
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

From High-Level Task Descriptions to Executable Robot Code

Stenmark, Maj; Malec, Jacek; Stolt, Andreas

Published in:
Advances in Intelligent Systems and Computing

DOI:
10.1007/978-3-319-11310-4_17

2015

Link to publication

Citation for published version (APA):
Stenmark, M., Malec, J., & Stolt, A. (2015). From High-Level Task Descriptions to Executable Robot Code. In D.
Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, V. Sgurev, E. Sotirova, P. Szynkarczyk, & S. Zadrożny (Eds.),
Advances in Intelligent Systems and Computing (Vol. 323, pp. 189-202). Springer. https://doi.org/10.1007/978-3-
319-11310-4_17

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-319-11310-4_17
https://portal.research.lu.se/en/publications/8bda4b26-c295-4984-b888-3d6900325fcf
https://doi.org/10.1007/978-3-319-11310-4_17
https://doi.org/10.1007/978-3-319-11310-4_17


From High-Level Task Descriptions to
Executable Robot Code

Maj Stenmark1, Jacek Malec1, and Andreas Stolt2

1 Dept. of Computer Science, Lund University, 221 00 Lund, Sweden
maj.stenmark@cs.lth.se, jacek.malec@cs.lth.se

2 Dept. of Automatic Control, Lund University,221 00 Lund, Sweden
andreas.stolt@control.lth.se

Abstract. For robots to be productive co-workers in the manufacturing
industry, it is necessary that their human colleagues can interact with
them and instruct them in a simple manner. The goal of our research is
to lower the threshold for humans to instruct manipulation tasks, espe-
cially sensor-controlled assembly. In our previous work we have presented
tools for high-level task instruction, while in this paper we present how
these symbolic descriptions of object manipulation are translated into
executable code for our hybrid industrial robot controllers.

1 Introduction

Deployment of a robot-based manufacturing system involves a substantial amount
of programming work, requiring background knowledge and experience about the
application domain as well as advanced programming skills. To set up even a
straightforward assembly system often demands many days of work of skilled
system integrators.

Introducing sensor-based skills, like positioning based on visual information
or force-feedback-based movements, adds yet another level of complexity to this
problem. Lack of appropriate models and necessity to adapt to complexity of the
real world multiplies the time needed to program a robotic task involving contin-
uous sensor feedback. The standard robot programming environments available
on the market do not normally provide sufficient sensing simulation facility to-
gether with the code development for specific industrial applications. There are
some generic robot simulators used in research context that allow simulating
various complex sensors like lidars, sonars or cameras, but the leap from such
simulation to an executable robot code is still very long and not appropriately
supported by robot programming tools.

The goal of our research is to provide an environment for robot task program-
ming which would be easy and natural to use, even for plain users. If possible,
that would allow simulation and visualization of the programmed task before the
deployment phase, and that would offer code generation for a number of pre-
defined robot control system architectures. We aim in particular at ROS-based
systems and ABB industrial manipulators, but also other systems are considered.



In our work we have developed a system for translation from a high-level,
task-oriented language into either the robot native code, or calls at the level of
a common API like, e.g., ROS, or both, and capable to handle complex, sensor-
based actions, likewise the usual movement primitives.

This paper focuses on the code generation aspect of this solution, while our
earlier publications described the task-level programming process in much more
detail [1–4].

Below we begin by describing the system architecture and the involved, al-
ready existing components. Then we proceed to the presentation of the actual
contribution, namely the code generation process. In the next section we describe
the experiments that have been performed in order to validate this approach.
Finally we present a number of related works. The paper ends with conclusions
and suggestions for future work.

2 System Overview

The principles of knowledge-based task synthesis developed earlier by our group [1,
9] may be considered in light of the Model-Driven Engineering principles [5]. In
particular, the system described in the rest of this paper realizes the principles
of separation of concerns, and separation of user roles, as spelled out recently in
robotic context in [6]. It consists of the following components:

– An intuitive task-definition tool that allows the user to specify the task using
graphical menys and downloading assembly skills from a knowledge base, or
by using a natural-language interface [4, 7];

– An advanced graphical simulation and visualization tool for ABB robots,
extended with additional capabilities taking care of other hardware used in
our experiments;

– Software services transforming the task specification into a combination of a
transition system (a sequential function chart) and low level code executable
natively on the robot controller;

– Controllers specific for the hardware used: IRC5 and custom ExtCtrl [8] for
the ABB industrial robots, and ROS-based (www.ros.org) for the Rob@Work
mobile platform;

– ABB robots: a dual-arm concept robot, IRB120 and IRB140, Rob@Work
platform from Fraunhofer IPA (http://www.care-o-bot.de/en/rob-work.
html), Force/Torque sensors from ATI Industrial Automation (http://www.
ati-ia.com) used in the experiments mentioned in this paper, as well as vi-
sion sensors (Kinect and Raspberry Pi cameras) used for localization.

