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Abstract

The aim of this thesis is to solve an inverse source problem. The approach is based
on an integral representation together with the extinction theorem. Both a scalar
and a full-wave integral representation are implemented and solved by a Method of
Moment procedure. The body of revolution enables usage of a Fourier transform to
reduce the dimensions of the problem. A singular value decomposition is utilized to
suppress singular values in the inversion process. A nose-cone radome is diagnosed by
recreating the equivalent surface currents on its surface from measured near fields. It
is shown how the radome interacts with the field, creating beam deflection, pattern
distortion, etc.. The phase shift of the field due to the transmission through the
radome, i.e., the insertion phase delay, is visualized. Disturbances due to defects, not
detectable in the measured near field, are correctly localized by the equivalent surface
currents. The alteration of side and flash lobes, together with the introduction of
scattering due to the defects, are also visualized. Verification is made by comparison
between the calculated and measured far field.



Populärvetenskaplig sammanfattning (in Swedish)

Användningen av elektromagnetiska fält är en naturlig del i det moderna samhället.
I v̊ar dagliga miljö är vi beroende av informationen och energin som de elektro-
magnetiska v̊agorna transporterar. Som exempel kan nämnas mobiltelefonsamtal,
uppvärmning av mat i mikrov̊agsugnen, användning av internet och radaröver-
vakning p̊a flygplatser.

För att konstruera en antenn s̊a att korrekta fält sänds ut är det viktigt att kunna
studera det elektromagnetiska fältets utseende p̊a antennytan. En s̊adan studie kan
peka p̊a var felaktigheter är lokaliserade samt hjälpa till att optimera antennen.
Fälten p̊a ytan kan inte direkt mätas upp. Ett s̊adant försök resulterar i mätfel pga.
växelverkan mellan antennen och mätproben. Istället mäts fältet upp en bit bort
fr̊an antennen och beräkningar görs för att bestämma hur källorna, det vill säga
fälten p̊a antennytan, ser ut. Detta är ett inverst källproblem.

I denna avhandling löses det inversa källproblemet med hjälp av en integralrep-
resentation tillsammans med utsläckningssatsen (eng. extinction theorem). Imple-
menteringen baseras p̊a en momentkod (eng. Method of Moments). I artikel I–II
används en skalär integralrepresentation. I artikel III implementeras en vektorvärd
integralrepresentation vilken tar hänsyn till växelverkan mellan fältets komponen-
ter. Det inversa problemet är fel ställt, vilket innebär att sm̊a fel i mätdata kan
förstärkas och ge upphov till stora felaktiga bidrag i källbeskrivningen. Här minskas
denna p̊averkan genom att använda en singulärvärdesuppdelning (eng. Singular
Value Decomposition, SVD) i inverteringsprocessen.

Metoden har använts för att diagnostisera en radom (noskon som skyddar en
radarantenn). En reflektorantenn innanför en konformad radom alstrar ett elektro-
magnetiskt fält. Det elektriska fältet mäts upp p̊a en cylindrisk yta en bit utanför
radomen i närfältszonen, vid frekvenserna 8 − 12 GHz. Tre olika fall har studer-
ats; ingen radom som täcker antennen, radomen p̊a plats, samt en defekt radom
placerad över antennen. Det uppmätta elektriska fältet ”backas” med hjälp av
beräkningar tillbaka till radomytan. Genom att studera tredimensionella bilder av
fältkomponenternas amplitud och fas p̊a radomytan, visas hur fältet förändras d̊a
radomen är placerad över antennen. Bland annat minskar huvudloben, och sidlober
uppkommer. Fasens förändring (eng. Insertion phase delay, IPD) är ett sätt att
mäta radomens prestanda vid tillverkning, och här visas en metod som har poten-
tial att ersätta den idag vanliga manuella mätningen.

Den defekta radomen har tv̊a kopparbitar fastsatta p̊a ytan. När det upp-
mätta fältet studeras kan man se att n̊agot är fel, men inte orsaken till felet. D̊a
fältet ”backas” syns defekternas placering tydligt. Man ser även hur kopparbitarna
förändrar bak̊atloberna, samt att det uppkommer spridningseffekter. Metoden har
verifierats genom en jämförelse med uppmätt fjärrfält.
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Summary of included papers

Paper I - Reconstruction of equivalent currents using a near-
field data transformation – with radome applications

This paper shows how the near-field amplitude of a scalar electric field can be
reconstructed on a radome surface close to the source of radiation. The method
is based on a scalar surface integral representation together with the extinction
theorem. The representation describes an inverse source problem with the scalar
electric field and its normal derivative on the radome surface as unknowns. The
experimental set-up is axially symmetric, such that the complexity of the problem
can be reduced by employing a Fourier transform. The linear system is regularized
by the singular value decomposition (SVD). The measurement set-up consists of
a reflector antenna and a radome. The height of the radome corresponds to 29
wavelength at 8 GHz. The electric near field is measured on a cylindrical surface.
Three different configurations are considered in the frequency range 8 − 12 GHz:
no radome, the radome, and the defect radome present. The defect radome has
two copper plates attached to its surface. The formulation is first validated for
synthetic data and an error estimation is performed. It is then showed that the
measured electric field can be reconstructed on the radome surface in an accurate
way, where e.g., the copper plates, not seen in the measured near field, are detected.
The used technique is also verified by comparing the far field, calculated from the
reconstructed fields, to measured far field.
The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations, and the writing of the paper.

Paper II - Reconstruction of equivalent currents using the
scalar surface integral representation

This paper is a continuation of Paper I in the sense that the numerical analysis
of the radome is investigated further. The phase of the electric field is taken into
account. The phase delay caused by the radome, referred to as insertion phase delay
(IPD), is studied. It is also shown that the manufacturing errors, not shown in the
measured near-field data, can be focused and detected by reconstructing the phase
shift due to the propagation though the radome. Different ways of visualizing the
results are also discussed and presented in order to show which knowledge that can
be extracted from the measured near field.
The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations, and the writing of the paper.



Paper III - Reconstruction and visualization of equivalent
currents on a radome surface using an integral representation
formulation

In this paper, the inverse source problem is solved by utilizing a vector-valued in-
tegral representation combined with a vector-valued integral equation originating
from the extinction theorem. The coupling between the components of the fields
increases the complexity of the problem. The problem is solved in a similar way as
the scalar case, i.e., the integral representation and equation are written as linear
systems and solved by a Method of Moment approach. An SVD is employed to in-
vert the matrices and the singular values are suppressed to regularize the problem.
The three radome configurations are investigated at 8 GHz, and all components of
the measured field are now analyzed, i.e., both co- and cross components of the
equivalent currents are reconstructed. It is shown in what way the radome changes
the radiation pattern and causes the main lobe to deflect. The copper plates at-
tached to the radome alter the measured electric field. However, the cause of the
distortion is not seen in the near field. Here, it is shown that both components of
the magnetic equivalent current can be used to localize these effects. The influence
of the radome on the phase of the field, i.e., the IPD, is also investigated. A calcula-
tion of the thickness of the radome wall from the calculated IPD verifies the results.
The results in this paper show that the method is promising and can eventually be
employed for industrial use.
The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations in parts, and the writing of the paper.
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1 Introduction

Radiation means that energy is emitted by a radiating body, e.g., an antenna. The
energy then propagates out in the surrounding medium. The cause of the radiation
are currents on the radiator.

In a direct problem, see Figure 1, the sources are given and the currents are
known. The goal is to calculate the radiated field in the media surrounding the
radiator. This problem is well understood but often computationally challenging [8].
The result is uniquely determined [43], which means that if the currents are known,
the electromagnetic field can be expressed in one unique way.

The aim of this thesis is to solve the inverse source problem — to find the sources
of a given electromagnetic field. In the inverse problem, the electromagnetic field
is known on a surface some distance away from the radiating body, see Figure 2.
The cause of the radiation is unknown, i.e., the challenge is to reconstruct the
currents on the radiator or on a surface surrounding it. The inverse source problem
is not uniquely determined, since adding a non-radiating source/current does not
modify the electric and magnetic fields on the measurement surface [18, 38, 42, 64,
69]. That is, one cannot claim that all sources/currents are found since there might
be components that do not contribute to the measured field. Another problem with
the inverse source problem is that a small perturbation in the measured field can
cause large inaccuracies in the reconstructed currents.

In order to give an understanding of the problem, how it is solved, the appli-
cation areas, and the interesting interpretations of the results, the sections below
are arranged as follows; Section 2 points out the reasons for the interest in the
inverse source problem by identifying different areas of applications. The work of
other researchers within the area and some of their applications are covered in Sec-
tion 3. Section 4 describes the method where an integral representation is combined
with the extinction theorem, which is the basis for this thesis. The details of this
derivation are found in Appendix A. Finally, future challenges and conclusions are
discussed in Section 5.
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2 Applications

The currents, describing the source of the radiation, can serve as an instrument of
diagnostics. For example, antennas need to be diagnosed to find malfunctioning
parts. In wireless communication, it is important to have tools to specify the radi-
ation of mobile phones and the safety distance of base stations’ antennas. Another
example is electronic equipment interacting with other electronic devices — the elec-
tromagnetic compatibility problem (EMC). To minimize this interaction and to find
out shielding strategies, the sources must be known.

A radome is a structure designed to protect its enclosed antenna against environ-
mental effects, see Figure 3. A review of the radome concept can be found in [51].
For instance, the nose cone of an airplane covers its radar antenna. Other places
where radomes protect radiating equipment are on high towers, on board ships, in
surveillance bases etc.. The radome will inevitable interact and change the field
radiated by the antenna in unwanted ways, e.g., creation of high side lobes causes
increased clutter, false-alarm rate and susceptibility to jamming. Moreover, the
main lobe is deflected (boresight error) and attenuated, whereas reflections cause
interferometry phase errors. In order to analyze and minimize these disturbances,
i.e., to make the radome as transparent as possible at the operating frequencies, it
is of great importance to diagnose how the electromagnetic fields interact with the
radome.

It is also significant to have a powerful tool to determine the insertion phase
delay (IPD), also known as the electrical thickness of the radome. The IPD is one
of the specified qualities that characterize a radome. It is traditionally measured
by locating two horn antennas in such a way that the incident angle of the field
becomes the Brewster angle. This choice of incident angle minimizes the reflected
field, i.e., the disturbances due to back scattering into the radiating horn antenna
are reduced [17, 52]. To calculate the IPD, the phase of the transmitted field is
subtracted by the phase of the measured field with no radome present between the
horn antennas. This process is very time consuming, since it has to be repeated
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(a) (b) (c)

Figure 3: Different radome applications: a) Aeroplane. Copyright Gripen Inter-
national. Photo: Katsuhiko Tokunaga. b) Station monitoring tectonic motions
of the volcano Popocatepetl in Mexico. Photo courtesy of Enrique Cabral-Cano.
c) Aircraft surveillance, Bromma airport, Sweden. Photo courtesy of Maciej Swic.

several times to cover the whole radome surface.
Another crucial utilization is within the design process of a radome. This task

includes numerical calculations of the alteration of the electric field as it passes
through the radome wall [4, 5, 57]. To get reliable results it is crucial that the
representation of the field radiated from the antenna, i.e., the input data, is well
known. This field cannot be measured directly, since it is very difficult to measure
the electromagnetic fields close to a radiating body or scatterer. The reason is that
the measurement probe itself can interact with the measured field and contaminate
the measurement.

3 Solution methodologies

The inverse source problem attracts a lot of attention. The main difference between
the various techniques depends on the geometry of the surface where the field is
measured, and the geometry of the body where the fields are to be reconstructed.
The material of the body of the equivalent currents also differs. The most com-
mon ones are the perfect magnetic conductor (PMC), the perfect electric conductor
(PEC), or air. Some methods require a priori information of the object, and some
use iterative solvers. Also, the demand for computer capacity differs among the
techniques. The following paragraphs give a overview of different approaches and
their usage.

3.1 Plane wave spectrum

One of the first techniques developed and a numerically fast method is the use of
the plane wave spectrum (PWS) [10, 16, 23, 25, 44, 71]. This technique expands the
measured field in plane waves. The PWS is equal to the Fourier transformation of
the radiated far field. The near field on a plane, arbitrarily close to the antenna, can
then be obtained through an inverse Fourier transform. Both spherical and planar
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measurement surfaces can be used as well as measurements in the near field or in
the far field, since accurate transformations between the different geometries and
the fields are available [11].

The PWS has been used to determine the specific absorption rate (SAR) of
mobile phones [21]. Instead of scanning the electric field strength in the whole
volume of the phantom, it is enough to measure the amplitude of the electric field
on two planes. The phase of the electric field is retrieved by an iterative process [74]
and the expansion of the field in its plane wave spectrum is utilized to evaluate the
electric field and thereby the SAR on other planes in the phantom. The method has
also been utilized to localize defects, i.e., patches of Eccosorb attached to a planar
array [37]. Another application is the reconstruction of the near field on the surface
of a parabolic antenna where an iterative scheme and certain approximations make
it possible to find the fields on the non-planar surface [53–55].

3.2 Modal expansion

A modal expansion of the field can be utilized if the reconstruction surface is cylin-
drical or spherical [24, 40]. The field is then described as a sum of cylindrical or
spherical vector waves. The radial part of the expansion is expressed in cylindrical
or spherical Bessel functions, respectively. The angular part contains trigonomet-
ric functions, and in the spherical case Associated Legendre functions [70]. The
resolution obtained with spherical wave expansion (SWE) can be higher than the
resolution achieved when using plane wave spectrum [22]. However, the method is
only valid outside the smallest sphere enclosing the radiating body, i.e., equivalent
currents on the radiating body cannot be obtained unless the body is a sphere.
This method has been used to calculate the insertion phase delay (IPD) and detect
defects, i.e., deviations in the dielectric constant and wall thickness on a spherical
radome [22].

The SWE has also been employed in antenna near-field imaging problems to
find the relation between accuracy and resolution [45, 46]. The Cramér-Rao bound
gives a lower bound on the estimation error and a fundamental physical limit on
system accuracy. This bound is related, via the Fisher information matrix [28],
to the resolution as a function of the number of vector waves included [45]. The
mathematical frame-work is applied to an electric field, measured on a cylindrical
surface, and it is shown in which regions the result is trustworthy.

In [41] the authors have investigated how constraints, e.g., zero reactive power, in
a Lagrangian formulation, can optimize the spherical vector wave technique. More
general geometries, e.g., needle shaped objects and flat disks, can be handled by
expanding the field in spheroidal wave functions [61, 62]. As with the spherical
vector waves, the solution is only valid outside the smallest spheroid enclosing the
radiating body. Also, the Lagrangian optimization approach with constraints are
developed for this expansion [63].

A combination of SWE and PWE (plane wave expansion) has been employed
by [13]. The electric field of a spherical near-field measurement is expanded in
spherical vector waves. Utilizing an extended transform of [19], the field is expressed
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in its plane wave spectrum, whereby the field on a plane close to the origin can be
retrieved through an inverse fast Fourier transform. The method combines the high
resolution of SWE with the ability to come very close to the antenna under test
provided by PWE. This diagnostic technique is demonstrated by introducing errors,
i.e., feed tilt, Gaussian shaped metallic bump, and dishes of aluminum, on an offset
reflector antenna. These deviations can then be found in the recreated field on a
plane surface just in front of the antenna [14].

Another combination of modal expansion and PWE is utilized by [76], where
the safety perimeter of base station antennas is investigated. The electric field is
measured on a cylindrical surface, it is expanded in cylindrical vector waves and
the far field is calculated. The far field is then expanded in PWS and the field on
different planes close to the antenna is retrieved. This approach does not take the
presence of the reactive near field into account, since this is negligible at the safety
distances of interest.

3.3 Integral representations

To be able to handle a wider class of geometries, diagnostic techniques based on
integral equations to describe the electromagnetic field can be utilized, i.e., a linear
inverse source problem is solved by a method of moment (MoM) approach. The
drawback is the computational complexity. The equivalent currents of the source
are recreated on a surface arbitrarily close to the source.

If the object on which the currents are to be reconstructed is metallic, i.e.,
a perfect electric conductor (PEC), either the electric or magnetic field integral
equation (EFIE or MFIE) can be employed. The methods differ by the field used
as the source term — the electric field in EFIE, and the magnetic field in MFIE,
respectively. MFIE only applies to closed surfaces whereas EFIE can be used for
both open and closed surfaces. The EFIE has been employed in [67] to calculate the
near field of a cylindrical PEC via the surface currents. The PEC also has aperture
holes of various sizes to show how to find and diagnose leakage points in metallic
objects, i.e., wires.

Both EFIE and MFIE have problems with spurious resonances. However, this
effect can be reduced by using a combination of the two, i.e., the combined field
integral equation (CFIE), since the resonances of EFIE differ from the ones of
MFIE [9, 47]. A description of other used combinations are found in e.g., [30].
Yet another approach to avoid spurious resonances was proposed in [68, 72]. Here
the MFIE is combined with an integral equation where the source term is located on
an imaginary dual surface inside the scatterer. One advantage of this method over
the CFIE is that the use of both the operators of the EFIE and MFIE is avoided.
The dual-surface EFIE and MFIE are employed to recreate surface currents on a
PEC of cubic or azimuthal geometry [58, 59, 73].

Even if the surface where the reconstructed currents are calculated is not a
PEC, the above methods, i.e., EFIE and MFIE, can be employed by using an
equivalence principle where the volume inside the surface containing the sources
is replaced by a PEC or a PMC (perfect magnetic conductor) [8]. This approach
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has been used by [33, 35, 48, 49, 56, 66], where the equivalent currents, either the
magnetic or electric, are reconstructed on a plane in front of the antenna from
near-field measurements over arbitrary geometries. This technique is convenient
when diagnosing flat antenna structures, e.g., in [36], where an equivalent magnetic
current together with a priori knowledge of the antennas geometry is utilized to
diagnose a low-directivity printed antenna. In [26], the technique together with an
iterative solver based on the conjugate gradient method, is used to diagnose radiated
noise on a plane over a power electronic circuit. A development of this method is
given in [34] where the antenna is enclosed by two infinite planes, one in front of the
antenna and one on its back, on which the magnetic equivalent current is recreated.
This technique is used to find the safety perimeter of a base station antenna by
recreating the radiating field on planes at various distances in front of and behind
the antenna. In [75] the radiation pattern from superspheroidally shaped dielectric
radomes enclosing dipole arrays is calculated using the equivalence principle to get a
combined integral equation, which is solved by an adaptive integral solver. Further
references within the area are given in [39], where a volume integral equation is
utilized.

An integral representation, relating both the unknowns, i.e., the electric and
magnetic currents, to the measured electric field, is used together with the additional
condition that the normal component of the surface currents are zero in [1, 3]. The
linear equation system is solved by the conjugate gradient method. In [3], the
electric current on the walls of a PEC, pyramidal horn antenna, is visualized. Under
certain circumstances, such that reconstruction on planar surfaces or bodies of PEC,
only one of the currents needs to be taken into account. This simplification is used
in [32] where defect elements in antenna arrays and irregularities in the surface of a
reflector antenna are detected. Also, [20] solves an integral representation using fast
multipoles and an iterative solver based on generalized minimal residual (GMRES).
The electric equivalent current is reconstructed on PEC plane in front of a reflector
antenna and a monopole located on the chassis of a car. Even other optimization
techniques have been proposed to solve the problem. In [6, 7] neural networks are
used, and in [2] a cost function is introduced to find the location of EM transmitters.
Further references in this subject can be found in [12].

4 Integral representation and extinction theorem

In this thesis a technique using the integral representations to relate the unknown
equivalent currents to a known measured near field is proposed. In addition to the
integral representation, an integral equation, originating from the extinction the-
orem, is used. The use of the the extinction theorem together with the integral
representation guaranties that the sources of the reconstructed currents only exist
inside the enclosing volume, see Paper I-III. The equivalent currents can be recon-
structed on a surface arbitrarily close to the antenna. No a priori information of
the material just inside the surface is utilized.

The aim is to recreate the equivalent currents on a radome-shaped surface from
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Figure 4: a) The set-up showing the reflector antenna, the radome, and the cylin-
drical surface. b) The radome used in the measurements. The missing pieces at the
bottom have been used for material characterization.

measured electric near field collected on a cylindrical surface. The equivalent cur-
rents are the tangential components of the electric and magnetic fields on the radome
surface [8], i.e., {

J = n̂ × H

M = − n̂ × E
(4.1)

where J is the electric current, M is the magnetic current, E is the electric field, H
is the magnetic field, and n̂ is the outward pointing unit vector. Figure 4a depicts
the set-up, and Figure 4b shows a photo of the radome used in the measurements.
The equivalent currents and the electric field are parametrized into one component
along the height (Jv, Mv, Ez) and one azimuthal component (Jϕ, Mϕ, Eϕ). The
radiation from the antenna interacts with the radome. This interaction is visualized
by recreating the equivalent currents on the radome surface.

In Paper I, a scalar integral representation is derived. One integral representa-
tion relates the unknown currents to the measured near-field data. The extinction
theorem gives a second equation, stating that the integral is zero if the observation
point lies on a surface inside the radome. The scalar approach is relevant since
the co-component, i.e., Ez, dominates in the measured field. The system of equa-
tions are solved by a Method of Moments (MoM) procedure. The radome and the
measurement surface have azimuthal symmetry, i.e., a Fourier transform can be
employed to decouple the equations and to reduce the computational complexity.
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A singular value decomposition (SVD) is used to invert and regularize the matrix,
i.e., remove singular values below a cut off level. The code is verified by using syn-
thetic data, where the error is shown to be below −60 dB. Measured near-field data,
originating from a reflector antenna, and collected on a cylindrical surface is then
investigated. Three different configurations are studied, one with just the antenna,
one with a radome enclosing the antenna, and finally one where a defect radome is
placed over the antenna. The amplitude of the reconstructed currents are visualized
in the frequency range 8 − 12 GHz, revealing diffraction effects. Introduced defects
on the radome, i.e., copper plates, not visible in the near field data are localized in
the equivalent currents. The results are verified by calculating the far field from the
reconstructed currents. This far-field pattern agrees very well with measurements.

The aim in Paper II is to obtain the phase of the reconstructed currents, e.g.,
the insertion phase delay (IPD). The phase of the recreated currents is visualized
and analyzed in the frequency range 8 − 12 GHz. The thickness of the radome wall
is approximated in order to validate the calculated phase shift. Different ways of
visualizing the amplitude and phase of the equivalent currents are also discussed
and presented in order to show which knowledge that can be extracted from the
measured near field.

