glycemic control [66].

HBGI

L
B

G
I

< 5.4 4.5− 9 > 9

< 2.5 low (L) low/medium
(L/M)

low/high (L/H)

2.5− 5 medium/low
(M/L)

medium (M) medium/high
(M/H)

> 5 high/low (H/L) high/medium
(H/M)

high (H)

7.5 Simulation Results

The simulation results of the control algorithms described in the previous
chapters are presented here. Figures showing the results including the
measured blood glucose concentration, the amount of carbohydrates in
the meals and the advice given by the controllers are shown in Appendix

59



Chapter 7. Simulations

Table 7.4 Result Summary for Virtual Patient 1.
BC (Bolus Calculator), Opt (Optimization), SelC (Selection Controller); LBGI
(low blood glucose index), HBGI (high blood glucose index), clin. risk (clinical
risk according to Table 7.3), IP (total daily insulin dose), GP (total daily
carbohydrate consumption, without meals)

LBGI HBGI clin. risk Tsafe[%] IP [U] GP [g]

BC 0 12.59 L/H 53 17.2 0

Opt 0.22 3.59 L 85 85.7 152.3

SelC 0.37 2.97 L 82 20.01 20.01

Table 7.5 Result Summary for Virtual Patient 2.
BC (Bolus Calculator), Opt (Optimization), SelC (Selection Controller); LBGI
(low blood glucose index), HBGI (high blood glucose index), clin. risk (clinical
risk according to Table 7.3), IP (total daily insulin dose), GP (total daily
carbohydrate consumption, without meals)

LBGI HBGI clin. risk Tsafe[%] IP [U] GP [g]

BC 0.19 2.66 L 87 17.6 0

Opt 0.35 1.11 L 100 34.5 136.5

SelC 0.45 1.90 L 93 18.01 20.01

B. A summary of the results using LBGI, HBGI, percent of time in safe
rage Tsafe[%], total amount of insulin dose advice per day IP and the
total amount of glucose dose advice GP is shown in the tables 7.4, 7.5
and 7.6. Each row of the tables shows the results for one of the control
algorithms. The bolus calculator described in Sec. 7.3 is denoted by BC,
the optimization-based controller from Ch. 5 by Opt and the selection-
based controller from Ch. 6 by SelC.

The goal for the HBGI and LBGI is to have them as low as possible
(compare to Sec. 7.4), where the clinical risk connected to the HBGI and
LBGI as shown in Table 7.3 helps for the evaluation of these two indices.
Furthermore, the time Tsafe[%] spent in safe blood glucose range and the
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Table 7.6 Result Summary for Virtual Patient 3.
BC (Bolus Calculator), Opt (Optimization), SelC (Selection Controller); LBGI
(low blood glucose index), HBGI (high blood glucose index), clin. risk (clinical
risk according to Table 7.3), IP (total daily insulin dose), GP (total daily
carbohydrate consumption, without meals)

LBGI HBGI clin. risk Tsafe[%] IP [U] GP [g]

BC 0.47 4.45 L 76 13.8 0

Opt 0.25 2.61 L 80 42.6 172.3

SelC 0.37 2.97 L 82 20.01 20.01

total daily insulin and glucose dose advices are supposed to be low as well.
For all three tested virtual patients, the optimization-based control

algorithm Opt presented in Ch. 5 achieved a lower LBGI and HBGI than
the bolus calculator, which implies a lowered risk for low and high blood
glucose values. Furthermore, the percent of time spent in the safe range
70 − 180 [mg/dL] was higher than the bolus calculator for all tested vir-
tual patients. This decreased risk for blood glucose values outside the safe
range had to be paid for by increased doses of insulin and glucose. For an
example patient, the simulation results obtained with the bolus calcula-
tor are shown in Fig. 7.2 and those obtained with the optimization-based
controller are shown in Fig. 7.3. In this case, the amount of insulin for
the optimization-based controller was not constrained. As can be seen in
Fig. 7.2, the bolus calculator determined insulin doses bringing the blood
glucose concentration back into safe range after a meal. However, it is
conservative concerning the size of the insulin doses, leading to a shorter
time in safe range than for the optimization-based controller. The results
for the optimization-based controller in Fig. 7.3 show that without further
restrictions of the size of the insulin and glucose doses, the controller was
more aggressive than the bolus calculator. Alongside with the counteract-
ing carbohydrates, this leads to an increase of time spent in safe range
compared to the bolus calculator, but also an increase in the amount of
insulin and carbohydrates taken by the patient.

