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Abstract

Rational, autonomous agents that are able to achieve tbals gn dynamic,
partially observable environments are the ultimate dre&wrtificial Intelli-
gence research since its beginning. The goal of this PhDstieto propose,
develop and evaluate a framework well suited for creatitgligent agents that
would be able to learn from experience, thus becoming mdimesft at solving
their tasks.

We aim to create an agent able to function in adverse envieotsnthat
it only partially understands. We are convinced that symbatowledge rep-
resentations are the best way to achieve such versatilityorder to balance
deliberation and acting, our agent needs tdilme-aware i.e. it needs to have
the means to estimate its own reasoning and acting time.

One of the crucial challenges is to ensure smooth interatitween the
agent’s internal reasoning mechanism and the learningrsyssed to improve
its behaviour. In order to address it, our agent will createegal different condi-
tional partial plans and reason about the potential use$gliof each one. More-
over it will generalise whatever experience it gathers aselitwhen solving
subsequent, similar, problem instances.

In this thesis we present on the conceptual level an ar¢bitedor rational
agents, as well as implementation-based experimentdtsesunfirming that a
successful lifelong learning of an autonomous artificiadregcan be achieved
using it.
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Chapter 1

Introduction

The principal goal of this PhD thesis is to propose, develog evaluate a
framework well suited for creating intelligent agents —tbphysical and vir-
tual ones — that would be able to learn from experience, tleasining more
efficient at solving their tasks.

We are especially interested in the development of ratiagehts that are
both autonomous and situated — agents that have their ows god actively
pursue them while being able to survive and prosper in agigrtinknown,
dynamic and uncontrollable environment.

1.1 Research ldea

An important observation which lies at the very foundatidroer approach is
that such agents not only need to be modelled as having dmaeputational
resources. They also need to be aware of their own limitateord take them
into account (this necessity is presented by Chong andothd€COOP02] in

an unusually brilliant and entertaining way). In particulbeing placed in a
dynamic environment means that assumptions of infinite ctatipnal power,

inexhaustible memory, etc. are not applicable and eventequioductive. In

our project we investigate rational agents that are ablemsaously alternate
between reasoning and acting and that complement theictieglabilities with

knowledge extracted from experience.

Itis our belief that a truly intelligent agent needs to usdudgive reasoning
in order to take advantage of whatever domain knowledgesitiegn provided
with. It also needs to perform inductive learning in ordetbtmnefit from ex-
perience it has gathered in the past, and to correct missiitpocurate parts
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CHAPTER 1. INTRODUCTION

of its knowledge. Finally, the agent must acknowledge tlod beasoning and
acting takes time, and consciously put effort into balagdhose activities in a
rational way.

Clearly, all realistic agents must have limited resourbesh mental (CPU
power, memory size, reasoning capabilities) and physaagdbilities of sen-
sors and actuators). For quite some time these limitatiams been consciously
set aside, since ignoring them made it possible to employrmebeu of impor-
tant simplifications and to develop useful formal models. dt¥engly believe,
however, that it is now time to revise these limitations améittempt to cre-
ate a methodology for creating truly rational, situated egalistic agents in a
systematic way.

Despite the significant progress that has been made in séedda of Ar-
tificial Intelligence during the last few years, this islsdilchallenging and am-
bitious goal. Nevertheless, while not claiming to solveghablem completely,
this thesis presents a viable approach that promises te tmahrds practical
problems.

1.2 Agent Foundations

Rational, autonomous agents that are able to achieve thals ¢n dynamic,
only partially observable environments are the ultimagadr of Artificial Intel-
ligence research since its beginning. Quite a lot has afrbadn done towards
achieving that dream, but dynamic domains still remain sometjallenge for
autonomous systems. In particular, nontrivial environtaehat are only par-
tially observable pose problems that are beyond the custetd of the art —
except possibly when dedicated, hand-crafted solutiomsleveloped for very
specific tasks.

