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Abstract 

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases that 

have a remitting, relapsing nature. During relapse, they are treated with drugs and surgery. 

The present study was based on individual data from patients diagnosed with CD or UC at 

Herlev University Hospital, Copenhagen, Denmark, during 1991-1993. The data was 

aggregated over calendar years, for each year the number of relapses and the number of 

surgical operations were recorded. Our aim was to estimate Markov models for disease 

activity in Crohn's disease and ulcerative colitis, in terms of relapse and remission, with a 

cycle length of one month. The purpose of these models was to enable evaluation of 

interventions that would shorten relapses or post-pone future relapses. An exact maximum 

likelihood estimator was developed, that disaggregates the yearly observations into monthly 

transition probabilities, between remission and relapse. These probabilities were allowed to be 

dependent on the time since start of relapse, and on the time since start of remission, 

respectively. The estimator, initially slow, was successfully optimized to shorten the 

execution time. The estimated disease activity model for Crohn's disease fits well to observed 

data and has good face validity. The disease activity model is less suitable for ulcerative 

colitis, due to its transient nature through the presence of curative surgery. 

 

Key words: maximum likelihood estimator, aggregated and partial observations, Markov 

model, transition probability matrix, inflammatory bowel disease, disease activity. 
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1. Introduction 
Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases that 

have a remitting, relapsing nature. Relapses are manifested as increased inflammatory activity 

and increased symptoms such as abdominal pain, fever, and weight loss [1, 2]. During a 

relapse, CD and UC are treated with drugs such as oral and topical glucocorticosteroids, 5-

aminosalicylates (including sulphasalazine), immunosuppressive drugs (e.g. azathioprine, 6-

mercatopurines, methotrexate, cyclosporine), antibiologics (infliximab), and antibiotics, or 

with surgery [1, 2]. In CD, the most common surgical procedure is resection of a part of the 

intestine that is severely affected by the disease, in the lack of response to drug therapy 

[1,3,4]. Resection is not a curative treatment and may need to be performed many times, since 

the disease may reappear elsewhere in the intestinal tract [1]. In UC, which by definition only 

involves colon, surgery may be considered curative if the entire colon is removed by 

colectomy and restorative surgery such as ileoanal pelvic pouch (IAPP) or ileorectal 

anastomose (IRA) is performed  [1,4,5]. After such surgery, UC cannot relapse again. 

However, the patient may suffer complications following IAPP or IRA, namely inflammation 

in the pouch or rectum (pouchitis, IRA-proctitis) [4]. 

 

An intervention aimed at shortening relapses will aim to increase the probability of going 

from relapse to remission, and interventions to post-pone the next relapse (i.e. a more 

successful maintenance treatment) will decrease the probability of going from remission into 

relapse. In order to analyse such interventions, a model of remission and relapse is needed. 

Our aim was to estimate the parameters of Markov models for CD and UC patients that 

alternate between remission and relapse. In addition, the model needed to run in reasonably 

short cycles to allow us to study the effect of shortening the relapses.  
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Our data were partial observations, aggregated over one-year periods. A translation from the 

one-year perspective into a one-month perspective was required. Translating from long to 

short intervals of time is fairly simple for a single risk [6]. It is more complicated for 

transition probabilities in models with several states that allows transition back and forth, i. e. 

transition probability matrices [6,7,8,9]. One such method is matrix decomposition which 

defines the short-term matrix as a function of the long-term matrix. It determines the short-

interval matrix in closed form, i. e. using a single formula [8,10]. However, in some 

circumstances the short-interval matrix is an invalid transition probability matrix (e. g. it may 

contain negative values).  

 

Craig & Sendi [8] demonstrate how the Expectation-Maximization (E-M) algorithm can be 

used to approximate the Maximum Likelihood (ML) in a situation with partial observations, 

where the algorithm is used to impute data at time points not observed.  They demonstrate 

how this overcomes the problem of invalid short-term matrices. Charitos et al [10] employ 

matrix decomposition as well, and they use regularization techniques to deal with invalid 

short-term matrices. They use their technique to refine an invalid matrix until they find the 

nearest valid matrix, and use that one instead. 

