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We show that conformational entropies calculated for five proteins and protein–ligand complexes 
with dihedral-distribution histogramming, the von Mises approach, or quasi-harmonic analysis do 
not converge to any useful precision even if molecular dynamics (MD) simulations of 380–500 ns 
length are employed (the uncertainty is 12–89 kJ/mol). To explain this, we suggest a simple protein 
model involving dihedrals with effective barriers forming a uniform distribution and show that for 
such a model, the entropy increases logarithmically with time until all significantly populated 
dihedral states have been sampled, in agreement with the simulations (during the simulations, 52–
70% of the available dihedral phase space has been visited). This is also confirmed by the analysis 
of the trajectories of a 1-ms simulation of bovine pancreatic trypsin inhibitor (31 kJ/mol difference 
in the entropy between the first and second part of the simulation). Strictly speaking, this means that 
it is practically impossible to equilibrate MD simulations of proteins. We discuss the implications of 
such a lack of strict equilibration of protein MD simulations and show that ligand-binding free 
energies estimated with the MM/GBSA method (molecular mechanics with generalised Born and 
surface-area solvation) vary by 3–15 kJ/mol during a 500 ns simulation (the higher estimate is 
caused by rare conformational changes), although they involve a questionable but well-converged 
normal-mode entropy estimate, whereas free energies estimated by free-energy perturbation vary by 
less than 0.6 kJ/mol for the same simulation. 

Keywords:  Entropy,  molecular  dynamics  simulations,  convergence,  equilibration,  phase-space 
sampling, MM/GBSA, thermodynamic integration.
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Introduction
Molecular  dynamics  (MD)  simulations  are  today  routinely  used  to  study  large  biomolecular 
systems. They can provide an atomic-detail interpretation of biochemical process such as protein 
folding, enzymatic catalysis, and molecular recognition.1,2,3 The quantity that drives these reactions 
is  the free energy,  ΔG,  and computational  methods to estimate it  for various  processes can be 
derived from the laws of statistical mechanics.4,5

However, it is also often of interest to decompose the free energy into enthalpic (ΔH) and 
entropic (ΔS) parts to obtain additional insight into the process, according to

 G =  H − T  S (1)

where  T is the absolute temperature.  Such a decomposition has been useful in drug design,  for 
instance, where the effect of chemical modifications often is discussed in terms of entropy and 
enthalpy.6 In  particular,  isothermal  titration  calorimetry measurements  have  popularised  such  a 
decomposition.7 Many approaches  have  also  been  developed  to  estimate  these  quantities  from 
molecular simulations.8,9,10,11,12,13,14,15

Nuclear magnetic resonance (NMR) is another popular experimental technique to study the 
structure and dynamics of biomolecules.16,17 The dynamics of protein atoms are typically quantified 
by order parameters and with some assumptions on the angular fluctuations, the conformational 
entropy can be derived from these order parameters.18,19 Unfortunately, such a description of the 
entropy is incomplete because the NMR experiments only probe a limited subset of the protein 
atoms,  e.g.  to  the  motion  of  the  backbone  and  some  side-chain  atoms.16,17,19,20 Therefore,  MD 
simulations  are  often  used  to  supplement  the  NMR  measurements  to  provide  the  total 
conformational entropy of the protein.16,21,22,23,24,25,26,27,28,29 Protein conformational entropies are the 
main topic of this study, but it should be remembered that there are other important contributions to 
the total entropy as well, e.g. from the solvent.

It  is  well-known  that  it  is  harder  to  obtain  converged  entropies  than  free  energies  from 
molecular simulations.30,31,32,33 Many different methods to calculate entropies from MD simulations 
have been proposed8,9,10,11,12,13,14,15 and they have been evaluated previously several times, but mainly 
for rather simple and small systems.12,13,14,34,35 In this article, we perform a detailed analysis of five 
different protein or protein– ligand systems. We show that even with 380–500 ns simulation length, 
it is not possible to obtain converged conformational entropies of any usable precision. We present a 
simple model of a protein that is in agreement with experimental results and explains this poor 
convergence.  An analysis  of the recent  1-ms simulation of  bovine pancreatic  trypsin inhibitor36 
confirms the results. We discuss the implications of this observation for the equilibration of MD 
simulations in general and study how it  affects  ligand-binding free energies calculated with the 
MM/GBSA method and free-energy perturbations. 

Methods

System preparation.  Three proteins were studied: galectin-3 (Gal3),  matrix metalloprotease 12 
(MMP12),  and bovine pancreatic trypsin inhibitor (BPTI). Two simulations were performed for 
Gal3, one with a lactose molecule (Lac) bound and the other with a synthetic lactose derivative 
(L02)37 bound. Both ligands are shown in Figure 1. Likewise, two simulations were performed for 
MMP12 with different ligands, viz. two stereoisomers that will be denoted cn1h and cn2h (also 
shown in Figure 1). The preparation of Gal3 has been described previously.38 The simulations of 
MMP12 were based on in-house crystal structures39 and the simulations of BPTI were based on the 
6PTI40 crystal  structure.  For all  proteins,  Asp and Glu residues  were assumed to be negatively 
charged, whereas Lys and Arg residues were assumed to be positively charged. This assignment was 
checked with  the PROPKA tool.41 The  protonation  of  the  His  residues  was decided from their 
hydrogen-bond  network  and  solvent  accessibility,  as  has  been  specified  before  for  Gal3.38 For 
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MMP12, His168, 183, 218, 222, and 228 were protonated on the ND1 atom, whereas His112, 172, 
196, and 206 were protonated on the NE2 atom. BPTI does not contain any His residues. 

The proteins were described by the Amber 99SB force field42 and the ligands by the general 
Amber  force  field43 with  charges  calculated  by  the  RESP  (restrained  electrostatic  potential) 
procedure44 from electrostatic potentials calculated at the Hartree–Fock/6-31G* level and sampled 
according to the Merz–Kollman scheme.45 The proteins were immersed in a box of TIP4P-Ewald46 
water  molecules  that  extended at  least  10 Å from the solute.  The simulated systems contained 
19674, ~21800, and ~27000 atoms for BPTI, Gal3, and MMP12, respectively.

The MMP12 protein contains three calcium ions and two zinc ions (cn1h and cn2h coordinate 
directly to one of the zinc ions). The charges of the metal ions and their coordinating residues were 
computed using RESP calculations at the same level as for the ligands. The zinc ions were modelled 
by  a  bonded  potential,  using  parameters  taken  from  quantum  mechanical  calculations  of  the 
optimum structures and frequencies at the B3LYP/6-31G** level, and extracted with the approach 
of Seminario47 using the Hess2FF program.48 For the calcium sites, which contain several water 
molecules, we instead had to use a restrained non-bonded model.49 The van der Waals parameters 
were 1.85 Å and 0.25 kJ/mol for Zn (from OPLS), and 1.60 Å and 0.42 kJ/mol for Ca (from the  
Amber  parm91.dat  file).  The parameters  for  the  metal  sites  are  included in  the  supplementary 
material. 

MD simulations. All MD simulations were run using the sander module of Amber 10 or the pmemd 
module of Amber 11.50 The temperature was kept constant at 300 K using a Langevin thermostat51 
with a collision frequency of 2.0 ps–1 and the pressure was kept constant at 1 atm using a weak-
coupling isotropic algorithm with a relaxation time of 1 ps.52 Particle-mesh Ewald summation with a 
fourth-order  B  spline  interpolation  and  a  tolerance  of  10–5 was  used  to  handle  long-range 
electrostatics.53 The cut-off for non-bonded interactions was set to 8 Å and the non-bonded pair list 
was updated every 50 fs. The SHAKE algorithm54 was used to constrains bonds involving hydrogen 
atoms so that a 2 fs time step could be used.