By constraining the amounts of insulin and glucose in the optimiza-
tion problem, less insulin and glucose per day could be achieved. Table
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Figure 7.2 Simulation results for Virtual Patient 2 with Bolus Calculator.

7.7 shows results when the amount of insulin per injection were restricted
to 15 units per intake for patient 1 and to 5 units per intake for patient 2
and patient 3. It can be seen that the amount of insulin and glucose per
day was reduced, but the time in safe range Tsafe[%] decreased and the
HBGI increased, compare also to Fig. 7.3 and Fig. 7.5. Figure 7.3 shows
the case when the amount of insulin per injection is not restricted, and
Fig. 7.5 shows when it is restricted. When restricting the insulin dose, it
seems from Fig. 7.5 that the behavior of the optimization-based control al-
gorithm got closer to that of the bolus calculator. The optimization-based
algorithm was still slightly more aggressive than the bolus calculator, and
it had a longer residence time in the safe range. Similar results can be
seen for other simulated patients, see Appendix B.

The control algorithm based on selection presented in Ch. 6 lead to
a lower HBGI than the bolus calculator for all tested patients. Figure
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Figure 7.3 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for good control.

7.4 shows the simulation results for a sample patient with the selection-
based controller. For two out of three patients, the HBGI was slightly
higher than for the selection-based controller. This can also be seen by
comparing Fig. 7.4 and Fig. 7.2. As the optimization-based controller, the
selection-based controller spenf more time in safe range than the bolus
caluclator. Comparing the amounts of glucose and insulin given to the
patient with the selection-based controller to the amounts given with the
optimization-based controller, it can be seen in the Tables 7.4, 7.5 and
7.6 that the selection-based controller gave significantly less insulin and
glucose to the patient. Compared to the optimization-based controller
with constrained insulin dose size, the selection-based controller spend
more time in safe range, while still having comparibly low insulin and
glucose doses per day.
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Figure 7.4 Simulation results for Virtual Patient 2 with the selection-based
controller

Table 7.7 Results of the optimization-based controller, tuned to give less
insulin and glucose dose advices. The amount of insulin has been constrained
to 15 units for patient 1, 5 units for patient 2 and 5 units for patient 3; LBGI
(low blood glucose index), HBGI (high blood glucose index), clin. risk (clinical
risk according to Table 7.3), IP (total daily insulin dose), GP (total daily
carbohydrate consumption, without meals)

LBGI HBGI clin. risk Tsafe[%] IP [U] GP [g]

Pat 1 0.28 5.36 L 78 47.85 24.68

Pat 2 0.20 2.32 L 90 15.01 0

Pat 3 0.17 4.27 L 76 15.01 16.31
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Figure 7.5 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for less insulin and glucose dose advice.
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Discussion

In order to help diabetic patients using multiple insulin intakes per day,
the intention was to develop an algorithm calculating insulin and glucose
dose advices using optimization methods. The goal was to spend as much
time as possible to the target blood glucose range of 70 − 180 [mg/dL],
while avoiding hyperglycemia and, more importantly, hypoglycemia (see
Sec. 1.2).

In this thesis, two different control algorithms have been proposed,
which gave both insulin and additional glucose dose advice. It was assumed
that the basal insulin need was covered. Hence, the control algorithms
determined insulin needs at mealtimes. Furthermore, glucose dose intakes
were determined in case of too low blood glucose concentration.

For evaluation, the proposed algorithms were compared to a bolus
calculator as found in e.g. [62], [52] or [63].

