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Abstract

This thesis considers methods for synthesis of linear quadratic controllers
for large-scale, interconnected systems. Conventional methods that solve
the linear quadratic control problem are only applicable to systems with
moderate size, due to the rapid increase in both computational time and
memory requirements as the system size increases. The methods pre-
sented in this thesis show a much slower increase in these requirements
when faced with system matrices with a sparse structure. Hence, they are
useful for control design for systems of large order, since they usually have
sparse systems matrices. An equally important feature of the methods is
that the controllers are restricted to have a distributed nature, meaning
that they respect a potential interconnection structure of the system.
The controllers considered in the thesis have the same structure as

the centralized LQG solution, that is, they are consisting of a state pre-
dictor and feedback from the estimated states. Strategies for determin-
ing the feedback matrix and predictor matrix separately, are suggested.
The strategies use gradient directions of the cost function to iteratively
approach a locally optimal solution in either problem. A scheme to de-
termine bounds on the degree of suboptimality of the partial solution in
every iteration, is presented. It is also shown that these bounds can be
combined to give a bound on the degree of suboptimality of the full out-
put feedback controller. Another method that treats the synthesis of the
feedback matrix and predictor matrix simultaneously is also presented.
The functionality of the developed methods is illustrated by an ap-

plication, where the methods are used to compute controllers for a large
deformable mirror, found in a telescope to compensate for atmospheric
disturbances. The model of the mirror is obtained by discretizing a par-
tial differential equation. This gives a linear, sparse representation of the
mirror with a very large state space, which is suitable for the methods
presented in the thesis. The performance of the controllers is evaluated
using performance measures from the adaptive optics community.
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Preface

Contributions of the Thesis

The thesis consists of one introductory chapter and four papers. In this
section the contents of the introductory chapter and the contributions of
the papers will be described.

Chapter 1 – Background

In this chapter different topics related to the work of this thesis will be
given. Since not all topics are directly related, the presentations will be
free-standing. In a section in the end of the chapter a discussion of how
they connect to the work of the thesis will be given.

Paper I

Mårtensson, K. and A. Rantzer (2011) “Synthesis of structured controllers
for large-scale systems.” Submitted to IEEE Transactions on Auto-
matic Control.

This paper presents methods to calculate structured state feedback
controllers for large-scale systems. The methods use trajectories of the
closed loop system to determine descent directions in which the feedback
matrix is changed to improve the performance. These trajectories can be
obtained either by simulation of a model or measurements from of the
actual system, thus producing either offline or online design schemes.
The schemes are shown to be have linear scalability properties when the
system satisfies certain sparsity assumptions.
The idea behind the methods presented in the paper was developed

by K. Mårtensson and A. Rantzer. The analysis of the scalability of the
methods was performed by K. Mårtensson.
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Preface

Paper II

Mårtensson, K. and A. Rantzer (2012) “Synthesis of Structured Output
Feedback Controllers for Large-Scale Systems.” Submitted to Automat-
ica.

This paper extends the ideas of Paper I to synthesis methods for struc-
tured output feedback controllers for large-scale systems. The objective of
the methods is to obtain a suboptimal feedback matrix and a suboptimal
state predictor matrix, respectively. An analysis of how to combine the
degree of suboptimality of each of these matrices into a degree of subop-
timality for the complete controller is performed.
The extensions of the methods in Paper I were made by K. Mårtensson.

The analysis of the combination of the degrees of suboptimality was also
performed by K. Mårtensson. A. Rantzer contributed with support and
insights during the work.

Paper III

Mårtensson, K. and A. Rantzer (2012) “A Scalable Method for Continuous-
Time Distributed Control Synthesis.” To appear in Proceedings of the
2012 American Control Conference, Montréal, Canada.

This paper presents a method to determine structured state feedback
controllers for continuous-time systems. Similarly to Paper I, the method
works by simulating the closed loop system and using the trajectories
to determine descent directions. Also, it has been shown the degree of
suboptimality can be determined through the obtained trajectories.
The work of the paper is performed by K. Mårtensson. Useful support

and comments were provided by A. Rantzer.

Paper IV

Mårtensson, K. and R. Heimsten (2012) “Synthesis of Structured State
Feedback Controllers for a Large Deformable Mirror.” Submitted to
IEEE Transactions on Control Systems Technology.

In this paper, the methods developed in Paper I are used to find state
feedback controllers for a large deformable mirror. The model of the mirror
is described by large, sparse system matrices and is thus suitable for
the theory in Paper I. The performance of the obtained controllers are
evaluated by measures found in the adaptive optics literature.
The model used for the simulations was provided by R. Heimsten. The

implementation of the methods for finding the state feedback matrices
for large-scale systems was done by K. Mårtensson. The simulations and
evaluations of the controllers were performed by K. Mårtensson.
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1

Background

In this chapter concepts important to the thesis are described. Since the
objective of the thesis is to find methods for large-scale, structured lin-
ear quadratic Gaussian (LQG) control, the chapter begins with a brief
overview of the theory of ordinary LQG. Common numerical methods for
solving this problem are discussed. In this discussion it is indicated why
there is a problem when using these methods for large-scale systems.
Some approaches to handle this issue for large-scale systems are also
given in this chapter. As the thesis considers structured controllers, a re-
view of research in distributed control is given. Since the methods of the
thesis build upon the gradient descent direction method, a section is de-
voted to treat this topic. Finally, similar ideas used in optimal control for
general non-linear systems are described.

1.1 Linear Quadratic Gaussian Control

When designing a controller we would usually like to evaluate its perfor-
mance. To quantify the performance, a function, called the cost function
or the performance measure, needs to be selected. This function maps
the closed loop system to a number that describes the performance of the
controller. Usually, the lower the number is, the better the performance.
In optimal control the objective is to find a controller with the lowest cost
for a given cost function, possibly with additional constraints that have
to be satisfied. In linear quadratic Gaussian (LQG) control we consider
linear systems and quadratic cost functions. The theory is well-studied
and it is known that under certain assumptions, the optimal controller is
linear and separates into two parts, one state feedback and one state pre-
dictor. The theory can be found in numerous books, among others [Zhou
et al., 1996,Åström, 2006,Boyd and Barratt, 1991]. In this section a brief
overview of the theory of LQG will be given, starting by describing the
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Chapter 1. Background

linear quadratic regulator problem and then the problem of state recon-
struction.

Linear Quadratic Regulator Problem

In the majority of the papers of this thesis we consider linear, time-
invariant systems in discrete time. For this reason we will consider such
systems in the following presentation of the theory of LQG. In this part
we will also assume that the system has some given initial state,

x(k+ 1) = Ax(k) + Bu(k), x(0) = x0. (1.1)

Here, x(k) ∈ R
n is the state vector of the system with the given, but

arbitrary, initial state x0, and u(k) ∈ R
m is the control signal used to

regulate the system. We will assume that the pair (A, B) is stabilizable.
The objective is to find u that drives the state from x0 towards zero in
an optimal way. In order to quantify what we mean by optimal, a cost or
performance function needs to be specified. In the discrete time case the
quadratic cost is given by

J(x,u) =
∞∑

k=0

[
x(k)
u(k)

]T [
Qx Qxu

QTxu Qu

]

︸ ︷︷ ︸
Q

[
x(k)
u(k)

]
. (1.2)

In this discussion the control weight Qu will be required to be positive
definite and the total weight Q to be positive semidefinite. It is possible
to have more general assumptions on the weights, but these assumptions
are not essential for the presentation. We define a control strategy by the
causal function µ that takes a trajectory x and determines the control u.
The optimal cost is the infimum

inf
µ
J(x, µ(x)),

where x satisfies (1.1) with u = µ(x). The optimal control strategy, de-
noted µopt, is the µ for which the infimum is attained. This setup is usually
referred to as the discrete time linear quadratic regulator (LQR) problem.
The solution to the discrete time LQR problem is well-known and relies

on the solution of the discrete algebraic Riccati equation

X = AT X A+Qx −(Qxu + AT X B)(Qu + BT X B)−1(QTxu + BT X A). (1.3)

A few methods to solve the discrete algebraic Riccati equation will be
discussed in Section 1.2. Let X be the positive definite solution to (1.3).

16



1.1 Linear Quadratic Gaussian Control

Then the optimal control law in the discrete time case is linear and defined
by

uopt(k) = − (Qu + BT X B)−1(QTxu + BT X A)︸ ︷︷ ︸
Kopt

x(k). (1.4)

For any stabilizing linear control law u(k) = −Kx(k), the value of the
cost can be calculated by determining the solution to the following discrete
time Lyapunov equation

S = (A− BK )TS(A− BK ) + Qx − QxuK − K TQTxu + K TQuK︸ ︷︷ ︸
QK

. (1.5)

It is easily realized that the solution to (1.5) can be expressed as an
infinite sum, that is,

S =
∞∑

k=0
((A− BK )T)kQK (A− BK )k. (1.6)

Using (1.6), an expression for the value of the cost function with the
control law µ, defined by u(k) = −Kx(k), can be determined as

J(x, µ(x)) =
∞∑

k=0

[
x(k)

−Kx(k)

]T
Q

[
x(k)

−Kx(k)

]
=

∞∑

k=0
x(k)TQK x(k)

=
∞∑

k=0
xT0 ((A− BK )T)kQK (A− BK )kx0 = xT0 Sx0.

When the optimal control law is used, it turns out that the solution of the
discrete algebraic Riccati equation, X , and S coincide. Hence, the value
of the cost function is easily determined by

J(x, µopt(x)) = xT0 X x0. (1.7)

The continuous time LQR problem is solved in a similar manner and
can for example be found in [Zhou et al., 1996, Åström, 2006, Boyd and
Barratt, 1991].

State Reconstruction

The purpose of state reconstruction is to determine estimates of all the
states of a system using measurements of the output. The system consid-
ered here is

x(k+ 1) = Ax(k) +w(k), x(0) = x0,
y(k) = Cx(k) + e(k), (1.8)

17



Chapter 1. Background

where x(k) ∈ R
n is the state that is to be estimated and y(k) ∈ R

p the
observation that is used for the estimation. The pair (A,C) is assumed to
be detectable. The noise corrupting the states and measurements, w(k)
and e(k), respectively, are assumed to come from a Gaussian process with
zero mean and variance

E

[
w(k)
e(k)

] [
w(k)
e(k)

]T
=
[
Rw Rwe

RTwe Re

]
= R,

where the variance of the measurement noise Re is assumed to be posi-
tive definite, and the total variance R to be positive semidefinite. As in
the discussion for the LQR problem, there are more general assumptions
for the variances. The objective of the state reconstruction is to use the
measurement trajectory Yk = {yk, yk−1, . . .} to give an estimate x̂(k+ 1) of
the state x(k+ 1). Define the state estimation policy ϕ(Yk; k) = x̂(k+ 1)
and the estimation error of this policy as x̃(k) = x(k)− x̂(k). By specifying
any constant, positive semidefinite weight W , we define the cost of a state
estimation policy as

J(ϕ) = lim
k→∞
E x̃(k)TWx̃(k). (1.9)

Now, we would like to find the optimal state estimation policy, that is, the
policy that minimizes (1.9). The solution again relies on the solution of a
discrete algebraic Riccati equation

Y = AYAT + Rw − (Rwe + AYCT)(Re + CYCT)−1(RTwe + CYAT). (1.10)

With the solution Y to (1.10) the optimal policy is given by the linear
dynamical system

x̂(k+ 1) = (A− LoptC)x̂(k) + Lopty(k), x̂(0) = 0, (1.11)

where
Lopt = (Rwe + AYCT)(Re + CYCT)−1. (1.12)

Using this estimation policy, an expression of the resulting estimation
error is given by

x̃(k) =
k∑

i=0
(A− LoptC)i−k(w(i) − Lopte(i)) + (A− LoptC)kx0. (1.13)

Similarly to the LQR problem, for any prediction matrix L, for which
A − LC is stable, used instead of Lopt in (1.11), the cost (1.9) can be
determined with the use of the solution to the Lyapunov equation

P = (A− LC)P(A− LC)T + Rw − RweLT − LRTwe + LReLT︸ ︷︷ ︸
RL

. (1.14)

18



1.1 Linear Quadratic Gaussian Control

In similarity to the solution of (1.5), the solution of (1.14) can be expressed
as an infinite sum

P =
∞∑

k=0
(A− LC)kRL((A− LC)T )k. (1.15)

Denoting AL = A − LC, an expression for the value of the cost function
can now be determined as

J(ϕ L) = lim
k→∞
E tr

(
x̃(k)x̃(k)TW

)

= lim
k→∞
tr

((
k∑

i=0
AiLRL(ATL)i + AkLx0xT0 (ATL)k

)
W

)

= tr (PW) .

When the optimal control policy is used, Y and P coincide giving the
optimal cost

J(ϕopt) = tr (YW) . (1.16)

Linear Quadratic Gaussian Control

In linear quadratic Gaussian control we are concerned with finding the
optimal output feedback controller for the system

x(k+ 1) = Ax(k) + Bu(k) +w(k),
y(k) = Cx(k) + e(k). (1.17)

Now, the objective is to find the optimal control policy u(k) = µ(Yk−1; k)
that minimizes the cost

J(µ) = lim
k→∞
E

[
x(k)
u(k)

]T [
Qx Qxu

QTxu Qu

] [
x(k)
u(k)

]
, (1.18)

where x satisfies (1.17) with the control policy µ. The well-known sepa-
ration principle tells us that the optimal LQG controller is separated in
two parts; the optimal state estimation policy and the optimal feedback
law applied to the state estimates. Hence, the optimal output feedback
controller is given by the linear system

x̂(k+ 1) = (A− LC)x̂(k) + Lopty(k),
u(k) = −Kopt x̂(k),

(1.19)

where Kopt and Lopt are the previously defined matrices. The optimal
value of the cost function also separates into two terms, which relate
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Chapter 1. Background

to the optimal LQR problem and the optimal state estimation problem,
respectively. The optimal cost is given by

J(µ) = tr (X Rw) + tr
(
YK Topt(Qu + BT X B)Kopt

)

= tr
(
X Lopt(Re + CYCT )LTopt

)
+ tr (YQx) .

(1.20)

Any suboptimal controller can be parametrized using the optimal con-
troller, see [Zhou et al., 1996]. With this parametrization the cost sepa-
rates into two terms, the optimal cost and an additional cost term. The
added cost of using any stabilizing feedback matrix K and any stabilizing
predictor matrix L instead of the optimal ones in (1.19), is easily deter-
mined by introducing

Aext =
[
A− BK BK

0 A− LC

]
,

Bext =
[

Lopt

(Lopt − L)

]
(Re + CYCT)1/2,

Cext = (Qu + BT X B)1/2 [ (Kopt − K ) K ] .

(1.21)

The total cost of the control policy that arises when using K and L, is

J(µ) = J(µopt) + tr
(
SextBextB

T
ext

)
, (1.22)

where Sext is the solution to the Lyapunov equation

Sext = ATextSextAext + CTextCext. (1.23)

1.2 Numerical Methods for the Algebraic Riccati Equation

In the previous section we saw the importance of computing the solution
to the algebraic Riccati equation. There has been considerable research
efforts devoted to numerical methods for calculating the solution of the
algebraic Riccati equation. The methods are usually alterations to already
existing ones, improved to increase the computational performance. How-
ever, a recurring property of the computational time requirements of the
methods is that it scales as O (n3) for general systems of size n. Also,
since the solution X is a full matrix, the memory or workspace require-
ment scales at least as O (n2). These two requirements make such meth-
ods inapplicable to large-scale systems. In order to find methods for these
systems, special properties, such as rank or sparsity structure, must be
exploited.
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1.2 Numerical Methods for the Algebraic Riccati Equation

In this section we will give outlines of three of the main methods used
to solve the algebraic Riccati equation: the Newton–Kleinman method, the
Schur method and the matrix sign function method. It should be noted
that, most commonly, a method for solving the continuous algebraic Ric-
cati equation is developed. This methodology is then extended to obtain a
method that solves the discrete algebraic Riccati equation. We will present
the methods in their discrete time format. In the section a discussion of
different approaches to deal with large-scale algebraic Riccati equations
will also be given. A thorough review of the topics can be found in [Bini
et al., 2011].

Newton–Kleinman Method

The Newton–Kleinman method is an iterative method where a guess of
the solution to the algebraic Riccati equation is brought closer to the true
solution in each iterate. The method works by applying Newton’s method
for solving (1.3). It was first suggested for the continuous case in [Klein-
man, 1968]. A few years later, the discrete version was given in [Hewer,
1971].
We approach the problem by rewriting (1.3) as

R(X ) = AT X A− X + Qx − (Qxu + AT X B)
⋅ (Qu + BT X B)−1(QTxu + BT X A) = 0. (1.24)

The method is initialized with a stabilizing guess X0, that is, A − BK0
is stable for K0 = (Qu + BT X0B)−1(QTxu + BT X0A). Finding an initial
stabilizing guess for unstable systems is a problem in itself. In [Fassbender
and Benner, 1999,Gallivan et al., 2006] ways to find a stabilizing X0 are
described. Let the sequence of X i be recursively determined by

1. Let Ki = (Qu + BT X iB)−1(QTxu + BT X iA) and Ai = A− BKi.
2. Solve the Lyapunov equation Si = ATi SiAi +R(X i).
3. Set X i+1 = X i + Si.

The sequence X i converges quadratically to the solution X of (1.24).
The step in this method that mainly contributes to the computational

cost is step 2, solving the Lyapunov equation. A common method to solve
such equations is to use the Bartels–Stewarts algorithm, [Bartels and
Stewart, 1972] for the continuous case and [Barraud, 1977] for the discrete
case. This algorithm relies on finding the Schur decomposition of Ai and
a Cholesky factorization of R(X i). The computational cost of finding the
Schur decomposition of a matrix with size n scales as O (n3), [Golub and
Van Loan, 1996]. The same holds for finding a Cholesky factorization of
a matrix. The conclusion is that the ordinary Newton–Kleinman method
has a computational complexity of O (n3).

21



Chapter 1. Background

Schur Method

A way of determining the solution to (1.3) is to consider the associated
Hamiltonian matrix. The method was originally proposed in [Laub, 1979].
Define Â = A− BQ−1u Qxu and Q̂x = Qx − QxuQ−1u QTxu. If the matrix Â

is assumed to be non-singular, the Hamiltonian, in discrete time, is given
by

H =
[
Â+ BQ−1u BT Â−T Q̂x −BQ−1u BT Â−T

−Â−T Q̂x Â−T

]
. (1.25)

The problem when Â is singular can be circumvented by instead examin-
ing a certain matrix pencil. For more details see [Lancaster and Rodman,
1995].
The Hamiltonian has exactly n stable eigenvalues. Let [ X T1 X T2 ]

T

span the n-dimensional, stable, invariant subspace of H, that is, the sub-
space corresponding to all the stable eigenvalues of H. Then the solution
to (1.3) is X = X2X −11 . The objective in the Schur method is to find this
invariant subspace. The method simply works by determining the Schur
decomposition of H

U ∗HU = T (1.26)
where U is unitary and T is “quasi-upper” (meaning block-upper where
the blocks are of size 1 or 2). By applying a sorting technique, the diagonal
blocks of T , corresponding to the stable eigenvalues, can be moved to the
top n$ n block of T . The first n columns [UT11 UT21 ]

T of the transformed
U now spans the stable, invariant subspace of H, thus X = U21U−111 .
The main step of the method that influences the computational cost is

the Schur decomposition. Hence, this implies that the computational cost
is at least O (n3).
The Schur method has some problems associated with it. Due to round-

ing errors when finding U and T through the Schur decomposition and the
iterative permutation procedure, the matrix U11 may be ill-conditioned,
meaning that there will be numerical difficulties in the inversion of X =
U21U

−1
11 . Also, even when U11 is well-conditioned, there are no guarantees

that U21U−111 is symmetric. For these reasons it is useful to complement
the Schur method with a correction method in the end, see for exam-
ple [Mehrmann and Tan, 1988]. Today, most Riccati solvers, for example
the one in the MATLAB control toolbox [The MathWorks, Inc, 2010], are
implemented using the Schur method.

Matrix Sign Function Method

The matrix sign function method is another method to solve (1.3). As the
name suggest, the method relies on determining the matrix sign. The
continuous version of the method can be found in [Denman and Beavers,
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1976] while the discrete version, which requires a bit more work, is given
in [Gardiner and Laub, 1986].
For any square matrix Y with Jordan canonical form VJV−1, sign(Y) =

VSV−1, where S is a diagonal matrix with Sii = sign(Re Jii) (here sign
refers to the usual, scalar function). Now, define the matrices

F =
[
I BQ−1u B

T

0 ÂT

]
and G =

[
Â 0

−Q̂x I

]
. (1.27)

The Hamiltonian can be expressed in these matrices, H = F−1G. It should
be noted that the matrix F is invertible if and only if Â is invertible.
Form the transformed matrix Ĥ = (G − F)−1(G + F), where the stable
eigenvalues of H are transformed to eigenvalues of Ĥ with negative real
part. By letting [

W11 W12

W21 W22

]
= sign(Ĥ), (1.28)

the solution X to (1.3) can be determined by solving the overdetermined
equation system [

W12

W22 + I

]
X = −

[
W11 + I
W21

]
. (1.29)

For similar reasons as with the Schur method, it is advisable to use a
correction step on the obtained solution X .
Now, what needs to be determined is sign(Ĥ). An iterative procedure,

which builds on Newton’s method for solving Z2 = I, can be used for this
purpose. We initialize the iterative procedure by setting Z0 = Ĥ. Now, Zk
is determined recursively by

Zk+1 =
1

2(det Zk)1/c
(
Zk + Z−1k

)
, (1.30)

where c is the size of Ĥ.
Analysing the method with respect to the computational cost, the main

steps that require computations are the inversion of Zk in (1.30) and solv-
ing (1.29). Both of these operations scale as O (n3). A strength of the
method is that the operations within it are well-suited for parallel imple-
mentation, see for example [Gardiner and Laub, 1988].

Methods for Large-Scale Riccati Equations

When the size of the system is of an order of 104 and above the methods
described previously are no longer applicable due to computational and
memory limitations. Methods for large-scale systems need to handle both
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of these aspects. To deal with the memory requirements, the solution X is
usually approximated by another matrix X̂ that can be described in a more
memory efficient way. Even though a system has a large state space, the
number of inputs and outputs are typically small. [Penzl, 2000,Antoulas
et al., 2002] discuss the rapid decay of the eigenvalues of X for such
systems. By disregarding the eigenvectors with very low eigenvalues, X
can be approximated by a low-rank matrix, that is, X̂ = ZZT for Z ∈
R
n$r where r ≪ n. The objective of the Riccati solver is now to find Z .
Most methods using this approach apply the methodology of the Newton–
Kleinman method. To solve the Lyapunov equation, which constitutes the
main part of the calculations of the method, different techniques can be
resorted to. The use of the Krylov subspace method was first proposed
in [Saad, 1990]. The matrix Z is iteratively determined as an element of
the Krylov subspace Km = {B, AB, . . . , Am−1B} using either the Arnoldi
or the Lanczos process. Other works that elaborate this approach are for
example [Jaimoukha and Kasenally, 1994,Li and White, 2004,Jbilou and
Riquet, 2006]. Another technique to solve the Lyapunov equation is to use
a low rank version of the alternating direction implicit (ADI) iteration,
presented in [Penzl, 1998,Gugercin et al., 2003, Simoncini, 2007,Benner
et al., 2008,Benner and Faßbender, 2011]. The process relies on the ADI
iteration

X i−1/2(I − µ iA
T) = (A− µ i I)X i−1AT + Q,

(I −ηiA)X i = AX i−1/2(AT −ηi I) + Q

to solve the Lyapunov equation X = AX AT + Q. If the ADI parameters
µ and η are optimally chosen, the convergence of X i towards the solution
X can be shown to be superlinear. For a low-rank algorithm, the steps
are altered to determine Zi instead of X i. For sparse matrices with O (n)
non-zero elements, the computational cost can be as low asO (n), [Benner
et al., 2008].
The Newton–Kleinman method with a slightly different parametriza-

tion of X̂ by H -matrices is presented in [Grasedyck, 2008]. When the
system matrices are of the same structure, they show that the compu-
tational complexity is O (n(log n)p) for a small constant p. The concept
of H -matrices is also used in combination with the matrix sign func-
tion methodology, giving similar results in regard of the computational
cost, [Grasedyck et al., 2003].
Inspired by the use of Krylov subspaces to solve Lyapunov equations,

[Jbilou, 2003,Heyouni and Jbilou, 2009] propose to directly solve the Ric-
cati equation in a similar manner. Similarly, the iterative procedure works
by projecting the solution X onto a Krylov subspace and solve a low-order
Riccati equation with, for example, the Schur method.
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1.3 Interconnected Systems and Distributed Control

A real system usually consists of a number of components that are linked
together to form a functioning unit. It is common that the dynamics for
each separate component is known. Connecting two components means
that the output of one component will be the input of the other. We call
such a system an interconnected system and the components are called
subsystems or agents. The structure of the interconnections can then be
represented in an interconnection graph, where the nodes correspond to
the subsystems and the edges refer to the connections. If the system is
linear, the resulting dynamics matrix A of the interconnected system has
a structure that resembles the interconnection graph. Hence, if the inter-
connection matrix is sparse, that is, each component is only connected to
a few other components, the dynamics matrix is also sparse. An actuator
in an interconnected system usually only directly effects one component,
or a few neighboring components. In case of linear systems, this means
that the control matrix B also is sparse.
In a centralized controller the control action for each actuator is deter-

mined by a central decision maker. This means that the controller treats
the systems as one single, possibly large-scale, system. In a distributed
control system the decision making is divided out among the actuator.
Each actuator has only limited access to measurements of the system,
commonly only from subsystems in its neighborhood. In an ideal setup, for
most cost functions, a centralized controller exhibits better performance
than a distributed controller, since all decisions in a centralized controller
is made with at least the same information available to a distributed con-
troller. There are still a number of reasons to choose the latter:

- Connection limitations. The communication network may not al-
low every component to communicate. The cost of introducing a com-
munication channel between distant agents may be much larger than
the benefit given by the channel. Also, in some systems, not every
component wants to share its internal information.