 

Welton and Ades [9] use a Bayesian approach in a similar situation. They present how to 

estimate transition rates for multi-state models from partial data, which consist of 

observations of the initial state and the state after a certain period of time. Their data are 

aggregated in the sense that they look at transition counts from groups of patients rather than 

individual patient data. Once having estimated the transition rates, the transition probabilities 

are easily obtained for any desired time interval.  
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Craig, Fryback et al [11] have observations at uneven intervals (year 1, 5 and 11), of patients 

with diabetes, where the patients are classified into different stages of retinopathy. Some of 

the patients are given a treatment intervention at some stage within this range of years. The 

authors give the transition probabilities a parametric form and in addition, they add parametric 

forms for the treatment intervention and for death. Hereby they manage to estimate the natural 

history of diabetic retinopathy using a bayesian approach employing a Markov Chain Monte 

Carlo (MCMC) technique [11]. 

 

These approaches have in common that they have observations of the process at long 

intervals, and tries to determine what occurs at time points in between. They all have data on 

visits to, or transitions between, the states that are of interest.  

 

This is different from our situation, as we neither have observations of transitions nor of the 

patient's state at any point in time. Instead, we have yearly counts of events, namely the 

number of relapses, and the number of surgical operations, for each patient. We do not know 

whether they are in relapse or remission at a given point in time, except that they are initially 

in relapse.  Thus our data are not aggregated data from several patients. In our case, each 

individual patient's events during a year's time is aggregated into summary counts, describing 

the whole year, for that individual patient. We use the Markov model itself as a framework to 

produce an estimator of the sought parameters, using the Maximum Likelihood (ML) method. 

The ML method estimates its parameter at the value that maximizes the likelihood of 

observing the actual observations [12]. 
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2. Material 

The present study was based on data from patients diagnosed with CD or UC at Herlev 

University Hospital, Copenhagen, Denmark, during 1991-1993 (described in detail elsewhere) 

[2]. The data was organized in calendar years. For each year, the number of relapses and the 

number of surgical operations were recorded. A relapse is defined as a contact with a 

physician due to gastrointestinal symptoms, that led to increased use of medication or surgery 

[2]. The year was classified according to a disease course level: silent, mild and severe. A 

silent year is a year completely in remission. A mild year has 1-2 relapses but no surgery. A 

severe year has more than two relapses, or presence of surgery, or both. This is a simplified 

definition of disease course which aims to resemble earlier definitions of annual 

classifications of disease activity [3,5], and which will be clinically correct for most 

situations. There are clinical situations where a discrepancy may occur, e. g. a whole year 

with continuous severe symptoms would be classified as a mild year with one relapse here, 

but would be regarded as a severe year clinically.  The types of surgery recorded in the 

database were total and subtotal colectomy, small intestine resection, colon resection and 

“other”, such as fistula surgery or stricture plastic. 

 

A total of 145 individuals, of which 58 were diagnosed with CD and 87 with UC, were 

observed for a total of 1,292 patient-years (Table 1). The CD patients had average rates of 

0.60 relapses per year (range, 0 - 5 relapses) and 0.24 surgical operations per year (range, 0 – 

5 procedures) (Table 2). The UC patients had 0.69 relapses/year (range, 0 - 7) and 0.04 

surgical operations/year (range, 0 - 4). 
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3. Methods 

Our data consists of yearly observations of the number of relapses and the number of surgical 

operations that the patient has experienced within the year. The notation used to describe the 

data is as follows. We observe an individual i  for in  years; its number of surgical operations 

)...21(
iin

ZiZiZiZ = , and its number of relapses )...21( iin
ViViViV = , during 

each observed year.  As an example, one particular patient was observed during 11 years, of 

which the two first contained one relapse each. During the second year, the patient was 

subjected to two surgical operations. The disease was silent from the third year and on, with 

no new relapses or surgery. Thus, 11=in , ,0),0,0,0,0,0(1,1,0,0,0=iV , and 

,0),0,0,0,0,0(0,2,0,0,0=iZ . 

 

A Markov model was constructed for the disease activity in CD and UC. We developed an 

exact Maximum Likelihood (ML) estimator for the parameters of this model [12,13].  The 

ML estimator uses the probability of observing the actual observations, conditionally on the 

parameter vector. By selecting the parameter values so that the probability is maximized, 

estimates of the parameters are obtained. Sometimes, it is possible to derive the estimator in 

closed form. Otherwise, the parameter values are found using a numerical search. To avoid 

finding just local maxima, several starting points are used. We used 20 starting points. The 

estimator was used to transform the yearly data into monthly probabilities. We tried to 

determine whether the estimated disease activity models could successfully predict disease 

course, and whether the estimator appeared to work and how accurate its estimates were. The 

model, estimator and our approach to judge it's success are described in the following 

sections. 
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3.1 The disease activity model 

The disease activity model is a Markov chain, ,...1,0, =tSt  with four states, first month of 

remission ( 1=tS ), subsequent months of remission ( 2=tS ), first month of relapse ( 3=tS ), 

and subsequent months of relapse ( 4=tS ), which is presented in Figure 1. The transition 

probability matrix is 
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P , where 1p , 2p , 3p ,and  4p , are the transition probabilities 

( 1p  from state 3 to 1, 2p  from state 4 to 1, 3p  from state 1 to 3, and 4p  from state 2 to 3). 

