
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Conditional Partial Plans for Rational Situated Agents Capable of Deductive Reasoning
and Inductive Learning

Nowaczyk, Slawomir

2008

Link to publication

Citation for published version (APA):
Nowaczyk, S. (2008). Conditional Partial Plans for Rational Situated Agents Capable of Deductive Reasoning
and Inductive Learning.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/24920b51-4254-4be5-83da-86021dac14e9

Conditional Partial Plans
for Rational Situated Agents

Capable of Deductive Reasoning
and Inductive Learning

PhD Thesis

Sławomir Nowaczyk

Department of Computer Science
Lund University, Sweden

Lund, May 2008

Sławomir Nowaczyk
Department of Computer Science
Lund University Box 118
S-221 00 Lund
Sweden

E-mail: Slawomir.Nowaczyk@cs.lth.se
Webpage: http://www.cs.lth.se/home/SlawomirNowaczyk/
Copyright c© Sławomir Nowaczyk, 2008
Printed in Sweden

ISBN 978-91-628-7515-2
ISSN 1650-1268
Dissertation 24, 2008
LU-CS-DISS: 2008-1

Abstract

Rational, autonomous agents that are able to achieve their goals in dynamic,
partially observable environments are the ultimate dream of Artificial Intelli-
gence research since its beginning. The goal of this PhD thesis is to propose,
develop and evaluate a framework well suited for creating intelligent agents that
would be able to learn from experience, thus becoming more efficient at solving
their tasks.

We aim to create an agent able to function in adverse environments that
it only partially understands. We are convinced that symbolic knowledge rep-
resentations are the best way to achieve such versatility. In order to balance
deliberation and acting, our agent needs to betime-aware, i.e. it needs to have
the means to estimate its own reasoning and acting time.

One of the crucial challenges is to ensure smooth interactions between the
agent’s internal reasoning mechanism and the learning system used to improve
its behaviour. In order to address it, our agent will create several different condi-
tional partial plans and reason about the potential usefulness of each one. More-
over it will generalise whatever experience it gathers and use it when solving
subsequent, similar, problem instances.

In this thesis we present on the conceptual level an architecture for rational
agents, as well as implementation-based experimental results confirming that a
successful lifelong learning of an autonomous artificial agent can be achieved
using it.

i

ii

Contents

1 Introduction 1
1.1 Research Idea . 1
1.2 Agent Foundations . 2
1.3 Conditional Partial Plans . 3
1.4 Reasoning Mechanism . 5
1.5 Illustratory Domain . 7
1.6 Interdisciplinary Aspect . 8
1.7 Overview of the Research Area 10
1.8 List of Publications . 17

2 The Agent 19
2.1 Introduction . 19
2.2 Agent Architecture . 20
2.3 Knowledge Representation . 24

3 Deductor Module 27
3.1 Introduction . 27
3.2 Situation Calculus Formalism 27
3.3 Active Logic Formalism . 29
3.4 Agent’s Introspection . 30
3.5 Reasoning . 32

4 Planner Module 35
4.1 Introduction . 35
4.2 Plan Generation . 35
4.3 Relaxation . 37
4.4 Plan Evaluation . 39

iii

CONTENTS

5 Actor Module 41
5.1 Introduction . 41
5.2 Reasoning . 41
5.3 Plan Selection . 43
5.4 Execution . 44
5.5 Environment Interaction . 45

6 Learner Module 47
6.1 Introduction . 47
6.2 Plan Selection . 47
6.3 Inductive Logic Programming 49
6.4 Training Knowledge . 51
6.5 Learning Algorithm . 53
6.6 Conditional Partial Plans . 55
6.7 Modes of Learning . 56

7 Module Interactions 59

8 Experimental Results 63
8.1 Introduction . 63
8.2 Detecting Dangerous Plans . 64
8.3 Estimating Relevance of Knowledge 71

8.3.1 Introduction . 71
8.3.2 Intuitions . 72
8.3.3 Implementation . 76

8.4 Adapting Learning Algorithm 79
8.4.1 Branch Awareness . 80
8.4.2 Knowledge Relevance 84

8.5 The Agent Life Cycle . 86

9 Conclusions 93
9.1 Thesis Summary . 93
9.2 Future Work . 94

iv

Acknowledgements

There are lots of people I would like to thank for a huge variety of reasons.
First and foremost, I would like to thank my supervisor, Jacek Malec. I

could not have imagined a better advisor, mentor and friend for me during these
years, and without his amazing mixture of giving me completefreedom and
controlling me closely, I would never have finished.

Moreover, I hereby thank all the people in Department of Computer Science
at Lund University for the casual yet stimulating atmosphere they maintain here.

I thank all my friends and my family for their support and for always being
there for me. Numerous people should be mentioned here, but Iwill confine
myself to naming only five. My parents and my sister Alicja whohave been
with me my whole life, or at least most of it. Barbara, who madeSweden a
much more familiar place than it would otherwise be. And finally Ewa, not
only for all the work she did helping me make this document at least a little bit
readable.

Last but not least, I express my greatest gratitude to my wifeMarlena for her
neverending love, unfading trust and unhesitating encouragement throughout all
the years we are together.

v

Chapter 1

Introduction

The principal goal of this PhD thesis is to propose, develop and evaluate a
framework well suited for creating intelligent agents — both physical and vir-
tual ones — that would be able to learn from experience, thus becoming more
efficient at solving their tasks.

We are especially interested in the development of rationalagents that are
both autonomous and situated — agents that have their own goals and actively
pursue them while being able to survive and prosper in a partially unknown,
dynamic and uncontrollable environment.

1.1 Research Idea

An important observation which lies at the very foundation of our approach is
that such agents not only need to be modelled as having limited computational
resources. They also need to be aware of their own limitations and take them
into account (this necessity is presented by Chong and others in [COOP02] in
an unusually brilliant and entertaining way). In particular, being placed in a
dynamic environment means that assumptions of infinite computational power,
inexhaustible memory, etc. are not applicable and even counterproductive. In
our project we investigate rational agents that are able to consciously alternate
between reasoning and acting and that complement their deductive abilities with
knowledge extracted from experience.

It is our belief that a truly intelligent agent needs to use deductive reasoning
in order to take advantage of whatever domain knowledge it has been provided
with. It also needs to perform inductive learning in order tobenefit from ex-
perience it has gathered in the past, and to correct missing or inaccurate parts

1

CHAPTER 1. INTRODUCTION

of its knowledge. Finally, the agent must acknowledge that both reasoning and
acting takes time, and consciously put effort into balancing those activities in a
rational way.

Clearly, all realistic agents must have limited resources,both mental (CPU
power, memory size, reasoning capabilities) and physical (capabilities of sen-
sors and actuators). For quite some time these limitations have been consciously
set aside, since ignoring them made it possible to employ a number of impor-
tant simplifications and to develop useful formal models. Westrongly believe,
however, that it is now time to revise these limitations and to attempt to cre-
ate a methodology for creating truly rational, situated andrealistic agents in a
systematic way.

Despite the significant progress that has been made in several fields of Ar-
tificial Intelligence during the last few years, this is still a challenging and am-
bitious goal. Nevertheless, while not claiming to solve theproblem completely,
this thesis presents a viable approach that promises to scale towards practical
problems.

1.2 Agent Foundations

Rational, autonomous agents that are able to achieve their goals in dynamic,
only partially observable environments are the ultimate dream of Artificial Intel-
ligence research since its beginning. Quite a lot has already been done towards
achieving that dream, but dynamic domains still remain a major challenge for
autonomous systems. In particular, nontrivial environments that are only par-
tially observable pose problems that are beyond the currentstate of the art —
except possibly when dedicated, hand-crafted solutions are developed for very
specific tasks.

One of the most promising and successful ways of coping with uncertainty
and lack of knowledge about one’s current situation is to exploit previous ex-
perience. There are numerous ways in which such experience can be gathered
and organised, including memorising, creating various mental models, or cal-
culating appropriate probability distributions over possible courses of events, to
name just a few.

In our work, one of the biggest challenges is to ensure smoothinteractions
between the agent’s internal reasoning mechanism and the learning system used
to improve its behaviour. We investigated a number of formalisms, looking for
one which would allow, on the one hand, the reasoner to incorporate knowledge
about its own bounded resources (such as reasoning time, memory, sensing

2

1.3. CONDITIONAL PARTIAL PLANS

capabilities), and on the other to allow its knowledge and beliefs to be used for
inductive learning.

We have decided to base our agent on the idea of conditional partial plans
and to have it use a symbolic deductive reasoner employing Active Logic. In
particular, we combine those two with ideas from Situation Calculus. Further-
more, we use Inductive Logic Programming algorithms as means of generalis-
ing the agent’s experience.

A major assumption which drives our research is the idea thatrealistic ratio-
nal agents need to live in domains where complexity preventsthem from finding
complete solutions. Due to limited resources and the necessity to stay respon-
sive in a dynamic world, situated agents are unable to generate a complete plan
for achieving their goals. An example of such a domain is the RoboCup setting,
where the agent aims to “score a goal”, but no complete plan for doing that can
be generated (except in some very specific situations, such as being alone, with
a ball, and in front of the opponent’s goal). Normally, the agent must, at all
times, remain open to new observations and adjust its actions accordingly.

In theoretical AI a common solution to a goal satisfaction problem in dy-
namic domains is to create aconformant plan, i.e. a plan which contains provi-
sions for any possible sequence of external events and observations. Such plan
can then be proven to reach the goal in any imaginable scenario. For situated
agents, however, not only the task ofcreating, but even a requirement to simply
storesuch plan could easily exceed the available resources. In realistic domains
it is not uncommon at all for an infinite number of different exceptional events
to be possible. For example, in a simple process of driving home from work, a
person could encounter any number of traffic accidents, but it is counterproduc-
tive to prepare in advance for hundreds of them.

1.3 Conditional Partial Plans

With such considerations in mind, we have decided that it is not realistic to
expect our agent to find a complete plan that achieves its goals. Throughout this
thesis, we will mainly use nondeterministic domains (or ones which appear to
be nondeterministic to the agent due to its incomplete understanding of them)
to illustrate this phenomenon.

For this reason we have decided that our agent needs to createand reason
aboutpartial plans. By that we mean plans that (hopefully) bring it somewhat
closer to achieving the goal, but which are manageably simple and short enough
to be computable in reasonable time. It is crucial to point out that, in general,

3

CHAPTER 1. INTRODUCTION

there exists no way in which an agent could actually becertain that executing
a particular partial plan is, indeed, bringing it closer to achieving its goal (other
than expanding this plan until it becomes a complete one). The agent is even
less likely to be able to decide with certainty whether a partial plan is an optimal
one to execute or not.

Therefore, our focus in this work is not for an agent to strivetowards gen-
erating optimal solutions, but to make rationally motivated decisions to settle
for behaviours that are “good enough” instead. Clearly, once a dynamic envi-
ronment and time constraints are taken into consideration,the optimality of a
solution can no longer be realistically expected.

At the same time, in order to make informed decisions about balancing
deliberation and acting, the agent needs to betime-aware, i.e. it needs to have
the means to estimate its own reasoning and acting time. Moreover, it needs to
be able to influence them — at the very least it needs the ability to decide, in
the middle of solving a problem, that it has had enough and to “give up”. Only
after the agent is able to estimate the progress of its own deliberation, does it
have the means to consciously balance reasoning and acting.

We intend, therefore, for the agent to judge by itself whether it is more
beneficial to begin executing one of the existing plans immediately or rather to
continue deliberation and, possibly, develop longer and more complete plans in
order to avoid making an unrecoverable mistake. In other words, the agent will
be performing on-line planning and interleaving it with plan execution.

In this context it is especially important to distinguish a special class of
actions and plans, so called “information-providing” ones, which allow an agent
to acquire additional knowledge about the world. Such plansare continuously
in the centre of our attention, since we believe that they areinstrumental in
addressing the problem of the limited resources our agent has.

These information-providing plans allow the agent to “cheat” away part
of the complexity of the external world, especially when planning activity is
interleaved with their execution. In particular, performing them at the right
time allows the agent to greatly simplify its subsequent reasoning process — it
no longer needs to take into account the vast number of possible situations that
are inconsistent with the newly observed state of the world.Thus, it can proceed
further in a more effective way, by devoting its computational resources to more
relevant issues. Coincidentally, this is also how humans approach unsolvable
problems.

Therefore, situated agents must consciously alternate between reasoning,
acting and observing their environment, and in some cases doall of this at

4

1.4. REASONING MECHANISM

once. We aim to achieve this by making the agent create short partial plans
and execute them, learning more about its environment throughout the process.
The agent also generalises its own experience to evaluate the likelihood of any
particular plan leading to the goal.

In addition to being partial, the plans our agent reasons about arecondi-
tional, which means that actions to be taken depend on observationsmade dur-
ing execution. This is especially important when the agent attempts to learn
from experience and to evaluate plans, deciding that some ofthem are better
than others. Interestingly, in many domains sequential plans are not sufficiently
generic to allow such evaluation to be successful, since their usefulness is heav-
ily grounded in the current situation.

Conditional plans, on the other hand, are often more universal and their
quality can be estimated more meaningfully, as we will explain in Section 2.3
and in Chapter 6. It is often the case that, if agent’s knowledge about the world
is limited (i.e. it cannot predict the effects of its own actions with certainty
and most actions can lead to various unpredictable observations), only very
short sequential plans can be classified as good ones, since anything longer
risks neglecting new and potentially important information. At the same time,
a conditional plan may be much more complex since it can contain provisions
for unexpected events.

1.4 Reasoning Mechanism

It is our belief that deductive knowledge, at least in many ofthe domains we
are interested in (RoboCup, driving home from work, Wumpus game), may
contain more details and be more accurate than other forms ofrepresentation
(such as numerical or probabilistic ones). Our agent needs to be able to handle
non-stationary, adverse environments, to cooperate with others in multi-agent
settings and to plan for goals more complex than simple reachability properties
(such as temporally extended goals and restoration goals).Our intent is to cre-
ate an agent able to function in a hostile environment that itcan only partially
observe and that it only partially understands.

We are firmly convinced that symbolic knowledge representations are the
only way to achieve such versatility. However, the requirements we presented in
the previous two sections put rather unique constraints on the reasoning mech-
anisms employed by such an agent.

We have decided to use Active Logic [EKM+99] as the main logical for-
malism for our agent, since it well suited to solve several ofthe problems we

5

CHAPTER 1. INTRODUCTION

face. At the same time, it is sufficiently flexible to allow us to incorporate exten-
sions that will deal with the rest. Active Logic was designedfor non-omniscient
reasoners and we consider it a good reasoning technique for versatile agents. Its
main distinctive feature is the characterisation of deduction as an ongoing pro-
cess instead of focusing on a fixed point of entailment relation.

A critical feature of Active Logic, from our point of view, isits ability to
model different kinds of introspection very well. The ability to reason about its
own knowledge or lack thereof is an absolutely crucial capacity for our agent.
It must be able to decide that it needs to observe certain features in the envi-
ronment and to choose appropriate actions to do that. To thisend, we combine
Active Logic with some ideas from Situation Calculus, whichallows an agent to
reason about the current state of the world, as well as about how it will change
as a result of executing a particular plan.

At this time, the research field of planning has matured enough that ex-
ploring new, more ambitious settings is feasible. This should allow us to bring
artificial agents closer to what humans are capable of. Several researchers are
investigating settings beyond the so called “classical planning” paradigm, and
our own work fits well within this trend. It is crucial to note,however, that plan-
ning itself — while definitely important — is only one aspect of our solution.
We do not focus so much on the generation of plans itself, but rather on ways
to combine it with other areas of Artificial Intelligence.

As explained before, our goal is to create an agent which is able to func-
tion in adverse environments that it can only partially observe and that it only
partially understands. Therefore, we need to provide it with some important ad-
vantage, or else its task will be impossible to perform. To this end, we designed
our agent so that it lives through a large number of episodes,each similar but
not identical to the previous one, in order to learn from its mistakes and to im-
prove its efficiency. This way the agent can start with limited knowledge and
understanding of the domain, but with time it will become more proficient —
each time it tries to solve a problem, it will do so in a more efficient way. The
idea is to have a system that is usable (even if inefficient) early on, but which
achieves the desired quality given more time.

The experience gathering can be done in many ways, and it is interesting if
the agent itself is aware of those differences. We can imagine a system when
the training phase is performed in a simulator, and the agentneeds not to be
“afraid” of trying new things, since even if the outcome is bad, there are no
long-lasting effects of its mistakes. Similarly, the training can also be done in
a physical world, which will likely be more accurate, but which carries with

6

1.5. ILLUSTRATORY DOMAIN

it the danger of permanently destroying the agent — especially when it is not
done in the safety of a lab, but rather in real environment (for example, a Mars
rover). Therefore, the agent needs to be much more “cautious” when attempting
potentially dangerous actions.

1.5 Illustratory Domain

Throughout this thesis we will be using a simple game called Wumpus, the well-
known testbed for intelligent agents introduced in [RN03] to better illustrate
our ideas. The game is very simple, easy to understand, and people have no
problems playing it effectively as soon as they learn the rules.

For artificial agents, however, this game — and other similarapplications,
including many of practical importance — still remains a serious challenge. The
main reason for that is the combinatorial explosion of game states that need to
be considered. It is impossible to analyse all of them explicitly, and while sym-
bolic reasoning shows promise to provide effective generalisations over them,
at the current state of the art one still needs to test ideas and prototypes on small,
artificial examples.

The Wumpus game is played on a square board. There are two characters,
the player and the Wumpus. The player can, with each turn, move to any neigh-
bouring square, while the monster does not move at all. The position of the
beast is not known to the player, he only knows that it hides somewhere on the
board. Luckily, Wumpus is a smelly creature, so whenever theplayer enters a
square, he can immediately notice if the creature is in the vicinity. The goal
of the game is to find out the exact location of the monster — this is done by
moving across the board and checking which squares smell. Atthe same time,
if the player enters the square occupied by the monster, he gets eaten and loses
the game.

This is only the simplest version of the Wumpus game — a numberof dif-
ferent variants have been introduced throughout the years,both as research il-
lustrations and as actual games intended to be played by people. The most
common variation include moving Wumpus, additional traps such as pits, addi-
tional monsters such as Bats, using a maze instead of a simpleboard, equipping
the player with a bow which can be used to kill the Wumpus, hiding treasure
for the player to find, etc.

Our research, obviously, is not designed with the Wumpus game specifically
in mind. We use it only as an illustratory domain to explain our ideas on. This
game has a number of different aspects that make it especially appropriate for

7

CHAPTER 1. INTRODUCTION

presenting our approach. It is very simple both to present and to formalise,
while it has a high number of observations to be made (which makes conformant
plans uninteresting solution). Additionally, the perfectinformation version of
the game (when the agentknowsWumpus’s position from the very beginning)
is extremely simple, which means it does not distract our attention.

For some of our learning experiments we also use a second domain, which
we later call Chess for short, a modified version of the “king and rookvsking
and knight” chess ending. This game is based on the normal rules of chess,
but there are only four pieces on the board: both kings, whiterook and black
knight. It is interesting to note that depending on the initial position of all those
pieces (assuming an optimal play by both players), the game will either result
in a draw, or white will win.

In our case, since we are interested in partially unknown environments, we
have modified the rules in such a way that the agent does not know how the
opponent’s king is allowed to move —a priori, any move is legal. This means
that an agent can never find a winning strategy using pure deduction. Our agent
will need to use learning to discover what kinds of moves are actually possible
and that it can, in fact, succeed.

These two domains are, of course, only examples and the architecture pre-
sented here does not depend on them. In order to better understand the goal of
our research, it can be helpful to imagine a setting similar to theGeneral Game
Playing Competition[GLP05]: our agent is given some declarative knowledge
about a domain and is supposed to act rationally from the verybeginning, hope-
fully becoming more and more proficient as it gathers more experience.

1.6 Interdisciplinary Aspect

Despite multiple attempts, both past and ongoing, the vast majority of AI re-
search is being done in specialised subfields and it is our belief that none of
these subfieldsalonecan give us truly intelligent, rational agents. Our architec-
ture, which to the best of our knowledge is novel, may be one way to integrate
a number of such approaches.

One of the major contributions of this thesis is its interdisciplinary aspect,
namely the fact that it brings together solutions from several different subfields
of Artificial Intelligence and shows how they can be combinedin a coherent,
well-performing system. Most of the specific solutions usedin this work (for
example planning and learning algorithms) are not quite state of the art im-
plementations in their respective areas, but have been chosen for simplicity of

8

1.6. INTERDISCIPLINARY ASPECT

presentation or popularity rather than for pure performance. Nevertheless, the
architecture of our agent is modular and more efficient solutions can easily be
substituted at any time.

Throughout this thesis we will be using a number of examples based on the
previously introduced game of Wumpus. The main problem in this game is to
learn the position of the monster. In order to plan for achieving this objective,
an agent needs to be able to reason about its own knowledge andabout how will
it change as a result of performing various actions. Thus, the logic it utilises in
its reasoning needs to strongly support epistemic concepts. At the same time,
a notion of time-awareness is necessary, as we require our agent to consciously
balance planning and acting.

To accommodate these requirements, we employ a variant of Active Logic
[EKM+99] as the agent’s underlying reasoning apparatus. This logic was de-
signed for non-omniscient agents and has mechanisms for dealing with uncer-
tain and contradictory knowledge. We believe it is a good reasoning technique
for versatile agents, as it has been successfully applied toseveral different prob-
lems, including some in which planning plays a prominent role [PPT+99].

The domain of the Wumpus game, in several of its more complex variants,
has one more interesting feature, namely that the desired behaviour of the agent
consists of two phases. First, it has to gather some information (“Where is
the Wumpus?”) and, after that, it needs to exploit this knowledge (“How to
kill it?”). At the same time, this distinction is not presentin the rules at all
— it is something the agent will need to discover on its own. This problem is
rather difficult one, and there is an active field of research dealing with it, under
various names, the most commonly used being “subgoal discovery”.

To summarise, our agent will create several different plansand reason about
the potential usefulness of each one — including what knowledge can be ac-
quired by executing it. Further, it will judge whether it is more beneficial to
immediately begin executing one of those plans or rather to continue delibera-
tion. In our approach, the agent continuously reasons aboutthe world, enriching
its knowledge using both observations and deduction.

Moreover, we expect the agent to live significantly longer than the duration
of any single game episode, so it should generalise whateversolutions it finds.
In particular, the agent needs to extract domain-dependentcontrol knowledge
and to use it when solving subsequent, similar, problem instances.

Due to resource limitations, our agent needs to select only themost relevant
subset of its own knowledge to be used in learning and for generalising its
experience. In particular, it is not practical to expect ILPalgorithms to be able

9

CHAPTER 1. INTRODUCTION

to find useful generalisations among vast amounts of unrelated and redundant
knowledge.

All of the features mentioned above have been extensively studied in Arti-
ficial Intelligence literature, including ideas on how to integrate various com-
binations of them — we will discuss some of this work in the next section.
However, to the best of our knowledge, nobody has yet attempted to merge all,
or even most, of these features together into one, consistent framework.