In Paper III the analysis is derived for the full-wave electric field, i.e., the cross
component are no longer assumed to be negligible. The integral representation is
evaluated at the radome surface instead of on a surface inside the radome which
gives a classical integral equation. That is, an integral equation that relates the
unknown equivalent currents to each other on the radome surface, i.e.,

n̂(r) ×
¨

Sradome

{
jωμ0 g(r

′, r)J(r′) − j
1

ωε0
∇′g(r′, r)

[∇′
S · J(r′)

]
−∇′g(r′, r) × M(r′)

}
dS ′ =

1

2
M(r) r ∈ Sradome

where g(r′, r) is the free space Green’s function, n̂ is the outward pointing normal
of the radome surface, and ∇S is the surface divergence [15]. When necessary, the
integrals are interpreted as Cauchy’s principal value [15, 50]. The integral repre-
sentation relates, as before, the equivalent currents to the measured near field, i.e.,

¨

Sradome

{
−jωμ0 g(r

′, r)J(r′) + j
1

ωε0
∇′g(r′, r)

[∇′
S · J(r′)

]
+ ∇′g(r′, r) × M(r′)

}
dS ′ = E(r) r outside Sradome

The approach of solution is the same as in Paper I-II. However, the expressions now
contain coupled vector-valued fields and singular integrals. A detailed derivation of
the representations is found in Appendix A.

The equivalent magnetic current is investigated at 8 GHz, see Figures 5 and 6.
In Paper III the diffraction and transmission losses caused by the radome and the
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Figure 5: The recreated |Mϕ|-component on the front side of the radome. All values
are normalized with the largest value of |Mϕ| when the defect radome is present and
shown in dB-scale. (a) No radome present. (b) Radome present. (c) Defect radome
present. The arrows point out the locations of the copper plates.

defect radome are depicted for both the co- and cross-polarized component. Also
flash lobes caused by the radome are visualized. The effects of the defects, i.e.,
copper plates, are localized in both the amplitude and phase components. However,
to get the exact positions a combination of all components need to be analyzed. The
results are verified by a comparison with the scalar code in Paper I. The results
agree very well considering the cross-component is assumed to be zero in the scalar
code. The phase shift due to the radome, i.e., the IPD, is visualized and the results
are promising which might lead to an alternative way of diagnosing radomes in the
future.

5 General conclusions and future challenges

This thesis shows the potentials of the integral representation and the extinction
theorem in solving the inverse source problem. In Paper I-II, the scalar represen-
tation is explored. In Paper III, the vector-valued representation is investigated
by visualizing the reconstructed equivalent magnetic current on a radome surface.
Future challenges are to analyze if also the electric equivalent current on the radome
surface can contribute to more knowledge. Moreover, investigation of the frequency
dependence of the radome, using the full-wave representation, is planned. A closely
related question is the resolution of the equivalent currents. An initial investigation
of this work is found in [45], where the problem is solved with spherical vector waves.
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Figure 6: The recreated |Mv|-component on the front side of the radome. All values
are normalized with the largest value of |Mv| when the defect radome is present and
shown in dB-scale. (a) No radome present. (b) Radome present. (c) Defect radome
present. The arrows point out the locations of the copper plates.

This paper gives a relation between the accuracy and resolution in the problem, and
calculates in which areas the solution is reliable.

The results reported in this thesis show great potential, and the method of cal-
culating the IPD can hopefully be implemented for industrial use. Another exciting
challenge is to combine the method with the transmission of the field through the
radome [4].
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Appendix A Integral representations

There are several ways to derive the integral representations of the Maxwell equa-
tions [15, 27, 43, 65]. In this appendix, one way is demonstrated [31].

The surface integral representation expresses the electromagnetic field in a ho-
mogeneous and isotropic region in terms of its values on the bounding surface. The
representation states that if the electromagnetic field on a surface of a volume is
known, the electromagnetic field in the volume can be determined. The represen-
tation is derived starting with two arbitrary scalar fields, φ(r) and ψ(r) and the
divergence relation

∇ · [φ(r)∇ψ(r) − ψ(r)∇φ(r)] = φ(r)∇2ψ(r) − ψ(r)∇2φ(r) (A.1)

The scalar fields are defined in a bounded domain V . The domain V is bounded by
the surface S with outward pointing normal vector n̂(r), see Figure 7. The surface
does not have to be a surface that separates two different materials, but can be an
arbitrary surface in space.

Integration of (A.1) over the volume V and the use of the divergence theorem
give the Green’s second formula, i.e.,

¨

S

[φ(r)∇ψ(r) − ψ(r)∇φ(r)] · n̂(r) dS =

˚

V

[
φ(r)∇2ψ(r) − ψ(r)∇2φ(r)

]
dv

(A.2)
Proceeding to the representation of vector fields, let the scalar field φ(r) in (A.2)

be [a ·F (r)], where a is an arbitrary constant vector and F (r) is a vector field. We
have

¨

S

{
[a · F (r)]∇ψ(r) − ψ(r)∇[a · F (r)]

}
· n̂(r) dS

=

˚

V

{
[a · F (r)]∇2ψ(r) − ψ(r)∇2[a · F (r)]

}
dv
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Figure 8: The domain V of integration. The variable of integration is denoted r′

and the observation point r.

Tedious algebra using differentiation rules of the Nabla-operator and the divergence
theorem give

¨

S

(
ψ(r)

{
n̂(r) × [∇× F (r)]

}
+ ∇ψ(r)

[
n̂(r) · F (r)

]
− ψ(r)

[∇ · F (r)
]
n̂(r) −∇ψ(r) × [

n̂(r) × F (r)
])

dS

=

˚

V

(
F (r)∇2ψ(r) + ψ(r)

{
∇× [∇× F (r)] −∇[∇ · F (r)]

})
dv (A.3)

which is the Green’s vector formula. This equation is the foundation for finding
integral representations of vector fields.

A.1 Introduction of the scalar free space Green’s function

Let the scalar field ψ in (A.3) be the scalar Green’s function,

g(r, r′) =
e−jk|r−r′|

4π|r − r′|
using the time conventions ejωt. The variable of integration is denoted r′ and the
observation point r, see Figure 8. Assume r /∈ S. The Green’s function satisfies,

∇2g(r, r′) + k2g(r, r′) = 0 r′ �= r (A.4)
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Figure 9: The geometry for the evaluation of the limit process. The volume V is
punctuated by a ball of radius ε centered at the observation point r. The bounding
surface of this ball is Sε and its volume is denoted Vε. The variable of integration is
denoted r′.

where k is the wave number of the material. Replacing ψ in (A.3) with the scalar
Green’s function gives

¨

S

(
g(r, r′)

{
n̂(r′) × [∇′ × F (r′)

]}
+ ∇′g(r, r′)

[
n̂(r′) · F (r′)

]
− g(r, r′)

[∇′ · F (r′)
]
n̂(r′) −∇′g(r, r′) × [

n̂(r′) × F (r′)
])

dS ′

=

˚

V

(
g(r, r′)

{
∇′ × [∇′ × F (r′)

]−∇′[∇′ · F (r′)
]− k2F (r′)

})
dv′ (A.5)

where (A.4) is used. The Green’s function is singular at the point r′ = r. That is,
the representation (A.5) is only valid when r′ �= r. The singularity can be treated in
several ways. Here, the integrals are investigated in the limit of classical integrals.
That is, a small ball Vε, centered at the singularity r, is excluded. The radius of
this ball is ε and its spherical bounding surface is denoted Sε, see Figure 9. Letting
the radius of the sphere approach zero, in (A.5), gives¨

S

... dS ′ + lim
r′→r

¨

Sε

... dS ′ =

˚

V

... dv′ − lim
r′→r

˚

Vε

... dv′ (A.6)

The surface Sε is parameterized in spherical coordinates, i.e., ε � 0, 0 � ϕ � 2π,
and 0 � θ � π, with êz as the symmetry axis. The used notation is, cf., Figure 10,

ε = |r′ − r| dS = ε2 sin θ dϕ dθ

n̂ = −ν̂ dv = ε2 sin θ dε dϕ dθ
(A.7)
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Figure 10: The geometry for the evaluation of integrals over the sphere Sε.

ν̂ =
r′ − r

ε
= cosϕ sin θ êx + sinϕ sin θ êy + cos θ êz

∇′g(r, r′) =
(r − r′) e−jk|r−r′|

4π|r − r′|3
[
1 + jk|r − r′|] = n̂

e−jkε

4πε

[
1

ε
+ jk

] (A.8)

where ê denotes the Cartesian orthonormal basis vectors in the x-, y-, and z-
direction, respectively.

In the integrals over the small sphere Sε, the normal unit vector ν̂ varies rapidly
over the integral domain while the fields F , [∇ · F ], [∇× F ], {∇ × [∇× F

]}, and
{∇[∇·F ]} are assumed to vary more slowly. Provided these fields are smooth (e.g.,
Hölder continuous), the mean value theorem for integrals implies that in the limit
of ε→ 0 the fields can be evaluated at the singular point r [15]. Letting ε→ 0, i.e.,
r′ → r, results in the following limits for the different parts in (A.5).

lim
ε→0

¨

Sε

g(r, r′)
{

n̂(r′) × [∇′ × F (r′)
]}

dS ′

= lim
ε→0

¨

Sε

e−jkε

4πε

{
n̂(r′) × [∇′ × F (r′)

]}
ε2 sin θ′ dϕ′ dθ′ = 0

lim
ε→0

¨

Sε

∇′g(r, r′)
[
n̂(r′) · F (r′)

]
dS ′

= lim
ε→0

¨

Sε

n̂(r′)
e−jkε

4πε

[
1

ε
+ jk

] [
n̂(r′) · F (r′)

]
ε2 sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

n̂(r′)
[
n̂(r′) · F (r)

]
sin θ′ dϕ′ dθ′
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=
1

4π

πˆ

θ′=0

2πˆ

ϕ′=0

{[
cosϕ′ sin θ′ êx + sinϕ′ sin θ′ êy + cos θ′ êz

]
· [Fx(r) cosϕ′ sin θ′ + Fy(r) sinϕ′ sin θ′ + Fz(r) cos θ′

]
sin θ′

}
dϕ′ dθ′

=
1

4π

[4π

3
Fx(r) êx +

4π

3
Fy(r) êy +

4π

3
Fz(r) êz

]
=

1

3
F (r)

lim
ε→0

¨

Sε

g(r, r′)
[∇′ · F (r′)

]
n̂(r′) dS ′

= lim
ε→0

¨

Sε

e−jkε

4πε

[∇′ · F (r′)
]
n̂(r′) ε2 sin θ′ dϕ′ dθ′ = 0

lim
ε→0

¨

Sε

∇′g(r, r′) × [
n̂(r′) × F (r′)

]
dS ′

= lim
ε→0

¨

Sε

n̂(r′)
e−jkε

4πε

[
1

ε
+ jk

]
× [

n̂(r′) × F (r′)
]
ε2 sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

n̂(r′) × [
n̂(r′) × F (r)

]
sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

{
n̂(r′)

[
n̂(r′) · F (r)

]− F (r)
[
n̂(r′) · n̂(r′)

]}
sin θ′ dϕ′ dθ′

=
1

4π

[4π

3
F (r) − 4πF (r)

]
= −2

3
F (r)

lim
ε→0

˚

Vε

g(r, r′)
{
∇′ × [∇′ × F (r′)

]−∇′[∇′ · F (r′)
]− k2F (r′)

}
dv′

= lim
ε→0

˚

Vε

e−jkε

4πε

{
∇′ × [∇′ × F (r′)

]−∇′[∇′ · F (r′)
]

− k2F (r′)
}
ε2 sin θ′ dε dϕ′ dθ′ = 0

The parts are inserted into (A.6) giving

¨

S

... dS ′ + F (r) =

˚

V

... dv′ − 0 r ∈ V
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Including the region without singularities, i.e., r /∈ V , from (A.5), gives

˚

V

(
g(r, r′)

{
∇′ × [∇′ × F (r′)

]−∇′[∇′ · F (r′)
]− k2F (r′)

})
dv′

−
¨

S

(
g(r, r′)

{
n̂(r′) × [∇′ × F (r′)

]}
+ ∇′g(r, r′)

[
n̂(r′) · F (r′)

]
− g(r, r′)

[∇′ · F (r′)
]
n̂(r′) −∇′g(r, r′) × [

n̂(r′) × F (r′)
])

dS ′

=

{
F (r) r ∈ V

0 r /∈ V

(A.9)

This is a general representation of a vector field F . The field F is represented as
a volume integral of its values in V and as a surface integral of its values over the
bounding surface S of V . If these integrals are evaluated at a point r that lies
outside the volume V , these integrals cancel each other — the extinction theorem.
It is important to notice that this does not necessarily mean that the field F is
identically zero outside the volume V — only the values of the integrals cancel.

A.2 Introduction of the Maxwell equations

So far, the vector field F has been an arbitrary vector field. This field can be chosen
as the electric or magnetic field that satisfies the source free Maxwell equations with
the time convention ejωt, i.e., {

∇× E = −jωB

∇× H = jωD
(A.10)

The constitutive relations in a homogeneous, isotropic region are given by{
D = ε0εE

B = μ0μH
(A.11)

Combination of (A.10) and (A.11) give{
∇× E = −jωμ0μH

∇× H = jωε0εE
(A.12)

{
∇× (∇× E) = k2E

∇× (∇× H) = k2H
(A.13)

{
∇ · E = 0

∇ · H = 0
(A.14)
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where ε0 is the permittivity of vacuum, ε the relative permittivity, μ0 the per-
meability of vacuum, μ the relative permeability, ω the angular frequency, and
k = ω

√
ε0μ0εμ the wave number.

Letting F be the electric field E in (A.9) gives together with (A.12)-(A.14) a
surface integral representation for the electric field, i.e.,

¨

S

{
jωμ0μ g(r, r

′)
[
n̂(r′) × H(r′)

]−∇′g(r, r′)
[
n̂(r′) · E(r′)

]
+ ∇′g(r, r′) × [

n̂(r′) × E(r′)
]}

dS ′ =

{
E(r) r inside S

0 r outside S
(A.15)

where the surface S is shown in Figure 8. Observe that the volume integral is
zero and only the surface integral remains. The relative permittivity ε and the
relative permeability μ may depend on the angular frequency ω, i.e., the material
can be dispersive, but constant as a function of space (homogeneous material). If
F is interchanged by the magnetic field H , a surface integral representation for
the magnetic field is attained. The integral representation (A.15) contains both the
normal and the tangential components of the electromagnetic field. In practice, it
is more convenient to work only with the tangential fields. The normal component,
i.e., the second term in (A.15), can be written in terms of a tangential component
by an application of the Maxwell equations (A.10)-(A.11), i.e.,

n̂(r) · E(r) = −j
1

ωε0ε
n̂(r) · [∇× H(r)

]
= j

1

ωε0ε
∇S · [n̂(r) × H(r)

]
where the identity ∇S · (n̂ × a) = −n̂ · (∇×a) is used with a denoting an arbitrary
vector and ∇S· the surface divergence [15]. That gives a surface integral represen-
tation for the electric field consisting of only tangential components on the surface
S, i.e.,

¨

S

(
jωμ0μ g(r, r

′)
[
n̂(r′) × H(r′)

]− j
1

ωε0ε
∇′g(r, r′)

{
∇′

S · [n̂(r′) × H(r′)
]}

+ ∇′g(r, r′) × [
n̂(r′) × E(r′)

])
dS ′ =

{
E(r) r inside S

0 r outside S
(A.16)

A.3 Values of the integral equations on the surface S

The integral representation in (A.16) is defined for all r /∈ S. To include the surface
into the domain it must be studied what happens as r approaches S. At this stage
it is not even clear that these limit values exist at all. The integrands in (A.16)
become singular as r moves toward the surface. This singularity can be treated in
several ways. Here, a classic approach is used, where the limit is investigated by
adding a half sphere from the outside and the inside, respectively.
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Figure 11: (a) The geometry for the evaluation of the limit process. In the limit the
surface (S ′ = Spunc ∪ Sε) → S and Vpunc → V . (b) The parameterization of the half
sphere Sε. Observe that n̂ = −ν̂.

Starting with the approach from the outside, the integral representation is,
see (A.16)

¨

S

(
jωμ0μ g(r, r

′)
[
n̂(r′) × H(r′)

]− j
1

ωε0ε
∇′g(r, r′)

{
∇′

S · [n̂(r′) × H(r′)
]}

+ ∇′g(r, r′) × [
n̂(r′) × E(r′)

])
dS ′ = 0 r /∈ V

It is applied to a volume Vpunc which is slightly deformed compared to the original
volume V , i.e., a small half ball of radius ε is excluded. The bounding surface of the
volume Vpunc is denoted S ′ and consists of two parts: the punctuated surface Spunc,
and a half sphere Sε of radius ε, i.e., S ′ = Spunc ∪ Sε, see Figure 11a. In the limit
ε→ 0 the surface S ′ → S and Vpunc → V , i.e.,

lim
r′→r

¨

S′

... dS ′ =

  

S

... dS ′ + lim
r′→r

¨

Sε

... dS ′ (A.17)

where the integral
fflffl
... dS denotes Cauchy’s principal value [50].

To investigate the limit of the integral over the surface Sε, this surface is param-
eterized by the spherical angles 0 � ϕ � 2π and 0 � θ � π/2 with the direction ez

as the symmetry axis, see Figure 11b and (A.7)-(A.8). The normal unit vector ν̂
varies rapidly over the small half sphere Sε, while the electromagnetic fields E and
H are assumed to vary more slowly. Provided these fields are smooth (e.g., Hölder
continuous), the mean value theorem for integrals implies that in the limit of ε→ 0
the fields can be evaluated at the point r [15]. Letting ε → 0, in the integrals over
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Sε, give the following limits1

lim
ε→0

¨

Sε

g(r, r′)
[
n̂(r′) × H(r′)

]
dS ′

= lim
ε→0

¨

Sε

e−jkε

4πε

[−ν̂(r′) × H(r′)
]
ε2 sin θ′ dϕ′ dθ′ = 0

lim
ε→0

¨

Sε

− j
1

ωε0εr
∇′g(r, r′)

{
∇′

S · [n̂(r′) × H(r′)
]}

dS ′

= lim
ε→0

¨

Sε

−∇′g(r, r′)
[
n̂(r′) · E(r′)

]
dS ′

= lim
ε→0

¨

Sε

ν̂(r′)
e−jkε

4πε

[
1

ε
+ jk

] [−ν̂(r′) · E(r′)
]
ε2 sin θ′ dϕ′ dθ′

= − 1

4π

¨

Sε

ν̂(r′)
[
ν̂(r′) · E(r)

]
sin θ′ dϕ′ dθ′

= − 1

4π

π/2ˆ

θ′=0

2πˆ

ϕ′=0

{[
cosϕ′ sin θ′ êx + sinϕ′ sin θ′ êy + cos θ′ êz

]
· [Ex(r) cosϕ′ sin θ′ + Ey(r) sinϕ′ sin θ′ + Ez(r) cos θ′

]
sin θ′

}
dϕ′ dθ′

= − 1

4π

[2π

3
Ex(r) êx +

2π

3
Ey(r) êy +

2π

3
Ez(r) êz

]
= −1

6
E(r)

lim
ε→0

¨

Sε

∇′g(r, r′) × [
n̂(r′) × E(r′)

]
dS ′

= lim
ε→0

¨

Sε

−ν̂(r′)
e−jkε

4πε

[
1

ε
+ jk

]
× [−ν̂(r′) × E(r′)

]
ε2 sin θ′ dϕ′ dθ′

=
1

4π

¨

Sε

ν̂(r′) × [
ν̂(r′) × E(r)

]
sin θ′ dϕ′ dθ′

=
1

4π

π/2ˆ

θ′=0

2πˆ

ϕ′=0

{
ν̂(r′)

[
ν̂(r′) · E(r)

]− E(r)
[
ν̂(r′) · ν̂(r′)

]}
sin θ′ dϕ′ dθ′

=
1

4π

[2π

3
E(r) − 2πE(r)

]
= −1

3
E(r)

The limit values above are plugged into (A.17), i.e.,

1In the second integral, the relative permittivity is temporarily denoted by εr to avoid mix up
with the radius ε.
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Figure 12: (a) The geometry for the evaluation of the limit process. In the limit the
surface (S ′ = Spunc ∪ Sε) → S and Vpunc → V . (b) The parameterization of the half
sphere Sε. Observe that now n̂ = ν̂.

  

S

(
jωμ0μ g(r, r

′)
[
n̂(r′) × H(r′)

]− j
1

ωε0ε
∇′g(r, r′)

{
∇′

S · [n̂(r′) × H(r′)
]}

+ ∇′g(r, r′) × [
n̂(r′) × E(r′)

])
dS ′ =

1

2
E(r) r ∈ S (A.18)

which is the limit value of the surface integral representation for the electric field
when approaching from the outside.2

If the limit is taken from the inside instead, the integral representation, (A.16),
i.e.,

¨

S

(
jωμ0μ g(r, r

′)
[
n̂(r′) × H(r′)

]− j
1

ωε0εr
∇′g(r, r′)

{
∇′

S · [n̂(r′) × H(r′)
]}

+ ∇′g(r, r′) × [
n̂(r′) × E(r′)

])
dS ′ = E(r) r ∈ V (A.19)

is applied to a volume Vpunc shown in Figure 12a. The derivation is similar to the
analysis above. The difference is that now n̂ = ν̂. This changes the sign in the
limit processes, which inserted in (A.19) give the same final integral equation, i.e.,
(A.18).