The functional dependencies in the system are illustrated in Fig. 1. The
knowledge base, called Knowledge Integration Framework (KIF), is a server
containing robotic ontologies, data repositories and reasoning services, all three
supporting the task definition functionality [2, 3, 9]. It is realized as an OpenRDF
Sesame (http://www.openrdf.org) triple store running on an Apache Tomcat
servlet container (http://tomcat.apache.org). The Engineering System (ABB



Fig. 1. The Knowledge Integration Framework provides services to the Engineering
System and the Task Execution. The latter two communicate during deployment and
execution of tasks. See also Fig. 5.

RobotStudio [11]) is a graphical user interface for high-level robot instruction
that uses the data and services provided by KIF for user support. The Engi-
neering System uses the ontologies provided by KIF to model the workspace
objects and downloads known skills and tasks from the skill libraries. Similarly,
new objects and skills can be added to the knowledge base via the Engineering
System. Skills that are created using classical programming tools, such as vari-
ous state machine editors (like, e.g., JGrafchart [12], used both as a sequential
function chart [13]—a variant of Statecharts [14]—editor, and its execution en-
vironment), can be parsed, automatically or manually annotated with semantic
data, and stored in the skill libraries.

The Task Execution module is built on top of the native robot controller and
sensor hardware. It compiles, with the help of KIF, a symbolic task specification
(like the one shown in Fig. 2) into generic executable files and, when needed,
hardware-specific code, before executing it. It is implemented on a real-time-
enabled Linux machine, linking the external control coming from JGrafchart
(a simple example is shown in Fig. 2(b)) or possibly other software, with the
native controller of the robot. Depending on the system state (execution or
teaching mode) or the action being carried out, the control is switched be-
tween the ExtCtrl system for sensor control and the native controller, allowing
smooth integration of the low-level robot code with the high-level instructions
expressed using the SFC formalism. It also runs adaption and error detection
algorithms. The native robot controller is in our case an ABB IRC5 system
running code written in the language Rapid, but any (accessible) robot con-
troller might be used here. The Engineering System uses among other tools a
sensor-based-motion compiler [15] translating a symbolic, constraint-based [16]
motion specification into an appropriately parametrized corresponding SFC and
the native controller code.

In addition to the benefit of providing modular exchangeable components,
the rationale behind KIF as a separate entity is that the knowledge-providing



(a) The task is shown as a
sequence in Engineering Sys-
tem.

(b) A small part of the state
chart generated from the se-
quence in Fig. 2(a).

(c) A sample XML description corresponding to the
guarded motion skill from Fig. 2(a) that is sent to the
code generation service by Engineering System. The pa-
rameter values are either set automatically or by the
user in the Engineering System. If a guarded motion is
generated, e.g., from text and one of the parameters is
an impedance controller, the controller is selected among
the controller objects in the station. All mandatory pa-
rameters must be specified before the code generation
step.

Fig. 2. A task can be created using the graphical interface of the Engineering Sys-
tem or by services for automatic sequence generation. The sequence shown is part of
an assembly of an emergency stop button (see next section), consisting of a synthe-
sized guarded motion, a complex snapFitSkill and three position-based primitives, see
Fig. 2(a). In Fig. 2(b) the step named skill1 is a macro step containing the synthesized
guarded motion skill. Before and after the actual skill the steps for starting and turn-
ing off ExtCtrl are inserted. The idle state resets all reference values of the controller.
Finally, Fig. 2(c) presents the corresponding input to the code generation service.



services can be treated as black boxes. Robot and system-integration vendors
can offer their customers computationally expensive or data-heavy cloud-based
services [10] instead of deploying them on every site and each installation.