Two types of simulations were performed. First,  ten independent simulations were run by 
using different random starting velocities. For Gal3 and MMP12 systems, these were taken from 
previous studies.38,39 In short, these systems were equilibrated for 200 (Gal3) or 500 ps (MMP12) in 
the NVT ensemble. BPTI was first minimized using 100 steps of steepest descent with restraints on 
all atoms except hydrogen atoms and water molecules, followed by 20 ps equilibration in the NPT 
ensemble and with the same restraints, and 100 ps equilibration in the NVT ensemble. The length of 
the production runs was 10, 20, or 40 ns for the MMP12, Gal3, and BPTI simulations, respectively,  
and they were performed in the NVT ensemble. Finally, one (Gal3) or two (BPTI) simulations were 
extended to 500 ns and one simulation was extended to 380 ns for the larger MMP12. Snapshots 
were saved every 10 ps if nothing else is stated. Each of the long simulations took ~40 days of CPU 
time on 64 cores with Intel Xeon 2.26 GHz processors.

Entropy estimates. The conformational entropy of the simulated proteins has been calculated with 
four  different  methods.  In  the  first,  which  we  will  denote  dihedral-distribution  histogramming 
(DDH),24,55 the protein Cartesian coordinates were converted to internal (bond, angle, and torsion) 
coordinates. Previous calculations have shown that entropy contributions from the bond and angle 
fluctuations are negligible.27 The distribution for each dihedral angle, i, was then approximated by a 
discrete histogram with 72 bins (other numbers of bins have also been tested, but they gave similar 
results) and the entropy was calculated from

S i =
R
2
−R ln72−R∑

j=1

72

p i j  ln pi j (2)

where R is the gas constant and pi(j) is the probability that the dihedral angle is found in bin j (i.e. 
the dihedral angle is between 5(j – 1) and 5j degrees). The first two terms are normalisation factors, 
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giving the entropy of a free rotor (R/2) for a uniform distribution. They cancel for relative entropies. 
Thus,  each  dihedral  angle  can  contribute  by an  entropy between  –3.8  R (–9.4  kJ/mol;  a  delta 
function) and 0.5 R (1.2 kJ/mol; a free rotor); a sine function gives 0.2 R (0.5 kJ/mol) independent 
of  the  periodicity,  whereas  a  sine  function  with  three  minima,  of  which  only  one  or  two  are 
populated gives –0.9 R or –0.2 R (–2.3 or –0.5 kJ/mol), respectively. 

Second,  we  calculated  the  entropy  by  the  von  Mises  approach  (VMA)25,56.  Instead  of 
estimating the probabilities in Eqn. 2 from discrete histograms, this approach attempts to estimate 
the von Mises kernel density (which is the circular analogue of a Gaussian) of the dihedral angle,  
given by

p=
1
N

∑
k=1

N

exp cos −k /2 I 0 (3)

where N is the total number of snapshots in the MD simulation, κ is the spread of the distribution 
(we used −1/2

= 1o  in all calculations, which has been shown to give stable results25),  k  is the 
value of the dihedral angle in snapshot  k, and  I0 is the modified Bessel function of zeroth order. 
Then, the entropy can be calculated from the continuous variant of Eqn. 2:

S i =
R
2
−R ln2−R∫

0

2

p  ln p d (4)

 
Third, we calculated the entropy using quasi-harmonic analysis (QHA).57,58 In this approach, 

one  assumes  that  the  total  entropy  is  a  multivariate  Gaussian  distribution.  Quasi-harmonic 
frequencies, ω are calculated from the determinant

det M1/ 2 M1/ 2−
kT


2  = 0 (5)

where M is the mass matrix (a diagonal matrix with the masses of the atoms on the diagonal) and σ 
is the covariance matrix, which has the elements   ij=〈xi−〈 x i〉x j−〈 x j〉 〉 , where  xi and  xj are 
coordinates and the brackets indicate an average over the MD simulations. The frequencies are then 
used in  the formula for  the harmonic oscillator  to  estimate the entropy.59 Thus,  QHA does  not 
assume that the various degrees of freedom are uncoupled, but it instead assumes that each normal 
mode resides in a single harmonic potential, which is a crude approximation for dihedral angles 
with several minima.34

Finally, we have also calculated the entropy using normal-mode analysis (NMA).10 In this 
method,  the  structure  is  first  minimised  and  then  frequencies  are  calculated.  The  entropy  is 
calculated from these frequencies, using in the formula for the harmonic oscillator. Because the 
NMA is  computationally  intensive,  we  employed  a  recent  approach,60 in  which  the  protein  is 
truncated using a 12 Å spherical cut-off from the bound ligand. Residues in the outermost 4 Å and 
all water molecules were kept fixed during the minimisation and were left out from the frequency 
calculation. This has been shown to be a stable and accurate approach.61

The influence of anharmonic effects and correlation between the various degrees of freedom 
for entropies calculated with different approaches has been much discussed. Most authors agree that 
anharmonic effects have a rather small influence on the calculated entropies.32,35 On the other hand, 
some authors claim that correlation is insignificant if the entropies are calculated using internal 
coordinates,26,62,63 especially for relative entropies (i.e. the correlation is constant e.g. during ligand 
binding),64 whereas others report  large second-order correlation effects even if the entropies are 
calculated by QHA.32,35,65,66 In this investigation, we have ignored correlation effects because we 
concentrate  on  the  convergence  of  the  entropy  –  correlation  will  only  further  slow  down  the 
convergence of the calculated entropy.35
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The DDH analysis was also performed on trajectories from the recent simulation of BPTI.36 

These  trajectories  were  generously  provided  by D.  E.  Shaw research  and  contained  4 123 000 
snapshots sampled every 0.25 ns during a 1.03 ms simulation. The files were converted to Amber 
format and were analysed the same way as the other simulations. 

MM/GBSA calculations.  Molecular mechanics with generalised Born and surface-area solvation 
(MM/GBSA) is an approximate method to estimate the free energy of a binding reaction.10,67 In this 
approach,  ΔG is estimated as the difference in the free energy between the complex (PL) and the 
protein (P) and the ligand (L), i.e. ΔG = G(PL) – G(P) – G(L), and each of these free energies are 
estimated from

G = Eele  EvdW  Gpol  G np − TS (6)

where the first two terms are the molecular mechanics (MM) electrostatic and van der Waals energy, 
Gpol and Gnp are the polar and non-polar solvation energy, and the last term is an entropy estimate.  
Thus, MM/GBSA estimates the free energy by a combination of enthalpies (the two first terms),  
entropy (the last term), and free energies (the two solvation terms). 

The enthalpies in Eqn. 6 were estimated without any cut-off on snapshots in which the water 
molecules have been stripped off. Gpol was estimated using the generalised Born model of Onufriev, 
Bashford and Case (model I,  with  α = 0.8, β = 0, and γ = 2.91).68 Gnp  was estimated through a 
relation to the solvent-accessible surface-area (SASA), viz.  ∆Gnp  = γSASA +  b, with γ = 0.0227 
kJ/mol/Å2  and  b = 3.85 kJ/mol.69 The entropy was taken from the NMA analysis,  as described 
above. This is standard in the MM/GBSA approach.10 The MM/GBSA analysis was based on only 
every tenth snapshot (sampled every 100 ps) because of the high computational demand of the 
NMA calculations.

Free-energy perturbation. The free energy of reducing the magnitude of either the charges or the 
van der Waals energy parameters of two ligands bound to galectin-3 was estimated using free-
energy  perturbation  (FEP).70 As  will  be  more  discussed  below,  these  are  typical  steps  in  a 
calculation of the binding affinity of the ligands.71 The system was simulated with full charges and 
van der Waals parameters on the ligands, and the free energy was then estimated using

 G =−RT 〈exp − E /RT 〉 (7)

where ΔE is the difference in total potential energy between a state for which the magnitude of the 
charges (or van der Waals energy parameters) has been reduced by 10% and a state for which the 
full charges (or van der Waals parameters) were used, and the brackets indicate an average over the 
simulation with full charges and van der Waals parameters.

