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ADAPTIVE CONTROL OF SYSTEMS SUBJECT TO LARGE PARAMETER CHANGES

Tare Higglund

Department of Automatic Control, Lund Institute of Technology

Lund, Sweden

Abstract. A method to handle large parameter changes in adaptive control is described. A fault
detection procedure is Introduced, and the gain In the estimator is increased whenever a fault
occurs. A new fault detection procedure is presented, which fulfils the requirements of this
special application. One of these requirements is, that the noise variance is not assumed to be
constant, The fault detection method can also be applied to ordinary fault detection problems.

Keywords: Adaptive control, Fault detection, Parameter estimation, Time-varying systems.

INTRODUCTION

The ability to track time-varlations In the process
model Is one of the main advantages of an adaptive
controller, compared with fixed parameter controllers.
Estimation of time-varylng parameters s therefore a
key issue In adaptive control. To be able to track
time-varying parameters, the measurements entering
the estimator must be welghted properly. If the plant
to be identified is tlme-varying, old input-output
pairs may not be relevant for the actual model. Their
influence on the estimates should therefore be reduced.

The set of admlssible time-varliations In the adaptive
control concept can be separated into two categories:
Slow parameter changes, and large parameter changes
which occur infrequently.

Slow parameter changes are handled by preventing the
gain in the estimator from becoming too small. This is
mostly done by introducing a forgetting factor, which
causes an exponentially decreasing weight of the
measurements. This method ls known to cause problems
in situations of poor excitation. Another way of
handling slow parameter changes s to restart the
estimation repeatedly. In Higglund (1983), a method Is
glven which makes the estimator retain a constant
amount of information.

Large parameter changes may be treated in a special
way, since these changes can be detected. This paper
is concerned with parameter estimation In the case of
large parameter changes. The material is picked from
Hégglund (1983), where more details are to be found.

The problem can be divided into two parts: Detection
of parameter changes and modification of the
estimation algorithm. The first part is related to fault
detection. The paper therefore begins with a short
discussion of earlier fault detection methods, and
requirements on a fault detection procedure which is
sultable for adaptive control are set up. A new fault
detectlon approach is then presented, and the problem
of modifying the estimation procedure when a fault is
detected |s treated. Finally, the new fault detection
procedure ls illustrated by a simulation example.

FAULT DETECTION METHODS

Throughout the paper, it is assumed that the process
can be described by the model

y(t) = B(t-l)Tw(t) + e(t) (1)

where y(t) i3 the measured output from the process,
@(t) is a vector containing old inputs and outputs of
the process, {e(t)} is a dlsturbance sequence of
independent random variables and 8(t) s a parameter
vector. Furthermore, it will be assumed that the
disturbances {e(t)} have a symmetrical probabllity
distribution. The restriction to white noise
disturbances 1s made just for convenience. Coloured
noise can also be treated, as is discussed below.

It should first of all be mentioned that the notation
"fault" In this paper means a change in the process
model, more precisely in the parameter vector 6(1),
which does not necessarily originate from a physical
fault in the process. It can e.g. just as well be a
parameter change due to a shift of the operating point
in a nonlinear system.

A great variety of methods for fault detection has
appeared In recent years. Some of them are general,
while others are devoted to special applications or
concerned with voting between some known models.
Surveys of fault detection methods and references to
applications are given in Basseville (1982) and in
Willsky (1976). The adaptive control problem requires
a general method. The following discussion is therefore
restricted to such approaches.

A fault detectlon procedure consists in forming a test
sequence which {s sensitive to faults, i.e. which has
significantly different properties before and after a
fault. This sequence is then analysed and decision
theory is applied to decide if and when a fault occurs.

The residual sequence {e(t)}, l.e. the differences
between the true output signals and the expected
output signals of the system, is the predominantly used
test sequence. The expected output signals are mostly
derived from a Kalman fllter or a parameter estlmation
algorithm. When the statistics of (e(t)} differs
considerably from the measurement noise sequence
{elt)}, a fault is concluded.