These four transition probabilities and 5p , the probability of surgery while visiting state 3 or 

4, are the five parameters to the model which we aim to estimate. Time dependence is 

restarted for each new visit to remission and relapse. The relapse states form a two-state 

tunnel. A consequence of this construction is that we can easily model a mixture of short and 

long visits to e. g. relapse, say 211 =p , 512 =p  would make half the visits one cycle long, 

and the remainder (conditional on having stayed the first month) geometrically distributed 

with a mean duration of 5 cycles, i.e. 5 months. The remission states form the same 

construction, with it's own parameters. Our model is the minimal Markov model that has 

time-dependent probabilities of changing from remission to relapse, and vice versa. The 

probability of relapse (and remission, respectively) is dependent on the time since entry into 

remission (and into relapse, respectively) as this is embedded in the model structure, but the 

Markov model itself is time-homogeneous, since no parameter value ( 1p , 2p , ..., 5p ) will 

change over time.  
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Along with the Markov chain, ,...1,0, =tSt , we use a surgery indicator ,...1,0, =ttT  whether 

the patient was subjected to surgery while visiting state 3 or 4, i. e. 5}1Pr{ ptT ==  if 3=tS  

or 4=tS , and 0 otherwise. 

 

The disease course of a twelve-month sequence of disease activity 12,...,2,1)},,{( =tTS tt  is 

determined according to the definition given above. If }1{ =tT  for any 12,...,2,1=t , or if 

there are three or more visits into the relapse states, the disease course is severe. If there are 

one or two visits into the relapse states and }0{ =tT  for all 12,...,2,1=t , the disease course is 

mild. In case of no visits to the relapse states, the disease course is silent.   

A relapse in the model begins with a transition into state 3, possibly followed directly by one 

or more cycles spent in state 4. The relapse ends with a transition to state 1. A relapse 

beginning one year and lasting into the next year contributes to the relapse counts in both 

years. 

 

The disease activity Markov chain has the following stationary distribution; 
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where 0,0 42 >> pp . We assume that this stationary distribution and our disease activity 

model are relevant during the period when the patients were observed. 

3.2 The exact Maximum Likelihood estimator 

The likelihood for an individual i  is }|,Pr{)( θθ iiiii vVzZL === , a function of the disease 

activity model parameters ( )54321 ppppp=θ . The probability of the observations 
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during a given year l  and the disease activity as the next year begins ( 13S ), conditionally on 

the disease activity at its beginning ( 1S ) and θ , is denoted  

 

====== },|,,Pr{),( 111313, 131
θsSsSvVzZvzy llllllss  

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=======⋅⋅=

4

1,,,

1

0,,,
11121222111313332221

1232 1221

},|,,,,,,,Pr{)~()~(
sss ttt

sStTtTtTsSsSsSsItI
 

 θ
, where }{)~( 12211 lztttItI =+++=  , and }),,,({)~( 12212 lvsssvIsI ==  . 

 

The summation goes over all possible sequences of 12
2}{ =rrS  and 12

1}{ =rrT . The indicators select 

those sequences, which have lz  surgical operations and lv  relapses, respectively. The 

indicator of sequences that have lv  relapses cannot be given explicitly, but it indicates 

whether the number of visits  into the group of states 3 and 4 as described above is equal to 

lv . The last term is the probability of the sequences 12
2}{ =rrS  and 12

1}{ =rrT , and this probability 

is a product of elements in the disease activity transition probability matrix (
21 ,ss

P is the one-

month probability of transition from 1s  to 2s ), and of the probabilities of a set of Bernoulli 

trials,   

(eq. 1) ======== },|,,,,,,,Pr{ 111212221113133322 θsStTtTtTsSsSsS   

 { }{ } { }{ }∑−∑⋅⋅⋅⋅=
∈=∈= 4,3,0
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5,,, )1(
13123221
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This probability will become zero for many of the sequences tS  whenever one or more of the 

corresponding transition probabilities (
21 ,ss

P ) are zero. 
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Then we can write the likelihood for an individual's observed sequence by counting over all 

possible disease activity ( 1,,liS ) at the beginning of each year, 1,,2,1 += inl   (including the 

final target state); 

}Pr{),(),(),()( 1,1,1,1,,22,

4

1,,,
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The first part is a series of matrix multiplications. The last factor, the probability of the initial 

state, is taken from the stationary distribution π . Since we know that the patients start with a 

relapse, 1,1,iS  must be 3 or 4. Conditionally on this, we get that )/(}Pr{ 431,1, πππ +== ji jS . 