One of the most promising and successful ways of coping witlettainty
and lack of knowledge about one’s current situation is tdakprevious ex-
perience. There are numerous ways in which such experiencbegathered
and organised, including memorising, creating varioustalenodels, or cal-
culating appropriate probability distributions over pibks courses of events, to
name just a few.

In our work, one of the biggest challenges is to ensure smiatthactions
between the agent’s internal reasoning mechanism andairéng system used
to improve its behaviour. We investigated a number of forsnas, looking for
one which would allow, on the one hand, the reasoner to ircatp knowledge
about its own bounded resources (such as reasoning timepryesensing

2



1.3. CONDITIONAL PARTIAL PLANS

capabilities), and on the other to allow its knowledge arlckfseto be used for
inductive learning.

We have decided to base our agent on the idea of conditiom@hlgalans
and to have it use a symbolic deductive reasoner employirtyéAtogic. In
particular, we combine those two with ideas from Situatiaic@lus. Further-
more, we use Inductive Logic Programming algorithms as meéigeneralis-
ing the agent’s experience.

A major assumption which drives our research is the ideadaditstic ratio-
nal agents need to live in domains where complexity prevéets from finding
complete solutions. Due to limited resources and the niggdesstay respon-
sive in a dynamic world, situated agents are unable to genareomplete plan
for achieving their goals. An example of such a domain is thbd€up setting,
where the agent aims to “score a goal”, but no complete pladdimg that can
be generated (except in some very specific situations, sbkiag alone, with
a ball, and in front of the opponent’s goal). Normally, theemigmust, at all
times, remain open to new observations and adjust its acdoocordingly.

In theoretical Al a common solution to a goal satisfactionbpem in dy-
namic domains is to createcanformant plani.e. a plan which contains provi-
sions for any possible sequence of external events andvaltiesms. Such plan
can then be proven to reach the goal in any imaginable scen@ar situated
agents, however, not only the taskapéating but even a requirement to simply
storesuch plan could easily exceed the available resourcesalistie domains
it is not uncommon at all for an infinite number of differentceptional events
to be possible. For example, in a simple process of drivingdérom work, a
person could encounter any number of traffic accidentstimicounterproduc-
tive to prepare in advance for hundreds of them.

1.3 Conditional Partial Plans

With such considerations in mind, we have decided that itoisrealistic to
expect our agent to find a complete plan that achieves its gdaroughout this
thesis, we will mainly use nondeterministic domains (orondich appear to
be nondeterministic to the agent due to its incomplete wtaeding of them)
to illustrate this phenomenon.

For this reason we have decided that our agent needs to eaediteeason
aboutpartial plans By that we mean plans that (hopefully) bring it somewhat
closer to achieving the goal, but which are manageably simpt short enough
to be computable in reasonable time. It is crucial to poirittbat, in general,
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CHAPTER 1. INTRODUCTION

there exists no way in which an agent could actuallycerain that executing
a particular partial plan is, indeed, bringing it closer thiaving its goal (other
than expanding this plan until it becomes a complete oneg agent is even
less likely to be able to decide with certainty whether aiphptan is an optimal
one to execute or not.

Therefore, our focus in this work is not for an agent to sttwsards gen-
erating optimal solutions, but to make rationally motihtéecisions to settle
for behaviours that are “good enough” instead. Clearlyeaacynamic envi-
ronment and time constraints are taken into consideratfanpptimality of a
solution can no longer be realistically expected.

At the same time, in order to make informed decisions abol#nicing
deliberation and acting, the agent needs tditne-aware i.e. it needs to have
the means to estimate its own reasoning and acting time. dergit needs to
be able to influence them — at the very least it needs theakilitlecide, in
the middle of solving a problem, that it has had enough andjite“up”. Only
after the agent is able to estimate the progress of its owhettation, does it
have the means to consciously balance reasoning and acting.

We intend, therefore, for the agent to judge by itself wheibhés more
beneficial to begin executing one of the existing plans imatety or rather to
continue deliberation and, possibly, develop longer anderaomplete plans in
order to avoid making an unrecoverable mistake. In othedsjdhe agent will
be performing on-line planning and interleaving it withpkaxecution.