Results and Discussion

Protein conformational entropies. This study was started with the aim of estimating the change in 
protein  conformational  entropies  upon  ligand  binding  for  Gal3  and  MMP12  that  should 
complement NMR relaxation data (for simplicity, we will simply say entropies in the following, 
although we recognize that there are other important contributions to the total entropy of the system, 
e.g. from the solvent).39 Such studies have been performed several times before16,21,22,23,24,25,26,27,28,29 

and we followed the protocol developed in those studies: We performed 500 ns simulations of two 
ligand-bound states  of  the  Gal3  protein  and  380 ns  simulations  of  two ligand-bound states  of 
MMP12. The protein conformational entropies were then estimated by the DDH approach. The time 
evolution of these entropy estimates are shown in Figures 2 and 3, and the results are summarised in 
Table 1.

6



Starting with MMP12, it can be seen that the DDH entropy changes by 42 and 89 kJ/mol 
during the last 100 ns of the simulations with cn1h and cn2h, respectively (throughout the article, 
we will discuss entropies in energy units, i.e. TΔS in kJ/mol at 300 K). For cn1h, it seems that the 
system has reached a quasi-stable state after 300 ns but it is not clear if the system will stay in this  
state. The cn2h system reached a quasi-stable state that lasted from 100 to 250 ns, but in the last 
part of the simulation, the entropy estimate is drifting. Because our initial aim was to study the 
entropy change upon ligand binding, we present also the entropy difference between cn1h and cn2h 
simulations  in  Figure  2  and  Table  1.  It  can  be  seen  that  neither  the  absolute  conformational 
entropies,  nor  their  difference  are  stable  after  380  ns  simulations.  For  example,  the  entropy 
difference changes by 47 kJ/mol during the last 100 ns of the simulation and it changes sign after  
225 ns simulation. 

The results for Gal3 are similar as can be seen in Figure 3. Gal3-Lac attained a quasi-stable 
state between 150 and 300 ns, but then the entropy started to increase, leading to a change in the 
entropy of 38 kJ/mol during the last 100 ns of the simulation. On the other hand, Gal3-L02 seems to 
have reached a quasi-stable state after 300 ns, but the entropy still changes by 22 kJ/mol during the 
last 100 ns of the simulation. Moreover, in contrast to the other simulations, the entropy decreased 
during the last 100 ns, so that change in the entropy difference between the two ligands during the 
last 100 ns of the simulation is actually larger than the changes for the two ligands, 59 kJ/mol. Also 
for  this  protein,  the  difference  in  entropy  between  the  two  ligands  changes  sign  during  the 
simulation.

Previous studies have shown that it is more effective to run several shorter simulation than a 
single  long  one  and  that  the  uncertainty  estimated  from  a  long  simulation  typically  is  an 
underestimate because it stays close to the starting point in the phase space.38,72,73,74,75,76,77 Therefore, 
we also calculated the entropy from ten independent simulations of 10 (MMP12) or 20 ns (Gal3) 
length.  The  average  entropies  over  these  simulations  are  shown  in  Table  1  together  with  the 
corresponding standard errors (i.e. the standard deviations among the ten simulations divided by 
10 ). It can be noted that the precision of the estimates is rather poor, 18–38 kJ/mol. Even worse,  
there is a large difference in the entropy estimate from the ten short and the single long simulation 
of 423 to 927 kJ/mol, the short simulations always giving a more negative result.  This is much 
larger than what is expected from the standard error of the short simulations or the convergence of 
the long simulation.  On the other hand, the results  in  Figures 2 and 3 show that the entropies 
increase by several hundreds of kJ/mol during the first 100 ns of the simulation. Thus, it is clear that 
averaging over simulations shorter than 100 ns is not a solution to the sampling problem. 

The DDH analysis is based on sampling of a distribution and does not have an inherent notion 
of time. Therefore, an alternative to averaging over independent simulations is to concatenate the 
ten short trajectories and estimate the entropy from this concatenated trajectory of 100–200 ns total 
length. This estimate, which is also shown in Table 1, is closer to that of the long simulation, but it 
is still 141–482 kJ/mol more negative. This shows that several short simulations is an effective way 
to sample the phase space, but for entropy estimates, 10–20 ns simulations are much too short to 
give reliable results.

For Gal3, we also investigated whether the convergence of the entropy could be improved by 
considering only a subset of the dihedral angles. It is natural to assume that only residues close to 
the ligand contribute significantly to the entropy change during ligand binding (such an assumption 
is normally used for the NMA analysis in MM/PBSA10,67 and it has been shown to be accurate at 
least for relative entropies61). Therefore, we calculated the DDH entropy only for the residues that 
are within 8 Å of L02 in the crystal structure. The results in Figure S1 in the supplementary material 
show that such a procedure reduces the uncertainty of the entropy by a factor of ~2, but not at an 
acceptable level: The entropy changes by 11, 12, and 23 kJ/mol the last 100 ns for Gal3-Lac, Gal3-
L02, and the difference, respectively. 

We also tried to include in the DDH analysis only dihedral angles that gave converged results,  
as has been suggested before:64 For each dihedral angle we calculated the difference in entropy at 
400 ns  and 500 ns,  and included it  in  the  total  entropy if  the  difference  was below a  certain  
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threshold.  Unfortunately,  it  turned  out  that  the  uncertainty  in  the  entropy  is  caused  by  small 
differences in a great number of dihedrals: To obtain results that are converged to within 4 kJ/mol, 
40% of the dihedrals have to be excluded, using a convergence threshold of 0.036 kJ/mol for the 
individual  dihedrals.  Excluding  only  the  25  dihedrals  with  the  poorest  convergence  (with  a 
threshold of 0.5 kJ/mol) actually deteriorated the convergence for Gal3-L02.

Two other popular methods to estimate conformational entropies are QHA and VMA.56,58 We 
have tested also these method to see if they give results that are better converged. However, this 
turned out not to be the case, as can be seen from the results for Gal3 in Figures S2–S3 in the 
supplementary material. In fact, the VMA and DDH approaches give very similar results, whereas 
the QHA results are somewhat more different, but show similar convergence problems, as has also 
been  noted  before  in  a  different  context.34,78 Correlation  effects  were  ignored  in  all  these 
calculations.  The  significance  of  such  effect  have  been  much  discussed  with  varying 
conclusions,26,32,35,62,63,64,65,66 but  it  is  clear  that  they  will  slow  down,  rather  than  improve  the 
convergence,35 which is the only thing that matters in this study.

These results clearly show that it is impossible to estimate the protein conformation entropy of 
MMP12 and Gal3 with a reasonable precision from either DDH, VMA, or QHA analyses based on 
simulations of 380–500 ns length. This is quite surprisingly, considering that several studies have 
used this or similar methods to estimate entropies for other proteins.17,21,22,23,24,25,26,28 Therefore, we 
run simulations also of one of the previously studies proteins, BPTI.26 The results in Figure 4 show 
that this protein gives a somewhat smaller drift in the entropy than the other two proteins, but the 
DDH entropy still changes by 12 kJ/mol during the last 100 ns of the simulation and there is no 
indication  that  the  results  are  stable  after  500 ns.  In  order  to  test  the  reproducibility  of  this 
calculation, we run a second independent 500 ns MD simulation of the same protein, starting with 
the  exactly  the  same  structure  but  with  different  velocities.  As  can  be  seen  in  Figure  4,  this 
simulation gave a similar time course, but the entropies differ by 11–97 kJ/mol (14 kJ/mol at the 
end  of  the  simulations).  This  shows that  even for  this  small  and extremely stable  protein  (58 
residues and three Cys–Cys linkages), the entropy cannot be determined from a 500 ns simulation 
with  a  precision  better  than  14  kJ/mol  (and  the  entropy  is  still  increasing  at  the  end  of  the 
simulations).