- Robustness against failures. If the centralized controller suffers
from a failure, the entire system breaks down. If one controller in
a distributed control system fails, the remaining systems may still
be able to function. They may even be able to handle the tasks of
the failed controller. Similarly, a centralized system is vulnerable to
partial network failure, while only the failed part is effected in a
distributed control system.

- Difficulties to design large-scale controllers. When only con-
sidering the system as a whole, the state space may be extremely
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large. As seen in the previous section, this causes a problem when
determining the optimal controller. For this reason it may be ben-
eficial to use the interconnection topology in the design method for
the controller to reduce the computational cost.

- Introducing new agents. If new agents are introduced into the
system, a centralized controller needs to be completely recomputed.
In a distributed solution we may only need to recompute the parts
where the new agents are located.

Examples of interconnected systems and distributed control can be
found in control of unmanned vehicles concerning their formation and
task allocation, [Raffard et al., 2004, Earl and D’Andrea, 2007, Dunbar
and Murray, 2006], leader-follower problems in vehicular platoons in [Jo-
vanovic et al., 2008] and distributed control of power systems in [Jokic
et al., 2007,Hermans et al., 2011].
The ideas of decision problems and distributed control have been stud-

ied since the 50s and have their origin in the economics literature. The
theory of teams, defined as a group of people making decisions for a com-
mon reward, and how their common payoff is determined with respect
to the uncertain environment they live in, were presented in [Marschak,
1955]. Each member of the team makes decisions with different informa-
tion about the environment, resulting in a different problem than classical
optimization where everyone has access to all information. It is also dis-
cussed how different communication networks can increase the payoff for
the team. The ideas are more formally and mathematically treated and
extended in [Radner, 1962].
In the late 60s the difficulties of certain information structures in the

problem formulations were pointed out in [Witsenhausen, 1968]. With a
simple example of a linear system with a quadratic cost function it was
shown that with information constraints, a linear solution does not have
to be optimal. The conclusion is that for systems with general information
structures it is hard to find optimal solutions. However, it is possible
to solve the problem for special classes of information constraints. The
concept of a partially nested information structure was introduced in [Ho
and Chu, 1972]. This concept means that any follower to an agent receives
at least the same information as that agent does. Under this assumption
of the information pattern, the optimal LQG controller is shown to be
linear.
The most restrictive information constraint is that each agent only has

access to local measurements. We denote this scenario by decentralized
control. In [Wang and Davison, 1973] a necessary and sufficient condition
for the existence of a linear, stabilizing controller is given. For a survey of
the classical results in decentralized control, see [Sandell et al., 1978].

26



1.3 Interconnected Systems and Distributed Control

In recent years distributed control has attracted a lot of attention.
Systems that consist of identical subsystems, so-called spatially invari-
ant systems, are considered in [Bamieh et al., 2002]. This means that
the systems will be of a spatially infinite or periodic nature. The systems
are parametrized in the frequency domain and the controller is then de-
signed. This will result in a spatially localized structure, which allows for
a distributed implementation. Design of distributed controllers for spa-
tially invariant systems with an additional assumption of propagation of
information through the system were treated in [Bamieh and Voulgaris,
2005]. If the controller is assumed to have at least the same propagation
speed as the system, it was shown how to convexify the controller design.
This communication constraint means that any correction made by a sub-
controller is communicated to its neighboring subcontrollers before the
correction effects the neighboring subsystems.

[D’Andrea and Dullerud, 2003] was also concerned with control of in-
finitely many spatially interconnected, identical subsystems. The objective
was to determine a controller minimizing the induced {2-norm and satis-
fying the interconnection structure of the system, that is, distributed H∞
control synthesis. This was accomplished by solving linear matrix inequal-
ities (LMIs) of a size comparable to each of the identical subsystem. The
theories were extended to allow for heterogeneous systems in [Dullerud
and D’Andrea, 2004,Langbort et al., 2004]. In the latter publication, non-
ideal communications between subsystems, for example lossy or delayed
channels, was also treated.
Quadratic invariance is another way of describing the information

structure of the controller, introduced in [Rotkowitz and Lall, 2006]. The
posed controller design problem was to minimize a given norm of the
closed-loop system, while respecting the controller structure. If the set
of admissible controllers, S, is quadratically invariant, the closed-loop
system can be parametrized using the Youla-parametrization, where the
Youla-parameter Q also is in S. Hence, the minimization problem was
cast as a convex optimization program. The concept of quadratic invari-
ance actually coincides with partially nestedness, see [Rotkowitz, 2008].
In [Borrelli and Keviczky, 2008] identical, dynamically decoupled sys-

tems were considered. They address the problem of finding optimal LQR
controllers for a coupled cost function, where the controller respects an
arbitrary, but given, communication graph. The problem is reduced to
solving a Riccati equation of a size comparable to the maximum vertex
degree of the interconnection graph.
A popular area of recent research is distributed model predictive con-

trol, in which distributed optimal control is to be accomplished in the
presence of state and control constraints. The idea in ordinary model pre-
dictive control (MPC) is to solve an optimization problem, for example a
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quadratic program, in every time sample of a discrete time system and
to apply the first control action to the system. There are approaches to
guarantee stability of MPC schemes, see [Mayne et al., 2000]. When con-
sidering distributed MPC, instead of solving one large optimization prob-
lem in a centralized fashion, local optimization problems are posed for
each agent or small collection of agents to achieve global performance.
In [Keviczky et al., 2006] a decentralized MPC scheme for dynamically
decoupled systems was treated. The coupling comes from the cost func-
tion and constraints of the states between agents.
A methodology to solve optimal control problems for large-scale sys-

tems is to introduce Lagrange multipliers to remove the coupling in the
dynamics equation. This has been known for many years, see for exam-
ple [Mesarovic et al., 1970]. The approach is well-suited for distributed
MPC and the methods presented in for example [Negenborn et al., 2008,
Giselsson and Rantzer, 2011] build on it. The Lagrange multipliers are
usually updated by gradient methods and require substantial communi-
cation in between neighbors. A survey of distributed and hierarchical MPC
is given in [Scattolini, 2009].

1.4 Gradient Descent Method

The gradient descent method is a simple, iterative procedure to find a
local minimizer to the unconstrained minimization problem

min
x
f (x) (1.31)

for the continuously differentiable function f : D → R, with domain
D ⊂ R

n. The method works by starting with an initial guess x(0) ∈ D, and
define the sequence x(k+1) = x(k)−γ k∇ f (x(k)) where the step length γ k is
chosen such that x(k+1) ∈ D and f (x(k+1)) < f (x(k)). The sequence {x(k)}
now approaches a local minimizer to f , not necessarily ever reaching it.
The choice of step length of course influences the rate with which the it-
erates approach the local minimum. It can for example be chosen through
exact line search, meaning that we solve minγ k>0 f (x(k) − γ k∇ f (x(k))), or
by the use of inexact techniques, for example Armijo’s rule, see for ex-
ample [Boyd and Vandenberghe, 2004]. The reason for resorting to such
techniques is that exact line search is associated with many function eval-
uations. In problems where the gradient descent method is used it is not
uncommon that function evaluations imply a high computational cost. The
idea behind the inexact techniques is to instead determine a “good enough”
step length by less function evaluations and determine a new search di-
rection and start anew.
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A problem associated with the gradient descent method is the slow
convergence for poorly scaled problems. By investigating the gradient de-
scent method for the objective function f (x1, x2) = x21+α x22, where α ≫ 1,
we find that the solution can jump back and forth and hardly reducing
f , implying a very slow convergence. The reason is the long and narrow
level surfaces of f . The gradient descent method will show this behavior
for any objective function with ill-conditioned level surfaces. There are
ways to modify the gradient to account for the described problem. For any
positive definite matrix B, −B∇ f is still a descent direction. For example,
in Newton’s method the scaling is chosen as the inverse of the Hessian of
f . Hence, by an appropriate choice of the scaling B, the gradient method
converges faster. Using faster gradient descent methods first presented
in [Barzilai and Borwein, 1988] is also a possibility that can solve the
problem. The idea is to keep the search direction but to choose the step
length in a way that does not guarantee a strict monotone sequence of the
function values. Many methods extends these ideas, see for example [Dai
and Fletcher, 2005,Dai et al., 2006] and references therein. It should be
noted that there are some problems with these methods, see [van den Doel
and Ascher, 2011].
The gradient method can be applied to constrained minimization prob-

lem as well. Assume that the minimization problem (1.31) is subjected to
linear equality constraints

Ax = b.
If we assume that the initial point x(0) is feasible, the direction used in
each step of the constrained gradient descent method, or more appro-
priately steepest descent method, is the gradient projected onto the con-
straint set. That is, we orthogonally project the gradient ∇ f (x(k)) onto
the subspace {x p Ax = 0} to find the search direction. It is also possible
to handle non-linear equality constraints and inequality constraints in a
similar manner, see for example [Snyman, 2006].

Stochastic Gradient Descent Method

A concept in machine learning is the stochastic gradient descent method.
The idea is to update the decision variable not by the true gradient but
by a stochastic approximation of it. The reason could be that the true
gradient is very difficult or impossible to determine. The presentation
here is inspired by the one found in [Bottou, 2004].
The objective function in (1.31) now has a stochastic formulation

f (x) = E zQ(x, z) =
∫
Q(x, z) dP(z). (1.32)

In the machine learning community f is referred to the expected risk
function. The interpretation of the components is that x is a parameter
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that should be tuned to minimize the influence of the surrounding envi-
ronment described by the event z with probability distribution dP. The
influence is given by the cost Q. The expected risk can be approximated
by a finite set of independent observations z(1), . . . , z(N), called a training
set.

f (x) ( fapprox(x) =
1
N

N∑

k=1
Q(x, z(k)). (1.33)

One approach is now to approximate ∇ f with ∇ fapprox and use this ap-
proximation in the gradient descent method. This is referred to as the
batch gradient descent method. A drawback with this approach is that to
determine ∇ fapprox, we need to determine ∇xQ for the whole training set.
Since the training set needs to be large in order to provide a good approx-
imation, this can potentially result in a large computational cost. In the
stochastic gradient descent method we instead choose an observation z(k)

at random and update the value of the decision variable by

x(k+1) = x(k) − γ k∇xQ(x(k), z(k)). (1.34)

This approach substantially cuts the computational cost. In [Bottou, 2004]
some convergence analysis of the method can be found.
The fairly cheap computational cost of the method makes it an at-

tractive choice for solving large-scale problems. Examples of publications
looking into this are [Langford et al., 2009,Bottou, 2010,Xu, 2011].

1.5 Optimal Control Using Adjoint Variables

In this section we will review some aspects of finite horizon, optimal con-
trol. In the presentation, continuous time, non-linear systems will be con-
sidered and the cost function will not be required to be quadratic. More
specifically, we consider the system

ẋ(t) = f (x(t),u(t)), x(0) = x0 (1.35)

and the cost function

J(x,u) = ϕ(x(tfinal)) +
∫ tfinal
0

L(x(t),u(t))dt. (1.36)

The objective of the optimal control problem is to find the control signal
uopt(t) that minimizes (1.36) when x(t) is subject to (1.35) for the given
control signal. The numerical treatment of optimal control problems can
be mainly divided into two branches: the indirect and the direct methods.
These methods will briefly be described here, a more detailed discussion
can be found in for example [Binder et al., 2001].
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Indirect Methods

For the indirect methods we introduce the Hamiltonian to (1.35) and (1.36)

H (x(t),u(t),λ(t)) = L(x(t),u(t)) + λ(t)T f (x(t),u(t)), (1.37)

where λ(t) are the so-called adjoint states. By Pontryagin’s maximum
principle, the Hamiltonian gives necessary conditions for the optimal so-
lution xopt(t), uopt(t) and λopt(t) to the optimal control problem previously
described. They are

ẋopt(t) = f (xopt(t),uopt(t)), xopt(0) = x0, (1.38)

λ̇opt(t) = −
�H
�x (xopt(t),uopt(t),λopt(t)), λopt(tfinal) =

�ϕ
�x

∣∣∣∣
t=tfinal

, (1.39)

uopt(t) = argmin
u
H (xopt(t),u,λopt(t)), (1.40)

where (1.40) is pointwise minimization. In the indirect methods, these sets
of relations are to be solved. One possibility is to use gradient methods
to solve the equations (1.38)–(1.40). The procedure will work by starting
with an initial guess of the optimal u. With this guess the trajectories of
x and λ are determined through (1.38) and (1.39). Using the trajectories,
a gradient to the objective in (1.40) can be determined and the control is
updated in this direction. This implies that in every iteration of updating
the solution guess u, (1.38) needs to be numerically integrated in the
forward time direction and (1.39) in the backwards time direction.
Another possibility comes from noticing the initial condition on the

states and the final condition on the adjoint states. This means that we
are faced with a two-point boundary value problem. The necessary con-
ditions of optimality transform the optimal control problem into a multi–
point boundary value problem, which can then be solved by appropriate
numerical methods.

Direct Methods

In direct methods the control signal u(t) is parametrized by a finite num-
ber of parameters p1, . . . , pn. For example, by partitioning the time interval
[0, tfinal] into a number of time intervals, u(t) is described by polynomials
in these partitions, where the parameters p are the coefficients of the
polynomials. With the given parametrization, the optimal control problem
in (1.35) and (1.36) is transformed to

ẋ(t) = f (x(t),u(t, p)), x(0) = x0, (1.41)

J̄(x, p) = ϕ(x(tfinal)) +
∫ tfinal
0

L(x(t),u(t, p))dt. (1.42)
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Hence, in direct methods the original infinite optimal control problem is
transformed into a finite dimensional non-linear programming problem.
The objective of the direct methods is to minimize (1.42) with respect to
the finite number of parameters p subject to the dynamics (1.41). Two
related approaches for this are described below.

Direct Single Shooting Methods: In direct single shooting methods
the minimization problem is solved using the gradient of J̄ with respect
to p. The method can be found as early as in [Hicks and Ray, 1971]. For
any set of parameters p the trajectory of x can be determined through
forward integration of the dynamic system. Hence, the cost is actually
defined solely by the parameters. We will assume that L is zero, that is,
there is only a final cost. Since a non-zero L can be included in the final
cost by introducing an auxiliary state for the integral, this is no limitation.
With the trajectory of x, the gradient can be calculated by determining ei-
ther a forward or an adjoint sensitivity analysis. With forward sensitivity
analysis the expression for the gradient becomes

∇pJ̄ = xp(tfinal) ⋅∇xϕ(x(tfinal)), (1.43)
ẋp = xp ⋅∇x f + up ⋅∇u f , xp(0) = 0, (1.44)

where xp and up are short for∇px and∇pu, respectively. In the dynamics
of xp, the gradients ∇x f and ∇u f are evaluated along the trajectories of
x and u, respectively. Similarly, the adjoint sensitivity analysis gives that

∇pJ̄ =
∫ tfinal
0

up ⋅∇u f ⋅ λ(t)dt, (1.45)

λ̇ = −∇x f ⋅ λ , λ(tfinal) = ∇xϕ(x(tfinal)). (1.46)
That the method is referred to as single shooting comes from the fact

that the trajectory of x is determined in a single shot. This may lead to
numerical difficulties when unstable systems are considered, since the
trajectories may diverge. In such cases it can be useful to apply the direct
multiple shooting method.

Direct Multiple Shooting Methods: The problem of diverging trajec-
tories in case of unstable systems is circumvented in the direct multiple
shooting method by resetting the trajectory in a number of time instants.
This method was first introduced in [Bock and Plitt, 1984]. Let the reset
instants be the times t0 = 0 < t1 < . . . < tk = tfinal. The resetting is
accomplished by introducing artificial initial values si and to define the
reset state trajectory xres

ẋres(t, si, p) = f (xres(t, si, p),u(t, p)), t ∈ [ti, ti+1],
xres(ti, si, p) = si.
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With this reset state trajectory defined, the non-linear programming prob-
lem in (1.42) is extended by the equality constraints

x0 = s0,
xres(ti+1, si, p) = si+1, i = 0, . . . , k− 1.

Hence, the non-linear program in the direct single shooting method has
been transformed to one with more decision variables and more con-
straints. In a similar way as the direct single shooting method, either
a forward or an adjoint sensitivity analysis should be applied to find the
gradient of J̄ with respect to the parameters p.

1.6 Connections with the Thesis Contributions

In this section we connect the topics discussed in previous sections to the
work in remaining part of the thesis. The thesis is devoted to methods for
finding distributed LQG controllers for large-scale systems are treated in
this thesis. This is accomplished by using the gradient descent method
to iteratively improve the controller. The gradients are calculated using a
trajectory of the adjoint system, similarly to how gradients are determined
in optimal control for non-linear systems.
From Section 1.2 it is understood that solving the LQG problem be-

comes extremely difficult for large-scale problems, since finding the solu-
tion of the Riccati equation and the related Lyapunov equation requires
too much computational time and memory. There is work towards solving
the Riccati equation for some special types of large-scale systems, refer-
ences found in Section 1.2. The aim of this thesis is to develop methods
to find controllers that minimize a quadratic cost function, without using
solutions of Riccati or Lyapunov equations. In this way we circumvent the
time and memory problem when designing LQG controllers for large-scale
systems.
The underlying idea of the methods in the thesis can be interpreted

as the stochastic gradient descent method introduced in Section 1.4. For
example, in the LQR problem, we consider a slightly different cost function
than the one introduced in Section 1.1. The cost function is instead the
average of the cost in Section 1.1 when the initial state is Gaussian with
zero mean and known variance. A possibility to minimize this cost function
is to use the gradient descent method. When dealing with large-scale
systems it is not possible to evaluate the reformulated cost function, nor
its gradient. However, using a similar approach as the ones described
in Section 1.5, the gradient for a given initial state can be determined.
Specifically, the gradients are calculated by combining trajectories of the
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states and the adjoint states. Since the control is determined through
state feedback, this can be thought of as a parametrization of the control,
relating the calculations to the single and multiple shooting methods. A
difference is that the problem in Section 1.5 is to determine an open loop
control signal while the thesis focuses on finding a feedback control law.
Now, following the ideas of the stochastic gradient descent method, in
each update iteration of the feedback matrix, an initial state is chosen
for which the gradient is computed. Using different initial states in every
update iteration will result in that the final feedback matrix will be a
local minimum of the reformulated cost function.
An assumption is that the systems have a structure that can be ex-

ploited, for example rank or sparsity structure. The calculated controllers
will also be required to satisfy some structure. This means that the meth-
ods can be used to find distributed controllers for interconnected systems,
described in Section 1.3. In Section 1.3 a number of different techniques
to determine distributed controllers are discussed. They use a specified
structure of the problem to cast it into a formulation that is recognized
to have tractable techniques to find the optimal solution, for example to
a set of LMIs or a convex optimization problem. In this thesis we do not
focus on finding theoretical proofs that the actual optimal distributed so-
lution can be obtained. Instead we focus on finding efficient methods that
determine suboptimal solutions in a reasonable time, even for large-scale
systems. For example, even though there are methods to solve LMIs, the
computational time for such methods grows rapidly when the LMIs grows
in size, unless some special type of structure of the LMI can be exploited.
The same is true for methods that solve convex optimization problems. An-
other problem with methods that transform the controller design into a
convex optimization problem is that even though the optimization problem
is convex, it may be infinite dimensional. Hence, it requires a parametriza-
tion of the decision variables, which introduces approximations. In order
to obtain good approximations, a large parameter space may be needed,
thus increasing computational costs. Another aspect of the techniques in
Section 1.3 is that for each of them only certain systems and controller
structures are allowed, limiting their use to systems with general intercon-
nection graphs. The methods given in this thesis do not require anything
of the interconnection structure, except that it allows for the systems to
be simulated efficiently.
Another way to deal with the interconnected property in a control sys-

tem is to use distributed MPC, described in Section 1.3. This technique
requires heavy online computations and is only applicable where this is
not an issue. Also, methods for distributed MPC may require lots of com-
munication to determine the control action. Most of the methods in this
thesis rely on offline computations and the obtained controller does not
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require much communication when controlling the system.

1.7 Future Work

This section presents a number of extensions of the ideas found in the
thesis, which could be pursued. It is advised that this section is read after
reading the papers of the thesis.
In the major part of the thesis, the methods rely on simulation of

the system from initial states. This will generate descent directions with
respect to the initial state and after a number of iterations the controller
converges to a suboptimal controller for the average cost. But the gradient
in each update iteration may be a poor estimate of the gradient to the
average cost. If the systems are driven with noise instead of an initial
state, as done in a section of Paper I, the approximation of the average
gradient would be better. The reason for not using this strategy is that
the suboptimality calculations proved difficult, due to a causality issue in
the related optimization problem. It could be possible to avoid this issue
by restating the optimization problem to a recursive setting.
Another issue that could be looked into is related to the one previously

discussed about the estimation of the gradients. When the gradient of
the average cost is approximated by a gradient of the cost from an ini-
tial state, it would be interesting to determine a measure of the error
of the approximation. This measure could for example be the variance of
the approximation error. Such a measure could prove valuable when in-
vestigating the needed size of the training set of the stochastic gradient
descent method.
When a gradient is determined in the methods in this thesis, it is

approximated by truncating infinite sums to finite sums. For general sys-
tems it is not trivial to choose a final time to guarantee that the ap-
proximation is still a descent direction. This problem could be resolved
by allowing a variable final time. The idea is to find a criterion for the
state trajectory that verifies that the truncated part of the infinite sum is
negligible. Now, for each iteration, the state is simulated for enough time
to satisfy this criterion.
A problem of the methods in the thesis is that a stabilizing solution

is assumed to be known. For stable systems this is not a problem, but for
general unstable systems it is far from trivial to find an initial stabilizing
structured controller. As the methods resemble the direct single shooting
method in optimal control, see Section 1.5, it could be possible to use an
approach similar to the one taken in the direct multiple shooting method
to circumvent this problem. It should be noted that it is not expected that
this approach will work on general unstable systems, since this would
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solve the problem of finding stabilizing structured controllers to unstable
systems. But it would at least broaden the class of systems for which the
methods presented in this thesis are applicable.
In Paper IV structured state feedback matrices are found by applying

the methods. This should be considered initial work in designing a con-
troller to a deformable mirror, since a few important issues are neglected.
For example, since state feedback is assumed, the influence of limited
sensing is not addressed. It would be interesting to examine the perfor-
mance degradation when introducing state estimates instead of the true
states. Also, both actuators and sensors may have noticeable dynamics
that have to be included into the model.
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Paper I

Synthesis of Structured Controllers

for Large-Scale Systems

Karl Mårtensson and Anders Rantzer

Abstract

We present a synthesis procedure to design structured controllers
for linear systems to optimize a quadratic performance criterion. Con-
trollers are updated in an iterative fashion to reduce the cost. Descent
directions are determined by simulating the system itself and the cor-
responding adjoint system. In each iterate suboptimality bounds are
calculated in order to validate the current controller. An important
property of the proposed method is that the computational complexity
scales linearly when the system matrices are sparse. Hence it is useful
when designing controllers for large-scale sparse systems, for example
distributed systems or systems resulting from discretized PDEs.

cFSubmitted to IEEE Transactions on Automatic Control.
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1. Introduction

The theory of optimal linear quadratic control has been around for several
decades and is well documented in the literature, for example [Åström,
2006,Bryson and Ho, 1975, Lancaster and Rodman, 1995]. The solutions
are closely related to solving the algebraic Riccati equation to get an ex-
pression for an optimal feedback matrix.
Solving optimal linear quadratic control problems with the use of Ric-

cati equations works well when considering small and medium sized sys-
tems. Due to the fact that workspace complexity is O (n2) and the com-
putational complexity is O (n3), see [Benner et al., 2008], this method of
finding the optimal solution is less tractable for large-scale systems. When
solving general large-scale optimization problems, one can not use conven-
tional approaches but one needs to find and exploit some structure in the
problem [Lasdon, 2002]. One common structure of linear dynamic sys-
tems is that the system matrices are sparse. Such sparse systems are
for example obtained from discretization of PDEs, for example [Heimsten,
2011, Lasiecka and Tuffaha, 2009, Staffans, 1996], or when considering
large interconnected systems. The papers [Benner et al., 2008, Benner
and Faßbender, 2011] treat systems with a large state space but only a
few inputs, for example systems resulting from discretization of PDEs. The
solution to the Riccati equation is approximated with low rank Cholesky
factors, and the feedback matrix is determined by a tractable product of
these. Another low rank approximation method based on stable invariant
subspaces of the Hamiltonian is given in [Amodei and Buchot, 2010]. A
Riccati based method for stabilization of large-scale systems can be found
in [Rao et al., 2000].
Except for the possible large state space, distributed interconnected

systems introduces another constraint on the controllers. When control-
ling these systems, it is often desirable to respect a communication struc-
ture in which a subsystem is only allowed to communicate with a few other
subsystems. Already in the late 1960s it was pointed out that such prob-
lems are fundamentally difficult to solve. In particular [Witsenhausen,
1968] showed that even a small quadratic control problem does not have
a linear optimal solution. The stabilizability and optimality of linear de-
centralized controllers for large-scale interconnected systems was inves-
tigated in [Ikeda et al., 1983]. In recent years a lot of work has been
made to provide synthesis methods for classes of distributed systems. A
concept of quadratic invariance was introduced in [Rotkowitz and Lall,
2006,Rotkowitz and Lall, 2002], which transforms the problem of finding
an optimal controller into a convex optimization program. [Bamieh et al.,
2002,Bamieh and Voulgaris, 2005] investigated systems that are spatially
invariant. A structured state and output feedback H 2 control synthesis
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method by relaxing the Riccati equations via linear matrix inequalities
was discussed in [Li and Paganini, 2006]. Other methods which involve
the use of linear matrix inequalities were presented in for example [Gat-
tami, 2006,Langbort et al., 2004,Rantzer, 2006].
It is possible to investigate the solution of a linear quadratic control

problem using Pontryagin’s Maximum principle, by introducing adjoint
states, [Bryson and Ho, 1975,Heinkenschloss, 2005]. In [Bryson and Ho,
1975] it was shown how the express the optimal control signal in terms of
adjoint states. In [Heinkenschloss, 2005] large-scale, sparse continuous-
time system were discretized to solve a open-loop linear quadratic control
problem. By introducing adjoint variables, the problem was transformed
to a set of sparse linear equations, which was solved by Gauss-Seidel
(GS) iterations. It was also suggested how solve the equations with GS as
a preconditioner in a Krylov subspace method.
In this paper we present a method to iteratively improve a structured

linear controller with respect to a given linear quadratic performance. The
underlying idea works by determining a descent direction to the perfor-
mance and to take a step in that direction to reduce the cost. A similar
technique has been studied in [Geromel and Bernussou, 1982] where the
descent direction was determined by calculating solutions to Riccati equa-
tions, which means that it is not applicable for large-scale systems. In this
work we determine the descent direction by simulating the dynamical sys-
tem and the corresponding adjoint system. The trajectories are used to
find the descent direction. When the dynamical system is sparse it turns
out that this will produce a scalable method. The trajectory determined
for calculating a descent direction can also be used to find a suboptimality
bound of the current controller. This gives a way to verify that the con-
troller is close to the optimal solution. Hence the bound can be used as a
criterion when to stop the process of updating the controller to improve
the performance. The paper builds on the recent papers [Mårtensson and
Rantzer, 2009,Mårtensson and Rantzer, 2010].
The paper is organized as follows. In Section 2 the general problem

setup is given. The process of finding the descent direction to the quadratic
cost function using the trajectories of the dynamical and adjoint system is
found here. This section also shows how to determine the suboptimality
bounds. In Section 3 the dynamical system is restricted to sparse dis-
tributed systems and it is shown how the previously presented method
is used to give a scalable scheme. If the dynamical system is modified to
include noise, a real-time scheme can be handled in a similar fashion. The
details of this process is found in Section 4. Two examples illustrating the
methods are presented in Section 5.
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1.1 Mathematical Notation

The set of real numbers is denoted by R, real vectors of dimension n by
R
n and real n $ m matrices by R

n$m. When a partition of a vector or
a matrix exists, subscripts will refer to that partition. For example, for
x ∈ R

n then xi ∈ R
ni refers to the ith partition of x and A ∈ R

n$m then
Ai, j = Ai j ∈ R

ni$m j refers to the i, jth partition of A. When the components
of the vectors or matrices are ordered with respect to the partition, xi or
Ai j equivalently means the ith or i, jth block of x or A, respectively. For a
matrix valued function f : Rn$m → R we define the differential d f as the
part of f (X +dX )− f (X ) that is linear in dX , that is the linearized part
of f . The gradient of f with respect to X is denoted ∇X f and means

∇X f =




� f
�X1,1

� f
�X1,2

⋅ ⋅ ⋅
� f
�X1,m

� f
�X2,1

� f
�X2,2

⋅ ⋅ ⋅
� f
�X2,m

...
...