There are two great disadvantages with such tests.
First, the statistics of the noise sequence {e(t)} must
be known to enable any decision about faults. This is
easily seen In Equation (1), where a registered change
of the statistical properties of {e(t)} obviously can
originate from either a fault or a change in the noise
sequence (e(t)}. The assumption of known disturbance
statistics is further discussed in the next section.

The second disadvantage is that only faults that have
a large Influence on the output signal can be expected
to be detected. In processes with reasonable noise



levels, large {aults may often occur without any
immediate large effects on the output signals. It should
be possible to detect such successive effects in the
output signal by a sultable nonlinear dynamic
manipulation of the measurement sequence.

The parameter estimator used in an adaptive controller
is such a filter, and it produces estimates of the
parameter vector 6(t). Since the problem of fault
detection is concerned with changes in this yector, It
seems natural to use the estimate sequence (8(t)} as a
starting point for detection.

In spite of the drawbacks of using the residuals e(t) as
a test sequence, this use Is seldom questioned in the
literature. Far more interest is payed to the cholce of
decision method. All variants from the Sequential
Probability Ratio Test, see Wald (1947), to simple
cumulative sum tests have been suggested. It would
lead too far from the theme of this paper to discuss
these methods in detail, but the reader is refered to
the references, Basseville (1982) and Willsky (1976),
which glve extensive reviews with many references.

REQUIREMENTS ON THE FAULT DETECTION

To facilitate the choice of fault detection method, to
be used in an adaptive controller, some natural
requirements for this special application will be stated
here.

(R1) The times when the faults occur are not known.
(R2) The nature of the faults {s not known.

Slnce the transformation between the physical
parameters in the process and the parameters in
the model (1) is usually quite involved, this Is a
natural requirement.

(R3) It must be possible to repeat the detection from
the new modes of operation.

Thls means e.g. that there does not exist any
"normal mode". As soon as a change in 6(t) is
accepted, the old parameters are forgotten. This
requirement is considered to give a general
method. In some applications it can be relaxed.

(R4) A change in the nolse level must not disturb the
detection.

The only assumption made on the noise sequence
{e(t)} is that It consists of Independent
symmetrically distributed random variables.
Therefore, a change in the noise level does not
effect the parameters 6(t). This is an important
requirement, since a change in the noise level is
often much more likely than a change in the
process parameters.

Requirement (R4) is important, not only for the reason
glven above. In real processes, disturbances are often
entering at several points, and not only additively to
the Input or output signals. In the process model, the
different disturbance sources are represented by one
equlvalent source entering at one point, see
Astrdm (1970). The characteristics of these equivalent
disturbances depend on the process parameters. This
means that a change in the parameter vector usually
also causes a change in the equivalent output noise
level. Under these circumstances, it does not seem
very realistic to detect faults under the assumption
that the noise level in tho output ias constant.

According to the previous section, the requirement
(R4) unfortunately rules out most of the existing fault
detection methods. A new fault detection procedure
which satisfles the above requirements will now be
presented. It was first described in Higglund (1982).

A NEW FAULT DETECTION METHOD

A new fault detection method will now be discussed.
The least squares parameter estimation method with
constant forgetting factor will be used as a starting
point. There are two reasons for this. First of all, the
new fault detection method will not be restricted to
any particular estimation scheme, so the conversion to
e.g. the new discounting principle given in Higglund
(1983) Is trivial. Secondly, the least squares method
with forgetting factor Is still the most common
estimation scheme {n adaptive control.

The equations of the least squares estimator with a
constant forgetting factor are

A A
8(t) = 8(t-1) + P(tigpltie(t) (2a)

P(t-lhptt!q)(t)TP(t*il

A+ plt) P(t-1)0(t)
(2b)

P(t) = P(t-1)

1
A

A A T
e(t) = y(t)-y(t) = (8(t-1)-8(t-1)]) g(t) +

+ e(t) 4 e(t-l)T(p(t) + e(t) (2c)

A ~
Here (%) is the estimate of 6(t), ©(t) is the estimation
error at time t and y(t) Ils the prediction of y(t) made
at time t-1.