The representation (A.18) consists of three components, two describing the tan-
gential field and one describing the normal component of the field. Since the normal
component can be determined by the knowledge of the tangential parts the normal

2The first surface integral does not have to be written as Cauchy’s principle value sincefflffl
S

. . . dS =
˜
S

. . . dS.
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Figure 13: (a) The interior problem. (b) The exterior problem.

component can be eliminated [43], i.e.,

n̂(r)×
  

S

(
jωμ0μ g(r, r

′)
[
n̂(r′)×H(r′)

]−j
1

ωε0ε
∇′g(r, r′)

{
∇′

S ·
[
n̂(r′)×H(r′)

]}
+ ∇′g(r, r′) × [

n̂(r′) × E(r′)
])

dS ′ =
1

2
n̂(r) × E(r) r ∈ S (A.20)

A.4 The equivalent surface currents

The electric and magnetic equivalent surface currents, J and M , are defined as [8]{
J(r) = n̂(r) × H(r)

M(r) = − n̂(r) × E(r)

Introducing the equivalent currents in (A.16) and (A.20) yield a surface integral
representation and a surface integral equation for the electric field⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨

S

{
jωμ0μ g(r, r

′)J(r′) − j
1

ωε0ε
∇′g(r, r′)

[∇′
S · J(r′)

]
−∇′g(r, r′) × M(r′)

}
dS ′ = E(r) r inside S

n̂(r) ×
  

S

{
jωμ0μ g(r, r

′)J(r′) − j
1

ωε0ε
∇′g(r, r′)

[∇′
S · J(r′)

]
−∇′g(r, r′) × M(r′)

}
dS ′ = −1

2
M(r) r ∈ S

The regions are depicted in Figure 13a.
In this thesis, the integral representation and equation are applied to the exterior

problem, i.e., see Figure 13b. This volume is not bounded. However, employing the
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Silver-Müller radiation conditions, the solution of the Maxwell equations satisfies
the following integral representation [29, 43, 60, 65]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨

S

{
jωμ0μ g(r, r

′)J(r′) − j
1

ωε0ε
∇′g(r, r′)

[∇′
S · J(r′)

]
−∇′g(r, r′) × M(r′)

}
dS ′ = −E(r) r outside S

ν̂(r) ×
  

S

{
jωμ0μ g(r, r

′)J(r′) − j
1

ωε0ε
∇′g(r, r′)

[∇′
S · J(r′)

]
−∇′g(r, r′) × M(r′)

}
dS ′ =

1

2
M(r) r ∈ S

where the change of signs is due to the choice of normal, i.e., ν̂ = −n̂.
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Abstract

Knowledge of the current distribution on a radome can be used to improve
radome design, detect manufacturing errors, and to verify numerical simula-
tions. In this paper, the transformation from near-field data to its equivalent
current distribution on a surface of arbitrary material, i.e., the radome, is
analyzed. The transformation is based on the scalar surface integral represen-
tation that relates the equivalent currents to the near-field data. The presence
of axial symmetry enables usage of the fast Fourier transform (FFT) to reduce
the computational complexity. Furthermore, the problem is regularized using
the singular value decomposition (SVD). Both synthetic and measured data
are used to verify the method. The quantity of data is vast since the height
of the radome corresponds to 29 − 43 wavelengths in the frequency interval
8.0 − 12.0 GHz. It is shown that the method gives an accurate description
of the field radiated from an antenna, on a surface enclosing it. Moreover,
disturbances introduced by copper plates attached to the radome surface, not
localized in the measured near field, are focused and detectable in the equiv-
alent currents.

1 Introduction

There are several applications of a near field to equivalent currents transformation.
For example, in the radome industry it is important to have accurate models of the
field radiated from the antenna inside the radome. This field cannot be measured
directly since the radome often is placed very close to the antenna and at these
distances, there is a substantial interaction between the antenna and the measuring
probe [5, 10, 16]. Another field of application is in the manufacturing of radiating
bodies, i.e., radomes, antenna arrays etc., when the radiation pattern from the body
does not exhibit the expected form. By determination of the equivalent currents on
the radiating body the malfunctioning areas or components can be found.

A common method, transforming near field to equivalent currents and vice versa,
is to use modal-expansions of the electric field [5]. This is a very efficient method for
radiating bodies with certain geometrical symmetries, i.e., planar, cylindrical, and
spherical. Having a planar aperture the plane wave spectrum of the field is utilized in
the back transformation [3, 4]. The fact that the expression of the far field originating
from a planar surface is equal to the Fourier transform of the radiating field on the
aperture has been investigated in [9, 10]. The paper [9] also illustrates that defects,
i.e., patches of Eccosorb, can be detected on the aperture. If the radiating body
is of cylindrical or spherical geometry the radial solutions contain cylindrical and
spherical Bessel functions while the angular solutions are described by trigonometric
functions and the associated Legendre functions, respectively [5, 14]. For general
geometrical symmetries, where modal-expansions do not exist, the modal-expansion
is not applicable.

Later on different combinations of the electric- and magnetic-field integral equa-
tions (EFIE and MFIE) derived from the Maxwell equations, cf., the Method of
Moments (MoM), have been used to back propagate fields towards their origin, i.e.,
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a linear inverse source problem is solved. By this method it is possible to handle a
wider class of geometries [10]. In [15] the dual-surface magnetic and electric-field in-
tegral equations are investigated. The fields are transformed back to a cubic perfect
electric conductor by solving the dual-surface magnetic-field integral equation using
the conjugate gradient method. Other work using the integral equations is reported
in [11], where the near field is measured on a arbitrary surface and later inverted
to a planar perfectly conducting surface by using a singular value decomposition
(SVD) for regularization.

In this paper, the approach is to investigate a scalar surface integral representa-
tion that does not require the aperture to be a perfect electric or magnetic conductor.
The representation provides a relation relating the unknown electric and magnetic
equivalent currents on a surface to the measured electric field. An additional re-
lation is given by the fact that the equivalent currents are constructed such that
the integral is zero inside the volume, on which surface the currents exist, i.e., the
extinction theorem [13].

The integral relations are discretized into matrix linear equations. The matrix
equations include an azimuthal convolution which is solved with a fast Fourier trans-
form (FFT) in the angular coordinate. The fast Fourier transform brings down the
complexity of the problem, i.e., the original surface-to-surface linear map is decom-
posed into a set of line-to-line linear maps. A singular value decomposition (SVD)
is used to invert each of these linear maps. As most inverse problems it is ill-posed,
i.e., small errors in the near-field data can produce large errors in the equivalent
currents. Thus, the problem needs to be regularized by suppression of small singular
values when inverted.

In this paper, the electric field to be inverted is presumed to be scalar, i.e., the
scalar surface integral representation is utilized. The assumption is acceptable since
the used near-field data, supplied by SAAB Bofors Dynamics and Chelton Applied
Composites, Sweden, clearly have one dominating component in the main lobe,
see Figure 3. The measured data is given for three different antenna and radome
configurations, viz., antenna, antenna together with radome, and antenna together
with defect radome. The height of the radome corresponds to 29 − 43 wavelengths
in the frequency interval 8.0 − 12.0 GHz.

As a start, synthetic data is used to verify the method. Verification is also
performed by a comparison between the measured far field and the far field calculated
from the equivalent currents on the radome. The calculated far field agrees well with
the measured far field. We show that the method can describe the field radiated
from an antenna, on a surface enclosing it. When the radome is introduced the
field is scattered and flash lobes arise. The equivalent currents on the radome, that
produce the electric field measured in the near-field area, are identified and the flash
lobes are accurately detected.

Manufacturing errors, not localized in the measured near-field data, can be fo-
cused and detected in the equivalent currents on the radome surface. In this paper,
it is shown that the field scattered by copper plates attached on the radome, are
focused back towards the original position of the copper plates. The length of the
side of the square copper plates is 6 cm, i.e., 1.6− 2.4 wavelengths corresponding to
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Figure 1: Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.

the frequency span 8.0 − 12.0 GHz.
In Section 2 the experimental set-up is described and the measured near-field

data is presented. The scalar surface integral representation is introduced and
adapted to the specific problem in Section 3. Section 4 discusses the implemen-
tation process of the scalar surface integral representation. Results, using synthetic
near-field data and the error of the method is elucidated. The results, when using
the experimental near-field data, are shown and examined in Section 5. The paper
ends with the achieved conclusions in Section 6.

2 Near-field measurements

The near-field data, used in this paper, was supplied by SAAB Bofors Dynamics
and Chelton Applied Composites, Sweden. The set-up with relevant dimensions
indicated is shown in Figures 1 and 2a. Three different measurements were per-
formed; data measured without the radome, data measured with the radome, and
data measured with the defect radome. The defect radome has two copper plates
attached to its surface.

A reflector antenna fed by a symmetrically placed wave-guide generates the near-
field data, see Figure 1. The diameter of the antenna is 0.32 m and its focal distance
is 0.1 m. The main lobe of the antenna is vertically polarized relative to the hori-
zontal plane. The standing wave ratio (SWR) is approximately 1.4 in the frequency
range 8.2 − 9.5 GHz. The antenna is poorly adapted for other frequencies. A 10 dB
reflection attenuator is connected to the antenna.
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Figure 2: (a) The dimensions of the reflector antenna, the radome, and the cylinder
where the electric near field is measured. (b) A close-up showing the discretized
geometric variables.

The radome surface is described by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

(2.1)
where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2. The near-field measurement probe consists of a
wave-guide for which no compensation is made in the final data. The cylindrical
surface, where the electric field is measured, is placed in both the reactive near-field
zone and the radiating near-field zone [2].

The amplitude and phase of the electric field are measured in the frequency
interval 8.0−12.0 GHz on a cylindrical surface by moving the probe in the z-direction
and rotating the antenna under test, see Figure 1. With this measurement set-up the
fields on the top and the bottom of the cylindrical surface could not be collected. It
would have been preferable to measure the fields on an infinite cylinder. However,
the size of the cylinder is chosen due to the influence of the turntable below the
radome and the low field amplitudes above z = 800 mm, cf., Figures 2a and 3. In
angle, 120 points are measured between −180◦ and 180◦ in steps of 3◦. The z-
dimension is divided into 129 points, every two points separated by 12.5 mm. This
means that at 8.0 GHz the electric field is measured 3 times per wavelength, in
the z-direction, and 1.5 times per wavelength, in the angular direction, respectively.
Together, a total of 120×129 = 15480 measurement points are used for each radome
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Figure 3: The measured co- and cross-polarized electric field on the measurement
cylinder at 8.0 GHz. In (a) and (b) the angle is fixed at ϕ = 0, and the fields are
normalized to the maximum value when no radome is present in (a). In (c) and (d)
the height is fixed at z = 0, and the fields are normalized to the maximum value
when no radome is present in (c).

configuration and frequency. The co- and cross-polarized measured electric fields are
shown in Figure 3. The differences between the three different antenna and radome
cases arise from constructive and destructive interference between the radiated field
and the scattered field. In Figure 3 it is also observed that the electric field consists
of a dominating co-component in the main lobe, i.e., a dominating z-component
since the antenna is vertically polarized.

3 The surface integral representation

The surface integral representation expresses the electromagnetic field in a homo-
geneous and isotropic region in terms of its values on the bounding surface. The
representation states that if the electromagnetic field on a surface of a volume is
known, the electromagnetic field in the volume can be determined [7, 13]. The rep-
resentation is derived starting from the time harmonic Maxwell equations with the
time convention eiωt. The Maxwell equations transform into the vector Helmholtz
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equation
∇2E(r) + k2E(r) = 0 (3.1)

since the material (air) is source free, homogeneous, and isotropic.
Assume that the electric field only consists of a component in the z-direction.

This is a good approximation dealing with the specific measurements described in
Section 2 since our prime interest is to reconstruct the electric field in the main lobe,
where the z-component is clearly the dominating one, cf., Figure 3.

Working with a scalar field, the surface integral representation only depends on
the scalar electric field, Ez, and its normal derivative, ∂Ez/∂n, i.e., the magnetic
field is not taken into account as it must in the full three dimensional expression [7].
The scalar surface integral representation is derived using the free space Green’s
function g(r, r′) = e−ik|r−r′|/4π|r − r′| [13]

ˆˆ

S

[
∂g(r, r′)
∂n

Ez(r) − g(r, r′)
∂Ez(r)

∂n

]
dS =

{
−Ez(r

′) r′ ∈ V

0 r′ /∈ V
(3.2)

where V is the volume spanning from the outside of the radome to infinity. The
closed surface S is the radome surface with an added top and bottom surface. Ob-
serve that the electric field does not have to be zero outside the volume, i.e., inside
the radome. The surface integral representation (3.2) only states that the left-hand
side of the equation is zero if the vector r′ points outside the volume V , i.e., the
extinction theorem [13].

The equivalent surface currents are introduced as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)

∂n
(3.3)

which are inserted in (3.2) to give

ˆˆ

radome

[
∂g(r, r′)
∂n

M(r) − g(r, r′)M ′(r)

]
dS =

{
−Ecyl

z (r′) r′ ∈ cylinder

0 r′ ∈ surface inside radome

(3.4)
where Ecyl

z is the z-component of the electric field on the measurement cylinder.
The continuous variables are discretized to give linear matrix equations. The dis-
cretized cylindrical coordinate system is described by the integer indices displayed
in Figure 2b.

3.1 Angular Fourier transformation

The transformation, the Green’s function, is axially symmetric due to the mea-
surement set-up, see Section 2. Observe that the symmetry only applies to the
transformation, not to the electric field. Thus, the left-hand side in (3.4) represents
a convolution and by using a Fourier transformation of the angle coordinate the
computational complexity can be brought down one dimension. This reduction of
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one dimension, can be understood by writing the left-hand side in (3.4) as a ma-
trix X. This matrix is a circulant matrix, i.e., every row is shifted one step to the
right compared to the previous row. The eigenvectors of all circulant matrices are
the column vectors of the Fourier matrix F . When a circulant matrix is multiplied
with the Fourier matrix. i.e., performing the Fourier transformation, the result is
FX = FΛ where Λ is a diagonal matrix, which can be seen as a reduction of one
dimension [12].

Discretization and Fourier transformation, in the angle coordinate, of (3.4) give

Nm−1∑
m=0

[
Ĝ ′

imĵM̂mĵ − ĜimĵM̂
′
mĵ

]
= −Êcyl

iĵ for all i, ĵ (3.5)

and
Nm−1∑
m=0

[
Ĝ′

pmĵM̂mĵ − ĜpmĵM̂
′
mĵ

]
= 0 for all p, ĵ (3.6)

where G and G are the surface integrals, taken over the radome, of the Green’s
function multiplied with the basis functions used in the discretization process. G
has the discretized space variable r′ belonging to the measurement cylinder and
G has the discretized space variable r′ belonging to a surface inside the radome,
respectively. The prime denotes the normal derivative of the Green’s function, ĵ is
the integer index belonging to the Fourier transformed angle component, and the
“hat” denotes the Fourier transformed variables. The summation limits Nm and Np

are described in Figure 2b. To solve the scalar surface integral representation, a
limit process of equation (3.6) should be performed by forcing the fictitious surface
inside the radome towards the radome surface [2, 8]. However, in our attempt to find
a simple and feasible method to allocate the surface current the use of the extinction
theorem as an approximate solution to the integral representation in equation (3.6)
is sufficient.

Reduction of M ′ in (3.5) and (3.6) gives

Nm−1∑
m=0

{
Ĝ ′

imĵ −
Np−1∑
p=0

Nm−1∑
q=0

Ĝiqĵ (Ĝ−1)qpĵ Ĝ′
pmĵ

}
M̂mĵ = −Êcyl

iĵ for all i, ĵ (3.7)

Equation (3.7) can also be written as ĵ matrix equations

Ĝ
radome

ĵ M̂ ĵ = −Ê
cyl

ĵ for all ĵ (3.8)

where the matrices are defined as M̂ ĵ ≡ [M̂m1]ĵ, Ê
cyl

ĵ ≡ [Êcyl
i1 ]ĵ, and

Ĝ
radome

ĵ ≡ [Ĝ ′
im]ĵ − [Ĝim]ĵ[Ĝmp]

−1
ĵ [Ĝ′

pm]ĵ (3.9)

The notation of matrices used here is that of [1].
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3.2 Inversion with singular value decomposition

Since the matrices Ĝ
radome

ĵ and [Ĝmp]ĵ in (3.8) and (3.9) are not quadratic, a regular
inversion cannot be performed. A fast and easy way to solve this is to use the
singular value decomposition (SVD) [12]. This method is used on both matrices,

but the SVD-equations are only given here for Ĝ
radome

ĵ . The matrix system (3.8)
can then be rewritten as

Û ĵŜ ĵV̂
†
ĵM̂ ĵ = −Ê

cyl

ĵ for all ĵ (3.10)

where V̂
†
ĵ denotes the Hermitian conjugate of V̂ ĵ. Both Û ĵ and V̂ ĵ are orthogonal

matrices. Ŝ ĵ is a diagonal matrix consisting of the singular values to Ĝ
radome

ĵ in de-

creasing order. The singular values of both Ĝ
radome

ĵ and [Ĝmp]ĵ exhibit the tendency
shown by the curves in Figure 4a.

A cut-off value δ normalized to the operator L2-norm of Ĝ
radome

1 is chosen. The

operator L2-norm of Ĝ
radome

1 is equal to the largest singular value (σ1) of the largest
Fourier transformed angle component [8]. All singular values smaller than δ are

ignored during the inversion of Ŝ ĵ and are afterwards set to zero. If this is not done
the small singular values create an uncontrolled growth of non-radiation currents
when inverted. The mathematical formulation then fails since very small electric
field contributions become dominating. Performing the inversion of (3.10) gives

M̂ ĵ = − Û
†
ĵŜ

−1

ĵ V̂ ĵÊ
cyl

ĵ for all ĵ (3.11)

Before the system of equations is solved it is necessary to convert it back from
Fourier space by an inverse Fourier transformation

M j = F−1

[
−Û

†
ĵŜ

−1

ĵ V̂ ĵÊ
cyl

ĵ

]
for all j, ĵ (3.12)

where j, as before, denotes the integer index belonging to the discretized angle
component, see Figure 2b.

4 Implementation

Some adjustments of the formulas are made in the implementation process. To
facilitate the calculations, the radome surface is reshaped into a closed surface by
adding a smooth top and bottom surface. These extra surfaces are useful since the
measurements are performed under non-ideal conditions. The table, on which the
antenna and radome are placed, see Figure 1, reflects some of the radiation, which
is taken care of by the bottom surface. The top surface represents the electric field
that is reflected on the inside of the radome and then is passed out through the
top hole. If these factors are not considered, unwanted edge effects occur since the
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Figure 4: (a) The tendency of singular values of Ĝ
radome

ĵ and [Ĝmp]ĵ. Every curve
represents the singular values of a Fourier transformed angle component, i.e., dif-
ferent ĵ. The horizontal lines describe the cut-off values δ = σ1[0.15 0.1 0.05 0.01
0.005]. (b) The synthetic equivalent current, originating from three dipoles, in dB-
scale [−15, 0], normalized to the highest current value, i.e., the maximum current
magnitude in figure c. (c) The reconstructed current in dB-scale [−15, 0], normalized
to its highest current value.

electric field originating from the table and the top of the radome is forced to arise
from the radome itself.

The measured electric near field is only measured 1.5 times per wavelength, in
the angular direction, at the frequency 8.0 GHz, see Section 2. To be sure that the
equivalent currents on the radome are recreated in an accurate way it is necessary to
have a high sample density on the radome. This is achieved by increasing the number
of discrete points, in the angular direction, on the radome surface by including extra
angles between the already existing ones. Thus, the axial symmetry of the Green’s
transformation is kept. The sample density on the measurement cylinder contributes
very little to the total error. The scalar surface integral representation creates
currents on the radome such that the electric field is correct at the measurement
points. However, if the Nyquist theorem is fulfilled, then the electric field is correct at
all points on the measurement surface, i.e., not only at the measurement points. As
mentioned before, the problem is vast and the matrix Ĝ, cf., (3.9), has approximately
108 elements at the frequency 8.0 GHz when the sample density is 10 points per
wavelength both in the angular direction and in the z-direction on the radome.

To verify and find the error of the method, synthetic data is used. A synthetic
electric field, originating from three dipoles inside the radome is shown in Figure 4b.
The corresponding reconstructed current on a surface shaped as the radome is shown
in Figure 4c where the sample density is 10 points per wavelength both in the z-
direction and in the angular direction. The inner fictitious surface is located one
wavelength from the radome surface.

The error as a function of the Fourier transformed angle component is defined
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as

Err(ĵ) = 20 log10

‖ M̂ ĵ − M̂
correct

ĵ ‖2

‖ M̂
correct

ĵ ‖2

(4.1)

= 20 log10

√∑Nm−1
m=0 | M̂mĵ − M̂ correct

mĵ |2 ΔSm√∑Nm−1
m=0 | M̂ correct

mĵ |2 ΔSm

for all ĵ (4.2)

where the matrix definition in (3.8) is used and ΔSm denotes the discretized area
elements on the radome.

By using synthetic data and choosing appropriate cut-off values δ the error is
shown to be below −60 dB for each existing Fourier transformed angle component.
To obtain these low error levels, the measurement surface must be closed, i.e., field
values at the top and bottom surfaces of the cylindrical measurement surface must be
included. The cut-off values depend on the complexity of the specific measurement
set-up and must be investigated for each new set-up.

The total error of the scalar surface integral representation using the measured
near field described in Section 2 is hard to define since the noise level and the amount
of field spread outside the measurement cylinder are unknown parameters. Instead
we rely on the fact that the method handles synthetic data well and that the results
using measured data is satisfactory, see Section 5.

5 Results using measured near-field data

The measured near-field data, described in Section 2, is investigated. The inner
fictitious surface is located one wavelength from the radome surface. The sample
density on the radome is 10 points per wavelength both in the angular direction
and in the z-direction. The cut-off values are determined in accordance with the
discussion in Section 4.

Three different measurement configurations are investigated, viz., antenna, an-
tenna together with radome, and antenna together with defect radome. The studied
frequency interval is 8.0− 12.0 GHz. The results for the different measurement con-
figurations are shown in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz. In Fig-
ure 5b the results for the defect radome case are shown for the frequencies 8.0 GHz,
9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.

In the case when no radome is placed around the antenna the equivalent current
is calculated on a surface shaped as the radome, see Figure 5aa’ and 5ad’. The
figures show that the near field close to the antenna is complex and hard to predict,
i.e., the diffraction pattern must be taken into account. The diffraction is explained
as environmental reflections and an off-centered antenna feed.

The case when the radome is present, see Figure 5ab’ and 5ae’, shows in compar-
ison to the case without radome that the used radome interacts with the antenna
and hence disturbs the radiated field. However, the currents in the main lobe are
hardly affected by the radome, as seen in Figure 6a. The influence of the radome is
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9.0 GHz8.0 GHz

Figure 5: The reconstructed currents in dB-scale [−30, 0], all normalized to the
highest current value, i.e., the maximum current magnitude in figure ac’. (a) The
different measurement configurations are depicted at two different frequencies. From
left to right; antenna without radome, antenna together with radome, and antenna
together with defect radome, respectively. The arrows point out the location of the
copper plates on the defect radome. (b) The defect radome case, shown at different
frequencies.

clearly visible in the reconstructed currents on the back of the radome where flash
lobes occur, see Figure 6b.

The defect radome has two copper plates attached to its surface. These are
placed in the forward direction of the main lobe of the antenna and centered at the
heights 41.5 cm and 65.5 cm above the bottom of the radome. The length of the
side of the squared copper plates is 6 cm, which corresponds to 1.6 wavelengths at
8.0 GHz and 2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac’ and 5af’, where the lower plate appears
clearly. The other plate is harder to discern since it is placed in a region with small
current magnitudes. However, a cross section graph through the main lobe detects
even this copper plate, see Figure 6a. Observe that the effects of the copper plates
cannot be localized directly in the near-field data, compare Figure 6a to Figure 3a.
The near-field data only shows that the field is disturbed, not the location of the
disturbance. Nevertheless, by using the scalar surface integral representation the
effects of the plates are localized and focused. The defect radome also increases the
backscattering as seen in Figure 6b. Due to the copper plates the flash lobes are
different compared to the case with the non-defect radome.
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Figure 6: Cross section of the reconstructed current on the radome surface for
the different measurement configurations, at 8.0 GHz. The current is shown as
functions of the radome height for a fixed angle. All graphs are normalized to the
highest current value, i.e., the maximum current for the defect radome. (a) The
graph representing the currents in the main lobe, i.e., the front of the radome. The
position of the copper plates are marked as thick lines on the horizontal axis. (b) The
currents on the back of the radome.