As shown in the Tables 7.4, 7.5 and 7.6, the risk for low and high blood
glucose values could be reduced using the optimization-based control al-
gorithm presented in Ch. 5. On the other hand, the reduced risk came
with an increase of the amount of insulin and glucose to be taken by the
patient. This result is not surprising, since the objective function of the
optimization problem did not include penalty on the dose sizes.

As shown in Table 7.7, the optimization-based control algorithm could
be tuned to give less insulin and glucose to the diabetic patient. However,
this led to a decreased control performance, i.e., less time in safe range
and a higher HBGI. With the limited insulin and glucose amounts, for
two out of the three patients the time in safe range was still higher than
for the bolus calculator, and in none of the cases did the performance get
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worse than the bolus calculator.
The selection-based controller SelC did not have any constraints on the

optimization variabels or the blood glucose concentration at the output
of the virtual patient. It based its decision about the insulin and glucose
doses only on the cost function. Even without constraining the allowed
insulin and glucose dose sizes, the selection-based controller could reach
a higher time in safe range Tsafe[%] than the bolus calculator and a lower
HBGI while giving significantly smaller insulin and glucose doses than the
optimization-based controller. In comparison to the optimization-based
controller with constraints on the size of the insulin doses, the selection-
based controller had a longer residence time in safe range, while still keep-
ing comparably low insulin and glucose doses.

In order to have good glycemic control, the absorption of carbohy-
drates into the blood should be matched by the absorption profile of in-
sulin into the bloodstream to even out the blood glucose concentration
[67]. Because of delays in the insulin absorption, this is not the case when
injecting insulin externally. To reduce the increase of blood glucose after
a meal, larger amounts of insulin had to be given, increasing the risk for
hypoglycemia. According to [26], intensified therapy of diabetes leads to
an increased risk for hypoglycemia. The results presented in Ch. 7 and
also in the Appendix B show that by giving more insulin than the bolus
calculator did, the optimization-based algorithm could decrease glucose
excursions after meals and the time spent outside safe range. However, in
order to avoid hypoglycemia large amounts of extra carbohydrates had to
be given to the patient in case of larger insulin intakes. Furthermore, when
restricting the amount of insulin that the optimization-based algorithm
was allowed to give to the patient per injection, the amount of insulin per
day and as a result also the amount of extra glucose per day could be
decreased. With these results it seemed there was a trade-off to be made
between the blood glucose concentration being in safe range as long as
possible and restricting the amount of insulin and glucose to be taken by
the patient. In the optimization-based control algorithm, adjusting pa-
rameters and constraints on insulin and glucose intakes could be used to
tune the trade-off and to adjust the aggressiveness of the controller, which
influences the time spent in safe range.

It can be seen in the figures shown in Ch. 7 and in Appendix B that
the optimization-based and the selection based control algorithms keept
away from hypoglycemia for all tested patients. This is due to the fact that
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the amounts of insulin and glucose doses were determined when the blood
glucose concentration was predicted to drop under 80 [mg/dL] within the
next 15 minutes. This allows for time to react before the blood glucose
drops too low.

The approach in this thesis was to give advices for single insulin injec-
tions. Compared to a bolus calculator (see Sec. 7.3), the approaches here
aimed at improving glycemic control by including more knowledge about
the specific patient than the bolus calculator through an individual patient
model in the control algorithm. A mathematical patient model enabled
predictions of future blood glucose concentration to be made. These pre-
dictions allowed the controller to take the expected future development of
the blood glucose concentration and the future expected impact of insulin
and glucose intakes into account when making its decisions. This gave the
chance for a higher degree of individualization than with the bolus cal-
culator. Although estimating good patient models from real patient data
remains challenging [50], such a model could describe the patient dynam-
ics, and thus how a specific patient’s blood glucose concentration reacts
to intakes of insulin and glucose, in greater detail than the parameters
used in a simple bolus calculation algorithm.