A simple protein model explains the convergence problems. To gain understanding of this poor 
convergence of the conformational entropies from long MD simulations, we suggest in this section 
a simplified model of a protein.  In the MM description,  a protein is described by a force field 
consisting of terms for bonds, angles, dihedrals, as well as Lennard-Jones and electrostatic non-
bonded interactions. The energy of each dihedral angle is determined by terms of the type 
 

V ii=
k i

2
1sin ni i i (8)

where ki is a force constant, ni is the periodicity (typically 1, 2, or 3), and δ i is a phase shift (0 or 
180°) of the dihedral. Thus, the dihedrals are described by a sine function, where ni determines the 
number of minima, δi determines the location of the minima, and ki determines the barrier between 
the minima. However, in the protein, there is a strong coupling (correlation) between the various 
dihedral angles and other degrees of freedom, e.g. owing to steric effects. In NMA and QHA, this is 
described by diagonalising the Hessian or covariance matrices, thereby obtaining the normal modes 
of the protein, which are uncoupled to the first order. 

We suggest a model protein consisting of a number, N, of such uncoupled normal modes. For 
simplicity, we assume that each normal mode has a dihedral-like potential, i.e. that there are two 
minima (conformations) along the normal mode, separated by a barrier of  Ai.  To start with, we 
assume that the two minima have the same energy (we will remove that assumption below). Other 
potential  energy  terms  are  ignored.  We  assume  that  the  barriers  Ai form a  uniform (random) 
distribution with values ranging between 0 and a high number, e.g. Amax = 100 kJ/mol. Amax is higher 
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than the highest barriers of dihedrals (21 kJ/mol in Amber force field, disregarding dihedrals in 
aromatic groups), owing to the coupling of the dihedrals. Thus, after sorting the normal modes, we 
assume that Ai = i/N Amax. Moreover, we assume that the characteristic time for the barrier passing of 
each dihedral (τi; i.e. the inverse of the rate by which the barrier is passed) can be calculated from 
the Arrhenius equation, i.e. 

i  =  0exp 
A i

R T
 (9)

where τ0 is a constant of the magnitude of h/kBT = 0.2 ps (Planck's constant divided by Boltzmann's 
constant  and  the  absolute  temperature),  and  R is  the  gas  constant.  Eqn.  9  indicates  that  τi is 
exponentially distributed  from short  to  very long times  (Ai = 1 kJ/mol  corresponds to  ~0.2 ps, 
whereas 100 kJ/mol corresponds to ~12 h). It also means that if we simulate the system for tsim, on 
average  all  normal  modes  with  τi  >  tsim will  reside  in  a  single  conformation  (the  starting 
conformation), whereas all normal modes with  τi <  tsim will visit both conformations with equal 
probability. The ratio of the normal modes that visit both conformations increases linearly with the 
logarithm of tsim, as is shown in Figure 5 (diamonds). 

Consequently, we can calculate the entropy of each normal mode from 

S i={0          if   i≤t sim

R ln 2   if   it sim
} (10)

and the total conformational entropy of the entire protein is simply the sum of these normal-mode 
entropies. With these assumptions, the entropy of the model protein will increase logarithmically 
with the simulation time, i.e. grow linearly if  tsim is plotted on a logarithmic scale, as is show in 
Figure 5 (squares). This shows that for such a model protein, the conformational entropy will not 
converge until tsim > τi for all normal modes, i.e. when tsim > 12 h if Amax = 100 kJ/mol. In fact, the 
entropy will increase by 1.7 kJ/mol every time the barrier of a new normal mode is passed, as can  
be seen in Figure 5.

We can now go back to our MD simulations and see how realistic such a protein model is. We 
do this by plotting the ratio of the dihedral angles that visit all their possible minima (i.e. ni in 
Eqn. 8) during a certain simulation time. This is similar the ratio that was plotted for the model 
protein in Figure 5, giving a straight line when plotted against log(tsim). Figure 6 shows that this is 
approximately also the case for all our protein simulations. At the end of the simulations, 52–69% 
of the dihedrals in the proteins have visited all their available conformations (excluding dihedrals in 
aromatic rings from the analysis) and the amount is still increasing with logarithmic time. 

Likewise, Figure 7 shows that approximately linear plots are obtained if the entropies for each 
protein are plotted against logarithmic time, at least for MMP12 and Gal3. This is in accordance 
with the linear relation predicted for the model protein, as shown in Figure 5. Thus, our simple 
model of a protein actually seems to cover the relevant physics (the simulation time of 500 ns  
corresponds to a barrier of 37 kJ/mol). The model indicates that if we increase the simulation time, 
we will continue to open up new conformations (volumes in the phase space) that have not been 
visited before and the entropy will continue to increase with simulation time. In fact, according to 
the model, the entropy will not to converge until all possible conformations have been visited (i.e. 
when the ratio on the right y axis in Figure 5 reaches 1). In practice, this would mean that we need 
to simulate until the protein unfolds during the simulation (the folded and unfolded conformations 
of a protein are normally in equilibrium, so a folded protein will visit also unfolded conformations 
if  the  simulations  are  long  enough),  because  then  most  dihedrals  will  become  uncoupled  and 
therefore be determined by their dihedral barriers ki in Eqn. 8, which in the Amber force field are 
less than 21 kJ/mol (this was confirmed by performing a MD simulation of denatured BPTI, starting 
from the crystal structure, but sampling at 1000 K; already after 10 ns, it showed 95% sampling of 
the dihedral angels). Of course, such long simulations can currently not be performed except for 

9



very  small,  fast-folding  polypeptides,  indicating  that  it  is  currently  practically  impossible  to 
converge entropy calculations for normal-sized protein. This is in accordance with the results in 
Figures 2–4, 7, and Table 1. 

The reader may object that Figures 2–4 indicate that the entropy actually is converging, so if 
somewhat longer simulations were used, converged entropies would actually be obtained. However, 
this is mainly an artefact of plotting a logarithmic function on a linear scale. A logarithmic function 
will always give the impression of converging if plotted on a linear scale, as is shown in Figure 8, 
especially  if  supplemented  by noise.  This  is  probably  the  reason  why,  scientists  always  have 
claimed that their simulations are equilibrated with an equilibration time of 1/10–1/2 of the total 
simulation time, independently of the actual simulation time. However, plotted on a logarithmic 
scale,  Figures  5–7 show that  there  hardly is  any convergence.  Thus,  convergence  of  entropies 
should always be judged on a logarithmic time scale.

The curves in Figure 6 show some variation between the three proteins. All five curves start 
from a similar point of 16% at 10 ps. However, between 10 and 100 ps, the two curves of Gal3 
show a more rapid increase (to 37%) than the curves of the other two proteins (26%). After that, the  
five  curves  run  more  or  less  in  parallel.  This  indicates  that  the  rate  of  the  sampling  of 
conformational space is an intrinsic property of each protein, but the rate is quite similar outside the  
picosecond range. The lower sampling of BPTI is probably related to the presence of three cystine 
links, which restricts the available conformational space.

Figure 6 can be used to estimate how long simulations are needed to sample all  dihedral 
angles: This is simply the time when the curves in Figure 6 reach 100% sampling. Assuming that all  
curves are linear for  tsim > 100 ps, this will take between 1 ms and 100 hours, corresponding to 
maximum barriers of 56–105 kJ/mol.  On the other hand, as our test  simulation of an unfolded 
protein showed, once the protein unfolds, nearly all available conformations are rapidly visited. The 
folding of proteins typically occurs on the time scale of milliseconds to hours, so this is probably 
also the time scale needed to reach full sampling of the conformational space of the dihedrals in 
proteins.