As a final verification, the far-field amplitude on a sphere in the far-field region is
studied. The electric field, originating from the equivalent currents on the radome,
is calculated on the sphere,

Esph
j = −F−1

[
ĜĵM̂ ĵ

]
for all j, ĵ (5.1)

in accordance with (3.8) and (3.12), except that Ĝĵ now describes the transformation
from the radome to the inner fictitious surface and the far field sphere, respectively.
The denotions j and ĵ are, as before, the integer index belonging to the discretized
angle component and the Fourier transformed discretized angle component, respec-
tively.

The far-field amplitude F is derived as

F (θ, φ) = kr eikrEsph(r, θ, φ) as r → ∞ (5.2)

where (r, θ, φ) describes the spherical coordinate system [6]. The result is compared
with far-field data, supplied by Chelton Applied Composites, as shown in Figure 7.
The far field is depicted for the angles φ = 0 and φ = π, i.e., a cross-section through
the far field of the main lobe and the corresponding far field originating from the
currents on the back of the radome. There is a lack of agreement between the
measured far field and the calculated one in the angles corresponding to the top
of the radome,i.e., θ ≈ 0. This is due to the fact that fields originating hereof are
not all included in the measured near-field data, since the measurement surface is a
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Figure 7: Comparison between the measured far-field data, supplied by Chelton
Applied Composites, and the far field calculated from the equivalent currents on the
radome surface. The far fields are normalized to the maximum value of the far field
when no radome is present. (a) Antenna without radome. (b) Antenna together
with radome. (c) Antenna together with defect radome. (d) The calculated far-field
pattern for the three measurement configurations.

cylinder, see Figure 2a. The fact that the radome disturbs and reflects the electric
field, as earlier seen in Figure 6b, can also be detected in the far field, see Figure 7d,
where flash lobes appear when the radome is present.

6 Discussion and conclusions

The used scalar surface integral representation gives a linear map between the equiv-
alent currents and the near-field data for general structures. It is here shown that
this map can be inverted for axially symmetric geometries. The model can the-
oretically be adapted to geometries lacking symmetry axes. Although it is not a
feasible approach for radome applications, demanding large quantities of measured
data, with the present computer capacity.
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The transformation method is stable and useful in radome design and for eval-
uation purposes. To investigate the electric field passing through the radome, the
current distribution on the antenna or on a surface enclosing the antenna must
be known. Using the surface integral representation, the equivalent currents, on a
surface enclosing the antenna, can be described.

Another range of application within the radome industry is to study how e.g.,
lightning conductors and Pitot tubes, often placed on radomes, influence the equiv-
alent currents. We show that such influences and the field effects of the radome
itself can be detected. In this paper, copper plates are attached on the radome, in
the direction of the antenna main lobe. The length of the side of the square copper
plates are 1.6−2.4 wavelengths, corresponding to the frequency span 8.0−12.0 GHz.
The effects of the plates cannot be localized directly by using the near-field data,
but by using the equivalent currents the effects are focused and detected on the
radome surface. Thus, by transforming the near-field data to the radome surface,
field defects introduced by the radome and other disturbances are focused back to
their origins.

It is concluded that the transformation method based on the surface integral
representation works very well and that the field of applications is large. A nat-
ural continuation is to elaborate the algorithm by including near field data with
cross-polarization, i.e., to implement the full Maxwell equations with a Method of
Moments (MoM). Nevertheless, if the measured near-field data consists of one dom-
inating component the use of the full Maxwell equations are not necessary, as shown
in this paper.

Additional aspects to be investigated more thoroughly in the future are the
resolution possibilities of manufacturing errors and other external field influences.
Analysis of the phase information in the equivalent currents is also of interest. More-
over, a study regarding the detection of different materials attached to the radome
surface is desirable.
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Abstract

Knowledge of the current distribution on a radome can be used to improve
radome design, detect manufacturing errors, and to verify numerical simula-
tions. In this paper, the transformation from near-field data to its equivalent
current distribution on a surface of arbitrary material, i.e., the radome, is
analyzed. The transformation is based on the scalar surface integral represen-
tation that relates the equivalent currents to the near-field data. The presence
of axial symmetry enables usage of the fast Fourier transform (FFT) to reduce
the computational complexity. Furthermore, the problem is regularized using
the singular value decomposition (SVD). Both synthetic and measured data
are used to verify the method. The quantity of data is large since the height
of the radome corresponds to 29 − 43 wavelengths in the frequency interval
8.0 − 12.0 GHz. It is shown that the method gives an accurate description
of the field radiated from an antenna, on a surface enclosing it. Moreover,
disturbances introduced by copper plates attached to the radome surface, not
localized in the measured near field, are focused and detectable in the equiva-
lent currents. The method also enables us to determine the phase shift of the
field due to the passage of the radome, cf., the insertion phase delay.

1 Introduction

This paper provides a wrap-up and a final report of the reconstruction of equivalent
currents in the scalar approximation. The theoretical derivation is a summary of
the work [11]. The new aspect in this report is mainly the analysis of the measured
near-field data, especially the investigation of the phase information. Different ways
of visualizing the results are also discussed and presented.

1.1 Ranges of application

There are several applications of a near field to equivalent currents transformation.
For example, in the radome industry it is important to have accurate models of the
field radiated from the antenna placed inside the radome. It is hard to measure
this field directly since the radome often is located very close to the antenna and
at these distances, there is a substantial interaction between the antenna and the
measuring probe [6, 13, 19]. It is also important to have a powerful tool to determine
the insertion phase delay (IPD), also known as the electrical thickness of the radome.
The IPD is often one of the specified qualities given to characterize a radome. One
way to measure the IPD is to place two horn antennas in such a way that the
incident angle on the radome coincide with the Brewster angle, which is the angle
where the transmitted field has its highest value [12]. To get the IPD, the phase
of the transmitted field is subtracted from the phase of the measured field with no
radome between the horn antennas. This process is very time consuming since it
has to be repeated several times to cover the whole radome surface. Using the scalar
surface integral equation, the phase shift due to the propagation through the radome
is determined.
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Another field of application is in the manufacturing of radiating bodies, i.e.,
antenna arrays etc., when the radiation pattern from the body does not exhibit the
expected form. By determination of the equivalent currents on the radiating body,
the malfunctioning areas or components can be found.

1.2 History

A common method, transforming near field to equivalent currents and vice versa,
is to use modal-expansions of the electric field [6]. This is a very efficient method
for radiating bodies with certain geometrical symmetries, i.e., planar, cylindrical,
and spherical. Having a planar aperture, the plane wave spectrum of the field
is utilized in the back transformation [3, 5]. The fact that the expression of the
far field originating from a planar surface is equal to the Fourier transform of the
radiating field on the aperture has been investigated in [10, 13]. The paper [10] also
illustrates that defects, i.e., patches of Eccosorb, can be detected on the aperture. If
the radiating body is of cylindrical or spherical geometry, the radial solutions contain
cylindrical and spherical Bessel functions, while the angular solutions are described
by trigonometric functions and the associated Legendre functions [6, 17]. For general
geometrical symmetries, where modal-expansions do not exist, the modal-expansion
is less applicable.

Moreover, different combinations of the electric- and magnetic-field integral equa-
tions (EFIE and MFIE) derived from the Maxwell equations, have been used to back
propagate fields towards their sources, i.e., a linear inverse source problem is solved.
By this method it is possible to handle a wider class of geometries [13]. In [18] the
dual-surface, magnetic and electric-field integral equations are investigated. The
fields are transformed back to a cubic perfect electric conductor by solving the dual-
surface magnetic-field integral equation using the conjugate gradient method. Other
work using the integral equations is reported in [14], where the near field is measured
on a arbitrary surface and later inverted to a planar, perfectly conducting surface
by using a singular value decomposition (SVD) for regularization.

1.3 The scalar surface integral representation

In this paper, the approach is to investigate a scalar surface integral representation
that does not require the aperture to be a perfect electric or magnetic conductor.
The representation provides a relation relating the unknown electric and magnetic
equivalent currents on a surface to the measured electric field. An additional relation
is given by the fact that the equivalent currents are constructed such that the integral
is zero inside the volume, on which surface the currents exist, i.e., the extinction
theorem [16].

The integral relations are discretized into matrix linear equations. The matrix
equations include an azimuthal convolution which is solved with a fast Fourier trans-
form (FFT) in the angular coordinate. The fast Fourier transform brings down the
complexity of the problem, i.e., the original surface-to-surface linear map is decom-
posed into a set of line-to-line linear maps. A singular value decomposition (SVD)
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Figure 1: The measured co- and cross-polarized electric field on the measurement
cylinder at 8.0 GHz. In (a) and (b) the angle is fixed at ϕ = 0, and the fields are
normalized by the maximum value when no radome is present in (a). In (c) and (d)
the height is fixed at z = 0, and the fields are normalized to the maximum value
when no radome is present in (c).

is used to invert each of these linear maps. As most inverse problems it is ill-posed,
i.e., small errors in the near-field data can produce large errors in the equivalent
currents. Thus, the problem needs to be regularized by suppression of small singular
values when inverted.

1.4 Results

In this paper, the measured electric field is presumed to be scalar, i.e., the scalar
surface integral representation is utilized. The assumption is acceptable since the
used near-field data, supplied by SAAB Bofors Dynamics and Applied Composites
AB, Sweden, clearly have one dominating component in the main lobe, see Figure 1.
The measured data is given for three different antenna and radome configurations,
viz., antenna, antenna together with radome, and antenna together with defect
radome. The measurement set-up is shown in Figure 2. The height of the radome
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Figure 2: Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.

corresponds to 29 − 43 wavelengths in the frequency interval 8.0 − 12.0 GHz.
As a start, synthetic data is used to verify the method. Verification is also

performed by a comparison between the measured far field and the far field calculated
from the equivalent currents on the radome. The calculated far field agrees well
with the measured far field. Moreover, when the radome is introduced, the field is
scattered and flash lobes arise. The equivalent currents on the radome, due to these
effects are identified and the flash lobes are accurately detected.

Manufacturing errors, not localized in the measured near-field data, can be fo-
cused and detected in the equivalent currents on the radome surface. In this paper,
it is shown that the field scattered by copper plates attached on the radome, is
focused back towards the original position of the copper plates. The length of the
side of the square copper plates is 6 cm, i.e., 1.6− 2.4 wavelengths corresponding to
the frequency span 8.0 − 12.0 GHz.

1.5 Outline

In Section 2, the experimental set-up is described and the measured near-field data
is presented. The scalar surface integral representation is introduced and adapted to
the specific problem in Section 3. Section 4 contains the implementation process of
the scalar surface integral representation. Results, using synthetic near-field data,
and the error of the method are presented. The results, when using the experimental
near-field data, are shown and examined in Section 5. To give the reader a under-
standing of the information that can be extracted from the resulting data, Section 6
gives examples of ways to visualize the results. The paper ends with the achieved
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Figure 3: (a) The dimensions of the reflector antenna, the radome, and the
cylinder where the electric near field is measured. (b) A close-up showing the inner
fictitious surface and the discretized geometric variables.

conclusions in Section 7.

2 Near-field measurements

The near-field data, used in this paper, was supplied by SAAB Bofors Dynamics and
Applied Composites AB, Sweden. The set-up with relevant dimensions indicated is
shown in Figures 2 and 3a. Three different measurements were performed; data
measured without the radome, data measured with the radome, and data measured
with the defect radome. The defect radome has two copper plates attached to its
surface.

A reflector antenna, fed by a symmetrically located wave-guide, generates the
near-field, see Figure 2. The diameter of the antenna is 0.32 m and its focal distance
is 0.1 m. The main lobe of the antenna is vertically polarized relative to the hori-
zontal plane. The standing wave ratio (SWR) is approximately 1.4 in the frequency
range 8.2 − 9.5 GHz. The antenna is poorly adapted for other frequencies. A 10 dB
reflection attenuator is connected to the antenna.
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The height of the radome surface is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

(2.1)
where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The material of the radome has a
relative permittivity of 4.32 and its loss tangent is 0.0144. The thickness of the
wall of the radome varies between 7.6− 8.2 mm. The near-field measurement probe
consists of a wave-guide for which no compensation is made in the final data. The
cylindrical surface, where the electric field is measured, is located in the near-field
zone [2].

The amplitude and phase of the electric field are measured in the frequency in-
terval 8.0−12.0 GHz on a cylindrical surface by moving the probe in the z-direction
and rotating the antenna under test, see Figure 2. With this measurement set-up,
the fields on the top and the bottom of the cylindrical surface could not be col-
lected. It would have been preferable to measure the fields on an infinite cylinder.
However, the size of the cylinder is chosen such that the turntable below the radome
does not have a major influence of the measurements and such that the fields above
z = 800 mm are negligible, cf., Figures 1 and 3a. In the azimuth angle, 120 points
are measured between −180◦ and 180◦ in steps of 3◦. The z-dimension is divided
into 129 points, separated by 12.5 mm. This means that at 8.0 GHz the electric
field is measured 3 times per wavelength, in the z-direction, and 1.5 times per wave-
length, in the azimuth direction, respectively. Together, a total of 120×129 = 15480
measurement points are used for each radome configuration and frequency. The co-
and cross-polarized measured electric fields are shown in Figure 1. The differences
between the three different antenna and radome cases arise from constructive and
destructive interference between the radiated field and the scattered field. In Fig-
ure 1 it is also observed that the electric field consists of a dominating co-component
in the main lobe, i.e., a dominating z-component since the antenna is vertically po-
larized.

3 The surface integral representation

The surface integral representation expresses the electromagnetic field in a homoge-
neous, isotropic region in terms of its values on the bounding surface. The represen-
tation states that if the electromagnetic field on a surface of a volume is known, the
electromagnetic field in the volume can be determined [8, 16]. The representation is
derived starting from the time harmonic Maxwell equations with the time convention
eiωt. The Maxwell equations transform into the vector Helmholtz equation

∇2E(r) + k2E(r) = 0 (3.1)

since the material (air) is source free, homogeneous, and isotropic.
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Assume that the electric field only consists of a component in the z-direction.
This is a good approximation dealing with the specific measurements described in
Section 2 since our prime interest is to reconstruct the electric field in the main lobe,
where the z-component is clearly the dominating one, cf., Figure 1.

Working with a scalar field, the surface integral representation only depends on
the scalar electric field, Ez, and its normal derivative, ∂Ez/∂n, i.e., not all compo-
nents of the electric and magnetic fields need to be included. Observe that in the
vector integral representation all tangential components of the electric and magnetic
fields must be taken into account [8]. The scalar surface integral representation is
derived using the free space Green function g(r, r′) = e−ik|r−r′|/4π|r−r′| giving [16]

ˆˆ

S

[
∂g(r, r′)
∂n

Ez(r) − g(r, r′)
∂Ez(r)

∂n

]
dS =

{
−Ez(r

′) r′ ∈ V

0 r′ /∈ V
(3.2)

where V is the volume exterior to the closed surface S which consists of the radome
surface with an added top and bottom surface. Observe that the electric field does
not have to be zero outside the volume, i.e., inside the radome. The surface integral
representation (3.2) only states that the left-hand side of the equation, evaluated at
a point r′ outside the volume V , is zero, i.e., the extinction theorem [16].

The equivalent surface currents are introduced as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)

∂n
(3.3)

which inserted in (3.2) give

ˆˆ

radome

[
∂g(r, r′)
∂n

M(r) − g(r, r′)M ′(r)

]
dS =

{
−Ecyl

z (r′) r′ ∈ cylinder

0 r′ ∈ inside radome
(3.4)

where Ecyl
z is the z-component of the electric field on the measurement cylinder.

The fictitious surface, inside the radome, is shaped as the radome and located close
to the radome wall.

3.1 Angular Fourier transformation

Due to the measurement set-up, the transformation, the Green’s function, is axially
symmetric, see Section 2. The symmetry only applies to the transformation, not
to the electric field. Thus, the left-hand side in (3.4) represents a convolution and
by using a Fourier transformation of the azimuth coordinate, the computational
complexity can be brought down one dimension. This reduction of one dimension,
can be understood by writing the left-hand side in (3.4) as a matrix, X. This matrix
is a circulant matrix, i.e., every row is shifted one step to the right compared to
the previous row. The eigenvectors of all circulant matrices are the column vectors
of the Fourier matrix, F . Multiplying a circulant matrix with the Fourier matrix,
i.e., performing the Fourier transformation, gives FX = FΛ where Λ is a diagonal
matrix, which can be seen as a reduction of one dimension [15].
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The continuous variables in (3.4) are discretized to give linear matrix equations.
The discretized cylindrical coordinate system is described by the integer indices
depicted in Figure 3b. Discretization and Fourier transformation, in the azimuth
coordinate, of (3.4) give

Nm−1∑
m=0

[
Ĝ ′

imĵM̂mĵ − ĜimĵM̂
′
mĵ

]
= −Êcyl

iĵ for all i, ĵ (3.5)

and
Nm−1∑
m=0

[
Ĝ′

pmĵM̂mĵ − ĜpmĵM̂
′
mĵ

]
= 0 for all p, ĵ (3.6)

where G and G are the surface integrals, taken over the radome, of the Green’s
function multiplied with the basis functions used in the discretization process. G has
the discretized space variable r′ belonging to the measurement cylinder and G has
the discretized space variable r′ belonging to the fictitious surface inside the radome,
respectively. The prime denotes the normal derivative of the Green’s function, ĵ is
the integer index belonging to the Fourier transformed azimuth component, and the
“hat” denotes the Fourier transformed variables. The summation limits Nm and Np

are given in Figure 3b.
To solve the scalar surface integral representation, a limit process of (3.6) should

be performed, letting the fictitious surface inside the radome approach the radome
surface [2, 9]. To avoid singularities, we let the fictitious surface be located at a
finite distance from the radome surface. This provides us with a simple and feasible
method to allocate the surface currents, i.e., the extinction theorem is used as an
approximate solution to the integral representation in (3.6).

Reduction of M ′ in (3.5) and (3.6) gives

Nm−1∑
m=0

{
Ĝ ′

imĵ −
Np−1∑
p=0

Nm−1∑
q=0

Ĝiqĵ (Ĝ−1)qpĵ Ĝ′
pmĵ

}
M̂mĵ = −Êcyl

iĵ for all i, ĵ (3.7)

Equation (3.7) can also be written as ĵ matrix equations

Ĝ
radome

ĵ M̂ ĵ = −Ê
cyl

ĵ for all ĵ (3.8)

where the matrices are defined as M̂ ĵ ≡ [M̂m1]ĵ, Ê
cyl

ĵ ≡ [Êcyl
i1 ]ĵ, and

Ĝ
radome

ĵ ≡ [Ĝ ′
im]ĵ − [Ĝim]ĵ[Ĝmp]

−1
ĵ [Ĝ′

pm]ĵ for all ĵ (3.9)

The used notation of matrices is that of [1].

3.2 Inversion with singular value decomposition

Since the matrices Ĝ
radome

ĵ and [Ĝmp]ĵ in (3.8) and (3.9) are not quadratic, a regular
inversion cannot be performed. A fast and easy way to solve this is to use the
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singular value decomposition (SVD) [15]. This method is used on both matrices,

but the SVD-equations are only given here for Ĝ
radome

ĵ . The matrix system (3.8)
can then be rewritten as

Û ĵŜ ĵV̂
†
ĵM̂ ĵ = −Ê

cyl

ĵ for all ĵ (3.10)

where V̂
†
ĵ denotes the Hermitian conjugate of V̂ ĵ. Both Û ĵ and V̂ ĵ are orthogonal

matrices. Ŝ ĵ is a diagonal matrix consisting of the singular values to Ĝ
radome

ĵ in de-

creasing order. The singular values of both Ĝ
radome

ĵ and [Ĝmp]ĵ exhibit the tendency
shown by the curves in Figure 4a.

A cut-off value, δ, normalized to the operator L2-norm of Ĝ
radome

1 is chosen. The

operator L2-norm of Ĝ
radome

1 is equal to the largest singular value (σ1) of the largest
Fourier transformed azimuth component [9]. All singular values smaller than δ are

ignored during the inversion of Ŝ ĵ and are afterwards set to zero. If this is not done
the small singular values create an uncontrolled growth of non-radiation currents
when inverted. The mathematical formulation then fails since very small electric
field contributions become dominating. Performing the inversion of (3.10) gives

M̂ ĵ = − V̂ ĵŜ
−1

ĵ Û
†
ĵÊ

cyl

ĵ for all ĵ (3.11)

Before the system of equations is solved, it is necessary to convert it back from
Fourier space by an inverse Fourier transformation

M j = F−1

[
−V̂ ĵŜ

−1

ĵ Û
†
ĵÊ

cyl

ĵ

]
for all j, ĵ (3.12)

where j, as above, denotes the integer index belonging to the discretized azimuth
component, see Figure 3b.

4 Implementation

Some adjustments of the formulas are made in the implementation process. To
facilitate the calculations, the radome surface is reshaped into a closed surface by
adding a smooth top and bottom surface. These extra surfaces are useful since the
measurements are performed under non-ideal conditions. The turntable, on which
the antenna and radome are located, see Figure 2, reflects some of the radiation,
which is taken care of by the added bottom surface. The top surface takes care of the
electric field that is reflected on the inside of the radome and then radiated through
the top hole. If these factors are not considered, unwanted edge effects occur since
the electric field originating from the turntable and the top of the radome is forced
to arise from the radome itself.

The measured electric near field is only measured 1.5 times per wavelength, in
the azimuth direction, at the frequency 8.0 GHz, see Section 2. To be sure that the
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Figure 4: (a) The typical behavior of singular values of Ĝ
radome

ĵ and [Ĝmp]ĵ. Every
curve represents the singular values of a Fourier transformed azimuth component,
i.e., different ĵ. The horizontal lines describe the cut-off values, δ = σ1[0.15 0.1 0.05
0.01 0.005]. (b) The synthetic equivalent currents, originating from three dipoles, in
a dB-scale [−15, 0], normalized to the highest current value, i.e., the maximum cur-
rent magnitude in subfigure c. (c) The reconstructed currents in dB-scale [−15, 0],
normalized to its highest current value.

equivalent currents on the radome are recreated in an accurate way, it is necessary to
have a high sample density on the radome. This is achieved by increasing the number
of discrete points, in the azimuth direction, on the radome surface by including extra
angles between the already existing ones. Thus, the axial symmetry of the Green’s
transformation is preserved.