1.7 Overview of the Research Area

In this section we present a short, necessarily selective overview of several re-
search areas relevant to this work. In particular, we are going to discuss agent
architectures, reasoning with limited resources, planning and learning as well
as, particularly important in this context, their overlaps.

The topic of this thesis is how to create autonomous, rational, situated
agents capable to learn. In a sense this is the goal of the whole field named
Artificial Intelligence, although it has been expressed using different words in
different time periods. The termagenthas become very popular in the middle of
the previous decade, with an excellent textbook by Russell and Norvig [RN03]
being considered now as “the agent-based introduction to AI”. A comprehen-
sive collection of the foundational articles covering the topic can be found, for
example, in [WR99].

The work presented here is related to studies of architectures for general
intelligence. There have been many attempts to define such anarchitecture,
with SOAR being the most prominent, most successful and probably the oldest
of them all ([Lew01] provides a general introduction). In contrast to SOAR, we
do not claim any cognitive plausibility of our architecture, focusing our interests
mainly on the task of achieving rational behaviour of an artificial agent.

There is a number of architectures that have been successfully used to
develop agents, including real physical systems which demonstrate large de-
grees of autonomy, situatedness and, in some cases and to some extent only,
also rationality. Chronologically, among the first ones were e.g. NAS-
REM [AML89], Reactive Action Packages [Fir89], the subsumption architec-
ture [Bro91], InterRAP [MPT95], Procedural Reasoning System [GL87], and
ATLANTIS [Gat91]. Later on, a number of good overviews have appeared, e.g.
chapter six of Arkin’s textbook [Ark98] (pointing to the fact that “the nature
of the boundary between deliberation and reactive execution is not well un-
derstood at this time, leading to somewhat arbitrary architectural decisions”, p.

10

1.7. OVERVIEW OF THE RESEARCH AREA

207), Jennings, Sycara and Wooldridge [JSW98], Müller [M¨ul99], Lee [Lee00],
and Kortenkamp et al. [KBM98] to mention just a few.

Our approach is quite different from the layered architectures mentioned
above. In particular, we do not focus specifically on the reactive part of the
system, hiding it as just one part of the Actor module. This does not mean that
we diminish the necessity or importance of reactivity, but rather that we simply
decided to concentrate on the higher-level reasoning aspect of our agent as it is
less understood and requires more attention. We make sure, however, that those
higher levels of our architecture remain sufficiently flexible to be able to handle
the requirements of the reactive part.

Although we stress the need for rationality and the importance of reasoning,
our approach also differs from the one exhibited by Beliefs-Desires-Intentions
systems and BDI architectures (see, among others, [Woo00] for a formalised
approach to this topic). BDI systems are particularly good for specifying sit-
uated intelligent systems, less so for implementing them. In our work we do
not explicitly distinguish intentions, treating them in a manner very similar to
goals. This is, however, due to the fact that BDI approaches usually lack a
learning component, which is the central issue in our approach, and that allows
an agent to account for its intentions in a different, yet equally effective way.

The relevant issues of formal analysis of agent architectures has not at-
tracted much attention until very recently. An example of correctness analysis
of the classical PRS programs may be found in [Wob00], in its turn based on
an early work by Rao and Georgeff [RG93], while a more generallook at the
control structures of rule-based systems, relevant from the point of view of our
approach, may be found in [HBHM99]. However, most literature on this topic
appears to be rooted in the database theory, where active real-time databases
have been studied formally for a while.

Finally, the issue of comparing agent architectures, especially with respect
to their effectiveness and suitability for intended applications, is an important
topic worth paying attention to and undoubtedly requiring further studies. An
interesting preliminary discussion may be found in [HHM+00] and [Lee00],
although conclusive results are yet to be obtained.

Please observe that the main notion our agent reasons about is its own
knowledge about the world, as opposed to plainly thinking about the world
around it. There is a large research area ofmetareasoningfocusing on provid-
ing formal tools for letting agents do just that. However, those formal systems
almost universally focus on idealised reasoners and are thus incapable of cap-
turing the limitations of real agents.

11

CHAPTER 1. INTRODUCTION

One of the main reasons for problems with describing resource-bounded
reasoning is that the formal systems used for this purpose are too powerful.
Quite often such a system is based on some propositional or first-order lan-
guage extended with a modality denoting belief. This immediately leads to the
omniscience problem: use of anynormalmodal logic equipped with theK ax-
iom |= �(α → β) → (�α → �β) and the necessitation ruleα

�α
will force the

agent using it to be explicitly aware of all logical consequences of its current
beliefs (see, e.g., [FHVM95]). This means that its set of beliefs will necessar-
ily be infinite and it must always be consistent: apparently avery non-realistic
assumption in the case of bounded reasoners.

There exist a number of approaches that try to deal with the problem of
omniscience. Speaking generally, any such solution must address the need to
model bounded resources of agents and, independently, its incomplete reason-
ing mechanisms. The solutions might be roughly classified into four groups:
weakening the system by using a non-standard semantics; formally distinguish-
ing explicit and implicit knowledge; removing closure properties; and syntac-
tification. The first two still suffer from partial logical omniscience [̊Ago04],
although they constitute a step in the right direction.

A good example of the second line of thought is thelogic of implicit and ex-
plicit belief proposed by Levesque [Lev84]. His idea consists of distinguishing
explicit beliefs, i.e., those currently available explicitly in agent’s knowledge
base; andimplicit beliefs, i.e., those entailed by explicit beliefs, but not (yet)
derived. In order to be able to handle that distinction, the semantics of the
classical epistemic logic must be modified. According to Levesque, the usual
possible worlds semantics is too coarse-grained, while simple sets of formu-
lae are too fine-grained of a choice. His semantics is based onsituationsthat
are subsets of possible worlds. Unfortunately, partial omniscience makes this
system inappropriate for describing truly limited agents.

The approach of Fagin, Halpern, Moses and Vardi [FHVM95],Interpreted
multi-agent systemscaptures the evolution of an agent’s knowledge in a nice
way. The system consists of the usual knowledge/belief modalities (Kx, in-
dexed by multiple agents involved), mixed with the classical temporal operators
(Eventually♦, Always�, Next©, Until U). The resulting system is interpreted
on so calledruns. The system is still too powerful for our needs, although it
may be modified in the direction of non-omniscient agents. The same remarks
apply to the recent proposal of van der Hoek and Wooldridge,Alternating-
time Temporal Epistemic Logic (ATEL), [HW03], in which the usual knowl-
edge/belief modalities (Kx) and the classical temporal operators are extended

12

1.7. OVERVIEW OF THE RESEARCH AREA

with a dynamic-logic-like concept ofcooperative actions. The interpretations
are based onconcurrent game structures. Although the authors mention the
possibility of describing non-omniscient agents, the mainsystem is developed
for at least partially omniscient entities. A similar system, based on active logic
(see below), has been proposed by Grant, Kraus and Perlis [GKP00].

The last system we would like to mention in this context is theLogic of
Finite Syntactic Epistemic Statesproposed recently bẙAgotnes [̊Ago04]. His
system is based on ATEL, but does not assume any structure in the underlying
language — the epistemic states of an agent are purely syntactical structures.
Knowledge evolution mechanisms are modelled usingrules; they do not nec-
essarily need to be sound or complete. Although appealing from the formal
point of view, this system does not provide any hints about dealing with the
computational complexity of the problem.

An approach resembling anytime algorithms [ZR93] but applied to the area
of deduction has been proposed by Fisher and Ghidini [FG00].They provide
a logical system capable of adapting its deductive power to the resource con-
straints. However, no useful bounds (at least for us) can be derived from this
approach — the only guarantee is that the number of theorems will be smaller
in some cases, but the proofs can still be very long and no fixedlimit in terms
of the number of steps may be given.

The attempts to, in a principled way, constrain the inference process per-
formed in a logical system have been done as long as one has used logic for
knowledge representation and reasoning. One possibility is to limit the expres-
sive power of first-order logical calculus (as, e.g., in description logics) in order
to guarantee polynomial-time computability. There is a number of theoreti-
cal results in this area (see e.g [Ebb99]) but we are more interested in inves-
tigations aimed at practical computational complexity. One of the more pop-
ular approaches is to use a restricted language (again, likedescription logics),
see [GINR99, Pat85, Pat86] for examples of this approach in practice.

Another possibility is to use polynomial approximations ofthe reasoning
process. This approach is tightly coupled with the issue of theory compilation.
The most important contributions in this area are [SK96, CD97, CS92, GPS98].
However, this approach, although it substantially reducesthe computational
complexity of the problem, still does not provide tight bounds on the reasoning
process.

Yet another possibility is to constrain the inference process in order to re-
tain control over it. An early attempt has been reported in [Lev84]. The next
step in this direction was the step-logic [Elg88] that evolved into a family of

13

CHAPTER 1. INTRODUCTION

active logics[EKM+99]. Such a restriction is actually a reasonable first step
towards developing a formal system with provable computational properties.
Active logics have been used so far to describe a variety of domains, like plan-
ning [PPT+99], epistemic reasoning [Elg91], reasoning in the contextof re-
source limitations [NKP93] or modelling discourse and dialog. In this work we
are using active logic for deduction involving the temporalaspect of metarea-
soning.

A similar idea was introduced in [PB04], where authors investigated how
various actions and observations of their effects modify anagent’s belief state.
They describe how such modifications can be propagated backwards and for-
wards through the state history: as the agent gains new knowledge, it can infer
that various statementsdid hold in past states of the world, even if it did not
know it then. Authors also show how such propagation can be used for dealing
with temporally extended and restoration goals.

There is a growing insight that logic, if it is to be considered a useful tool
for building autonomous intelligent agents, has to be used in a substantially
different way than before. Active logics are one example of this insight, while
other important contributions might be found, e.g., in [GW01] or [WL01].

The second major area of AI touched upon in this work is planning. There
exist comprehensive recent monographs on this topic (see e.g. [GNT04]). The
field evolves very dynamically, with state of the art planning systems solving
problems of large complexity; c.f. the yearly conference onautomatic planning
and scheduling ([LSBM06, BFT07] are the two most recent ones) and the asso-
ciated contests of planning systems. A lot of effort is devoted to incorporating
(possibly by compiling) domain knowledge into planning systems in order to
improve search efficiency.

Another track of research focuses on (deductive) planning,taking into ac-
count the incompleteness of the agent’s knowledge and its uncertainty about the
world. Conditional plans, generalised policies, conformant plans and universal
plans are the terms used by various researchers [CRB04, PB04, HW02, BCT04]
to denote the, in principle, identical idea: generating a plan which is “prepared”
for all possible reactions of the environment. This approach has much in com-
mon with control theory, as observed in [BG01] or earlier on in [DW91].

Research that would attempt to integrate learning into thisapproach is still
in its infancy, with just a few published results to date. Oneof the first com-
pleted systems was XFRMLEARN by Beetz [Bee02], building on XFRM system
of McDermott [McD92]. However, even there the stress is put on the reactive
behaviour of the agent (in this case the autonomous robot Rhino) more than

14

1.7. OVERVIEW OF THE RESEARCH AREA

on the symbolic plans necessary to achieve intelligence. Aneven more reac-
tive attempt is reported in [LK02], where the planning addressed is just shortest
path search, although the concept oflifelong planningis very similar to the idea
explored in this thesis.

For a well-developed discussion of conditional partial plans and interleaving
planning and execution see for example [BCT04], where the authors introduce
the notion of aprogressive plan— intuitively, one that provably moves the agent
closer to the goal. They also present an algorithm for findingsuch plans in a
nondeterministic but fully known domain and prove that it isguaranteed to find
a solution if one exists. Another example of research on interleaving planning
with execution is based on early work on real-time search incorporating learning
(LRTA*, [Koe01]) although, as many other works in this spirit, it focuses on
path-planning: a very limited kind of reasoning.

In a sense, our treatment of plans in this work is related to the notion of
hierarchical planning, since the conditional partial plans we consider are very
similar to macro-operators [GNT04]. Our goal is to let the agent learn which
conditional partial plans aregoodto later use them as building blocks for finding
complete solutions.

A somewhat similar, very interesting idea was pursued in [Nyb05], where
the author uses a classical planner to plan for the “optimistic” case, where an
agent can choose the most favourable outcome of each non-deterministic action.
From such an optimistic plan it is then possible, using knowledge of probabili-
ties of each action outcome, to generate more realistic plans by updating relative
costs of optimistic actions.

There have been significant amounts of work done in the machine learning
area about what actions to take in a particular situation. The methods may be
divided into model-free ones and those based on models, either available or dis-
covered on-line. The first group leads to reinforcement learning, where an agent
learns policy, i.e. appropriate action for every possible state of the world. Sut-
ton [Sut90] did one of the early examples of work in this direction, explicitly
naming architecture for learning, planning and reacting. However, compared
to ours, this architecture neglects the declarative knowledge and symbolic rea-
soning completely. For an overview of reinforcement learning cf. Barto and
Suttman’s textbook [SB98].

In the case of methods based on explicit, symbolic models thefirst to men-
tion is probably [DF95], who presented results establishing conceptual similari-
ties between explanation-based learning and reinforcement learning. In particu-
lar, they discussed how Explanation-Based Learning can be used to learn action

15

CHAPTER 1. INTRODUCTION

strategies and provided important theoretical results concerning its applicability
to this aim.

One notable example of this track of research is [Kha99], where the author
showed important theoretical results about PAC-learnability of action strate-
gies in various models. In [Moy02] the author discussed a more practical ap-
proach to learning Event Calculus programs using Theory Completion. He used
extraction-case abduction and the ALECTO system to simultaneously learn two
mutually related predicates (Initiates and Terminates) from positive-only
observations. Recently, [KL06] developed a system which learns low-level ac-
tions and plans from goal hierarchies and action examples provided by experts,
within the SOAR architecture. Yet another fresh piece of work close to this ap-
proach is documented in [LC06], whereteleoreactive logic programs, possibly
even recursive ones, are used for representing the action part of an agent. On
top of that a learning mechanism, quite similar to ILP, is employed to improve
the existing action programs.

In the general field of Inductive Logic Programming, there isa large number
of systems being developed, such as CLAUDIEN [DRL96], MOBAL[SEKW],
Charade [RMM+94], Rulex [AG02] and others. We have based our work on
PROGOL mainly because it is the most popular one and various researchers
have been working on improving multiple aspects of it, amongothers [Yam96]
and [BS99]. To the best of our knowledge, however, nobody hasyet used it to
classify conditional partial plans.

Combining planning and learning is an area of active research, in addition
to the extensive amount of work being done separately in these respective areas.
However, most of the related work we are aware of is devoted toeither using
state-of-the-art learning in a rather limited planning framework, or to using lim-
ited learning in a more complex planning setup. Comparisonsof the two areas
are also relatively common, while the true, nontrivial combination will appar-
ently require much more investigation. Since we believe it to be very promising,
this thesis is aiming to attract attention to this line of research.

One attempt to escape the trap of a large search space has beenpresented in
[DRD01], where relational abstractions are used to substantially reduce cardi-
nality of search space. Still, this new space is subjected toreinforcement learn-
ing, not to a symbolic planning system. A conceptually similar idea, but where
relational representation is being learned via behaviour cloning techniques, is
presented in [Mor04].

Outside the domain of planning, there is a lot of important research be-
ing done in the learning paradigm. Recently [CM03] presented several ideas

16

1.8. LIST OF PUBLICATIONS

on how to learn interesting facts about the world, as opposedto learning a de-
scription of a predefined concept. A somewhat similar result, more specifically
related to planning, has been presented in [FYG04], where the system learns
domain-dependent control knowledge beneficial in planningtasks. From an-
other point of view, [KR95, KR97] put forward a framework forlearning done
“specifically for the purpose of reasoning with the learned knowledge,” an in-
teresting early attempt to move away from thelearning to classifyparadigm,
which dominates the field of machine learning.

In a sense this is similar to the ideas discussed in [FYG04], where authors
use the Markov Decision Process to represent planning domains and approx-
imate policy iteration as means of learning agent’s behaviour. They use long
random walks to create progressively harder goals, thus bootstrapping the agent
in its learning of domain-dependent control knowledge.

An interesting line of research, which possibly could be useful in our case,
was presented in [GT04], where authors attempt to deductively generate a
domain-specific hypothetical language that is as simple as possible, and yet
expressive enough to represent all the necessary concepts in a particular do-
main. This language is then used by an inductive learning algorithm to create
generalised policies from solutions of small problem instances.

Many of the ideas investigated in this thesis have been analysed previously,
in numerous disguises. There have been many, to a large extent successful,
attempts to attack the specific scientific and practical problems related to au-
tonomous, situated, rational agency. However, attempts tomerge them into a
single, consistent framework have been very rare and so far incomplete.

1.8 List of Publications

This section contains the list of the author’s publications1 presenting partial
results described in this thesis. All of them are available from my home page:
http://www.cs.lth.se/home/Slawomir Nowaczyk/
by following the “publications” link. Similarly, the software, input data sets
and settings used in experiments reported in this thesis (mainly in Chapter 8)
are available from that page by following the “experiments”link.

In case of the papers co-authored by my supervisor, I affirm that I am the
principal author of the work described there.

1This section, as opposed to all other text in this thesis, is kept in the first person to stress the
statement I make about the authorship of the papers listed below.

17

http://www.cs.lth.se/home/Slawomir_Nowaczyk/

CHAPTER 1. INTRODUCTION

• AAAI’06: Sławomir Nowaczyk, Learning of Agents with Limited Re-
sources, AAAI-06 Student Abstract and Poster Program, 2006— an in-
troduction to the concepts, somewhat obsolete but probablyinteresting
both from a historical perspective and as a general overview[Now06a].

• LRBA’06: Sławomir Nowaczyk, Partial Planning for SituatedAgents
based on Active Logic, Workshop on Logics for Resource Bounded
Agents, ESSLLI 2006 — it predates the implementation of the learn-
ing part somewhat, but contains a relatively good description of agent’s
reasoning mechanisms [Now06b].

• ICMLA’07: Sławomir Nowaczyk, Jacek Malec, Learning to Evaluate
Conditional Partial Plans, The Sixth International Conference on Ma-
chine Learning and Applications (ICMLA’07), Cincinnati, Ohio, 2007 —
it describes the results of learning experiments, in two example domains:
Wumpus and Chess [NM07c].

• ABC’07: Sławomir Nowaczyk, Jacek Malec, An Architecture for
Resource Bounded Agents, Workshop on Agent Based Computing
(ABC’07), Wisła, Poland, 2007 — quite complete descriptionof agent’s
architecture [NM07a].

• LRBA’07: Sławomir Nowaczyk, Jacek Malec, Relative Relevance of
Subsets of Agent’s Knowledge, Workshop on Logics for Resource-
Bounded Agents in Durham, United Kingdom, 2007 — discussionof
the idea of “knowledge relevance” concept and how it affectslearning
results [NM07d].

• MICAI’07: Sławomir Nowaczyk, Jacek Malec, Inductive LogicPro-
gramming Algorithm for Estimating Quality of Partial Plans, 6th Mex-
ican International Conference on Artificial Intelligence,2007 — adapta-
tion of PROGOL algorithm which better fits the learning task within my
architecture [NM07b].

18

Chapter 2

The Agent

2.1 Introduction

The architecture of our agent (see Fig. 2.1) consists of fourmain functional
modules. Each is responsible for a different part of the agent’s rationality, but
the overall intelligence is only achievable by the interactions between all of
them. At the same time, each of these modules corresponds to an area of active
research within the field of Artificial Intelligence. This makes our architecture
an interesting exercise in combining different ways of looking at AI.

Figure 2.1: Architecture of an agent.

19

CHAPTER 2. THE AGENT

2.2 Agent Architecture

The first of the modules mentioned above isDeductor, which corresponds to
a typical “core” of a symbolic, logic-based reasoning agent. One interesting
twist is that in our framework the logic in question is not theclassical one, but
a formalism calledActive Logicinstead. This provides Deductor with various
means to better interact with other modules, as will be explained later in this
text.

The purpose of this module is to perform symbolic reasoning about the
world, actions the agent can perform, and the consequences of them. It is de-
signed to analyse facts the agent observes and to deduce as much as possible
about the hidden state of the world, especially about the agent’s current sit-
uation. Furthermore, it predicts — as far as the agent’s pastexperience, an
imperfect domain knowledge and limited resources allow — what effects each
of the plans under consideration might have, including whatnew knowledge
may be acquired.

In this sense, the Deductor module is the one responsible forclassical
“thinking”. It uses a logical formalism based on a combination of Active Logic
and Situation Calculus in order to reason about consequences of the agent’s be-
liefs and consequences of the actions it is considering. Based on domain knowl-
edge and previous observations, it first deduces as much as possible about the
current state of the world. Afterwards, it analyses a numberof possible plans,
predicting what will be the effect of executing each one of them. In particular,
it accounts for the fact that some actions may be information-providing ones —
it does this by anticipating how agent’s knowledge will change. Deductor will
be explained in more detail in Chapter 3.

The second module isPlanner, which generates partial, conditional plans
applicable in the agent’s current situation. After Deductor finishes analysing
results of observations gathered in previous steps, Planner produces a number
of plans which are potentially interesting candidates for execution.

The architecture is designed so that it is relatively easy touse any of the
state of the art, efficient planning algorithms (such as FF, KACMBP, POND or
any other — for an overview of possibilities, see [GNT04]). Still, doing so is
not necessarily trivial, since the domain knowledge used byour agent — and
especially the results of its reasoning process — is, typically, expressed in a
language significantly richer than what classical (or even many non-classical)
planners accept. Therefore, the intended mode of operationfor our agent is to
simplify the domain using a process known asrelaxation, in order to enable the
use of efficient planning algorithms — at the expense of accuracy of obtained

20

2.2. AGENT ARCHITECTURE

plans. By relaxing domain description in a number of different ways, the agent
will generate several different plans, and each of them willbe analysed by De-
ductor. We describe this mechanism, together with other details of Planner, in
Chapter 4.

The third main module,Actor, supervises Deductor’s reasoning process and
evaluates plans that Planner has come up with. Taking into account the possible
consequences of each course of action, as reasoned about by Deductor, it tries to
find out which plan is most worth executing. Also, this moduleallows an agent
to take into account the limitations of its own resources, and it fulfils the re-
quirement of actively and consciously balancing reasoningand acting. Finally,
Actor is an overseer of interactions between an agent and itsenvironment.

From another point of view, Actor can be seen as thereactivepart of the
agent. The architecture is designed in such a way that it allows Actor to monitor
Deductor and to estimate its reasoning progress. Thus, it can break the delibera-
tion when a particularly interesting plan has been discovered or when it decides
that nothing worthwhile is likely to be deduced anymore. At the same time, it
observes the external world, analysing and interpreting the agent’s sensor data
in order to react whenever something interesting happens inthe environment. It
is responsible for observing the world and for introducing effects of the agent’s
actions — and, potentially, also other changes of the world —into the agent’s
knowledge base.

On the one side, Actor watches over agent’s reasoning process and makes
decisions about when its results are sufficiently well developed to begin being
acted upon. On the other, it observes the external world in order to detect events
which require the agent’s immediate response — a response that can either be
a purely reflexive action such as collision avoidance, a simple update of De-
ductor’s knowledge base with new information, or a completeoverhaul of the
reasoning process.