. . .
...

� f
�Xn,1

� f
�Xn,2

⋅ ⋅ ⋅
� f
�Xn,m




For a pair of (A, B) ∈ R
m$m $R

m$p we say that the matrix K ∈ R
p$m

stabilizes (A, B) if A − BK has all its eigenvalues in the unit circle. A
pair (A, B) is said to be stabilizable if such K exists.

2. General Theory

In this paper we consider linear time invariant systems in discrete time.
Hence, the dynamic equation for these systems is

x(t+ 1) = Ax(t) + Bu(t), x(0) = x0 (1)

where x(t) ∈ R
m and u(t) ∈ R

p and t ≥ 0. The matrices A ∈ R
m$m and

B ∈ R
m$p. We assume that (A, B) is stabilizable in the paper.

2.1 Problem Formulation

We wish that the controllers used to control the system (1) should min-
imize a quadratic expression in the system states and control variables.
Hence we are looking at linear quadratic control (LQR) synthesis. With
the knowledge that linear state feedback controllers are optimal for this
problem, the controllers we consider are such. That is, we consider con-
trollers on the form

u(t) = −Kx(t) (2)
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A difference from usual LQR design is that we are interested in structured
controllers and restrict the allowed feedback matrices to some subspace
K ⊂ R

p$m. Also, let the set of admissible stabilizing feedback matrices
be

Kstab = {K p K ∈ K and K stabilizes (1)}
With the dynamics in (1) and the control in (2) in mind, for every

K ∈ Kstab we define the linear quadratic cost function

J(K , x0) =
∞∑

t=0

[
x(t)
u(t)

]T [
Qx Qxu

QTxu Qu

]

︸ ︷︷ ︸
Q

[
x(t)
u(t)

]
(3)

where Qx is positive semi-definite and Qu is positive definite. The objective
for the control synthesis is then to find the admissible stabilizing feedback
matrix that minimizes J(K , x0).

2.2 Analysis

By solving certain Lyapunov equations we can get tractable expressions
for (3). Given the solution unique X0 for the Lyapunov equation

X0 = (A− BK )X0(A− BK )T + x0xT0 (4)

we have that

J(K , x0) = tr
(
(Qx − 2QxuK + K TQuK )X0

)

By the unique solution P to another Lyapunov equation

P = (A− BK )TP(A− BK ) + Qx − QxuK − K TQTxu + K TQuK (5)

we have another expression for the cost function

J(K , x0) = tr
(
Px0x

T
0

)

With these expressions we are able to determine the gradient of J with
respect to K .

PROPOSITION 1
Given the system (1) and a stabilizing K , the gradient of the cost function
J defined in (3) with respect to K is

∇K J = 2
(
QuK − QTxu − BTP(A− BK )

)
X0, (6)
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where X0 and P satisfy the Lyapunov equations (4) and (5).

Proof. We will determine an expression for the differential of P. Let’s start
with defining the following notation to simplify the future expressions.

AK = A− BK
M = dK T

(
QuK − QTxu − BTPAK

)

Differentiating (5) shows that dP satisfies the Lyapunov equation

dP = ATKdPAK + M + MT Z[ dP =
∞∑

k=0
(ATK )k(M + MT)AkK

Hence, since dJ = tr
(
dPx0x

T
0

)
, we get that

dJ = 2 ⋅ tr

( ∞∑

k=0
(ATK )kMAkK x0xT0

)

= 2 ⋅ tr

(
M

∞∑

k=0
AkK x0x

T
0 (ATK )k

)

= 2 ⋅ tr
(
dK T(QuK − QTxu − BTPAK )X0

)

By using the relation about differentials

dZ = tr
(
dX T ⋅ Y

)
=[ ∇X Z = Y

the relation (6) is verified. �

The expression in (6) involves the solution of the Lyapunov equa-
tion (5). Finding the solution to a Lyapunov equation is for large system
a time consuming operation. In [Bryson and Ho, 1975] it is shown how
to express the optimal control signal with adjoint states and in that way
not have to solve a Riccati equation. In the following proposition we show
how to get rid of the matrix P in the expression for ∇K J by introducing
adjoint states.

PROPOSITION 2
Given the system (1) and a stabilizing K , let the adjoint states λ be
defined by the backwards iteration

λ(t− 1) = (A− BK )Tλ(t) − (Qx − QxuK − K TQTxu + K TQuK )x(t) (7)
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where x(t) are the states of (1), with lim
t→∞

λ(t) = 0. Then

∇K J = 2
( ∞∑

t=0

(
−Quu(t) − QTxux(t) + BTλ(t)

)
x(t)T

)
(8)

Proof. For simplicity, let QK = Qx − QxuK − K TQTxu + K TQuK and keep
the notation from Proposition 1. For any j,

λ( j) = −
∞∑

k= j+1
(ATK )k− j−1QK x(k) = −

∞∑

k=0
(ATK )kQK Ak+1K x( j)

Hence

∞∑

t=0
λ(t)x(t)T = −

∞∑

t=0

∞∑

k=0
(ATK )kQK (AK )k+1x(t)x(t)T = −PAK X0

Fitting this into (6) and using that X0 =
∞∑

t=0
x(t)x(t)T gives the desired

result. �

Given the gradient for a stabilizing admissible feedback matrix K ,
the projected gradient, ∇K JpK , is clearly a descent direction to J(K , x0).
We realize this by noting that ∇K JpK is the gradient to the restricted
function JpK and is hence descent direction to JpK . But by definition,
JpK " J on K .

2.3 General Algorithm

Instead of infinite time, we truncate the sum in (8), implying that we
approximate the gradient of J. Let the final time of the sum be tfinal.
We will have to simulate the states from t = 0 to t = tfinal in increasing
time and after which the adjoint states are simulated from t = tfinal to
t = 0 in decreasing time. With these trajectories we are able to determine
an approximation of the gradient. We summarize the procedure into the
following algorithm.

ALGORITHM 1
Consider a system (1) with control u(t) = −Kx(t) where K ∈ Kstab. To
find a local minimizer to (3), start with K (0) ∈ Kstab and for each τ ≥ 0,
1. Simulate the states of (1) with control u(t) = −K (τ )x(t) for times
t = [0, tfinal].
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2. Simulate the adjoint states of (7) for times t = [0, tfinal] in the back-
wards time direction with λ(tfinal) = 0.

3. Calculate an approximation of ∇K J

∇K Japprox = 2
tfinal∑

t=0

(
− [Qu]u(t) − [Qxu]T x(t) + BTλ(t)

)
x(t)T

and project the approximation on the admissible set of feedback ma-
trices

G = projK (∇K Japprox)

4. Update the feedback matrix in the direction of the projected gradient

K (τ+1) = K (τ ) − γ τG

for some step length γ τ .

5. Increase τ with 1 and goto 1).

REMARK 1
In step 4 of the algorithm the feedback matrix is updated in the direction
of the projected gradient with some step length. How to pick an appropri-
ate step length is of course some concern. In a way, the step length is a
design parameter of the algorithm, but there are approaches to estimate
a suitable step length for a direction. One way is to simulate (1) with the
K = K (τ )−γ τG. If this K does not lead to a decreased cost, the step length
is scaled by some factor < 1.
As posed, there is no stopping criteria for Algorithm 1. It is possible to
specify the number of iterations to update the feedback matrix. This strat-
egy will not guarantee that any kind of performance of the acquired feed-
back matrix is met. In the following section we describe how to calculate
a bound of the suboptimality. By specifying the amount of suboptimal-
ity required of the sought feedback matrix, the suboptimality bound can
function as a stopping criteria.

2.4 Suboptimality Bounds

Solving the ordinary LQR control problem is a well-studied problem and
has a tractable solution. But finding the minimizing feedback matrix,
when imposing a structure, is not even guaranteed to be convex. The
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underlying method in Algorithm 1 is a descent method, and hence we
can not guarantee that the globally optimal structured feedback matrix
is ever attained. As mentioned in Algorithm 1, this method produces a
locally optimal solution. A measure of the suboptimality for the feedback
matrix in each iteration step of the update algorithm, is α ≥ 1 such that

J(K , x0) ≤ α J(Kopt, x0), (9)

where Kopt = argmin
K

J(K , x0). That is, J(K , x0) is within a factor of α of

the actual optimal value. This means that if we can verify that an α close
to 1 must satisfy (9), then even though K might not be the optimal feed-
back matrix, we will not find one that reduces the cost greatly compared
to this one.
We introduce the truncated version of the cost by

J(K , x0, tfinal) =
tfinal∑

t=0

[
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
(10)

where the states x(t) satisfy (1) and u(t) = −Kx(t). The following theorem
gives us a suboptimality bound telling us that in the time interval [0, tfinal]
we are within a factor of α of the optimal solution on this interval.

THEOREM 1
If α ≥ 1 is such that for a given sequence of dual (or adjoint) variables
λ(t), with λ(tfinal) = 0

J(K , x0, tfinal) ≤ α min
x,u

x(0)=x0

tfinal∑

t=0

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]

+ 2λ(t)T (x(t+ 1) − Ax − Bu(t))
)

(11)

then

J(K , x0, tfinal) ≤ α J(Kopt, x0, tfinal), (12)

where

Kopt = argmin
K

J(K , x0, tfinal)
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Proof. Assume that α is such that for a given sequence of λ(t), (11) holds.
We have that

J(Kopt, x0, tfinal) =





min
K ,x

tfinal∑

t=0

[
x(t)

−Kx(t)

]T
Q

[
x(t)

−Kx(t)

]

subject to: x(t+ 1) = (A− BK )x(t)
x(0) = x0

≥





min
x,u

tfinal∑

t=0

[
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]

subject to: x(t+ 1) = Ax(t) − Bu(t)
x(0) = x0

≥ min
x,u

x(0)=x0

tfinal∑

t=0

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]

+ 2λ(t)T (x(t+ 1) − Ax(t) − Bu(t))
)

where the second inequality comes from introducing dual variables. Hence,
if (11) holds, so must (12). �

REMARK 2
If the matrix Q is not positive definite (that is, only positive semi-definite)
it is easily realized the minimization program in (11) is not necessarily
bounded. For any direction in [ x(t)T u(t)T ]T that is not penalised, λ(t)
needs to be such that the term 2λ(t)T (x(t+1)−Ax(t)−Bu(t)) equals 0 in
this direction. Given a sequence of λ(t) and all the directions in which Q is
singular, the way to construct an admissible sequence of adjoint variables
is then to project [ (λ(t− 1)T − λ(t)T A) λ(t)TB ]T onto the orthogonal
subspace of these directions (meaning the range of Q).
With a large-scale system and a long simulation horizon tfinal, the mini-
mization program is potentially huge. It turns out that there is an easy
explicit solution.

PROPOSITION 3
Assume that Q is positive definite. The minimal value (denoted Vmin) of
the minimization program in (11) can be determined explicitly and is

Vmin = xT0 Qxx0 − 2λ(0)T Ax0 − f TQ−1u f −
tfinal∑

t=1
�(t)TQ−1�(t)
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where

f = QTxux0 − BTλ(0)

�(t) =
[

λ(t− 1) − ATλ(t)
−BTλ(t)

]

Proof. Introduce

F = Quu(0) + f

G(t) = Q
[
x(t)
u(t)

]
+ �(t)

We get that

tfinal∑

t=0

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
+ 2λ(t)T (x(t+ 1) − Ax(t) − Bu(t))

)

=
[
x0

u(0)

]T
Q

[
x0

u(0)

]
− 2λ(0)(Ax0 + Bu(0))

+
tfinal∑

t=1

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
+ 2λ(t− 1)x(t) − λ(t)(Ax(t) + Bu(t))

)

= xT0 Qxx0 − 2λ(0)Ax0 + FTQ−1u F − f TQ−1u f

+
tfinal∑

t=1

(
G(t)TQ−1G(t) − �(t)TQ−1�(t)

)

The equalities arise by inserting x(0) = x0, using that λ(tfinal) = 0 and
completing the squares. To minimize the final expression, the squares
FTQ−1u F and G(t)TQ−1G(t) are set to 0 and the relation for Vmin is
reached. �

REMARK 3
With similar reasoning as in Remark 2 it is also possible to deal with
positive semi-definite Q. Then Q−1�(t) will mean any vector v satisfying
Qv = �(t) (this v will actually equal some minimizing − [ x(t)T u(t)T ]T).

The Theorem 1 gives a method to evaluate the expected performance an
updated feedback matrix will give to the system. We only have to choose
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the dual or adjoint variables. The name suggest that we choose the ad-
joint variables defined by (7). To motivate this choice, we could refer to
Pontryagin’s maximum principle. The motivation comes from examining

max
λ
min
x,u

tfinal∑

t=0

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
+ 2λ(t)T (x(t+ 1) − Ax(t) − Bu(t))

)

︸ ︷︷ ︸
L(x,u,λ)

from Theorem 1. We let the objective function be denoted by L(x,u,λ). To
find a saddle point for L then

0 = ∇x(t)L = 2(Qxx(t) + Qxuu(t) + λ(t− 1) − ATλ(t))
0 = ∇u(t)L= 2(QTxux(t) + Quu(t) − BTλ(t))

We get (7) by ∇x(t)L+ K T∇u(t)L= 0 and replacing u(t) = −Kx(t).

3. Synthesis of Distributed Controllers

To get a scalable scheme from the theory developed in the previous sec-
tion, we need to impose structure on both the systems and the admissible
controllers. Such structure is for example distributed systems, that is sys-
tems, which are partitioned in distinct subsystems, denoted agents. These
agents are only connected to a few other agents. This connection has two
meanings. First, the dynamics for each agent only directly depends on the
states of the agents it is connected to. Secondly, each agent is only able
to communicate with its connected agents, meaning that for example only
measurements of the states from these agents can be used to determine
the control signal. The connection between agents can be formulated by a
directed graph structure. We will explain the details below.

3.1 Underlying Graph Structure

With a graph G we mean the pair (V ,E) of vertices and edges, respec-
tively. The set of vertices V = {v1,v2, . . . ,vn} will later represent the par-
tition of the system. Each vertex vk will denote an agent of the system.
The set of edges E is a collection of ordered pairs (vi,vk) (or in short
(i, k)) which means that there is a connection starting from vertex vi and
ends in vertex vk. We will require all considered edge sets to include the
pairs (vi,vi) for all vertices 1 ≤ i ≤ n. For each vertex vi we define its
up-neighbors as N upi = {vk p (vk,vi) ∈ E, k ,= i} and its down-neighbors as
N downi = {vk p (vi,vk) ∈E, k ,= i}. We will denote an agents neighbors by
N i =N upi ∪N downi .
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3.2 Modelling the Subsystems

As mentioned in the previous section, we consider LTI systems in discrete
time (1) with the same assumptions as in this section. The systems will
also be assumed to be distributed, a property described by an associated
graph G . The vertices of the graph constitute a partition of the states
of (1). We assume that the states are ordered according to the vertices,
i.e. we collect the states corresponding to v1 in the beginning of the state
vector x and so on. This gives us the state vector x = [ xT1 xT2 . . . xTn ]T ,
where each xi is the states of vertex or agent vi. Now, the distributed
structure of the system can be described by the edges of G . If there is an
edge (vi,vk) ∈ E, then agent vi may directly influence agent vk through
the dynamics. That is, the dynamics matrix has a sparsity structure which
resembles the graph associated with the distributed system

Aik = 0 if (vk,vi) /∈E

We will assume that the control inputs are partitioned over the agents,
meaning that each agent has a distinct set of control signals which it uses
to control its states. This set of control signals may not affect any other
agent directly. The way this shows up in the dynamics equation is that
the matrix B will be block diagonal,

B = diag(B1, B2, . . . , Bn)

where Bi is the local B matrix for agent vi.

REMARK 4
The reason for assuming that the matrix B to be block-diagonal will be-
come evident in a later section. This assumption can be relaxed to allow
certain sparse matrices.

The dynamics for each subsystem can then be written as

xi(t+ 1) = Aiixi(t) + Biui(t) +
∑

k∈N up
i

Aikxk(t) (13)

where xi(t) ∈ R
mi and ui(t) ∈ R

pi .
A system with 4 agents can be found in Figure 1. For example, we have

that

x3(t+ 1) = A33x3(t) + B3u3(t) + [A31x1(t) + A34x4(t)]
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1

2

3

4 u1

u2

u3

u4

A12, A21

A31

A23

A34, A43

Figure 1. Graphical representation of a distributed system.
The arrows shows how each agent affects the others. The set
E = {(1, 1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,3), (3,2), (3,4),
(4,3)}

3.3 Problem Formulation

In section 2.1 we saw how to impose restrictions on the admissible con-
trollers. This suits well with the idea of distributed controllers. We as-
sume that an agent vi may only use measurements from the states of its
neighbors to determine its control input. In terms of the structure of the
feedback matrix

Kik = 0 if (vi,vk) /∈ E

This defines the set of admissible feedback matrices as

K = {K p Kik = 0 if (vi,vk) /∈ E, ∀i, k} (14)

We will also introduce a restriction on the cost function in (3). The
matrix Q will be assumed to have a structure which allows us to separate
the cost function in a term for each agent, i.e.

J(K , x0) =
n∑

i=1

∞∑

t=0

[
xi(t)
ui(t)

]T [ [Qx]i [Qxu]i
[Qxu]Ti [Qu]i

]

︸ ︷︷ ︸
Qi

[
xi(t)
ui(t)

]

This means that we assume that the matrices Qx, Qu and Qxu are block
diagonal. Hence, Qx is positive semi-definite and Qu is positive definite
if and only if all [Qx]i and [Qu]i are positive semi-definite and positive
definite, respectively.
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REMARK 5
The reason for restricting Q to this structure is the same as for the re-
striction of the B matrix, and will become evident later on. As with the
B matrix, the assumption can be relaxed to allow certain sparse Q.

3.4 Scalable Calculations

With the distributed structure of the system and problem, i.e. the as-
sumptions of the structure A and B in the dynamics equation and Q in
the cost function, we will show that the algorithm in section 2.3 will be
both scalable when considering computational time and modularized in
the sense that computations can be partitioned. Specifically, we will show
that the calculations of the part of the gradient in agent i only requires
the dynamics matrix, states and adjoint states for neighboring agents, i.e.
agents in N i.
In section 2.2 a descent direction is obtained by projecting the gradient

onto the subspace K . With the structure of K in (14), the only part of
the gradient that needs to be determined is

[∇K J]ik = 2
∞∑

t=0

[(
−Quu(t) − QTxux(t) + BTλ(t)

)
x(t)T

]
ik

= 2
∞∑

t=0

(
−[Qu]iui(t) − [Qxu]Ti xi(t) + BTi λ i(t)

)
xk(t)T

for all k ∈ {i}∪N downi . Here we understand that for each agent i, we need
to determine both its state evolution and its adjoint states evolution.
Obviously, by the restriction of A, B and K , an agent i uses only the

states from neighboring agents to simulate its states xi. By (7), the adjoint
state evolution of agent i is

λ i(t+ 1) =
[
(A− BK )Tλ(t)

]
i

−
[
(Qx − QxuK − K TQTxu + K TQuK )x(t)

]
i
(15)

The first term of (15) simplifies to
[
(A− BK )Tλ(t)

]
i
= [A− BK ]Tiiλ i(t) +

∑

k∈N down
i

[A− BK ]Tkiλk(t)

The second term of (15) becomes
[
(Qx − QxuK − K TQTxu + K TQuK )x(t)

]
i

= [Qx]ixi(t) + [Qxu]iui(t) −
∑

k∈{i}∪N down
i

K Tki ([Qxu]kxk(t) + [Qu]uk(t))
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Now, with these expressions, algorithm 1 can be updated to

ALGORITHM 2
Consider a system (1) with control u(t) = −Kx(t) where K ∈ Kstab. To
find a local minimizer to (3), start with K (0) ∈Kstab and for each τ ≥ 0,
1. Simulate the states of (1) with control u(t) = −K (τ )x(t) for times
t ∈ [0, tfinal].

2. Simulate the adjoint states of (7) for times t ∈ [0, tfinal] in the back-
wards time direction with λ(tfinal) = 0.

3. For all agents i and all k ∈N downi ,

I) Calculate

Gik = 2
tfinal∑

t=0

(
− [Qu]iui(t) − [Qxu]Ti xi(t) + BTi λ i(t)

)
xk(t)T

II) Update the feedback matrix

K
(τ+1)
ik = K (τ )ik − γ τGik

for some step length γ τ .

4. Increase τ with 1 and goto 1).

The operations that are performed for each agent in the algorithm only
needs information of its neighbors meaning that the scheme is modular-
ized. If, for all i, pN ip ≤ Nmax ≪ n, i.e. each agent only has a few number
of neighbors, this also shows us that it is scalable, since the number of
calculations required to obtain the descent direction is related to n ⋅Nmax.

REMARK 6
The reason for limiting the structure of B and Q becomes evident when
investigating the scalability of the method. If B is not block-diagonal the
matrix A−BK does not have the same structure as A. The structure of Q
will affect the structure of (Qx −QxuK − K TQTxu + K TQuK )x(t). But if B
and Q are chosen in a way such that the structures of these matrices are
still sparse, the method will still be scalable. For example, if B and Q also
have non-zero blocks for agents that are neighbors the sparsity structure
still holds (when the number of neighbors for each agent is still a lot less
than the total number of agents).
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We also notice that the procedure is robust in the aspect of adding new
agents to the system. If the system is enlarged with new agents, only
the calculations to agents in the neighborhood of where these new agents
come in, are changed.

3.5 Scalable Suboptimality Bound Calculations

When determining the suboptimality bound using Proposition 3, the struc-
ture of the included matrices ensures a scalable method. The matrix in-
verses of Q and Qu are solved efficiently using the block-diagonal structure
of these matrices.
By exploiting the structure of the matrices of the minimization pro-

gram of (11) of Theorem 1 for determining the suboptimality bound, it is
easily seen that it can be separated into minimization programs for each
subsystem. Each minimization program will have a number of decision
variable in the order of the size of each subsystem.

4. Real-Time Synthesis of Distributed Controllers

In section 2 and 3 the focus was on finding a scheme for obtaining con-
trollers solving the distributed deterministic linear quadratic control prob-
lem. The systems considered are deterministic and the scheme worked by
simulating them offline. It turns out that by changing the model descrip-
tion to include noise, we can follow similar steps to find a scheme that
solves the stochastic linear quadratic control problem (LQG) for a real
plant in real-time. By using measured values of the states of the actual
plant we can determine a descent direction of the feedback matrix. This
means that we get a scheme that works in real-time to improve perfor-
mance of a distributed system.

4.1 Restated System Model

We now consider the discrete time stochastic LTI system

x(t+ 1) = Ax(t) + Bu(t) +w(t) (16)

where w is white noise with variance W , and w(t) is independent of x(s)
for s ≤ t. In all other aspects we use the same assumptions and notation
as in Section 3.2, i.e. the system consists of n agents, and the connection
of the agents is described by a graph G , the structure of the matrices
in (16) are determined by the edges of G and so on.
In this stochastic setting the cost function will now be

J(K ) = E
[
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
(17)
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where x(t) satisfies (16) and u(t) = −Kx(t).

4.2 Analysis

Similar to the analysis in section 2 we state the following two propositions,
without proofs.