In this context it is especially important to distinguish esial class of
actions and plans, so called “information-providing” onghich allow an agent
to acquire additional knowledge about the world. Such p&rescontinuously
in the centre of our attention, since we believe that theyirsumental in
addressing the problem of the limited resources our agent ha

These information-providing plans allow the agent to “¢heavay part
of the complexity of the external world, especially whennpleg activity is
interleaved with their execution. In particular, perfongithem at the right
time allows the agent to greatly simplify its subsequensoeig process — it
no longer needs to take into account the vast number of pesstbations that
are inconsistent with the newly observed state of the wdrtdlis, it can proceed
further in a more effective way, by devoting its computagibresources to more
relevant issues. Coincidentally, this is also how humamsageh unsolvable
problems.

Therefore, situated agents must consciously alternateeleet reasoning,
acting and observing their environment, and in some casealldif this at
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1.4. REASONING MECHANISM

once. We aim to achieve this by making the agent create shdifipplans
and execute them, learning more about its environment ¢fnauwt the process.
The agent also generalises its own experience to evaluatikétihood of any
particular plan leading to the goal.

In addition to being partial, the plans our agent reasonsitahie condi-
tional, which means that actions to be taken depend on observatiads dur-
ing execution. This is especially important when the agdtengpts to learn
from experience and to evaluate plans, deciding that sontikeeofi are better
than others. Interestingly, in many domains sequentialgpéae not sufficiently
generic to allow such evaluation to be successful, sindetbefulness is heav-
ily grounded in the current situation.

Conditional plans, on the other hand, are often more uravexsd their
quality can be estimated more meaningfully, as we will eixpla Section 2.3
and in Chapter 6. It is often the case that, if agent’s knogdeabout the world
is limited (i.e. it cannot predict the effects of its own acs with certainty
and most actions can lead to various unpredictable obsemejt only very
short sequential plans can be classified as good ones, giyteirg longer
risks neglecting new and potentially important informatid\t the same time,
a conditional plan may be much more complex since it can aopt@visions
for unexpected events.

1.4 Reasoning Mechanism

It is our belief that deductive knowledge, at least in manyhef domains we
are interested in (RoboCup, driving home from work, Wumpameg), may
contain more details and be more accurate than other formspoésentation
(such as numerical or probabilistic ones). Our agent neels fible to handle
non-stationary, adverse environments, to cooperate \tlithre in multi-agent
settings and to plan for goals more complex than simple adality properties
(such as temporally extended goals and restoration gdais)intent is to cre-
ate an agent able to function in a hostile environment thearitonly partially
observe and that it only partially understands.

We are firmly convinced that symbolic knowledge represé@natare the
only way to achieve such versatility. However, the requigata we presented in
the previous two sections put rather unique constrainthemegasoning mech-
anisms employed by such an agent.

We have decided to use Active Log ¢ [EKN9] as the main logical for-
malism for our agent, since it well suited to solve severathef problems we
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CHAPTER 1. INTRODUCTION

face. Atthe same time, itis sufficiently flexible to allow edncorporate exten-
sions that will deal with the rest. Active Logic was desigifi@dnon-omniscient
reasoners and we consider it a good reasoning techniquerfatite agents. Its
main distinctive feature is the characterisation of deidncas an ongoing pro-
cess instead of focusing on a fixed point of entailment @hati

A critical feature of Active Logic, from our point of view, igs ability to
model different kinds of introspection very well. The atyilio reason about its
own knowledge or lack thereof is an absolutely crucial capdor our agent.
It must be able to decide that it needs to observe certainriEsain the envi-
ronment and to choose appropriate actions to do that. Tettuswe combine
Active Logic with some ideas from Situation Calculus, whadlows an agent to
reason about the current state of the world, as well as almufittwill change
as a result of executing a particular plan.