 

A maximum likelihood estimate was sought by maximizing the product of all the individuals' 

likelihoods ∏=
i

iLL )()( θθ  with regards to θ . This process is very time-consuming, since 

the probabilities  ),(, vzy us were computed exactly by traversing every possible sequence of 

disease activity.  

 

However, the structure of the model never changes. Each possible pathway through the model 

is a product of the probabilities 1p , 2p , ..., 5p  and their complementary probabilities. 

Therefore, equation 1 can be rewritten using a set of exponents 5511 ,,,, baba  , 

{ }{ } { }{ }
=∑−∑⋅⋅⋅⋅

∈=∈= 4,3,0
5

4,3,1
5,,, )1(

13123221

iiii stIstI
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 552211 )1()()1()()1()( 552211
bababa pppppp −−−=  .  

The exponents 1a , 1b , 2a , 2b , 3a , 3b , 4a , and 4b , are the number of times 1p , )1( 1p− , 2p , 

)1( 2p− , 3p , )1( 3p− , 4p , and )1( 4p− , respectively, occur as factors in the probability 
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expression. They are determined for each pathway through the model. The last two exponents 

are taken directly from eq. 1, { }∑ ∈==
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧ 4,3,15 isitIa , and { }∑ ∈==
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⎧ 4,3,05 isitIb . 

Not all sequences tS and tT  generate unique sets of exponents. We define a profile to be the 

set of numbers  rvbababass ,,,,,,,,,, 552211131  , which describe the r  sequences with v  

relapses and 5a  surgical operations, that begin with 11 sS = , and end with 1313 sS = , and that 

all have a probability that can be described with the exponents 5511 ,,,, baba   as shown above. 

Reducing the pathway  to such exponents results in loss of information on the number of 

relapses. This is therefore recorded in the profile as v .  

Therefore we can determine ),(
131 ,

vzy ss  by summation over all relevant profiles: 

∑ −−−=
j

j
bababa

ss rppppppvzy jjjjjj 552211

131
)1()()1()()1()(),( 552211,  , where the sum is taken 

over all profiles that have v  relapses and z  surgical operations, and the suffix j  is used to 

illustrate the values that are specific to each such profile. For the sake of effective 

computation, we traverse the whole set of profiles once, for each value of θ , and aggregate 

the probability of each profile into the corresponding ),(
131 ,

vzy ss , i. e. we compute these 

probabilities for all combinations of values of  z  and v , simultaneously. This method is used 

to compute the likelihood. The complete set of profiles can be prepared in advance, and this 

means that some of the time-consuming work is performed just once. In addition, since there 

are fewer profiles than unique pathways through the model, the amount of work that is 

performed during the maximum likelihood estimation is less using profiles. 
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3.3 Goodness of fit of the estimator  

We used the estimated models, to simulate disease activity in each model for a period of ten 

years, for as many patients as we had in the input data. For each patient, each year was 

classified into disease course levels according to relapses and surgery experience. This 

predicted disease course was compared to the observed disease course from the 147 patients 

(Table 1). The predicted disease course should be similar to the observed disease course.  

 

A validation of the estimator itself was performed using the above-described procedure 

backwards. Using known parameter values, we simulated the model and created a number of 

exercise dataset, with number of relapses and number of surgical operations per year for each 

individual. The Maximum Likelihood estimator was then used on these datasets to estimate 

the parameters used for simulation. The residuals between the estimated parameter values and 

the original (true) parameter values were computed, across all training datasets. This was done 

both for the probabilities in the model and for the mean length of stay in remission, and 

relapse, which are functions of the probabilities. 

3.4 Uncertainty in estimates 
We used bootstrap analysis to address the uncertainty in the parameter estimates [14]. The 

original dataset was replicated, by resampling the patients along with their corresponding 

disease history data. This yielded a set of replicated parameter vector estimates which was 

used to estimate variation and confidence intervals. To use the bootstrap results in a stochastic 

evaluation of the model, one could sample whole parameter vectors from the set of replicates, 

so that the dependencies between the parameters are kept intact [15]. 
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3.5 Software tools. 