3 Code Generation

In order to illustrate the process of code generation, we will use an example
task where a switch is assembled into the bottom of an emergency stop box.
Both parts are displayed in Fig. 3(a). The task is described in the Engineer-
ing System as a sequence, shown earlier in Fig. 2(a). First the box is picked
and aligned to a fixture with a force sensor. Then the switch is picked and
assembled with the box using a snap-fit skill. The sequence is mixing actions
(pickbox, movetofixt, pickswitch and retract) that are written in native
robot controller code (ordinary blind moves), guarded search motions which are
actions that are force-controlled (alignment to the fixture), and it also reuses a
sensor-based skill (snapFitSkill. In this section we present how we generate
and execute code for tasks containing these three types of actions. As an example
we will use the sequence shown in Fig. 2(a) that, when executed, requires switch-
ing between the native robot controller and the external, sensor-based control
(ExtCtrl).

(a) The parts that are used in the process:
the bottom of an emergency stop box (later
”box”) and a switch that will be inserted
into the box.

(b) The two-armed ABB robot and the
workspace setup.

Fig. 3. The example setup for the assembly experiments.

The task sequence is translated into executable code in two steps. First, the
native code for each primitive action is deployed on the robot controller. In this
case RAPID procedures and data declarations are added to the main module and
synchronized to the ABB controller from the Engineering System. In the second
step a KIF service generates the task state machine (encoded as an SFC). Thus,



KIF acts both as a service provider and a database, where the service builds a
complete SFC, which can include steps synthesized from skills that are stored
in the KIF databases. The final SFC is executed in JGrafchart, which, when
necessary, calls the RAPID procedures on the native controller. The data flow
between the modules is illustrated in Fig. 4.

KIF ES

Native 
controllerKIF ES Deployer/

JGrafchart

Native 
controller

The user stores 
skill instances

The code module 
is deployed on 

native controller 

Deployer/
JGrafchart

The task description 

Calls code generation 
module with description 

JGrafchart 
state 

machine 

ExtCtrl

ExtCtrl

 Starts execution

Function 
calls

Status

Reference 
values

Status

Fig. 4. The Engineering System (ES) sends the task description to a small helper
program called Deployer which in turn calls the code generation service on KIF, loads
the returned file and starts JGrafchart.

3.1 Execution System Architecture

The execution system architecture is depicted in Fig. 5. The task is executed
in JGrafchart, which in turn invokes functions on different controllers. The ex-
ternal controller (ExtCtrl) is implemented using Matlab/Simulink Real Time
Workshop. It sends position and velocity references to the robot while measure-
ments from the sensors are used to control the motion. Motions are specified
using a symbolic framework based on iTaSC [16], by constraining variables such
as positions, velocities or forces in a closed kinematic chain that also contains
the robot.

The communication between the modules is done using a two-way protocol
called LabComm (http://wiki.cs.lth.se/moin/LabComm). LabComm pack-
ages data in self-describing samples and the encoders and decoders may be



JGrafchart

ExtCtrl Native 
controller

CommandsReference 
values

Sensor signals

Control loop

Wednesday, February 5, 14

Fig. 5. A schematic image of the execution architecture. The task state machine is
executed in JGrafchart, which in turn sets and reads reference values to ExtCtrl and
sends commands to the native controller.

generated for multiple languages (C, Java, RAPID, C#). The ExtCtrl inter-
face divides the samples into four categories: inputs, outputs, parameters and
log signals. Hence, JGrafchart can set output signals and read inputs from the
underlying controller.

LabComm is also used to send commands (strings and acknowledgements) to
the native controller. In that sense, the protocol aligns well with ROS messages,
and two-way LabComm-ROS bridges have also been created. This is important
since a few of our robot systems are ROS-hybrids, where an ABB manipulator
is mounted on top of a ROS-based mobile platform, each having a separate
LabComm channel to JGrafchart.

3.2 Sequential function charts in JGrafchart

JGrafchart is a tool for graphical editing and execution of state charts [12].
JGrafchart is used for programming sensor-based skills and has a hierarchical
structure where state machines can be nested. For each robot, the generated state
machine will be a sequence. Each primitive or sensor-based skill is represented
by a state (step), and transitions are triggered when the primitive action or skill
has finished. Each state can either contain a few simple commands or be a nested
state machine, put into a so called macro step (in Fig. 2(b) shown by a square
with marked corners). The generated and reused skills are put into these macro
steps while primitive actions becomes simple steps with function calls.