The sample density on the measurement cylinder contributes very little to the
total error. The scalar surface integral representation creates currents on the radome
such that the electric field is correct at the measurement points. However, if the
Nyquist theorem is fulfilled, then the electric field is correct at all points on the
measurement surface, i.e., not only at the measurement points [15]. As mentioned

above, the amount of data is large and the matrix Ĝ
radome

, cf., (3.9), has approxi-
mately 108 elements at the frequency 8.0 GHz when the sample density is 10 points
per wavelength both in the azimuth direction and in the z-direction on the radome.

To verify and find the error of the method, synthetic data is used. A synthetic
electric field, originating from three dipoles inside the radome is shown in Figure 4b.
The corresponding reconstructed currents on a surface shaped as the radome are
shown in Figure 4c where the sample density is 10 points per wavelength both in
the z-direction and in the azimuth direction. The inner fictitious surface is located
one wavelength from the radome surface.

The error as a function of the Fourier transformed azimuth angle component is
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10.0 GHz

8.0 GHz

10.0 GHz

12.0 GHz11.0 GHz

9.0 GHz8.0 GHz

Figure 5: The reconstructed currents in dB-scale [−30, 0], all normalized to the
highest current value, i.e., the maximum current magnitude in figure ac’. (a) The
different measurement configurations are depicted at two different frequencies. From
left to right; antenna without radome, antenna together with radome, and antenna
together with defect radome, respectively. The arrows point out the location of the
copper plates on the defect radome. (b) The defect radome case, shown at different
frequencies.

defined as

Err(ĵ) = 20 log10

‖ M̂ ĵ − M̂
correct

ĵ ‖2

‖ M̂
correct

ĵ ‖2

= 20 log10

√∑Nm−1
m=0 | M̂mĵ − M̂ correct

mĵ |2 ΔSm√∑Nm−1
m=0 | M̂ correct

mĵ |2 ΔSm

for all ĵ

(4.1)

where ΔSm denotes the discretized area elements on the radome.
By using synthetic data and choosing appropriate cut-off values, δ, the error is

shown to be below −60 dB for each existing Fourier transformed azimuth angle com-
ponent. To obtain these low error levels, the measurement surface must be closed,
i.e., field values at the top and bottom surfaces of the cylindrical measurement sur-
face must be included. The cut-off values depend on the complexity of the specific
measurement set-up and must be investigated for each new set-up.

The total error of the scalar surface integral representation using the measured
near field described in Section 2 is hard to define since the noise level and the amount
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Figure 6: Cross section of the reconstructed currents, on the radome surface, for
the different measurement configurations at 8.0 GHz. The currents are shown as
functions of the radome height for a fixed angle. All graphs are normalized to the
highest current value, i.e., the maximum current for the defect radome case. (a) The
graph representing the currents in the main lobe, i.e., the front of the radome. The
positions of the copper plates are marked by thick lines on the horizontal axis.
(b) The currents on the back of the radome.

of field spread outside the measurement cylinder are unknown parameters. Instead,
we rely on the fact that the method handles synthetic data well and that the results
using measured data is satisfactory, see Section 5.

5 Results using measured near-field data

The measured near-field data, described in Section 2, is investigated. The inner
fictitious surface is located one wavelength from the radome surface. The sample
density on the radome is 10 points per wavelength both in the azimuth direction
and in the z-direction. The cut-off values are determined in accordance with the
discussion in Section 4.

Three different measurement configurations are investigated, viz., antenna, an-
tenna together with radome, and antenna together with defect radome. The studied
frequency interval is 8.0− 12.0 GHz. The results for the different measurement con-
figurations are shown in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz. In Fig-
ure 5b the results for the defect radome case are shown for the frequencies 8.0 GHz,
9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.

In the case when no radome is located around the antenna, the equivalent cur-
rents are calculated on a surface shaped as the radome, see Figure 5aa’ and 5ad’.
The figures show that the near field close to the antenna is complex and hard to
predict, i.e., the diffraction pattern must be taken into account. The diffraction is
explained as environmental reflections and an off-centered antenna feed.

The case when the radome is present, see Figure 5ab’ and 5ae’, shows in com-
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Figure 7: The reconstructed phase of the currents on the front of the radome.
(a) The different measurement configurations are depicted at two different frequen-
cies. From left to right; antenna without radome, antenna together with radome,
and antenna together with defect radome, respectively. (b) The defect radome case,
shown at different frequencies.

parison to the case without radome that the radome interacts with the antenna and
hence disturbs the radiated field. However, the currents in the main lobe are hardly
affected by the radome, as seen in Figure 6a. The influence of the radome is clearly
visible in the reconstructed currents on the back of the radome where flash lobes
occur, see Figure 6b.

The defect radome has two copper plates attached to its surface. These are
located in the forward direction of the main lobe of the antenna and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The length of the
side of the squared copper plates is 6 cm, which corresponds to 1.6 wavelengths at
8.0 GHz and 2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac’ and 5af’, where the lower plate appears
clearly. The other plate is harder to discern since it is located in a region with low
amplitudes. However, a cross section graph through the main lobe detects even this
copper plate, see Figure 6a. Observe that the effects of the copper plates cannot be
localized directly in the near-field data, compare Figure 6a to Figure 1a. The near-
field data only shows that the field is disturbed, not the location of the disturbance.
Nevertheless, by using the scalar surface integral representation, the effects of the
plates are localized and focused. The defect radome also increases the backscattering
as seen in Figure 6b. Due to the copper plates, the flash lobes are different compared
to the case with the non-defect radome.

Until now only the amplitude of the reconstructed currents has been investigated.
The phase of the currents is depicted in Figure 7. The vertical lines above the
main lobe in Figure 7a’ and 7d’ are due to phase jumps and are caused by the low
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Figure 8: The phase difference (antenna - antenna with radome) for several
frequencies.

amplitude of the currents in these areas. The phase difference (antenna - antenna
with radome) reveals how the the phase is changed due to the influence of the
radome, see Figure 8. The phase shift, denoted Δϕ, is only known modulus 2π. The
phase shift in the main lobe is almost constant, especially for the low frequencies,
which is more clearly seen by looking at the cross section of the front side of the
radome, see Figure 9. What is noticeable in this image is the region between z =
−0.4 m and z = 0 m, i.e., the main lobe where the phase shift is nearly constant.
In areas where the amplitude of the field is small, cf., Figure 6a, the phase of the
field is not well defined, i.e., it is dominated by noise. This almost constant phase
shift, for the low frequencies, confirms that the radome is quite well adapted to the
frequencies 8.0− 9.0 GHz, which is also the frequency interval where the antenna is
well matched, see Section 2.

Sometimes, when dealing with phase information, the figures can be clarified by
using phase unwrapping [4]. It means that the jump in the scale between 0 and 2π
is removed. In our case phase unwrapping gives us no new information since the
area of interest is the main lobe and the phase shift there is almost constant.

To validate the calculation of the phase shift, the propagation distance of the
field through the radome, i.e., the actual propagation path of the field in the radome
material, is estimated and compared to the actual thickness of the radome given in
Section 2. The propagation distance of the field through the radome is longer than
the wall thickness since the field has an incident angle larger than zero. The phase
difference between two fields propagating the distance d in air and in the radome
material, respectively, can be written as [12]

Δϕ = Re
[
2πf

√
ε0εrμ0(1 − i tan δ)

]
d− 2πf

√
ε0μ0 d (5.1)

where f is the frequency, d the propagation distance of the field, ε0 the permittivity of
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Figure 9: Cross section of the phase difference (antenna - antenna with radome)
on the front of the radome. Observe that in areas where the amplitude of the
currents are small, cf., Figure 6a, the phase of the field is not well defined, i.e., it is
dominated by noise.
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Figure 10: The phase difference (antenna with radome - antenna with defect
radome) for several frequencies. The arrows point out the location of the copper
plates.
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vacuum, and μ0 the permeability of vacuum, respectively. The parameters belonging
to the radome, described in Section 2, are the relative permittivity, εr, and the loss
tangent, tan δ. Since only an estimation of the propagation distance is performed,
we assume that this distance is the same in both air and the radome material. We
assume perpendicular incidence and neglect all reflections. According to Section 2,
the thickness of the radome is between 7.6 − 8.2 mm. The almost constant phase
shifts in the main lobe are approximated from Figure 9 for all frequencies. Solving
for d in (5.1) results in a propagation distance of 9.3 − 9.7 mm for all frequencies,
which is considered constant due to the crude approximations of the phase shifts.
The phase shift, Δϕ, is comparable to the insertion phase delay (IPD) often used in
the radome industry.

The phase images in Figure 7b are not appropriate for finding the location of the
copper plates. Instead, the phase difference (antenna with radome - antenna with
defect radome) is useful, see Figure 10. These images reveal the change of the phase
due to the attached copper plates on the defect radome.

As a final verification of the method, the amplitude on a sphere in the far-field
region is studied. The electric field, originating from the equivalent currents on the
radome, is calculated on the sphere, i.e.,

Esph
j = −F−1

[
ĜĵM̂ ĵ

]
for all j, ĵ (5.2)

in accordance with (3.8) and (3.12), except that Ĝĵ now describes the transformation
from the radome to the inner fictitious surface and to the far-field sphere. The
denotions j and ĵ are, as above, the integer index belonging to the discretized
azimuth component and the Fourier transformed discretized azimuth component,
respectively.

The far-field amplitude F is derived as

F (θ, φ) = kr eikrEsph(r, θ, φ) as r → ∞ (5.3)

where (r, θ, φ) denotes the spherical coordinate system [7]. The result is compared
with far-field data, supplied by Applied Composites AB, as shown in Figure 11. The
far field is depicted for the angles φ = 0 and φ = π, i.e., a cross-section through
the far field of the main lobe and the corresponding far field originating from the
currents on the back of the radome. There is a lack of agreement between the
measured far field and the calculated one at the angles corresponding to the top of
the radome, i.e., θ ≈ 0. This is due to the fact that fields originating hereof are
not all included in the measured near-field data, since the measurement surface is a
cylinder, see Figure 3a. The fact that the radome disturbs and reflects the electric
field, as earlier seen in Figure 6b, can also be detected in the far field, see Figure 11d,
where flash lobes appear when the radome is present.
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Figure 11: Comparison between the measured far-field data, supplied by Applied
Composites AB, and the far field calculated from the equivalent currents on the
radome surface. The far fields are normalized to the maximum value of the far field
when no radome is present. (a) Antenna without radome. (b) Antenna together
with radome. (c) Antenna together with defect radome. (d) The calculated far-field
pattern for the three measurement configurations.

6 Alternative ways to visualize the electromag-

netic currents

6.1 Amplitude of the reconstructed currents

In the previous section, the amplitude and the phase of the reconstructed currents
have been visualized by showing the amplitude in dB-scale over the front side of the
radome in Figure 5, and over a cross section of the front and the back in Figure 6.
These ways of presenting the results are in this section supplemented in an attempt
to see what possibilities other visualization approaches offer. First, the back side of
the radome is shown in a dB-scale in Figure 12. The absolute value of the currents is
also displayed in a linear scale on the front and the back of the radome in Figures 13
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Figure 12: The reconstructed currents on the back of the radome in a dB-scale
[−30, 0], all normalized to the highest current value, i.e., the maximum current mag-
nitude in Figure 5ac’. (a) The different measurement configurations are depicted at
two different frequencies. From left to right; antenna without radome, antenna to-
gether with radome, and antenna together with defect radome, respectively. (b) The
defect radome case, shown at different frequencies.
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8.0 GHz

Figure 13: The reconstructed currents on the front of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in figure ac’. (a) The different measurement configurations are depicted at two
different frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. The arrows
point out the location of the copper plates on the defect radome. (b) The defect
radome case, shown at different frequencies.
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Figure 14: The reconstructed currents on the back of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in Figure 13ac’. (a) The different measurement configurations are depicted at two
different frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. (b) The defect
radome case, shown at different frequencies.

and 14, respectively. The flash lobes clearly appear in both dB- and linear scale, see
Figures 12 and 14. Notice that the top copper plate is not resolved very well in the
linear scale compared to the dB-scale in Figure 5.

6.2 Differences between the measurement configurations

To further demonstrate the distinctions between the three radome configurations
their differences are calculated. The difference (|antenna| - |antenna with radome|)
is shown in Figure 15 in a dB-scale, and in Figure 16 in a linear scale. The images
show the influence of the radome and the appearance of flash lobes at the back of
the radome. The dB-scale, Figure 15, has the advantage that also small current
values are made visible. The advantage with the linear scale is that the sign of the
difference is visible. In Figure 16, on the front of the radome, the field originating
from the antenna is the strongest, i.e., the difference is positive, while on the back
of the radome, the field passing trough the radome as flash lobes is the strongest,
i.e., the difference is negative. This conclusion can not be drawn by looking at the
dB-scale in Figure 15, where only the amplitude of the difference is displayed.

To emphasize the contribution of the defect radome, the difference (|antenna
with radome| - |antenna with defect radome|) is studied in a dB-scale, see Figure 17
and in a linear scale, see Figure 18. The effect of the lower copper plate is clearly
detectable in both figures, while the top plate is hard to discern in both scales,
i.e., these figures are useful to get an overview, but when it comes to details, other
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Figure 15: The amplitude difference abs(|antenna| - |antenna with radome|) for
several frequencies. The amplitude differences are normalized to the highest value
at each frequency and are all depicted in a dB-scale [−20, 0].

visualizations approaches are needed. The tricky part with the dB-scale is to choose
its lower limit. If a too low value is used, too much noise appears and blurs the
image. However, if instead a too high value is picked, the field effects caused by the
copper plates are hidden. To reveal the exact positions of the copper plates, cross
section graphs through the front of the radome are presented in a linear and in a
dB-scale in Figure 19 for the frequency 8.0 GHz. The effects of the copper plates
are clearly seen in both scales, but their positions are somewhat off-centered. This
is probably due to the fact that the copper plates cause diffractions and reflections,
which do not occur when only the radome is present. There is also an uncertainty
in the measurement set-up.

6.3 Propagation of the reconstructed fields

To see how the waves propagate on the radome-shaped surface, the field values, i.e.,
Re (M eiωt) for 0 � ωt � 2π, are presented as a movie on http://www.eit.lth.se/

staff/kristin.persson under the link Research. The distinctions between the
different frequencies and radome configurations are revealed on both the front and
the back side of the radome surface.
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Figure 16: The amplitude difference (|antenna| - |antenna with radome|) for several
frequencies. The amplitude differences are normalized to the highest value at each
frequency and are all depicted in a linear scale.

7 Discussion and conclusions

The scalar surface integral representation gives a linear map between the equivalent
currents and the near-field data for general geometries. It is shown that this map
can be inverted for axially symmetric geometries. The model can theoretically be
adapted to geometries lacking symmetry axes. Although it is not a feasible approach
for radome applications, demanding large quantities of measured data, with the
present computer capacity.

The transformation method is stable and useful in radome design and for eval-
uation purposes. To investigate the electric field passing through the radome, the
current distribution on the antenna or on a surface enclosing the antenna must be
known. Using the surface integral representation, the equivalent currents, on a sur-
face enclosing the antenna, can be described. The insertion phase delay is estimated
by investigating the phase of the reconstructed currents.

In this paper, copper plates are attached on the radome, in the direction of
the antenna main lobe. The length of the side of the square copper plates is
1.6 − 2.4 wavelengths, corresponding to the frequency span 8.0 − 12.0 GHz. The
effects of the plates cannot be localized directly by using the near-field data, but by
using the equivalent currents, the effects are focused and detected on the radome
surface. Thus, by transforming the near-field data to the radome surface, field de-
fects introduced by the radome and other disturbances are focused back to their
origins. Another range of application within the radome industry is to study how
e.g., lightning conductors and Pitot tubes, often placed on radomes, influence the
equivalent currents. We predict that such influences and the field effects of the
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Figure 17: The amplitude difference abs(|antenna with radome| - |antenna with
defect radome|) for several frequencies. The amplitude differences are normalized to
the highest value at each frequency and are all depicted in a dB-scale [−30, 0]. The
arrows point out the location of the copper plates.

radome itself can be detected.
It is concluded that the transformation method based on the scalar surface in-

tegral representation works very well and that the field of applications is large. A
natural continuation is to elaborate the algorithm by including near-field data with
cross-polarization, i.e., to implement the full Maxwell equations with a Method of
Moments (MoM). Nevertheless, if the measured near-field data consists of one domi-
nating component, the use of the full Maxwell equations are not necessary, as shown
in this paper.

Additional aspects to be investigated more thoroughly in the future are the
resolution possibilities of manufacturing errors and other external field influences.
Moreover, a study regarding the detection of different materials attached to the
radome surface is desirable.
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Figure 18: The amplitude difference (|antenna with radome| - |antenna with defect
radome|) for several frequencies. The amplitude differences are normalized to the
highest value at each frequency and are all depicted in a linear scale. The arrows
point out the location of the copper plates.
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Abstract

In this paper an inverse source problem is investigated. The measurement
set-up is a reflector antenna covered by a radome. Equivalent currents are
reconstructed on a surface shaped as the radome in order to diagnose the
radome’s interaction with the radiated field. To tackle this inverse source
problem an analysis of a full-wave integral representation, with the equivalent
currents as unknowns, is used. The extinction theorem and its associated inte-
gral equation ensure that the reconstructed currents represent sources within
the radome. The axially symmetric experimental set-up reduces the compu-
tational complexity of the problem. The resulting linear system is inverted
by using a singular value decomposition. We visualize how the presence of
the radome alters the components of the equivalent currents. The method
enables us to determine the phase shift of the field due to the transmission of
the radome, i.e., the IPD (insertion phase delay). Also, disturbances due to
defects, not observable in the measured near field, are localized in the equiva-
lent currents. The results are also compared with earlier results where a scalar
integral representation was employed.

1 Introduction

The aim of this paper is to calculate and visualize the sources of a measured electric
field on a radome-shaped surface. The electric field is originating from an antenna
inside the radome and is measured in the near-field zone outside the radome. The
electrical size of the radome is 29 wavelengths at the frequency 8.0 GHz.

This kind of calculations are important in diagnosing antennas, designing ra-
domes, etc., since the field close to the body of interest is difficult to measure directly.
By doing so, the interaction between the source and the measurement probe can
give incorrect results [14, 36, 49]. In the process of designing a radome, the electric
field close to the antenna is requested as an input to software calculating the field
propagation through the radome wall [2, 39]. To get reliable results, it is crucial
that the representation of the field radiated from the antenna, i.e., the input data,
is well known. To determine the performance of the radome it is eligible to quantify
e.g., beam deflection, transmission efficiency, pattern distortion, and the electrical
thickness of the radome wall, i.e., the insertion phase delay (IPD). It is also of
interest to see how the mounting device and e.g., lightning conductors and Pitot
tubes, often placed on radomes, interact with the electric field.

One of the first techniques developed to solve the inverse source problems of
this kind employs the plane wave expansion [10, 25, 37]. The method works very
well when the equivalent currents are reconstructed on a planar surface. One recent
area of application is the determination of the specific absorption rate of mobile
phones [12]. A modal expansion of the field can be utilized if the reconstruction
surface is cylindrical or spherical [14, 26, 31]. This method has been used to calculate
the insertion phase delay (IPD) and to detect defects on a spherical radome [13].
More general geometries, e.g., needle shaped objects and flat disks, can be handled
by expanding the field in spheroidal wave functions [44]. A combination of the plane
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wave spectrum and the modal expansion has been utilized in [7, 8] and [50] where
flat antenna structures are diagnosed and safety perimeter of base stations’ antennas
is investigated, respectively.

To be able to handle a wider class of geometries, diagnostic techniques based
on integral representations, which are solved by a method of moment approach, are
applied. The drawback is the computational complexity. If the object on which the
currents are to be reconstructed is metallic, i.e., a perfect electric conductor (PEC),
either the electric or magnetic field integral equation (EFIE or MFIE) can be em-
ployed [47] or combinations thereof [34, 40]. The equivalence principle is conveniently
used when analyzing flat antenna structures [23, 24, 38]. An integral representation
together with a priori information of the object and iterative solvers is used by [22]
and [11] to find the electric current on the walls of a PEC for diagnose of a pyramidal
horn antenna and a monopole placed on the chassis of a car.

In this paper we propose a technique using the integral representations to relate
the unknown equivalent currents to a known measured near field. In addition to
the integral representation, we also use an integral equation, originating from the
extinction theorem [9]. By using the extinction theorem together with the integral
representation we secure that the sources of the reconstructed currents only exist
inside the enclosing volume [46]. The equivalent currents can be reconstructed on a
surface arbitrarily close to the antenna. No a priori information of the material of
the object just inside the surface is utilized.

2 Prerequisites

In this section, we review the basic equations employed in this paper. We start with
a general geometry, and specialize to a body of revolution in Section 2.2.

2.1 General case

The surface integral representation expresses the electromagnetic field in a homo-
geneous, isotropic region in terms of its values on the closed bounding surface.
We engage the integral representations to a domain outside a closed, bounded sur-
face Srad. Carefully employing the Silver-Müller radiation conditions, the solution
of the Maxwell equations satisfy the following integral representation [17, 29, 42, 46]

¨

Srad

(
−jωμ0μ g(r1, r2)

[
n̂(r1) × H(r1)

]
+

j

ωε0ε
∇1g(r1, r2)

{
∇1S · [n̂(r1) × H(r1)

]}

−∇1g(r1, r2) ×
[
n̂(r1) × E(r1)

])
dS1 =

{
E(r2) r2 outside Srad

0 r2 inside Srad

(2.1)
where the time convention used is ejωt, and the surface divergence is denoted ∇S· [9].
The variable of integration is denoted r1 and the observation point r2, see Figure 1.
The relative permittivity ε and the relative permeability μ may depend on the
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Figure 1: The surface Srad of integration. The unit normal to the surface is n̂. The
variable of integration is denoted r1 and the observation point r2.

angular frequency ω, i.e., the material can be dispersive, but they are constants as
a functions of space (homogeneous material). The scalar free space Green function
is

g(r1, r2) =
e−jk|r2−r1|

4π|r2 − r1| (2.2)

where the wave number of the material is k = ω
√
ε0μ0εμ. The representation (2.1)

states that if the electromagnetic field on Srad is known, the electromagnetic field
outside Srad can be determined [15, 30, 46]. If these integrals are evaluated at a
point r2 lying in the volume enclosed by Srad these integrals cancel each other
(extinction). It is important to notice that this does not necessarily mean that the
field E is identically zero inside Srad, it only states that the values of the integrals
cancel.