The real problem is to detect changes in the parameter
vector 8(t). The vector 8(t) Is not known, and nelther
is 8(t). However, the dlfference between two succes-
sive estimation errors AB(t) is known for o(t) constant,
since

~ ~ had A
A0(t) 4 8(t)-8(t-1) = 8(t)-0(t)-B(t-1)+

A A A A
+0(t-1) = -8(t)+6(t~-1) = -AB(t) (3)

in this case. These differences will glve the
information needed for the fault detection. To be able
to extract this information, the statistics of {A6(t)}
will first be investigated.

From Equation (2) the dlfferences between two
successive estimates are glven by

T

. ~
a8(t) = P(tiot) fortrTott-1) + et)) (4

At tlme t, the estimates are thus updated In the
direction of the vector P(U)¢(t). The probabilities of
positive and negative direction are almost the same In
normal operation when no fault has occurred, i.e. when
the estimated parameters are close to the true ones.
This is intuitively seen from the following arguments.

When A =1, the estimation precedure is the ordinary
recursive least squares algorithm without any
discounting of past data. It i{s known to be the best
linear unblased estimator, see e.g. Goodwin and
Payne (1977). This implles that there is no correlation
between the increments of the parameter estimates in
normal operation. If there were a correlation, it would
be possible to modify the algorithm so that a smaller
variance of the estimates were obtalned. Hence, when
A =1 the probabilities for the estimate increments to
have positive and negatlve P(t)@(t) direction are the
same, 0.5.

When A <1, a negative correlation between Lwo
successive estimate Increments {s expected. If a
forgetting factor less than one {s used, the gain in the
parameter estimator is greater than it should be for
A = 1. Intuitively this means that the algorithm in each
updating of the estimates has to compensate for the
large step taken previously. Hence the expected
correlation is negative. However, from continulty



arguments this correlation is small when A Is close to
one, and the probabilities of positive and negative
P(t)e(t) direction of the estimate Increments are
approximately the same. This is illustrated in Example
1 below.

The arguments above imply that under normal
operation

T T

A A A A
P(ae(t)r a8(t-1)>0) ~ Pab¢trTad(t-11<0) (5

where P denotes the probability measure.

When 8(t) is not close to its true value, l.e. when a
fault has occurred, the approximations used in the
heuristic arguments above are no longer valid. Slnce
the estimated parameters then will be driven towards
the new values, the following inequality holds

P[Aé(t)T

A A 'r A

46(t-1)>0) > P(a8(t) 46(t-11<0) (6)
The intuitive way of arguing that the correlation
between successive estimate increments is small In
case of constant parameters may be unappealing to
readers familiar with more strict mathematical
derivations. In the following example, Equation (5) is
verified under falrly hard restrictions.

Example 1. Consider the process model

y(t) = 8:u + e(t) (7)
where the Input u i{s constant and {e(t)} is a sequence
of independent Gaussian random variables. If the

estimator defined by Equation (2) s applied, the
P-matrix converges to the constant scalar

(8)

The updating formula of the estimate of © then becomes

. o o
8et) = 6ct-1) + 22 (Bct-1r-u + etr] (o)
u

The following expression for the probabilities can now
be obtained

P (a8(t)-88(t-1)<0) = % * i arcsin (122 (10)

" For the detalls, see Hi#gglund (1983). Table 1 gives
some numerical values of the probability of getting a
negatlve scalar product between two successive
estimate increments. For reasonable values of A,
Equation (5) Is obviously true in this simple example.

o

A 0.9 0.95 0.98 0.99 0.999

Probability 0.5139 0. 5080 0.5021 0.5016 0.5002

Table 1 - The probability of getting a negative scalar
product between successive estimate
increments in Example 1.