When alternating between sensor-based external control and the native con-
troller, the controllers are turned on and off during the execution, so these steps
need to be added as well during the generation phase. The switching between
controllers is handled by the state machine in JGrafchart. When ExtCtrl is
turned on or off, the robot has to stand still to avoid inconsistent position and



velocity values. When a controller is turned on it starts by updating its position,
velocity and acceleration values to the current values on the robot.

The state machine can have parallel activities and multiple communication
channels at the same time. Hence, code can be generated for multiple tasks and
executed in parallel. Although the state machine allows synchronization between
the tasks, we do not have a high-level representation of synchronized motions
yet.

Finally, the sequence IDs and graphical elements, such as positions of the
blocks, have to be added in order to provide an editable view. We generate very
simple layout, however, much more could be done with respect to the legibility
of the generated SFCs.

3.3 Code generation service

The code generation is implemented as an online service which is called by the
Engineering System. It takes an XML description with the sequence as input
and outputs the XML-encoding of the sequential function chart understood by
JGrafchart. An example of the input is shown in Fig. 2(c). Each robot has its
own task, which needs to specify what LabComm port it will connect to. A
primitive is specified by its procedure name and parameters to the procedure.
Reusable skills are referenced by their URI, which is the unique identifier that
is stored in the KIF repositories.

3.4 Reusing skills

A skill that is created in JGrafchart as a macro step, can be uploaded to KIF
and reused. During the upload, it is translated into RDF triples. The skills are
annotated with types, e.g., SnapFit, and skill parameters that are exposed to the
users are also annotated with types and descriptions. The RDF representation
is a simple transformation, where each state in the state machine is an RDF
node annotated as a State, together with parameters belonging to the state, the
commands, a description of the state (e.g. Search x) and is linked to transitions
(which similarly are annotated with type and values). In this way, the param-
eters can be retrieved and updated externally using the graphical view in the
engineering system. When a skill is updated in the engineering system, the new
instance is also stored in KIF with the new parameter values. The URI in the
input XML file refers to the updated skill, that is retrieved during the code
generation process and translated back from triples to XML describing a macro
step. The macro step is then parameterized and added as a step in the task
sequence XML.

3.5 Guarded motions

One drawback of using the reusable skills is that there are implicit assumptions
of the robot kinematics built into them, and thus the skill can only be used for



the same (type of) robot. This limitation can be avoided by using a symbolic skill
description and regenerating the code for each specific robot. This is what we do
for the guarded motions. In this case, the skill specification is larger, as shown
in Fig. 2(c), where three actions are described. First, a search in the negative z-
direction of the force sensor frame (f1) is performed. When the surface is hit, the
motion continues in negative y-direction of the same frame while holding 3 N in
the z-direction, pushing the piece to the side of the sensor. The last motion is in
the x-direction while both pressing down and to the side, until the piece is lodged
into the corner. In order to setup the kinematic chain, the coordinate frames that
are used to express the motions have to be set, as well as the tool transform, that
is, the transformation from the point where the tool is attached on the robot
flange to the tip of the tool. Each constraint is specified along an axis of a chosen
frame. There can be one motion constraint (using the <Direction> tag) which
specifies the motion direction, speed and the threshold value for stopping. The
other rotational and translational axes can also be constrained. The constraint
should also specify what set of impedance controller parameters to use. Knowing
what robot the code is generated for, the control parameters for the kinematic
chain are set to the values of the frames and each motion sets reference values on
corresponding parameters. Simply put, it is a mapping, where several hundred
output signals have to get a value, where most are just dependent on the robot
type, while some represent the coordinates of the frames in the kinematic chain
and other reference values during execution. During the code generation the
right value has to be set to the corresponding reference output signal and this
is calculated depending on what frame is used.

3.6 RAPID code generation

The actions that have native controller code are called primitives. There are
several different primitives and, in fact, they do not have to be simple. The most
used are simple linear motions, move primitives for translation and rotation, and
actions for opening and closing the gripper. The gripper primitives are down-
loaded together with the tool. The simplest form of a primitive is pure native
code, a RAPID primitive, which does not have any semantically described pa-
rameters but where the user can add arbitrary lines of code which will be called
as a function in the program. This is an exception though, since most primitives
are specified by their parameters. E.g., the properties of a linear move are shown
in Fig. 6. The target positions will be calculated from the objects’ CAD-models
and the objects’ relative frames and positions in the virtual environment. The
code for each primitive type and target values are synchronized to the controller
as RAPID procedures and data declarations.