The electric and magnetic equivalent surface current densities, J and M , are
introduced to simplify the notation and they are defined as [5]{

J(r) = n̂(r) × H(r)

M(r) = − n̂(r) × E(r)
(2.3)

The lower (or upper) representation in (2.1) is transformed into an integral equa-
tion letting r2 approach Srad, cf., Figure 1. However, care must be taken since
the integrands become singular when r2 approaches the surface [9, 17, 28, 46]. The
equation consists of three components, two describing the tangential field and one
describing the normal component of the field. Since the normal component can
be determined by the knowledge of the tangential parts, this representation has
redundancies, i.e., the normal component is eliminated [29].
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To this end, (2.1) splits into a surface integral representation of the electric field
¨

Srad

{
−jωμ0μ g(r1, r2)J(r1) + j

1

ωε0ε
∇1g(r1, r2)

[∇1S · J(r1)
]

+ ∇1g(r1, r2) × M(r1)
}

dS1 = E(r2) r2 outside Srad

(2.4)

and a surface integral equation in J and M

n̂(r2) ×
¨

Srad

{
jωμ0μ g(r1, r2)J(r1) − j

1

ωε0ε
∇1g(r1, r2)

[∇1S · J(r1)
]

−∇1g(r1, r2) × M(r1)
}

dS1 =
1

2
M(r2) r2 ∈ Srad

(2.5)

When necessary, the integrals in the surface integral equation are interpreted as
Cauchy’s principal value [9, 35].

The integral equation is written in a weak form, i.e., it is multiplied by a test
function and integrated over its domain [6, 20, 28, 34]. The representation (2.4) does
not need this treatment since r2 consists of a discrete number of points outside Srad,
i.e., r1 and r2 do not coincide. The weak formulation of (2.5) is derived in Appendix
A, where the test function is denoted by Ψ, giving

jωμ0μ

¨

Srad

¨

Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

− j
1

ωε0ε

¨

Srad

¨

Srad

[∇2S · Ψ(r2)
]
g(r1, r2)

[∇1S · J(r1)
]

dS1 dS2

−
¨

Srad

¨

Srad

Ψ(r2) ·
[∇1g(r1, r2) × M(r1)

]
dS1 dS2

− 1

2

¨

Srad

[
n̂(r2) × Ψ(r2)

] · M(r2) dS2 = 0 (2.6)

2.2 Body of revolution

From now on the equations are adapted to a body of revolution (BOR) in vacuum,
i.e., ε = 1 and μ = 1. The surface is parameterized by the azimuth angle ϕ and the
height coordinate along the surface v, i.e., the position vector r can be expressed
as r(ϕ, v) = ρ(v) cosϕ êx + ρ(v) sinϕ êy + z(v) êz. The normalized basis vectors are
then

ϕ̂(ϕ) =
∂r

∂ϕ
/

∣∣∣∣∂r∂ϕ
∣∣∣∣ = − sinϕ êx + cosϕ êy and v̂(ϕ, v) =

∂r

∂v
/

∣∣∣∣∂r∂v
∣∣∣∣

and {n̂, ϕ̂, v̂} forms a right-handed triple of unit vectors. The curvilinear compo-
nents of the magnetic equivalent surface current and electric field are denoted as



2 Prerequisites 83

O

r

r

1

2

S

Srad

meas

Figure 2: The regions of integration in (2.9).

Eϕ = −Mv and Ev = Mϕ, cf., (2.3), where Mϕ = M · ϕ̂, and Mv = M · v̂. The
magnetic field and the electric equivalent current are related in a similar way. The
explicit expressions of the normalized basis vectors, surface divergence, the gradient
of the Green function, and other useful formulas are derived in Appendix B.

Two functions, aϕ
mj and av

mj, are used as basis functions. They are defined as

aϕ
mj = fϕ

j (v) ejmϕϕ̂

av
mj = fv

j (v) ejmϕv̂
(2.7)

The height of the radome, v1, is discretized into points, vj, where j = 1, . . . , Nz.

The functions f
ϕ/v
j (v) can be chosen as a constant, linear, cubic, spline functions

etc., with support in a neighborhood of vj [6, 34]. For the results in this paper,

both f
ϕ/v
j (v) are chosen as piecewise linear functions, i.e., one-dimensional rooftops.

Observe that ϕ/v in fϕ/v denotes a superscript and not an exponential. In the
azimuthal direction, a global function, ejmϕ, i.e., a Fourier basis, is used due to the
symmetry of the body, and m is an integer index. The current is expanded as

J =
∑
m,j

{
Jϕ

mj aϕ
mj + Jv

mj av
mj

}
(2.8)

The magnetic current M is expanded in a similar way, but with expansion coeffi-
cients M

ϕ/v
mj .

Galerkin’s method is used [6]. That is, the test functions are according to (2.7)
Ψϕ

ni = (aϕ
ni)

∗ and Ψv
ni = (av

ni)
∗ where complex conjugation is denoted by a star and

the indicies run through the same integers as m and j. The surface divergence, the
tangential components of the test function and the current are explicitly derived
and listed in Appendix C.

The surface integral representation (2.4) is applied to the measurement set-up
described in Section 3, i.e., r2 belongs to a cylindrical surface Smeas, see Figure 2.
This surface has axial symmetry with constant radius and is parameterized by ϕ2
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and v2, in the same manner as the surface Srad is. The height is discretized into
points, vq, where q = 1, . . . , Nmeas

z . None of the integrals contains singularities since
r1 and r2 will not coincide. From equation (2.4) we get[

v̂
ϕ̂

]
·
{
−jωμ0

¨

Srad

g(r1, r2)J(r1) dS1 + j
1

ωε0

¨

Srad

∇1g(r1, r2)
[∇1S · J(r1)

]
dS1

+

¨

Srad

∇1g(r1, r2) × M(r1) dS1

}
=

[
v̂ · E(r2)
ϕ̂ · E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

]
r2 ∈ Smeas

(2.9)
where the tangential components are projected using scalar multiplication.

Since the currents are expanded in the Fourier series, the right hand side of (2.9)
is expanded in the same way, i.e., the Fourier expansion of Eϕ/v is

Eϕ/v(ϕ2, v2) =
∞∑

n=−∞
Eϕ/v

n (v2)e
jnϕ2

where

Eϕ/v
n (v2) =

1

2π

ˆ 2π

0

Eϕ/v(ϕ2, v2)e
−jnϕ2 dϕ2 (2.10)

and n is an integer index. Observe that ϕ/v in Eϕ/v denotes a superscript and not
an exponential. The Fourier series reduce the dimensions of the problem by one
degree [27, 34, 45].

Equation (2.9) consists of nine different angular integrals. These integrals are
non-singular and are derived and listed in Appendix D. Equation (2.9) is organized
as a system of matrices, i.e.,[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
(2.11)

where the right hand side consists of the Fourier coefficients of the electric field. The
details of the derivation and the explicit expressions of the matrix elements

[
Zkl

]
and

[
Xkl

]
are given in Appendix F.

The integral equation in (2.6) also contains nine different integrals in the angular
direction. These are the same as in the integral representation, i.e., (2.9), but they
now contain singularities. The integrals are derived and listed in Appendix D.
Equation (2.6) is also organized as a system of matrices, i.e.,[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X 11] [X 12]
[X 21] [X 22]

] [
[Mv]
[Mϕ]

]
=

[
[0]
[0]

]
(2.12)

The details of the derivation and the explicit expressions of the matrix elements[Zkl
]

and
[X kl

]
are given in Appendix G.

Combining the matrix systems for the integral representation (2.11) and (2.12)
gives, in short-hand notation,[

[Z] [X]
[Z] [X ]

] [
[J ]
[M ]

]
=

[
[E]
[0]

]
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Figure 3: (a) Photo of the cylindrical near-field range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the reflector antenna is shown in the upper right corner.
(b) The dimensions of the reflector antenna, the radome, and the cylinder where the
electric near field is measured.

The magnitude of the entries of the matrices may differ by several orders of magni-
tude. To avoid numerical errors, the system is solved for one current at a time,

[J ] = −[Z]−1[X ][M ] =⇒{
−[Z][Z]−1[X ] + [X]

}
[M ] = [E]

(2.13)

when J is eliminated. In the first line, J is expressed as a function of M utiliz-
ing the integral equation. The matrix [Z] is quadratic and inverted numerically in
MATLAB. The second equation is ill-posed. The matrix is no longer quadratic and
to solve for M , the linear system is inverted and regularized by the singular value
decomposition (SVD) in MATLAB [45]. Besides numerical errors also noise and
measurement errors show up. Here, the SVD helps in suppressing the amplification
of noise in the inversion [3]. In our initial investigation we have not encountered any
problems with spurious modes [41] or by using the numerical inversion of MATLAB
or the SVD. However, a more detailed investigation of the ill-posed equations is
needed. Specifically, a discussion of how to chose the cut-off value, i.e., the magni-
tude of the largest singular value that is excluded, needs to be addressed further.

3 Near-field measurements

The experimental set-up and the measured electric field is described in [32]. How-
ever, for convenience, the necessary information is summarized. The measurement
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set-up is shown in Figure 3. A reflector antenna, fed by a symmetrically mounted
wave-guide, generates the electromagnetic field. The diameter of the antenna is
0.32 m, and the main lobe of the antenna is vertically polarized relative to the hor-
izontal plane. The radome surface is axially symmetric and its radius, in terms of
the height coordinate, is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The height of the radome corresponds
to 29 wavelengths for the frequency 8.0 GHz. The material of the radome has a
relative permittivity of about 4.32 and its loss tangent is about 0.0144. The thickness
of the wall of the radome varies over the surface in the interval 7.6 − 8.2 mm.

The surface Srad in (2.6) and (2.9) is defined by the radome surface, closed with
smooth top and bottom surfaces. These added surfaces are needed since the integral
representation applies to a closed surface and the measurements are performed under
non-ideal conditions. The turntable, on which the antenna and radome are located,
see Figure 3a, reflects some of the radiation, which is taken care of by the added
bottom surface. The top surface takes care of the electric field that is reflected on
the inside of the radome and then radiated through the top hole. If these factors are
neglected, unwanted edge effects occur, since the electric fields originating from the
turntable and the top of the radome are forced to originate from the radome itself.
The radome surface is divided into 8 cells per wavelength in the height direction,
and in each cell 4 points are chosen where the integrations are evaluated.

The electric field is measured on a cylindrical surface by moving the probe in
the z-direction and rotating the radome and the antenna under test, see Figure 3.
This surface is located in the near-field zone [4]. The near-field measurement probe
consists of a waveguide for which no compensation is made in the final data. With
this measurement set-up, the data on the top and the bottom of the cylindrical
surface cannot be collected. It would have been preferable to measure the fields
on an infinite cylinder. However, the size of the cylinder is chosen such that the
turntable below the radome does not have a major influence on the measurements
and such that the fields above z = 800 mm are negligible. In the azimuth angle,
120 points are measured in steps of 3◦. The z-dimension is divided into 129 points,
every two points, vq and vq+1, are separated by 12.5 mm.

Three different measurement configurations are considered; antenna without
radome, antenna together with radome, and antenna together with defect radome.
The defect radome has two copper plates attached to its surface. These are lo-
cated in the forward direction where the main lobe hits the radome and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The side of the
squared copper plates is 6 cm, corresponding to 1.6 wavelengths at 8.0 GHz.

The absolute values of the measured co- and cross-polarized electric fields, Ev and
Eϕ, respectively, are shown in Figures 4–5, where |Ev|dB = 20 log (|Ev|/|Ev|max) and
|Eϕ|dB = 20 log (|Eϕ|/|Ev|max), respectively. That is, all fields are normalized with
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Figure 4: The co-component, |Ev|dB, of the experimentally measured near-field data
at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 5: The cross-component, |Eϕ|dB, of the experimentally measured near-field
data at 8.0 GHz, normalized with the largest value of |Ev| when no radome is present.
(a) No radome present. (b) Radome present. (c) Defect radome present.
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Figure 6: The Fourier transformed measured field, |Ev|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.
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Figure 7: The Fourier transformed measured field, |Eϕ|dB, at 8.0 GHz. All values
are normalized with the largest value of |Ev| when no radome is present. a) No
radome present. (b) Radome present. (c) Defect radome present.

the largest value of |Ev| when no radome is present. In particular, Eϕ has a quite
complicated pattern. The diffraction is explained as environmental reflections and
an off-centered antenna feed. Observe that the amplitude of the azimuth component
is smaller than the amplitude of the height component, i.e., measurement errors are
more likely to show up here. The differences between the three different antenna
and radome cases arise from constructive and destructive interference between the
radiated field and the scattered field. The absolute value of the Fourier transformed
measured fields are shown in dB-scale in Figures 6–7. According to these figures,
the spectrum is truncated at n = 30, above which the energy contents is too low.

4 Results

The measured field on the cylindrical surface at 8.0 GHz, cf., Figures 4 and 5, is
transformed back onto a surface corresponding to the radome surface. Figures 8
and 9 show the recreated electric fields, |Ev|dB and |Eϕ|dB, respectively, in the main
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Figure 8: The recreated |Ev|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

lobe for the different configurations. Observe that all values are normalized with the
largest value of |Ev| when the defect radome is present. The figures show that the
near field close to the antenna is complex and hard to predict. In the case, when no
radome is located around the antenna, the electric fields are calculated on a surface
shaped as the radome, see Figures 8a and 9a. The case when the radome is present,
see Figures 8b and 9b, shows that the radome interacts with the antenna and hence
disturbs the radiated field. How this interaction affects the amplitude is depicted
in Figures 10a and b, where (|Ev

no radome| − |Ev
radome|) and (|Eϕ

no radome| − |Eϕ
radome|)

are shown in a linear scale and normalized with the maximum difference for each
component. Both components of the electric field are reduced in amplitude in the
main lobe whereas the field strength outside the main lobe is increased when the
radome is introduced. This is most likely due to transmission loss in the radome
wall and scattering against the inside wall.

The effect of the attached copper plates are detected as shown in Figures 8c
and 9c, where the lower plate appears clearly. Observe that the copper plates cannot
be localized directly in the near-field data, compare Figures 4c and 5c to Figures 8c
and 9c. The near-field data only shows that the field is disturbed, not the locations
of the disturbances. The upper plate is hard to discern in Figures 8c and 9c since
it is located in a region with small field magnitudes. However, the influence of the
upper copper plate can be detected in the cross section graphs, see Figures 11a
and b. To determine the exact position of the defects several cross section graphs
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Figure 9: The recreated |Eϕ|dB-component on the front side of the radome. All
values are normalized with the largest value of |Ev| when the defect radome is
present. (a) No radome present. (b) Radome present. (c) Defect radome present.
The arrows point out the locations of the copper plates.

have to be examined. It is interesting to see that even though the magnitude of the
cross-polarization is small, the locations of the copper plates can be found.

The presence of the radome also creates some backscattering (flash lobes) as seen
in Figures 11 c–d, 12, and 13. In Figures 11 c–d, a cross section at an angle 180o

from the center of the main lobe, i.e., in the middle of the back side, is viewed.
Figures 12 and 13 depict both components on the back side of the radome for all
three configurations in a dB-scale. In these figures it is also observed that the flash
lobes are altered when the copper plates are present.

The copper plates can also be detected by subtracting the field of the defect
radome and the field of the non-defect radome. This result is shown in dB-scale in
Figure 14 for both the components of the electric field, i.e., |Ev

radome −Ev
def radome|dB

and |Eϕ
radome −Eϕ

def radome|dB, each component normalized with the maximum differ-
ence for each component. The reconstruction of the Eϕ-component, cf., Figure 14b,
only shows the effects of some parts of the copper plates. The reason is that parts of
the copper plates are located in an area where the amplitude of the Eϕ-component
is small, cf., Figure 5 and 9a.

Figure 14a indicates that there is an amplitude difference between the configu-
rations slightly above the location of the lower copper plate. To visualize what is
happening, the difference (|Ev

radome| − |Ev
def radome|), normalized with its maximum

value, in a linear scale, is depicted in Figure 15. The scale is truncated in order to
see the small field difference above the copper plate. Here it becomes clear that the
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Figure 10: The subtraction between the fields with and without radome present.
In (a) (|Ev

no radome| − |Ev
radome|)/max||Ev

no radome| − |Ev
radome|| is shown and in

(b) (|Eϕ
no radome| − |Eϕ

radome|)/max||Eϕ
no radome| − |Eϕ

radome||. The front side of the
radome, i.e., the side with the main lobe, is viewed. The scale is linear.

area, where the copper plate is attached, has a reduced electric field, when the defect
radome is present. The area above the copper plate has instead an increased electric
field, when the defect radome is present. This is most likely due to scattering of the
copper plate.

So far only the amplitudes of the reconstructed fields has been investigated. How-
ever, even the phase can give useful information. The phase of the Ev-component,
i.e., ∠Ev, where ∠ denotes the argument, is depicted in Figure 16 for all configura-
tions. The vertical lines above the main lobe in Figure 16a are due to phase jumps,
and are caused by the low amplitude of the fields in these areas.

Just showing the phase as in Figure 16 does not give very much information.
What is interesting is to study the phase difference (antenna - antenna with radome)
for the two recreated components, see Figure 17. It reveals how the phase is changed
due to the influence of the radome. It is observed that the phase shift in the main
lobe is almost constant, for both components. This confirms that the radome is well
adapted to the frequency 8.0 GHz. Since the amplitude of Eϕ is low, cf., Figures 5
and 9, its phase contains much noise, and it is therefore somewhat more unreliable
than ∠Ev.

In Figure 18, a cross section in the middle of the main lobe of the phase difference
in Figure 17 is depicted. The cross section of ∠Eϕ is shown for a slightly acentric
angle, since the amplitude in the center of the main lobe is very low, see Figure 9. In
areas where the field is strong, the phase shift does not fluctuate as much. Outside
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Figure 11: Cross sections of the reconstructed field components. (a) |Ev|dB in the
main lobe. (b) |Eϕ|dB in the main lobe. (c) |Ev|dB on the back of the radome.
(d) |Eϕ|dB on the back of the radome. All values are normalized with the maximum
value of |Ev| when the defect radome is present. The black line corresponds to no
radome, the blue line has the radome present and the red line represents the defect
radome. The positions of the copper plates on the defect radome are marked by
thick lines on the horizontal axis.
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Figure 12: The recreated |Ev|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 13: The recreated |Eϕ|dB-component on the back side of the radome. All
values are normalized with the maximum value of |Ev|, on the front side, when the
defect radome is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 14: The logarithmic differences revealing the copper plates,
(a) 20 log{|Ev

radome−Ev
def radome|/max|Ev

radome−Ev
def radome|}, and (b) 20 log{|Eϕ

radome−
Eϕ

def radome|/max|Eϕ
radome −Eϕ

def radome|} on the front side of the radome. The arrows
point out the locations of the copper plates.
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amplitude
difference

Figure 15: The difference (|Ev
radome| − |Ev

def radome|)/max||Ev
radome| − |Ev

def radome|| in
a linear scale on the front side of the radome. The scale is truncated in order to see
the small field amplitude above the copper plate, marked with an arrow.
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Figure 16: The recreated phase of the Ev-component on the front side of the radome
in a linear scale. a) No radome present. b) Radome present. c) Defect radome
present.
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Figure 17: The IPD, i.e., the phase difference between the field when no radome is
present and the field when the radome is present, on the front side of the radome.
a) (∠Ev

no radome − ∠Ev
radome). b) (∠Eϕ

no radome − ∠Eϕ
radome).
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Figure 18: Cross section in the middle of the main lobe of the IPD depicted in
Figure 17. The blue line corresponds to (∠Ev

no radome − ∠Ev
radome) and the red to

(∠Eϕ
no radome −∠Eϕ

radome), respectively. The insert shows the area with reliable data.
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Figure 19: The phase difference between the field when the radome is present and
the field when the defect radome is present, on the front side of the radome. The
arrows point out the copper plates. a) (∠Ev

radome − ∠Ev
def radome). b) (∠Eϕ

radome −
∠Eϕ

def radome).
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Figure 20: Cross section in the middle of the main lobe of the phase differences
depicted in Figure 19. The axis describing the radome height is truncated and shows
only the region where the phase information is reliable, cf., Figure 18. The blue line
corresponds to (∠Ev

radome − ∠Ev
def radome) and the red to (∠Eϕ

radome − ∠Eϕ
no radome),

respectively.

this areas the amplitude is low and the phase is not well defined, i.e., dominated by
noise, and it will not give valid information. This means that when looking at the
main lobe, the only area that contains reliable values is z ∈ [−0.5,−0.05].

The phase shift arising when the radome is introduced, i.e., the phase shift
viewed in Figures 17 and 18, is called the IPD (Insertion Phase Delay). It is one
of the parameters that quantifies the performance of the radome, and depending on
the polarization, two different IPD are defined [19]

T = |T |∠IPD (4.1)

where T = Et/Ei is the complex transmission coefficient. The incoming field is
denoted Ei, and the transmitted Et. The phase shift is only known modulus 2π. To
validate the calculation of the IPD, an estimation of the thickness of the radome
wall is carried out. Under the assumption of negligible reflections the IPD can be
expressed as [18, 21]

IPD =
ω

c

{
Re

√
εr(1 − j tan δ) cos θt − cos θi

}
d (4.2)

for both polarizations, where ω is the angular frequency, c is the speed of light in
vacuum, θi is the incident angle, and θt is the transmission angle of the field on the
inside of the radome wall. Approximate values of the relative permittivity, εr ≈ 4.32,
and the loss tangent, tan δ ≈ 0.0144, are used. The thickness of the radome wall is
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Figure 21: A comparison between the code based on the scalar and full vector
integral representation when no radome is present. All values are shown i dB-scale
and normalized with the maximum value of |Ev|. (a) Vector code, |Ev|dB. (b) Scalar
code, |Ez/ cos θ|dB. (c) Difference, |Ev − Ez/ cos θ|dB.

denoted d. The incident angle is approximated to 40o, cf., Figure 3b. The measured
radome thickness, d, varies over the surface in the interval 7.6− 8.2 mm. The phase
shift in the main lobe is crudely approximated from Figure 18 to be 1.7 rad for both
components/polarizations. Solving for d in (4.2) results in a radome thickness of
8.4 mm. The agreement is quite well considering the approximations made.

An investigation of the phase difference (radome - defect radome), see Figures 19
and 20, reveals that its harder to localize the actual positions of the copper plates by
using the phase instead of only the amplitude, cf., Figures 8 and 9. Nevertheless, the
upper copper plate is visible in the 3-D visualization in Figure 19a, and by looking
at a cross section over the main lobe of the phase difference, the position of the
upper copper plate is located for both components, see Figure 20. We only show
the interval, where the phase is not too contaminated by noise, cf., Figure 18. The
upper copper plate is located on the boundary to where noise dominates. Thus, if
the positions of the copper plate were not known in advance, the phase shift might
be interpreted as noise. The lower copper plate also introduces a phase shift, but
these effects are hard to interpret and not confined to the exact position of the plate.