Implementation

Instead of observing the scalar product between two
successive estimate Increments, It |s often more
efflclent to study the scalar product between A6(t) and
a sum of the latest estimate increments. To simplify
the algorithm, an exponential filtering of the
increments of the estimates will be used instead of an
ordinary sum. For this purpose, introduce w(t) as

A
wit) = y wi(t-1) + A8(t) 0y, <1 (1)
1 1

In the case when a fault has occurred, w(t) can be
viewed as an estimate of the direction of the
parameter change. The motivations for the Equations
(5) and (6) are valld even when w(t-1) is substituted
for A6(t-1). The test sequence that will be studied is
{s(t)}, where s(t) is deflned as

~
s(t) & aign(aéctrTwit-1)) (12)

The sign function makes the test sequence insensitive
to the noise variance. It s now clear in principle how
to carry out the fault detection:

"Inspect the latest values of s(t). If s(t) is +1
unlikely many times, conclude that a fault
has occurred."

The idea to use the signs of the differences between
successlve estimates to decide whether the estimates
has converged or not has been proposed before. Kesten
(1938) proposed a method to accelerate a stochastic
approximation method by letting the gain of the
estimator depend on the frequency of the changes of
these signs.

Testing method

Under normal operation, l.e. when the parameter
estimates are close to thelr true values, s(t) has
approximately a symmetric two polnt distribution with
mass 0.5 each at +1 and -1. When a fault has occurred,
the distrlibutlon Is no longer symmetric, but the mass
at +1 {s larger than the mass at -1. To add the most
recent values of s(t), the stochastic varlable r(t)
defined as

T(t) = yor(t-1) + (1-y,)e(t) O< vo<l A

Is introduced. The sum of the most recent values of s(t)
Is replaced by an exponentlal smoothing In order to
obtain a simple algorithm. When the parameter
estimates are close to the true ones, r(t) has a mean
value close to zero. When a fault has occurred, a
positive mean is expected.

The parameter ¥y, determines, roughly speaking, how
many s(t) values @hat should be included. E.g. vy, = 0.95
corresponds to about 20 values, which {5 a reaSonable
cholce In many applications. A small y,. allows a fast
fault detection, although at the price og less security
agalnst false alarms. This trade-off is typical for all
fault detection methods. When the signal to nolse ratio
is small, it is not possible to detect the faults as fast
as otherwise. It Is then necessary to have more
information available to decide whether a fault is
pregent. This can be achleved by Increasing ¥

For wvalues of vy, close to one, r(t) will have an
approximately Gaussian distribution with variance

1 -
62 = “—2. (14)
¥2

Since v, is generally chosen in this region, 1t will in
the sequel be assumed that r(t) is Gausslan.



If r(t) exceeds a certain threshold r., a fault may be
concluded with a confidence determined from the value
of the threshold. In the present algorithm, the
threshold can be computed directly as a function of the
rate of false alarms f_. If a false alarm frequency equal
to f is scceptable, a fault detection should be glven
every time r{t} (s greater than the threshold ru,
defined by

L] 2
P{rtrzr,) = /i_ Jexp (- X5)ax = £, s
2n o Tq 20

If a small value of the threshold is chosen to make it
possible to detect faults quickly, the false detection
rate will be high. Thls {s seen in Equatlon (15), where
there is an inverse relatlon between r, and f,. As was
sald before, thls compromise between fast detection
and security agalnst false alarms must be made in all
fault detection methods. The determination of r. in this
method has the advantage that it s formuPat.ed in
terms of the expected frequency of false detections,
which may be chosen to suit any particular
application. In Fig. 1, the error frequency f, versus
the threshold Ty is presented for some values off Yo

The fault detectlon method described above fulfils the
requirements (R1) - (R4).

MODIFICATION OF THE ESTIMATION ALGORITHM

The first part of a method to handle large parameter
changes was given by the fault detection procedure
derived in the previous sections. To complete the
method, a procedure to increase the gain In the
estimator, i.e. the P-matrix in Equation (2b), must also
be established. From an Information handling point of
view, the increase of the galn in the estimator can also
be seen as a reduction of the informatlon content in the
estimator. The Inverse P-matrix denotes th
information content. When a fault has occured, P

Indlcates a _too large informatlon content. By
decreasing P when a fault is detected, the
performance of the estimator can be improved
considerably.