Hence, JGrafchart will invoke a primitive function with a string consisting
of the procedure name followed by comma-separated parameters, e.g, ”MoveL
target 1, v1000, z50”. The string value of the procedure name can be invoked
directly with late binding, however, due to the execution model of the native
controller the optional parameters have to be translated into corresponding data



Fig. 6. The properties of a move primitive: zone data for specifying maximal allowed
deviation from the target point, velocity in mm/s, the position(s) of the motion speci-
fied by a relative position of the actuated object to a (frame of a) reference object. A
motion can have a list of positions added to it.

types, the target name must be mapped to a robtarget data object and, e.g., the
speed data has to be parsed using native functions.

4 Experiments

In order to verify that the code generation works as expected, we tested it using
the sequence from the Engineering System depicted in Fig. 2(a) which resulted
in an executable state machine, the same that is partly shown in Fig. 2(b).
The state machine is the nominal task execution, without any task-level error
handling procedures. We have generated code for a two-armed ABB concept
robot (see Fig. 3(b)) and the generation for guarded motions is working for both
the left and the right arm, as well as for ABB IRB120 and IRB140 manipulators.

5 Related Work

The complexity of robot programming is a commonly discussed problem [17, 18].
By abstracting away the underlying details of the system, high-level program-
ming can make robot instruction accessible to non-expert users. However, the
workload for the experienced programmer can also be reduced by automatic gen-
eration of low-level control. Service robotics and industrial robotics have taken
somewhat different but not completely orthogonal paths regarding high-level
programming interfaces. In service robotics, where the users are inexperienced
and the robot systems are uniform with integrated sensors and software, pro-
gramming by demonstration and automatic skill extraction is popular. A survey
of programming-by-demonstration models is presented by Billard [19].

Task description in industrial robotics setting comes also in the form of hierar-
chical representation and control, but the languages used are much more limited
(and thus more amenable to effective implementation). There exist a number
of standardized approaches, based e.g., on IEC 61131 standards [13] devised



for programmable logic controllers, or proprietary solutions provided by robot
manufacturers, however, to a large extent incompatible with each other. EU
projects like RoSta [20] (www.robot-standards.org) are attempting to change
this situation.

In industrial robotics, programming and demonstration techniques are used
to record trajectories and target positions e.g., for painting or grinding robots.
However, it is desirable to minimize downtime for the robot, therefore, much
programming and simulation is done offline whereas only the fine tuning is done
online [21–23]. This has resulted in a plethora of tools for robot programming,
where several of them attempt to make the programming simpler, e.g., by using
visual programming languages. The graphics can give meaning and overview,
while still allowing a more advanced user to modify details, such as tolerances.
In robotics, standardized graphical programming languages include Ladder Di-
agrams, Function Block Diagrams and Sequential Function Charts. Other well
known languages are LabView, UML, MATLAB/Simulink and RCX. Using a
touch screen as input device, icon-based programming languages such as in [24]
can also lower the threshold to robot programming. There are also experimental
systems using human programmer’s gestures as a tool for pointing the intended
robot locations [25]. However, all the systems named above offer monolithic com-
pilation to the native code of the robot controller. Besides, all the attempts are
done at the level of robot motions, focusing on determining locations. Experi-
ences show [26] that even relatively simple sensor-based tasks, extending beyond
the “drag and drop” visual programming using those tools, require a lot of time
and expertise for proper implementation in mixed architecture like ours.

Reusable skill or manipulation primitives are a convenient way of hiding the
detailed control structures [27]. The approach closest to ours is presented in the
works of M. Beetz and his group, where high-level actions are translated, using
knowledge-based techniques, into robot programs [28]. However, the resulting
code is normally at the level of ROS primitives, acceptable in case of service
robots, but without providing any real-time guarantees needed in industrial set-
ting. In this context, they also present an approach to map high-level constraints
to control parameters in order to flip a pancake [29].