PROPOSITION 4
Given the stationary stochastic process (16) where u(t) = −Kx(t) for a
stabilizing K and where w is white noise with covariance W . Then J(K ),
defined by (17), has the gradient

∇K J = 2
[
QuK − QTxu − BTP(A− BK )

]
X (18)

where X and P satisfy the Lyapunov equations

X = (A− BK )X (A− BK )T +W (19)
P = (A− BK )TP(A− BK ) + Qx − QxuK − K TQTxu + K TQuK (20)

PROPOSITION 5
Under the conditions of Proposition 4, consider the stationary stochastic
process λ defined by the backwards iteration

λ(t− 1) = (A− BK )Tλ(t)− (Qx −QxuK − K TQTxu + K TQuK )x(t) (21)

where x(t) are the states of the original system. Then

∇K J = 2
(
(QuK − QTxu)E xxT + BTEλxT

)

4.3 Real-Time Scheme

Similar to section 3.4 we use proposition 5 to form an online scheme to
update the feedback matrix K to improve the performance given in (17)
while K ∈Kstab. The difference is that instead of simulating the states of
the system, we collect measurement of the states and use them to simulate
the adjoint state equations.
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ALGORITHM 3
Consider a system (16) with control u(t) = −Kx(t) where K ∈ Kstab. To
iteratively improve the performance (17) and approach a local minimizer,
at time tτ , let the feedback matrix be K (τ ), and in each agent i:

1. Measure the state xi(t) of the agent and collect measurements of
the states and control signals of the agent’s neighbors, for times
t = tτ , . . . , tτ + N.

2. Simulate the adjoint states λ i(t) of the system (21) for times t =
tτ , . . . , tτ + N in the backwards direction, by communicating adjoint
states from and to neighboring agents.

3. For every j ∈ {i} ∪ N downi , calculate the estimates of EuixTj and
Eλ ixTj by

(
E xix

T
j

)
est
= 1
N

tτ+N∑

t=tτ
xi(t)x j(t)T

(
Euix

T
j

)
est
= 1
N

tτ+N∑

t=tτ
ui(t)x j(t)T

(
Eλ ix

T
j

)
est
= 1
N

tτ+N∑

t=tτ
λ i(t)x j(t)T

4. For every j ∈ {i}∪N downi the estimate of the i, j-block of the gradient
becomes

Gi j = −2
(
[Qu]i

(
Euix

T
j

)
est
− [Qxu]Ti

(
E xix

T
j

)
est
+ BTi

(
Eλ ix

T
j

)
est

)

5. For every j ∈ {i} ∪N downi , update K (τ+1)i j = K (τ )i j − γ τGi j for some
step length γ τ .

6. Let tτ+1 = tτ + N, increase k by one and go to 1).

5. Numerical Examples

Two numerical examples will be investigated. The first is a small-scale
example which will illustrate the method and compare it to the optimal
LQR solution in order to show the convergence and suboptimality of the
method. In the second example we examine the scalability of Algorithm 2
by using it on a sequence of large-scale systems with increasing size.
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x1 x2 x9 x10Φ21

Φ12

Φ9,10

Φ10,9

⋅ ⋅ ⋅

Figure 2. Graphical representation of the system in Example 5.1. The arrows
shows how each agent affects the others.

5.1 Small-scale Example

The system
x(t+ 1) = Ax(t) + Bu(t)

that is considered, consists of 10 agents, each with one state, where the
agents are connected in a linear fashion, see Figure 2. This leads to a
tri-diagonal dynamics matrix, which, in this example, is

A =




0.5 0.5
−0.5 0.1 −0.3

0.4 −0.2 −0.5
−0.4 −0.5 0.2

0.2 0.3 −0.1
−0.3 0.1 0.3

0.2 −0.4 −0.4
0.2 −0.2 0.3

0.5 −0.5 0.3
−0.1 −0.1




and with the remaining entries equal to zero. We allow each agent to have
an input and set B = I. We wish to minimize the cost

J(K , x0) =
tfinal∑

t=0

(
x(t)TQxx(t) + u(t)TQuu(t)

)

where u = −Kx, Qx = Qu = I and x0 ∈N (0, I).
The magnitude of the maximal eigenvalue of A, ρ(A) ( 0.81, hence we

can initially let the system be uncontrolled, i.e. let K = 0. The algorithm
is used for 50 iterations where the systems are simulated for times t =
0, . . . , 10 in each iteration. The step length is constant in all iterations,
and γ τ = 10−2. The method for estimating suboptimality bounds is done
in each update iteration. The result is given in Figures 3-4.
In Figure 3 the estimated suboptimal bound is denoted by α and shown

in blue. A first remark is that the in the first iteration we get a negative
value of the suboptimality bound. This is due to the fact that minimiza-
tion program in (11) is not guaranteed to give a positive value. In case a
negative value is obtained nothing can really be said about the suboptimal-
ity. Though, as we get closer to the optimal feedback matrix, the adjoint
trajectory will approach the optimal (with respect to the Lagrangian in
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Pontryagin’s maximum principle) and the inequalities in the proof of The-
orem 1 will almost be equal implying that we can expect a positive value
from (11).
When positive, the suboptimality bound is always larger than 1 which

is natural. In the same figure denoted by α exact and shown in green, is
the true suboptimality determined by

α exact =
J(K (k), x0)
J(Kopt, x0)

As expected the suboptimality bound (when positive) is also always larger
than the true suboptimality. As the true suboptimality approaches 1, that
is the cost with the feedback matrix approaches the optimal cost, the
suboptimality bound also approaches 1.
In Figure 4 the relative difference between α and α exact is shown, that

is
∆α rel =

α −α exact
α exact − 1

Hence, the relative difference measures how far the suboptimality bound
is from the true suboptimality compared to the distance from the true
suboptimality to the optimal value 1. When the suboptimality bound is
positive the plot shows us that the relative difference is below 3.5. The
relative distance decreases and when the true suboptimality approaches 1
the relative difference is below 1.5, meaning that the suboptimality bound
does not underestimates the true suboptimality by more than a factor of
1.5. This shows that the suboptimality bound is a descent measure of
the suboptimality and can hence be used for a stopping criterion for the
method.

5.2 Large-scale Example

In this example a sequence of systems with increasing size will be exam-
ined. The systems will be randomly generated by some rules described
below. For one system in the sequence with n agent

• Each agent will consist of 10 states. The part of dynamics matrix Aii
will be uniformly drawn and scaled to have the largest eigenvalue
equal 0.7.

• Each agent will have one control signal. The part of control matrix,
Bi will be uniformly drawn from [−1, 1]10.

• The adjacency matrix will be randomly generated, to give all agents
5 neighbors and a connected graph. The adjacency matrix will be
symmetric, hence a undirected graph.
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Figure 3. Example 5.1: Plots of the estimated suboptimality using the described
method (in blue) and the exact suboptimality (in green).

• The neighbors affect the agent by Aik = b ⋅ cT where b and c are
uniformly drawn from [−0.22, 0.22]10.

The resulting systems not guaranteed to be stable, but the parameters
are chosen to give stable systems in most cases. If a system is not stable
it is regenerated until it is.
The number of agents for the systems will be n = 50k for k = 1, . . . , 20.

Hence, the size of the smallest system will be 500 states and for the largest
1000 states. For all systems, the weights Qx = I and Qu = I (where I has
the appropriate size). In each update iteration of Algorithm 2, the systems
will be simulated for times t = 1, . . . , 20. The step length γ τ = 5 ⋅ 10−4 in
every iteration for every system.
When the method is applied to a system, it is keeps iterating to up-

date the feedback matrices until the suboptimality bound is below 1.01
in 20 consecutive update iterations. The resulting computation times for
completing the method is shown in Figure 5. We find the computation
times for the method in blue. It shows that the complexity of the method
is linear when we increase the number of agents. This should be compared
the curve in green corresponding to the time required to determine the
centralized optimal solution by solving the Riccati equation. This solution
is only determined for the systems with n ≤ 200 due to time require-
ments as well as workspace requirements. If we exclude the workspace
requirement, and fit a third order polynomial to the curve (since the com-
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Figure 4. Example 5.1: Plot of the relative difference between the estimated and
the exact suboptimality.

putational complexity should be O (n3)), the expected time to complete
the calculations for the system with n = 1000 would take more than
55 hours (but the workspace requirement would not even permit these
calculations). It should be noted that it is only a coincidence that both
computation times for n = 50 are approximately equal.
The number of update iterations in Algorithm 2 needed vary between

283 and 343. The fact that the number of iterations are almost constant
is the reason why the method has linear complexity with respect to the
number of agents. The number of iterations is actually decreasing for the
sequence, the more agents generally means that fewer iterations were
needed.

6. Conclusions and Future Works

6.1 Conclusions

We have shown a method for finding structured linear controllers to im-
prove the LQR or LQG performance criterion. Given an initial stabilizing
controller for a linear system and a cost function, the method works by
iteratively updating the controller in a descent direction to reduce the
cost. By simulating the system controlled by the current controller and
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Figure 5. Example 5.2: Plot of the computation time with respect to the size of
the system.

the corresponding adjoint state equation, the descent direction are given
by a relation which involve multiplying the trajectories together. The only
operations performed are matrix or vector multiplications, implying that
when sparse matrices constitutes the system, the method will be scalable.
The same trajectories determined for the evaluating the descent direction,
are also used to calculate a suboptimality bound for the current controller.
This bound validates the performance of the controllers and can be used
as a stopping criteria for the iteration process.

6.2 Future Works

In [Mårtensson and Rantzer, 2011] a similar method for designing Kalman
filters was presented. When these works are connected we get a scheme for
output feedback synthesis. An interesting question is if the suboptimality
bounds still are valid in this setting.
An example of a large-scale system is the large deformable mirrors pre-

sented in for example [Heimsten, 2011]. The system has more than 10000
states and the system matrices are of a sparse nature. Hence this sys-
tem is suitable for the methods presented here, and it will be investigated
the improvements that can be made to the controller given in [Heimsten,
2011].

67



Paper I. Synthesis of Structured Controllers for Large-Scale Systems

References

Amodei, L. and J. Buchot (2010): “An invariant subspace method for large-
scale algebraic Riccati equation.” Applied Numerical Mathematics,
60:11, pp. 1067–1082.

Åström, K. J. (2006): Introduction to Stochastic Control Theory. Dover,
New York.

Bamieh, B., F. Paganini, and M. A. Dahleh (2002): “Distributed control of
spatially invariant systems.” IEEE Transactions on Automatic Control,
47:7, pp. 1091–1107.

Bamieh, B. and P. G. Voulgaris (2005): “A convex characterization
of distributed control problems in spatially invariant systems with
communication constraints.” Systems & Control Letters, 54:6, pp. 575–
583.

Benner, P. and H. Faßbender (2011): “On the numerical solution of large-
scale sparse discrete-time Riccati equations.” Advances in Computa-
tional Mathematics, 35:2, pp. 119–147.

Benner, P., J.-R. Li, and T. Penzl (2008): “Numerical solution of large-scale
Lyapunov equations, Riccati equations, and linear-quadratic optimal
control problems.” Numerical Linear Algebra with Applications, 15,
November, pp. 755–777.

Bryson, A. E. and Y.-C. Ho (1975): Applied Optimal Control. Hemisphere
Pub. Corp.

Gattami, A. (2006): “Generalized linear quadratic control theory.” In
Proceedings of the 45th IEEE Conference on Decision and Control.
San Diego, CA.

Geromel, J. and J. Bernussou (1982): “Optimal decentralized control of
dynamic systems.” Automatica, 18:5, pp. 545–557.

Heimsten, R. (2011): Study of a Large Deformable Mirror Concept.
PhD thesis, Department of Astronomy and Theoretical Physics, Lund
University, Sweden.

Heinkenschloss, M. (2005): “A time-domain decomposition iterative
method for the solution of distributed linear quadratic optimal con-
trol problems.” Journal of Computational and Applied Mathematics,
173:1, pp. 169–198.

Ikeda, M., D. Siljak, and K. Yasuda (1983): “Optimality of decentralized
control for large-scale systems.” Automatica, 19:3, pp. 309–316.

68



References

Lancaster, P. and L. Rodman (1995): Algebraic Riccati Equation. Oxford
University Press.

Langbort, C., R. S. Chandra, and R. D´Andrea (2004): “Distributed control
design for systems interconnected over an arbitrary graph.” IEEE
Transactions on Automatic Control, 49:9, pp. 1502–1519.

Lasdon, L. S. (2002): Optimization Theory for Large Systems. Dover
Publications Inc.

Lasiecka, I. and A. Tuffaha (2009): “Riccati theory and singular estimates
for a Bolza control problem arising in linearized fluid structure
interaction.” Systems and Control Letters, 58:7, pp. 499–509.

Li, L. and F. Paganini (2006): “LMI relaxation to Riccati equations in
structured H 2 control.” In Proceedings of the 2006 American Control
Conference, pp. 644–649.

Mårtensson, K. and A. Rantzer (2009): “Gradient methods for iterative
distributed control.” In Proceedings of the 48th IEEE Conference on
Decision and Control. Shanghai, China.

Mårtensson, K. and A. Rantzer (2010): “Sub-optimality bound on a gradi-
ent method for iterative distributed control synthesis.” In Proceedings
of the 19th International Symposium on Mathematical Theory of Net-
works and Systems. Budapest, Hungary.

Mårtensson, K. and A. Rantzer (2011): “A scalable modularized synthesis
method for distributed Kalman filters.” In Proceedings of the 18th
IFAC World Congress. Milano, Italy.

Rantzer, A. (2006): “A separation principle for distributed control.” In
Proceedings of the 45th IEEE Conference on Decision and Control.
San Diego, CA.

Rao, X., K. Gallivan, and P. Van Dooren (2000): “Riccati equation-based
stabilization of large scale dynamical systems.” In Proceedings of the
39th IEEE Conference on Decision and Control, vol. 5, pp. 4672–4677.

Rotkowitz, M. and S. Lall (2002): “Decentralized control information
structures preserved under feedback.” In Proceedings of the 41st IEEE
Conference on Decision and Control, vol. 1, pp. 569–575.

Rotkowitz, M. and S. Lall (2006): “A characterization of convex problems
in decentralized control.” IEEE Transactions on Automatic Control,
51:2, pp. 274–286.

Staffans, O. (1996): “On the discrete and continuous time infinite-
dimensional algebraic Riccati equations.” Systems and Control Letters,
29:3, pp. 131–138.

69



Paper I. Synthesis of Structured Controllers for Large-Scale Systems

Witsenhausen, H. S. (1968): “A counterexample in stochastic optimum
control.” SIAM Journal on Control, 6:1, pp. 138–147.

70



Paper II

Synthesis of Structured Output

Feedback Controllers for Large-Scale

Systems

Karl Mårtensson and Anders Rantzer

Abstract

In this paper we present a scheme to find structured output feed-
back controllers for large-scale systems. When the size of the state
space grows beyond a moderate size, classical methods for LQG and
H∞ soon becomes intractable due to both computational time and
memory requirements. Moreover, it is not possible to treat controllers
with interconnection constraints. We address these problems by sug-
gesting gradient methods that update the controllers iteratively. The
gradient directions are determined using trajectories from simula-
tions. With the same trajectories, it is also shown how to determine
bounds of the distance from optimal performance. By exploiting spar-
sity structure in the systems, it can be shown that both the computa-
tional time and memory requirement for the gradient iterations grow
linearly with the number of state interconnections, making them suit-
able for large-scale systems.

cFSubmitted to Automatica.
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1. Introduction

The theory of optimal linear quadratic Gaussian (LQG) control has been
around for several decades and is well documented in the literature, for
example [Åström, 2006, Bryson and Ho, 1975, Lancaster and Rodman,
1995, Zhou et al., 1996]. The solution is closely related to solving two al-
gebraic Riccati equations to get the expressions for the optimal feedback
matrix and the optimal estimation matrix. Using the separation principle,
these matrix gains are combined to an optimal output feedback controller.
Solving the algebraic Riccati equation or the related Lyapunov equa-

tion have in both cases memory requirement complexity O (n2) and com-
putational complexityO (n3), see [Bini et al., 2011] or [Benner et al., 2008].
Due to this fact, it is reasonable to solve small to medium size LQG con-
trol problem with the use of the solution of the algebraic Riccati equa-
tion. However, for large-scale systems, it is not computationally possible
to compute this solution. When solving general large-scale optimization
problems, conventional approaches can not be used. Instead one needs to
find and exploit some structure in the problem, [Lasdon, 2002]. One such
structure that often turns up when dealing with large-scale systems is
that the system matrices are very sparse. This is the case for example with
large distributed systems and systems arising from discretization of par-
tial differential equations (PDEs), for example [Heimsten, 2011,Lasiecka
and Tuffaha, 2009,Staffans, 1996]. Even though discretized PDEs have a
large state space, the number of inputs and outputs are not changed and
are typically not many. Such systems are treated in the papers [Benner
et al., 2008,Benner and Faßbender, 2011] by approximating the solution
to the Riccati equation with low rank Cholesky factors. The feedback and
predictor matrix are determined by a tractable product of these factors.
Another low rank approximation method based on stable invariant sub-
spaces of the Hamiltonian is given in [Amodei and Buchot, 2010]. A Riccati
based method for stabilization of large-scale systems can be found in [Rao
et al., 2000].
In distributed systems a number of components, subsystems or agents,

are joined to form an interconnected system. A distributed system, even
if the size is moderate, produces another problem for the usual solution
the LQG problem, namely that the interconnection may impose restric-
tions of the information available for control in each subsystem. Already
in the late 1960s it was pointed out that such problems are fundamentally
difficult to solve. In particular, [Witsenhausen, 1968] showed that even a
small quadratic control problem does not have a linear optimal solution.
In [Ikeda et al., 1983] decentralized control, that is, when there is no com-
munication in between agents, for large-scale interconnected systems is in-
vestigated with respect to stability and optimality. Decentralized Kalman
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filtering for data fusion in sensor networks has been examined in [Rao
et al., 1993]. In [Hodzic and Siljak, 1985] the estimation and control prob-
lem are examined for large-scale systems with a hierarchical structure.
The procedure works by designing LQG controllers piece-by-piece, giving a
structured controller. Both stability and degree of suboptimality are inves-
tigated. In recent years a lot of work has been put into finding structures
of the systems and the controllers that for which there are methods to find
the optimal solution. A concept of quadratic invariance for the set of admis-
sible controllers was introduced in [Rotkowitz and Lall, 2006, Rotkowitz
and Lall, 2002], by which the problem of finding an optimal controller
is transformed into a convex optimization program. In [Bamieh et al.,
2002,Bamieh and Voulgaris, 2005] spatially invariant systems, meaning
that a translation in spatial coordinates does not affect the dynamics, are
investigated. They show for example that such controllers are distributed
and spatially localized. A structured state and output feedback H 2 control
synthesis method by relaxing the Riccati equations via linear matrix in-
equalities was discussed in [Li and Paganini, 2006]. Other methods which
involve the use of linear matrix inequalities were presented in for exam-
ple [Gattami, 2006, Langbort et al., 2004, Rantzer, 2006]. A distributed
estimation problem is solved in [Spanos et al., 2005, Olfati-Saber, 2007]
by using consensus techniques to accomplish the data fusion. Algorithms
where each agent only determines a local state estimate of a large-scale,
sparse system were presented in [Khan and Moura, 2008]. Here, neither
the full state nor the full system model is known at any node of the system.
Examples of applications with systems of large state space and decentral-
ized control can be found in [Stankovic et al., 1999,Stipanovic et al., 2004]
in where the control problem is solved using the stochastic inclusion prin-
ciple [Hodzic et al., 1983].
The focus of this paper is on finding linear structured output feed-

back controllers to minimize an LQG cost. The underlying method in the
schemes presented is to update the controller matrix gains in descent di-
rections in an iterative fashion to improve the cost. A similar technique
has been studied in [Geromel and Bernussou, 1982] where the descent
direction was determined by calculating solutions to Riccati equations.
However, in this setting the method is not applicable for large-scale sys-
tems. In this work we will see how to circumvent this problem. Other de-
scent schemes have been used in LQG design. A method to find low-order
LQG controllers is presented in [Harn and Kosut, 1993]. In [Beseler et al.,
1992] it is shown how to use Newton’s method to solve constrained LQG
control problems. An iterative scheme to find locally-optimal solutions to
constrained nonlinear stochastic systems by using iterative linearizations
around the current trajectory, can be found in [Todorov and Li, 2005].
In this work we determine the descent direction by simulating the dy-
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namical system and the corresponding adjoint system. This idea is used
both for the separate state feedback and state estimation problem, or for
the complete system controlled with the output feedback controller. The
simulated trajectories are combined to find the descent direction of the
given LQG cost. It turns out that when the dynamical system is sparse
this procedure will provide a scalable method. When treating the state
feedback and state estimation problem separately, the trajectory deter-
mined for calculating a descent direction can also be used to find a bound
of the degree of suboptimality of the current controller. This gives a way
to verify that the controller is close to the optimal solution. Hence, the
bound can be used as a criterion when to stop the process of updating
the controller to improve the performance. The paper extends the results
from the recent papers [Mårtensson and Rantzer, 2011b,Mårtensson and
Rantzer, 2010,Mårtensson and Rantzer, 2011a].
In the remainder of this section some mathematical notation will be

introduced and the problem formulation will be described. Section 2 shows
how to determine suboptimal output feedback controllers in by regarding
the state prediction and state feedback as separate problems. This section
also contains how the degree of suboptimality of each separate problem
can be combined to a degree of suboptimality of the complete system.
In Section 3 a method to treat the problem of finding the optimal output
feedback controller in a simultaneous fashion will be given. In Section 4 we
discuss the computational time and memory requirement for the methods.
We present two numerical examples in Section 5. Finally, Section 6 gives
come concluding remarks and future works.

1.1 Mathematical Notation

The set of real numbers is denoted by R, real vectors of dimension n by
R
n and real n$m matrices by Rn$m. The matrix I refers to the identity
matrix with the appropriate size. The matrix 0n$m will refer to the zero
matrix in R

n$m and will be used when it is important to stress the size
of such matrix. When two symmetric matrices X and Y are involved, the
relation X ≥ Y refers to inequality in a positive definite meaning. When
a partition of a vector or a matrix exists, subscripts will refer to that
partition. For example, for x ∈ R

n then xi ∈ R
ni refers to the ith partition

of x and A ∈ R
n$m then Ai, j = Ai j ∈ R

ni$m j refers to the i, jth partition
of A. When the components of the vectors or matrices are ordered with
respect to the partition, xi or Ai j equivalently means the ith or i, jth block
of x or A, respectively. For a matrix valued function f : Rn$m → R we
define the differential d f as the part of f (X + dX ) − f (X ) that is linear
in dX , that is the linearized part of f . The gradient of f with respect to
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X is denoted ∇X f and means

∇X f =




� f
�X1,1

� f
�X1,2

⋅ ⋅ ⋅
� f
�X1,m

� f
�X2,1

� f
�X2,2

⋅ ⋅ ⋅
� f
�X2,m

...
...

. . .
...

� f
�Xn,1

� f
�Xn,2

⋅ ⋅ ⋅
� f
�Xn,m




.

For a pair of (A, B) ∈ R
n$n $ R

n$m we say that the matrix K ∈ R
m$n

stabilizes (A, B) if A − BK has all its eigenvalues in the unit circle. A
pair (A, B) is said to be stabilizable if such K exists. Similarly, the pair
(A,C) ∈ R

n$n $R
p$n is said to be detectable if there exist L ∈ R

n$p such
that A− LC has all its eigenvalues in the unit circle.
We use the notation N (µ,σ 2) for Gaussian noise with mean µ and

variance σ 2.

1.2 Problem Formulation

In this paper we consider linear time invariant systems in discrete time.
Hence, the dynamic equation for these systems is

x(t+ 1) = Ax(t) + Bu(t) +w(t),
y(t) = Cx(t) + e(t), (1)

where the time t ≥ 0 and x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p. The signals

w(t) ∈ R
n and e(t) ∈ R

p are Gaussian noise with the variance

E

[
w(t)
e(t)

] [
w(t)
e(t)

]T
=
[
Rw Rwe

RTwe Re

]
= R.

Now, R is assumed to be positive semi-definite and Re positive definite.
The matrices are A ∈ R

n$n, B ∈ R
n$m and C ∈ R

p$n. We assume that
(A, B) is stabilizable and that (A,C) is detectable in the paper.
The system is to be controlled with an output feedback controller, that

is, a controller that in time t uses the available measurement trajectory,
y, to determine the control u(t). If the controller is not allowed to have a
direct term, that is, it has to be strictly proper, the measurements that
are available in time t will be {y(t − 1), y(t − 2), . . .}. Otherwise, if a di-
rect term is allowed, the measurements {y(t), y(t− 1), . . .} are available.
The objective is to construct a controller that minimizes a quadratic ex-
pression in the system states and control variables, that is, an expression
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involving the variance of the system states and control variables. This
means that we are looking at linear quadratic Gaussian (LQG) control
design. The optimal controller solving this problem is linear and consists
of a linear state estimator and a linear feedback law using the estimated
states to determine the control. This will be the parametrization of the
controllers used in this paper. Specifically, if no direct term is allowed in
the controller, we consider

x̂(t+ 1) = AK L x̂(t) + Ly(t),
u(t) = −K x̂(t). (2)

Otherwise, if a direct term is allowed, the controllers are on the form

x̂(t+ 1) = (AK L + BL0C)x̂(t) + (L − BL0)y(t),
u(t) = −(K − L0C)x̂(t) − L0y(t),

(3)

where AK L = A− BK − LC. The matrix gains that are to be determined
are the feedback matrix K ∈ R

m$n, the predictor matrix L ∈ R
n$p and in

case of direct term, the matrix L0 ∈ R
m$p.

The difference from the usual LQG design is that a structure is im-
posed on the admissible controllers. The admissible controller gains are
restricted to given the subspaces K ⊂ R

m$n, L ⊂ R
n$p and L0 ⊂ R

m$p,
such that K ∈ K , L ∈ L and L0 ∈ L0. Also, let the set of admissible
stabilizing feedback matrices be denoted by

Kstab = {K p K ∈K and A− BK is stable}

and all the stabilizing predictor matrices be

Lstab = {L p L ∈ L and A− LC is stable} .