The P-matrix can of course be Increased in many ways,
but there are mainly two methods that have been used
previously. The first one is to decrease the forgetting
factor A. The growth of P(t) Is then nearly exponentlal.
The second method is to add a constant times the unity
matrix to the P(t)-matrix, in which case P() is
increased instantaneously.

When a large fault has occurred, the most reasonable
direction of the parameter updating is along the ¢(t)
vector, both from stability and rate of convergence

Fo= 0.98 096 \0.94\092\090

1 L ,l 1 ‘1 L
0 025 05 075 1
o

Fig. 1. The error frequency f, versus the threshold T

f

point of view. The gain in the estimation algorithm
will therefore be increased according to the second
method, and Equation (2b) will be substituted by

P(t-1)o(t)o(t) TP(t-1)

A+ q;(t)TP(t-l)qa(t)

=1 -
P(t) = SIP(t-1)

+ Bty I (16)

where B(t) is a nonnegative scalar and I i3 the unity
matrix. The variable p(t) is zero except when a fauit
1s detected. When a fault is detected, a positive plt)
has the effect that the P(t)-matrix increases and that
the parameter updating is made in a direction closer to
@(t).

The final problem ls to choose a suitable g(t). When no
fault is detected, B(L) is =zero. When a fault is
detected, it is reasonable to let B(t) depend on the
actual value of P(t) and on how significant the alarm
s, l.e. on the value of r(t). This may of course be done
in many ways, and the following proposal is just one
possibility.

In the noise-free case, the progress of the estimation
error, when 6(t) is constant, is given by

0(t) = B(t-1) - P(tie(tle(t) =

= (1-PtretrgrT)ece-1 & utrdce-1 (17

All elgenvalues of U(t) are one, except the one
corresponding to the eigenvector P(t)e(t). This
elgenvalue determines the step length in the
algorithm. A small eigenvalue causes large steps,
while an eigenvalue close to one means that the step
length In the algorithm is small. Using Equation (16),
the elgenvalue can be written as

1 - o) TP(trpe) =

= A - B(t)p(t) Toct) (18)

A+ @) P(t-1Ip(t)

When B(t) = 0, the eigenvalue Is thus

vo(t) = A (19)

N A+ @) TP(t-1)g(t)

The elgenvalue is obviously between zero and one as
long as P > 0., Suppose now, that an elgenvalue equal to
V(1) is desired when a fault is detected. Then B(t) has
to be chosen as

B(t) = ————%———— (vo

(t) - vit)) (20)
plt) olit)

The elgenvalue v(t) should lie in the interval

0 < vit) < vo(t) (21)

in order to keep the P(t)-matrix positive definite. In
practice, this cholce of B(L) must.ralso be combined
with a test for nonsingularity of ¢(t)  (t).

It remains to determine a suitable w(t). This can be
done in many ways. In the example presented in the
next section, v(t) is a piecewise linear function of the
significance of the fault alarm, see Fig. 2.

Combining the {fault detection procedure with the
modification of the estimation algorithm proposed in
this section, a method to increase the gain in the
estimatlon algorithm in case of large parameter
changes is derived. The method is summarized in a
block dlagram in Fig. 3
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Flg. 2. An example of a cholce of w(t).

] Pir <r(t))
1

T wet-n

"m A\ ?m[ ¢ 1 tal)
U 1 [ r_ il it Wi
_“ l

FElg. 3. A block diagram describing the fault detection
method.

A SIMULATION EXAMPLE

To illustrate the new fault detection method and the
modified estimation algorithm, a simulation study is
presented in this section.

The system considered {s shown in Fig. 4. The purpose
of control {s to keep the level in the tank constant.
This Is done by measuring the tank level and
controlling the inlet valve. The dynamics of the tank
Is described by the equations

dh(t) _ _1 .
“at — ° 15(qun =g, () ]+0.005e(t) (22a)

q (t) = a

/2gh(t)

out (22b)

where {e(t)} Is a disturbance sequence and a is the
outlet area. The sequence {e(t)} is gené’rua"ted as
discrete Gaussian N(0,1) random variables with a
sampling period equal to 1/10:th of the controller
sampling period. The stochastic part of the equations
can be viewed as originating from irregularities in the
flow.