The optimization-based controller used patient models, which had the
doses of insulin and glucose as inputs. Here, the model parameters were
estimated from virtual patient data, where the input signals could be
chosen with some freedom in order to provide sufficient excitation to the
system to be estimated. However, this freedom is restricted when these
models are to be estimated from clinical patient data. Hence, estimat-
ing a good patient model is more problematic. On the other hand, the
selection-based controller uses state-space models having insulin and glu-
cose rates of appearance as inputs, which are less problematic to estimate.
In [50], ARMAX models with insulin and glucose rates of appearance were
estimated for real patient data.

It can be seen in the figures shown in the Appendix B, that the bolus
calculator in general gave smaller insulin doses than the optimization-
based controller, in order to safely stay away from hypoglycemia. For pa-
tient 2 however, the last insulin dose lead to hypoglycemia. By predicting
the effect of an insulin or glucose intake on the blood glucose concentra-
tion, the controller had the chance to keep the blood glucose concentration
in tighter bounds. Hence, as seen in the results for the optimization-based
controller, the control algorithm suggested the administration of larger
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insulin doses. Furthermore, the prediction of the blood glucose concentra-
tion enabled the control algorithm to suggest counteracting carbohydrates
before the blood glucose concentration falls under 80 [mg/dL], so that hy-
poglycemia could be prevented.

Through the mathematical model and the prediction algorithm, the
ongoing effect of past insulin intakes on the blood glucose concentration
was already included in the control algorithm. If insulin was taken in
the past, the blood glucose concentration would be predicted to decrease.
This blood glucose prediction was used by the optimization algorithm to
determine a new insulin dose. Using a bolus calculator, this would have to
be added extra as an insulin-on-board module in order to prevent stacking
of insulin intakes. Furthermore, it would be possible to include the effect of
future meals on the blood glucose concentration by using a mathematical
model and a prediction algorithm.

The optimization problem formulated to determine the insulin and glu-
cose doses did not have output constraints, since it was found that intro-
ducing constraints of 70− 180 [mg/dL] on the output lead to infeasibility
problems when solving the optimization problem. A meal would unavoid-
ably increase the blood glucose concentration to rise over 180 [mg/dL].
A small dose of insulin taken to cover the meal would lead to a blood
glucose concentration that still rises over 180 [mg/dL] within the first 1-2
hours after the meal, making the optimization algorithm infeasible. If this
increased blood glucose concentration could be avoided by overdosing in-
sulin, the blood glucose concentration would fall below 70 [mg/dL] within
the prediction horizon, leading to infeasibility as well. A way around this
infeasibility problem could be to introduce output constraints with dy-
namically adjusted size depending on meal size, within the first 2 hours
after a meal. However, it was found in this thesis that good results could
be achieved even without the use of output constraints.

Even though it still remained to be tested how the optimization-based
control algorithm presented in this thesis performs compared to a bolus
calculator in the presence of disturbances like stress or exercise, using
optimization algorithms and blood glucose predictions to decide upon
insulin and glucose intakes has been found to improve glucose control
compared to a bolus calculator in simulation-based tests. Through the
use of mathematical models, more detailed knowledge about the patient
dynamics could be incorporated into the algorithm than a bolus calculator
does.
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Looking back at the goal formulated in Sec. 1.2, the time spent in the
safe glycemic range could be increased for the optimization-based and the
selection-based control algorithms proposed in this thesis, as compared to
a bolus calculator algorithm found in literature, for all virtual patients
tested here. While the bolus calculator reached maximum 87 % time in
safe range and even as low as 53 %, the optimization-based algorithm could
reach between 80 and 100 % time in safe range and the selection-based
control algorithm between 82 % and 93 %, depending on the individual
patient.
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Conclusion and Future
Work

In order to give advice about insulin intakes to diabetic patients, where the
insulin dose advice should be a pulse-shaped signal, a mathematical opti-
mization problem was proposed to determine insulin intake at mealtime
and extra insulin and glucose intakes when the blood glucose concentra-
tion leaves the range of 70 − 180 [mg/dL]. The control algorithm that
incorporated this optimization problem used predictions of future blood
glucose concentration, which were determined by a prediction algorithm
based on past and present blood glucose measurements and insulin and
glucose intakes. The optimization problem as well as the prediction al-
gorithm made use of mathematical models describing the dynamics of a
diabetic patient. The control algorithm was tested in simulations using a
virtual implementation of a diabetic patient.