These three modules form the core of the agent. By creating, reasoning
about and executing a sequence of conditional partial plansour agent moves
progressively closer to its goal. Finally, it reaches a point where a complete plan
can be directly created by Planner, its correctness can be proven by Deductor,
and its execution by Actor fulfils the ultimate objectives ofour agent.

However, the success of such a scenario depends entirely on whether each
partial plan in this sequence is indeed moving an agentcloser to achieving its
ultimate goal. Since the agent might not have enough resources to fully utilise
whatever knowledge it possesses and, moreover, this knowledge may be incom-
plete, there is no guarantee that executed plans will do that. In particular, it is

21

CHAPTER 2. THE AGENT

possible that Actor makes a mistake, or even a series of them,leading to the
agent losing the game or reaching a position in which winningis impossible.

It is important to understand that, given two arbitrary partial plans, there
is no general way of determining whether one of them is betterthan the other.
There is a number of special cases, but the only fool-proof method of deciding
that a partial plan is indeed beneficial is to extend it all theway to the ultimate
goal, thus turning it into aconformant plan. As we explained in the Introduc-
tion, this is not a viable approach in the setting we are investigating.

This is the reason for including the fourth module in our architecture, called
Learner. After the game episode is over, regardless of whether the agent has
won or lost, it inductively generalises the experience gathered — in an attempt
to improve Deductor’s and Actor’s performance. The architecture is designed
to use the learned information to fill gaps in the domain knowledge, to figure
out generally interesting reasoning directions, to discover relevant subgoals and,
finally, to more efficiently choose the best partial plan to beexecuted.

To this end, theLearnermodule analyses the agent’s knowledge, the chosen
course of action, its results and subsequent observations.From this experience
it induces rules for improving the performance of each of theagent’s modules.
In this work we primarily focus on using learning to better estimate quality of
conditional partial plans. In this sense, results of learning are used both by
Deductor and by Actor. In particular, as explained above, itis very difficult to
predict whether a particular plan is a step in the right direction or not. Using ma-
chine learning techniques is one possible way of achieving this, as investigated
in more detail in Chapters 6 and 8.

In principle, learning could take place at any time, but we donot currently
see much benefit of learning in the middle of the game. Our variant of the Wum-
pus game is so simple that a single episode does not last very long, and there
is plenty of useful information that is only available to theagent once the game
is finished — once all the hidden information is revealed. This information is
the most valuable during learning. In other settings, however, a mid-episode
learning could very well be justified, yet it would also pose the question of how
the agent is to decide when it should be done. In the same manner as it now bal-
ances reasoning and acting, the agent would need to balance reasoning, acting
and learning.

Generally, the ultimate goal of this architecture is to allow putting together
state-of-the-art solutions from several different areas of Artificial Intelligence.
Despite multiple efforts, those done in the past and those still in progress, the
vast majority of AI research is being done in specialised subfields. While such

22

2.2. AGENT ARCHITECTURE

Figure 2.2: Information flow within the agent.

23

CHAPTER 2. THE AGENT

research is very important and often successful, it is our strong belief that nei-
ther of these subfieldsalonecan give us truly intelligent, rational agents. Our
architecture, which, to the best of our knowledge, is novel,may be one way to
integrate them.

2.3 Knowledge Representation

Our agent’s design combines a number of solutions coming from a number of
subareas of Artificial Intelligence. There is a history of research being done
on integration of the different approaches, and doing this has never been easy.
While our architecture is by no means the ultimate answer to this integration
problem, we believe that our setting is a rather promising one.

One of the main reasons for it being successful is our use of multiple condi-
tional partial plans as the core knowledge representation formalism within the
agent. They serve as a middle ground, a universal language which guarantees
that each of the modules — even if they are built according to quite different
principles — has the same understanding of basic concepts and limitations of
the agent. Deductor reasons about different possible configurations of the en-
vironment, yet each of those situations corresponds to the state of the world
after the agent executes a particular plan. Planner generates partial plans, but
it is not forced to make perfect predictions of their resultsor to fully evaluate
them, instead it is allowed to suggest a set ofpotentially interesting plans to
the other modules. Actor performs the plan evaluation and selection, taking
into account the plans themselves (as generated by Planner)and their expected
consequences as deduced by Deductor. Finally, Learner induces the interesting
facts about those plans, classifying them into various types, such as “useless”,
“interesting”, “dangerous”, etc.

The conditional plans we consider consist of a concatenation of classical
and conditional actions, where each conditional action maybe described (in a
C-like notation) as:

(predicate ? plan1 : plan2),

meaning thatplan1 will be executed ifpredicate holds, andplan2 will be ex-
ecuted otherwise (bothplan1 andplan2 may be conditional themselves). We
consider the possibility of introducing a more complex structure of conditions
(like while loops), but within the applications we investigate in this work simple
conditionals do just fine.

24

2.3. KNOWLEDGE REPRESENTATION

This type of conditional actions introduces a high branching factor in the
case of longer plans. This effect, however, is unavoidable at some level of
consideration and will not be further discussed here. In thecase of our research,
this is largely mitigated by keeping the plans partial, and therefore short. This
issue has received some attention in the works of other authors (see [GNT04]
for extended bibliography).

For example, in the Wumpus domain, with an agent on squarea1 (see Fig-
ure 2.3), one simple plan is “a2”, meaning “go toa2”. Another plan is “a2, a3”,
meaning “go toa2 and then go toa3”. Both those plans are sequential. If the
ultimate goal of an agent would be to reach squarea3, than the first of those
plans would be partial, while the second would be complete.

A conditional plan could be:

a2, (Smells(a2) ? a1 : b2)

meaning “go toa2 and if it smells there go back toa1, otherwise go forward to
b2”. Since we will be discussing conditional plans in the Wumpus domain often
throughout this thesis, from now on, we will introduce the following simplifi-
cation. We will omit the “Smells” predicate, since it is the only one meaningful
in this domain. Moreover, the argument of this predicate will always be the
most recently visited square. Therefore, the above plan will be simply written
as “a2 ? a1 : b2”.

a1

a2

a3

b1

b2

b3

c1

c2

c3

Player

Clear

Clear

Clear

Smells

Clear

Smells

Wumpus

Smells

Figure 2.3: Simple Wumpus board.

In the Wumpus domain it is difficult to find a good sequential plan which
would be longer than one step. At the same time, finding a good conditional
plan of length two or more is quite easy. In the experiments reported in this
thesis, we consider plans of length one and two only.

25

CHAPTER 2. THE AGENT

26

Chapter 3

Deductor Module

3.1 Introduction

In a sense, Deductor forms the core of our agent, since it performs the logical
inference and directly reasons about the knowledge that theagent possesses. In
particular, it is the module that analyses not only the current state of the world,
but also how it will change as a result of performing an action.

To this end, the agent uses a variant of Active Logic [EKM+99], augmented
with some ideas from Situation Calculus [Rei01]. This allows us to model
the agent’s reasoning as an ongoing process, thus explicitly putting resource
limitations into the picture. This formalism is also well suited to talkaboutthe
agent’s knowledge and to provide a wide range of introspection capabilities.
Finally, the mechanisms for handling inconsistencies in the knowledge base
allows us not to distinguish between knowledge and belief, instead assuming
thateverythingour agent has deduced (or induced) can be challenged.

3.2 Situation Calculus Formalism

At the foundation of the language used by Deductor lies FirstOrder Logic, aug-
mented with Situation Calculus mechanisms for describing action and change.
Within a given situation, knowledge is expressed using standard FOL syntax.
We do not put any additional limitations on the expressiveness of the language
as some mechanisms we later employ would invalidate the benefits of restrict-
ing ourselves to languages such as Horn clauses or description logics. A special
predicate,Knows , describes the knowledge of the agent, e.g.,

27

CHAPTER 3. DEDUCTOR MODULE

Knows [Smells(a) ↔ ∃x(Wumpus(x) ∧ Neighbour(a, x))]

means:the agent knows that it smells on exactly those squares that neighbour
Wumpus’s position. The predicateKnows may be nested, and while it is very
useful, we employ it only in a fixed number of contexts (as explained below),
so as to maintain reasoning at a sufficiently efficient level.We use a standard
reification mechanism to put formulae as parameters of theKnows predicate,
as introduced in [FHVM95].

Reasoning within a given situation is not very interesting from our point of
view, however. The whole point of Deductor is to be able to represent actions
and changes within the environment. We base our approach on the Situation
Calculus formalism described by Reiter in [Rei01]. Situation Calculus intro-
duces two special predicates:Holds(S, α) to denote that formulaα holds in
situationS, andInforms(A, α) to denote that actionA provides information
on whether the ground formulaα holds. It also introduces a special function,
Result(S, A), which returns the set of situations that may result from applying
actionA in situationS.

In our approach we slightly modify the above, focusing on theagent’s
knowledge rather than representing the true state of the world. This allows us
to use only one special predicate:Knows . A major concept in our formalism is
a plan, which at this point can be thought of as a sequence of actions (although,
as we have explained earlier, it can be more complex than that). In this context,
the validity of a FOL formula depends not only on the actual situation, but also
on the plan an agent is currently considering. In particular, an agent can reason
about formulae of the kind:

Knows [S, P, α],

whereα is a FOL formula,S is a situation andP is a plan. Intuitively, it means:
the agent knows that after executing planP in situationS, formulaα will hold.
It is important to observe that formulaα itself may contain a nested predicate
Knows , thus allowing the agent to reason about knowledge-producing actions.
Such a method of double indexing allows us to expressHolds(S, α) as

Knows [S, ∅, α],

thus stating that formulaα holds in situationS and that the agent knows this.
Note that we are not at all interested in expressing facts theagent does not know
in this way. Similarly,Informs(A, α) can be expressed as:

28

3.3. ACTIVE LOGIC FORMALISM

Knows [S, A,Knows(S∗, ∅, α) ∨ Knows(S∗, ∅,¬α)]

at which point it is important to note that the equivalence isnot complete. In
our setting, the agent by default assumes that results of itsactions depend on
the current situation, while in the classical Situation Calculus, action results are
by default situation-independent.

In the next section we show in more detail how the use of ActiveLogic
allows our agent to perform introspection and take resourcelimitations into
account.

3.3 Active Logic Formalism

Active Logic [EKM+99] is a reasoning formalism which, unlike classical logic,
concerns itself with theprocessof performing inferences, not just the final out-
come (i.e. fixed-point) of the entailment (consequence) relation. In particular,
instead of the classical notion of theoremhood, AL has so called i-theorems, i.e.
formulae which can be provenin i steps. This allows our agent to reason about
the difficulty of proving something, to retract knowledge it found inappropri-
ate and to resolve contradictions in a meaningful way. It also makes the agent
aware of the passage of time and of its own non-omniscience. An in-depth de-
scription of Active Logic, and especially its way of handling time, can be found
in [PPT+99].

In particular, each formula in AL is annotated with a time-step label (usu-
ally an integer) of when it was first derived. Moreover, Deductor keeps a record
of the reasoning process and every application of an inference rule by incre-
menting this label. For example, themodus ponensinference rule looks like
this:

i : α,α ⇒ β

i + 1 : β

and means “if at stepi formulaeα andα ⇒ β are present in the belief set,
then at stepi + 1 formulaβ will also be present.” Moreover, there is a special
inference rule:

i : Now(i)

i + 1 : Now(i + 1)
,

29

CHAPTER 3. DEDUCTOR MODULE

which allows an agent to refer to the current moment and to explicitly follow the
passage of time, for example to conclude whether a deadline has been passed
or not.

An additional feature available in Active Logic and important for this work
is theobservation function. This function delivers axioms that are valid from a
specific point in time and is used to model the agent acquiringnew knowledge
from the environment. It is especially nice since it can easily describe changes
that are not the result of performing any action, this way modelling external
events. These two features allow us to overcome two important limitations
present in the classical Situation Calculus.

Another important advantage of AL is its ability to handle inconsistency,
which allows us not to distinguish betweenknowledgeandbeliefs. We assume
that any part of agent’s knowledge can be incorrect, and someof it may even be
contradictory. We found this possibility to be extremely valuable in accommo-
dating the results of inductive learning into the agent’s knowledge base.

3.4 Agent’s Introspection

As explained in Section 3.2, we have decided to augment Active Logic with
basic concepts from Situation Calculus. In particular, since the agent needs to
reason about a changing world and the effects of executing plans in various
situations, we index formulae both with the current situation and with the plan
being considered. Therefore, a typical formula our agent reasons about looks
like this:

Knows [S, P,∀aSmells(a) ↔ ∃x(Wumpus(x) ∧ Neighbour(a, x))],

and means “an agent knows that after executing planP in situationS, it will
smell on exactly those squares which neighbour Wumpus’s position”. This par-
ticular formula is only mildly interesting, since it is trueregardless of the chosen
S andP (it is a universal law). If we denote the set of all situationsby S

∗, the
set of all plans byP∗ and an empty plan by∅, we can equivalently say1 that:

Knows [S
∗, P∗,∀aSmells(a) ↔ ∃x(Wumpus(x) ∧ Neighbour(a, x))]

although, obviously, our agent itself is rarely explicitlyaware of this forall
infinitely many possible situations.

1Slightly abusing the notation

30

3.4. AGENT’S INTROSPECTION

On the other hand, many — if not most — of the truly interestingformulae
are trueonly for specificS andP. This is especially true for those which are
directly tied to the goals of the agent. For example:

Knows [S, P,¬Wumpus(b2)]

which means “an agent knows that after executing planP in situationS, Wum-
pus will definitely not be on squareb2” does, clearly, depend onS.

Initially the agent is not able to state such a fact, but sinceits knowledge
changes as it acts in the world it may, at some point, be justified. It is not nec-
essarily immediately obvious that this particular formulastill does not depend
on P, however. Nevertheless, it is clear that no reallynewknowledge can be
obtained by simplyconsideringsome plan (without actually executing it).

If an agentKnows [S, P,¬Wumpus(b2)], then it must also be able to de-
duceKnows [S, ∅,¬Wumpus(b2)], where∅ stands for an empty plan. How-
ever, it does not necessarily need to beawareof the this fact right away, due to
its lack of omniscience and limited reasoning resources. Infact, there are cases
where the agent acts based on:

Knows [S, P,¬Wumpus(b2)]

¬Knows [S, ∅,¬Wumpus(b2)]

since it does not have the capacity to discover that¬Wumpus(b2) is also true.
This is why the ability of Active Logic to handle inconsistencies is so important.

Finally, it is worth noting that since in our game the position of Wumpus’s
can never be changed, the actual validity of “¬Wumpus(b2)” remains constant
throughout the whole game episode. The only thing that changes is the agent’s
awareness of this fact. Therefore, if considerations related to some planP ever
lead an agent to (unconditionally) “Knows [S, P,Wumpus(b2)]”, it can deduce
that theP andS themselves are irrelevant and that this fact must hold for all
possible plans and situations.

In contrast, an example of some really interesting formulaethat can be de-
duced by the agent is:

Knows [S, ∅,Knows [S, P,Wumpus(b3)] ∨ Knows [S, P,Wumpus(c2)]]

which means “an agent knows that after executing planP in situationS, it will
eitherknow that Wumpus is onb3 or that Wumpus is onc2”.

31

CHAPTER 3. DEDUCTOR MODULE

Which one of the “or” clauses will actually be true obviouslydepends on
observations that the agent makes while acting. As an example of reasoning
by cases and predicting action results, this is exactly the kind of knowledge we
want the agent to infer — itdoestell important things about the quality of the
plan being considered. If all the agent knew before was:

Knows [S, ∅,Wumpus(b3) ∨Wumpus(c2)]

then clearly executingP is useful — it will lead to the agent finally discovering
the true position of the Wumpus. For a human expert, suchP looks like a good
plan.

The goal of our research is to enablean agentto reason about plans in ex-
actly this way. It is our intuition, supported by experiments presented in Chap-
ter 8, that it is possible to create adomain independentActor module which
would efficiently select good plans by learning from experience using formulae
like the one above.

3.5 Reasoning

Finally, the representation language needs to be augmentedwith reasoning ca-
pabilities. This is done using a set of rather natural, yet not quite trivial, infer-
ence rules. For general purpose deduction, however, a simple modus ponensis
quite sufficient. Using domain knowledge representing the rules of the Wumpus
game, Deductor may conclude that

∀x Knows[S, P, ¬Smells(a) ∧ Neigh(a, x)] ↔

Knows[Result(S, P), ∅, ¬Wumpus(x)]

i.e., thatif it does not smell at positiona then the agent will know that there
Wumpus is not on any of its neighbour squares. If the agent currently is, or has
been before, on squarea, it may know that it does not smell there. This, in turn,
may be used to create a useful plan of actions for the future, or to determine
whether a particular action is a safe one.

The reasoning is also used to analyse plans generated by Planner and to de-
termine their possible outcomes. Agent is mainly interested in knowing Wum-
pus’s position, and, as explained in the previous section, different plans will
have different effects on the agent’s knowledge about it.

32

3.5. REASONING

Another thing is to discover whether a plan is safe or not. Forexample, if
the agent is able to deduce that

Knows [S, P,¬dead(agent)]

then planP appears to be an interesting one. If¬dead(agent) cannot be de-
duced, than it is a sign that a better plan may be needed.

One of the reasons for which we have chosen a symbolic representation of
plans, as opposed to a policy (an assignment of a value to eachstate–action
pair) is that we intend to deal with other types of goals than just reachability
ones. For a discussion of possibilities and rationalisation of why such goals
are interesting, see for example [BCPT03], where authors present a solution to
planning using goals described in Computational Tree Logic. This formalism
allows to express goals of the kind “valuea will never be changed”, “a will be
restored to its original value” or “value ofa after timet will always beb” etc.

Furthermore, one of our ideas is to extend the solution presented in this the-
sis to the case of multi-agent cooperative planning, where benefits of symbolic
plan representation are even more apparent.

In order to make plan evaluation more meaningful, we allow plans not only
to be simple (sequential) but alsoconditional, i.e. to contain branches where
actions depend on observations made during acting. We believe that such con-
ditional plans will, in many domains, be much easier to classify as either good
or bad ones, since they contain moregenericknowledge and have a greatly
expanded applicability. A potential problem lies in makingsure that, during
execution, the agent has enough information to choose an appropriate branch of
the conditional plan. In our current implementation this problem is solved by
Planner, however, it is conceivable that Deductor might “validate” each plan in
this sense as well.

33

CHAPTER 3. DEDUCTOR MODULE

34

Chapter 4

Planner Module

4.1 Introduction

As we stated earlier, our agent’s reasoning is based on conditional, partial plans,
and it is the Planner module that is responsible for their generation. Taking into
account Deductor’s knowledge about the current situation,Planner comes up
with a number of plans that are potential ways to achieve the goals of our agent.
The working assumption in our framework and throughout thiswhole thesis
is that the domain is too complex for an agent to be able to develop an opti-
mal, complete plan for solving the problem at hand. As we haveexplained in
the Introduction, this quality is very common among typical, practically useful
domains.

4.2 Plan Generation

One of the biggest problems in generating plans for rational, situated agents is
the combinatorial explosion of the possible action outcomes. As all interesting
problems in Artificial Intelligence, creating an optimal plan is NP-complete.
Even in a so called “classical setting”, the complexity of the planning problem
is exponential in the number of possible states of the world.Nevertheless, there
exist a number of very efficient algorithms for solving classical planning prob-
lems. They are, however, based on a number of quite restricting assumptions:
the agent needs to have perfect knowledge about the environment, all actions
need to have deterministic outcomes and only agent’s actions may influence the
world (no external events).

On the other hand, if the agent’s knowledge about the world isnot complete,

35

CHAPTER 4. PLANNER MODULE

most actions have more than one possible outcome. This makesthe planning
process even more computationally expensive. For nondeterministic and par-
tially unknown domains, its complexity is exponential in the number of agent’s
belief states. As of now, there are no sufficiently efficient,domain independent
planning algorithms which are able to handle such complex settings.

For this reason, all domain-independent efficient planningalgorithms make
simplifying assumptions about the external world and aboutthe agent’s capa-
bilities, in order to achieve a satisfactory performance. If those assumptions are
not satisfied, however, the results of the planning process may not be applicable
to real environments. This is a tradeoff that researchers need to be aware of, and
for which no truly satisfactory solution has been found up tonow.

There is also an active field of research concerning ways to incorporate
domain-specific knowledge into planning (see for example [BFT07]). A num-
ber of successful applications has been developed based on such approaches,
and they are certainly one of the possibilities of dealing with complex environ-
ments. Within our setting, however, we use a different approach, assuming that
the agent’s experience can be seen as a kind of “automatically obtained domain
specific knowledge”.

A crucial feature of our architecture is the fact that other modules are ex-
pected to analyse conditional partial plans coming from Planner and to improve
them. In this way we are able to use the necessary simplifications in order to
make plan generation sufficiently efficient, while at the same time we have ways
to deal with the unavoidable discrepancies between the realworld and Planner’s
simplified view of it. In particular, since the generated plans are analysed fur-
ther by other parts of the agent, the results of the planning process are allowed
to be approximate.

Within our architecture, we allow for two distinctive ways in which plans
can be analysed further: using deduction (as we have explained in Section 3.5)
and using induction (as we will explain in Section 6.2). Those two approaches
complement each other very well and combining them often produces good
results, and we show one example in Chapter 8.

In our setting, Planner is allowed to generate a number of potentially inter-
esting conditional partial plans, without having to committo a single one. The
most difficult issue, in practice, is often how to determine which of the several
possibilities isthe bestone. As in the case of many difficult problems, there is a
law of diminishing returns complicating matters: it is relatively easy to improve
initially and to find a number of “quite good” solutions, but as one approaches
the ideal, improvements become more and more difficult.

36

4.3. RELAXATION

4.3 Relaxation

In the design of our agent we focus on one common setting whereit is beneficial
to be able to generate a number of plans without deciding thatone of them is
better than the others. This is the case of an efficient (oftenclassical) planner
being used via application of the so calledrelaxationtechnique. In such setting,
it is very useful to be able to evaluate a number of plans onlyafter they are
generated.

Classical planners are often very efficient reasoners, but they achieve this
efficiency by strongly enforcing a number of limitations on how domain is mod-
elled — often very constraining ones. As mentioned above, a typical assump-
tion is that the agent has complete knowledge about the stateof its environ-
ment. In the domains we are interested in, for example in the game of Wumpus,
as well as in many realistic situations, such an assumption is completely un-
founded. Therefore, it is impossible to directly take advantage of those efficient
algorithms.

They can be used indirectly, however. Relaxation consists of, basically,
making the problem simpler by removing some of its complexity (see [GNT04]
for extended bibliography). For example, a Wumpus problem could be relaxed
by allowing the agent to directly sense the position of the monster. A game in
which the agent is allowed to perform such “super-sensing” action is obviously
much easier than “real” Wumpus, but they still share a numberof similarities.
And while a plan developed in this easier domain is not directly applicable in a
normal game, some insight may be extracted from it.