4.1 Verification

To verify the code, the new results for the Ev-component is compared with the
results given by the scalar integral representation, see [32, 33]. The comparison is
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shown in Figure 21 for the case when no radome is present. In the scalar case, the
Ez-component is calculated whereas in the vector code it is the component tangential
to the surface, i.e., Ev. To compensate for this the Ez-component is divided by cos θ,
where θ is the angle between the z-axis and the radome surface. In Figure 21 all
fields are normalized with the maximum value of |Ev| and shown in dB-scale. We
notice that the field pattern given by both codes are very similar. The amplitudes
are higher in the vector case, and the largest difference, about −19 dB, occurs in
the main lobe where both field-components are strong. This is evident since the
interaction between both field components, Ev and Eϕ, is taken into account in
the vector calculations. Whereas, in the scalar case, Eϕ was assumed to be zero.
Verification of the scalar code has been made in [32]. Specifically, the reconstructed
fields on the radome surface was transformed to the far field. Comparison with
measured far field shows good agreement.

5 Conclusions

The aim of this paper is to reconstruct equivalent currents on a surface bounding the
sources of an electromagnetic field. A vector-valued surface integral representation
is utilized together with the extinction theorem. The surface integral representa-
tion gives a linear map between the equivalent surface currents and the near-field
data for general geometries. It is shown that this map can be inverted for axially
symmetric geometries with the measured near field. The theory can be adapted
to geometries lacking symmetry axes. However, it is not a feasible approach for
radome applications today due to the computational demand to solve the integral
equations. An alternative approach would be to address this problem using fast
multipoles methods [43].

In previous papers only the dominating vertical co-component of the measured
field has been used in the reconstruction by using a scalar integral representation,
where comparison with measured far field shows good agreement [32, 33]. In this
paper it is shown that both components of the equivalent currents can be recon-
structed by using a full-wave surface integral representation. The results for the
cross-component show that also this component provides useful insight of the com-
plex field close to the antenna and the field altered by the radome. It is illustrated
how the radome interacts with the electric field. In particular, transmission losses in
the radome wall and reflections on the inside decrease the field in the main lobe, and
new side and flash lobes appear. Both components of the experimentally measured
field can also be used to locate the effect of defects, i.e., copper plates, not directly
visible in the measured near-field data. Furthermore, the copper plates introduce
scattering and alter the flash lobes.

Also, the phase of the reconstructed fields is investigated. The IPD, i.e., the
phase difference, arising when the radome is located between the antenna and the
measurement probe, is visualized. The results give a good estimate of the thickness
of the radome wall. The effects of the copper plates are visible in the phase shift.
However, the exact location of the defects is hard to determine solely from the phase
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images.
By comparison with the results given by the scalar integral representation, it

is concluded that the patterns of the electric field, obtained by the different codes,
are similar. The amplitude does however differ somewhat between the codes. This
result is expected since in the scalar case assumes zero azimuthal component of
the measured electric field. However, in this paper, the interaction between both
components is taken into consideration.

This paper shows the potentials of the approach in radome diagnostics. Next
step is to analyze if the electric equivalent current, i.e., the magnetic field, on the
radome surface gives some more information. Moreover, investigations with different
frequencies are expected. To localize the exact positions of the defects, a deeper
analyze of 3D-pictures, cf., Figures 8c and 9c, and cross-section graphs, cf., Figure
11, combined with the phase shift data, is planned. To use this method in verifying
radomes, i.e., calculating the IPD, more analysis of the phase and its noise levels is
needed.
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Appendix A Investigation of the weak formula-

tion

In this appendix, the weak formulation of (2.5) is evaluated. The aim is to show
that all singularities are removable, and the final result is presented in (2.6).

The weak formulation is attained by multiplying with a test function and inte-
grating over the domain. We chose to multiply with the test function

Ψort = −n̂ × Ψ

The reason for this choice will become clear as we proceed.

Term 1:
¨

Srad

Ψort(r2) ·
(

n̂(r2) ×
¨

Srad

g(r1, r2)J(r1) dS1

)
dS2

= −
¨

Srad

(¨
Srad

g(r1, r2)J(r1) dS1

)
·
{

n̂(r2) × Ψort(r2)
}

dS2

= −
¨

Srad

¨

Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

The integral causes no numerical problems since the singularity in g(r1, r2) is inte-
grable.

Term 2:

¨

Srad

Ψort(r2) ·
(

n̂(r2) ×
¨

Srad

∇1g(r1, r2)
[∇1S · J(r1)

]
dS1

)
dS2

= −
¨

Srad

Ψort(r2) ·
(

n̂(r2) ×∇2

¨

Srad

g(r1, r2)
[∇1S · J(r1)

]
dS1

︸ ︷︷ ︸
K(r2)

)
dS2

(1)
= −

¨

Srad

Ψort(r2) ·
(

n̂(r2) ×
{
∇2S + n̂(r2)

[
n̂(r2) · ∇2

]}
K(r2)

)
dS2

= −
¨

Srad

Ψort(r2) ·
[
n̂(r2) ×∇2SK(r2)

]
dS2 =

¨

Srad

Ψ(r2) · ∇2SK(r2) dS2

(2)
=

¨

Srad

∇2S · [Ψ(r2)K(r2)
]

dS2 −
¨

Srad

[∇2S · Ψ(r2)
]
K(r2) dS2
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Figure 22: (a) The surface Srad and its outward unit vector n̂. (b) The surface S ′

bounded by the curve Γ. The unit normal vectors are; n̂ϕ - tangent to Γ and S ′, n̂0

tangent to S ′ and normal to Γ. That is n̂0 = n̂ϕ × n̂.

(3)
=

ˆ

Γ

n̂0(r2) ·
[
Ψ(r2)K(r2)

]
dΓ −

¨

Srad

[∇2S · Ψ(r2)
]
K(r2) dS2

= −
¨

Srad

¨

Srad

[∇2S · Ψ(r2)
]
g(r1, r2)

[∇1S · J(r1)
]

dS1 dS2

The nabla operator is divided into one part intrinsic to the surface and one part oper-
ating in the direction normal to the surface in step 1, i.e., ∇2S = ∇2− n̂(r2)

[
n̂(r2) ·

∇2

]
[9, 48]. In step 2 the identity ∇S · (fa) = f(∇S · a) + (∇Sf) · a is utilized [48].

Step 3 uses the theorem of Gauss on surfaces where n̂0(r2) and Γ are depicted in
Figure 22 [29]. The line integral over the closed surface is zero, since there is no
bounding curve on Srad [1].

Term 3: ¨

Srad

Ψort(r2) ·
(

n̂(r2) ×
¨

Srad

∇1g(r1, r2) × M(r1) dS1

)
dS2

= −
¨

Srad

Ψ(r2) ·
¨

Srad

∇1g(r1, r2) × M(r1) dS1 dS2

(A.1)

The gradient of the Green function cannot easily be moved to the test function.
However, it is shown below that the singularity is removable.
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We start by rewriting the expression, i.e.,¨

Srad

Ψ(r2) ·
¨

Srad

∇1g(r1, r2) × M(r1) dS1 dS2

(1)
=

¨

Srad

Ψ(r2) ·
¨

Srad

∇1g(r1, r2) ×
[
n̂(r1) ×

∼
MS(r1)

]
dS1 dS2

=

¨

Srad

Ψ(r2) ·
¨

Srad

n̂(r1)
[∇1g(r1, r2) ·

∼
MS(r1)

]
dS1 dS2

−
¨

Srad

Ψ(r2) ·
¨

Srad

∼
MS(r1)

[∇1g(r1, r2) · n̂(r1)
]

dS1 dS2

(A.2)

where
∼

MS(r1) is introduced as M(r1) ≡ n̂(r1) ×
∼

MS(r1), in step 1.
The gradient of the Green’s function is, cf., (2.2)

∇1g(r1, r2) =
e−jk|r2−r1|

4π

r2 − r1

|r2 − r1|2
[

1

|r2 − r1| + jk

]
The singularity in r2−r1

|r2−r1|2 is integrable. However, the first term has an additionally

singularity 1
|r2−r1| that needs to be dealt with.

To remove the singularity in the first term of (A.2), we show that Ψ(r2)·n̂(r1) �
K|r2−r1| as r1 → r2 and K is a constant. A Taylor expansion of n̂(r1) at r2 gives

Ψ(r2) · n̂(r1) = Ψ(r2) · n̂(r2) + Ψ(r2) ·
[
C · (r2 − r1)

]
as r1 → r2 and the differential is

C =

⎛⎜⎝
∂nx(r1)

∂x′
∂nx(r1)

∂y′
∂nx(r1)

∂z′
∂ny(r1)

∂x′
∂ny(r1)

∂y′
∂ny(r1)

∂z′
∂nz(r1)

∂x′
∂nz(r1)

∂y′
∂nz(r1)

∂z′

⎞⎟⎠
∣∣∣∣∣∣∣
r1=r2

The first term is zero since the test function is tangential to the surface which gives
|Ψ(r2) · n̂(r1)| � K(r2 − r1) as r1 → r2 and the singularity in the first term of the
integral is removed.

To remove the singular part in the second term in (A.2), we show that ∇1g(r1, r2)·
n̂(r1) � K 1

|r2−r1| and thus integrable.This is true since

|n̂(r1) · [r2 − r1]|
|r2 − r1|3 � L

|r2 − r1|
when r1 → r2 and L is a positive constant [9].

Term 4:¨

Srad

Ψort(r2) · M(r2) dS2 = −
¨

Srad

[
n̂(r2) × Ψ(r2)

] · M(r2) dS2

This term does not contain any singularity.
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Appendix B Parametrization of the surface

The surface is parameterized by the azimuth angle ϕ and the height coordinate along
the surface v, i.e., the position vector r can be expressed as

r(ϕ, v) = ρ(v) cosϕ êx + ρ(v) sinϕ êy + z(v) êz

Evaluation of |r2 − r1| in cylindrical coordinates give

|r(ϕ2, v2) − r(ϕ1, v1)| =
√
C(v1, v2) − 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2) (B.1)

where C(v1, v2) = ρ2(v1) + ρ2(v2) + [z(v2) − z(v1)]
2.

Normalized basis vectors, convenient for the problem, are⎧⎪⎪⎨⎪⎪⎩
ϕ̂ =

∂r

∂ϕ

/
|∂r
∂ϕ

| = − sinϕ êx + cosϕ êy

v̂ =
∂r

∂v

/
|∂r
∂v

|

where

hϕ(v) ≡
∣∣∣∣∂r∂ϕ

∣∣∣∣ = ρ(v) hv(v) ≡
∣∣∣∣∂r∂v

∣∣∣∣ =

√(
∂ρ(v)

∂v

)2

+

(
∂z(v)

∂v

)2

The Jacobian is given by

J (v) =

∣∣∣∣∂r∂ϕ × ∂r

∂v

∣∣∣∣ = ρ(v)

√(
∂ρ(v)

∂v

)2

+

(
∂z(v)

∂v

)2

= hϕ(v)hv(v)

and the differential area element is

dS = J (v) dϕ dv = ρ(v)hv(v) dϕ dv

The normalized basis vectors of the coordinate system are explicitly

ϕ̂(ϕ) =
1

ρ(v)

∂r

∂ϕ
= − sinϕ êx + cosϕ êy

v̂(ϕ, v) =
1

hv(v)

∂r

∂v
=

1

hv(v)
{ρ′(v) cosϕ êx + ρ′(v) sinϕ êy + z′(v)êz}

n̂(ϕ, v) = ϕ̂(ϕ) × v̂(ϕ, v) =
1

hv(v)
{z′(v) cosϕ êx + z′(v) sinϕ êy − ρ′(v)êz}

(B.2)

and the scalar products between them are

ϕ̂(ϕ1) · ϕ̂(ϕ2) = cos(ϕ1 − ϕ2)

ϕ̂(ϕ1) · v̂(ϕ2, v2) = − ρ′(v2)

hv(v2)
sin(ϕ1 − ϕ2)
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v̂(ϕ1, v1) · ϕ̂(ϕ2) =
ρ′(v1)

hv(v1)
sin(ϕ1 − ϕ2)

v̂(ϕ1, v1) · v̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{ρ′(v1)ρ

′(v2) cos(ϕ1 − ϕ2) + z′(v1)z
′(v2)}

ϕ̂(ϕ1) · n̂(ϕ2, v2) = − z′(v2)

hv(v2)
sin(ϕ1 − ϕ2)

n̂(ϕ1, v1) · ϕ̂(ϕ2) =
z′(v1)

hv(v1)
sin(ϕ1 − ϕ2)

v̂(ϕ1, v1) · n̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{ρ′(v1)z

′(v2) cos(ϕ1 − ϕ2) − z′(v1)ρ
′(v2)}

n̂(ϕ1, v1) · v̂(ϕ2, v2) =
1

hv(v1)hv(v2)
{z′(v1)ρ

′(v2) cos(ϕ1 − ϕ2) − ρ′(v1)z
′(v2)}

The surface divergence for the parametrization and coordinate system described
above is [16]

∇S · F (ϕ, v) =
1

J (v)

{
hv(v)

∂

∂ϕ
Fϕ(ϕ, v) +

∂

∂v

[
ρ(v)Fv(ϕ, v)

]}
(B.3)

where Fx = F · x̂, x = ϕ, v. That is, the surface divergences of the tangential basis
vectors in (B.2) are given by

∇S · ϕ̂(ϕ) =
1

J (v)

∂

∂ϕ

[
hv(v)1

]
= 0

∇S · v̂(ϕ, v) =
1

J (v)

∂

∂v
[ρ(v)1] =

ρ′(v)
J (v)

(B.4)

The Green function is parametrized as, cf., (2.2),

g(ϕ1 − ϕ2, v1, v2) =
1

4π

e−jk
√

C(v1,v2)−2ρ(v1)ρ(v2) cos(ϕ1−ϕ2)√
C(v1, v2) − 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

as is the gradient of the Green function

∇1g(r2, r1) = g(r2, r1) (1 + jk|r2 − r1|) r2 − r1

|r2 − r1|2
= g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2){[

ρ(v2) cosϕ2 − ρ(v1) cosϕ1

]
êx +

[
ρ(v2) sinϕ2 − ρ(v1) sinϕ1

]
êy

+
[
z(v2) − z(v1)

]
êz

}
where we used the notation⎧⎪⎨⎪⎩

C(v1, v2) = ρ2(v1) + ρ2(v2) + [z(v2) − z(v1)]
2

D(ϕ1 − ϕ2, v1, v2) =
1 + jk

√
C(v1, v2) − 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

C(v1, v2) − 2ρ(v1)ρ(v2) cos(ϕ1 − ϕ2)

(B.5)
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In the coordinate system, {ϕ̂, v̂, n̂} the components of ∇1g(ϕ1 − ϕ2, v1, v2) are

∇1g

∣∣∣∣
ϕ̂

= ϕ̂(r1) · ∇1g(r2, r1) = −gD ρ(v2) sin(ϕ1 − ϕ2)

∇1g

∣∣∣∣
v̂

= v̂(r1) · ∇1g(r2, r1)

= gD

{
ρ′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2) −

ρ′(v1)ρ(v1) − z′(v1)
[
z(v2) − z(v1)

]
hv(v1)

}
∇1g

∣∣∣∣
n̂

= n̂(r1) · ∇1g(r2, r1)

= gD

{
z′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2) −

ρ(v1)z
′(v1) + ρ′(v1)

[
z(v2) − z(v1)

]
hv(v1)

}
(B.6)

The arguments of ∇1g(ϕ1 − ϕ2, v1, v2), g(ϕ1 − ϕ2, v1, v2) and D(ϕ1 − ϕ2, v1, v2) are
suppressed for simplicity.

Appendix C Expansion in basis functions

The test functions and the currents are expanded in the basis functions described
in (2.7). The two test functions are chosen as{

Ψϕ
ni = (aϕ

ni)
∗ = fϕ

i (v) e−jnϕϕ̂

Ψv
ni = (av

ni)
∗ = fv

i (v) e−jnϕv̂

where the star denotes complex conjugation. This gives, cf., (B.3),⎧⎪⎪⎨⎪⎪⎩
∇S · Ψϕ

ni = −jn
fϕ

i (v)

ρ(v)
e−jnϕ

∇S · Ψv
ni =

e−jnϕ

J (v)

∂

∂v

[
ρ(v)fv

i (v)
]

and {
n̂ × Ψϕ

ni = fϕ
i (v) e−jnϕv̂

n̂ × Ψv
ni = −fv

i (v) e−jnϕϕ̂

with the integer indices i = 1, . . . , Nz and n.
The current J is expanded as

J =
∑
m,j

{
Jϕ

mj aϕ
mj + Jv

mj av+
mj

}
=

∑
m,j

{
Jϕ

mj f
ϕ
j (v) ejmϕϕ̂ + Jv

mj f
v
j (v) ejmϕv̂

}
which gives, cf., (B.3),

∇S · J =
∑
m,j

ejmϕ

{
jm
fϕ

j (v)

ρ(v)
Jϕ

mj +
1

J (v)

∂

∂v

[
ρ(v)fv

j (v)
]
Jv

mj

}
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and
n̂ × J =

∑
m,j

{
Jϕ

mj f
ϕ
j (v) ejmϕv̂ − Jv

mj f
v
j (v) ejmϕϕ̂

}
with the integer indices j = 1, . . . , Nz and m, and J

ϕ/v
mj denoting the expansion

coefficients. The magnetic current M is expanded in a similar way with expansion
coefficients Mmj.

C.1 Evaluation of a cross product

In this appendix the cross product in (2.9) is evaluated, i.e.,

∇1g(r2, r1) × M(r1) = g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)

·
({[z′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2) −

ρ(v1)z
′(v1) + ρ′(v1)

[
z(v2) − z(v1)

]
hv(v1)

]
v̂(ϕ1, v1)

+
[
−ρ

′(v1)ρ(v2)

hv(v1)
cos(ϕ1 + ϕ2) +

ρ′(v1)ρ(v1) − z′(v1)
[
z(v2) − z(v1)

]
hv(v1)

]
n̂(ϕ1, v1)

}
·
∑
m,j

Mϕ
mj f

ϕ
j (v1) ejmϕ1

+
{[

−z
′(v1)ρ(v2)

hv(v1)
cos(ϕ1 − ϕ2) +

ρ(v1)z
′(v1) + ρ′(v1)

[
z(v2) − z(v1)

]
hv(v1)

]
ϕ̂(ϕ1)

− ρ(v2) sin(ϕ1 − ϕ2)n̂(ϕ1, v1)
}
·
∑
m,j

Mv
mj f

v
j (v1) ejmϕ1

)
(C.1)

where (2.8) and (B.6) are used. The function D(ϕ1 − ϕ2, v1, v2) is labeled in (B.5).

Appendix D Integration over ϕ

The integration in the angular direction of (2.6) and (2.9) is investigated in detail.
Nine different integrals Ia/A−Ii/I appear. The integrals from (2.6) and (2.9) have the
same form, but the ones in (2.6) contain singularities and are denoted by upper-case
indices. One of the integrals is studied in detail, while the others are listed at the
end of this section. The cross product in (2.6) and (2.9) is evaluated separately in
Appendix C.1.

The relevant integral is

Ib =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)e
−jnϕ2ejmϕ1 cos(ϕ1 − ϕ2) dϕ1 dϕ2

A change of variable, ϕ1 = ϕ2 + φ, gives

Ib =

2πˆ

0

g(φ, v1, v2)e
jmφ cos(φ)

2πˆ

0

ej(m−n)ϕ2 dϕ2 dφ
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The inner integral is zero if m �= n. Therefore, the only interesting case is n = m,
giving

Ib = 2π

2πˆ

0

g(φ, v1, v2) [cos(mφ) + j sin(mφ)] cos(φ) dφ

= 4π

πˆ

0

g(φ, v1, v2) cos(mφ) cos(φ) dφ

= 2π

πˆ

0

g(φ, v1, v2) cos([m− 1]φ) dφ+ 2π

πˆ

0

g(φ, v1, v2) cos([m+ 1]φ) cos dφ

using that g(φ, v1, v2) is an even function in φ.
The rest of the integrals in the angular direction of (2.9) are derived in the same

manner and listed below.

Ia =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) dϕ1 dϕ2 = 4π

πˆ

0

g(φ, v1, v2) cos(mφ) dφ

= 4π Gm(v1, v2)

Ib =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) cos(ϕ1 − ϕ2) dϕ1 dϕ2

= 4π

πˆ

0

g(φ, v1, v2) cos(mφ) cos(φ) dφ = 2π
[
Gm−1(v1, v2) +Gm+1(v1, v2)

]

Ic =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 4πj

πˆ

0

g(φ, v1, v2) sin(mφ) sin(φ) dφ = 2πj
[
Gm−1(v1, v2) −Gm+1(v1, v2)

]

Id =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) dϕ1 dϕ2

= 4π

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ = 4π Gm(v1, v2)

Ie =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) cos(ϕ1 − ϕ2) dϕ1 dϕ2

= 4π

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) cos(φ) dφ
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= 2π
[Gm−1(v1, v2) + Gm+1(v1, v2)

]
If =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 4πj

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(φ) dφ

= 2πj
[Gm−1(v1, v2) − Gm+1(v1, v2)

]
Ig =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) cos(ϕ1 − ϕ2)

· sin(ϕ1 − ϕ2) dϕ1 dϕ2

= 2πj

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(2φ) dφ

= πj
[Gm−2(v1, v2) − Gm+2(v1, v2)

]
Ih =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) cos2(ϕ1 − ϕ2) dϕ1 dϕ2

= 2π

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ)
[
1 + cos(2φ)

]
dφ

= 2πGm(v1, v2) + π
[Gm−2(v1, v2) + Gm+2(v1, v2)

]
Ii =

2πˆ

0

2πˆ

0

g(ϕ1 − ϕ2, v1, v2)D(ϕ1 − ϕ2, v1, v2)e
jm(ϕ1−ϕ2) sin2(ϕ1 − ϕ2) dϕ1 dϕ2

= 2π

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ)
[
1 − cos(2φ)

]
dφ

= 2πGm(v1, v2) − π
[Gm−2(v1, v2) + Gm+2(v1, v2)

]
The new Green functions are defined as

Gm(v1, v2) =

πˆ

0

g(φ, v1, v2) cos(mφ) dφ

Gm(v1, v2) =

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ

(D.1)

where φ = ϕ1 − ϕ2, the function D is defined in (B.5), and m is an integer index.
Observe that these Green functions are not singular as r1 and r2 are always different.