Moreover, a bolus calculator algorithm from literature was imple-
mented to compare the results obtained with the proposed control al-
gorithm. It was found that using mathematical optimization, the time
in the safe range of 70 − 180 [mg/dL] could be increased compared to
the bolus calculator for all tested patients, but at the cost of increased
amounts of insulin and glucose intakes. The proposed algorithm could
avoid hypoglycemia in all cases.

The optimization-based control algorithm could be tuned such that the
amounts of insulin and glucose given to the diabetic patient were reduced.
This results in less time spent in safe range and thus characteristics, which
approached those of a bolus calculator.
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However, careful tuning of the optimization-based control algorithm
had the potential to improve glycemic control as compared to the bolus
calculator.

The proposed algorithms provided freedom for individualization through
individualized mathematical models and controller parameters, so that the
controller could be adjusted specifically to the patient to be treated, to
give individualized advice.

To improve the algorithm further, insulin intakes should be allowed
before meal intake, since the dynamics of appearance of insulin into the
blood stream are slower than the dynamics of appearance of glucose from
a meal into the blood stream. Furthermore, it should be possible to deter-
mine additional glucose intakes at a later time point within the prediction
horizon and not necessarily at the same time as the insulin intake.

Another approach could be to constrain the blood glucose concentra-
tion of the patient to, e.g., 140 [mg/dL] from two hour after a meal onward.
The International Federation of Diabetes recommended that the two-hour
postmeal blood glucose concentration should not exceed 140 [mg/dL], as
long as hypoglycemia can be avoided [68].
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A

Convexity of the Cost
Function

One of the advantages of the cost function (5.1) over, e.g., the asymmetric
cost presented in [60] is that it is convex.The convexity of L(y(k)) in Eq.
(5.1) with respect to y(k) can be shown as follows. First, it is shown
that L1 = max{(d − y(k))3, 0} is convex in y(k). It is L1 = max{(d −
y(k))3, 0} = (max{(d − y(k)), 0})3. Since max{(d − y(k)), 0} is the point
wise maximum of two affine functions, it is convex. The function x3 is
convex and non-decreasing as long as x ≥ 0. The composition of these two
convex functions to L1 = (max{(d − y(k)), 0})3, gives a convex function
[61]. Note that max{(d − y(k)), 0} is always positive. The second part of
L(y(k)), which is L2 = a · y(k) + b, is an affine function and thus convex.
The weighted sum of L1 and L2 gives L(y(k)) = L2 + cL1, and is convex
since L1 and L2 are convex and c ≥ 0 [61].
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Simulation Results
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Figure B.1 Simulation results for Virtual Patient 1 with Bolus Calculator.
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Figure B.2 Simulation results for Virtual Patient 2 with Bolus Calculator.
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Figure B.3 Simulation results for Virtual Patient 3 with Bolus Calculator.
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Figure B.4 Simulation results for Virtual Patient 1 with the optimization-
based controller, tuned for good control.
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Figure B.5 Simulation results for Virtual Patient 1 with the optimization-
based controller, tuned for less insulin and glucose dose advices
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Figure B.6 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for good control.
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Figure B.7 Simulation results for Virtual Patient 2 with the optimization-
based controller, tuned for less insulin and glucose dose advice.
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Figure B.8 Simulation results for Virtual Patient 3 with the optimization-
based controller, tuned for good control.
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Figure B.9 Simulation results for Virtual Patient 3 with the optimization-
based controller,tuned for less insulin and glucose dose advice.
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Figure B.10 Simulation results for Virtual Patient 1 with the selection

based controller.
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Figure B.11 Simulation results for Virtual Patient 2 with the selection

based controller.
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Figure B.12 Simulation results for Virtual Patient 3 with the selection

based controller.
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