6 Conclusions and Future Work

In this paper we have described how we generate executable code for real-time
sensor-based control from symbolic task descriptions. Previous work in code
generation is limited to position-based approaches. The challenge to go from
high-level instructions to robust executable low-level code is an open-ended re-
search problem, and we wanted to share our approach in high technical detail.
Naturally, different levels of abstraction have different power of expression. Thus,
generating code for different robots from the same symbolic description is much
easier than reusing code written for one platform by extracting its semantic
meaning and regenerating the skill for another platform. Hence, it is important
to find suitable levels of abstraction, and in our case we have chosen to express



the guarded motions using a set of symbolic constraints. The modular system
simplifies the code generation, where the user interface only exposes a subset of
parameters to the user, while the JGrafchart state machine contains the calcu-
lated reference values to the controllers and coordinates the high-level execution.
The external controller is responsible for the real-time sensor control which is
necessary for achieving the necessary performance for assembly operations.

In future work we plan to experiment using a mobile platform running ROS
together with our dual-arm robot and thus evaluate how easy it is to extend
the code generation to simultaneously support other platforms. The sequence
can express control structures, such as loops and if-statements, ongoing work
involves adding these control structures to the task state machine as well as
describing and generating the synchronization between robots.

The robustness of the generated skills depends on the user input. One direc-
tion of future work is to couple the graphical user interface with haptic demon-
strations and learning algorithms in order to extract e.g., force thresholds and
impedance controller parameters. Another direction is to add knowledge and
reasoning to the system to automatically generate error handling states to the
task state machine.

7 Acknowledgments

The research leading to these results has received partial funding from the Euro-
pean Union’s seventh framework program (FP7/2007-2013) under grant agree-
ments No. 285380 (project PRACE) and No. 287787 (project SMErobotics).
The third author is a member of the LCCC Linnaeus Center and the eLLIIT
Excellence Center at Lund University.

The work described in this paper has been done in tight collaboration with
other researchers from the project consortia. The authors are indebted for many
fruitful discussions.

The authors are grateful to Anders Robertsson for careful proofreading.

References

1. Anders Björkelund, Lisett Edström, Mathias Haage, Jacek Malec, Klas Nilsson,
Pierre Nugues, Sven Gesteg̊ard Robertz, Denis Störkle, Anders Blomdell, Rolf Jo-
hansson, Magnus Linderoth, Anders Nilsson, Anders Robertsson, Andreas Stolt,
and Herman Bruyninckx. On the integration of skilled robot motions for produc-
tivity in manufacturing. In Proc. IEEE International Symposium on Assembly and
Manufacturing, Tampere, Finland, 2011. doi: 10.1109/ISAM.2011.5942366.

2. Jacek Malec, Klas Nilsson, and Herman Bruyninckx. Describing assembly tasks in
a declarative way. In: ICRA 2013 WS on Semantics, Identification and Control of
Robot-Human-Environment Interaction, 2013.

3. Maj Stenmark and Jacek Malec, Knowledge-Based Industrial Robotics, In Proc. of
The 12th Scandinavian AI Conference, Aalborg, Denmark, November 20–22, 2013.
doi: http://dx.doi.org/10.3233/978-1-61499-330-8-265



4. Maj Stenmark and Jacek Malec, Describing constraint-based assembly tasks in
unstructured natural language In: Proc. IFAC 2014 World Congress, Capetown,
South Africa, 24-29 August 2014.

5. Stuart Kent, Model Driven Engineering, In: LNCS 2335, pp. 286–298, 2002
6. Dominick Vanthienen, Markus Klotzbuecher, and Herman Bruyninckx, The 5C-

based architectural Composition Pattern, JOSER, vol. 5, no. 1, pp. 17–35, 2014
7. Maj Stenmark and Pierre Nugues, Natural Language Programming of Industrial

Robots, In Proc. International Symposium of Robotics 2013, Seoul, South Korea,
October 2013.

8. Anders Blomdell, Isolde Dressler, Klas Nilsson and Anders Robertsson, Flexible
Application Development and High-performance Motion Control Based on External
Sensing and Reconfiguration of ABB Industrial Robot Controllers. In Proc. of ICRA
2010, pp. 62-66, Anchorage, USA, 2010.

9. Anders Björkelund, Jacek Malec, Klas Nilsson, Pierre Nugues and Herman Bruyn-
inckx. Knowledge for Intelligent Industrial Robots, Proc. AAAI 2012 Spring Symp.
On Designing Intelligent Robots, Stanford Univ., March 2012.