At this time, the research field of planning has matured ehabgt ex-
ploring new, more ambitious settings is feasible. This #hallow us to bring
artificial agents closer to what humans are capable of. Skxesearchers are
investigating settings beyond the so called “classicatitag” paradigm, and
our own work fits well within this trend. It is crucial to notegwever, that plan-
ning itself — while definitely important — is only one aspedétour solution.
We do not focus so much on the generation of plans itself, dher on ways
to combine it with other areas of Artificial Intelligence.

As explained before, our goal is to create an agent whichles tabfunc-
tion in adverse environments that it can only partially ebseand that it only
partially understands. Therefore, we need to provide i witme important ad-
vantage, or else its task will be impossible to perform. Te &md, we designed
our agent so that it lives through a large number of episoelgsh similar but
not identical to the previous one, in order to learn from iistakes and to im-
prove its efficiency. This way the agent can start with lisitenowledge and
understanding of the domain, but with time it will become meroficient —
each time it tries to solve a problem, it will do so in a moreodint way. The
idea is to have a system that is usable (even if inefficienty @m, but which
achieves the desired quality given more time.

The experience gathering can be done in many ways, and teiesiing if
the agent itself is aware of those differences. We can ineagisystem when
the training phase is performed in a simulator, and the ageetls not to be
“afraid” of trying new things, since even if the outcome igdpghere are no
long-lasting effects of its mistakes. Similarly, the tiagp can also be done in
a physical world, which will likely be more accurate, but weinicarries with
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1.5. ILLUSTRATORY DOMAIN

it the danger of permanently destroying the agent — espgaidien it is not

done in the safety of a lab, but rather in real environmentdikample, a Mars
rover). Therefore, the agent needs to be much more “catitidusn attempting
potentially dangerous actions.

1.5 lllustratory Domain

Throughout this thesis we will be using a simple game calledipus, the well-
known testbed for intelligent agents introduced in [RNQ3]etter illustrate
our ideas. The game is very simple, easy to understand, aplepbave no
problems playing it effectively as soon as they learn thesul

For artificial agents, however, this game — and other sinaifaplications,
including many of practical importance — still remains a®es challenge. The
main reason for that is the combinatorial explosion of gatages that need to
be considered. It is impossible to analyse all of them eitpli@nd while sym-
bolic reasoning shows promise to provide effective geisatibns over them,
at the current state of the art one still needs to test idehpratotypes on small,
artificial examples.

The Wumpus game is played on a square board. There are twactéra;
the player and the Wumpus. The player can, with each turnertwany neigh-
bouring square, while the monster does not move at all. Tlsé@ipo of the
beast is not known to the player, he only knows that it hidesesghere on the
board. Luckily, Wumpus is a smelly creature, so whenevepthger enters a
square, he can immediately notice if the creature is in thmity. The goal
of the game is to find out the exact location of the monster -s-ihidone by
moving across the board and checking which squares smethefgame time,
if the player enters the square occupied by the monster, tiseegéen and loses
the game.

This is only the simplest version of the Wumpus game — a nurabdif-
ferent variants have been introduced throughout the ybath,as research il-
lustrations and as actual games intended to be played byepedjhe most
common variation include moving Wumpus, additional trapshsas pits, addi-
tional monsters such as Bats, using a maze instead of a sioatd, equipping
the player with a bow which can be used to kill the Wumpus,rgdreasure
for the player to find, etc.

Our research, obviously, is not designed with the Wumpusegapecifically
in mind. We use it only as an illustratory domain to explaim meas on. This
game has a number of different aspects that make it espeajgbropriate for
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CHAPTER 1. INTRODUCTION

presenting our approach. It is very simple both to presedttarformalise,
while it has a high number of observations to be made (whidkesieonformant
plans uninteresting solution). Additionally, the perfediormation version of
the game (when the agekowsWumpus'’s position from the very beginning)
is extremely simple, which means it does not distract o@nditin.