Some of the curves in Figure 6 indicate that the rate of conformation sampling decreases 
somewhat at the end of the 380–500 ns simulations, in particular those for BPTI. It is not clear 
whether this is a random variation or if this will become pronounced if the simulation is extended.  
However,  this  only  means  that  it  will  take  a  longer  time  to  reach  complete  sampling  of  all 
conformational states.

The convergence of  the conformational  entropy estimates  from MD simulations,  obtained 
with similar methods as in this paper, has been studied before. In most cases, the conformational 
entropy  shows  a  similar  logarithmic  time-dependence  as  in  Figures  2–4  and  a  questionable 
convergence.15,25,22,32,35,79,80,81,82,83 For example, a 1.1 µs simulation of a 15-peptide was not enough to 
reach convergence of the entropy.35 As longer and longer MD simulations are published, it also 
becomes more and more apparent that proteins show extensive dynamics at the ns and  µs time 
scales.61,84 In a few cases, the results indicate that the entropies are converged,85 although it cannot 
be excluded that longer simulations would lead to a change in the entropy again, as was observed in 
our Gal3-Lac simulation. For example, for villin head piece (35 residues), the entropy from several 
trajectories showed convergence within 4–5 kJ/mol after 100 ns simulation in a generalised Born 
solvent,  although two trajectories gave entropies that increased strongly after 70 ns, which was 
interpreted  as  a  drift  away  from  the  near-native  basin.25 For  the  bigger  ubiquitin  protein 
(76 residues), the entropies after 10 ns simulation showed a significant drift, similar to what we 
have observed in our simulations and in our protein model, although this was again interpreted as 
the formation of non-native states owing to a poor force field and the continuum-solvation model.25 

In our simulations, there is no indication that the simulation visits non-native states, as can be seen 
from an analysis  of  the  root-mean square  deviation  relative  to  the  starting  structure,  shown in 
Figure S4.

A prominent difference between the entropy of our simple protein model in Figure 5 and the 
protein simulations in  Figures 2–4 and 7 is  that  the entropy always increases with time in our 
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model, whereas the entropy often goes down in the real simulations.  The reason for this  is the 
simplified entropy expression in Eqn. 10,  which dictates that  the entropy increases by  R ln2 = 
1.7 kJ/mol  every time a  barrier  is  passed.  Eqn.  2  provides  a  more  accurate  expression  for  the 
entropy and it  shows that  the  entropy depends  on  the  probability,  pi(j),  of  observing a  certain 
minimum, j. In our simple model, we assumed that once the barrier is passed, the two minima have 
equal probability (pi(j) = 0.5 for both  j = 1 and 2). In a real protein, the various minima have 
different probabilities, and the estimated probabilities may vary during the simulation until they 
converge when all minima have been visited many times. For example, if an unusual conformation 
is found by chance early in the simulation, the entropy will increase, because both conformations 
will  have  a  high  probability  (assuming  only  two  possible  states).  However,  if  the  unusual 
conformation is not visited again during the rest of the simulation, its probability will successively 
decrease, and therefore, the entropy will also decrease for that mode, according to Eqn. 2.

We can extend our model by introducing varying probabilities for the conformations of each 
normal mode. In order to keep the number of parameters to a minimum, we still assume only two 
states for each mode, but calculate the entropy from 

S i=R p i1 ln pi1p i2ln pi2 (11)
 
where pi(1) = 1 and pi(2) = 0 if i < tsim, but 0 < pi(1), pi(2) < 1 otherwise. Moreover, we assume that 
the free-energy difference between the two states of each normal mode, ΔGi, increases linearly with 
the height of the barrier between them, i.e.  ΔGi, =  i/N ΔGmax, where  ΔGmax is the maximum free-
energy difference. The probability is then given by

pi2=
1

1e
 Gi

RT
(12)

In Figure 9, the entropy for such a system is shown as a function of  tsim, for four different 
values  of  ΔGmax =  10–40 kJ/mol.  It  can  be  seen that  for  small  values  of  tsim,  the  entropy still 
increases linearly with logarithmic time. However, as tsim increases, the entropy curve finally levels 
of,  converging  to  a  certain  value.  The  rate  of  convergence  strongly  depends  on  ΔGmax:  A 
convergence to within 4 kJ/mol is obtained at 1 ms for  ΔGmax = 40 kJ/mol, but not within 105 s 
(28 h) for ΔGmax = 10 kJ/mol. Unfortunately, it is hard to settle a proper value of ΔGmax. The folded 
state of a protein is typically 10–60 kJ/mol more stable than the unfolded state.86 However, it is not 
clear if this free-energy difference should be related to ΔGmax directly or to the sum of ΔGmax for all 
dihedrals (which vary from 7505 to 30020 kJ/mol for the four curves in Figure 9. The most realistic 
answer is probably in between.

From this extended protein model, we learn several things: The dihedral entropy in protein 
simulations  can  converge  for  two  different  reasons.  One  is  that  we  have  visited  all  possible 
conformations of all dihedrals. This would happen if Amax is low, e.g. for a small peptide, for which 
there are few dihedrals that are not much coupled. Such a convergence can be detected by counting 
the number of minima visited during the simulations, as in Figure 6. Unfortunately, Eqn. 2 and its  
simplified variant in Eqn. 11 show that it is not enough to visit all minima once. Instead, they must 
be visited so many times that accurate estimates of the probabilities of all minima are obtained. 

The  second  possibility  is  that  the  remaining  (not  visited)  conformational  minima  are  so 
unlikely (have so low probabilities, i.e. high ΔGi) that they no longer contribute to the total entropy 
of the protein. This is the type of convergence that we might start to see for BPTI in Figures 6 and 
7c. However, it is impossible to prove that convergence has really been reached or whether new 
volumes in phase space may be found if the simulations are extended (so more barriers may be 
passed) or started with other conditions, without doing longer or additional simulations.87,88

Fortunately, we can actually check this for BPTI: Shaw and co-workers have simulated the 
native state of BPTI for 1 ms, using specialised hardware.36 We have analysed the trajectories from 
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this simulation by calculating the DDH entropy using Eqn. 2. Figure 10 shows that the entropy 
changes by 15 kJ/mol when going from 500 to 750 ns in agreement with our results in Figure 4 and 
Table 1. Then, the change decreases and between 18 and 34 µs, the entropy varies by only 4 kJ/mol, 
giving  the  impression  of  convergence.  However,  at  34  µs,  the  Cys14–Cys38 disulphide  bridge 
changes its conformation, which opens new volumes in the phase space and the entropy increases 
by  190  kJ/mol  during  the  next  46  µs.  After  80  µs  Cys14–Cys38  changes  back  to  its  old 
conformation and the entropy decreases again for over  100 µs.  The rest  of  the simulation,  the 
entropy  increases  again  but  more  slowly,  with  plateaus  mixed  with  increases  and  decreases. 
However, the entropy still changes by 23 kJ/mol between 0.8 and 0.9 ms. The difference in the 
entropy calculated for the first and second 0.5 ms part of the simulation is 31 kJ/mol. When plotted 
on a logarithmic time scale (Figure 10b), the entropy increases approximately linearly throughout 
the entire simulation, with exception for the large jump in the entropy around 34 µs. In particular, 
there is no indication that the rate decreases at the end of the simulation. Likewise, the sampling of 
the  dihedral  phase  space  increases  linearly  through  the  simulation,  with  70% of  the  dihedral 
sampling all available conformations after 1 ms (Figure 10b). There is no indication of a saturation 
of the sampling of the dihedral conformations. This analysis strongly supports our conclusions from 
the 500 ns simulation that dihedral entropies are practically impossible to converge, even for such a 
small and stable protein as BPTI. In particular, they show that DDH entropies obtained after 500 ns 
differ by over 250 kJ/mol from those obtained after 1 ms and that possible convergences observed 
during the simulations are only apparent. 