For K ∈ Kstab, L ∈ Lstab and potentially any L0 ∈ L0 if direct term is
allowed, the system (1) controlled with either (2) or (3) is stable.
With the dynamics in (1) with either the control in (2) or (3) in mind,

for every K ∈Kstab, L ∈ Lstab and possibly every L0 ∈ L0, we define the
linear quadratic cost function, when the process is in stationarity,

J(K , L, L0) = E
[
x(t)
u(t)

]T [
Qx Qxu

QTxu Qu

]

︸ ︷︷ ︸
Q

[
x(t)
u(t)

]
, (4)

where Q is positive semi-definite and Qu is positive definite. In case no
direct term is allowed we instead write J(K , L). Defining x̃ = x − x̂, the
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resulting closed loop system becomes

[
x(t + 1)
x̃(t+ 1)

]
= Acl

[
x(t)
x̃(t)

]
+L

[
w(t)
e(t)

]
, (5)

where

Acl =
[
A− BK BK

0n$n A− LC

]
,

K =
[
I 0n$n

−K K

]
,

L =
[
I 0n$p

I −L

]
(6)

if no direct term is allowed or otherwise

Acl =
[
A− BK B(K − L0C)
0n$n A− LC

]
,

K =
[
I 0n$n

−K K − L0C

]
,

L =
[
I −BL0
I −L

]
.

(7)

The cost in (4) can be expressed using either of the solutions to the
following Lyapunov equations

Pcl = AclPclATcl +LRLT , (8)
Scl = ATclSclAcl +K TQK . (9)

Then we have that

J(K , L, L0) = tr
(
Pcl ⋅K

TQK
)
+ tr

(
L0ReL

T
0

)

= tr
(
Scl ⋅LRL

T
)
+ tr

(
L0ReL

T
0

)
,

(10)

where the last term disappears in both expressions when there is no direct
term allowed.
Now, the objective for the control synthesis is then to find the ad-

missible stabilizing feedback, predictor and possibly the L0 matrix that
minimizes J(K , L) or J(K , L, L0). It should be noted that the structured
optimal controller does not have to satisfy this structure, see for exam-
ple [Swigart and Lall, 2011]. Hence, the aim of this paper is to find the
optimal structured controller parametrized by (2) or (3).
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2. Separate Synthesis Scheme

Finding the ordinary optimal LQG controller involves solving two sepa-
rate problems, finding the optimal state feedback and finding the optimal
state predictor. The separation principle allows us to combine these solu-
tions into the optimal LQG controller. With this in mind, in this section
we propose to treat the structured LQG problem in a similar way, that
is, finding a structured state feedback and a structured state predictor
separately and then combine them giving the controller structure in (2).
In this section we show how to iteratively determine a structured state

predictor in a way that reduces a given cost. At the same time, a bound on
the degree of suboptimality of the current predictor is determined, which
is the ratio between the current and the optimal cost. This measure evalu-
ates the current matrix and for example allows us to decide at what degree
of suboptimality to terminate the iterative procedure. Determining the
structured state feedback is done in a similar fashion and only the results
are given. A more involved discussion of determining the structured state
feedback can be found in [Mårtensson and Rantzer, 2011b, Mårtensson
and Rantzer, 2010].

2.1 State Predictor Synthesis

In this section we do not allow a direct term in the resulting controller
and hence the gain L0 = 0 is omitted from the calculations.
Letting u " 0 in (1), we consider an observer on the form

x̂(t+ 1) = Ax̂ + L(y(t) − Cx̂(t)). (11)

The dynamics equation for the error x̃ = x − x̂ is given by the equation

x̃(t+ 1) = (A− LC)x̃(t) +w(t) − Le(t). (12)

It is a well-known fact that there is a matrix L (without any structural
restrictions) which minimizes the cost E (aT x̃)2 for any a. The solution to
this problem is given by

L = (APCT + Rwe)(Re + CPCT)−1,
P = (A− LC)P(A− LC)T + [ I −L ] R [ I −L ]T .

The solution is obtained by solving the resulting discrete time algebraic
Riccati equation.
In the same spirit we define the performance of the observer, for a

given a, by
Jo(L, a) = E (aT x̃)2, (13)
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where x̃ satisfies (12). This performance is only defined for matrices L
such that A − LC is stable. The objective is to find a L ∈ Lstab, which
minimizes (13). The following proposition shows how to determine the
gradient to Jo with respect to L.

PROPOSITION 1
Given the system (12) and a matrix L such that A − LC is stable, the
gradient to Jo with respect to L is

∇LJo = 2A
[
LRe − Rwe − (A− LC)PCT

]
, (14)

where

A = (A− LC)TA (A− LC) + aaT , (15)
P = (A− LC)P(A − LC)T + RL (16)

and RL = Rw − LRTwe − RweLT + LReLT .
Proof. We use the fact that the cost function Jo(L, a) = tr(PaaT ). In order
to find the gradient to this expression, we will determine the differential
dP with respect to L. For simplicity, make the following denotations

AL = A− LC,
M =

(
LRe − Rwe − ALPCT

)
.

Now, differentiating (16) it is easily seen that dP satisfies the following
Lyapunov equation

dP = ALdPATL +MdLT + dLMT .

This means that

dP =
∞∑

t=0
AtL(MdLT + dLMT )(ATL)t.

Finally, using the expression for dP we have that

dJo = tr(dPaaT ) = tr
(
2
∞∑

t=0
AtLMdL

T (ATL)taaT
)
= 2tr

(
AMdLT

)
.

We conclude the proof by using the fact that dZ = tr(Y ⋅dX T) [ ∇X Z = Y
for matrices X T ,Y of size n$ p. �
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The result in Proposition 1 is an intermediate result in the search for
a tractable method for large-scale systems. To calculate the gradient (14)
in Proposition 1, the Lyapunov equations (15) and (16) need to be deter-
mined. When faced with large-scale systems it is not possible to solve these
Lyapunov equations due to time and memory limitations. In the follow-
ing proposition we show how to replace these solutions to the Lyapunov
equations by introducing adjoint (or dual) state variables. The benefit is
that now only two systems have to simulated. For certain families of sys-
tems, for example for sparse systems, the computational time and memory
requirements for simulation of them scales linearly with the size of the
system, see Section 4 for more details. Therefore this approach produces
a scalable method, thus better suited for such large-scale system.

PROPOSITION 2
Given a matrix L such that A− LC is stable, define the systems

x̄(t+ 1) = (A− LC)T x̄(t), (17)
λ(t− 1) = (A− LC)λ(t) + RL x̄(t) (18)

with initial and final condition x̄(0) = a and lim
t→∞

λ(t) = 0. Then

∇LJo = 2
( ∞∑

t=0
x̄(t)

(
x̄(t)T (LRe − RTwe) − λ(t)TCT

)
)
. (19)

Proof. With the previously introduced notations we have that

λ(t) =
∞∑

j=t+1
A
j−t−1
L RL x̄( j) =

∞∑

j=0
A
j
LRL(ATL) j+1 x̄(t) = PATL x̄(t).

Hence

∞∑

t=0
x̄(t)λ(t)T =

∞∑

t=0
x̄(t)x̄(t)T ALP =A ALP.

Using this result in (14) proves the proposition. �

When the gradient for a certain L has been calculated it can be used
to update that predictor matrix to reduce the cost. Since we impose a
structure on L, the gradient ∇LJo needs to be projected to the subspace
L defining this structure. This will also be a descent direction of Jo(L, a).
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To understand this fact, consider the restriction of Jo on L . The gradient
of this function is exactly the projection of ∇LJo on L .
Using Proposition 2 we can iteratively change the matrix L to de-

crease the cost Jo. Instead of simulating the systems for an infinite time,
the sums in (19) are truncated to end at some final time tfinal. Now, the
system (17) is simulated from time t = 0 to t = tfinal in increasing time
direction. Thereafter the adjoint states in (18) are simulated from t = tfinal
to t = 0 in decreasing time direction. The procedure is summarized into
the following algorithm.

ALGORITHM 1
Consider a system (1) with the observer in (11) where L ∈ Lstab. To find
a local minimizer to (13), start with L(0) ∈ Lstab and for each τ ≥ 0,

1. Let x̄(0) = a and simulate the states of (17) for times t = 0, . . . , tfinal.

2. Simulate the adjoint states of system (18) for times t = 0, . . . , tfinal
in decreasing time with λ(tfinal) = 0.

3. Calculate an approximation of ∇LJo

∇LJo ( 2
tfinal∑

t=0
x̄(t)

(
x̄(t)T(LRe − RTwe) − λ(t)TCT

)

and project the approximation on the admissible set of predictor
matrices

G = projL (∇LJo)

4. Update the predictor matrix in the direction of the projected gradient

L(τ+1) = L(τ ) − γ τG

for some step length γ τ .

5. Increase τ with 1 and goto 1.
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REMARK 1
In step 4 of the algorithm, the predictor matrix L is updated in the di-
rection of the projected gradient with some step length. It is of concern
how to pick an appropriate step length. If we pick one that is too small
the algorithm will require unnecessary many iterations to converge and if
we pick a too long step length we potentially end up with a destabilizing
L. In a way, the step length is a design parameter of the algorithm, but
there are approaches to estimate a suitable step length given a direction.
One way is to simulate (1) with the L = L(τ ) − γ τG. If this L does not
lead to a decreased cost, the step length is scaled by some factor < 1.
As posed, Algorithm 1 does not include a stopping criterion. One way is
simply to specify the number of iterations to complete before stopping.
This approach implies that the computation time for the complete algo-
rithm will be known beforehand. On the other hand, there will be no
guarantees of the performance the resulting predictor matrix will give.
The following section shows a procedure to use the previously determined
variables to determine a bound of the degree of suboptimality the current
predictor matrix gives rise to. By specifying the degree of suboptimal-
ity required of the sought predictor matrix, the bound can function as a
stopping criterion.

2.2 Determining the Degree of Suboptimality

When finding the optimal observer without any restriction on the struc-
ture of the matrix L, there is a closed form to determine L. When we in-
troduce restrictions in the structure of L, there is no general formula for
finding the matrix. The minimization problem is not even guaranteed to
be convex. Since the underlying method of Algorithm 1 is a descent direc-
tion method, we can only know that a locally optimal solution is reached.
If we can find a value β ≥ 1 such that we can verify the inequality

Jo(L, a) ≤ β Jo(Lopt, a), (20)

we would know that the performance of the current L is within a factor
β of the performance of the optimal solution Lopt. In other words, if we
have a way of verifying that a β close to 1 is such that (20) holds, then we
know that even though the current L might not be optimal, at least we
will not be able to find another L reducing the cost much more. Introduce
the truncated version of the cost function by

J̄o(L, a, tfinal) =
tfinal∑

t=0
x̄(t)TRL x̄(t), (21)
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where x̄ satisfies (17). The following theorem determines the degree of
suboptimality by looking at the dual function to the constrained optimiza-
tion problem.

THEOREM 1
If β ≥ 1 is such that for a given sequence of adjoint variables λ(t), with
λ(tfinal) = 0

J̄o(L, a, tfinal) ≤ β min
x̄,ξ

x̄(0) = a

tfinal∑

t=0

([
x̄(t)
ξ (t)

]T
R

[
x̄(t)
ξ (t)

]

+ 2λ(t)T
(
x̄(t+ 1) − AT x̄(t) − CTξ (t)

))
. (22)

Then the following bound can be verified

J̄o(L, a, tfinal) ≤ β J̄o(Lopt, a, tfinal), (23)

where
Lopt = argmin

L

J̄o(L, a, tfinal).

Proof. Assume that for β ≥ 1 and a given sequence λ(t), that (22) holds.
Then we have that

J̄o(Lopt, a, tfinal) =





min
L,x̄

tfinal∑

t=0

[
x̄(t)

−Lx̄(t)

]T
R

[
x̄(t)

−Lx̄(t)

]

subject to: x̄(t+ 1) = (A− LC)T x̄(t)
x̄(0) = a

≥





min
x̄,ξ

tfinal∑

t=0

[
x̄(t)
ξ (t)

]T
R

[
x̄(t)
ξ (t)

]

subject to: x̄(t+ 1) = AT x̄(t) + CTξ (t)
x̄(0) = a

≥ min
x̄,ξ

x̄(0) = a

tfinal∑

t=0

([
x̄(t)
ξ (t)

]T
R

[
x̄(t)
ξ (t)

]

+ 2λ(t)T
(
x̄(t+ 1) − AT x̄(t) − CTξ (t)

))
,

where the second inequality comes from introducing the dual variables
λ(t). Hence, the inequality gives that if (22), holds, then so must (23). �
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To determine β an adjoint trajectory has to be chosen. That we choose
the adjoint of (18) can be motivated by the following. Let H (x̄,ξ ,λ) be
the objective function of the minimization problem in the last inequality
of the previous proof. For a saddle point of H we must have that

0 = ∇x̄(t)H = 2(Rw x̄(t) + Rweξ (t) + λ(t− 1) − Aλ(t)),
0 = ∇ξ (t)H = 2(RTwe x̄(t) + Reξ (t) − Cλ(t)).

We get (18) by ∇x̄(t)H + L∇ξ (t)H = 0 and replacing ξ (t) = LT x̄(t).

2.3 State Feedback Synthesis

To determine the structured state feedback matrix, the dynamics in (1) is
slightly modified by letting w(t) = 0 and introducing an initial condition.
Hence, we consider the similar system

x(t+ 1) = Ax(t) + Bu(t), x(0) = x0. (24)

The cost we use will now be

Jc(K , x0) =
∞∑

t=0

[
x(t)
u(t)

]T [
Qx Qxu

QTxu Qu

]

︸ ︷︷ ︸
Q

[
x(t)
u(t)

]
. (25)

The corresponding relations for the state feedback matrix are given
in the following propositions. The proofs are omitted and can be found
in [Mårtensson and Rantzer, 2011b].

PROPOSITION 3
Given the system (1) and a stabilizing K , let the adjoint states λ be
defined by the backwards iteration

λ(t− 1) = (A− BK )Tλ(t)
− (Qx − QxuK − K TQTxu + K TQuK )x(t), (26)

where x(t) are the states of (1), with lim
t→∞

λ(t) = 0. Then

∇K Jc = 2
( ∞∑

t=0

(
−Quu(t) − QTxux(t) + BTλ(t)

)
x(t)T

)
. (27)

85



Paper II. Synthesis of Structured Output Feedback Controllers

THEOREM 2
If α ≥ 1 is such that for a given sequence of adjoint variables λ(t), with
λ(tfinal) = 0

J̄c(K , x0, tfinal) ≤ α min
x,u

x(0)=x0

tfinal∑

t=0

([
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]

+ 2λ(t)T (x(t+ 1) − Ax − Bu(t))
)
, (28)

then
J̄c(K , x0, tfinal) ≤ α J̄c(Kopt, x0, tfinal), (29)

where
Kopt = argmin

K

J̄c(K , x0, tfinal).

2.4 Combined Degree of Suboptimality

For a given predictor matrix L the solution P of the Lyapunov equation
in (16) can be used to determine the performance of the estimator. Sim-
ilarly, for a given feedback matrix K , the solution S to the Lyapunov
equation

S = (A− BK )TS(A− BK ) + QK , (30)
where QK = Qx − QxuK − K TQTxu + K TQuK , can be used to determine
the performance of the state feedback controller. In Theorem 1 and Theo-
rem 2 we find a way to determine a bound of the degree of suboptimality
for each problem in the given directions a and x0, respectively. If the pro-
cess is repeated in different directions and similar values of the degrees
of suboptimality is acquired, this is an indication that S ≤ αSopt and
P ≤ βPopt, where Sopt and Popt solves the corresponding discrete-time al-
gebraic Riccati equations. Used separately, these bounds tell us that the
state feedback and the state estimator are within a factor of α and β
of their optimal values, respectively. However, it does not yet ensure us
that when the feedback matrix K is combined with the predictor matrix
L into an output feedback controller, what the combined performance is?
More importantly, if we have obtained bounds α and β close to 1, will the
combined controller also have good performance. This is the question that
will be investigated in this section. We define the sets of α -suboptimal
feedback matrices and β -suboptimal predictor matrices, where for each
K and L, the matrices S and P satisfy (30) and (16), respectively:

κα = {K p A− BK is stable and S ≤ αSopt},
ιβ = {L p A− LC is stable and P ≤ βPopt}.

86



2. Separate Synthesis Scheme

With these sets we define the worst case cost of the resulting output
feedback controller for given degrees of suboptimality α and β by

J(α , β ) = sup
K∈κα
L∈ιβ

J(K , L). (31)

We will show that the value of J(α , β ) is close to the optimal value in a
neighborhood of (1, 1). We start by stating the following lemmas.

LEMMA 1
Let A(x) ∈ R

n$n and Q(x) ∈ R
n$n be continuous in the parameter x ∈ D,

where D is the open domain of the parameter, and A(x) stable for all
x ∈ D. Then P(x), determined uniquely by

P(x) = A(x)P(x)A(x)T + Q(x), (32)

is continuous in x.

Proof. Let T(x) = I − A(x) ⊗ A(x), where ⊗ denotes the Kronecker prod-
uct. Since A(x) is stable for all x ∈ D, the matrix T(x) is invertible for
all x ∈ D. In for example [Lancaster and Rodman, 1995] an equivalent
formulation of (32) can be found

T(x) ⋅ vec(P(x)) = vec(Q(x)),

where vec(X ) is the vectorization of the matrix X for which the columns
of X are stacked on top of each other. Now, since inversion of matrices is
a continuous transformation vec(P(x)), and thus, P(x) is continuous in x.
�

LEMMA 2
Let α i > 1 for i ≥ 1 be a sequence of reals converging to 1. For any
sequence Ki of feedback matrices controlling (24) such that Si ≤ α iSopt,
then Ki → Kopt. Moreover, the set κα is compact for all α ≥ 1.
Proof. For any i, let dSi = Si − Sopt and dKi = Ki − Kopt. Then

(Sopt + dSi) = (A−BKopt − BdKi)T (Sopt + dSi)(A− BKopt − BdKi)
+ Qx + (Kopt + dKi)TQu(Kopt + dKi)
− Qxu(Kopt + dKi) − (Kopt + dKi)TQTxu.

Expanding this expression and using the Lyapunov equation

Sopt = (A− BKopt)TSopt(A− BKopt)
+ Qx + K ToptQuKopt − QxuKopt − K ToptQTxu
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and that QuKopt − QTxu − BTSopt(A − BKopt) = 0 (by the relation for the
optimal feedback matrix) we get that

dSi = (A− BKi)TdSi(A− BKi) + dK Ti (Qu + BTSoptB)dKi
≥ dK Ti (Qu + BTSoptB)dKi,

(33)

where the inequality comes from using that dSi ≥ 0. Now, if dKi does not
converge to 0 then we easily understand that neither dSi would converge
to 0. But this contradicts the fact that Si ≤ α iSopt for all i. Hence dKi → 0
and Ki → Kopt.
It is also easily realized from (33) that the set κα is bounded. To show

that the set is closed, let Yi ∈ κα be a converging sequence in R
p$n,

converging to Y. By Lemma 1 with A(X ) = (A − BX )T , Q(X ) = Qx −
QxuX − X TQTxu + X TQuX and replacing P with S, S(X ) is continuous
implying that S(Yi) → S(Y). Hence, since S(Yi) ≤ αSopt, S(Y) ≤ αSopt
implying that Y ∈ κα . �

REMARK 2
Lemma 2 can naturally be changed to the equivalent estimation formula-
tion, that is, if Pi ≤ β iPopt for β i → 1, then Li → Lopt. The set ιβ is also
compact.

With this lemma we are able to prove the following theorem.

THEOREM 3
The function J(α , β ) is continuous in the point (α , β ) = (1, 1).
Proof. Let (α i, β i) ≥ (1, 1), for i ≥ 1, be a sequence converging to (1, 1).
By Lemma 2, κα i and ιβ i are compact. Hence, there exists Ki ∈ κα i and
Li ∈ ιβ i such that J(Ki, Li) = J(α i, β i). Also (Ki, Li) → (Kopt, Lopt). By
Lemma 1 Pcl in (8) is continuous in K and L. Hence, P(i)cl , defined by Ki
and Li, converges to P

opt
cl . This means that

J(α i, β i) = tr
(
P
(i)
cl ⋅K Ti QK i

)
→ tr

(
P
opt
cl ⋅K ToptQK opt

)
= J(1, 1).

Hence, J is continuous in the point (1, 1).
�

REMARK 3
Theorem 3 tells us that in a neighborhood of (1, 1) the value of J(α , β ) is
close to the optimal value J(1, 1). Hence, if we determine K and L with
the corresponding bounds of the degree of suboptimality α and β close to
1, we can expect that the resulting performance of the output feedback
controller is close to the optimal value.
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REMARK 4
For any stabilizing K and L, let

Pcl =
[
Px Pxx̃

PTxx̃ Px̃

]
.

Then by (8) Px̃ = P for P in (16) and

Px = (A− BK )Px(A− BK )T + BKPx̃K TBT

+ (A− BK )Pxx̃K TBT + BKPTxx̃(A− BK )T + Rw, (34)

meaning that Px =
∞∑

k=0
(A − BK )kM((A − BK )T )k where M is the last

terms of the right hand side of (34). Now, using (10) we have that

J(K , L) = tr (PxQK ) + 2tr
(
Pxx̃

(
K TQTxu − K TQuK

))
+ tr

(
Px̃K

TQuK
)
,

where QK = Qx−QxuK − K TQTxu+ K TQuK . Using the expression for Px,
we can rewrite the first trace of the right hand side to get

tr (PxQK ) = tr
( ∞∑

k=0
((A− BK )T )kQK (A− BK )kM

)
= tr (SM)

where S satisfies (30). This leads us to the expression for J

J(K , L) = 2tr
(
Pxx̃K

T
(
BTS(A− BK ) + QTxu − QuK

))

+ tr
(
PK T(Qu + BTSB)K

)
+ tr (SRw) . (35)

From (35) we realize that

J(Kopt, L) ≤ β tr
(
PoptK

T
opt(Qu + BTSoptB)Kopt

)
+ tr (SoptRw) ,

that is, J(1, β ) is bounded from above by a linear expression. An analo-
gous result can be given for J(α , 1) being bounded from above by a linear
expression. Using a Taylor expansion this gives us an indication of the
behaviour of J(α , β ) in a neighborhood of (1, 1).
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3. Simultaneous Synthesis Scheme

As previously mentioned, when calculating the ordinary LQG controller,
the problem is solved using the separation principle by separating it into
finding the optimal state feedback matrix and finding the optimal predic-
tor matrix. However, when not considering the optimal matrix gains, the
separation principle does not apply. Hence, if we are comparing two pairs
of matrices, (K1, L1) and (K2, L2), separately K1 could perform better
than K2, that is Jc(K1) < Jc(K2), and similarly for L1 and L2, but when
combined the total LQG cost (4) is less for (K2, L2) than for (K1, L1). This
fact leads us to treat the synthesis procedure simultaneously.

3.1 Without Direct Term

In this section we do not allow a controller with direct term. Hence, the
matrices in system (5) are the ones in (6), where K ∈ Kstab and L ∈ Lstab.
With the solutions to the Lyapunov equations in (8) and (9) and the
expression in (10) for the cost J, the gradient of J with respect to both K
and L can be determined.

PROPOSITION 4
Consider the system (5) where K and L are stabilizing and the cost J
defined in (4). The gradients of J with respect to both K and L are

∇K J = 2(M11 + M22),
∇LJ = 2N22,

with

M =
([−BT 0m$n

BT 0m$n

]
SclAcl +

[
QuK − QTxu −QuK
QTxu − QuK QuK

])
Pcl,

N = Scl
(
AclPcl

[
0n$p 0n$p

0n$p −CT
]
+
[
0n$p −Rwe
0n$p LRe − Rwe

])
,

(36)

where Scl and Pcl are defined by (9) and (8), M11 and M22 are the diagonal
blocks of M partitioned in blocks of equal size

M =
[
M11 M12

M21 M22

]

and similar for N22, the lower diagonal block of N.

Proof. To determine the gradient of J with respect to K we begin by
determining a Lyapunov equation for the differential dScl,

dScl = ATcldSclAcl + M̂ + M̂T ,
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where

M̂ =
[
dK T 0n$m

0n$m dK T

]([−BT 0m$n

BT 0m$n

]
SclAcl+

[
QuK − QTxu −QuK
QTxu − QuK QuK

])
.

This leads to the expression for dScl

dScl =
∞∑

k=0
(ATcl)k(M̂ + M̂T)Akcl

and using that dJ = tr
(
dScl ⋅LRLT

)
we get

dJ = 2tr
( ∞∑

k=0
(ATcl)kM̂ Akcl ⋅LRLT

)
= 2tr

(
M̂

∞∑

k=0
AkclLRL

T (ATcl)k
)

= 2tr
(
M̂Pcl

)
.

The expression for∇K J is derived by using the relation about differentials

dZ = tr
([
dX T 0

0 dX T

]
Y

)
=[ ∇X Z = Y11 + Y22,

for Y =
[
Y11 Y12

Y21 Y22

]
where Y11, Y12, Y21 and Y22 all have the appropriate

sizes.
The expression for ∇LJ is derived analogously. �

REMARK 5
From these relations we see that some care has to be taken when choosing
initial K and L in the coming update scheme. When Qxu = 0, if K = 0
and L = 0 we easily get from (8) and (9) that

Scl =
[
S11 0

0 0

]
and Pcl =

[
P11 P11

P11 P11

]
,

for some S11 and P11. This means that

M =
[−BTS11AP11 −BTS11AP11
BTS11AP11 BTS11AP11

]
,

resulting in that∇K J = 0. Hence, we will get stuck if we use this gradient
as a descent direction. This is in fact a local maximum. Similar reasoning
holds when we inspect ∇LJ.
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As in Proposition 1, to calculate these gradients involve the solution of two
Lyapunov equations, which is not possible when dealing with large-scale
systems. In the similar way as previously we introduce adjoint variables
to circumvent this issue. The exception in this section is that instead of
introducing initial condition, we will continue to use the stochastic repre-
sentation of the system.