For some of our learning experiments we also use a secondilontsch
we later call Chess for short, a modified version of the “king aookvsking
and knight” chess ending. This game is based on the normed afl chess,
but there are only four pieces on the board: both kings, wiibd& and black
knight. It is interesting to note that depending on the ahitiosition of all those
pieces (assuming an optimal play by both players), the gaitheither result
in a draw, or white will win.

In our case, since we are interested in partially unknowrremmnents, we
have modified the rules in such a way that the agent does net kow the
opponent’s king is allowed to move a-priori, any move is legal. This means
that an agent can never find a winning strategy using pureatiedu Our agent
will need to use learning to discover what kinds of moves ateadly possible
and that it can, in fact, succeed.

These two domains are, of course, only examples and theeatie pre-
sented here does not depend on them. In order to better tanutbe goal of
our research, it can be helpful to imagine a setting simildheGeneral Game
Playing CompetitiofGLPO%]: our agent is given some declarative knowledge
about a domain and is supposed to act rationally from thebeginning, hope-
fully becoming more and more proficient as it gathers moreBgpce.

1.6 Interdisciplinary Aspect

Despite multiple attempts, both past and ongoing, the vagbnity of Al re-
search is being done in specialised subfields and it is ouefltbht none of
these subfieldalonecan give us truly intelligent, rational agents. Our ardtiite
ture, which to the best of our knowledge is novel, may be ongtevdntegrate
a number of such approaches.

One of the major contributions of this thesis is its intecginary aspect,
namely the fact that it brings together solutions from sa\veifferent subfields
of Artificial Intelligence and shows how they can be combiireé coherent,
well-performing system. Most of the specific solutions usethis work (for
example planning and learning algorithms) are not quitee st the art im-
plementations in their respective areas, but have beeregtos simplicity of
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presentation or popularity rather than for pure perfornearidevertheless, the
architecture of our agent is modular and more efficient gmigtcan easily be
substituted at any time.

Throughout this thesis we will be using a number of exampéesgt on the
previously introduced game of Wumpus. The main problemigmdlame is to
learn the position of the monster. In order to plan for adhig\his objective,
an agent needs to be able to reason about its own knowledgdantihow will
it change as a result of performing various actions. Thus|dgic it utilises in
its reasoning needs to strongly support epistemic concdyitthe same time,
a notion of time-awareness is necessary, as we require eat sgconsciously
balance planning and acting.

To accommodate these requirements, we employ a varianttefeAcogic
[EKMT99] as the agent’s underlying reasoning apparatus. This legs de-
signed for non-omniscient agents and has mechanisms fngledth uncer-
tain and contradictory knowledge. We believe it is a goodoaig technique
for versatile agents, as it has been successfully appliseMeral different prob-
lems, including some in which planning plays a promineng |BIPT9¢)].

The domain of the Wumpus game, in several of its more compeants,
has one more interesting feature, namely that the desiteal/tmir of the agent
consists of two phases. First, it has to gather some infaomgtWhere is
the Wumpus?”) and, after that, it needs to exploit this kmagk (“How to
kill it?”). At the same time, this distinction is not presantthe rules at all
— it is something the agent will need to discover on its ownisTgroblem is
rather difficult one, and there is an active field of reseaedlidg with it, under
various names, the most commonly used being “subgoal désgbv

To summarise, our agent will create several different péamsreason about
the potential usefulness of each one — including what kndgdecan be ac-
quired by executing it. Further, it will judge whether it isone beneficial to
immediately begin executing one of those plans or ratheoimitue delibera-
tion. In our approach, the agent continuously reasons aheuwtorld, enriching
its knowledge using both observations and deduction.

Moreover, we expect the agent to live significantly longemtkhe duration
of any single game episode, so it should generalise whasehetions it finds.
In particular, the agent needs to extract domain-depenctamtol knowledge
and to use it when solving subsequent, similar, problenaitss.

Due to resource limitations, our agent needs to select belynbst relevant
subset of its own knowledge to be used in learning and for rgdinmg its
experience. In particular, it is not practical to expect klBorithms to be able
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CHAPTER 1. INTRODUCTION

to find useful generalisations among vast amounts of uectlanhd redundant
knowledge.