In particular, it is easy to devise a large number of different ways to relax
any given problem. At the same time, if those relaxations aredone in the right,
systematic way, a number of them will result in different plans. This way a large
number of potentially interesting solutions can be obtained by using a relatively
low amount of resources. If they can be combined in some way, or if the agent
is able to make smart decisions about which of these plans is the best one, that
approach can offer very good performance.

For example, we can imagine an agent playing a simplified Wumpus game
where it is able to decide what observation it “wants” to obtain. Normally,
when the agent enters some new square, it has no way of knowingwhether it
will smell there or not, and no way of influencing it either. But one possible
relaxation algorithm is to allow an agent to treat all observations as actions and
to “choose” how it wants the world to look like. In this setting, the agent starting
at a1 may decide to move toa2 and may alsodecidethat it wants it to smell
there.

37

CHAPTER 4. PLANNER MODULE

An important observation is that plans resulting from solving relaxed prob-
lems tend to be relatively accurate at the beginning, but divert from reality
rapidly as their length increases. This is directly caused by the fact that the in-
accuracies in modelling the world are kept as small as possible, but they show a
tendency to accumulate as more and more “unreal” actions areused. In general,
this is a serious problem for agents trying to utilise various kinds of relaxation
approaches.

Our architecture, however, is designed in such a way that theagent can cap-
italise on the initial high quality of plans and avoid the trap of uselessness of
long plans. This is due to thepartial nature of plans it employs — it simply
takes into accountonly the beginning of a relaxed plan and disregards the end-
ing. For example, in our current implementation, we only consider plans of
length one and two.

Similarly, many relaxation techniques naturally allow an agent to create
conditional plans. By their very design, most relaxations consist of the agent
making “extra” choices during planning, by influencing features that are nor-
mally out of its control. Each such “unnatural” choice suggests itself like a
good place for a conditional branch in an un-relaxed plan. Ifa relaxed plan can
be seen as a plan which “works” if a number of events over whichthe agent has
no control fall in a particular way, it is only natural to ask what happens if they
do not.

For example, using the relaxation we introduced above, we are “pretending”
that the agent is allowed to determine the result of a particular observation. In
such setting, a good plan might consist of five actions: “go toa2”, “observe
Smells(a2)”, “go to a1”, “go to b1”, “observeSmells(b1)”. This suffices to
win the game, since after such a sequence of events the Wumpusmust be onb2.
It is also clear that the relaxed problem is, indeed, easier than the original one:
in real Wumpus, it is not quite as easy to win.

However, this is obviously not the only plan which allows theagent to win
the game. Another one would be: “go toa2”, “observe¬Smells(a2)”, “go to
b2”, “observe¬Smells(b2)”, “go to b3”, “observe¬Smells(b3)”. It is obvious
that Wumpus must be onc1, then.

It can easily be seen that those two plans share the initial action, and then
have different outcomes of the first observation. There exist a perfectly natural
way to combine them into a single, conditional plan — which will branch on
exactly this first observation. The result would be: “go toa2”, IF “ Smells(a2)”
THEN “go to a1”, “go to b1” and “observeSmells(b1)” ELSE “go to b2”,
“observe¬Smells(b2)”, “go to b3” and “observe¬Smells(b3)”. This plan is

38

4.4. PLAN EVALUATION

still not necessarily valid for the “real” game of Wumpus, but it is sufficiently
close to a good one (at least near its beginning) that it should illustrate our idea
well.

Basing on that, it is equally easy to make the plan partial by cutting it on the
first relaxed action. In our case, it would result in “go toa2 if it smells there go
to a1 and tob1, otherwise go tob2” being generated. And while this plan is not
yet complete (there is a chance it will not smell onb1 nor onb2), it is definitely
a reasonable plan. And it is perfectly valid for the “real” Wumpus domain, with
no trace of its relaxation heritage left.

Obviously, there is no guarantee that this plan is actually any good, since it
could lead the agent to a dead end — in a relaxed domain, there was a solution,
but it is at best a weak indication that in real domain this plan may be usable.

4.4 Plan Evaluation

As we explained in the previous section, our agent creates conditional, partial
plans. These plans are partial because limited resources donot allow our agent
to consider all the possibilities and come up with a good conformant plan. In
fact, we would prefer to be able to generate conformant plans, and the only
reason for plans being partial is that they are the best we cancreate.

On the other hand, the reason we have decided to use conditional plans,
instead of limiting ourselves to sequential plans, is plan evaluation. We have
shown how conditional plans can be created, and that it is, infact, often easier
than generation of sequential plans, but this is a secondaryissue.

The primary reason for plans being conditional is that we intend the agent
to learn that some of them are generally good and some of them are generally
bad. By the virtue of being conditional, the plans remain concise but also have
significantly broader applicability. The language of conditional plans is strictly
more expressive, and this allows Planner to generate plans which are not con-
fined to a single situation.

In particular, one of the major contributions of this work isthe idea to in-
ductively generate rules for deciding when a plan is a good one for executing in
a particular situation and when it is a bad one. The agent usesInductive Logic
Programming in order to achieve that.

From this point if view, sequential plans can rarely be universally good,
unless they are very short. For example, if we consider a plan“go to a2 then
go toa3”, it is obvious that it is only good under some rather strict constraints:
if the agent knows that Wumpus is neither ona2 nor ona3. In particular, the

39

CHAPTER 4. PLANNER MODULE

agent does not have this knowledge at the beginning of any game episode.
On the other hand, if we consider the, only slightly more complex, condi-

tional plan “go toa2 and if it does not smell there go toa3”, it is obvious that it
is much more general. In fact, it is quite a good plan to execute at the beginning
of a game episode.

We have based our experiments, reported in Chapter 8, on the idea of learn-
ing to distinguish “good” and “bad” conditional partial plans. This is only pos-
sible in a setting where Planner generates conditional partial plans and the agent
is allowed to make use of past experience in order to determine a hypothesis as
to what kind of plans are successful and which are not. The results of those
experiments are very encouraging and they show that the framework we have
designed is well-founded and promises to work well.

In our current implementation used in those experiments, wehave decided
to focus on the interactions between learning and deduction, so both Planner and
Actor have been significantly simplified. Our planner is a simple one, it does
not use any heuristics and simply creates a fixed set of plans only (all possible
plans for the Wumpus domain, and an arbitrary set of “interesting” plans for
Chess).

This is, however, only a simplification made in order to make the experi-
mental setting more accessible. The agent’s architecture is designed in such a
way that it is very easy to hook up an existing planner in orderto efficiently
create the “reasonable” plans.

40

Chapter 5

Actor Module

5.1 Introduction

Actor is the least homogeneous module in the whole architecture, since it can
be seen as a controller of the agent as a whole. Basically, itsresponsibilities can
be divided into three broad classes.

Firstly, Actor supervises the deliberation process in order to ensure that
the agent stays responsive in a dynamic environment and thatthe right balance
between reasoning and acting is reached. Secondly, it selects the best plan to be
executed. And thirdly, it continuously observes the environment and allows the
agent to react to interesting events taking place there.

5.2 Reasoning

Actor oversees the deduction process to guarantee that the agent’s limited re-
sources are utilised to the highest degree possible. To thisend it analyses the
progress of reasoning and makes decisions as to when should it be interrupted.
There are three major types of situations when a decision to give up on further
thinking is justified.

First situation occurs when Actor notices a particularly interesting plan and
decides there is no point in deliberating further. Definitely the most common
and obvious condition for that is discovery of a complete plan. Even though
Planner aims at generating partial ones, at some point the agent will be suffi-
ciently close to achieving its goals that a complete solution can be found. Once
it is, and Deductor confirms that ultimate goal of the agent can be reached di-
rectly, there is no point in continuing deliberation and agent should immediately

41

CHAPTER 5. ACTOR MODULE

begin to execute this plan.

Second situation is probably more common, even if less satisfying. Namely,
when the agent has spent enough time reasoning and will come to no further
interestingconclusions, Actor needs to break the deliberation and try acting
instead. It is crucial to note that this requires some measure of evaluating the
progress of reasoning not based on purely syntactical measures such as number
of formulae known, but on determining whether newly obtained knowledge is
useful and relevant. For example, if an agent knows that0 is a number and any
successor of a number is the number itself, then it can easilycontinue to deduce
infinitely many “new” formulae. However, most of them are, inthemselves,
completely useless and they will not be important for determining the correct
course of action.

Finally, it may happen that the agent is pleased with the deliberation pro-
cess, it has not yet found any particularly exquisite plan, but it still needs to
start acting due to a deadline approaching. It is common thatexternal events
happen at predictable intervals and if the agent needs to be able to respond to
such event, it may have to interrupt its own reasoning in a particular moment,
regardless of how close it is to a breakthrough.

In general, however, it is impossible to determine whether the deliberation
process is “progressing” within reasonable resource limitations (this problem
is sufficiently difficult in the case of omniscient agents). However, within our
architecture, we can take advantage of the learning mechanisms to help in this
regard. More testing is needed, but based on the experimental results presented
in Section 8.3, learning about conditional partial plans seems to be promising
direction of research.

Another interesting idea is to allow Actor to “pause” reasoning and perform
any observations Deductor requires to continue. In a numberof situations it
happens that some decision cannot be made without some crucial piece of in-
formation. In those cases it is counterproductive to continue deliberation, and it
is much better to perform whatever actions are necessary to obtain this informa-
tion. We have not implemented this functionality yet, but Actor has the means
to detect such situations and to react to them.

For example, if an agent in RoboCup domain intends to kick theball but
does not know the distance to the goal, it may attempt to plan what the exact
actuator gain should be used. Such agent might begin creating plans of the form
“detect distance, if distance is 0.1 then set gain 1, else if distance is 0.2 then set
gain 2 else if distance is 0.3 then set gain 3, ...” It is clearly more beneficial to
perform the observation immediately rather than to waste time creating such a

42

5.3. PLAN SELECTION

huge conditional plan.
In addition to interrupting deliberation completely, Actor also guides the

reasoning process by making it focus on the plans most likelyto be useful.
Based on plan evaluation capabilities as discussed in the next section, it is able
to prioritise deduction by making it focus more effort on plans looking more
promising. It utilises Learner and mechanisms discussed inSection 6.2 to do
that.

In our current implementation and in experiments reported in Chapter 8, we
have decided to focus on the interactions between learning and deduction, so
both Planner and Actor have been significantly simplified. Actor relies on the
incompleteness of the Deductor and on the fact that the inference is guaranteed
to always terminate. It simply lets Deductor infer everything it can about each
of the available plans and only afterwards does it choose thebest one to execute.

5.3 Plan Selection

Once a decision to begin acting is made, Actor evaluates existing plans and exe-
cutes the best one of them. Thisevaluation processis one of the most important
aspects of the whole agent architecture. On the one hand, as explained earlier,
it is not possible, in general, to determine with full confidence which of the
available conditional partial plans is the optimal one. At the same time, Actor’s
choice of which plan to execute is the crucial element which directly influences
the agent’s ability to reach its goals.

For example, in the Wumpus domain, if the agent keeps executing the wrong
plans, it can continue walking around the board in circles and never find the
monster. Without domain-specific knowledge regarding the correct strategy for
playing the game, partial plans are not guaranteed to move the agent closer to
winning. Moreover, there is a number of domains that are not “recoverable”,
i.e. an agent may end up in a situation which is not fatal by itself, but from
which winning is no longer possible. Many interesting, realistic domains are
sufficiently complex to have that property. For example, even our simple Chess
domain is one.

The decision made by Actor is partially based on deductive results obtained
by Deductor about each candidate plan (see Section 3.5), andpartially based on
past experience and generalisations of it developed by Learner (see Section 6.7).
In our approach, it is the learning process that makes the evaluation of plans
feasible.

In the beginning, the choice of plan to execute is made at random (but

43

CHAPTER 5. ACTOR MODULE

heuristics may be used if any are available in the domain-specific knowledge).
After executing this random plan, a new situation is enteredinto and new obser-
vations are obtained. Planner creates another set of plans,taking into account
the newly acquired knowledge about the world, Deductor analyses them, and
Actor selects and executes one.

After this is done for a number of game episodes, however, theagent has
enough experience to use the Learner module to generalise its past results and
to induce some hypothesis as to which plans are good and whichare bad. This
part has been our major focus in this thesis, and the details are discussed further
in Chapter 6.

Winning the game also provides a possibility to (re)construct a conformant
(or, at least, more general) plan out of the partial ones usedin the past, both
in this episode and in previous ones. If such a plan can be found, it may be
subsequently used to immediately solve any problem instance for which it is
applicable.

Summarising, the interactions between Actor and Learner are the most im-
portant issue we report on in our experimental results in Chapter 8.

5.4 Execution

Finally, the Actor module is responsible for interactions of the agent with the
external world, performing the role of the reactive part of the system. In the
most typical scenario, Actor continuously monitors the sensor input, analyses
it and transforms it into symbolic representation wheneverneeded. In Active
Logic, there exists a special provision for that, calledobservation function. It
is important that such newly observed formulae have exactlythe same status as
domain axioms, but different temporal extent.

In general, the task of turning complex sensor input into symbolic repre-
sentation suitable for deductive reasoning is far from trivial. A number of re-
searchers work actively on this topic (see, for example, [CS01]). Still, this is
not a focus of this thesis and for our work we simply assume that an existing
solution can be used.

Newly observed facts can then be used by the Deductor, allowing an agent to
respond to the changes in the world. In particular, Deductoris well equipped to
handle the common case of new information contradicting (possibly obsoleting)
previously available one. Active Logic allows it to resolveinconsistencies in
the agent’s knowledge base and to make informed decisions regarding which
source of information is more trustworthy (including common sense notions

44

5.5. ENVIRONMENT INTERACTION

like “believe the most recently acquired observations”).
Nevertheless, it is also possible for Actor to react more “violently” if the

need arises. In some situations, it is not enough to rely on deductive process
to be sufficient. The most typical case is when some physical actions need to
be performed immediately. A classical example would be execution of obsta-
cle avoidance behaviour if the agent is about to hit an obstacle. Typically, the
deductive process is not going to react sufficiently quicklyand, in dynamic en-
vironments, an agent needs to have a repertoire of “ready to use” responses to
external events. It is also important that both Learner and Deductor cooperate
in creating this repertoire.

In other words, the intention for Actor is to acquire generalised knowledge
of the domain, which can be used to guide the agent in more promising direc-
tions.

5.5 Environment Interaction

One of the main contributions of our research lies in the “consciousness” of
interactions between an agent and its environment, conducted in such a way
as to maximise the knowledge that can be obtained. In particular, the agent is
facing, at all times, the exploration versus exploitation dilemma, i.e., it both
needs to gather new knowledgeand to win the current game episode.

In order to facilitate that, our agent requires an ability toboth act in the
world and to observe it. Finally, it needs to reason about itsown knowledge
and how it will (orcan) change in response to various events taking place in the
environment. In different domains and applications various models of interac-
tions with the world are possible. In this section we will describe how they can
influence the agent.

The most unrestrictive case is a simulator, where an agent has complete
control over the (training) environment. It can setup an arbitrary situation, ex-
ecute some actions and observe the results. Such a scenario is common in, for
example, physical modelling, where it is often much easier to simulate things
than to predict their behaviour and interactions.

If an agent’s freedom is slightly more restricted, it is possible that it is not
allowed to freely change the environment, but can “try out” several plans in a
given situation. For example, the agent may provide a set of plans and receive
an outcome for each of them. This model is also suitable for agents that do not
have perfect knowledge of the world, as the “replay” capability does not assume
that the agentis able to fully reconstruct the situation or that it knows the state

45

CHAPTER 5. ACTOR MODULE

of the world completely.
In most applications, however, an agent is only able to influence its own

actions and has no control whatsoever over the rest of the world. This is also
the most suitable model for anautonomousphysical agent. In such a case, the
environment will irreversibly move into the subsequent state upon each agent’s
action (or any other event), leaving it no option but to adapt. It may still be inter-
esting, in some situations, to substitute acting for reasoning, but the agent needs
to be aware that once acted upon, the current situation will be gone, possibly
forever.

Finally, we can imagine a physical agent situated in adangerousenviron-
ment, where it is not even plausible for it to freely choose its actions — it first
needs to assert that an action is reasonably safe. In this case, unlike in the previ-
ous ones, a significant amount of reasoningneedsto be performed before every
experiment.

As an orthogonal issue, sometimes it is feasible for an agentto execute an
action, observe the results, reason about them and figure outthe next action
to perform. But in many applications the “value” of time varies significantly.
There are situations where an agent may freely spend its timemeditating, and
there are situations where decisions must be made quickly. For example, in the
RoboCup robotic soccer domain, when the ball is in possession of a friendly
player, the agent just needs to position itself in a good way for a possible pass
— a task which is not too demanding and leaves the agent free toponder more
“philosophical” issues. On the other hand, when the ball is rolling in the agent’s
direction, time is of essence and an agent should have plans ready for several of
the most plausible action outcomes.

46

Chapter 6

Learner Module

6.1 Introduction

The goal of the learning module is to take advantage of the experience the agent
gathers throughout its lifetime. After all, one of the defining traits of intelli-
gence is the ability to improve its own performance and to avoid repeating old
mistakes.

The Learner module is intended to improve our agent’s performance as a
whole. Firstly, it provides Actor with knowledge necessaryto choose the best
plan among those suggested by Planner. Moreover, it inducesrules for deciding
when it is time to stop deliberation since no new interestinginsights are likely
to be obtained. Learner also provides Deductor with guidelines about plans that
are most likely to lead to good results (and thus should receive priority when
reasoning) and about plans that are likely to be useless (andshould thus be
ignored by Deductor).

6.2 Plan Selection

In this thesis we mainly investigate Learner from Actor’s perspective, since
using the Inductive Logic Programming framework to evaluate the quality of
partial plans is — to the best of our knowledge — a novel idea. Nevertheless,
the design of the Learner module as well as the agent architecture around it
is well suited for more than just that. For example, it can be used to improve
domain knowledge and to identify interesting reasoning directions.

As we mentioned earlier, our agent is expected to live through a large num-
ber of problem-solving episodes in a single domain. This is not an assumption

47

CHAPTER 6. LEARNER MODULE

particularly difficult to fulfil in practice, as it is very atypical for an agent to
solve some problem only once and to face a completely different task the next
day. For example, if the agent is an autonomous museum guide,automatic taxi
driver, office helper robot designed to bring coffee to hard working researchers
or any similar kind of device, the tasks it faces are quite repeatable, even if
never completely identical.

At the same time, the ability to exploit its past experience is one of the
greatest assets of our agent. For example, upon finishing each Wumpus game
episode, all the interesting events (actions, observations, and finally the ultimate
result: whether the game was won or lost) are fed into the learning module.
Learner attempts to generalise this information and to provide guidelines for
Actor and Deductor on how to achieve a better performance next time.

The first task for our learning module is to help Actor to choose the best one
among the plans being considered by Deductor for execution.As explained in
previous chapters, Planner develops a number of conditional partial plans and
then Deductor analyses each one of them (see Section 3.5 for details). Some of
those plans are better than others, but it cannot be determined exactly and with
full confidence unless those plans extend all the way to the ultimate goal of the
agent (for example, to the terminal state of the game). For the kinds of domains
we are interested in (such as those mentioned in the Introduction) doing that is
infeasible — the agent’s computational resources are not enough tocompletely
solve these problems.

Therefore, the agent needs some heuristic method, preferably adapted to
a particular domain, for evaluating the quality of partial plans and comparing
them. After all, Actor must, at some point, choose exactly one plan for imme-
diate execution. There is an active research in planning that focuses on exactly
this problem, namely how to automatically generate suitable heuristics. Still,
the most important, if not the only, generic result achievedis that all solutions
are domain-dependent and what works very well in one situation may be quite
detrimental in another. Using Machine Learning techniques[Mit97] is one way
of dealing with this issue.

To this end, Learner inductively discovers rules for evaluating plans and
for deciding, based on the agent’s successes and failures from the past, which
ones are most likely to lead to the goal. Doing so using deductive reasoning
is often computationally very expensive, and it is a wise idea for an agent to
avoid it whenever possible. Based on experience and on deductive reasoning
performed by the Deductor module, the agent can analyse how the world (and
the agent’s knowledge about it) will change after executinga particular plan.

48

6.3. INDUCTIVE LOGIC PROGRAMMING

It is then possible to learn rules for determining the class of plans which have
been successful in the past, and to use that to choose the one to be executed
next.

6.3 Inductive Logic Programming

There exists a large number of different approaches based onthe idea of exploit-
ing past experience, under the common name of “Machine Learning”. Some
of them attempt to build models of the process in question, using various for-
malisms, and later exploit it (for example, approaches based on the Markov De-
cision Processes). Others focus more on a procedural knowledge, attempting
to directly determine the correct course of action, often inthe form of apolicy
(for example, Reinforcement Learning). Others concern themselves only with
classification of entities in the world, without directly associating such decision
classes with the agent’s actions (various kinds of Data Mining).

In our research we have decided to use the approach called Inductive Logic
Programming, since it has a number of very attractive advantages important in
our setting.

The major requirement is that training knowledge needs to beexpressed in a
very rich language — in particular, simple attribute-valuepairs are not sufficient
to describe training examples. It is crucial for a learning system to have access
to the complete knowledge base of our agent. And while there exist a number of
other formal languages, the full expressiveness of FOL is still needed to capture
the complex dependencies between different elements of theworld. Inductive
Logic Programming is one of the few Machine Learning techniques that can
support such complex descriptions of training examples.

Moreover, very often there is quite a bit of knowledge that domain experts
can provide. While our aim is to have a solution that does notrequire such
experts, we believe that taking advantage of whatever information they can pro-
vide is very important. At the same time, we intend to put as few requirements
on this knowledge as possible — it is all too common for Artificial Intelligence
approaches to put constraints on domain knowledge, which basically amounts
to “perfect knowledge or no knowledge”. In contrast, Inductive Logic Pro-
gramming fits our needs quite well — it uses background knowledge when it is
available, but it can also solve problems when it is not. At the same time, the
full expressiveness of FOL is available, and the only formalconstraint is that
provided knowledge cannot be inconsistent.

The main problem is that most of the work on ILP (and to a lesserextent

49

CHAPTER 6. LEARNER MODULE

on symbolic Machine Learning in general), has been dealing almost exclusively
with the problem ofclassification. In contrast, our setting requiresevaluation
or ranking instead. There is no predefined set of classes into which plans should
be assigned — what our agent needs is a way to choose thebestone of them. It
must do so regardless of how many are available or how good — onan absolute
scale — they are.

Still, in order to be able to take advantage of the vast amountof research
done in the Inductive Logic Programming framework, we try, at least initially,
to recast our problem as one of classification. To this end, instead of trying to
determine which plan is the “best” one, we simply attempt to divide the set of
all plans into two classes: plans that are “obviously useless” and plans that are
“sensible”.

Even such a simplified setting can be useful, since if Actor can spot those
“obviously bad” plans early, it can instruct Deductor not towaste time deliber-
ating about them. Clearly, these plans should never be executed, and since the
fact that they’re bad is so obvious, it is quite likely that the agent will determine
that anyway. Nevertheless, it is very typical that a lot of effort is wasted be-
fore that happens. Generalising agent’s past experience can be a great way to
minimise this wasteful effort.