The maximum likelihood estimator was implemented as a package in the R language and 

environment for statistical computing [16], with some components written in the C language 

[17]. The package can be obtained from the corresponding author. The bootstrap analysis used 

the boot package for R [18, 19]. 

4. Results 

The estimated model parameters 1p , 2p , ..., 5p  for CD and UC are presented in Table 3. The 

probabilities of remission, 1p , 2p , are quite different, about twice as high during the first 

month (0.63) as during the following months (0.33), in CD. The difference is about seven 

times in UC (0.81 first month, and 0.12 during the following months). The different 

probabilities mean that the probability of remission declines over time, as expressed in time 

since start of relapse. The probabilities of relapse, 3p , 4p , are similar between CD and UC, 

with quite a large different between the first and following months (0.40 vs. 0.023 in CD, 0.49 

vs 0.022 in UC), also here demonstrating a time-dependence, with probabilities that decline 

over time since start of remission. The probability of surgery, per month in relapse, 5p , is 

0.19 in CD and 0.023 in UC. 

 

The mean length of stay in remission in the model for CD, is 27.6 months, however the length 

of stays is skewed with a median of 9 months, which was estimated from simulation using the 

point estimates presented above. The mean length of a relapse is 2.1 months, and the median 

is one month.  Using the first month of relapse (i.e. state 3 as shown in Figure 1), as a starting 

point, a patient is expected to suffer 1.8 relapses including the initial one (95% confidence 

interval (CI): 1 to 4 relapses), and spend a total of 2.7 months in relapse, and 9.3 months in 

remission (95% CI: 2 to 12 months), during a one-year time frame. The patient would receive 
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0.51 surgical operations during this time. The long-term rates of relapse and surgery, as the 

Markov model goes towards a steady state, are 0.48 relapses/year and 0.02 surgical 

operations/year. 

 

In the model for UC, the mean length of stay in remission is 24.5 months, however the length 

of stays is very skewed with a median of 2 months. The mean length of a relapse is 2.7 

months, and the median is one month. The 75% quantile of the relapse length of stay is one 

month too, so most stays in relapse last for just one month. With a starting point as above, a 

patient is expected to suffer 2.0 relapses including the initial one (95% CI: 1 to 5), and spend 

a total of 3.1 months in relapse, and 8.9 months in remission (95% CI: 0 to 12), during a one-

year time frame. The expected number of surgical operations would be 0.072 during this 

period of time. The width of the 95% CI for total time in remission indicates that there is a 

very large variation between the patients in this model (c.f. Discussion). The long-term rates 

are 0.55 relapses/year and 0.004 surgical operations/year. 

4.1 Goodness of fit of the estimation model 

We used our estimated models, to simulate disease activity in each model for a period of ten 

years, aggregated this over individuals and calendar years, and compared it to the observed 

disease course (Figure 2).  

 

For both diseases, there is an initial spike in severe and mild. Then, the disease course appears 

to go into a fairly steady state. In the observed disease course, the spike comes from patients 

getting the disease, and the steady state follows as the patients come under treatment. To 

model this, we use relapse as starting point when predicting the disease course. 
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For CD, the similarity is good. For UC the predicted disease course is still similar to the 

observed, but there is a decline in severe and mild in the observed disease course that does not 

appear in the predicted disease course (c.f. discussion). 

 

We also performed a validation of the estimator itself by looking at residuals between 

estimated parameter values and the true parameter values when these were known in a 

number of exercise datasets of the same size as the CD dataset. For the probability estimates, 

the mean residual was -0.03 (SD 0.09). Using the probabilities to predict the mean length of 

stays in remission and relapse, the mean residual of the length of stay estimates was -0.4 (SD 

1.6) months. 

4.2 Uncertainty in estimates 
The dataset for CD was bootstrapped to estimate standard deviation and confidence intervals 

for the parameters and for the duration of remission and relapse (Table 4). The bootstrap 

means of 1p  and 2p  are somewhat different than the original estimates (Table 3), but 3p , 4p , 

and 5p  are very similar. The SD:s of the probability estimates are in the range of 0.003 to 

0.14. The bootstrap mean duration of remission is 29.9 months, and duration of relapse is 2.3 

months (SD 9.5, 1.9, respectively), which is slighly higher than the original means. A 95% 

confidence interval for the mean duration of remission is 22 to 57 months (relapse 1.6 to 3.0 

months). 