10. Maj Stenmark, Jacek Malec, Klas Nilsson, and Anders Robertsson, On Distributed
Knowledge Bases for Industrial Robotics Needs, In Proc. Cloud Robotics Work-
shop at IROS 2013, Tokyo, 3rd November 2013, http://www.roboearth.org/wp-
content/uploads/2013/03/final-13.pdf

11. ABB RobotStudio, http://new.abb.com/products/robotics/robotstudio. Visited
2013-02-04.

12. Alfred Theorin, Adapting Grafchart for Industrial Automation, Licentiate Thesis,
Lund University, Department of Automatic Control, 2013

13. IEC. IEC 61131-3: Programmable controllers – part 3: Programming languages.
Technical report, International Electrotechnical Commission, 2003.

14. David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

15. Maj Stenmark and Andreas Stolt. A System for High-Level Task Specification
Using Complex Sensor-based Skill In RSS 2013 workshop, Programming with con-
straints: Combining high-level action specification and low-level motion execution,
Berlin, Germany, 2013.

16. Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben Smits,
Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx. Constraint-based task
specification and estimation for sensor-based robot systems in the presence of geo-
metric uncertainty. The International Journal of Robotics Research, 26(5):433–455,
2007.

17. Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish. Recent progress on
programming methods for industrial robots. In 41st International Symposium on
Robotics (ISR) and 6th German Conference on Robotics (ROBOTIK), pages 619–
626. VDE VERLAG GMBH, Berlin, 2010.

18. G. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. Fuhlbrigge. Easy robot
programming concepts: An industrial perspective. In Proceedings 9th IEEE Inter-
national Conference on Automation Science and Engineering, Madison, Wisconsin,
USA, 2013.

19. A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Springer Handbook of Robotics,
chapter: Robot Programming by Demonstration, pages 1371–1394. Springer Ver-
lag, 2008.

20. Andres Nilsson, Riccardo Muradore, Klas Nilsson and Paolo Fiorini, Ontology for
Robotics: a Roadmap, Proceedings of The Int. Conf.Advanced Robotics (ICAR09),
Munich, Germany, 2009.



21. S. Mitsi, K.-D.Bouzakis, G. Mansour, D. Sagris, and G. Maliaris. Off-line pro-
gramming of an industrial robot for manufacturing Int. J. Adv. Manuf. Technol.,
(2005) 26:262-267

22. Vitor Bottazzi, and Jaime Fonseca. Off-line Programming Industrial Robots Based
in the Information Extracted From Neutral Files Generated by the Commercial
CAD Tools Industrial Robotics: Programming, Simulation and Application, Edited
by: Low Kin Huat, ISBN 3-86611-286-6, 2006.

23. M. Hägele, K. Nilsson, and J. N. Pires. Springer Handbook of Robotics, chapter:
Industrial Robotics, pages 963–986. Springer Verlag, 2008.

24. R. Bischoff, A. Kazi, and M. Seyfarth. The morpha style guide for icon-based
programming. In Proc. of the IEEE Int. Workshop on Robot and Human Interactive
Communication, 2002.

25. Pedro Neto, J. Norberto Pires, and A. Paulo Moreira. High-level programming
and control for industrial robotics: using a hand-held accelerometer-based input
device for gesture and posture recognition. Industrial Robot, pp. 137–147, Vol. 37,
No. 2, 2010.

26. Andreas Stolt, Magnus Linderoth, Anders Robertsson, and Rolf Johansson. Force
controlled assembly of emergency stop button. In 2011 IEEE International Con-
ference on Robotics and Automation, Shanghai, China, May 2011.

27. T. Kroeger, B. Finkemeyer, and F. M. Wahl. Manipulation Primitives — A Uni-
versal Interface between Sensor-Based Motion Control and Robot Programming.
In Robotic Systems for Handling and Assembly, pages 293–313, Springer, 2010.

28. Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth, CRAM: A Cognitive
Robot Abstract Machine for Everyday Manipulation in Human Environments, In
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 18–22, 2010, Taipei, Taiwan.

29. I. Kresse and M. Beetz. Movement-Aware Action Control Integrating Symbolic
and Control-Theoretic Action Execution. In Proc. ICRA 2012, pages 3245–3251,
2012.