In our example game of Wumpus, we have decided to consider as “bad”
those plans that are “dangerous”, i.e. those that can lead tothe agent being
eaten by the monster. Clearly some plans — namely those that in agent’s ex-
periencedid lead to death — are bad ones. It is not common, however, for
the complete and operational definition of bad plan to directly follow from the
available domain knowledge. It is even less likely that an agent will be able to
explicitly deduce it and to use it effortlessly.

It is important to understand that this setting is only a beginning. After
all, in many situations a more “proactive” approach than simply not-losing is
required. For example, an agent that moves in circles, without exploring the
world, clearly does not get eaten by the Wumpus — but it never wins the game,
either. Hardly is it worth being called “intelligent”. Whengoing further, one
very promising idea is to explore the epistemic qualities ofplans: an agent
should pursue those plans which provide it with the most important knowledge
about the world. Inductive Logic Programming appears to be useful for such a
setting as well, but initially we focus on a simpler issue.

Another way of expressing the distinction between good and bad partial
plans, and one we feel can give satisfactory results, is discovering relevant sub-
goals and landmarks, as [HPS04]. The ability to divide complex problems into

50

6.4. TRAINING KNOWLEDGE

easier components and to solve them separately is a very powerful technique.
Again, Machine Learning can be quite successful in this.

6.4 Training Knowledge

There is a large number of features that can be used to distinguish between good
and bad plans. And with a sufficiently rich history of past game episodes, it is
possible to learn this distinction. In fact, there are important theoretical results
which prove that, given a sufficiently large and sufficientlyrandom training data
set, the probability that a properly designed learning procedure will generate a
bad hypothesis (i.e. one making a large error) is arbitrarily small.

How such approaches work in practice, however, is far from obvious. There
is a number of reasons why such theoretical results are not necessarily fully
applicable in reality. In particular, a number of constraints faced by situated
agents make most theoretical analyses rough simplifications at best. Therefore,
it is important to investigate in more detail the actual quality of learning within
our framework.

In the simplest case the agent can start with Actor randomly choosing plans
for execution. After a couple of games — some of which will be won but, most
likely, many will be lost — it should have enough experience to learn some
useful rules. How complex those rules would be, how intuitive and whether a
particular learning algorithm will discover them (as always, within the agent’s
limited resources) is something that needs to be experimentally verified, and we
have done that in Chapter 8.

We start with the idea that Learner only attempts to distinguish “dangerous”
plans, i.e. ones that can lead the agent to failure at its task. Looking at our ex-
ample domains, the most natural definition of a dangerous plan in the Wumpus
domain would be “a plan which can lead to the agent’s immediate death”. Sim-
ilarly, in a Chess domain, a dangerous plan would the be one which can lead to
losing the rook. This is obviously not enough to achieve the agent’s true intel-
ligence nor to ensure that it will be successful in achievingits goals in general.
Nevertheless, there is a large class of domains which are “recoverable” in the
sense that (as long as agent is not dead) it can still win, regardless of current
position. In fact, Wumpus domain belongs to this class, while Chess does not.

However, it is worth noting that if the Wumpus is allowed to move, there
exist plans which do not lead to agent’s death, but which nevertheless can make
the game unwinnable — for example, if an agent gets stuck in a corner with
Wumpus blocking its way out. It may be difficult for an agent tonotice and

51

CHAPTER 6. LEARNER MODULE

learn that the mistake has been made in the previous step, notin the one when
the agent was killed. This issue is most extensively discussed in the area of
Reinforcement Learning, and it is closely related to the problem of delayed
rewards and credit assignments. An extensive bibliographyis available, for
example, in [SB98].

Nevertheless, in the rest of this section we restrict ourselves to dividing
plans into two classes: those that can lead to agent’s death and those that can-
not. Each partial plan executed at some previous game can be seen as a single
training example. The first issue we need to deal with is whichexample belongs
to which class.

It is easy to notice that some plans — namely those that in agent’s experi-
encedo lead to losing the game — are definitely examples of bad plans.How-
ever, not every plan which does not cause the agent to die is, indeed, agood
plan. What more, not every plan that leads towinninga game is a good one. An
agent executing a dangerous plan might have just gotten lucky, if in a particular
episode Wumpus was in favourable position. From this it becomes clear that
the notion ofpositiveandnegativeexamples, as used in ILP algorithms, is not
quite appropriate for what we would like to express within our framework.

In the experiments reported on in Chapter 8, we assume that the agent has
perfect knowledge about which plans (training examples) are potentially bad.
This is a fully justified assumption for the Chess domain, where the opponent
does not make trivial mistakes and whenever it is possible for him to capture
the rook, he will do so — therefore if a plan is bad, itwill cause the agent to
lose the game.

In Wumpus, however, the distinction is not so clear — it is possible for
the agent to get lucky and not die even though it executes a dangerous plan,
simply because the beast is in a favourable position. Still,in the simplest case,
within our current experimental setting, this problem can be avoided. Namely,
we assume that Deductor, even if incomplete, has perfect knowledge about the
rules of the game and it is powerful enough to eventually discover whether there
is any possibility of the agent dying due to executing a particular plan in a given
situation or not.

By knowing all possible consequences of the execution of each plan, the
agent can deduce (for some plansP) a fact “Knows [S, P,¬die(agent)]”, and
for others a factKnows [S, P, die(agent)]. Since we intend to learn a predicate
“badPlan(P)”, we can define as positive examples those plans which lead —
or can be proven topossibly lead — to defeat. Those are exactly the plans
for whichKnows [S, P, die(agent)] can be deduced for at least one conditional

52

6.5. LEARNING ALGORITHM

branch. On the other hand, plans which can be proven tonevercause defeat are
negative examples. In Chapter 8 we show that, under reasonable conditions, it
is possible for Learner to inductively learn the correct definition of thebadPlan

predicate.
This is not the ideal setup, however. Requiring Deductor to reason so deeply

about every potential example for Learner is very demandingcomputationally,
and for the results of those inferences to necessarily becorrect, is very limit-
ing. We would prefer to be able to label training examples using experience
alone: in game episodes which ended up with the agent gettingeaten, (some of)
the executed plans were definitely bad. Equivalently, in game episodes which
ended up with the agent winning, (some of) the executed planswere definitely
good. In such a setting, however, there is no way to ensure that no mistakes
happen when labelling training examples. And even though PROGOL caters
for the possibility of noisy data, we have found its featuresin this area rather
insufficient for this particular application.

There is also a third class of examples, i.e. plans for which the above cannot
be proven: neither “Knows [S, P,¬die(agent)]”, nor Knows [S, P, die(agent)],
at least within the limited resources of our agent. We are working on how to
most effectively use such examples in learning, but this is asecondary issue for
now, since with our current implementation of Deductor thisclass is empty.

6.5 Learning Algorithm

In this work we use the Inductive Logic Programming algorithm called PRO-
GOL [Mug95], since it is one of the best known ones and its author has pro-
vided a fully-functional, publicly available implementation. At this stage of
our research we are not aiming for top performance, but rather to convincingly
present our ideas, and to this end such a popular and well-understood algorithm
is perfect.

PROGOL is based on the idea ofinverse entailmentand it employs a cover-
ing approach similar to the one used by FOIL, in order to generate a hypothesis
consisting of a set of clauses which cover all positive examples and do not cover
any negative ones. An important feature of PROGOL aremode declarations,
where the user specifies which predicates can be used in the hypothesis being
learned, as well as their arity and argument types.

The standard version is presented in [Mug95] and can be described here, in
a somewhat simplified manner, by the following steps:

1. Select an example to be generalised. If no more examples exist, stop.

53

CHAPTER 6. LEARNER MODULE

2. Construct the most specific clause, within provided language restrictions,
which entails the selected example. This is called the ”bottom clause”.

3. Find, by searching for a subset of the literals in the bottom clause, more
general clauses. Choose one with the best “score”.

4. Add the clause found in the previous step to the current theory, and re-
move all clauses that have been made redundant (it is worth noting that
the best clause may make other induced clauses, not only basic examples,
redundant). Move back to Step 1.

An important part of this thesis is our investigation of how to represent De-
ductor’s knowledge base in a way accessible to the PROGOL algorithm. In
particular, our goal is to analyse the relationship betweenthe quality of learn-
ing and the amount of domain specific knowledge put into data transformation
between Active Logic and PROGOL.

In Chapter 8 we describe our experiments which illustrate how different
representations of Deductor’s knowledge base influence learning results. In
particular, we show that a small amount of additional domainspecific knowl-
edge needs to be provided in order for learning to be successful. One of the
problems is the closed world semantics used by most ILP algorithms, including
PROGOL. Deductor, in order to deal with incomplete knowledge that the agent
has about the world, employs open-world semantics — from themere fact that
the agent is unable to prove something it does not follow thatit is false.

For example, our agent reasons using predicateWumpus . In particular,
Wumpus(b2) means that Wumpus is located on squareb2. The agent starts the
game with knowledge that:

Wumpus(a3) ∨Wumpus(b2) ∨Wumpus(b3) ∨

∨Wumpus(c1) ∨ Wumpus(c2) ∨ Wumpus(c3)

Intuitively, squaresa1, a2 and b1 are excluded since the agent immediately
observes that it does not smell ona1. At the same time, the agent initially
knows neither “Wumpus(b2)” nor “¬Wumpus(b2)” — it suspects Wumpus
may be on this square, but it may also be somewhere else.

Under the closed world assumption employed by PROGOL, such arep-
resentation is impossible. Any time the agent does not knowWumpus(b2),
it is assumed that¬Wumpus(b2) holds. Therefore, for each such “uncer-
tain” predicate, we introduce three alternatives in order describe all interest-
ing possibilities. We do not, actually,needall three — theoretically, any pair

54

6.6. CONDITIONAL PARTIAL PLANS

would be sufficient — but it would make learning much more difficult since
good formulae would become more complex. In particular, we introduce three
predicates describing the smelling phenomenon (maybeSmells , noSmells and
knowsSmells), as well as three predicates that describe the potential positions
of Wumpus (maybeWumpus , noWumpus andknowsWumpus).

6.6 Conditional Partial Plans

One question is how to represent situations and plans in the way most suitable
for learning. We have decided to use ideas from Situation Calculus and describe
every conditional branch of a plan separately, while we simultaneously allow
quantification over them.

In both our experimental domains, thefirst step of a plan is an unconditional
one — the agent simply decides how to move in a given situation. For Wumpus,
the rest of the plan can have at most two branches (calledifSmellsandifClear,
with ifSmellsbeing taken if and only if it smells on the newly-visited square).
For Chess, there are three explicit branches (each specifying the expected move
of the opponent and the agent’s response, without any meaning assigned to their
order) and, additionally, adefaultbranch, which will be executed whenever the
opponent makes any move other than those three. It is our belief that such a rep-
resentation is sufficiently general to be usable across manydifferent domains.

Taking a very simple example from the Wumpus domain, the predicate
Position(P, start , a2) means that in the starting position of planP, the agent
occupies squarea2. We utilise the predicatePosition to describe the details of
the plan being discussed, in particular to describe what thepossibilities of the
agent moving around are. We introduce five different branch names, in order to
provide the necessary flexibility of this description:

• Position(P, start , a1) — agent starts ata1.

• Position(P, visit , a1) — agent is guaranteed to visita1, but it can hap-
pen at any time during execution ofP.

• Position(P, intermediate , a1) — agent is guaranteed to visita1, but it
is an intermediate position, it will not end up there.

• Position(P, ifClear , a1) — agent will end up ona1, but only if it did
not smell on the first square it visited (i.e. if theifClear plan branch gets
executed).

55

CHAPTER 6. LEARNER MODULE

• Position(P, ifSmells , a1) — agent will end up ona1, but only if it did
smell on the first square it visited (i.e. if theifSmellsplan branch gets
executed).

In addition, as mentioned earlier, we have introduced threepredi-
cates describing the smelling phenomenon (maybeSmells , noSmells and
knowsSmells), as well as three predicates which describe the potential posi-
tions of Wumpus (maybeWumpus , noWumpus andknowsWumpus), all with
board squares as arguments.

It is also important to note that it is not necessary to achieve 100% accuracy
in our application. One interesting feature of our learningsetting is that false
negatives are not overly problematic: the point is to save some computations by
discarding useless plans early, so if some bad plans arenot detected, the worst
that can happen is that some computations will still be wasted. False positives,
on the other hand, are much more dangerous, since if Actor removes a useful
plan from considerations, the overall quality of the solution can deteriorate.
However, there is no way to express this distinction in PROGOL terms, so in
this work we have decided not to separate accuracy into positive and negative
parts.

6.7 Modes of Learning

When analysing the learning module, it is important to keep in mind that our
agent has a dual aim, very akin to the exploration and exploitation dilemma,
well-studied in Reinforcement Learning and related research areas. On one
hand, it wants to win the current game episode, but at the sametime it needs
to learn as much generic knowledge as possible, in order to improve its perfor-
mance at solving subsequent episodes.

Also, an important question is one of credit assignment, since the agent
typically executes several partial plans before it reachesthe terminal state of the
game. Only the complete sequence of actions is then rewardedor punished. It
can very well happen that one of the plans in a bad sequence was, in fact, good.
There are numerous techniques being developed for dealing with this problem,
each with its own advantages and disadvantages, and it is notclear at this point
which one would best be suited for our particular case.

Finally, we have made some preliminary tests in a moresimulation-like
environment, where an agent executes a plan and observes itsactual effects
only. Therefore, it is prone to making mistakes when determining which plans

56

6.7. MODES OF LEARNING

are potentially bad. Even though the learning algorithm we used allows for the
possibility of noisy data, we have found that rather insufficient for our needs.
Thus, the experiments we report here do not contain any noise— we demanded
of Deductor toprovewhether a plan is safe or not before it was used as a training
example.

Finally, our agent faces an important tradeoff. Clearly, the longer the agent
allows for the planning phase to proceed, the better plans itwill get to choose
from, and the more information about consequences of each plan will be known.
On the other hand, more of the deduction effort will be wastedby considering
potential situations which will not take place in this particular game episode,
since they will be incompatible with actual observations.

57

CHAPTER 6. LEARNER MODULE

58

Chapter 7

Module Interactions

In Chapter 2 we have introduced the architecture of our agentas a whole, mainly
presenting a general overview of the system. We have also began to discuss the
intended dependencies between various modules there, although it was by ne-
cessity done on a rather abstract level. Afterwards, we havedevoted four chap-
ters to describing, in detail, each of the modules constituting our architecture:
Deductor, Planner, Actor and Learner.

In each of those chapters we have described the modules themselves, but we
also kept analysing how each component interacts with otherparts of the agent’s
architecture. What remains to be done here is to summarise and conclude those
descriptions, clarifying once again the interdependencies among the modules,
both in terms of information and control flow.

The main idea of our architecture is to ensure fruitful interactions between
the modules introduced in previous chapters. Each of these modules roughly
corresponds to one of the major subfields of Artificial Intelligence and is de-
signed to accommodate the state of the art solutions that aredeveloped there.
Each module can provide a very good performance in specific situations and
within appropriate limitations, especially if chosen witha particular application
area in mind. Nevertheless, none of them is sufficient — alone— to achieve
real intelligent behaviour of a generic situated agent.

The major contribution of this work is the idea of using multiple conditional
partial plans as a way to exchange information (or knowledge) between mod-
ules. In this way, Planner comes up with plans that are potentially interesting,
but it does not need to commit to a single one. Deductor reasons about each of
those plans separately, but is also able to explore interactions or dependencies
between them, as well as to make use of any similarities it canfind in order to

59

CHAPTER 7. MODULE INTERACTIONS

extrapolate results concerning one plan to the others. Learner induces generic
knowledge about what types of plans have been successful in the past, in what
situations and under what conditions. Actor chooses, basedon information pro-
vided by other modules, which plan should be executed in the future, as well as
oversees the agent’s operation and chooses the best course of action as soon as
enough knowledge becomes available.

Using the architecture introduced in this work, our agent isable to reason
about theactualstate of the world, both about the details of the current situation
and about the generic laws governing the application domain. Furthermore, it
can also reason about the variouspossible futurestates of the world — namely,
how it expects the world to change as a result of executing a particular plan.

Moreover, the agent reasons about theplans themselves, how successful
they were in the past, both in general and in situations similar to the current
one. Most importantly, it attempts to predict which plans are likely to be good
right now, in order to focus its own limited computational resources on them.

Finally, the agent also reasons about its own knowledge and about its own
available resources. This includes, among other things, evaluation of the knowl-
edge needed for a particular plan to succeed, as well as the deadlines that are to
be met by the system.

The Figure 7.1 illustrates in some detail the flow of information among the
modules of the system. In particular, it makes explicit the knowledge base (oc-
cupying the central part of the picture) which stores all thebeliefs the agent
possesses at the moment. The contents of this knowledge basecan roughly
be divided into two major parts: beliefs about the world and beliefs related to
the agent’s internal state. The former part includes typical data often associ-
ated with situated agents, such as previous and current observations, generic
knowledge, domain-specific definitions, description of current situation and hy-
pothetical results of plan executions. The latter part is less ordinary, containing
information like reasoning priorities influencing the deduction process, the his-
torical data providing experience input to the learner, andrules governing plan
selection by Actor.

Not unexpectedly, the most connected module is Actor, whichmaintains
the control over the whole system. As mentioned earlier, this module also en-
compasses the reactive part of our architecture. In this sense one can see the
correspondence between it and lower parts of a typical layered system. Both the
reactive part, handling interaction with the external world, and aconceptuali-
sation part, providing observation beliefs in symbolic format and maintaining
their coupling to incoming percepts, are handled by Actor. This allowed us to

60

Figure 7.1: Information flow within the agent.

61

CHAPTER 7. MODULE INTERACTIONS

focus, in this thesis at least, on discussing higher levels of the architecture in
more detail.

We have not devoted much discussion to the issue of our agent acting in the
real world, concentrating on experimentations using a simulated environment
instead. Our architecture allows both possibilities and itis only the reactive
part that changes itsmodus operandi, from accessing the real world using sen-
sors and actuators to accessing a simulation environment via some appropriate
software interfaces.

Given our simple experimental domains this is not an issue, but in case
of implementing the architecture on an autonomous robot it could be crucial.
We fully expect to refine Actor in such case, possibly by defining some “mini-
architecture” within this module, or by splitting it further. In particular, one can
imagine that the robot could gather experience both by acting in the real world
and in a simulated oneat the same time. This way, provided that simulation
holds sufficient level of accuracy, the learning process could be decoupled — to
a degree — from physical actions.

In general, the major contribution of this work lies in the responsibilities
of Learner and in the techniques used by it. Therefore, the relevant Chapters
(namely 6 and 8) make up more than half of the entire thesis andthe details re-
garding the functionality of other modules have been presented rather scarcely.
It has been a deliberate choice made in order to avoid overwhelming the reader
with details that would blur the actual focus of this work.

Although those details have been considered secondary for this presenta-
tion, they are of course very interesting from the point of view of actual im-
plementation of rational, situated agent. Therefore we have provided, in Sec-
tion 1.7, a reference to places where an interested reader can find this informa-
tion.

62

Chapter 8

Experimental Results

8.1 Introduction

In this chapter we present experimental evaluation of several ideas we have in-
troduced in this thesis. We have not yet implemented Deductor, Planner, Actor
and Learner in full detail and with all the features needed for creating truly in-
telligent agents, since this is a task that will take a lifetime to accomplish. What
we have, however, is enough to perform an evaluation of the general concepts
we introduced in this work. In particular, we have a completearchitecture and
are therefore able to comment on performance and on some interesting interac-
tions among various modules.

The major focus of these experiments have been on the usefulness of Ma-
chine Learning within the framework of our agent. Throughout this chapter we
have used an ILP algorithm called PROGOL [Mug95] for all experiments (see
Section 6.5 for details). This chapter is divided into four sections, correspond-
ing to four different experiments we have performed.

In the first section (which is based on our paper [NM07c]) we present the
results of learning to distinguish “dangerous” plans early. We show that PRO-
GOL is able to find the correct hypothesis from as few as 30 randomly-chosen
examples. Such a hypothesis allows the agent to save up to 70%of its reason-
ing time, since it does not need to waste resources analysingplans which turn
out to be useless. Those results, however, require the user to provide additional
domain knowledge specifically for the purpose of learning.

In the second section (which is based on our paper [NM07d]) wepresent
a heuristic approach which allows the agent to extract such additional domain
knowledge automatically. It turns out that the major problem with learning is

63

CHAPTER 8. EXPERIMENTAL RESULTS

theoverwhelmingof PROGOL with all the knowledge possessed by the agent.
Most of it is redundant, since it is a by-product of Deductor’s reasoning pro-
cedure. A simple set of rules based on fuzzy sets allows the agent to filter out
irrelevant knowledge, thus greatly improving the quality of learning.

In the third section (which is based on our paper [NM07b]) we present some
modifications to the PROGOL learning algorithm which make itbetter fit the
class of problems we are solving. This consists of three changes: the ability to
directly take estimation of knowledge relevance as an input, to handle plan and
branch parameters in formulae in a more efficient way, and to directly access
agent’s knowledge base expressed in Active Logic.

Finally, in the last section of this chapter, we combine those results together
and show that our agent is able to learn throughout its lifetime and analyse how
its performance improves as it gathers more experience.

8.2 Detecting Dangerous Plans

The first experiment we conducted concerns learning to detect “bad” plans
early, as explained in Chapter 6. We have performed these initial experiments
in order to evaluate the feasibility of our ideas and in orderto check how well
those ideas work in practice. Our focus was on interactions between modules
and on showing that different approaches we combine do indeed complement
each other.

In this section we describe our experiments by taking a special interest in
how Deductor’s knowledge base can be represented in different ways, in order
to make it most accessible to the PROGOL algorithm (and, by extension, to
other similar learning approaches). In particular, our goal was to analyse the
relationship between the quality of learning and the amountof domain specific
knowledge that the user needs to specify in order to have Deductor and Learner
communicate effectively.

Obviously, the ultimate goal is to be able to solve this problem fully auto-
matically, in a way which guarantees that whatever knowledge Deductor dis-
covers, Learner is able to use it. As it turns out, it is not necessarily all that
easy. If the user does not take learning into account at all, providing only the
minimum of domain knowledge as required by the deductive part, the results
obtained by PROGOL will be quite poor. In this section we investigate what is
needed to make the learning process successful.

As a data set we have used three example runs of the Wumpus gameon the
3x3 board. The agent had considered 134 plans in each of thoseepisodes. This

64

8.2. DETECTING DANGEROUS PLANS

is the total number of length-2 plans (both simple and conditional ones) in each
case. Every episode consisted of four situations: the player started on square
a1, first moved to squarea2, then to squareb2, and finally to squareb3.

Each episode differed from the others by the position of the Wumpus. In
the first run, the agent noticed that it smells onb2, and after moving tob3 and
not dying, it figured out that Wumpus must be onc2. In the second episode,
Wumpus was on squarea3 and the agent discovered this fact after observing
that is smells ona2 but not onb2. Finally, in the third episode, Wumpus was
located on squarec1.