 

5. Discussion 

In this paper, we have presented a maximum likelihood estimator for a situation where 

patients have been observed indirectly, through disease history aggregated over yearly 

observation periods. We estimated an underlying Markov model by disaggregating the data, 
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and simultaneously rescaling time into a one month model cycle. The main part of our 

problem is to disaggregate our data, and as it is accomplished, the translation into shorter 

inteval comes automatically. Disaggregation and time translation is done by the same 

methodology. The translation from a long observation interval into a shorter perspective has 

been previously addressed [8,9,10,11,15]. Matrix decomposition only solves the part of our 

problem that is to translate into a shorter interval of time. The EM algorithm could in 

principle be employed to disaggregate our data, but where Craig and Sendi use the EM 

algorithm to impute values between their observations, we would need to use the algorithm to 

impute the entire disease history, for every patient. Another possibility would be to do a 

parametric or semiparametric formulation of the transition probabilities [11,15], and 

manipulate the probabilities directly to obtain a good fit to the data. However, like with the 

EM algorithm, having to rely on data on disease history aggregated over time, imposes a 

practical problem of disaggregation which we judge to be impractical using this approach.  

 

We examined our maximum likelihood estimator using training datasets, which indicates that 

it works with data simulated from our particular estimation model. The model allows the 

probability of remission to depend on time since start of relapse, and the probability of relapse 

to depend on time since start of remission.  In simulated training datasets with time-

dependence embedded into the model structure in this way, the resulting estimates picks this 

up. Likewise, in training datasets without such dependence, the estimator usually gives 

estimates that do not show this dependence. This shows internal consistency of the estimator.  

 

 

The estimator was optimized to improve execution time. We cannot isolate the time savings 

from the profiles method presented above, but the overall optimization of the estimator, where 
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the profiles provided a substantial part of the time savings, reduced the time to arrive at an 

estimate of about three hours down to about one minute, using a computer with a Intel Core 

Duo processor T2400 (1.83GHz) running Windows. The execution time applies to each one 

of the starting points for the numerical search, so the impact of optimization is considerable. 

For the whole work in total, the estimation took a couple of hours effective time, and the 

bootstrap analysis about eight hours. Craig & Sendi [8] demonstrate how another method, the 

E-M algorithm, can be used for difficult estimation problems. Since they do not give any 

indications on the performance of their estimator and since their approach applies only to a 

part of our problem, we cannot compare the execution times. They use the EM algorithm to 

impute values at a few time points between their observations, whereas our situation with 

aggregated data would require imputation of the entire process of every patient. Therefore the 

EM algorithm appears unwieldy for our situation with partial data aggregated over time. Craig 

and Fryback uses a MCMC approach to impute unobserved values. Their estimator used 48 

CPU hours on a IBM RISC/6000 computer, after which it had produced a complete posterior 

distribution of the model parameters. This is a long time on a huge computer, but the full 

posterior distribution is also very useful and complete. 

 

Early attempts with a very simple disease activity model, with just one relapse state and one 

remission state failed to fit to the given observations. Such a model has a very low probability 

of seeing the frequencies of silent, mild and severe patient-years such as in Table 1: they 

would instead be concentrated to just one of the three categories. This was the reason for 

splitting the relapse and the remission into a first month state and a state for the following 

months, respectively, allowing for the time dependence described above. Furthermore, the 

choice of model structure excluded death. UC does not appear to have any excess mortality, 

while CD has some [2]. We have assumed that the end of a patient's observation period was 
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non-informative for the disease activity, regardless of cause. It was our judgement that this 

would not affect the disease activity model if used with reasonably short time-frames.  

Our exploration of the goodness of fit of the estimated models against the observed data, 

indicates that our estimator works fairly well also on the real dataset, at least for CD. 

Although our definition of disease course is simplified, it is used both for the predicted data 

and for the observed data so the validation is unaffected and we believe that the deviation 

from the clinically correct definition has a very minor impact. The bootstrap analysis resulted 

in fairly wide confidence intervals for some parameters, but this could be due to patient 

heterogeneity, and by the relatively little information available for the estimator. Silverstein et 

al [20] estimated a Markov chain for Crohn's disease by mapping patients into disease states 

over time according to detailed longitudinal medical records. They defined their disease 

severity states according to type of medical or surgical therapy and by the patients' response 

to medical therapy. In particular, relapse was split into four states (drug-responsive, drug-

dependent and drug-refractory, and surgery), and remission was split into remission, and 

post-surgery remission. Therefore, a direct comparison cannot be made, since our disease 

states do not match theirs. However, we can make an approximate comparison to validate our 

model. They saw a median (75% percentile) stay in remission of 4 (19) months, 26 (76) 

months in post-surgery remission. Our remission state encompasses both, and our estimate of 

the median duration falls in between, 9 months (39 months). Silverstein estimated the median 

duration of relapse to 1.4 to 2.7 months, unless the patient was drug-dependent (7.7 months). 