PROPOSITION 5
Consider the systems

x(t+ 1) = Aclx(t) +Lv(t),
λ(t− 1) = ATclλ(t) −K TQK x(t)

(37)

and
x̄(t+ 1) = ATcl x̄(t) +K T v̄(t),
λ̄(t− 1) = Aclλ̄(t) −LRLT x̄(t),

(38)

where v(t) ∈N (0,R) and v̄(t) ∈N (0,Q) and lim
t→∞

λ(t) = lim
t→∞

λ̄(t) = 0.
The matrices in (36) equals (with the same size of the zeros)

M = 2E
([
BT 0

−BT 0

]
λ(t) +

[
QuK − QTxu −QuK
QTxu − QuK QuK

]
x(t)

)
x(t)T , (39)

N = 2E x̄(t)
(

λ̄(t)T
[
0 0

0 CT

]
+ x̄(t)T

[
0 −Rwe
0 LRe − Rwe

])
(40)

and thus, the gradients of J with respect to both K and L are

∇K J = 2(M11 + M22)
∇LJ = 2N22

Proof. We prove the relation for M and ∇K J and the relations for N and
∇LJ follow analogously. We have that

λ(t) = −
∞∑

j=t+1
(ATcl) j−t−1K TQK x( j)

= −
∞∑

j=0
(ATcl) jK TQK A j+1cl x(t) + Ψ{(v(t),v(t+ 1), . . .)},

where Ψ is the linear operator on the sequence (v(t),v(t+ 1), . . .) coming
from expressing all x(t + j), j > 0, in x(t) and (v(t),v(t + 1), . . .) and
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summing these with matrix factors according to the sum. Since x(t) and
(v(t),v(t+ 1), . . .) are uncorrelated we have that

Eλ(t)x(t)T = −E
∞∑

j=0
(ATcl) jK TQK A j+1cl x(t)x(t)T = −SclAclPcl,

since Pcl = E x(t)x(t)T . Fitting this into (36) gives the expression for M
and thus the expression for ∇K J follows. �

As previously we need to approximate the gradients by only simulating
the systems in (37) and (38) in order to find approximations of the cross-
covariances. The final time in the simulations will be denoted by tfinal. We
summarize the procedure of updating the control matrices to reduce the
cost in the following algorithm.

ALGORITHM 2
Consider the system (5) with K ∈ Kstab and L ∈ Lstab. To find an approxi-
mation to a local minimizer to (4), start with K (0) ∈ Kstab and L(0) ∈ Lstab

and for each τ ≥ 0,
1. Simulate the systems in (37) and (38) for some realization of the
noise v and v̄.

2. Calculate approximations of M and N in (39) and (40) by calculating
approximations of the cross-covariances with the determined state
trajectories.

3. Determine approximations for the gradients ∇K J and ∇LJ.
4. Project the approximations on the admissible set of feedback matri-
ces and predictor matrices,

GK = projK (∇K J) ,
GL = projL (∇LJ) .

5. Update the matrices in the direction of the projected gradients

K (τ+1) = K (τ ) − γ Kτ GK ,

L(τ+1) = L(τ ) − γ Lτ GL

for some step lengths γ Kτ and γ Lτ .

6. Increase τ with 1 and goto 1).
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3.2 With Direct Term

In this section we consider controllers with direct term, meaning that the
system matrices for the system in (5) are given in (7).
It is easily seen that the expressions for the gradients of J with respect

to both K and L are as in Proposition 4 with the system matrices in (7).
Hence, it is only necessary to determine an expression for the gradient of
J with respect to L0.

PROPOSITION 6
Consider the system (5) with the system matrices in (7) and where K and
L are stabilizing and the cost J defined in (4). The gradient of J with
respect to L0 is

∇L0J = 2(U12 + V22 +W12 + L0Re),

where

U = −
[
BT 0m$n

0m$n 0m$n

]
SclAclPcl

[
0n$p 0n$p

0n$p CT

]
,

V = −QK Pcl
[
0n$p 0n$p

0n$p CT

]
,

W = −
[
BT 0m$n

0m$n 0m$n

]
SclLR.

(41)

Proof. We begin be determining the differential of Scl with respect to L0

dScl = ATcldSclAcl + M̂ + M̂T ,

where

M̂ = −
[

0n$n 0n$n

CTdLT0 B
T 0n$n

]
SclAcl −

[
0n$n 0n$m

0n$n CTdLT0

]
QK ,

leading to the expression

dScl =
∞∑

k=0
(ATcl)k(M̂ + M̂T )Akcl.

Determining the differential of J we get

dJ = tr
(
dScl ⋅LRLT

)
+ 2tr

(
dLT0 L0Re

)

+ 2tr
([
0n$m 0n$n

dLT0 0p$n

] [−BT 0m$n

0n$n 0n$n

]
SclLR

)
.
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We simplify the first term of this expression in the same way as in the
proof of Proposition 4, and use that
[

0n$n 0n$n

CTdLT0 B
T 0n$n

]
=
[
0n$p 0n$p

0n$p CT

] [
0p$m 0p$m

dLT0 0p$m

] [
BT 0m$n

0m$n 0m$n

]

and get that

tr
(
dScl ⋅LRLT

)
= 2tr

(
M̂Pcl

)

= −2tr
([
0p$m 0p$m

dLT0 0p$m

] [
BT 0m$n

0m$n 0m$n

]
SclAclPcl

[
0n$p 0n$p

0n$p CT

])

− 2tr
([
0p$n 0p$m

0p$n dLT0

]
QK Pcl

[
0n$p 0n$p

0n$p CT

])
.

Now, the expression for ∇L0J is derived be using the relations

dZ = tr
([

0 0

dX T 0

]
Y

)
=[ ∇X Z = Y12,

dZ = tr
([
0 0

0 dX T

]
Y

)
=[ ∇X Z = Y22

for Y =
[
Y11 Y12

Y21 Y22

]
where Y11, Y12, Y21 and Y22 all have the appropriate

sizes. �

In Section 3.1 we saw how to get rid of the Lyapunov solutions S and
P by making some approximations. The expressions in (41) resemble the
ones in (36) and we use the same approach to rewrite the expression for
∇L0J.

PROPOSITION 7
Consider the systems in (37) and (38) with the system matrices in (7).
Then the matrices in (41) equal

U =
[
BT 0

0 0

]
E
1
2

(
λ(t)x(t)T + x̄(t)λ̄(t)T

) [ 0 0

0 CT

]
,

V = −QKE x(t)x(t)T
[
0 0

0 CT

]
,

W = −
[
BT 0

0 0

]
E x̄(t)x̄(t)TLR,

(42)

where the sizes of the zeros are analog from Proposition 6.

Proof. The theorem follows simply from using the relations derived in the
proof of Proposition 5. �

95



Paper II. Synthesis of Structured Output Feedback Controllers

REMARK 6
The factor 12 in the expression for M can obviously be replaced to be any
affine combination of the two terms in the sum.

Now, Algorithm 2 can be updated with the expressions in (42) to include
an update of L0. Of course the system matrices will now be the ones found
in (7).

4. Scalable Synthesis Schemes

The synthesis schemes presented in the previous sections rely on simu-
lation of some systems. Certain structural constraints of the controller
matrices in K , L and L0 with some additional structure on the matri-
ces in (1) may be exploited to allow these systems to be simulated even
when the state space is huge. In such cases the schemes can be applied
to find controllers to large-scale systems. One such structure that can
be exploited is when the system matrices are sparse, for example when
considering distributed systems. Such systems and how to exploit their
structure will briefly be described in this section. For a more detailed
analysis, see [Mårtensson and Rantzer, 2011b].
In a distributed system the states are partitioned into subsystems

or agents, according to some property, for example that each partition
corresponds to a distinct component of the complete system. The agents
that directly affect an agent i through the dynamics matrix, that is, the
block Aik ,= 0, are called neighbors of agent i. Essential is that each
agent only has a few neighbors, implying that the dynamics matrix A is
sparse. We also assume that each agent has a distinct set of inputs and
outputs, implying that both matrices B and C will be block-diagonal. A
natural assumption for the structure of the controller gains is that an
agent may only communicate with its neighbors, that is, it may only use
measurements of neighbors to form estimates of its own states and only
estimates of neighboring states to form its control input. This translates
to the sets

K = {K p Kik = 0 if i and k are not neighbors},
L = {L p Lik = 0 if i and k are not neighbors},
L0 = {L0 p L0 ik = 0 if i and k are not neighbors}.

With these structural constraints, the closed loop matrices A − BK and
A − LC have the same sparsity structure as A. Hence, the assumption
that each agent only has a few neighbors guarantees that both the com-
putational time and the memory requirement to simulate the systems (17)
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and (24) scales linearly with the number of agents. Similarly, simulation
of the system (26) is also scalable if the weights for the cost Qx, Qu and
Qxu are block-diagonal, meaning that the cost can be separated into costs
for each agent. The same holds for system (18), if Rw, Re and Rwe are
block-diagonal, that is, the noise coming into different agents are inde-
pendent. This means that for distributed systems, the separate synthesis
scheme described in Section 2 will be scalable with respect to the size of
the system if the average number of neighbors for each agent is constant.
With the same assumptions, simulation of the systems in (37) and (38) is
also scalable, implying that the simultaneous synthesis scheme is scalable.
This shows that both schemes will be applicable to large-scale distributed
systems. A numerical example of the scalability of the method can be
found in [Mårtensson and Rantzer, 2011b].

5. Numerical Examples

This example focuses on a system that is randomly generated. The system
consists of 50 agents, each agent with 5 states, meaning a total of 250
states. The adjacency matrix is randomly generated, to give all agents 4
neighbors and a connected graph. The interconnection graph is assumed
to be undirected, thus giving a sparse symmetric adjacency matrix. This
means that the ratio of non-zero elements in the dynamics matrix A will
be 10% of the total number of elements. For each agent i, the specifications
of how its subsystem is generated, are given below.

• The part of dynamics matrix Aii will be uniformly drawn and scaled
to make the largest magnitude of the eigenvalues equal to 0.8.

• The neighbors affect the agent by Aik = b ⋅ cT where b and c are
uniformly drawn from [−0.4, 0.4]5.

• It will have 3 control inputs. The part of control matrix Bi will be
uniformly drawn from [−1, 1]5$3.

• It will have 2 measurements. The part of measurement matrix Ci
will be uniformly drawn from [−1, 1]2$5.

The resulting system is verified to be stable, with spectral radius ρ(A) =
0.94.

The remaining parameters of the design method are set to Q =
[
I 0

0 I

]

and R =
[
I 0

0 I

]
, where I has the appropriate size in each block.
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5.1 Separate Synthesis

This section presents the results of when the separate synthesis scheme
is applied to the system. Initially the feedback matrix K = 0 and the
predictor matrix L = 0. The number of update iterations of the scheme
is set to 500, where the simulation time tfinal = 100 in each iteration.
A constant update step length γ τ = 2.5 ⋅ 10−3 is used. The result of a
simulation of the scheme is shown in Figure 1. The curves denoted α and
β correspond to the degree of suboptimality of the separate state feedback
problem and state estimation problem, respectively. That is,

α i = argmin
α

{Si ≤ αSopt} ,

β i = argmin
β

{Pi ≤ βPopt} .

Since the system matrices are of moderate size, it is possible to compute
the cost (4). The degree of suboptimality of the complete output feedback
controller is shown by the curve denoted ϕ , that is,

ϕ = J(K
(i), L(i))

J(Kopt, Lopt)
.

In the figure, we see that both the degree of suboptimality of the state
feedback, α , and the degree of suboptimality of the state estimator, β ,
approach 1. At the same time the degree of suboptimality of the complete
output feedback, ϕ , approaches 1. The curve of ϕ is always less than both
α and β in this example, meaning that the bounds α and β are actually
conservative bounds of the degree of suboptimality ϕ .

5.2 Simultaneous Synthesis

Now, the simultaneous synthesis scheme is applied to the system. By Re-
mark 5 the matrices K and L initially can not be 0, they are randomly
generated in a small neighborhood around 0. The number of update iter-
ations of the scheme is set to 500, where the simulation time tfinal = 200
in each iteration. The step lengths are set equal, that is, γ Kτ = γ Lτ , and
are changed to guarantee that with the current noise realization, the cost
decreases. Figure 2 shows the result of a simulation of the scheme applied
to the system. The degree of suboptimality is denoted ϕ and is calculated
in the same way as in the previous section.
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Figure 1. The result of applying the separate synthesis scheme. The degree of
suboptimality of the state feedback and state estimation is given by the curve α
and β , respectively. The degree of suboptimality of the complete output feedback is
shown by the curve ϕ .
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Figure 2. The result of applying the simultaneous synthesis scheme. The degree
suboptimality of the complete output feedback is shown by the curve ϕ .
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6. Conclusions and Future Works

6.1 Conclusions

In this paper we have studied a methodology to calculate structured LQG
controllers suitable for large-scale systems. The underlying idea is to it-
eratively update the matrices of the controller in a descent direction for
each matrix in order to improve the LQG performance. The descent direc-
tions are determined by simulating systems related to the original one. If
the structure of the system and the controller matrices allow for efficient
simulation, as in the case of sparse matrices, it is shown that the schemes
are tractable for large-scale systems.
It is shown how to both separately determine suboptimal state feedback

and state predictor matrices, or simultaneously simulate the complete
system with the output feedback controller to find the descent update
directions. Also, in case of the simultaneous scheme it is possible to treat
both the case of controllers with and without direct term.
When using the separate scheme it is possible to use the trajectories

determined in the update procedure, to determine a bound of the degree
of suboptimality of the current matrix gains. This bound validates the
performance of the controllers and can be used as a stopping criterion for
the iteration process.

6.2 Future Works

The calculation for the bound of the degree of suboptimality for the sepa-
rate scheme relies on the deterministic nature of the setup. A possibility to
handle stochastic noise when determining the bounds should be explored.
This could also prove fruitful for finding a way to determine a bound of
the degree of suboptimality for the simultaneous scheme.
An example of a large-scale system is the large deformable mirrors

presented in for example [Heimsten, 2011]. The system has more than
10000 states and the system matrices are of a sparse nature. Hence, this
system is suitable for the methods presented here. Possible improvements
compared to the controller given in [Heimsten, 2011] will be investigated.
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Paper III

A Scalable Method for Continuous-

Time Distributed Control Synthesis

Karl Mårtensson and Anders Rantzer

Abstract

In this paper a synthesis method for distributed controllers for
continuous time distributed systems, is discussed. The systems con-
sidered consists of subsystems interconnected in a graph structure.
This graph represents a communication structure of the system and
hence governs the structure of the admissible controller, meaning that
distributed controllers are considered. The objective of the synthesis
is to obtain such admissible controllers that optimize a given perfor-
mance. The method is scalable with respect to the size of the system
and is therefore suitable for large-scale systems.
Distributed controllers are suboptimal with respect to centralized

ones and it is desirable to measure the amount of performance degra-
dation. Using the variables of the synthesis scheme, it is shown how
to determine such a measure of suboptimality.

cF2012 IEEE. Printed with permission. To appear in Proceedings of the
2012 American Control Conference, Montréal, Canada, 2012.
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1. Introduction

1. Introduction

Decision making when the decision makers have access to different in-
formation concerning underlying uncertainties has been studied since the
late 1950s [Marschak, 1955,Radner, 1962]. The subject is sometimes called
team theory, sometimes decentralized or distributed control. The theory
was originally static, but work on dynamic aspects was initiated by Wit-
senhausen [Witsenhausen, 1968], who also pointed out a fundamental dif-
ficulty in such problems. Some special types of team problems were solved
in the 1970’s [Sandell and Athans, 1974,Ho and Chu, 1972], but the prob-
lem area has recently gain renewed interest. Spatial invariance was ex-
ploited in [Bamieh et al., 2002,Bamieh and Voulgaris, 2005], conditions for
closed loop convexity were derived in [Rotkowitz and Lall, 2002,Rotkowitz
and Lall, 2006] and methods using linear matrix inequalities were given
in [Langbort et al., 2004,Rantzer, 2006,Gattami, 2006].
In this paper we will focus on finding a solution to the linear quadratic

regulator (LQR) problem for systems in continuous time. The method for
finding the centralized solution for this problem has been known for a
long time. However, when considering large-scale systems conventional
methods for finding this solution are no longer tractable. The reason lies
in that the computational time and memory requirements scales as O(n3)
and O(n2), respectively, for these methods, see for example [Bini et al.,
2011]. Methods for large-scale systems needs to exploit some structure in
the problem. How to take advantage of the structure of a system with
sparse dynamics matrices is presented in [Benner et al., 2008]. Here it
is also assumed that the number of input signals is a lot less than the
number of states. The resulting controllers will approximately solve the
centralized control problem. When considering distributed systems, they
usually have a communication constraint, meaning that a subsystem does
not have access to the full state vector. With the use of the augmented
Lagrangian method, iterative schemes to find structured state feedback
matrices minimizing a quadratic cost, are treated in [Wenk and Knapp,
1980, Lin et al., 2011]. The methods are initialized with the centralized
solution for the problem, and recursively the solution approaches a struc-
tured feedback matrix. The methods hinge on the solutions of Lyapunov
equation and the solution of the centralized problem, thus not applicable
to large-scale systems. In [Mårtensson and Rantzer, 2010] an iterative dis-
tributed control synthesis scheme for discrete-time systems is considered.
We will follow a similar approach when developing the theory in this pa-
per. The synthesis method operates by iteratively updating the controller
in a descent direction of the LQR performance. This direction is deter-
mined by simulating the system and the corresponding adjoint system.
When the system matrices are sparse it is realized that this produces a
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scalable method, hence suitable for large-scale systems. Since distributed
controllers are suboptimal compared to centralized solutions, it is desir-
able to have a measure of suboptimality. We show how to use the variables
of the synthesis algorithm to determine a bound of suboptimality of the
current controller.
Section 2 contains a description of the distributed systems considered

and the notations used in the paper are defined. In section 3 the method
for updating the control laws using descent directions to the cost function
is presented. In section 4 the theory for finding the suboptimality bound
to the previously mentioned method, is formulated. An example is given
in section 5, showing the described methodology.

2. Problem Formulation

The systems treated in this paper are continuous time, linear time invari-
ant systems

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1)
where x(t) ∈ R

m, u(t) ∈ R
p and x0 ∈ N (0,σ ). We will assume that

the system is distributed, a property that will be explained by a graph
associated to the system. The vertices v1,v2, . . . ,vn of the graph represent
subsystems or agents of the complete system. Hence, the vertices can be
thought as a partition of all of the states. If the states are rearranged
such that the states of each subsystem are next to each other, we write
x = [ xT1 xT2 . . . xTn ]T where xi are the states of subsystem i. The sparsity
structure of the system is now defined by the edges of the graph. The
collection of all edges is denoted by E, where (i, j) ∈ E if there is an
edge from vi to vj . By convention we assume that (i, i) ∈ E for all i. We
call two distinct subsystems neighbors if there is an edge between the
corresponding vertices. The edges describe the sparsity of the dynamics
matrix and its structure is restricted by

Ai j = 0 if ( j, i) /∈E,

(throughout the paper the subscript will denote blocks of the intended ma-
trices corresponding to the subsystems). Hence, the dynamics of a sub-
system is only directly affected by the states of the subsystem and its
neighbors. The subsystems will also be assumed to have a distinct set
of control signals, i.e. each control signal affects only one subsystem di-
rectly. This assumption is translated to assuming that the matrix B is
block-diagonal, i.e. B = diag(B1, B2, . . . , Bn).
With these initial definitions, an example of the setup is given in Fig-

ure 1.
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ag

u1

u2

u3

u4

A12, A21

A31

A23

A34, A43

Figure 1. Graphical representation of a distributed system. The
arrows shows how each agent directly affects the others. The set
E = {(1, 1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,3), (3,2), (3,4),
(4,3)}

The system (1) is controlled using state feedback u(t) = −Kx(t). The
graph also imposes a communication constraint on the system and the
admissible controllers are only those where each subsystem uses only the
states of itself and its neighbors to determine its control input. This re-
striction translates to a structure in the feedback matrix according to

Ki j = 0 if ( j, i) /∈ E.

The subspace of admissible controllers is denoted by

K = {K p ∀K such that Ki j = 0 if ( j, i) /∈ E}.

The set of admissible stabilizing controllers is denoted by

K stab = {K p ∀K ∈K and K is stabilizing}.

With the restrictions of the matrices A, B and K , the closed loop dynamics
matrix A − BK has the same structure as A, and hence satisfies the
structural constraint that the graph gives. That the closed loop dynamics
matrix still is sparse will prove valuable later on when looking into the
complexity of the coming method.

3. Iterative Distributed Control Synthesis

The objective of the control synthesis is to determine a feedback matrix
that minimizes some performance. The performance that is considered is
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the commonly known LQR cost for continuous time systems

J(K , x0) =
∫ ∞

0
x(t)TQxx(t) + u(t)TQuu(t)dt, (2)

where x(t) satisfies the dynamics equation (1) and u(t) = −Kx(t). The
weights Qx and Qu are assumed to be block-diagonal meaning that it is
possible to separate the cost into costs for each subsystem. For all sta-
bilizing K , the cost (2) can be determined by solving certain Lyapunov
equation. Specifically, we have that J(K , x0) = tr

(
(Qx + K TQuK )X0

)
=

tr
(
Px0x

T
0

)
where X0 and P are the solutions to the following Lyapunov

equations, respectively.

(A− BK )X0 + X0(A− BK )T + x0xT0 = 0, (3)
(A− BK )TP + P(A− BK ) + Qx + K TQuK = 0. (4)

With these solutions an expression for the gradient of J with respect to
K can also be determined.

PROPOSITION 1
Given the system (1) and a stabilizing K , the gradient of the cost func-
tion (2) with respect to K is

∇K J = 2(QuK − BTP)X0. (5)

Proof. For simpler expression we define the matrices

AK = A− BK ,
M = QuK − BTP.

By differentiating (4) with respect to K we get the following Lyapunov
equation

ATKdP + dPAK + dK TM + MTdK = 0.
The integral solution to this equation is

dP =
∫ ∞

0
etA

T
K (dK TM + MTdK )etAK dt.

Now, since dJ = tr
(
dPx0x

T
0

)
, we get

dJ = tr
(∫ ∞

0
etA

T
K (dK TM + MTdK )etAK x0xT0 dt

)

= 2 ⋅ tr
(
dK TM

∫ ∞

0
etAK x0x

T
0 e
tAT
K dt

)

= 2 ⋅ tr
(
dK TMX0

)
.
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By using the relation about differentials

dZ = tr
(
dX T ⋅ Y

)
=[ ∇X Z = Y,

relation (5) is verified. �

In order to calculate the gradient of J with respect to K using the
result of Proposition 1, the Lyapunov equations (3) and (4) needs to be
solved. If large-scale systems are considered it is not possible to solve these
equations in a reasonable time. Hence, for a scalable method these solu-
tions we need to find an expression that does not rely on these solutions.
In the next proposition adjoint variables are introduced and it is shown
how to use them to get rid of X0 and P from (5).

THEOREM 1
Given the system (1) and a stabilizing K , let the adjoint states λ be
defined by

−λ̇(t) = (A− BK )Tλ(t) − (Qx + K TQuK )x(t), (6)

where x(t) are the states of (1) and lim
t→∞

λ(t) = 0. Then

∇K J = 2
∫ ∞

0

(
−Quu(t) + BTλ(t)

)
x(t)Tdt. (7)

Proof. By denoting QK = Qx + K TQuK , the adjoint states can be deter-
mined

λ(t) =
∫ ∞

t

−e(s−t)ATKQK x(s)ds.

With this expression we can rewrite to following

∫ ∞

0
λ(t)x(t)Tdt =

∫ ∞

0

∫ ∞

t

−e(s−t)ATKQK x(s)ds ⋅ x(t)Tdt

=
∫ ∞

0

∫ ∞

t

−e(s−t)ATKQK e(s−t)AK x(t)ds ⋅ x(t)Tdt

= −PX0.

This relation and that QuK X0 = −Qu
∫∞
0 u(t)x(t)Tdt fitted into (5) gives

the desired result. �
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REMARK 1
The dynamical system for the adjoint variables is stable when considering
time going from the future backwards, i.e. from t = ∞ to t = 0. Hence, it
is simulated in the backwards time direction.

The gradient gives a direction in which the feedback matrix K can be up-
dated in to decrease the cost J(K , x0). Though, since we impose a structure
on K , the gradient ∇K J needs to be projected to the subspaceK defining
this structure. This projected gradient will also produce a descent direc-
tion of J(K , a). To understand this, consider the restriction of J on K .
The gradient of this function is exactly the projection of ∇K J on K .
In order to get a tractable algorithm, the time for simulating the states

in (1) and (6) must be truncated to some finite time tfinal. The truncation
implies that an approximation of the gradient in Theorem 1 will be deter-
mined. The algorithm of iteratively updating the feedback matrix is given
below.

ALGORITHM 1
Consider the system (1) with control u(t) = −Kx(t) where K ∈K stab. To
find a local minimizer to (2), start with K (0) ∈K stab and for each τ ≥ 0

1. Simulate the states x(t) of (1) with control u(t) = −K (τ )x(t) for
times t ∈ [0, tfinal].

2. Simulate the adjoint states λ(t) of (6) with for times t ∈ [0, tfinal] in
the backwards time direction with λ(tfinal) = 0.

3. For all agents i and all j such that ( j, i) ∈ E

I) Calculate

Gi j = 2
∫ tfinal
0

(
−[Qu]iui(t) + BTi λ i(t)

)
x j(t)Tdt.

II) Update the feedback matrix

K
(τ+1)
i j = K (τ )i j − γ Gi j ,

for some step length γ .

4. Increase τ with 1 and goto 1).
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4. Suboptimality Bound

REMARK 2
As previously mentioned the closed loop matrix A−BK follow the sparsity
pattern described by the graph associated with the distributed system. Ex-
amining the matrix Qx + K TQuK we find that it also has a distributed
structure related to the graph. Hence, if the distributed system is sparse
we understand that, using a sparse ODE solver, Algorithm 1 benefits from
this structure. In fact, the scheme is linear in complexity when consider-
ing systems consisting of subsystems with the same average state space
size and number of neighbors. This can be compared to solving Lyapunov
equations which in standard implementation requires O (n3) flops. This
means that the alternate version of Algorithm 1 where the gradient in-
stead is determined through (5) would not be tractable for large-scale
systems.