Finally, we note that our simple protein models are quite insensitive to the parameters. In 
particular,  the number of dihedrals,  N,  will  not change the results  at  all  (Figures 5 and 9 were 
obtained with N = 100 and 1500, respectively). Likewise, the results are completely insensitive to 
Amax as long as the considered maximum  tsim is shorter than the corresponding maximum  τi. The 
assumption of a uniform distribution is equivalent to a rectangular random distribution, which is 
quite reasonable. A normal distribution would probably be more realistic, but then the results would 
depend on the selected mean and variance of the distribution. The most problematic assumption is 
ΔGi in  the  modified  model  and  that  it  should  be  proportional  to  Ai.  This  leads  to  a  strong 
dependence on the unknown ΔGmax, as is shown in Figure 9. In fact, the assumption that all ΔGi > 0 
does not agree with the dihedral potential function in Eqn. 8, which shows that in the unfolded state 
(i.e. when the dihedrals are uncoupled), all  ΔGi should vanish. Still, it allowed us to illustrate the 
fact that we do not need to sample all points in phase space and that the entropy depends also on the 
probability  for  each  conformation.  It  should  also  be  noted  that  to  reach  convergence  in  the 
entropies, as in Figure 9, increasing free-energy differences (ΔGi) are needed. A constant difference 
for all dihedrals (all ΔGi = c) give the same linear increase in entropy as the original model (i.e. as 
shown in Figure 5).

Can MD simulations be equilibrated? We have seen that conformational entropies of three typical 
proteins  estimated  from MD  simulations  with  the  DDH,  VMA,  and  QHA approaches  do  not 
converge for simulation times of 380–500 ns and not even for a 1-ms simulation of BPTI. How do 
such conclusions affect other properties studied by MD simulations?

Strictly  speaking,  this  observation  is  catastrophic.  If  we  use  the  normal  definition  of 
equilibration  of  MD  simulations,  viz.  a  state  when  all  properties  become  independent  of  the 
simulation time,89 this means that essentially no protein MD simulation will strictly be equilibrated 
(entropy is  also  a  property of  the  system).  On the  other  hand,  35 years  experience  of  protein  
simulations  has  shown  that  quite  useful  information  can  be  obtained  from  MD  simulations. 
Therefore, it seems evident that different properties show different sensitivities to the amount of 
sampling.87,88 We have shown here that the DDH, VMA, and QHA entropies, both absolute and 
relative, are extremely sensitive to the equilibration and hard to converge. Below, we will study the 
convergence of two other types of properties that can be obtained from the same simulations, viz. 
absolute free energies obtained from the MM/GBSA approach (involving NMA entropies) and free-
energy differences obtained from FEP. 
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MM/GBSA energies. We have calculated the MM/GBSA binding free energies of Lac and L02 to 
Gal3 using our 500 ns MD simulations. The convergence of those results is shown in Figures 11 and 
12, for Lac and L02 respectively. From Figure 11, it can be seen that the net binding free energy of 
Lac (ΔG trace) converges reasonably,  showing a variation of less than 3 kJ/mol throughout the 
simulation time. On the other hand, 3 kJ/mol is quite much for binding affinities, corresponding to a 
difference by a factor of 3 in the binding constant. In fact, 300 ns simulation time is needed before 
the binding free energy is converged to within 1 kJ/mol (a factor of 1.5 in the binding constant) and 
there is no guarantee that the binding energy will not change if the simulation is extended.

As can be seen from Eqn. 6, the MM/GBSA free energies are obtained from five separate 
terms, which are also shown in Figure 11. It can be seen that the electrostatic and solvation energy 
terms show much larger variations than the net free energy, up to 15 kJ/mol. However, these two 
energies cancel to a large extent, so that their sum show a variation of up to only 5 kJ/mol. The van  
der Waals energy shows a even smaller variation, up to 2 kJ/mol, but it also partly cancels the 
variation in the Eel + Gpol terms. The non-polar solvation energy term shows essentially no variation.

MM/GBSA also includes an entropy term, obtained from an NMA analysis. Interestingly, we 
see no convergence problem for this term, contrary to the entropies obtained by the DDH, VMA, 
and QHA methods:  The NMA entropy varies  by up to  3  kJ/mol  during  the  first  20  ns  of  the 
simulation, but after 50 ns, it is converged to within 1 kJ/mol (but 20 and 50 ns is much longer than  
normal simulation times of MM/GBSA). This shows that the NMA analysis produces much more 
stable estimates of the entropy than the other three methods. The reason for this is that the NMA 
analysis  ignores  the entropy arising from the fact that some groups can attain several  different 
conformations.  Instead,  it  assumes  that  the  protein  attains  a  single  conformation  (obtained  by 
minimisation) and estimates the entropy from the vibrational spectrum in this conformation, i.e. the 
width of the potential-energy wells. Apparently, the widths of the wells do not change significantly 
if  different  conformations  are  used  to  calculate  this  NMA entropy.  Thus,  NMA avoids  the 
convergence problem of  the conformational  entropies by simply ignoring this  entropy term,  an 
effective, but not necessarily accurate, approximation. This conformational entropy, is the dominant 
term for the DDH and WMA approaches, and the only term in our simple protein model (Eqn. 10), 
whereas the QHA method includes both contributions (conformational entropy and the widths of the 
wells), although the conformational term comes in as a widening of the harmonic well when a new 
conformation is sampled, a quite coarse approximation, as has been discussed before.78 It is likely 
that  replacement  of  NMA entropies  with  DDH,  VMA,  or  QHA entropies  would  improve  the 
accuracy  of  the  MM/GBSA method,  but  on  the  other  hand  it  would  then  also  inherit  the 
convergence problems of these methods. 

The Gal3-L02 energies in Figure 12 show similar qualitative trends but the variation is much 
larger, up to 26 kJ/mol in the individual energy terms (the absolute electrostatic energy changes by 
almost  50  kJ/mol)  and  13  kJ/mol  in  the  net  binding  free  energy.  The  reason  for  this  will  be 
explained below. However, the NMA entropy is still stable with a variation of up to 2 kJ/mol.

We have previously argued that it is more efficient to base MM/GBSA energies on averages 
from  several  short  simulations  than  from  a  single  long  one.38 Therefore,  we  also  calculated 
MM/GBSA estimates on the ten independent Gal3 simulations of 20 ns length. The average binding 
free  energy estimates  for  Gal3-Lac and L02 are  –27±1 and –67±2 kJ/mol,  respectively.  These 
estimates agree within statistical uncertainty with the estimates based on the 500 ns simulations,  
–27±0.4 and –70±0.4 kJ/mol, respectively.

However, it  is also interesting to see if the two methods estimate a similar distribution of 
MM/GBSA binding free energies. In Figures 13 and 14, we have plotted the MM/GBSA estimates 
for each of the individual snapshots, together with a box plot that summarises the distribution. It can 
be seen that for both Gal3-Lac and Gal3-L02, the distribution for the long simulation is similar to 
the collective distributions of the short simulations. However, it is obvious that the long simulations 
have more outliers than the short simulations, most likely due to rare events. 

It can also be seen from the scatter plots in Figure 14 that that the Gal3-L02 simulation shows 
at least two different quasi-stable conformations, one dominant, giving a binding free energy around 
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–70 kJ/mol, and a less stable one giving a much lower affinity of about –15 kJ/mol. The latter is 
observed after 175–200 ns simulation time, but also for a short while after ~460 ns. It is the former 
period that gives rise to the cusp in the energy curves in Figure 12, which then is slowly averaged 
away during the rest of the simulation. However, the sampling of this conformation (which is barely 
seen in the short simulations) is too poor to know whether the sampling of it in the long or the short 
simulations  is  most  typical.  Still,  it  illustrates  that  the  MM/GBSA method  is  sensitive  to  the 
sampling of rare events that may quite strongly affect the calculated energies if the conformational 
changes  are  close  enough  to  the  active  site.  For  Gal3-L02,  it  affects  the  binding  affinity  by 
~12 kJ/mol or over two orders of magnitude in the binding constant. However, the total binding free 
energy differs from the final one by 8–10 kJ/mol already before the conformational change is seen 
(i.e. after 10–175 ns simulation).