Our estimated median was one month (75% percentile 2 months), so it was a little shorter. 

Silverstein et al used data that did not require any translation, and included a total of about 

1,900 patient-years of observations compared to our 514, so they were less affected by 

censoring in states of long duration, and should have less uncertain estimates. This might 

contribute to why our estimate in remission is much lower that their estimate of the duration 
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in post-surgery remission. We believe that the remaining discrepancies are explained by the 

different disease state definitions. 

 

Our disease activity model was designed primarily with CD in mind. UC is different since 

surgery methods exist that will end the disease activity. After colectomy, UC cannot relapse. 

However, pouchitises and IRA-proctitises can occur, so our relapsing and remitting model of 

UC could still be fairly valid as long as we define relapse as UC relapse, pouchitis and/or 

IRA-proctitis. An important question is whether the way UC relapse occurs before colecomy, 

and the way pouchitis/proctitis occurs after colectomy, are similar enough from a stochastic 

point of view. Our Markov model and the corresponding maximum likelihood estimator have 

time-homogeneous transition probabilities. Any change in the behaviour of the patients in 

connection to a colectomy would violate this underlying assumption. Indeed, we see a very 

surprising estimate of the duration of remission in UC, a mean of 24.5 months and a median 

of just two months. From a clinical point of view, such a short median duration is unrealistic. 

The distribution of the duration in the estimated model is skew with a very heavy tail, which 

explains the wide confidence interval for the time spent in remission. The goodness of fit test 

of predicted against observed disease course (Figure 2), shows an initial spike, and a fairly 

stable long-term distribution. Initially, when the disease is active and the patient is diagnosed, 

there are no patients in remission. This is handled by the estimator by using relapse as the 

starting state. In the long-term, Crohn's disease shows a fairly level distribution of remission, 

mild and severe, which we interpret as observing a steady state with some noise. Thus, we see 

no signs of violation of the time-homogeneous assumption in Crohn's disease during the 

observed time period. In ulcerative colitis, however, there is seemingly a growing proportion 

of patients in remission over time, i.e. a sign of time-inhomogeneous probabilities of relapse 

and remission. This is not visible in the predicted disease course, and should not be since the 
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disease activity model is time-homogeneous. Thus, we believe that ulcerative colitis due to its 

transient nature is not very well modelled by our disease activity model.  

 

The predicted rates of relapse and surgery are initially high due to the starting point in relapse, 

and become lower in the long term. The observed average rates fall in between, which should 

be expected as they represent a mixture of the initial and long-term rates. We believe that the 

relation between the predicted and observed rates is reasonable. 

 

In our disease activity model, there is no connection between surgery in relapse and a quick 

return to remission. Not capturing this dimension is a weakness of our model. Surgery could 

be embedded into the model structure to solve this problem, but that would make the 

maximum likelihood estimator more complicated, and we know from experience that the 

evaluation time of the estimator would be very long.  Another aspect of surgery is that an UC 

patient could in real life have a colectomy with stomia during relapse, and elective pouch 

surgery in a subsequent period of remission, i.e. a two-session surgery [1,4]. This is entirely 

impossible in our model since we tie all surgery to relapse. This limitation to our model gives 

rise to additional doubt to whether it is suitable for UC. These aspects on surgery, and also the 

overall transient nature of UC through its curative surgery option would require a further 

developed disease activity model with it's own estimator. The increased complexity of such a 

model would make the estimator much slower, imposing a strong practical limitation. 

However, after succesful optimization, the impact would be considerably less and this could 

be attempted in a future study. 

 

Our aim to develop a model in which a hypothetical intervention effect could be explored, 

appears to have been met, at least for Crohn's disease. We established a link from the 
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observed annually aggregated data to a model with one month cycles, which we could verify.  