The angular integrals of (2.6), IA − II, have the same appearance as Ia − Ii.
However, the Green functions contain singularities and are denoted by gm(v1, v2)
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and �m(v1, v2). The numerical treatment of these singularities is addressed in Ap-
pendix E.

Appendix E Singularities in the Greens functions

Two new Greens functions, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
gm(v1, v2) =

πˆ

0

g(φ, v1, v2) cos(mφ) dφ

�m (v1, v2) =

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ

are defined in the derivation of the integral equation (2.6), where g(φ, v1, v2) is
defined in (2.2), D(φ, v1, v2) in (B.5), and m is an integer index. These Green func-
tions contain singularities. In this appendix, one way of handling these singularities
is shown.

Integrals containing gm have the form
˜
f(v1, v2)gm(v1, v2) dv1 dv2. The inte-

grand gm(v1, v2) has a logarithmic singularity, i.e., gm(v1, v2) ∼ ln|v1 − v2|, i.e., the
integral is of the type [6] ˆ b

a

f(x) lnx dx

Changing variables x = y2gives an integral where the singularity is removed, i.e.,

ˆ √
b

√
a

f(y2) ln y2 2y dy

The second Green function contains a singularity of the third order, i.e.,

�m(v1, v2) =

ˆ
g(φ, v1, v2)D(φ, v1, v2) cos(mφ) dφ =

ˆ
e−jkR

[
1 + jkR

]
4πR3

cos(mφ) dφ

where R = |r2 − r1|. This Green function occurs in two different combinations,
either as

�m−1(v1, v2) − �m+1(v1, v2)

or
f(v1, v2) �m (v1, v2) + h(v1, v2) [�m−1(v1, v2) + �m+1(v1, v2)]
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The first combination can be rewritten as

�m−1 (v1, v2) − �m+1(v1, v2) = 2

πˆ

0

g(φ, v1, v2)D(φ, v1, v2) sin(mφ) sin(φ) dφ

=
1

2π

πˆ

0

{e−jkR

R
+ jk e−jkR

}sin(mφ) sin(φ)

R2︸ ︷︷ ︸
singularity removed

dφ

=
1

2π

πˆ

0

{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}sin(mφ) sin(φ)

R2
dφ

That is, the singularities are removed.
The second combination is rewritten as

f(v1, v2) �m (v1, v2) + h(v1, v2) [�m−1(v1, v2) + �m+1(v1, v2)]

=

πˆ

0

g(φ, v1, v2)D(φ, v1, v2)
[
f(v1, v2) + h(v1, v2) cos(φ)

]
cos(mφ) dφ

=

πˆ

0

1

4π

{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}

·
[
f(v1, v2) + h(v1, v2) cos(φ)

][ 1

R2
− 2

sin2
(

mφ
2

)
R2︸ ︷︷ ︸

singularity removed

]
dφ

Continuing with the term that still contains a singularity gives

πˆ

0

1

4π

{e−jkR − 1

R
+

1

R
+ jk e−jkR

}[
f(v1, v2) + h(v1, v2) cos(φ)

] 1

R2
dφ

=

πˆ

0

1

4π

{e−jkR − 1

R
+

1

R
+ jk e−jkR

}[f(v1, v2)

R2
+
h(v1, v2)

R2
− 2h(v1, v2)

sin2
(

φ
2

)
R2︸ ︷︷ ︸

singularity removed

]
dφ

This means that the only term where the singularities are not removed so far is
π́

0

g(φ, v1, v2)D(φ, v1, v2)[f(v1, v2) + h(v1, v2)] dφ. To remove this last singularity we

investigate the triple integral, i.e.,
˝

. . . dφ dv1 dv2 instead of performing the in-
tegrations over φ and v separately. The actual expressions of the terms containing
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this last singularity are,cf., Appendix G,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨
−ρ(v1)z

′(v2) �m (v1, v2)

+
[
ρ(v2)z

′(v2) − ρ′(v2)[z(v2) − z(v1)]
]
�m−1(v1, v2) + �m+1(v1, v2)

2
dv1 dv2¨

−z′(v1)ρ(v2) �m (v1, v2)

+
[
ρ(v1)z

′(v1) + ρ′(v1)[z(v2) − z(v1)]
]�m−1(v1, v2) + �m+1(v1, v2)

2
dv1 dv2

Both integrals are treated in the same way, i.e., only the first one is investigated in
detail. Only the part of the Green functions containing the singularity is investigated

¨ πˆ

0

−ρ(v1)z
′(v2)g(φ, v1, v2)D(φ, v1, v2)

+
[
ρ(v2)z

′(v2) − ρ′(v2)[z(v2) − z(v1)]
]
g(φ, v1, v2)D(φ, v1, v2) dφ dv1 dv2

=

¨ πˆ

0

[
z′(v2)[ρ(v2) − ρ(v1)] − ρ′(v2)[z(v2) − z(v1)]

]e−jkR
[
1 + jkR

]
4πR3

dφ dv1 dv2

(E.1)
Now, both ρ(v1) and z(v1) are expanded in its Taylor series about v1 = v2.

ρ(v1) = ρ(v2) + ρ′(v2)(v1 − v2) +
ρ′′(v2)

2
(v1 − v2)

2 + O((v1 − v2)
3)

z(v1) = z(v2) + z′(v2)(v1 − v2) +
z′′(v2)

2
(v1 − v2)

2 + O((v1 − v2)
3)

That is, in the vicinity of v2, (E.1) can be written as

¨ πˆ

0

[
z′(v2)[−ρ′(v2)(v1 − v2) − ρ′′(v2)

2
(v1 − v2)

2]

− ρ′(v2)[−z′(v2)(v1 − v2) − z′′(v2)

2
(v1 − v2)

2]
]e−jkR

[
1 + jkR

]
4πR3

dφ dv1 dv2

=
1

2

¨ πˆ

0

[−z′(v2)ρ
′′(v2) + ρ′(v2)z

′′(v2)
]
(v1 − v2)

2 e−jkR
[
1 + jkR

]
4πR3

dφ dv1 dv2

=
1

8π

¨ πˆ

0

[−z′(v2)ρ
′′(v2) + ρ′(v2)z

′′(v2)
] (v1 − v2)

2

R2︸ ︷︷ ︸
singularity removed

·
{ e−jkR − 1

R︸ ︷︷ ︸
singularity removed

+
1

R︸︷︷︸
analytically solved

+ jk e−jkR
}

dφ dv1 dv2

and all the singularities are removed.
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Appendix F Matrix formulation of the integral

representation

In this section equation (2.9), i.e.,[
v̂
ϕ̂

]
·
{
−jωμ0

¨

Srad

g(r1, r2)J(r1) dS1 + j
1

ωε0

¨

Srad

∇1g(r1, r2)
[∇1S · J(r1)

]
dS1

+

¨

Srad

∇1g(r1, r2) × M(r1) dS1

}
=

[
v̂ · E(r2)
ϕ̂ · E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

]
r2 ∈ Smeas

⇐⇒
− jωμ0 I1 + j

1

ωε0
I2 + I3 = E

is rewritten into a system of matrices. Start by writing I1, I2 and I3 as

(I1)ij = Z11a
ij Jv

j + Z12a
ij Jϕ

j

(I2)ij = Z11b
ij Jv

j + Z12b
ij Jϕ

j

(I3)ij = X11
ij M

v
j +X12

ij M
ϕ
j

for the v̂-component and

(I1)ij = Z21a
ij Jv

j + Z22a
ij Jϕ

j

(I2)ij = Z21b
ij Jv

j + Z22b
ij Jϕ

j

(I3)ij = X21
ij M

v
j +X22

ij M
ϕ
j

for the ϕ̂-component. The indices are j = 1, . . . , J , where J = Nz and i = 1, . . . , I,
where I = Nmeas

z . This gives the matrix system,

− jωμ0 [I1] +
j

ωε0
[I2] + [I3] =[ −jωμ0 [Z11a] + j
ωε0

[
Z11b

] −jωμ0 [Z12a] + j
ωε0

[
Z12b

]
−jωμ0 [Z21a] + j

ωε0

[
Z21b

] −jωμ0 [Z22a] + j
ωε0

[
Z22b

] ] [
[Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
⇐⇒[

[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X11] [X12]
[X21] [X22]

] [
[Mv]
[Mϕ]

]
=

[
[Ev]
[Eϕ]

]
(F.1)

for all m. Expressions for the matrix elements
[
Zkl

]
and

[
Xkl

]
are derived in the

next section.
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F.1 The impedance matrices

For a given value of the index m, the impedance matrices in (F.1) are given by
Z11

ij = −jωμ0Z
11a
ij + j

ωε0
Z11b

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z11a
ij =

1

hv(v2)

ˆ
fv

j (v1)ρ(v1)
{
ρ′(v1)ρ

′(v2)Ib + z′(v1)z
′(v2)Ia

}
dv1

= 2

ˆ
fv

j (v1)ρ(v1)z
′(v1)Gm(v1, v2) dv1

Z11b
ij =

1

hv(v2)

ˆ
∂

∂v1

[
ρ(v1)f

v
j (v1)

]{
ρ′(v2)ρ(v2)Ii + ρ′(v2)ρ(v2)Ih

+ z′(v2)[z(v2) − z(v1)]Id − ρ(v1)ρ
′(v2)Ie

}
dv1

= 2

ˆ
∂

∂v1

[
ρ(v1)f

v
j (v1)

][
z(v2) − z(v1)

]Gm(v1, v2) dv1

and Z12
ij = −jωμ0Z

12a
ij + j

ωε0
Z12b

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z12a
ij = − ρ′(v2)

hv(v2)

ˆ
fϕ

j (v1)hv(v1)ρ(v1)Ic dv1 = 0

Z12b
ij = j

m

hv(v2)

ˆ
fϕ

j (v1)hv(v1)
{
ρ′(v2)ρ(v2)Ii + ρ′(v2)ρ(v2)Ih

+ z′(v2)
[
z(v2) − z(v1)

]
Id − ρ(v1)ρ

′(v2)Ie

}
dv1

= 2jm

ˆ
fϕ

j (v1)hv(v1)
[
z(v2) − z(v1)

]Gm(v1, v2) dv1

and Z21
ij = −jωμ0Z

21a
ij + j

ωε0
Z21b

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z21a
ij =

ˆ
fv

j (v1)ρ(v1)ρ
′(v1)Ic dv1

= j

ˆ
fv

j (v1)ρ(v1)ρ
′(v1)

[
Gm−1(v1, v2) −Gm+1(v1, v2)

]
dv1

Z21b
ij =

ˆ
ρ(v1)

∂

∂v1

[
ρ(v1)f

v
j (v1)

]
If dv1

= j

ˆ
ρ(v1)

∂

∂v1

[
ρ(v1)f

v
j (v1)

][Gm−1(v1, v2) − Gm+1(v1, v2)
]

dv1

and Z22
ij = −jωμ0Z

22a
ij + j

ωε0
Z22b

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z22a
ij =

ˆ
fϕ

j (v1)hv(v1)ρ(v1)Ib dv1

=

ˆ
fϕ

j (v1)hv(v1)ρ(v1)
[
Gm−1(v1, v2) +Gm+1(v1, v2)

]
dv1

Z22b
ij = jm

ˆ
fϕ

j (v1)ρ(v1)hv(v1)If dv1

= −m
ˆ
fϕ

j (v1)ρ(v1)hv(v1)
[Gm−1(v1, v2) − Gm+1(v1, v2)

]
dv1
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and

X11
ij =

ˆ
fv

j (v1)
ρ(v1)

hv(v2)

·
[
−ρ(v1)z

′(v1)ρ
′(v2) − ρ′(v1)ρ

′(v2)
[
z(v2) − z(v1)

]
+ρ′(v1)ρ(v2)z

′(v2)
]
If dv1

= j

ˆ
fv

j (v1)ρ(v1)ρ
′(v1)ρ(v2)

[Gm−1(v1, v2) − Gm+1(v1, v2)
]

dv1

X12
ij =

1

hv(v2)

ˆ
fϕ

j (v1)ρ(v1)hv(v1)

(
−ρ(v1)z

′(v2)Id

+
[
ρ(v2)z

′(v2) − ρ′(v2)[z(v2) − z(v1)]
]
Ie

)
dv1

=

ˆ
fϕ

j (v1)ρ(v1)hv(v1)

(
−2ρ(v1)Gm(v1, v2)

+ρ(v2)
[Gm−1(v1, v2) + Gm+1(v1, v2)

])
dv1

X21
ij =

ˆ
fv

j (v1)ρ(v1)

(
−z′(v1)ρ(v2)Ih +

[
ρ(v1)z

′(v1) + ρ′(v1)[z(v2) − z(v1)]
]
Ie

− z′(v1)ρ(v2)Ii

)
dv1

=

ˆ
fv

j (v1)ρ(v1)

(
−2z′(v1)ρ(v2)Gm(v1, v2)

+
[
ρ(v1)z

′(v1) + ρ′(v1)[z(v2) − z(v1)]
][Gm−1(v1, v2) + Gm+1(v1, v2)

])
dv1

X22
ij = −

ˆ
fϕ

j (v1)hv(v1)ρ(v1)
[
z(v2) − z(v1)

]
If dv1

= −j

ˆ
fϕ

j (v1)hv(v1)ρ(v1)
[
z(v2) − z(v1)

][Gm−1(v1, v2) − Gm+1(v1, v2)
]

dv1

where the integrals Ia − Ii are given in Appendix D and the Green functions are
defined in (D.1).
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Appendix G Matrix formulation of the integral

equation

In this section equation (2.6), i.e.,

jωμ0

¨

Srad

¨

Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

− j
1

ωε0

¨

Srad

¨

Srad

[∇2S · Ψ(r2)
]
g(r1, r2)

[∇1S · J(r1)
]

dS1 dS2

−
¨

Srad

¨

Srad

Ψ(r2) ·
[∇′g(r1, r2) × M(r1)

]
dS1 dS2

− 1

2

¨

Srad

[
n̂(r2) × Ψ(r2)

] · M(r2) dS2 = 0

⇐⇒
jωμ0 I4 − j

1

ωε0
I5 − I6 − 1

2
I7 = 0

(G.1)

is rewritten into a system of matrices. Start by writing I4-I7 as

(I4)ij = Z11A
ij Jv

j + Z12A
ij Jϕ

j

(I5)ij = Z11B
ij Jv

j + Z12B
ij Jϕ

j

(I6)ij = X11A
ij Mv

j +X12A
ij Mϕ

j

(I7)ij = X11B
ij Mv

j +X12B
ij Mϕ

j

when Ψ = Ψv
mi and

(I4)ij = Z21A
ij Jv

j + Z22A
ij Jϕ

j

(I5)ij = Z21B
ij Jv

j + Z22B
ij Jϕ

j

(I6)ij = X21A
ij Mv

j +X22A
ij Mϕ

j

(I7)ij = X21B
ij Mv

j +X22B
ij Mϕ

j

when Ψ = Ψϕ
mi. The indices are j = 1, . . . , J , where J = Nz and i = 1, . . . , I, where

I = Nz. This give the matrix system,

jωμ0 [I4] − j

ωε0
[I5] − [I6] − 1

2
[I7] =[

jωμ0

[
Z11A

]− j
ωε0

[
Z11B

]
jωμ0

[
Z12A

]− j
ωε0

[
Z12B

]
jωμ0

[
Z21A

]− j
ωε0

[
Z21B

]
jωμ0

[
Z22A

]− j
ωε0

[
Z22B

] ] [
[Jv]
[Jϕ]

]
+

[ − [
X11A

]− 1
2

[
X11B

] − [
X12A

]− 1
2

[
X12B

]
− [

X21A
]− 1

2

[
X21B

] − [
X22A

]− 1
2

[
X22B

] ] [
[Mv]
[Mϕ]

]
=

[
[0]
[0]

]
⇐⇒



G Matrix formulation of the integral equation 117

[
[Z11] [Z12]
[Z21] [Z22]

] [
[Jv]
[Jϕ]

]
+

[
[X 11] [X 12]
[X 21] [X 22]

] [
[Mv]
[Mϕ]

]
=

[
[0]
[0]

]
(G.2)

for all m. Expressions for the matrix elements
[Zkl

]
and

[
Xkl

]
are derived in the

next section.

G.1 The impedance matrices

For a given value of the index m, the impedance matrices in (G.2) are given by
Z11

ij = jωμ0Z
11A
ij − j

ωε0
Z11B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z11A
ij =

¨
fv

i (v2)f
v
j (v1)ρ(v2)ρ(v1)

{
ρ′(v2)ρ

′(v1) IB + z′(v1)z
′(v2) IA

}
dv1 dv2

= 4π

¨
fv

i (v2)f
v
j (v1)ρ(v2)ρ(v1)

·
{
ρ′(v2)ρ

′(v1)
gm−1 + gm+1

2
+ z′(v1)z

′(v2)gm

}
dv1 dv2

Z11B
ij =

¨
∂

∂v2

[
ρ(v2)f

v
i (v2)

] ∂

∂v1

[
ρ(v1)f

v
j (v1)

]
IA dv1 dv2

= 4π

¨
∂

∂v2

[
ρ(v2)f

v
i (v2)

] ∂

∂v1

[
ρ(v1)f

v
j (v1)

]
gm dv1 dv2

and Z12
ij = jωμ0Z

12A
ij − j

ωε0
Z12B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z12A
ij = −

¨
fv

i (v2)f
ϕ
j (v1)ρ

′(v2)ρ(v2)ρ(v1)hv(v1) IC dv1 dv2

= −j 4π

¨
fv

i (v2)f
ϕ
j (v1)ρ

′(v2)ρ(v2)ρ(v1)hv(v1)
gm−1 − gm+1

2
dv1 dv2

Z12B
ij = jm

¨
∂

∂v2

[
ρ(v2)f

v
i (v2)

]
fϕ

j (v1)hv(v1) IA dv1 dv2

= j 4πm

¨
∂

∂v2

[
ρ(v2)f

v
i (v2)

]
fϕ

j (v1)hv(v1)gm dv1 dv2

and Z21
ij = jωμ0Z

21A
ij − j

ωε0
Z21B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z21A
ij =

¨
fϕ

i (v2)f
v
j (v1)ρ(v1)ρ

′(v1)ρ(v2)hv(v2) IC dv1 dv2

= j 4π

¨
fϕ

i (v2)f
v
j (v1)ρ(v1)ρ

′(v1)ρ(v2)hv(v2)
gm−1 − gm+1

2
dv1 dv2

Z21B
ij = −jm

¨
fϕ

i (v2)hv(v2)
∂

∂v1

[
ρ(v1)f

v
j (v1)

]
IA dv1 dv2

= −j 4πm

¨
fϕ

i (v2)hv(v2)
∂

∂v1

[
ρ(v1)f

v
j (v1)

]
gm dv1 dv2
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and Z22
ij = jωμ0Z

22A
ij − j

ωε0
Z22B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z22A
ij =

¨
fϕ

i (v2)f
ϕ
j (v1)ρ(v2)hv(v2)ρ(v1)hv(v1) IB dv1 dv2

= 4π

¨
fϕ

i (v2)f
ϕ
j (v1)ρ(v2)hv(v2)ρ(v1)hv(v1)

gm−1 + gm+1

2
dv1 dv2

Z22B
ij = m2

¨
fϕ

i (v2)f
ϕ
j (v1)hv(v2)hv(v1) IA dv1 dv2

= 4πm2

¨
fϕ

i (v2)f
ϕ
j (v1)hv(v2)hv(v1) gm dv1 dv2

and X 11
ij = −X11A

ij − 1
2
X11B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X11A
ij =

¨
fv

j (v1)f
v
i (v2)ρ(v1)ρ(v2)

· [−ρ(v1)z
′(v1)ρ

′(v2) − ρ′(v1)ρ
′(v2)

[
z(v2) − z(v1)

]
+ ρ′(v1)ρ(v2)z

′(v2)
]
IF dv1 dv2

= 4πj

¨
fv

j (v1)f
v
i (v2)ρ(v1)ρ(v2)

·
{
−ρ(v1)z

′(v1)ρ
′(v2) − ρ′(v1)ρ

′(v2)
[
z(v2) − z(v1)

]
+ ρ′(v1)ρ(v2)z

′(v2)
}

· �m−1(v1, v2) − �m+1(v1, v2)

2
dv1 dv2

X11B
ij = 0

and X 12
ij = −X12A

ij − 1
2
X12B where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X12A
ij =

¨
fϕ

j (v1)f
v
i (v2)ρ(v1)ρ(v2)hv(v1)

(
−ρ(v1)z

′(v2)ID

+
[
ρ(v2)z

′(v2) − ρ′(v2)[z(v2) − z(v1)]
]
IE

)
dv1 dv2

= 4π

¨
fϕ

j (v1)f
v
i (v2)ρ(v1)ρ(v2)hv(v1)

(
−ρ(v1)z

′(v2) �m (v1, v2)

+
[
ρ(v2)z

′(v2) − ρ′(v2)[z(v2) − z(v1)]
]
�m−1(v1, v2) + �m+1(v1, v2)

2

)
dv1 dv2

X12B
ij = −2π

ˆ
fv

i (v2)f
ϕ
j (v2)ρ(v2)hv(v2) dv2
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and X 21
ij = −X21A

ij − 1
2
X21B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X21A
ij =

¨
fv

j (v1)f
ϕ
i (v2)ρ(v1)ρ(v2)hv(v2)

(
−z′(v1)ρ(v2)IH

+
[
ρ(v1)z

′(v1) + ρ′(v1)[z(v2) − z(v1)]
]
IE − z′(v1)ρ(v2)II

)
dv1 dv2

= 4π

¨
fv

j (v1)f
ϕ
i (v2)ρ(v1)ρ(v2)hv(v2)

(
−z′(v1)ρ(v2) �m (v1, v2)

+
[
ρ(v1)z

′(v1) + ρ′(v1)[z(v2) − z(v1)]
]�m−1(v1, v2) + �m+1(v1, v2)

2

)
dv1 dv2

X21B
ij = 2π

ˆ
fϕ

i (v2)f
v
j (v2)ρ(v2)hv(v2) dv2

and X 22
ij = −X22A

ij − 1
2
X22B

ij where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X22A
ij = −

¨
fϕ

j (v1)f
ϕ
i (v2)ρ(v1)ρ(v2)hv(v1)hv(v2)

[
z(v2) − z(v1)

]
IF dv1 dv2

= −4πj

¨
fϕ

j (v1)f
ϕ
i (v2)ρ(v1)ρ(v2)hv(v1)hv(v2)

[
z(v2) − z(v1)

]
· �m−1(v1, v2) − �m+1(v1, v2)

2
dv1 dv2

X22B
ij = 0

where the integrals IA − II are given in Appendix D and the Green functions are
singular versions of the ones defined in (D.1). The numerical treatment of the
singularities in the integrals is addressed in Appendix E.
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