For the Chess domain, we have used three board positions in which White
have a winning strategy. We have hand-crafted 69 plans covering different types
of situations, since it is obviously not feasible to analyseall possible plans in
this domain (there are approximately1015 of them). In the description below
we will almost exclusively refer to the Wumpus domain, but the design of the
Chess experiments followed the same principles.

In all experiments discussed in this section we have assumedthat the agent
has a perfect knowledge of which plans are bad and which ones are good. This
means that it knows whichtraining examplesare positive and which are neg-
ative — there is no noise in the data. We have explained the rationale for this
decision in Chapter 6.

In the first experiment, our goal was to use as little domain-specific knowl-
edge as possible. In particular, we have not provided anymode declarationsfor
PROGOL — the declarations for each background predicate were completely
generic. The goal of the mode declarations is to reduce the hypothesis search
space by limiting types of predicate arguments and by specifying which ones
are input and which are output arguments and whether variables or constants
should be used. There are heuristics that allow this information to be auto-
matically extracted from the data, but they are not fool-proof and not always
domain-independent. We have also decided not to filter the agent’s knowledge
in any way, except for removing Active Logic-specific extensions. In other
words, the complete knowledge base of the Deductor has been used as an input
to PROGOL.

Each training example corresponded to one of the plans the agent was con-
sidering, and each was labelled as being either good or bad. Each plan was
described by the complete knowledge the agent had about itat the moment the
plan was suggested by Planner. It is crucial to understand that this knowledge
did not include the effect of deductive reasoning performedby Deductor — the
point of learning is, in this case, to distinguish plans thatarenot worthyof being

65

CHAPTER 8. EXPERIMENTAL RESULTS

4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Including Deductor
Excluding Deductor
With mode declarations
Without mode declarations

Figure 8.1: Results of learning in Wumpus domain.

reasoned about. Clearly, such classification is only usefulif it is donebeforethe
reasoning is actually performed.

The following setting was used for this experiment, as well as for all the
subsequent ones reported in this section. We have run PROGOL500 times in
total, varying the number of training examples used as an input. We started
with one positive and one negative example only, and continued to increase
their number until we reached 20 positive and 20 negative ones (using a differ-
ent number of positives than negatives did not lead to any interesting results).
For each size of the training set, we have made 50 runs, selecting examples at
random, inductively generating a new hypothesis and calculating its accuracy.

66

8.2. DETECTING DANGEROUS PLANS

4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Including Deductor
Excluding Deductor
With mode declarations
Without mode declarations

Figure 8.2: Results of learning in Chess domain.

We have plotted the accuracy1 of the learned hypothesis as the lowest curve
(marked “Without mode declarations”) for Wumpus in Figure 8.1 and for Chess
in Figure 8.2. It can be easily seen that the learning qualityis too low to be use-
ful in practice. This result is not really surprising as it isa well known fact
that specifying appropriate mode declarations is very important for PROGOL.
Without them, the heuristics that guide the search algorithm are next to use-
less. Nevertheless, this gives us a baseline with which we can compare further
results.

1Defined in the usual sense, as the probability that a randomlychosen example (from the
complete universe, not only from training set) will be classified correctly.

67

CHAPTER 8. EXPERIMENTAL RESULTS

The second curve (marked “With mode declarations”) clearlyshows that
providing even a very small amount of domain knowledge (modedeclarations
are very easy for a domain expert to specify) is enough to greatly improve
the quality of learning. For example, for the three predicates describing the
smelling phenomenon (maybeSmells , noSmells andknowsSmells), as well as
for the three predicates describing the potential positions where Wumpus can
be (maybeWumpus , noWumpus andknowsWumpus), we have specified the
following mode definitions:

modeb(9,maybeSmells(+plan ,−square))?

It means, basically, that themaybeSmells predicate takes two arguments, the
first being of typeplan and the second being of typesquare. It also means that
the first argument is an input one (thus+) while the second one is an output
argument (thus−). This predicate also hasrecall equal9, which means that the
learning procedure should explore at most nine different variable bindings.

Similarly, for the predicatePosition , we have used the following:

modeb(18,Position(+plan ,#branch,−square))?

which means that thePosition predicate takes three arguments, and that the
second one is of typebranch and it must be a constant, not a variable (thus#).
The first argument is a plan and the third is a square.

It can also easily be seen that the accuracy of the Wumpus domain is signif-
icantly higher than that of the Chess domain. Nevertheless,the learning is still
not fully successful — even though all the knowledge theoretically needed for
expressing the correct hypothesis is available. The most important reason for
that is that there is too much data and the search space is too large for PROGOL
to handle it sufficiently well.

Because of that, we have looked into ways of limiting the amount of knowl-
edge used for learning — apparently, presenting all of the agent’s knowledge
to the ILP algorithm is not the best idea. We have decided to perform two
more experiments. Within the background knowledge that we have identified
as relevant for the concept of bad plans, there were two separate components:
information about squares where it smells and information about squares on
which Wumpus might hide. In principle each one of them, by itself, contains
enough information to express the target concept.

Therefore, in the third experiment, we have decided to use only the initial
domain definition and the observations that the agent made inprevious situa-
tions. In particular, we have only used the predicatesmaybeSmells , noSmells

68

8.2. DETECTING DANGEROUS PLANS

badPlan(A) ⇐ position(A,intermediate,B), maybeWumpus(A,B).
badPlan(A) ⇐ position(A,ifSmell,B), maybeWumpus(A,B).

Table 8.1: Correct definition of bad plans for Wumpus.

badPlan(A) ⇐ notProtected(A,default,rook),
distanceTwo(A,default,black-king,rook).

badPlan(A) ⇐ isStep(B), position(A,B,rook,C),
canMove(A,B,black-knight,C).

Table 8.2: Correct definition of bad plans for Chess.

andknowsSmells for the Wumpus domain and mostlyPosition , canMove and
some geometrical relations for the Chess domain. The results of learning can
be seen on the curve marked “Excluding Deductor” in Figures 8.1 and 8.2, so
named since this setting roughly corresponds to an agent whodoes not have
a specialised deduction module and attempts to learn from raw observations
only. As it turns out, expressing the notion of bad plans using only those three
predicates still proved to be too difficult for PROGOL.

As can be seen, the results in the Wumpus domain are pretty discouraging,
while in the Chess domain the accuracy is actuallybetter than when we have
provided the full knowledge. This is caused by the fact that the Chess domain
is much larger and much more complex, and removing almostanythingfrom
the knowledge base improves the quality of the hypothesis PROGOL is able to
find.

In Wumpus, however, the learning algorithm is actually ableto make some
use of the extra knowledge provided by Deductor, while not quite being able
to duplicate its work. This result reinforces our belief that the multi-module
architecture we are developing is a useful one.

Therefore, for our fourth experiment, we have selected onlythe most
relevant parts of knowledge generated by Deductor and presented them to
PROGOL. In the Wumpus case this included both the smelling information
(maybeSmells , noSmells andknowsSmells) and the Wumpus position infor-
mation (maybeWumpus , noWumpus andknowsWumpus), while in Chess it
included thenotProtected , distanceOne , anddistanceTwo predicates. As il-
lustrated by the curve marked “Including Deductor” in Figures 8.1 and 8.2, the
agent managed to identify perfectly the bad plans from as fewas 30 examples

69

CHAPTER 8. EXPERIMENTAL RESULTS

Wumpus Full time Improved time Time decrease
position (hours) (hours) (percent)

c2 16.07 h 4.41 h 72.58
a3 14.72 h 5.52 h 62.49
c1 15.23 h 7.18 h 52.84

Table 8.3: Usefulness of learning.

chosen at random, in both domains.

The exact hypotheses that PROGOL learned are presented in Table 8.1 for
Wumpus and in Table 8.2 for Chess.

It is interesting to note that as few as fivehand-chosenexample plans suffice
for PROGOL to learn the correct definition for the Wumpus domain, which
opens up interesting possibilities for an agent toselect training examples in
an intelligent way. This is an emerging area of research by itself, often called
Meta-Learning (see for example [GVB04]).

Having established that successful learning is possible, one more thing that
needs to be shown is whether it is actuallyuseful. In our implementation (which
is designed for flexibility of reasoning rather than speed) analysing a complete
game of Wumpus (depending on the monster’s real position) takes on the order
of 15 hours. If Actor knows how to identify bad plans and forces Deductor to
ignore them, the total time drops dramatically — to aboutsix hours, as can be
seen in Table 8.3. This is a clear confirmation of our claim that the knowledge
gained due to learning from experience can be very useful in improving the
efficiency of reasoning.

These results show that Deductor provides knowledge that significantly im-
proves the quality of learning. At the same time, as mentioned above, learning
the right hypothesis allows the agent to save a lot of its reasoning effort. Ad-
ditional experiments reported in subsequent sections reveal even more synergy
between modules in the architecture.

Finally, we would like to point out that the PROGOL algorithm, while a very
efficient one, is not perfectly suited for the class of problems we are facing. It is
sufficient for a proof of concept and to show the general usefulness of learning
as such, but there is a number of reasons why an approach more specialised
towards plan evaluation would be significantly more efficient.

70

8.3. ESTIMATING RELEVANCE OF KNOWLEDGE

8.3 Estimating Relevance of Knowledge

8.3.1 Introduction

The outcome of our experiments, reported in the previous section, was very
promising. We have shown that learning can be both successful and useful for
our agent. The major problem we have encountered before was the overabun-
dance of irrelevant and redundant knowledge. This requiredthe user to provide
additional domain-specific information, which could filterformulae believed by
the agent and only use the most relevant of them for learning.

In this section we investigate ways for the agent to automatically perform
this task. The goal is to design mechanisms for limiting the amount of knowl-
edge presented as an input to the learning algorithm and to dothis in a way that
is roughly based on the intuitive concept of “relevance of knowledge” — but is
formalised in a way accessible to the agent.

An important obstacle is the lack of a satisfactorily objective measure of the
relevance of knowledge. This field of study has seen a lot of interest in the past
years, but the major problem has often been the lack of a formal model of what
suchrelevancereally means.

Typically the most interesting insights from the logical perspective are
based on theequivalencerelation, where one can say that two sets of formu-
lae denote exactly the same models. This level of abstraction, however, is not
quite appropriate for us, since it does not capture the qualities we are interested
in: two theories equivalent in the semantic sense can differgreatly in how easy
it is to generalise from them and to learn new concepts.

Similarly, from the philosophical point of view, there are equally few re-
sults we can use, since most of them are neither formal enoughto be usable
by computational agents, nor sufficiently self-contained.Relying on common
sense knowledge is not going to work in our setting, since artificial agents are
notoriously bad at employing it.

Our primary goal in this experiment is to explore how Deductor can auto-
matically choose some parts of its knowledge in such a way as to maximise the
quality of learning. Within the bounded computational resources that the agent
possesses, it is not feasible to blindly generalise from thecomplete knowledge
base of the agent. The generalisation process is inherentlydifficult, with a very
high branching factor and therefore limiting input data is of crucial importance
for realistic applications.

The major perspective in this section is on allowing the agent to learn ef-
ficiently. We have, however, noticed that there is a correspondence (whether

71

CHAPTER 8. EXPERIMENTAL RESULTS

direct or indirect) between knowledge which isgood for learning and knowl-
edge which appears to be “naturally relevant” to human experts.

The exact limits of applicability of the solutions we propose here are still
to be evaluated, but we do show that they are useful in our setting. At the
same time, we are convinced that theoretical discussions presented here touch
a number of important and difficult topics — we therefore believe they will be
interesting for other researchers.

8.3.2 Intuitions

Estimating the relevance of a particular formula to the agent’s task at hand is
a very difficult problem and one that is, in general, unsolvable. In practice,
however, there are certain regularities and conventions that human experts use
when encoding domain knowledge for the agent, and it is our belief that some
of those conventions can be exploited by the agent.

In a similar manner, there is a wealth of interesting information to be found
in the deduction tree (trace) of the agent’s knowledge base.By analysing the
way in which the agent came to believe two particular formulae, a good guess
can be made as to whether one of them is inherently more relevant than the
other, whether one of them renders the other one obsolete, orwhether they are
more interesting together than separately.

The basic assumption is that human experts who create the agent’s initial
knowledge base, do it in such a way as to maximise its usefulness to the agent
(modulomistakes and ignorance, of course). Humans can often reasonably eas-
ily determine which parts of the knowledge base are most relevant for solving
particular problems, and this is often reflected in the encoded knowledge in
many ways. The ability to extract such hints would be very valuable to any
rational agent.

It is important to notice at this point that we are not aiming for a precise,
fool-proof and formal way of dividing an agent’s knowledge into “relevant”
and “irrelevant” portions. We merely need to reduce the input of the learning
algorithmsufficiently muchto ensure a successful operation.

We have considered several qualities which can be used as hints that a par-
ticular piece of knowledge is “good”. We discuss and rationalise them here
below on a rather abstract level, while in the next subsection we will show, in a
more concrete form, an example of an implementation using those intuitions.

Derived from observations. For logic-based rational agents, there are typ-
ically few observations (because the cost of acquiring themand reasoning about

72

8.3. ESTIMATING RELEVANCE OF KNOWLEDGE

them is high), so it is unlikely that they are irrelevant. It is a wise idea, there-
fore, to try to keep them in the training knowledge whenever possible. Also, it
is almost universally the case that the right decisions for an agentdodepend on
the acquired observations.

It is also important to notice that quite often it is not the raw observa-
tions themselves, but rather aggregations of them, together with the rest of the
agent’s knowledge, that form the most desirable learning input (for example,
WumpusPosition predicate should be used rather thanSmells , andCanMove

rather thenPosition).

Consistency between plans. When looking at plans that are applicable in
a given situation and analysing their expected outcomes, inmany cases sim-
ilar formulae occur. These sometimes encode exactly the same knowledge,
and sometimes a different (even opposite) one. For example,it is possible that
Wumpus(a2) would be known from executing some branch of planP1, and
¬Wumpus(a2) would be known from executing some branch of planP2.

For the logical sentences most relevant for the current problem, one can find
multiple situations where the same knowledge holds across awide spectrum of
plans being considered. Having such consistency often enough is one hint that
the given class of formulae is actually correlated with the agent’s actions.

Of course, interesting formulae are not always like this, for many situations
the values of any given predicateneed tovary, which corresponds to the case
where the real value is not known and the agent is actively exploring different
possibilities. It is important that both ends of the spectrum are represented
sufficiently.

Inheritance chains. We assume that the initial domain knowledge is cho-
sen in such a way as to maximise the agent’s performance, therefore one would
expect that thefinal result of the reasoning process is likely to be the most im-
portant one. One way to capture this would be to assume that the more difficult
a sentence is to infer (measured, e.g., as the number of stepsneeded to deduce
it), the more relevant it is. This corresponds to the idea that such formulae
“contain” more knowledge than easier ones.

This, however, would be overly susceptible to even small bits of irrelevant
knowledge being present in the expert’s description of the domain. On the other
hand, in the reasoning traces of our agent, we have noticed a related and quite
interesting pattern. It is often the case that the deductiontree of some formulae
is rather degenerate: it contains a single branch which is very long, while all
the others are very short. We have decided to call such a tree achain. The
middle sentences in such chains are often very boring indeed, with the end ones

73

CHAPTER 8. EXPERIMENTAL RESULTS

containing everything of interest.

Similarities between plan branches. When looking at conditional plans,
there is usually a number of branches that correspond to the different possible
observations that can be made during execution. Looking forregularities be-
tween such branches can provide an interesting insight intowhich parts of the
agent’s knowledge base are the most relevant for choosing the best plan.

However, since this is too closely related both to how the agent treats ob-
servations and to the consistency between plans, we have notstudied it further
at this point.

Axioms are boring. Rather obviously, learning directly from the domain
axioms is not the best idea. It is important to take advantageof the results of the
reasoning the agent has performed, and often there are aggregations available
that express the desired properties in ways much cleaner than barebone axioms
alone.

One exception here, however, is a case when some axioms are never used
in the deduction. If a human expert provides a number of formulae which are
useless for reasoning, then the agent can reasonably expectthem to play a role
in learning.

Explore time differences. Given that our agent reasons using Active
Logic, we have one more important clue regarding the interdependences be-
tween pieces of knowledge: the differences in step numbers of when particular
formulae have been deduced.

One common pattern of reasoning is confined to a short time interval, with
sentences inferred in the previous time step being used in the current one, and so
on. On the other hand, an older formula is sometimes used in conjunction with
the newest one and we believe that this pattern hints at something interesting.
When an old piece of knowledge is relevant to the current situation, it is more
likely that the same knowledge will be useful again in the future.

Another interesting idea would be to assume that things deduced earlier
are more likely to begenericknowledge, therefore if they are applicable now,
they will be applicable again. At the same time, a large percentage of the most
recently inferred formulae will be specific ones, fitting thecurrent situation but
being useless anywhere else.

Smarter rules of inference. A big appeal of Active Logic is its powerful
mechanism of adding domain-specific extensions to the well established sets
of inference rules. Typical examples make use of timestampsand observation
functions, but it is also possible to, among other things, specify that some rules
of inference are more likely to lead to relevant sentences (for example,modus

74

8.3. ESTIMATING RELEVANCE OF KNOWLEDGE

ponensis interesting whilenegation introductionis boring).
Limited in number . On a more technical note, having too many formulae

presented to an ILP algorithm, even if most of them are “good”, means that it
will fail to learn anything useful anyway (or, at the very least, that the generali-
sation process will be very fragile).

When the heuristic search employed by PROGOL is not able to meaning-
fully analyse the majority of the hypothesis space, the resulting knowledge will
pretty much be a random set of clauses that fit the learning examples to some
minimal degree. With the number of degrees of freedom that ILP algorithms
have, such results are typically completely useless — and itdepends greatly
on many details of the training set, meaning that even very slight changes can
result in completely different hypotheses.

Covering of the domain. The above qualities mostly analyse sentences in
separation, but it is important to also look at the bigger picture. An important
issue is that a large portion of both the initial and current knowledge base “con-
tributes” to the learning process. The assumption throughout our work is that
the domain knowledge is basically expected to be useful, so whichever knowl-
edge we decide to present to PROGOL, it should have at least some chance of
being influenced by all parts of it.

There are many possible definitions of what such an “influence” might en-
tail, but the most obvious thing is to track which formulae were used to deduce
the set we are interested in (akin to a very basic truth-maintenance system). Of
course the fact that sentenceβ is deduced fromα does not necessarily mean that
the rationale for includingα in the domain description has also been captured
by β, but it at least indicates a possibility.

In general, it is often the case that many possible sets of sentences are in fact
equivalent (in the classical logic sense), and therefore they “cover” the domain
equally well. It is not necessarily obvious that the right way to choose among
them is to analyse the actual reasoning process of the agent,but it is one of the
approaches that seem intuitively viable.

Finally, an important decision is whether to consider each formula sepa-
rately, or rather to cluster them in some way. We have decidedto cluster sen-
tences according to the predicates they contain. It can happen, for example,
that theNeighbourhood relation between two specific squares is interesting
and important for learning, while the same relation betweentwo others is ir-
relevant. There is a serious risk, however, of significantlydistorting the domain
knowledge, to the degree where the resulting hypothesis will generalise very
badly. We have decided to forfeit some of this expressiveness and we only make

75

CHAPTER 8. EXPERIMENTAL RESULTS

decisions as to which predicates are to be included in the training knowledge
(i.e. if we decide thatNeighbourhood is relevant, thenall formulae containing
Neighbourhood will be used for learning).

We feel the need to stress that our work here is of a heuristic nature (in the
colloquial sense of the word) and that the rules we present can be easily fooled.
It is not our aim, however, to present a bulletproof system, but rather to explore
the natural clues left by human experts. We are aware that knowledge bases
can be created so as to defeat our efforts, but we also believethat this does not
happen naturally.

8.3.3 Implementation

In order to check those assumptions, we have implemented a system for evalu-
ating subsets of knowledge according to those guidelines. To restate, it turned
out that PROGOL was unable to perform a meaningful generalisation because
it was giventoo muchknowledge. Therefore, in order to obtain good learning
results, we needed to specify which parts of the knowledge base are the most
relevantones.

The results of learning we have achieved can be seen in Figures 8.1 and 8.2,
for WumpusandChessdomains, respectively. It can be easily seen that selecting
the right subset of the whole knowledge base can be very beneficial. However,
in the experiment reported in Section 8.2 such selection hadto be done by hand.
Our goal right now is to automate this process.

We start with qualities that can be evaluated on a per-formulae basis, i.e.,
those where we can estimate — for each formula — to what degreeit can be
considered a “good” one. One of the most successful formalisms for dealing
with this kind of problem, in particular one allowing for thesystematic aggrega-
tion of several independent criteria, is thefuzzy setsapproach (for introduction
see for example [YZ92]).

We analyse each of the points from Section 8.3.2 in turn, presenting a formal
way of calculating it.

Derived from observations. For every formula, we count the number of
observationsin its complete deduction tree and calculate the membershipvalue
according to the function presented in Figure 8.3 (1).

Consistency between plans. For every atomic formula (i.e. in the form
Predicate(args)) we look at all the other plans in the same situation, and deter-
mine the ratio of those which containPredicate(args) to those which contain
¬Predicate(args). We then calculate the membership value according to the

76

8.3. ESTIMATING RELEVANCE OF KNOWLEDGE

Figure 8.3: Fuzzy set membership functions.

77

CHAPTER 8. EXPERIMENTAL RESULTS

function presented in Figure 8.3 (2).
Inheritance chains. For every formula we analyse its deduction tree and

check whether it is achain(i.e. a very unbalanced tree). If yes, we calculate the
ratio of the formula’s position in it to the total length of the chain. We calculate
the membership value according to the function presented inFigure 8.3 (3).

Similarities between plan branches. Since we have not found a way to
formalise this which would be simple and yet sufficiently distinct from other
criteria, we have decided to skip it.

Axioms are boring. For every axiom, we count the number of other for-
mulae which are inferred from it, both directly and indirectly. We calculate the
membership value according to the function presented in Figure 8.3 (4).

Exploring time differences. For every formula, we check the timestamp
of the oldest of the sentences it was inferred from, excluding initial domain
axioms, and subtract it from the timestamp of the formula itself. We calculate
the membership value according to the function presented inFigure 8.3 (5).

Smarter rules of inference. Since we have not found a way to formalise
this which would be simple and yet sufficiently distinct fromother criteria, we
have decided to skip it.

To restate, we are interested in figuring out which predicates should be pre-
sented to the learning algorithm. To this end we evaluate allsubsets of predi-
cates and choose the best one (in Wumpus, there are only 6 predicates to con-
sider, so analysing all subsets of them is not a problem). Forany set of pred-
icatesP, we start the evaluation by creating a setFP of all formulae in the
knowledge base which contain only the predicates from this set.