This model represents the mix of treatment options in use during the observation period. A 

novel intervention could be compared to the standard care given by this mix, by modifying 

the model parameters. To explore the value of, say shortening relapses by some amount, one 

would modify the probabilities of remission accordingly. By assigning unit costs and 

appropriate effectiveness measures, e. g. QALY weights, to each state, the costs and QALYs 

could be estimated with or without this intervention, and a cost-effectiveness analysis be 

performed. The uncertainty surrounding the model parameter estimates could be incorporated 

based on the bootstrap analysis as outlined above. 
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Conclusions 

The maximum likelihood estimator that translates yearly observations of aggregated disease 

history into monthly transition probabilities appears to work. The estimated disease activity 

model for Crohn's disease validates well to observed data and has good face validity. The 

disease activity model is less suitable for ulcerative colitis, due to its transient nature through 

the presence of curative surgery. 
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Figures and tables 

Figure 1: The disease activity model with one-month cycles. The probabilities within braces 

denote the probability of surgery. The state numbers 1-4 are shown within the little circles. 
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Table 1: The number of patients in the cohort with Crohn's disease (CD) or ulcerative colitis 

(UC), and the number of observed patient-years that they provided in each level of disease 

course1, by diagnosis, and in total.  

 Patients Patient-years    

  Silent Mild Severe Total 

CD 58 318 110 86 514 

UC 87 454 255 69 778 

Notes 

1. Each observed year is assigned a level of disease course: A year without surgery or 

relapses is a silent year. A relapse is defined as a contact with a physician due to 

gastrointestinal symptoms, that led to increased use of medication or surgery. A year with 

1-2 relapses and no surgery is a mild year. A year with surgery and/or more than two 

relapses is a severe year.  Some patients were not observed with all levels of disease 

course. 
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Table 2: The number of patient-years observed, split by number of relapses per year, and by 

number of surgical operations per year, respectively, in Crohn's disease (CD) and ulcerative 

colitis (UC). 

  Number of relapses per patient-year 

  0 1 2 3 4 5 6 7 

Relapses1 CD 318 123 44 22 2 5 0 0 

 UC2 454 208 66 28 10 4 6 2 

  Number of surgical operations per patient-year 

  0 1 2 3 4 5 6 7 

Surgical operations CD  438 50 14 5 5 2 0 0 

 UC 753 18 6 0 1 0 0 0 

 

Notes 

1. A relapse is defined as a contact with a physician due to gastrointestinal symptoms, that 

led to increased use of medication or surgery. 

2. Seven relapses/year is impossible in our model. These observations were recoded to 6 

relapses. 
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Table 3: Estimates of the probability parameters and estimates of the durations of remission and relapse, in the disease activity models for 

Crohn's disease (CD), and ulcerative colitis (UC).  

 Remission duration1, months. Relapse duration2, months. Probabilities3 

 Mean (Median) Mean (Median) p1 p2 p3 p4 p5 

CD 27.6 (9) 2.1 (1) 0.63 0.33 0.40 0.023 0.19 

UC 24.5 (2) 2.7 (1) 0.81 0.12 0.49 0.022 0.023 

Notes: 

1. The duration of one period of remission. 

2. The duration of one relapse. 

3. These are probabilities of remission (p1, p2), probabilities of relapse (p3, p4), and probability of surgery in the relapse states (p5) . See also 

Figure 1. 
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Table 4: Results from the bootstrap analysis1 of the CD model parameters. Bootstrap mean, 

standard deviation (SD), and 95% confidence intervals (CI)4.  

 p1 p2 p3 p4 p5 

Mean 0.58 0.36 0.39 0.022 0.19 

SD 0.14 0.12 0.06 0.003 0.04 

95% CI (0.21, 0.80) (0.19, 0.64) (0.29, 0.48) (0.01, 0.03) (0.12, 0.27) 

 

 Remission duration2, months. Relapse duration3, months. 

Mean 29.9 2.3 

SD 9.5 1.9 

95% CI (22.3, 57.1) (1.6, 3.0) 

Notes: 

1. The analysis used 500 bootstrap replicates. 

2. The duration of one period of remission. 

3. The duration of one relapse. 

4. The confidence intervals have individual confidence levels of 95%. Simultaneous 

considerations of more than one interval results in a lower confidence level. 
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Figure 2: Disease course during ten years time, as observed in the cohort (Observed) and 

predicted using the estimated disease models (Predicted) , for CD and UC. During any given 

year (horisontal axis), the colours show the proportions of patients in each level of disease 

course1; severe (black), mild (dark grey) and silent (light grey). 

 

Notes:  

1. A year without surgery or relapses is a silent year. A relapse is defined as a contact with a 

physician due to gastrointestinal symptoms, that led to increased use of medication or 
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surgery. A year with 1-2 relapses and no surgery is a mild year. A year with surgery 

and/or more than two relapses is a severe year. 

 