REMARK 3
In order to approximate the gradient in Algorithm 1 a final time tfinal
needs to be determined to ensure that the approximation is still a descent
direction. For any descent direction D, tr

(
∇K JT ⋅ D

)
< 0 must hold.

Letting G be the truncated gradient and H = ∇K J − G. Then G is a
descent direction if tr

(
(G + H)TG

)
< 0, that is tr

(
GTG

)
< tr

(
HTG

)
.

Since tr
(
GTG

)
can be determined, a valid final time would be one for

which it is possible to determine a bound on H in order for the inequality
to hold. A strategy could be to analyse the decrease in the state trajectory
to find such bound. This is an issue that needs further attention.

4. Suboptimality Bound

Solving the ordinary LQR control problem is a well-studied problem and
has a tractable solution when the system is of moderate size. But when we
introduce restrictions in the structure of the feedback matrix, there is no
general formula for finding the optimal one. The minimization problem is
not even guaranteed to be convex. The underlying method in Algorithm 1
is a descent method, thus we can not guarantee that the globally optimal
structured feedback matrix is ever attained. We only know that a locally
optimal solution is reached. A measure of the suboptimality in each iter-
ation step of the Algorithm 1, is α ≥ 1 such that

J(K , x0) ≤ α J(Kopt, x0), (8)

where Kopt = argmin
K

J(K , x0). The value of α tells us that the cost of

the feedback matrix, J(K , x0), is within a factor α of the optimal value.
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If there is a way to verify that an α close to 1 must satisfy (8), then
even though K might not be the optimal feedback matrix, we will not
find one that reduces the cost greatly compared to this one. Hence, the
suboptimality bound can be used as a stop criterion for Algorithm 1. That
is when the bound goes below a given value we consider that the current
feedback matrix is satisfactory and return it from the algorithm.
To determine the suboptimality bounds, we start by define the trun-

cated cost

Ĵ(K , x0, tfinal) =
∫ tfinal
0

x(t)TQxx(t) + u(t)TQuu(t)dt, (9)

where x(t) satisfies (1) and u(t) = −Kx(t). The following theorem gives
us a suboptimality bound telling us that in the time interval [0, tfinal] we
are within a factor of α of the optimal solution on this interval.

THEOREM 2
If α ≥ 1 is such that for a given trajectory of adjoint (or dual) variables
λ(t), with λ(tfinal) = 0

Ĵ(K , x0, tfinal) ≤ α min
x,u

x(0)=x0

∫ tfinal
0

[
x(t)TQxx(t)

+ u(t)TQuu(t) + 2λ(t)T (ẋ(t) − Ax − Bu(t))
]
dt, (10)

then

Ĵ(K , x0, tfinal) ≤ α Ĵ(Kopt, x0, tfinal), (11)

where

Kopt = argmin
K

Ĵ(K , x0, tfinal).

Proof. Assume that α is such that for a given trajectory of λ(t), (10) holds.
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4. Suboptimality Bound

We have that

Ĵ(Kopt, x0, tfinal) =





min
K ,x

∫ tfinal
0

x(t)T (Qx + K TQuK )x(t)dt

subject to: ẋ(t) = (A− BK )x(t)
x(0) = x0

≥





min
x,u

∫ tfinal
0

x(t)TQxx(t) + u(t)TQuu(t)dt

subject to: ẋ(t) = Ax(t) − Bu(t)
x(0) = x0

≥ min
x,u

x(0)=x0

∫ tfinal
0

(
x(t)TQxx(t) + u(t)TQuu(t)

+ 2λ(t)T (ẋ(t) − Ax(t) − Bu(t))
)
dt,

where the second inequality comes from introducing dual variables. Hence,
if (10) holds, so must (11). �

The Theorem 2 gives a method to evaluate the expected performance
an updated feedback matrix will give to the system. We only have to
choose the adjoint or dual variables. The name suggest that we choose the
adjoint variables defined by (6). To motivate this choice, we could refer to
Pontryagin’s maximum principle. The motivation comes from examining
the Hamiltonian

max
λ
min
x,u

∫ tfinal
0

(
x(t)TQxx(t) + u(t)TQuu(t)

+ 2λ(t)T (ẋ(t) − Ax(t) − Bu(t))
)

︸ ︷︷ ︸
H (x,u,λ)

dt
(12)

from Theorem 2. We let the objective function be denoted by H (x,u,λ).
To find a saddle point for H then

0 = ∇x(t)H = 2(Qxx(t) − λ̇(t) − ATλ(t)),
0 = ∇u(t)H = 2(Quu(t) − BTλ(t)).

We get (6) by ∇x(t)H + K T∇u(t)H = 0 and replacing u(t) = −Kx(t).
To show that it is actually possible to solve the minimization program

in (10) we give the following proposition.
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PROPOSITION 2
The value of the minimization program in (10) can be determined by

−
∫ tfinal
0

[ (
λ̇(t) + ATλ(t)

)T
Q−1x

(
λ̇(t) + ATλ(t)

)

+ λ(t)TBQ−1u BTλ(t)
]
dt− 2λ(0)T x0.

Proof. Introduce f = Qxx(t) − λ̇(t) − ATλ(t) and � = Quu(t) − BTλ(t).
The integral in the objective in (10) is manipulated:

∫ tfinal
0

[
x(t)TQxx(t) + u(t)TQuu(t) + 2λ(t)T (ẋ(t) − Ax − Bu(t))

]
dt

=
∫ tfinal
0

[
x(t)TQxx(t) + u(t)TQuu(t)

− 2λ̇(t)T x(t) − λ(t)T (Ax + Bu(t))
]
dt+ 2

[
λ(t)T x(t)

]tfinal
t=0

=
∫ tfinal
0

[
f TQ−1x f + �TQ−1u � − λ(t)TBQ−1u BTλ(t)

−
(
λ̇(t) + ATλ(t)

)T
Q−1x

(
λ̇(t) + ATλ(t)

) ]
dt− 2λ(0)T x0,

where the first equality comes from partial integration and the second
equality from completing the squares. When minimizing the last expres-
sion we understand that choosing x(t) and u(t) to make F = G = 0 mini-
mizes the integral (the only point on the trajectory of x(t) that can not be
chosen is x(0) but this point does not change the value of the integral). �

5. Example

In this example we consider a small-scale system. The reason for not
using a large-scale system is to be able to verify the actual cost of the
feedback matrices by determining the corresponding Lyapunov solution.
The system consists of 10 subsystems, each with one state, connected in
a linear fashion as shown in Figure 2. This structure of the graph results
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x1 x2 x9 x10A21

A12

A9,10

A10,9

⋅ ⋅ ⋅

Figure 2. Graphical representation of the system in the example. The arrows
shows how each agent affects the others.

in a tri-diagonal dynamics matrix. In this example its value is

A =




−4 1
1 −4 −1
−2 −4 1

−1 −8 8
1 −2 2
−1 −9 −1

−2 −5 −2
−1 −8 −2

7 −10 −1
−1 −4




and the remaining entries equal zero. The matrix B is diagonal and given
by

B = diag ([−1, 2, 6, −3, −6, −1, 3, −4, 7, 2 ]) .
The weights Qx = Qu = I and x0 ∈N (0, I).
The system is initially stable (the largest real part of the eigenvalues

of A is −1.18), meaning that we can start Algorithm 1 with K (0) = 0.
The algorithm is used for 100 iterations where the systems are simulated
between times [0, 10] in each iteration. The method for estimating sub-
optimality bounds is performed in each update iteration. Also, the actual
suboptimality is determined by solving the appropriate Lyapunov equa-
tion with the current feedback matrix K . The result of a simulation is
given in Figures 3-4.
In Figure 3 the estimated suboptimal bound is denoted by α and shown

in blue. A first remark is that in the first iteration we get a negative value
of the suboptimality bound. This is due to the fact that the minimization
program in (10) is not guaranteed to give a positive value. In case a
negative value is obtained nothing can be said about the suboptimality
with this method. Though, as we get closer to the optimal feedback matrix,
the adjoint trajectory will approach the optimal (with respect to (12)) and
the inequalities in the proof of Theorem 2 will almost be equal implying
that we can expect a positive value from (10).
When positive, the suboptimality bound is always larger than 1 which

is natural. In the same figure denoted by α exact and shown in green, is
the true suboptimality determined by

α exact =
J(K (k), x0)
J(Kopt, x0)

.
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Figure 3. Plots of the estimated sub-optimality using the described method and
the exact suboptimality.
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Figure 4. Plot of the relative difference between the estimated and the exact
suboptimality.

As expected the suboptimality bound (when positive) is also always larger
than the true suboptimality. As the true suboptimality approaches 1, that
is the cost with the feedback matrix approaches the optimal cost, the
suboptimality bound also approaches 1.
In Figure 4 the relative difference between the suboptimality bound
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and the true suboptimality is shown. The relative difference is determined
by

∆α rel =
α −α exact
α exact − 1

.

As can be seen in the figure, the relative difference is in most iteration
below 1.5 meaning that the suboptimality bound is not more than a factor
1.5 more from the true suboptimality (when the true suboptimality is
measured as the distance to 1).

6. Conclusions and Future Work

6.1 Conclusions

In this paper a scalable method for doing synthesis of distributed con-
trollers for linear, continuous time, distributed systems. The objective is to
obtain a linear, structured controller which minimizes the LQR cost. The
method works in an iterative fashion where, in each iteration, a descent
direction (with respect to the cost) is determined by simulating the sys-
tem and the corresponding adjoint system. The controller is then updated
by a step in that direction. The fact that the method relies on simulation
of distributed, sparse system shows that it is scalable with respect to the
number of subsystems.
In each iteration the trajectories are also used to determine a bound of

the suboptimality of the current controller. This bound gives qualitative
information of the current controller, and can for example be used as a
stopping criteria for the synthesis method.

6.2 Future Works

How to determine a valid final time in the simulations to guarantee that
the approximated gradient still is a descent direction, needs further at-
tention. For more discussion, see Remark 3.
We will work on connecting the state feedback synthesis with the sim-

ilar observer synthesis to get a method for output feedback synthesis. We
will for example look at what happens to the suboptimality bounds in this
case.
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Paper IV

Synthesis of Structured State

Feedback Controllers for a Large

Deformable Mirror

Karl Mårtensson and Rikard Heimsten

Abstract

Replacing relay optics located late in the optical chain, by a de-
formable mirror in the telescope itself, improves the resolution of
the obtained image. Implementing deformable mirrors, especially in
extremely large telescopes, introduces another problem. The models
needed to describe these mirrors have a very large state space and
have a large number of actuators and sensors. For such systems it is
far from trivial to design optimal controllers. In this paper we imple-
ment a method of finding optimal feedback matrices for a quadratic
cost. The obtained controller is used to make the mirror track changes
in the phase of the incoming light. The performance of the controller
is for example measured in its ability to track both Zernike polynomi-
als and phase screens, a model of the added phase by the atmosphere.
In these measures the controller exhibits promising results.

cFSubmitted to IEEE Transactions on Control Systems Technology.
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1. Introduction

1. Introduction

When observing light from distant stars and planets with ground-based
telescopes, it is desirable to correct for the rapidly changing optical dis-
tortions introduced by the Earth’s atmosphere. The turbulence in the at-
mosphere affects the phase of the incoming wavefront, which results in a
blurred image. Adaptive optics (AO) is a technique used to increase the
resolution of optical systems. The objective of such a system is to coun-
teract the distortion in the wavefronts, thus enhancing the image quality.
An AO system includes three basic components; a wavefront sensor, a con-
trol system, and one or more corrective elements; often implemented as
deformable mirrors. By changing the shape of the mirror to correct for
the aberrations in the wavefront of the incoming light, the image quality
is increased. For an introduction to adaptive optics, see for example [An-
dersen and Enmark, 2011,Hardy, 1998,Roddier, 1999]. Traditionally, the
AO systems consist of a small deformable mirror with piezoelectric actu-
ators located late in the optical chain. For example, [von Bokern et al.,
1992, Paschall and Anderson, 1993] shows how to design controllers for
such deformable mirrors using linear quadratic Gaussian (LQG) tech-
nique. In the procedures they use a system describing the 14 first Zernike
modes (excluding the piston mode) to approximate the atmospheric tur-
bulence.
Integrating the deformable mirror into the telescope design, thus going

from tens of millimeters to a few meters in diameter, will avoid lossy relay
optics and make the telescope more compact. Large deformable mirrors
have successfully been integrated into the Multi Mirror Telescope [Wildi
et al., 2003] and the Large Binocular Telescope [Quiros-Pacheco et al.,
2010]. Large deformable mirrors are generally implemented as thin shells
of a glass ceramic with hundreds or thousands of actuators on the back.
Often, there are also local deflection sensors on the back of the mirror,
resulting in a multiple input multiple output system.
When choosing to implement large deformable mirrors a problem of

scalability arises. The size of the systems describing the mirror becomes
of such an order that many of the conventional methods are not applicable
to design the controllers. As in most large-scale optimization problems, it
is necessary to find and take advantage of structures in the dynamics
matrices [Lasdon, 2002]. In [Miller and Grocott, 1999] the deformable
mirror is modeled by the use of circulant matrices. It is then possible to
completely decouple the system and find a LQG controller for each decou-
pled subsystem. Another scheme that relies on decoupling can be found
in [Andersen et al., 2006,Heimsten, 2011]. The actuators are collected in
families and the force distributions for different mirror deflections are de-
termined to form a decoupling matrix. A decentralized controller for this
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decoupled system can now be designed. In [Fraanje et al., 2010] the mir-
ror is modeled by identical subsystems interconnected in a sparse graph
structure. In this setup it is shown how to obtain a distributed controller
for a mirror of any size. An LQG design method for a hybrid model is sug-
gested in [Looze, 2009]. The structure of the model is used to reduce the
dimension of the involved Riccati equations. [Roux et al., 2004] shows how
to design minimal variance controllers for both AO and multiconjugate
AO (MCAO) systems, for which there are a larger number of degrees of
freedom than classical AO. [Petit et al., 2005] deals with the problem of
wavefront reconstruction, open and closed loop optimal control for MCAO
systems. A thorough analysis and validation of LQG controllers for MCAO
systems is performed in [Petit et al., 2009]. Another experimental valida-
tion of a H 2 optimal control strategy is given in [Hinnen et al., 2007].
In this paper we will apply a scheme to determine a state feedback

matrix for the linear quadratic regulator (LQR) control problem for large-
scale systems, presented in [Mårtensson and Rantzer, 2011,Mårtensson
and Rantzer, 2010]. The model of the mirror developed in [Heimsten, 2011]
has sparse dynamics matrices and it will be the model used in this pa-
per. The control synthesis method takes advantage of sparsity structures
in the dynamics matrix of the system to determine a sparse feedback
matrix that minimizes the LQR cost. This is accomplished by determin-
ing gradients to the cost function and updating the feedback matrix in
these directions. The gradients are determined through a combination of
the trajectories of simulations of the mirror from a non-zero initial state
and its adjoint system. This updating process will create a sequence of
feedback matrices with decreasing cost. The advantage with this method
compared to conventional methods solving the LQR problem is that the
computation time only grows linearly with the size of the system, thus
making it applicable on large-scale systems. Also, we do not have to as-
sume any other structures on the system except for that it is sparse. Since
the obtained controller is distributed, it can be implemented on separate
CPUs, which will increase robustness and flexibility.
The paper is organized as follows: In Section 2 the continuous model of

the deformable mirror is derived. Since the method to design controllers
in this paper relies on the system being posed in discrete time, we also
show how we discretize the model to retain its sparsity structure. The
general method used to design the controllers for the mirror is described
in Section 3. We give the parameters and the setup of using the synthesis
method to compute controllers for the mirror model in Section 4. Some
implementation issues are also discussed here. In Section 5 the perfor-
mance of the controllers derived in the previous section are investigated.
Finally we give some conclusion and future work in Section 6.
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2. Modeling the Deformable Mirror

1.1 Mathematical Notation

The set of real numbers is denoted by R, real vectors of dimension n by Rn

and real n $m matrices by R
n$m. The zero matrix with the appropriate

size will be referred to as 0. When a partition of a vector or a matrix
has been defined, subscripts will refer to that partition. For example, for
x ∈ R

n then xi ∈ R
ni refers to the ith partition of x and A ∈ R

n$m then
Ai, j = Ai j ∈ R

ni$m j refers to the i, jth partition of A. When the components
of the vectors or matrices are ordered with respect to the partition, xi or
Ai j equivalently means the ith or i, jth block of x or A, respectively. For
a matrix valued function f : Rn$m → R we define the differential d f as
the part of f (X +dX )− f (X ) that is linear in dX , or in other words, the
linearized part of f . The gradient of f with respect to X is denoted ∇X f
and means

∇X f =




� f
�X1,1

� f
�X1,2

⋅ ⋅ ⋅
� f
�X1,m

� f
�X2,1

� f
�X2,2

⋅ ⋅ ⋅
� f
�X2,m

...
...

. . .
...

� f
�Xn,1

� f
�Xn,2

⋅ ⋅ ⋅
� f
�Xn,m




For a pair of (A, B) ∈ R
n$n $ R

n$p we say that the matrix K ∈ R
p$n

stabilizes (A, B) if A − BK has all its eigenvalues in the unit circle. A
pair (A, B) is said to be stabilizable if such K exists.
We use the notation N (µ,σ 2) for Gaussian noise with mean µ and

variance σ 2.

2. Modeling the Deformable Mirror

The dynamic behavior of large thin-plate deformable mirrors can be mod-
eled mathematical either by partial differential equations based on the
principle of virtual work or by linear differential equations based on New-
ton’s laws using the method of finite elements. The later is the most
common discretization technique in structural mechanics. Finite element
analysis is formed by setting the inertia forces minus the force related to
friction and elasticity equal to the external force for the nodes of the finite
elements [Reddy, 2006]. This analysis gives a model on the form

M ξ̈+C ξ̇+Kξ = F (1)

where M is the mass matrix, C the damping matrix, K the stiffness
matrix, F a time-dependent force vector for the external forces, and ξ
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Parameter Definition Value

E Young’s modulus 63$109Pa
ρ density 2.23$ 103 kg/m3
ν Poisson ratio 0.2

h DM thickness 2mm

r radius of the mirror 0.5m

Table 1. Parameter values for a 1m deformable mirror used for the case study.

a vector holding translational and angular displacements. The finite el-
ement model of the deformable mirror was derived using the software
COMSOL Multiphysics, whereM andK are determined. How the matrix
C is determined will be described below.
The case study is concerned with a 1m faceplate made of borosilicate.

The 2mm thick mirror is constrained at the inner rim, which has a di-
ameter of 5mm. The physical parameters are given in Table 1. Actuators
with an actuator pitch of 45mm, are placed in a Cartesian topology, re-
sulting in a total of 372 actuator nodes. The actuators are modeled as
ideal systems, meaning that we assume that the actuators does not have
any dynamics. This paper will not focus on state reconstruction and thus
we will assume that all states of all nodes are available when controlling
the system.
The spatially discretized model of the mirror (1) obtained after the

finite element analysis in this case study, has 6128 discretization points
or nodes. The matrix C is determined by Rayleigh damping model, that
is, letting C = µM +λK for the parameters µ and λ . How the parameters
µ and λ are chosen will be explained in the following discussion. When
determining the matrices M and K through COMSOL Multiphysics, we
also obtain the norm of the eigenvalues of the first 2519 stable modes
of (1), which are independent of C . For each mode, letting ω i be the norm
of the eigenvalue with corresponding eigenvector vi, we have that Kvi =
ω 2iM vi. Without loss of generality, we assume mass normalization of the
eigenvectors such that vTi M vi = 1. If we would assign the dampings ζ i
to every mode i, C must be chosen such that the relations vTi C vi = 2ω iζ i
hold. With the Rayleigh damping model this implies that µ+λω 2i = 2ω iζ i.
Given the modal dampings ζ i, it may not possible to satisfy the equations
for all i. Instead, we will choose the parameters µ and λ to minimize
the average distance to a damping of ζ i = 0.02 for the first 2519 modes,
while not letting any damping be less than 0.005, that is, ζ i ≥ 0.005. This

128



2. Modeling the Deformable Mirror

optimization program will, in this case study, give us the parameters

µ = 33.6
λ = 7.44 ⋅ 10−7

which gives an average modal damping of ζ = 0.025.
Each node of the discretized system has 6 degrees of freedom, 3 trans-

lational and 3 angular. However, in this paper only z translations are
of interest when controlling the mirror. It turns out that it is possi-
ble to reduce the system and only keep 3 degrees of freedom in every
node. With this reduction, the state ξ will contain 1 translational and 2
angular displacements for every node, that is, ξ = [ξ T1 ξ T2 . . . ξ Tn ]T
where ξ i = [ zi φ xi φ yi ]

T . The distribution of nodes is visualized in Fig-
ure 1. The set of nodes where the actuators are placed is denoted Act
and is represented by the red dots in the figure. The force F exerted
by the actuators only directly influences the actuator nodes, thus for
F = [ FT1 FT2 . . . FTn ]T , where Fi = [ fi 0 0 ]T , the force fi can only
be non-zero if i ∈ Act. Introduce the matrix B̃ =

[
B̃1 B̃2 . . . B̃pActp

]
,

with B̃i = e3(ai−1)+1 for all ai ∈ Act, where ek is the Cartesian unit vec-
tor with a 1 in position k. We are now able to introduce an unrestricted
control signal u ∈ R

pActp by letting F = B̃u.
We write the system (1) as

[
I 0

0 M

]

︸ ︷︷ ︸
E

[
ξ̇

ξ̈

]
=
[
0 I

−K −C

]

︸ ︷︷ ︸
A

[
ξ

ξ̇

]
+
[
0

B̃

]

︸ ︷︷ ︸
B

u

This dynamical system is now discretize for a given discretization sam-
pling period ∆t. In this case study the sampling period will be set to
∆t = 2 ⋅ 10−4 s. The states of the discretized system are denoted by x(k) =[
ξ(k∆t)T ξ̇(k∆t)T

]T
. We will use an average between forward Euler and

semi-implicit Euler, that is, an average between the difference equations

Ex(k+ 1) = (E + ∆tA ) x(k) + ∆tBu(k)
(E − ∆tA ) x(k+ 1) =Ex(k) + ∆tBu(k)

This approach will give us the system
[
I −∆t

2 I

∆t
2K M + ∆t

2 C

]

︸ ︷︷ ︸
E

x(k+ 1) =
[
I ∆t

2 I

−∆t
2K M − ∆t

2 C

]

︸ ︷︷ ︸
A

x(k) +
[
0

∆tB̃

]

︸ ︷︷ ︸
B

u(k)

(2)
The discretized system will have 36768 states and still 372 control inputs.
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Figure 1. The distribution of the nodes on the mirror. The red nodes symbolize the
positions of the actuators. In the zoomed box, the green nodes shows the neighbors
to the middle actuator.

3. Control Synthesis Scheme for Descriptor Systems

In [Mårtensson and Rantzer, 2011,Mårtensson and Rantzer, 2010] a con-
trol synthesis scheme for large-scale linear, discrete time systems is pre-
sented. The objective of the scheme is to find a sparse state feedback ma-
trix that minimizes a quadratic cost function. The procedure is to, given
an initial stabilizing feedback matrix, determine a descent direction to
the cost function and change the feedback matrix in this direction. This
is repeated for number of steps to iteratively reduce the cost. The advan-
tage of the scheme is that when considering sparse systems, the descent
directions can be determined efficiently even for large-scale systems. We
will show how to generalize this scheme to systems on descriptor form
in this section. The reason to keep the system on descriptor form is that
both the matrices E and A may have some structure, for example they
may be sparse. But the dynamics matrix E−1A for the equivalent system
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not on descriptor form looses this structure. For large-scale systems it is
not even possible to calculate this matrix due to memory requirement.
Consider the linear, discrete time system on descriptor form

Ex(k+ 1) = Ax(k) + Bu(k), x(0) = x0
u(k) = −Kx(k) (3)

where E is non-singular and K is stabilizing. We will assume that the
admissible feedback matrices are restricted to a given set K . This set
can for example describe the sparsity structure that the feedback matrices
are required to satisfy. The objective of the synthesis scheme is to find an
admissible feedback matrix that minimizes the quadratic cost function

J(K , x0) =
∞∑

k=0
x(k)TQxx(k) + u(k)TQuu(k) (4)

where x(k) and u(k) satisfy (3).
In the following proposition we show how to determine the gradient of

J with respect to K , by determining the solutions to two Lyapunov equa-
tions. It should be noted that it is not possible to determine these solutions
when considering large-scale systems. The reason is that computational
time and memory requirements for solving a Lyapunov equation, scales
as O (n3) and O (n2), respectively, see for example [Bini et al., 2011]. The
result is only an intermediate step in finding a tractable method for de-
termining the gradient. We introduce the notation AK = A − BK and
QK = Qx + K TQuK .

PROPOSITION 1
The gradient of J in (4) with respect to K , for a stabilizing K , is

∇K J = 2 ⋅ (QuK − BTSAK )X0 (5)

where X0 and S satisfy the following Lyapunov equations

EX0E
T = AK X0ATK + Ex0xT0 ET (6)

ETSE = ATKSAK + QK (7)

Proof. Initially, it should be noted that X0 =
∞∑

k=0
x(k)x(k)T for x(k) satis-

fying (3). Also, the value of J(K , x0) = tr
(
SEx0x

T
0 E

T
)
.
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Now, we will determine a Lyapunov equation for the differential dS.

ETdSE = ATKdSAK + M + MT

where M = dK T(QuK − BTSAK ). This means that

dP =
∞∑

t=0
(E−TATK )tE−T(M + MT)E−1(AKE−1)t

With the use of this relation, we can determine an expression for dJ

dJ = tr
(
dP ⋅ Ex0x

T
0 E

T
)

= 2 ⋅ tr

( ∞∑

k=0
(E−T ATK )kE−TME−1(AKE−1)k ⋅ Ex0x

T
0 E

T

)

= 2 ⋅ tr

( ∞∑

k=0
E−T(ATK E−T)kM(E−1AK )kE−1 ⋅ Ex0x

T
0 E

T

)

= 2 ⋅ tr

(
M

∞∑

k=0
(E−1AK )kx0xT0 (ATK E−T)k

)

= 2 ⋅ tr
(
dK T(QuK − BTPAK )X0

)

Now, we use the relation about differentials, dZ = tr(dX T ⋅Y) [ ∇X Z =
Y for matrices X T ,Y of size n$ p. �

The calculation in Proposition 1 relies on the solutions of (6) and (7).
As mentioned, when considering large-scale systems, it is not tractable to
find these solutions. In the following proposition we show how they can
be replaced with the use of the trajectories of (3) and the adjoint system.
The advantage is that now we only have to simulate two systems in order
to determine the gradient of the cost function.