FEP energies.  Finally,  we also studied energies calculated with free-energy perturbation (FEP), 
which is considered to be one of the most accurate method to estimate free energies. This method 
can also be used to calculate the binding free energy of a ligand to a protein, but it would typically  
require simulations of ~10 intermediate states and separate simulations for electrostatic and non-
electrostatic interactions. Of course, it would be prohibitively expensive to perform each of these 
calculations  for 500 ns.  However,  the first  step in  a  FEP study of  ligand binding would be to 
simulate  the  native  complex and calculate  the  free-energy cost  of  reducing the  ligand charges. 
Therefore, we have used the available 500 ns simulations and performed this first step in the FEP 
calculation, using Eqn. 7 and reducing the charges by 10%.

The convergence of this FEP energy result is plotted in Figure 15 for Gal3-L02 and Gal3-Lac. 
It  can  be  seen  that  the  FEP energy  is  extremely  stable:  The  free  energy  varies  by  less  than 
0.1 kJ/mol for Lac and 0.17 kJ/mol for L02. The latter curve shows a kink at 180 ns, i.e. at the same 
time as the cusps are observed in Figure 12 and the differing binding energies are observed in 
Figure 14b,  but  the  energetic  variation  in  Figure  15  is  ~200  times  smaller  for  FEP than  for 
MM/GBSA and there is no indication that the FEP free energies show any long-term trends. 

In our experience,90 the precision of the electrostatic term in FEP is typically of a similar size 
for the various intermediate perturbations. Assuming that the standard errors are statistical,  this 
means that the net uncertainty in the total electrostatic FEP free energy is approximately 10 = 3.2  
times the uncertainty in Figure 15, i.e. up to 0.5 kJ/mol. 

A FEP calculation of the binding affinity would also involve a perturbation of the van der 
Waals parameters of the ligand. In a practical application, this perturbation is always performed 
after the charges have been removed, to avoid that charges come too close together when the van 
der Waals parameters are vanishing. However, this is no problem in the early van der Waals steps 
and  from  a  thermodynamic  point  of  view,  the  order  of  the  perturbations  should  not  matter. 
Therefore, we can get an estimate of the uncertainty in also in the van der Waals step by performing 
a perturbation decreasing the van der Waals parameters of the ligand by 10%, based on the available 
500 ns simulation. The results in Figure 16 show that the variation is even smaller, less than 0.04 
kJ/mol for Lac and up to 0.09 kJ/mol for L02. 

Using the same assumption of equal contributions for each intermediate step (which is less 
accurate  for  the  van  der  Waals  step),  we  get  an  estimated  variation  in  all  van  der  Waals 
perturbations of less than 0.3 kJ/mol ( 10∗0.9 ), and a total variation in the absolute FEP affinity 
predicted of ~0.6 kJ/mol ( 10∗0.172

10∗0.092
 ), i.e. 20 times smaller than for MM/GBSA. It 

should be recognized that these estimates are highly approximate, because we only extrapolate the 
results from the first step in the charge and van der Waals perturbations. On the other hand, it is  
more common to study only local variations of the ligand (perturbations of one group to another,  
giving relative binding affinities) with FEP, which would reduce the FEP energies and uncertainties.
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Conclusions
This investigation was started as a standard study of conformational entropies in a joint NMR and 
MD project, similar to several earlier similar studies.16,21,22,23,24,25,26,27,28 However, we soon realised 
that it  was not possible estimate such entropies for our proteins with any statistical significance 
(Figures 2–3 and Table 1) for three commonly used methods, DDH, VMA, and QHA. We then went 
back and studied a protein that had been studied before, BPTI, finding similar severe convergence 
problems.

To explain these problems, we suggest a simple protein model: A collection of uncorrelated 
dihedrals  with  two possible  states,  separated  by an  activation  barrier  with  a  uniform (random) 
distribution.  According  to  the  Arrhenius  equation,  such  a  model  gives  rise  to  an  entropy that 
increases linearly with log(tsim) as is shown in Figure 5. The model is intuitively reasonable and it is  
in qualitative accordance with the results of the simulations (Figures 6 and 7). Thus, the reason why 
the entropies do not converge is that as the time of the simulation is extended, new barriers are 
passed and new conformations are observed for some dihedrals. The entropy of each dihedral is 
related to the number of conformations sampled (Eqn. 10) and the total entropy is approximately the 
sum  of  the  individual  entropies.  Therefore,  the  entropy  will  increase  (on  average)  when  the 
simulation  time  is  increased,  either  until  the  protein  unfolds  during  the  simulation  or  until  all  
conformations of all dihedrals with a significant probability are sampled, as is illustrated by our 
extended model. Moreover, it is not enough to sample all conformations once – they have to be 
sampled so many times that a converged probability of each conformation is obtained. Analysis of a 
1-ms simulation  of  BPTI confirms  our  results  and indicates  that  even after  this  time,  both  the 
entropy and the sampling of the dihedral angles are still linearly increasing with logarithmic time. 

This not only explains the poor convergence of the simulated entropies, but it has far-reaching 
consequences  on  all  type  of  MD simulations,  because  it  shows  that  most  MD simulations  of 
proteins will not be equilibrated within 1 ms in the sense that all properties are independent of 
simulation time.89 On the other hand, we argue that this does not mean that MD simulations of 
proteins are meaningless. Instead, different properties show varying sensitivity to this lack of strict 
equilibration.  In  this  article,  we  have  studied  three  different  properties,  viz.  conformational 
entropies,  MM/GBSA ligand-binding  free  energies,  and  FEP free  energies.  We  show  that  the 
conformational entropies (both absolute and relative) are extremely sensitive to the equilibration 
and  they show uncertainties  of  12–89 kJ/mol  even  after  380–500 ns  MD simulations  and  the 
entropy  changes  by  over  250  kJ/mol  when  the  BPTI  simulation  is  extended  to  1  ms.  The 
MM/GBSA free energies are intermediate in sensitivity, showing a variation of 3 and 12 kJ/mol 
during a 500 ns simulation for the two test systems studied here. The larger variation is caused by 
an  important  conformation  that  is  sampled  only occasionally during  the  long simulation.  Such 
energies  may or  may not  be  useful,  depending on the  application.  However,  for  the  FEP free 
energies, the variation is less than 0.2 kJ/mol for a 10% charge perturbation and less than 0.1 kJ/mol 
for a 10% van der Waals perturbation over the 500 ns simulation, indicating that the total FEP free 
energy would show a variation of ~0.6 kJ/mol. Thus, FEP free energies are extremely stable and not 
at all affected by the lack of equilibration. Strictly, such a convergence investigation is needed for 
each  property  of  interest  to  ensure  that  it  is  independent  of  the  length  of  the  simulation. 
Unfortunately,  the convergence may depend on the simulated protein and it  may change if  the 
simulation is extended.

Our message is not completely new. A few groups have already pointed out that it is hard to 
converge  MD  simulations  of  protein  and  that  in  most  cases,  equilibrium  sampling  is  not 
obtained.77,88,91 It has also been discussed how the completeness of sampling can be measured and 
several measures of convergence have been suggested.77,87,88,92,93,94 There are methods to show that 
the sampling is incomplete, but there does not seem to be any way to detect whether a simulation  
has failed to visit some important parts of the phase space, unless these parts are known beforehand. 
We have here used an objective measure of how large part of the (dihedral) phase space that has 
been visited,  viz.  a plot of the portion of the dihedral minima that has been visited during the 
simulation (Figures 5, 6, and 10b). However, as noted above, complete sampling of the dihedral 
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space is not always needed, nor is it enough to ensure convergence of the simulations. Still, even if 
different proteins may show different slopes and total ratios in such plots, it is clear that as long as 
they show a steady increase in the number of visited minima, the simulations cannot be considered 
converged or fully equilibrated (i.e. at convergence, the ratio of fully visited minima should either 
reached 100% or a fixed stable value). 