We begin by calculating, for each subsetFP , the average value of mem-
bership function among all formulae in this subset, over allfive of the above
criteria. This tells us to what degree the current set of predicates fulfils each of
the qualities we have identified. In order to aggregate all five of them into one
number we have used theproduct t-norm. Even though the properties of this
t-norm do not match the problem perfectly, using anything more complex is not
justified given how approximate the parameters we use are.

The seventh quality,limited in number , did not really fit the fuzzy set
approach. Besides, we have decided to use it as a normalisingfactor, since
different sets of predicates can result in vastly differentnumbers of formulae
being evaluated. Again, we have decided upon the simplest possible scheme:
we divide the aggregate fuzzy membership value by the numberof formulae.
We call this value theusefulnessof a predicate set.

At this point we are able to evaluate any predicate set, although this cannot

78

8.4. ADAPTING LEARNING ALGORITHM

yet be used as the final measure, since the optimum value is always achieved by
a set of cardinality exactly one2. This measure works quite well for separately
estimating how good each predicate is on its own. It is very rarely the case,
however, that a single predicate would be good for learning —there is almost
always a need to have several different predicates.

The final step is to use thecovering of the domain idea to arrive at a set
of predicates that aretogethermost likely to provide good learning results. In-
tuitively, we aim at adding predicates with high individualusefulnessas long
as they are reasonably independent of each other (i.e. as long as they originate
from different “parts” of the agent’s knowledge).

Therefore, we calculate thecoverageof a set of formulaeA as the ratio of
all formulae in the knowledge base that appear in the deduction tree of at least
one formula fromA. We arrive at our finalrelevancescore by multiplying the
usefulnessof a predicate set by itscoverage.

We have implemented the above scoring method in a domain-independent
way in our agent. We have run it on both theWumpusdomain and theChess
domain. As we hoped, the sets of predicates with the highest calculatedrele-
vance, in both domains, turned out to be exactly the ones we have earlier — by
hand — identified as most relevant parts of the agent’s knowledge. As reported
in previous section, those sets of predicates lead to good learning results (see
Figures 8.1 and 8.2).

It is not obvious how general our results are, since two example domains is
too few to come to a definitive conclusion. It is enough, however, to suggest
that our ideas have merit.

The exact scoring methods, as well as criteria used, are onlyan initial idea,
and more work is needed. Nevertheless, the results appear tobe pretty stable
and small modifications to the above parameters do not influence the final result
in any significant way.

8.4 Adapting Learning Algorithm

In this section we investigate some ways to adapt the PROGOL algorithm to the
specific needs of the Learner module within our architecture.

PROGOL is based on the idea ofinverse entailmentand it employs a cov-
ering approach similar to the one used by FOIL [Mit97] in order to generate
hypothesis consisting of a set of clauses that cover all positive examples and

2For any two predicatesp1 andp2, theusefulnessof the set{p1, p2} always lies somewhere
in between the usefulness forp1 and forp2.

79

CHAPTER 8. EXPERIMENTAL RESULTS

do not cover any negative ones. It starts with a positive example e and knowl-
edge baseB and creates a set⊥ which is the set of all ground literals true in
all models ofB ∧ ē. Due to the properties of inverse entailment, the complete
set of hypothesesH consists of all the clauses whichΘ-subsumesub-saturants
of ⊥. PROGOL uses mode declarations to limit the size of⊥ and refinement
operatorρ to efficiently search only a subset ofH. More details can be found
in [Mug95].

We have made two modifications to the PROGOL algorithm in order to
make it better suited for use in rational agents. Both of themwere inspired by
the difficulties PROGOL encountered when solving our problem, difficulties
that apparently were the result of mismatches between its assumptions and the
properties of the problem at hand.

We have also added the ability to directly access agent’s knowledge, ex-
pressed in Active Logic, without an additional step of data transformation. We
do not focus on this here, since it does not affect the resultsof learning in any
way. It does, however, help to integrate learning closer with the rest of the agent
architecture. Such direct access includes the transformation from open world
semantics used by the Deductor toclosed worldsemantics used by PROGOL.

8.4.1 Branch Awareness

First of all, it is well known that PROGOL is sensitive to the arity k of pred-
icates in its background knowledge, since the cardinality of a sub-saturant
set is bounded bynk. Often this is not an issue, since the arity of pred-
icates is typically kept low. In our setting, however, many predicates con-
tain two additional arguments, namely the plan and its branch. Instead of
simply sayingWumpus(a1) to state the monster’s position, we need to say
Wumpus(P1, B1, a1), i.e. in branchB1 of planP1, Wumpus is ona1.

This has lead to a problem where PROGOL, in the Chess domain, was un-
able to learn the correct hypothesis in the form we originally wanted. We have
initially specified a predicatechooseBranch with mode declaration:

modeb(4, chooseBranch(#step,−step))?

which is useful for “naming” a particular branch, i.e. binding it to a variable
which subsequent predicates can later use. Moreover, we declared other predi-
cates with the following:

modeb(8,notProtected (+plan ,+branch ,#piece)

80

8.4. ADAPTING LEARNING ALGORITHM

4 8 12 16 20 24 28 32 36 40
Number of examples

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

PROGOL (Full KB)
Branches (Full KB)
PROGOL (Relevant KB)
Branches (Relevant KB)

Figure 8.4: Branch awareness in Wumpus Domain.

This way we can guarantee thatthe samebranch is used throughout the whole
clause. In particular, we intended one of the clauses in the final hypothesis to
be:

badPlan(A) : −chooseBranch(default , B),notProtected (A,B, rook),

distanceTwo(A,B, rook , black–king).

meaning “whenever in the default branch the opposing king isclose to our rook,
the plan is dangerous.”3 Such a hypothesis, however, proved to be too difficult

3Observe that in the default branch we do not know the exact move the opponent has made,

81

CHAPTER 8. EXPERIMENTAL RESULTS

4 8 12 16 20 24 28 32 36 40
Number of examples

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

PROGOL (Full KB)
Branches (Full KB)
PROGOL (Relevant KB)
Branches (Relevant KB)

Figure 8.5: Branch awareness in Chess Domain.

for PROGOL and despite numerous attempts, we have not managed to “con-
vince” it to learn it. We had to give up on thechooseBranch predicate and
settle for a similar, yet somewhat less natural, mode declaration:

modeb(8,notProtected (+plan ,#branch,#piece)

This resulted in the hypothesis:

thereforePosition(black–king) is the “old” position and we need to be extra careful about our
rook’s safety.

82

8.4. ADAPTING LEARNING ALGORITHM

badPlan(A) : −notProtected (A, default , rook),

distanceTwo(A, default , rook , black–king).

Notice that this one uses separate, unrelated constants as arguments of
notProtected anddistanceTwo predicates. In our experiments PROGOL re-
quired some additional examples before it learned not to usetwo different
branches there. For example, one of the clauses it induced when given only
eight training examples was:

badPlan(A) : −notProtected (A, b1, rook),

distanceTwo(A, b2, rook , black–king).

It is, obviously, not good — whether the rook is protected in some branchb1

has no meaningful relation to the distance between rook and black king inb2.
To fix this issue, we have modified the PROGOL learning algorithm to

transparentlyhide branches, i.e. to automatically restrict knowledge base to
only contain facts from a single branch when reasoning. Thishas lowered the
arity of most predicates by one and allowed for better hypothesis to be found
from fewer examples.

As a special case we have also introduced a branch calledANY , which
combines the knowledge fromall the branches of a given plan. This is useful
for expressing knowledge of the kind “if there exists any branch b such that
α(b), then ...”.

It is questionable, however, whether this is not too drastica measure, since
one can imagine domains where different plan branches are not completely in-
dependent and it would be beneficial to reference two or more of them from
a single hypothesis clause. If such a need arises, the correct way to handle it
would be to enrich the mode declaration language. The above solution, how-
ever, is good enough for our current needs.

Figures 8.4 and 8.5 compare the results of learning using vanilla PROGOL
against one which contains built-in knowledge about plans and branches. It can
be easily seen that our modification leads to better learningresults.

It is also important to note that the hypothesis learned by the modified algo-
rithm is of better quality, since — as explained above — it contains a variable
bound to the default branch, instead of having duplicate constants.

83

CHAPTER 8. EXPERIMENTAL RESULTS

4 8 12 16 20 24 28
Number of examples

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

No Relevance Information
Slightly Incorrect Relevance
Correct Relevance

Figure 8.6: Correctness of Relevance.

8.4.2 Knowledge Relevance

As can be seen in the results mentioned in Section 8.2, too much knowledge can
significantly decrease the performance of the learning algorithm. In a typical
ILP setting it is not crucial to quantify which parts of knowledge are more and
which are less relevant4 — since an expert provides the complete knowledge in
the first place, if she knows that some parts are irrelevant, she will simply omit

4Although in the general field of machine learning there is a lot of interesting work being
done on this topic, especially with regard to data mining. Good surveys are, for example, [BL97]
and [VD02].

84

8.4. ADAPTING LEARNING ALGORITHM

4 8 12 16 20 24 28
Number of examples

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Incorrect; Low Uncertainty
Incorrect; High Uncertainty
Correct; High Uncertainty
Correct; Low Uncertainty

Figure 8.7: Uncertainty of Relevance.

them.

The situation is somewhat different in the agent setting, where the knowl-
edge from which we are learning does not comedirectly from an expert, but
rather from Deductor. It is a product of an initial domain description, the ob-
servations the agent has made, and its own deductive process— and all those
elements interact in complex ways.

The amount of irrelevant knowledge in such a conglomerate is, typically,
rather high. In Section 8.2 we have shown that choosing only the relevant parts
can lead to much better learning results. In the previous section we have anal-
ysed how an automatic heuristic procedure can be constructed to select which

85

CHAPTER 8. EXPERIMENTAL RESULTS

knowledge is most useful.
It is important, however, to stress that any kind of automatic procedure to

estimate the relevance of data is very approximate in natureand even though
it works very well on our domains, we do not want toover-committo its re-
sults. In particular, the idea of completely removing the predicates that were
deemed irrelevant from thewholelearning process is very dangerous. The price
of making a mistake seems to be too high in this case.

What we develop, instead, is a way for the learning algorithmitself to take
into account the relative relevance of knowledge when it is building the hypoth-
esis. In the case of PROGOL, the perfect place to take knowledge relevance
into account is in theρ operator, where the current candidate hypothesis is be-
ing generalised by new literals.

In Figures 8.6 and 8.7 we report our analysis of usefulness ofbuilding rele-
vance considerations into the algorithm itself, in the Wumpus domain only.

On Figure 8.6, the curve “Correct Relevance” depicts unambiguously cor-
rect information about relevant predicates and corresponds exactly to “Branches
(Relevant KB)” from Figure 8.4; the curve “No Relevance Information” depicts
complete lack of relevance information and corresponds to “Branches (Full
KB)”. The most interesting one, curve marked “Slightly Incorrect Relevance”,
illustrates that even providing relevance information which is not entirely cor-
rect can be beneficial.

Figure 8.7 presents how the uncertainty of relevance information influences
the results. Low uncertainty is the case when relevant predicates have the es-
timate of1 and irrelevant ones have the estimate of0. High uncertainty is the
case where relevant predicates are estimated slightly above 0.5 and irrelevant
ones slightly below0.5. An interesting fact is that increasing uncertainty of
correct relevance information lowers quality of learning,but not significantly.
On the other hand, as can be expected, providing incorrect information with
high certainty significantly disrupts the learning process.

8.5 The Agent Life Cycle

In this section we use the results of earlier experiments in order to build a com-
plete situated, rational agent and to show how it can use learning in order to
continue to improve its performance throughout its whole lifetime. Here we
only use the Wumpus domain, since it is much more illustrative to the ideas we
want to focus on.

Our main goal in this experiment is to take a look at the agent as a whole,

86

8.5. THE AGENT LIFE CYCLE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Agent age

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
yp

ot
he

si
s

A
cc

ur
ac

y

Figure 8.8: Average “badPlan” hypothesis accuracy.

and to analyse how it operates when solving problems continuously and how its
performance improves as it gathers additional experience.As always, our agent
starts with some domain knowledge and no actual “memory”.

Because of that, when Planner initially generates a set of plans, it has no
way of knowing which of them are good and which are bad. Deductor needs to
devote an equal share of time to each of those plans. This means that the agent
is reacting slowly, since it wastes a lot of time on some plansonly to discover
that they may lead to losing the game and need to be discarded.

After each game, however, the agent gathers some experienceand utilises
Learner to create a hypothesis for predicting which plans can be discarded early.
This means Deductor will now waste less resources and the overall response
time of our agent will be much shorter. In order to illustrateour ideas better,
we allow Actor to store only two plans per episode in its long-term memory.
One of them is a (safe) plan from among those it executed, and the other is a
(dangerous) plan it reasoned about and was forced to discard.

87

CHAPTER 8. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Agent age

0

5

10

15

20

25

30

A
ve

ra
ge

 T
im

e
pe

r
A

ct
io

n

Figure 8.9: Average time per action.

In this setting, Actor actually chooses plans for executionrandomly, from
among all those considered to be safe. The main focus of this experiment is
to evaluate actual usefulness of the learning algorithm that has been partially
tested (in separation from other modules) in previous sections. Right now we
analyse the architecture as a whole, showing that learning is, indeed, helpful to
the agent.

The framework established here can be also used later to testvarious mod-
ifications and upgrades of the modules within the architecture. We are able to
analyse whether it is more beneficial, for example, to use an expensive plan-
ning algorithm together with a dumb plan selection procedure, or rather to use
a simplified planner and spend more time on plan analysis, evaluation and com-
parison.

In Figure 8.8 we show the hypothesis accuracy achieved by theagent as
a function of its “age”, i.e. the number of episodes it has lived through. The
age is directly related to the number of training examples Learner has at its dis-

88

8.5. THE AGENT LIFE CYCLE

posal, and therefore this figure corresponds very closely tothe results reported
in Section 8.2. Observe, however, that in the current experiment the training
examples are no longer uniformly chosen from the whole set ofpossibilities —
though this difference does not seem to influence the outcomein any noticeable
way.

A more interesting result is presented in Figure 8.9. This graph depicts
the average time (in seconds) it takes for the agent to analyse its situation and
decide what to do. In other words, it represents how long the agent “thinks”
before it concludes it is ready to act. As can be seen, it takesmuch longer for a
“young”, inexperienced agent to decide what to do, than it does for an “older”,
smarter one — because the latter has less plans that it actually needs to analyse.

It is interesting to see that while the reasoning time drops down dramatically
at the very beginning, it remains relatively constant aftera while. It might be
tempting to say that there is no point in learning after step 4or 5, but assuming
that would be wrong. Figure 8.9 should be analysed together with the previous
one, i.e. in the context of the accuracy of the learned hypothesis. While further
learning does not speed up deliberation significantly, it definitely refines the
hypothesis and makes it more accurate.

In other words, early hypotheses make the agent ignore aboutasmanyplans
as the late ones, but definitely notthe sameones. In fact, a number of plans
they discard are actually good, and some that are kept are actually bad. This
definitely influences how effectively the agent behaves in the world.

Finally, we have performed an experiment where the agent attempts to
learn which plans are better than others. We model it by usinga predicate
betterThan(P1, P2). In order to generate training data for PROGOL we have
used a Monte Carlo simulation technique — the agent uses asimulatorof Wum-
pus environment to stochastically evaluate quality of plans.

Given plansP1 andP2 and situationS, the goal is to determine whether one
of those plans is better than the other — observe that plans may very well be
equally good or even incomparable. To this end, our agent repeatedly (in our
experiments, 2000 times) executesP1 followed by arandomsequence of (safe)
plans, until it wins the game episode. The agent then calculates the average
number of stepsT (S, P1) it takes to win the game from situationResult(S, P1).
After calculatingT (S, P2) in a similar manner, the agent has a measure of plan
quality: if T (S, P1) is significantly smaller thanT (S, P2), thenP1 is — most
likely — better thanP2.

Such technique, however, has a number of drawbacks, besidesthe obvious
fact that it is computationally expensive. First of all, it is far from being reli-

89

CHAPTER 8. EXPERIMENTAL RESULTS

able, since in many good situations there is only a small number of actions that
quickly lead to the goal, while the majority of possibilities are misleading. By
performing random actions, simulator is likely to never encounter the optimal
path. Also, the measure itself is quite sparse, since if the values ofT(S, P) are
close, they tellnothingabout true quality of plans. Nevertheless, this technique
turned out to be sufficient for our need, since we do not intendto use it for
controlling the agent, but only to generate input data for the learning process.

It is important to point out that this experiment is for illustratory purposes
only. A major problem is that the knowledge representation we use is not suf-
ficiently rich to express the correct type of differences to determine which of
two plans is better. Intuitively, it would require notions such as “better discrim-
inate Wumpus’s position” or “more knowledge is gained”. However, neither
Wumpus domain knowledge, nor hypothesis language used by PROGOL, con-
tain the arithmetical axioms necessary to compare cardinalities. In fact, the best
hypothesis our agent learned contained a number of clauses of the form:

betterThan(P1, P2): − maybeWumpus(P2,noSmells , a3),

notWumpus(P1,noSmells , a3).

wherenotWumpus(P1,noSmells , a3) means that if the “noSmells” branch of
planP1 is executed, the agent will know that Wumpus is not ona3.

Obviously, such clause is far from perfect, but it turns out that it (mostly)
suffices to distinguish between plans which do providesomenew knowledge
and plans which providenosuch knowledge.

In other words, given two useful plans, the agent is still notable to determine
which one of them is better. However, given a useful and useless one (i.e. a
plan that visitssomenew square(s) and gatherssomenew knowledge versus
a plan which only traverses the already-explored part of theboard), Actor is
able to select the former one. And as shown in Figure 8.10, this is enough to
significantly improve agent’s performance.

Given a set of plans and somebetterThan relations that hold among them,
our agent is finally equipped to select some plan and claim it as “the best one”.
Typically, betterThan relations we obtain do not form a well-defined order,
since cycles and disconnected components are common. Therefore, the agent
simply rates each plan according to how many other plans it isbetter than: the
one “dominating” the highest number is chosen for execution.

In particular, in this experimental evaluation, the agent employs the follow-
ing algorithm:

90

8.5. THE AGENT LIFE CYCLE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Agent age

3.5

4

4.5

5

5.5

6

6.5

7

N
r

of
 s

te
ps

Figure 8.10: Average number of actions per game episode.

1. Generate all applicable plans — Planner.

2. Determine which plans are necessarily “bad” and discard them, based on
Learner’s experience-generated knowledge — Actor.

3. Analyse all the remaining plans and determine which ones are safe —
Deductor.

4. Choose “the best” among all safe plans, according to measure described
above — Deductor.

5. Execute it, observing new smelling facts — Actor.

6. Analyse the new situation, determining if Wumpus’s position is already
known — Deductor.

7. If not, go to point 1.

91

CHAPTER 8. EXPERIMENTAL RESULTS

8. Choose one of the plans executed in this game episode, and one of the
plans determined to be unsafe — Actor.

9. Add them to the agent’s experience — Learner.

10. Run PROGOL, trying to improve thebadPlan hypothesis — Learner.

11. Compare all safe plans using the Monte Carlo simulator technique —
Actor.

12. Add the best and the worst plan to the agent’s experience —Learner.

13. Run PROGOL, trying to improvebetterThan hypothesis — Learner.

The results clearly indicate that our architecture works: the knowledge ac-
quired via learning serves its purpose since it makes the agent behave more
efficiently.

Exploiting previous experience is one of the most promisingways of coping
with uncertainty and lack of knowledge about the agent’s current situation. One
of our main goals, and of the biggest challenges we face, is toensure smooth co-
operation between deduction and induction within the agent’s framework. The
results presented in this section show that this goal has been, at least partially,
achieved.

92

Chapter 9

Conclusions

9.1 Thesis Summary

In this thesis we have presented a framework for developing situated, rational,
resource-aware agents that are able to improve their performance from expe-
rience. Our architecture allows the agent to combine planning, deductive rea-
soning, inductive learning and time-awareness in order to successfully operate
in dynamic environments. Agents create conditional partial plans, reason about
their consequences (using an extension of Active Logic withSituation Calculus
features), execute them and employ Inductive Logic Programming to generalise
past experiences.

We have also reported on our experiments using the PROGOL learning al-
gorithm to identify bad plans early in order to save the agentthe (pointless)
effort of deliberating about them. We have analysed how the quality of learning
depends on the amount of additional, domain-specific knowledge provided by
the user. Moreover, we have shown that it is possible to adapta general purpose
learning tool such as PROGOL to better fit the specific requirements of situated
agents. Finally, we have presented that the Inductive LogicProgramming ap-
proach works well within the architecture we are developing. In particular, we
have demonstrated that successful learning can result in a dramatic decrease of
the agent’s reasoning time and in a significant increase of its performance.

In order to summarise our work, we would like to point out thatthe results
described in this thesis come in two flavours. One is the conceptual work on
developing an architecture for situated rational agents, with the major focus on
using conditional partial plans. Many ideas are related to how responsibilities
should be divided between the modules and how Planner, Deductor, Actor and

93

CHAPTER 9. CONCLUSIONS

Learner should interact and cooperate in order to achieve agent’s goals. Neces-
sarily, this work has been discussed without going into too much detail onhow
this should actually be realised, partially in order to keepthe focus of the thesis
clear and partially because many of those issues still remain to be solved, being
in themselves interesting research areas.

The other kind of results concerns the current implementation of the ar-
chitecture. It has been tested on a toy domain and it employs anumber of
simplifications with regard to the ultimate concept of the system. Neverthe-
less, this implementation can be used to test and validate the architecture. Most
importantly, though, the results of experiments performedusing this implemen-
tation do — even if it requires some degree of optimism — suggest that our
approach is viable. Obviously, it will still take a lot of work before our ideas
become practically useful and our agent can outperform state of the art solu-
tions in complex, practically useful domains. Nevertheless, we have shown that
this line of research should lead to further interesting results.

In particular, we have high hopes with regards to the kinds ofproblems that
our framework will be able to handle. It is our belief that a truly intelligent agent
can someday emerge from it. Our architecture has — at least onthe conceptual
level — all the means necessary to deal with the most challenging problems sit-
uated agents face: limited resources, imperfect domain knowledge, incomplete
and noisy observations. Rational, autonomous agents are the ultimate dream of
Artificial Intelligence research since its beginning. We believe that our work is
a small step towards achieving this dream.

9.2 Future Work

The research presented here can be continued in many different directions. The
most obvious one is to improve the learning algorithm by making it aware of
the actual meaning and origins of its input data. By exploring the difference
betweenfluentsandnon-fluents, for example, a hypothesis can be found that
will match different situations better.

The most important thing, however, is to focus our attentionon how to
handle the unavoidable uncertainty within training data. Again, there is a lot of
work being done in this area, but there are some rather uniqueissues in the case
of rational agents and we feel that it is important to design asolution that will
be able to exploit whatever advantages can be found. The current setup assumes
complete domain knowledge, while in many situations this assumption might be
violated — for example, the agent might not know that, actually, the Wumpus

94

9.2. FUTURE WORK

can move.