PROPOSITION 2
Define the adjoint states λ(k) with the following dynamics

ETλ(k− 1) = ATKλ(k) − QK x(k), lim
k→∞

λ(k) = 0 (8)

where x(k) is the trajectory of (3). Then the gradient of J with respect to
K is

∇K J = 2
( ∞∑

k=0

(
QuKx(k) + BTλ(k)

)
x(k)T

)
(9)
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Proof. We determine an expression for λ(k) for any t ≥ 0

λ(k) = −
∞∑

i=k+1
(E−TATK )i−k−1E−1QK x(i)

= −
∞∑

i=0
(E−TATK )iE−TQK (E−1AK )i+1x(k)

This gives us that

∞∑

k=0
λ(k)x(k)T = −

∞∑

k=0

∞∑

i=0
(E−TATK )iE−TQK E−1(AK E−1)iAK x(k)x(k)

= −SAK X0

Fitting this into (5) and using that X0 =
∞∑

k=0
x(k)x(k)T gives (9). �

To be able to simulate the system (3) and (8) we need to choose a final
time tfinal. This means that the sum in (9) is truncated to a finite sum
and thus we get an approximation of the gradient. In order to get a good
approximation we need to choose tfinal large enough to get the remaining
part of the sum to be negligible.

4. Control Synthesis for the Deformable Mirror

In this section we will apply the synthesis method described in Section 3 on
the deformable mirror model (2) given in Section 2. Firstly, we will find
a suboptimal feedback matrix that reduces the influence of a non-zero
initial state. This will automatically give us a controller that also reduces
the effects of process noise. This feedback matrix is used to initialize
another feedback matrix that will control the mirror model augmented
with integrator states. The reason to introduce integrator states is to be
able to track a given set-point.

4.1 Initial State Regulation

In this section we will find a structured feedback matrix K for the sys-
tem (2). We assume that each actuator is only allowed to use measure-
ments from nodes close to it, denoted its neighbors, see the green dots
in the zoomed square of Figure 1 for an example. This setup imposes a
structure on the feedback matrix. The structure implies that each row Ki,
used for determining the control signal for actuator i, will be restricted.
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For each Ki, only the elements corresponding to the states of that actua-
tor’s neighbors are allowed to be non-zero. More formally, K has to belong
to the set K

K = {K p Ki j = 0 if j is not a neighbor of actuator i}

With this setup the maximum number of non-zero elements of K is 86538
or 0.63% of the total number of elements. An implication of this structure
is that it is much faster to determine the control signal for every actuator
compared to if all elements were allowed to be non-zero.
The method in Section 3 requires us to choose initial states for the

mirror model system. By simulating the mirror in open loop and exam-
ining the size of the components of each node, we decide that we choose
x0 ∈N (0, X0), where X0 is diagonal and the diagonal of each block X i0 is

[ 10−7 2 ⋅ 10−6 2 ⋅ 10−6 10−3 10−2 10−2 ]

The objective is to determine a feedback matrix that suppresses noise in
the translational states of the mirror, that is, the z-states. This objective is
reflected in the choice of the weight Qx of (4), assigning a large weight on
the z components of each node. We let Qx be diagonal, where the diagonal
for each node is [ 106 10−2 10−2 10−4 10−14 10−14 ]. The weight for
the control Qu is chosen to be a diagonal matrix with all diagonal elements
set to 10−6.
The model of the mirror has integrator states, which means that if it

is left uncontrolled it is not asymptotically stable. In order to apply the
synthesis method, we need to find an initial stabilizing feedback matrix,
K (0). A rudimentary strategy to find K (0) is to try a decentralized P-
controller, that is, the only non-zero element in each row i of K (0) will
be the element corresponding to the state of that actuators translational
displacement, z. By simulation we find that one possible choice is to let
all these non-zero elements equal 2.5 ⋅ 102.
From the initial stabilizing feedback matrix, K (0), we update the feed-

back matrix according to the following steps

ALGORITHM 1
In iteration step τ ≥ 0, to update the current feedback matrix K (τ )

1. Choose x0 ∈ N(0, X0) and simulate system (2) for 1000 time sam-
ples.

2. Simulate the adjoint system (8) with λ(1000) = 0.

134



4. Control Synthesis for the Deformable Mirror

3. Let ψ (k) = QuKx(k) + BTλ(k) and determine the descent direction

G by letting Gi j =
1000∑

k=0
ψ i(k)x j(k)T for all actuators i and the corre-

sponding neighboring nodes j. The remaining elements of G are set
to 0.

4. Let Jest(K , x0) =
1000∑

k=0
x(k)TQxx(k) + u(k)TQuu(k), where x(k) sat-

isfies (2) with u(k) = −Kx(k). Now, let γ τ = 1.5γ τ−1 if Jest(K (τ ) −
γ τG, x0) < Jest(K (τ ), x0). Otherwise we decrease γ τ with a factor of 5
until Jest(K (τ ) − γ τG, x0) ≤ Jest(K (τ ), x0).

5. Let K (τ+1) = K (τ ) − γ τG.

6. Increase τ with 1 and goto step 1.

REMARK 1
Step 4 of the algorithm requires some explanation. In this step we choose
the step length for the descent direction. If the step length in the previous
iteration does not lead to a decrease of the cost it is reduced with a factor
5 until the cost is reduced. Since G is a descent direction it is obvious
that the process of reducing the step length will terminate. Hence, this
ensures us that we get a reduction of the cost in each iteration. But if
the step length is much shorter than necessary the convergence of the
algorithm will be slow. Hence, if it is possible to reduce the cost with a
step length of 1.5 of the previous step length, the step length is increased
by this factor. The reason for not doing a line search is for each evaluation
of the cost we need to simulate the system. The simulation of the system
is the time consuming part of the algorithm and we would like to keep
the simulations at a minimum. Since the gradient calculation also relies
on simulations, it requires the similar amount of time as determining the
cost. Hence, we rather calculate a new descent direction instead of finding
the optimal step length in the current direction at the expense of making
many cost evaluations.

A problem with gradient methods when solving optimization problems is
that if the level sets of the cost function are flat in some directions, the
decision variables in each iteration tend to jump back and forth without
reducing the cost by much. This means that poorly scaled decision vari-
ables heavily affect the number of iterations to converge to the optimal
value. For small scaled optimization problems a remedy is to determine
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the Hessian and use Newton’s method. This approach is not possible in
the control synthesis for the mirror for a simple reason. The Hessian is
isomorphic to a square matrix with the side 372 ⋅36768 ( 1.4 ⋅107, a huge
matrix. To find a way to handle the scaling problem, we will use the fact
that the nodes of the mirror are homogeneous with respect to the types of
components of the node. We will assume that for a gradient the step that
is possible to take for the ith component in all nodes is similar. Given a
direction G in which we will update the feedback matrix K , let Gi be the
projection of G onto the subspace

{K p K:,b = 0 unless b " i (mod 6)}

Hence, in this subspace only component i in every node is allowed to be
non-zero. Now, we find an approximation of the maximal step length γ i
in which γ iGi reduces the cost. This is done by starting at an initial γ i.
If the cost is reduced with this initial step, while γ i reduces the cost it
is increased by some factor. Otherwise, if the initial step does not re-
duce the cost, γ i is decreased by some factor until it is a reducing step
length. Letting H be the a diagonal matrix where each node has diagonal
[γ 1 γ 2 γ 3 γ 4 γ 5 γ 6 ], the descent direction G ⋅H is better scaled than
G. Typically, the vector γ is in the order of [109 105 105 103 100 100 ]
for each i. This means that without the scaling the first component of each
node will not change since the step length will be governed by the last 2.
The calculations of the scaling matrix requires a number of evaluations of
the cost function, which makes it computationally demanding. However,
it does not change much in between iterations and thus, does not have
to be recalculated often to obtain the benefits of introducing it. For this
reason, we will only recalculate the scaling matrix every 50th iteration.
In Algorithm 1 the number of iterations that the feedback matrix is

updated is set to be τmax = 1000. All calculations in one iteration requires
on average 1 minute to perform (with a Linux PC with a 3 GHz Intel Core
i7 processor and 4 GB memory). This results in a total computation time of
approximately 16.6 hours. It should be noted that 70% of the computation
time is spent on calculating E−1x and E−Tλ in the simulation phase. The
inversion is accomplished by precomputing sparse LU-factorizations of E
and ET and using them to perform the inversions. This computational
time should be compared to the expected computational time required by
conventional methods for finding the optimal full feedback matrix. The
computational complexity of these methods are O (n3). We determine the
computation time for solving the LQR problem for the mirror model where
we remove a number of nodes. By removing different number of nodes, we
can extrapolate the obtained computational times to estimate the time
required to solve the LQR problem for the full mirror model, if we dis-
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regard the problem with memory requirement. This procedure gives an
estimated computation time of 81 days.

4.2 Set-Point Tracking

In the previous section we found a stabilizing feedback matrix to mini-
mize the influence of a non-zero initial state. The actual objective when
designing a controller for a deformable mirror is to be able to follow the
atmospheric distortion, or in other words follow a reference trajectory. To
accomplish the reference tracking, we will introduce integral action by
including integrator states in the mirror model

xinti (k) =
k∑

j=0
ri( j) − zi( j)

where ri(k) is the reference for the translational states zi for the nodes i
that are to have integral action. However, it is not possible to introduce
integrator states for every node. The reason is simply that the extended
system would not be stabilizable. If the extended system was stabilizable
it would be possible to, for any reference signal r, determine a control
signal that would make the z components equal r in stationarity. Such a
stationary control signal can be determined by solving

min
x,u
qr − xzq

subject to: Ex = Ax + Bu

It turns out that for most reference signals the optimal norm does not
equal zero implying that it is impossible to reach that reference in sta-
tionarity.
Instead we will only introduce integrator states for the actuator nodes.

The extended dynamical system becomes
[
E 0

0 I

] [
x(k+ 1)
xint(k+ 1)

]
=
[
A 0

−Cref I

] [
x(k)
xint(k)

]
+
[
B

0

]
u(k) +

[
0

I

]
r(k)

where Cref is the partial identity matrix picking out only the z states
for the actuator nodes. The extended system requires us to determine
an extended set of admissible feedback matrices Kext. This is done by
extending the previous set K

Kext = {[ K K int ] p K ∈K , Kint ∈Kint}

The set Kint allows each actuator to use the integrator states of approx-
imately 20 of the closest actuators. The number of non-zero elements of
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Kext is 93648, that is, 7110 more than the feedback matrix for the system
without integral action.
The distribution of the initial state x0 is kept as in the previous section,

while the initial state of the integrators are always set to 0. The weight
Qx and Qu for the states x and the control u, respectively, are also kept
the same. The weight for the integrator states is set to Qintx = 106 I.
We will now run Algorithm 1 on the extended system. As in the previ-

ous section we need to initialize the algorithm with a stabilizing feedback
matrix, K (0)ext = [ K0 K int0 ]. We use the previously determined feedback
matrix to initialize K0. To find an initial K int0 we apply the same technique
as previously and let only the integrator state for actuator i influence the
control of actuator i. One possible choice for these non-zero elements is to
set them to −10.
The number of iterations is still set to be τmax = 1000. The inversion

of the extended E matrix is essentially the same as previously, since it is
block diagonal with the upper block equal to the original E and the lower
block as the identity. Since this was the major time consuming operation,
the computational time is hardly changed.

5. Evaluation of the Controllers

In this section feedback matrices determined in Section 4 are to be evalu-
ated with respect to different performance measures. These measures will
involve the LQR cost function, but also measures used when evaluating
controllers for adaptive optics.

5.1 Feedback Matrix for Initial State Regulation

In this section we will evaluate the feedback matrix determined in Sec-
tion 4.1. First we will show the suppression of the initial state when using
the feedback matrix. We pick an initial state x0 ∈N (0, X0) and simulate
the mirror model (2) with the control u(k) = −Kx(k) for 0.2 seconds, that
is, 1000 time samples. In Figure 2 we find the initial state and the state
after 0.02 seconds, 100 time samples, of the z component of each node.
We can tell that the initial noise caused by the initial state is reduced
significantly. The state cost, that is, x(k)TQxx(k)+u(k)TQuu(k), is deter-
mined for all times during the simulation. In Figure 3 we show the time
evolution of the state cost for 0 ≤ k ≤ 200. It should be noted that the
cost is plotted in logarithmic scale. In the plotted time interval the ratio
between the maximal and minimal state cost is 3 ⋅ 10−3. When examining
the state cost trajectory for the complete time interval 0 ≤ k ≤ 1000 it
turns out that this ratio is 1.7 ⋅10−11. This motivates that we truncate the
cost after 1000 samples.
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(a) The initial shape of the mirror.
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(b) The shape of the mirror after 0.02 seconds.

Figure 2. The initial shape and the shape after 0.02 seconds when controlling the
mirror with the obtained feedback matrix.
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Figure 3. The trajectory of the step cost x(k)TQx x(k)+u(k)TQuu(k) for the time
samples in the interval [0, 200] when controlling the mirror with the obtained feed-
back matrix without integral action.

While running Algorithm 1 when determining the feedback matrix
used in this section, the feedback matrix in every 20th iteration is saved.
For each of these matrices we will determine the LQR performance to
show how the cost is changed when the algorithm runs. The LQR cost
will be estimated by simulating the system for 1000 time samples from
100 different initial states, and determining the average of the truncated
cost function

Jtrunc(K , x0) =
1000∑

k=0
x(k)TQxx(k) + u(k)TQuu(k)

over these initial states. The same initial states are used to determine the
cost for all feedback matrices. The resulting cost for each matrix normal-
ized with the smallest cost, is found in Figure 4. Only a zoomed part of
the plot is shown to indicate the changes in the final feedback matrices.
In the full plot the initial feedback matrix has a normalized cost of more
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Figure 4. The change in the estimated cost of the feedback matrices in the syn-
thesis process. The estimated cost for every 20th feedback matrix is plotted. We can
see that the cost that the feedback matrices seem to converge.

than 12. Hence the final feedback matrix reduces the LQR cost by more
than a factor 12. We see that the cost seems to converge meaning that
continuing the update process in Algorithm 1 will probably not reduce
the cost much more.

5.2 Feedback Matrix for Set-Point Tracking

We will now evaluate the feedback matrix for the extended system that
was introduced in Section 4.2. We will define the reference trajectory ri(k)
by the value we would like the z component in node i to have in time k. The
control signal will now be determined by u(k) = Kext(R(k)−xext(k)) where
R(k) is the collected reference for all the states, that is, each element of
R(k) equals 0 unless it corresponds to the z-component of each agent i,
for which it equals ri(k).
First we examine the cost when starting from an initial state and

controlling all states to 0, that is, ri(k) " 0 for all nodes i. The result of a
simulation is given in Figure 5. The plot shows the step cost for that time,
that is, x(k)TQxx(k)+u(k)TQuu(k) for each k. We can see that in 200 time
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Figure 5. The trajectory of the step cost x(k)TQx x(k)+u(k)TQuu(k) for the time
samples in the interval [0, 200] when controlling the mirror with the obtained feed-
back matrix with integral action.

steps the step cost is reduced by a factor of 3.6⋅10−2 from the largest value.
It turns out that in 1000 samples this ratio is 9.3 ⋅10−7. As previously, this
motivates us to truncate the cost after 1000 time steps. Similarly to the
evaluation of the feedback matrices without integral action, every 20th
feedback matrix is saved when running Algorithm 1. We determine the
truncated cost for each of these matrices by simulating the system for 1000
time steps for 100 different initial states. The same initial states are used
when determining the cost for each feedback matrix. The improvement of
the cost function is shown in Figure 6.
When a wavefront enters the aperture of the telescope, the optimal

scenario is that it has the same phase at any two points. As light travels
through the atmosphere the wavefronts is subjected to the turbulence of
the atmosphere. This causes the phase of the wavefront to be distorted and
when it eventually reaches the telescope it is significantly out of phase,
see Figure 7. Hence, if left uncorrected the phase at different points of
the aperture will be noticeably different. The objective when controlling
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Figure 6. The change in the estimated cost of the feedback matrices with integral
action in the synthesis process. The estimated cost for every 20th feedback matrix
is plotted. We can see that the cost that the feedback matrices seem to converge.

the deformable mirror is to change the shape of the mirror such that the
wavefront enters the aperture with the same phase again. If the mirror
matches the shape of the incoming wavefront, the optical system is lim-
ited by diffraction and not by the atmosphere. The distortion of circular
wavefronts with radius R is usually described by using the orthogonal
Zernike polynomials as a basis [Noll, 1976], that is, the wavefronts take
the form

φ(r,θ ; t) =
∞∑

n=0

n∑

m=−n
anm(t)Zmn (r/R,θ)

where anm(t) is the time varying coordinate for each Zernike polynomial.
The Zernike polynomials are given by

Zmn (ρ,θ) = Rmn(ρ) cos(mθ)
Z−mn (ρ,θ) = Rmn(ρ) sin(mθ)
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Figure 7. A schematic diagram of the distortion of wavefronts. Initially the wave-
fronts are in phase, shown by the straight lines. As they pass through the atmo-
sphere they are distorted, meaning that in a cross section of the light, the phase is
not equal in different locations of the cross section. This is represented by the wavy
lines.

for 0 ≤ ρ ≤ 1 and 0 ≤ θ ≤ 2π and where the radial function

Rmn(ρ) =
(n−m)/2∑

k=0

(−1)k(n− k)!
k!((n+m)/2− k)!((n −m)/2− k)! ρ

n−2k

for 0 ≤ m ≤ n and n " m (mod 2). The polynomials Zmn (ρ,θ) are referred
to as even, while Z−mn (ρ,θ) are referred to as odd. It turns out that the
low order polynomials hold the most of the phase distortion information
of light through the atmosphere. Hence, a controller of the mirror should
be able to mimic the shape of the low order Zernike polynomials in a
reasonable time in order to correct the time varying distortion in a sat-
isfactory way. A guideline is that the mirror should be able to mimic the
shapes in 0.02 seconds. Since the radius of the mirror is 0.5 meters we
will control the mirror to the shapes of Zmn (2r,θ). To evaluate the control
to a shape, the root mean square error (RMS) is computed. In Figure 8
we show the time evolution of this ratio when controlling the mirror from
0 initial state to the Zernike polynomial 10−6 ⋅ Z24(2r,θ). The plot shows
that in 0.02 seconds the RMS value stabilizes implying that the mirror
has reached a stationary shape. To show the performance of the controller
for the low order Zernike polynomials, we will examine the response to the
27 first Zernike polynomials excluding the constant z-translation, that is,
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for all Zernike polynomials with 1 ≤ n ≤ 6. For each polynomial we ini-
tialize all states of the mirror to be 0 and simulate the controlled system
for 0.02 seconds. This will show how well the controller is able to reduce
each polynomial in a reasonable time. The blue dots in Figure 9 represent
the resulting ratio between the RMS of the uncontrolled mirror and the
resulting RMS of the controlled mirror. For each n, the ratio of the even
and odd polynomial with the same m are plotted next to each other. For
the first few polynomials the ratio is around 100. As the Zernike polyno-
mial becomes more complex, the ratio drops down to a value around 10.
These values should be related to the optimal ratios that can be obtained
in stationarity. These optimal stationary RMS ratios can be determined
by solving the quadratic program for each Zernike polynomial

min
x,u
qr − xzq

subject to: Ex = Ax + Bu

where x is the full state vector, xz is the part of the state vector corre-
sponding to z-translations and r is the value of the Zernike polynomial
in each node. The RMS of the obtained xz will give us the optimal RMS
ratio. The resulting ratios are shown in red in Figure 9. We actually see
that the apparent low ratios in the last polynomials are not more that a
factor 1.85 from the optimal values.

REMARK 2
It should be noted that for some n, the seemingly similar polynomials
Zmn (ρ,θ) and Z−mn (ρ,θ) give different RMS ratio. This is explained by the
asymmetric configuration of the actuators. For example, the area around
x = 0.5 and y = 0 is hard to control, thus potentially giving large errors.
In the area around x = y = 1

2
√
2
there are more actuators making it easier

to control this area.

The atmospheric disturbance can be modeled in the time domain using
phase screens. A phase screen Pλ(t, x, y) describes the phase added to a
wavefront for a given wavelength λ , as it passes through the atmosphere
at time t in the spatial coordinates (x, y). Given the wind velocity vector
(vx,vy) and assuming frozen turbulence, the phase screen has the following
property

Pλ(t, x, y) = Pλ(s, x + vx(s− t), y+ vy(s− t))
for all times t, s ∈ R and all points (x, y) ∈ R

2. This property means that
the phase screen can be thought of as a continuous, static matrix moving
in the wind direction. The values of the matrix is the amount of phase
distortion that is to be added to the wavefront. Hence, only the shape of the
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Figure 8. The RMS of the error in the z component when controlling the mirror
to the shape of Z24 (2r,θ). In the time interval the RMS converges to its stationary
value, implying that the controller is able to reduce this mode in a reasonable time.

phase screen at time 0 needs to be determined. The phase screen computed
here is based upon Kolmogorov turbulence, described in [Hardy, 1998]. By
gridding the spatial coordinates for a part of the phase screen we get a
matrix of a section of the phase screen where the entries are the phase
distortion in the grid points at time 0. To determine the phase distortion
for a coordinate (x, y) within the boundaries of the matrix, interpolations
of the grid points is used. The phase screen is now swept over the mirror
in the wind velocity vector. The purpose of the controller is to make the
mirror follow the shape of the phase screen. A measure of the performance
commonly used in adaptive optics is the Strehl ratio, given by

S = e−(2π ǫ(k)/λ)2

where ǫ(k) is the RMS at time k and λ is the given wavelength. The Strehl
ratio is thus in the interval (0, 1]. An acceptable level of the Strehl ratio is
0.8 or higher. To measure the atmosphere a wavefront sensor is used, for
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Figure 9. The suppression ratios of the RMS values when controlling the mirror
to the first 27 Zernike polynomials. The values of the ratios when using the feedback
controller is given by the blue dots. In red we find the optimal stationary suppression
ratios.

example a Shack–Hartmann wavefront sensor. It is not possible to mea-
sure the aberration in every node. We will assume perfect measurements
of the phase screen only in the actuator nodes. To determine the value
for the remaining nodes we use interpolation of the measurements from
the actuator nodes. For the nodes outside of the convex hull of the actua-
tor nodes, we will assume that we also have measurements of imaginary
nodes in the grid of actuators, in a sense extrapolated actuator nodes.
Also, we assume that the sampling time of the wavefront sensor is 2ms.
In between the sampling time we will hold the reference to the mirror
constant, thus not using any technique to predict the change in the phase
screen. When simulating the mirror following the phase screen, the actual
phase screen is updated in the sampling time of the system. Hence, the
error will be determined by the difference of the mirror and the phase
screen. The result of a simulation of the mirror following a phase screen
in a 0.02 second window was performed and the resulting Strehl ratio is
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Figure 10. The Strehl ratio obtained when running a phase screen over the mir-
ror for a time interval of [0,0.02] seconds. Initially it starts at a low Strehl ratio
due to the initial position of the mirror. As time progresses the ratio approaches
the maximal possible value of 1. The oscillatory behavior of the trajectory can be
explained by the longer sampling time of the wavefront sensor.

given in Figure 10. The initial state of the mirror is 0, giving the tran-
sient behavior in the beginning of the time interval. After about 1ms the
Strehl ratio converges to a value close to 1. It should be noted this ex-
tremely good Strehl ratio will probably drop when some sources of error
are introduced that have been neglected in this paper. For example, it will
not be possible to measure all states of all nodes. When a Kalman filter
is to estimate the states, the performance will naturally drop. Also, the
dynamics of actuators and future sensors have not been considered here.

148



6. Conclusions and Future Works

6. Conclusions and Future Works

6.1 Conclusions

In this paper we have demonstrated how to determine structured state
feedback controllers for a large deformable mirror for adaptive optics. The
synthesis method for the controllers relies on previous work [Mårtens-
son and Rantzer, 2011,Mårtensson and Rantzer, 2010]. The mirror is dis-
cretized into nodes with 3 degrees of freedom and then modelled by a
discrete time system where the structure of system matrices follow the
interconnection graph of the nodes. Similar, the admissible feedback ma-
trices must also follow this structure, which will result in sparse matrices.
Using the synthesis method, a feedback matrix to suppress process noise
is determined. The feedback matrix is evaluated by simulating the system
from non-zero initial states and calculating the LQR cost. Also, a feedback
matrix for set point tracking is determined. The evaluation of this matrix
involve the tracking of Zernike polynomials and a phase screen. A promis-
ing Strehl ratio of a value close to 1 is exhibited when tracing the phase
screen. It should be kept in mind that a few sources of error has been
disregarded. For example, the states of all nodes are assumed to be mea-
sured. When introducing sensors in only a few nodes, the value of the
Strehl ratio will probably drop.

6.2 Future Works

In this paper we present initial work for finding an LQG controller for
deformable mirrors. There are still a number off issues that needs to be
looked into.

• We assume measurements of every state in every node. When intro-
ducing positions sensors in a subset of the nodes, an state estimator
needs to be implemented. In [Mårtensson and Rantzer, 2012] it is
shown how to determine structured Kalman filters in a similar fash-
ion as the structured feedback matrix, in order to obtain a structured
output feedback controller.

• We have neglected the influence of dynamics in the actuators and
the future sensors. With the high sampling frequency for the discrete
time model used in this paper these components may show a dynamic
nature.

• The robustness of the future LQG controller should be examined.
In this paper the performance of the controller is evaluated using
the same model of the mirror. The evaluation could be made with a

149



Paper IV. Synthesis of Feedback Controllers for a Large Deformable Mirror

continuous model of the mirror building on a modal representation
of the system.
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