This study has important implications on how MD simulations should be analysed.77,88,89 Much 
effort has been spent on developing methods to determine the required equilibration time.95,96,97 If 
we agree that simulations never will be strictly equilibrated, the procedure can be simplified by 
discarding only parts of the simulation that give erroneous results, i.e. the first short part, during 
which unphysical interactions caused by the set-up of the simulation are removed. This part  is 
characterised by monotonic trends during the start of the simulation and typically takes a few 100 
ps.38,98 All simulation time after this initial equilibration is equally important and should be used for 
analysis,  even  if  some  properties  show  significant  variations.  The  sampling  can  typically  be 
improved by running several short independent simulations, exploiting the uncertainty inherent in 
the set-up of the simulations, such as the starting velocities, the placement of solvent molecules, 
alternative configurations in the crystal structure, rotation of groups, or the protonation states of the 
protein  residues.76 In  fact,  the  main  challenge  is  to  decide  the  statistical  precision  of  the 
results.77Moreover, there is no way to detect whether we have missed important parts of the phase 
space. Instead, the interpretation of MD simulations has to rely on the assumption that we sample 
enough parts  of the phase space around the native structure to obtain reliable  estimates of our 
property of interest. 
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Table 1. DDH estimates of the protein conformational entropy (TΔS in kJ/mol at 300 K). Δ is the 
difference in the entropy of the two ligands (cn2h–cn1h or L02–Gal3). 

Protein MMP12 Gal3 BPTI

Ligand cn1h cn2h Δ Lac L02 Δ Run1 Run2

10 short 1 -8499±18 -8572±20 -74±26 -7113±15 -7085±35 28±38 -2888±12

Concatenated 2 -8054 -8168 -114 -6878 -6792 86 -2824

1 long 3 -7572 -7965 -393 -6690 -6651 40 -2845 -2830

Convergence 4 42 89 47 38 -22 -59 12 6
1 The results of ten independent simulations of 10 ns (MMP12), 20 ns (Gal3), or 40 ns (BPTI) 
length. The reported uncertainty is the standard error over the ten simulations, i.e. the standard 
deviation of the results of the ten simulations divided by  10 .
2 The ten short simulations were concatenated and the entropy was calculated for the concatenated 
trajectory.
3 The results of a single long simulation (380 ns for MMP12, 500 ns for the other two proteins).
4 The difference between the estimates obtained with the full trajectory and when excluding the last 
100 ns of the trajectory. A positive value indicates that the entropy increases the last 100 ns.
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Figure 1. Ligands of Gal3 (Lac and L02) and MMP12 (cn1h and cn2h) studied in this paper. 
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Figure 2. Protein conformational entropy from DDH analysis for the MMP12 simulations with the 
cn1h and cn2h ligands, as well as the difference in this entropy of the two states, as a function of the 
length of the simulation. The entropy (TΔS in kJ/mol at 300 K) is relative to the estimate at 380 ns. 
At each time, the entropy was calculated by Eqn. 2, using all snapshots up to that time.
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Figure 3. Protein conformational entropy from DDH analysis for the Gal3 simulations with the Lac 
and L02 ligands, as well as the difference in entropy of the two states, as a function of the length of 
the simulation. The entropy (TΔS in kJ/mol at 300 K) is relative to the estimate at 500 ns. 
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Figure 4. Protein conformational entropy from DDH analysis of two 500 ns MD simulations of 
BPTI as a function of the length of the simulation. The entropy (TΔS in kJ/mol at 300 K) is relative 
to the estimate at 500 ns of the first simulation. 
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Figure 5. Conformational entropy (left axis and blue squares) and ratio of normal modes with two 
conformations (right axis and green diamonds) of our simple model protein (Eqns. 9 and 10) with N 
= 100, Amax = 100 kJ/mol, and τ0 = h/kBT as a function of tsim on a logarithmic scale.
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Figure 6. Dihedral phase-space sampling in the various simulations, i.e. the ratio of the dihedrals 
for which all available minima are visited during a certain simulation time. Each dihedral is 
described by a potential of the form in Eqn. 8. The domain of each minimum is defined as a 360/ni 
interval around each minimum and it is checked whether all these domains are visited at least once 
during the simulation for each dihedral. Dihedrals of aromatic groups were excluded from the 
analysis. Note the logarithmic time scale on the x-axis.
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Figure 7. Protein conformational entropies from the DDH analysis for the six protein simulations as 
a function of the length of the simulation, plotted on a logarithmic scale. The entropy (TΔS in 
kJ/mol at 300 K) is relative to the estimate at the end of the simulation. a) MMP12 simulations with 
the cn1h and cn2h ligands, b) Gal3 simulations with the Lac and L02 ligands, and c) the two BPTI 
simulations.
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Figure 8. Plot of the conformational entropy of our model protein on two different linear time 
scales.
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Figure 9. The conformational entropy of our extended model protein (Eqns. 9, 11, and 12) with N = 
1500 (similar to what is found for Gal3 and MMP12) and Amax = 100 kJ/mol as a function of tsim on a 
logarithmic scale. Four different values of ∆Gmax were tested, 10, 20, 30, and 40 kJ/mol.
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Figure 10. Protein conformational entropy from DDH analysis of the BPTI simulation of Shaw et 
al.36 as a function of the length of the simulation on a linear (a) and a logarithmic (b; blue squares 
and left axis) time scale. The entropy (TΔS in kJ/mol at 300 K) is relative to the estimate at 1 ms. In 
(b), the dihedral phase-space sampling (calculated the same way as in Figure 6) is also shown 
(green diamonds and right axis).
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Figure 11. MM/GBSA estimates of the binding free energy of Lac to Gal3, together with the 
components (referring to Eqn. 6, the terms are from top to bottom in the legend, EvdW, Eele+ Gpol, Gnp, 
–TS, Eele, Gpol, and ΔG). For all terms, the cumulative average in kJ/mol is plotted relative to the 
average at 500 ns.
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Figure 12. MM/GBSA estimates for binding free energy of L02 to Gal3 together with the 
components. The terms are the same as in Figure 11.
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Figure 13. MM/GBSA energy for each snapshot in the ten independent simulations of Gal3-Lac 
(top)  and  the  single  long  simulation  (middle),  as  well  as  a  box  plot  of  values  (bottom),  with 
independent simulations to the left and long simulation to the right. In the box plot, the median is 
marked by a vertical line at the centre of the box, and the edges of the box are determined by the 
25th and 75th percentiles. Finally, the whiskers extend such that 99% of the data is covered, and the 
plus signs outside are deemed outliers.
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Figure 14.  MM/GBSA energy for each snapshot in the ten independent simulations of Gal3­L02 
(top)   and   the   single   long   simulation   (middle),   as  well   as   a   box  plot   of   values   (bottom)  with 
independent simulations to the left and long simulation to the right (constructed in the same way as 
in Figure 13). 
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Figure 15. Cumulative estimates of the free energy of reducing the ligand charges with 10% in 
kJ/mol in the simulation of Gal3 with the Lac and L02 ligands.
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Figure 16. Cumulative estimates of the free energy of reducing the ligand van der Waals energy 
parameters with 10% in kJ/mol in the simulation of Gal3 with the Lac and L02 ligands.
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TOC Graphics
Conformational entropies estimated from molecular dynamics do not converge to any usable 
precision even after 1 ms simulations.
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