The second step is to devise an algorithm to efficiently “learn to compare”,
instead of creating a classifier. After all, the real goal of the agent is to choose
the bestplan available. Discarding bad plans is a step in this direction, but
the classification approach is not necessarily the right onewhen the “least bad
among dangerous” or the “most rewarding among marvelous” isto be selected.
Our surrogate approach based on usingbetterThan predicate has many draw-
backs and, if possible, a better solution should be developed.

Moreover, the exact way of representing plans and their properties, for the
sake of efficient learning, requires more work. Our current setup, which simply
uses slightly modified Situation Calculus mechanisms, is most likely subopti-
mal — but anything better suited would need to have more support built into
the learning algorithm itself.

One very promising idea seems to be the exploration of the epistemic quality
of actions. An agent should pursue those plans which provideit with the most
important knowledge. This would require assessing importance for a particu-
lar domain by observing effects specific pieces of knowledgehave on agent’s
overall performance.

Moreover, in the case of rational agents we have the very interesting notion
of “experiment generation”, since they often do not learn from a predefined set
of training examples, but rather face the complexexploration vs exploitation
dilemma. How an agent should act in a way which both provides short term
rewards (or, at the very least, keeps it safe) and at the same time offers a chance
to learn something new is often far from obvious.

As mentioned earlier, we are also looking into discovering subgoals and
subplans. It seems that one of the most useful capacities of humans is their
ability to divide a complex problem and to solve each subproblem separately
before combining their solutions into a global one. We wouldlike to force our
agent to discover this possibility.

Another direction we would like to investigate in the futureis making the
learning module discover general rules which extend domainknowledge. The
ability to invent domain-specific reasoning heuristics would be very useful for
rational agents. Finally, the current setup assumes a complete domain knowl-
edge, while in many situations this may not be the case at all.The system
should, if possible, allow the agent to learn domain knowledge so that it can
complete its understanding of the environment. An example of such a rule
might be, in the RoboCup domain, “do not perform akick action unless you
know that the ball is in front of you”. It seems that availability of such rules

95

CHAPTER 9. CONCLUSIONS

can save a substantial amount of work for Deductor, if it inductively discovers
“reasoning shortcuts”.

Another clear advantage would be to reuse a valid plan in a different context.
As long as the context does not differ substantially, this operation should lead
to a fast solution of a problem similar to one solved in the past.

Last but not least, we would like to investigate ways to incorporate interac-
tions with a user. Domain experts can be an invaluable sourceof knowledge and
the agent should be able to exploit this. For example, to better adjust tradeoff
between spending time on deduction and induction, the agentcould be guided
by an external observer (the user) providing a feedback about its performance.

Besides the possibilities listed above, which mostly focuson Learner and its
interactions with the rest of the agent, there is a number of open issues regarding
deductive reasoning, planning and acting. An obvious step forward would be to
replace our simple versions of Planner and Actor with state of the art systems,
in order to ensure that the interfaces between modules we designed will work
with existing software. It would also be interesting to find out what performance
improvements can be achieved this way. Another work worth doing is to apply
our concepts in different environment dynamics. An experiment of using our
architecture to control a physical artifact (such as a mobile robot) would be the
next step in showing advantages of this framework.

The list above does not cover all the possible further investigations and ex-
tensions of the proposed system. It is rather a reflection of the author’s own
interests which focus on the border between Machine Learning and other sub-
fields of Artificial Intelligence.

96

Bibliography

[AG02] Robert Andrews and Shlomo Geva. Rule extraction fromlocal
cluster neural nets.Neurocomputing, 47, 2002.

[Ågo04] ThomasÅgotnes. A Logic of Finite Syntactic Epistemic States.
PhD thesis, Department of Informatics, University of Bergen, Nor-
way, 2004.

[AML89] James S Albus, Harry G McCain, and Ronald Lumia. NASA/NBS
Standard Reference Model for Telerobot Control System Archi-
tecture (NASREM). NIST Technical Note 1235, National Institute
of Standards and Technology, Robot Systems Division, Center for
Manufacturing Engineering, Gaithersburg, MD 20899, 1989.

[Ark98] Ronald C Arkin.Behaviour-Based Robotics. MIT Press, 1998.

[Baj93] Ruzena Bajcsy, editor.Proceedings of the 13th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

[BCPT03] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, and Paolo
Traverso. A framework for planning with extended goals under
partial observability. InInternational Conference on Automated
Planning and Scheduling, pages 215–225, 2003.

[BCT04] Piergiorgio Bertoli, Alessandro Cimatti, and Paolo Traverso. In-
terleaving execution and planning for nondeterministic, partially
observable domains. InEuropean Conference on Artificial Intelli-
gence, pages 657–661, 2004.

[Bee02] Michael Beetz.Plan-Based Control of Robotic Agents: Improving
the Capabilities of Autonomous Robots, volume 2554 ofLecture
Notes in Computer Science. Springer, 2002.

97

[BFT07] Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors. Proceed-
ings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS 2007). AAAI Press, 2007.

[BG01] Blai Bonet and Hector Geffner. Planning and control in artifi-
cial intelligence: A unifying perspective.Applied Intelligence,
14(3):237–252, 2001.

[BL97] Avrim Blum and Pat Langley. Selection of relevant features
and examples in machine learning.Artificial Intelligence, 97(1–
2):245–271, 1997.

[Bro91] Rodney A Brooks. Intelligence without representation. Artificial
Intelligence, 47(1–3):139–159, 1991.

[BS99] Liviu Badea and Monica Stanciu. Refinement operatorscan be
(weakly) perfect.Proceedings of the 9th International Workshop
on Inductive Logic Programming, 1634:21–33, 1999.

[CD97] Marco Cadoli and Francesco M Donini. A survey on knowledge
compilation.AI Communications, 10(3–4):137–150, 1997.

[CM03] Simon Colton and Stephen Muggleton. ILP for mathematical dis-
covery. In13th International Conference on Inductive Logic Pro-
gramming, pages 93–111, 2003.

[COOP02] Waiyian Chong, Mike O’Donovan-Anderson, Yoshi Okamoto,
and Don Perlis. Seven days in the life of a robotic agent. In
GSFC/JPL Workshop on Radical Agent Concepts, pages 243–256,
2002.

[CRB04] Alessandro Cimatti, Marco Roveri, and PiergiorgioBertoli. Con-
formant planning via symbolic model checking and heuristic
search.Artificial Intelligence, 159(1–2):127–206, 2004.

[CS92] Marco Cadoli and Marco Schaerf. Approximate reasoning and
non-omniscient agents. InProceedings of the 4th conference on
Theoretical Aspects of Reasoning about Knowledge, pages 169–
183, 1992.

[CS01] Silvia Coradeschi and Alessandro Saffiotti. Perceptual anchoring
of symbols for action. In17th International Joint Conferences on

98

Artificial Intelligence (IJCAI 2001), pages 407–412, Seattle, WA,
2001.

[DF95] Thomas G Dietterich and Nicholas S Flann. Explanation-based
learning and reinforcement learning: A unified view. InInterna-
tional Conference on Machine Learning, pages 176–184, 1995.

[DRD01] Saso Džeroski, Luc De Raedt, and Kurt Driessens. Relational re-
inforcement learning.Machine Learning, 43(1/2):7–52, 2001.

[DRL96] Luc Dehaspe, Luc De Raedt, and Wim Van Laer. CLAUDIEN: the
CLAUsal DIscovery ENgine user’s guide, 1996.

[DW91] Thomas Dean and Michael P Wellman.Planning and Control.
Morgan Kaufmann, 1991.

[Ebb99] Heinz-Dieter Ebbinghaus. Is there a logic for polynomial time?
Logic Journal of the IGPL, 7(3):359–374, 1999.

[EKM+99] Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Madhura
Nirkhe, and Don Perlis. Active logics: A unified formal approach
to episodic reasoning. Technical Report CS-TR-4072, University
of Maryland, 1999.

[Elg88] Jennifer Elgot-Drapkin.Step Logic: Reasoning Situated in Time.
PhD thesis, Department of Computer Science, University of Mary-
land, 1988.

[Elg91] Jennifer Elgot-Drapkin. Step-logic and the three-wise-men prob-
lem. In Proceedings of the 9th National Conference on Artificial
Intelligence (AAAI 1991), pages 412–417, 1991.

[FG00] Michael Fisher and Chiara Ghidini. Agents playing with dynamic
resource bounds. In Markus Hannebauer, editor,Proceedings of
the Workshop on Balancing Reactivity and Social Deliberation in
Multi-Agent Systems (ECAI 2000), 2000.

[FHVM95] Ronald Fagin, Joseph Y Halpern, Moshe Y Vardi, and Yoram
Moses.Reasoning about knowledge. MIT Press, 1995.

[Fir89] R James Firby.Adaptive Execution in Complex Dynamic Worlds.
PhD thesis, Department of Computer Science, Yale University,
1989.

99

[FS87] Kenneth Forbus and Howard E Shrobe, editors.Proceedings of the
6th National Conference on Artificial Intelligence (AAAI 1987).
MIT Press, 1987.

[FYG04] Alan Fern, SungWook Yoon, and Robert Givan. Learning domain-
specific control knowledge from random walks. InInternational
Conference on Automated Planning and Scheduling, pages 191–
199, 2004.

[Gat91] Eran Gat. Reliable Goal-Directed Reactive Control of Au-
tonomous Mobile Robots. PhD thesis, Virginia Politechnic Insti-
tute and State University, 1991.

[GINR99] Giuseppe De Giacomo, Luca Iochhi, Daniele Nardi, and Riccardo
Rosati. A theory and implementation of cognitive mobile robots.
Journal of Logic and Computation, 9(5):759–785, 1999.

[GKP00] John Grant, Sarit Kraus, and Don Perlis. A logic for characterizing
multiple bounded agents.Autonomous Agents and Multi-Agent
Systems, 3(4):351–387, 2000.

[GL87] Michael P Georgeff and Amy L Lansky. Reactive reasoning and
planning. In Kenneth Forbus and Howard E Shrobe, editors,Pro-
ceedings of the 6th National Conference on Artificial Intelligence
(AAAI 1987), pages 677–682, 1987.

[GLP05] Michael Genesereth, Nathaniel Love, and Barney Pell. General
game playing: Overview of the AAAI competition.AI Magazine,
26(2):62–72, 2005.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso.Automated Plan-
ning: Theory and Practice. Morgan Kaufmann, 2004.

[GPS98] Goran Gogic, Christos H Papadimitriou, and Martha Sideri. In-
cremental recompilation of knowledge.Journal of Artificial Intel-
ligence Research, 8:23–37, 1998.

[GT04] Charles Gretton and Sylvie Thiebaux. Exploiting first-order re-
gression in inductive policy selection. InConference on Uncer-
tainty in Artificial Intelligence, pages 217–225, 2004.

100

[GVB04] Christophe Giraud-Carrier, Ricardo Vilalta, and Pavel Brazdil. In-
troduction to the special issue on meta-learning.Machine Learn-
ing, 54(3):187–193, 2004.

[GW01] Dov Gabbay and John Woods. The new logic.Logic Journal of
the IGPL, 9(2):141–174, 2001.

[HBHM99] Koen V Hindriks, Frank S de Boer, Wiebe van der Hoek,and John-
Jules Ch Meyer. Control structures of rule-based agent languages.
In Müller et al. [MSR99], pages 381–396.

[HHM+00] Henry Hexmoor, Marcus Huber, Jörg P Müller, John Pollock, and
Donald Steiner. On the evaluation of agent architectures. In
Nicholas R Jennings and Yves Lespérance, editors,Proceedings
of 6th International Workshop Intelligent Agents VI: AgentThe-
ories, Architectures and Languages (ATAL 1999), volume 1757
of Lecture Notes in Computer Science, pages 106–116. Springer,
2000.

[HPS04] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered land-
marks in planning. Journal of Artificial Intelligence Research,
22:215–278, 2004.

[HW02] Wiebe van der Hoek and Michael Wooldridge. Tractablemultia-
gent planning for epistemic goals. InFirst International Confer-
ence on Autonomous Agents and Multiagent Systems, pages 1167–
1174, 2002.

[HW03] Wiebe van der Hoek and Michael Wooldridge. Cooperation,
knowledge and time: Alternating-time temporal epistemic logic
and its applications.Studia Logica, 75:125–157, 2003.

[JSW98] Nicholas R Jennings, Katia Sycara, and Michael Wooldridge. A
roadmap of agent research and development.Autonomous Agents
and Multi-Agent Systems, 1(1):7–38, 1998.

[KBM98] David Kortenkamp, R Peter Bonasso, and Robin Murphy, edi-
tors.Artificial Intelligence and Mobile Robots. AAAI Press / MIT
Press, 1998.

[Kha99] Roni Khardon. Learning to take actions.Machine Learning,
35(1):57–90, 1999.

101

[KL06] Tolga Könik and John E Laird. Learning goal hierarchies from
structured observations and expert annotations.Machine Learn-
ing, 64:263–287, 2006.

[Koe01] Sven Koenig. Agent-centered search.Artificial Intelligence Mag-
azine, 4(22):109–131, 2001.

[KR95] Roni Khardon and Dan Roth. Learning to reason with a restricted
view. In Workshop on Computational Learning Theory, pages
301–310, 1995.

[KR97] Roni Khardon and Dan Roth. Learning to reason.Journal of the
ACM, 44(5):697–725, 1997.

[LC06] Pat Langley and Dongkyu Choi. Learning recursive control pro-
grams from problem solving.Journal of Machine Learning Re-
search, 7:493–518, 2006.

[Lee00] Jaeho Lee. Reactive-system approaches to agent architectures. In
Nicholas R Jennings and Yves Lespérance, editors,Proceedings
of 6th International Workshop Intelligent Agents VI: AgentThe-
ories, Architectures and Languages (ATAL 1999), volume 1757
of Lecture Notes in Computer Science, pages 132–146. Springer,
2000.

[Lev84] Hector Levesque. A logic of implicit and explicit belief. In
Proceedings of 4th National Conference on Artificial Intelligence
(AAAI 1984), pages 198–202, 1984.

[Lew01] Richard L Lewis. Cognitive theory, SOAR.International Ency-
clopedia of the Social and Behavioral Sciences, pages 2178–2183,
2001.

[LK02] Maxim Likhachev and Sven Koenig. Lifelong planning for mobile
robots. InRevised Papers from the International Seminar on Ad-
vances in Plan-Based Control of Robotic Agents, pages 140–156.
Springer-Verlag, 2002.

[LSBM06] Derek Long, Stephen F Smith, Daniel Borrajo, and Lee Mc-
Cluskey, editors. Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS 2006).
AAAI Press, 2006.

102

[McD92] Drew McDermott. Transformational planning of reactive behav-
ior. Technical Report TR CSD RR-941, Yale University, 1992.

[Mit97] Thomas M Mitchell. Machine Learning. McGraw-Hill Higher
Education, 1997.

[Mor04] Eduardo F Morales. Relational state abstractions for reinforce-
ment learning. InProceedings of the Workshop on Relational Re-
inforcement Learning (ICML 2004), pages 27–32, 2004.

[Moy02] Stephen Moyle. Using theory completion to learn a robot navi-
gation control program. InInductive Logic Programming, pages
182–197, 2002.

[MPT95] Jörg P Müller, Markus Pischel, and Michael Thiel.A pragmatic
approach to modeling autonomous interacting systems – prelim-
inary report. In Michael Wooldridge and Nicholas R Jennings,
editors, Proceedings of Workshop on Agent Theories, Architec-
tures, and Languages (ECAI 1994), volume 890 ofLecture Notes
in Computer Science, pages 226–240. Springer, 1995.

[MSR99] Jörg P Müller, Munindar P Singh, and Anand S Rao, editors.
Proceedings of 5th International Workshop Intelligent Agents V:
Agent Theories, Architectures and Languages (ATAL 1998), vol-
ume 1555 ofLecture Notes in Computer Science. Springer, 1999.

[Mug95] Stephen Muggleton. Inverse entailment and PROGOL.New Gen-
eration Computing, Special issue on Inductive Logic Program-
ming, 13(3–4):245–286, 1995.

[Mül99] Jörg P Müller. The right agent (architecture) todo the right thing.
In Jörg P Müller, Munindar P Singh, and Anand S Rao, editors,
Proceedings of 5th International Workshop Intelligent Agents V:
Agent Theories, Architectures and Languages (ATAL 1998), vol-
ume 1555 ofLecture Notes in Computer Science, pages 211–225.
Springer, 1999.

[NKP93] Madhura Nirkhe, Sarit Kraus, and Don Perlis. Situated reasoning
within tight deadlines and realistic space and computationbounds.
In Proceedings of the 2nd Symposium on Logical Formalizations
of Commonsense Reasoning, 1993.

103

[NM07a] Sławomir Nowaczyk and Jacek Malec. An architecturefor re-
source bounded agents. InWorkshop on Agent Based Computing
(ABC’07), Wisła, Poland, 2007.

[NM07b] Sławomir Nowaczyk and Jacek Malec. Inductive logicprogram-
ming algorithm for estimating quality of partial plans. InProceed-
ings of the 6th Mexican International Conference on Artificial In-
telligence, volume 4827 ofLecture Notes in Computer Science,
pages 359–369. Springer, 2007.

[NM07c] Sławomir Nowaczyk and Jacek Malec. Learning to evaluate con-
ditional partial plans. InICMLA ’07: Proceedings of the Sixth
International Conference on Machine Learning and Applications,
pages 235–240. IEEE Computer Society, 2007.

[NM07d] Sławomir Nowaczyk and Jacek Malec. Relative relevance of sub-
sets of agent’s knowledge. InWorkshop on Logics for Resource
Bounded Agents, September 2007.

[Now06a] Sławomir Nowaczyk. Learning of agents with limited resources.
In AAAI-06 Student Abstract and Poster Program, 2006.

[Now06b] Sławomir Nowaczyk. Partial planning for situatedagents based on
active logic. InWorkshop on Logics for Resource Bounded Agents
(ESSLLI 2006), 2006.

[Nyb05] Per Nyblom. Handling uncertainty by interleaving cost-aware
classical planning with execution. In3rd joint SAIS-SSL event
on Artificial Intelligence and Learning Systems, pages 134–140,
2005.

[Pat85] Peter F Patel-Schneider. A decidable first-order logic for knowl-
edge representation. InProceedings of the 9th International Joint
Conference on Artificial Intelligence (IJCAI 1985), pages 455–
458, 1985.

[Pat86] Peter F Patel-Schneider. A four-valued semantics for frame-based
description languages. InProceedings of the 5th National Confer-
ence on Artificial Intelligence (AAAI 1986), pages 344–348, 1986.

104

[PB04] Ronald P A Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete informa-
tion and sensing. InProceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004), pages
2–11, 2004.

[PPT+99] Khemdut Purang, Darsana Purushothaman, David Traum, Carl
Andersen, and Don Perlis. Practical reasoning and plan execu-
tion with active logic. In John Bell, editor,Proceedings of the
Workshop on Practical Reasoning and Rationality (IJCAI 1999),
pages 30–38, 1999.

[Rei01] Raymond Reiter.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT Press,
2001.

[RG93] Anand S Rao and Michael P Georgeff. A model-theoreticap-
proach to the verification of situated reasoning systems. InPro-
ceedings of the 13th International Joint Conference on Artificial
Intelligence (IJCAI 1993), pages 318–324, 1993.

[RMM+94] Francesco Ricci, S Mam, Patrizia Marti, Véronique Normand, and
Pilar Olmo. CHARADE: a platform for emergencies management
systems. Technical Report 9404-07, Trento University, Povo, Italy,
1994.

[RN03] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[SB98] Richard S Sutton and Andrew G Barto.Reinforcement Learning:
An Introduction. The MIT Press, 1998. A Bradford Book.

[SEKW] Edgar Sommer, Werner Emde, Jörg-Uwe Kietz, and Stefan Wro-
bel. MOBAL 3.0 user guide.

[SK96] Bart Selman and Henry Kautz. Knowledge compilation and theory
approximation.Journal of the ACM, 43(2):193–224, 1996.

[Sut90] Richard S Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In
Bruce W Porter and Raymond J Mooney, editors,Proceedings of
the 7th International Conference on Machine Learning (ICMLA
1990), pages 216–224. Morgan Kaufmann Publishers, Inc., 1990.

105

[VD02] Ricardo Vilalta and Youssef Drissi. A perspective view and sur-
vey of meta-learning.Artificial Intelligence Review, 18(2):77–95,
2002.

[WJ95] Michael Wooldridge and Nicholas R Jennings, editors. Proceed-
ings of Workshop on Agent Theories, Architectures, and Lan-
guages (ECAI 1994), volume 890 ofLecture Notes in Computer
Science. Springer, 1995.

[WL01] Michael Wooldridge and Alessio Lomuscio. A computationally
grounded logic of visibility, perception, and knowledge.Logic
Journal of the IGPL, 9(2):257–272, 2001.

[Wob00] Wayne Wobcke. On the correctness of PRS agent programs. In
Nicholas R Jennings and Yves Lespérance, editors,Proceedings
of 6th International Workshop Intelligent Agents VI: AgentTheo-
ries, Architectures and Languages (ATAL 1999), volume 1757 of
Lecture Notes in Computer Science, pages 42–56. Springer, 2000.

[Woo00] Michael Wooldridge. Reasoning about Rational Agents. MIT
Press, 2000.

[WR99] Michael Wooldridge and Anand Rao, editors.Foundations of Ra-
tional Agency. Kluwer Academic Publishers, 1999.

[Yam96] Akihiro Yamamoto. Improving theories for inductive logic pro-
gramming systems with ground reduced programs. Technical re-
port, AIDA9619, Technische Hochschule Darmstadt, 1996.

[YZ92] Ronald R Yager and Lofti A Zadeh, editors.An Introduction to
Fuzzy Logic Applications in Intelligent Systems. Springer Media,
1992.

[ZR93] Shlomo Zilberstein and Stuart J Russell. Anytime sensing, plan-
ning and action: A practical model for robot control. In Ruzena
Bajcsy, editor,Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence, pages 1401–1407. Morgan Kauf-
mann, 1993.

106

	Introduction
	Research Idea
	Agent Foundations
	Conditional Partial Plans
	Reasoning Mechanism
	Illustratory Domain
	Interdisciplinary Aspect
	Overview of the Research Area
	List of Publications

	The Agent
	Introduction
	Agent Architecture
	Knowledge Representation

	Deductor Module
	Introduction
	Situation Calculus Formalism
	Active Logic Formalism
	Agent's Introspection
	Reasoning

	Planner Module
	Introduction
	Plan Generation
	Relaxation
	Plan Evaluation

	Actor Module
	Introduction
	Reasoning
	Plan Selection
	Execution
	Environment Interaction

	Learner Module
	Introduction
	Plan Selection
	Inductive Logic Programming
	Training Knowledge
	Learning Algorithm
	Conditional Partial Plans
	Modes of Learning

	Module Interactions
	Experimental Results
	Introduction
	Detecting Dangerous Plans
	Estimating Relevance of Knowledge
	Introduction
	Intuitions
	Implementation

	Adapting Learning Algorithm
	Branch Awareness
	Knowledge Relevance

	The Agent Life Cycle

	Conclusions
	Thesis Summary
	Future Work