The model of the tank used in the estimation algorithm
is :

h(t+l) = a(t)+ h(t) + u(t) + ¥(t) (23)
where u(t) s the control signal and {g(t)} 1s a
sequence of Independent random variables. The
parameter a(l) is estimated by the recursive least

squares method according to equatlons (2a), (2c) and
(16). The equations become

ﬁmﬁ n

u Lt
F—[: ; %i Gout

Fig. 4. The tank system.

A
;(t) a(t-1) + P(t)h(t-1)e(t)

A
e(t) = h(t) - a(t-1)+h(t-1) - u(t-1) (24)

P(t-1)
A + P(t-1)h(t~1)

P(t) =

5 + B(t)

The forgetting factor A 1s chosen to 0.995. The
equations of the fault detection procedure become

A A
vit) = y,wie-1) + (a(t) - act-1)

s(t) = sign((ace) - act-1))wit-1))

£E) = yor(t-l) + (1 -y )e(t) (25)
vo(t) = 2 >
A+ P(t-1)h(t-1)
0 if r(t-l)<r0
Blt) = N
—— [vptt) - vt)] if r(t-1)2rg
hit-1)

where the two discounting factors y, and y., are 0.85
and 0.95 respectively. The choice of “(t) was
presented In Flg. 2. The wvalue of the threshold is
ro = 0.5, which corresponds to an expected false alarm
every 1000:th sample Instant. The tank Ils controlled by
a minimum variance regulator with set-point

A
u{(t) = h - a(t)-h(t) (26)
ref

For comparison, the problem is first simulated without
any fault detection. The result is shown in Flg. 6 and
Flg. 7. At t=500, the outlet area Is increased from 0.01
to 0.011, corresponding to a sudden Increase in the
outlet flow or a small leak i{n the tank. This fault is
hard to see directly in the output-, input-, or residual
sequences. , However, looking at the estimated
parameter a(t), the fault is obvious. In Fig. 7, the test
sequence r(t) is shown. The values of the highest peaks
are very unlikely in normal operation, and a fault
would have been detected. Note that r(t) has an
approximately Gaussian distribution with a standard
deviation of 0.16 in case of no fault.

In Flg. 8 and Fig. 9, the result of the simulation is
given when the fault detection and the modiflied
estimation algorithm are applied. A detection is made
after about 30 samples. The {increased convergence
rate is obvious. Finally, the loss functions in the two
simulations are also compared in Flg. 10. Here the
optimal loss function, i.e. the loss function obtained
under control with known parameters, is also given.

CONCLUSIONS

The problem of adaptive control of systems subfect to
large parameter changes has been (reated by
Introducing a fault detection procedure, and Increasing
the gain In the estimator whenever the faults occur.
The new fault detection procedure can be applied to
many estimation schemes, since the Inputs to the
detector are the parameter estimates. In Higglund
(1983), the method is e.g. applied to three different
schemes. The situation of coloured nolse can therefore
also be handled, by using an estimation method
suitable for such problems. The method is also able to
detect faults that do not influence the magnitude of the
residuals much. The new fault detection method fulfils
the requirements (R1) - (R4) stated above. Since these
requirements are natural, the new method is belleved
to be useful also in other areas of fault detection.
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Flg. 6. The result of the simulation without fault
detection.
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Flga. 7. The r(t) sequence when no modification of the
estimation algorithm is done.
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Fig. 8. The result of the simulation when the fault
detection and the modified estimation
algorithm are applied.
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Fig. 9. The r(t) sequence when the fault detection and
the modified estimation algorithm are applied.
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Flq. 10. The loss functions in the simulations without
fault detection (1), with fault detection (2)
and the optimal loss function (3).
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