All of the features mentioned above have been extensivabjied in Arti-
ficial Intelligence literature, including ideas on how taegrate various com-
binations of them — we will discuss some of this work in the thesction.
However, to the best of our knowledge, nobody has yet attednjot merge all,
or even most, of these features together into one, consfstanework.

1.7 Overview of the Research Area

In this section we present a short, necessarily selectieevimw of several re-
search areas relevant to this work. In particular, we aragyto discuss agent
architectures, reasoning with limited resources, plagind learning as well
as, particularly important in this context, their overlaps

The topic of this thesis is how to create autonomous, raliosituated
agents capable to learn. In a sense this is the goal of theeviteddl named
Artificial Intelligence although it has been expressed using different words in
different time periods. The teragenthas become very popular in the middle of
the previous decade, with an excellent textbook by RusadliNorvig RNO:3]
being considered now as “the agent-based introduction toAAtomprehen-
sive collection of the foundational articles covering tbpit can be found, for
example, in [WR99].

The work presented here is related to studies of architestfor general
intelligence. There have been many attempts to define sucrchitecture,
with SOAR being the most prominent, most successful andgiigtihe oldest
of them all ((Lew01] provides a general introduction). Imé@st to SOAR, we
do not claim any cognitive plausibility of our architectufecusing our interests
mainly on the task of achieving rational behaviour of arfiaréil agent.

There is a number of architectures that have been sucdgseféd to
develop agents, including real physical systems which detnate large de-
grees of autonomy, situatedness and, in some cases and ¢oesbemt only,
also rationality. Chronologically, among the first ones everg. NAS-
REM [AMLB89], Reactive Action Packages [Fit89], the substimp architec-
ture Bro9l], InterRAP IMPTE5], Procedural Reasoning 8yst GL87], and
ATLANTIS [3at91]. Later on, a number of good overviews happeared, e.g.
chapter six of Arkin’s textbook [Ark98] (pointing to the fathat “the nature
of the boundary between deliberation and reactive exatutianot well un-
derstood at this time, leading to somewhat arbitrary aechiral decisions”, p.
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1.7. OVERVIEW OF THE RESEARCH AREA

207), Jennings, Sycara and Wooldridae [JSW98], Millen®#], Lee [Lee00],
and Kortenkamp et al. [KBM%8] to mention just a few.

Our approach is quite different from the layered architextumentioned
above. In particular, we do not focus specifically on the tieagart of the
system, hiding it as just one part of the Actor module. Thisdoot mean that
we diminish the necessity or importance of reactivity, ather that we simply
decided to concentrate on the higher-level reasoning aspear agent as it is
less understood and requires more attention. We make saweybr, that those
higher levels of our architecture remain sufficiently fldgito be able to handle
the requirements of the reactive part.

Although we stress the need for rationality and the impaasf reasoning,
our approach also differs from the one exhibited by Bel@ésires-Intentions
systems and BDI architectures (see, among others, [Woa®@ formalised
approach to this topic). BDI systems are particularly gomdspecifying sit-
uated intelligent systems, less so for implementing themour work we do
not explicitly distinguish intentions, treating them in @anmer very similar to
goals. This is, however, due to the fact that BDI approactsmlly lack a
learning component, which is the central issue in our approand that allows
an agent to account for its intentions in a different, yetadigeffective way.

The relevant issues of formal analysis of agent architestimras not at-
tracted much attention until very recently. An example afrectness analysis
of the classical PRS programs may be found in [Wib00], inuta based on
an early work by Rao and Georgeff [RGG93], while a more genlexalt at the
control structures of rule-based systems, relevant fraptint of view of our
approach, may be found in [HBHM99]. However, most literaton this topic
appears to be rooted in the database theory, where activénmeadatabases
have been studied formally for a while.

Finally, the issue of comparing agent architectures, aalbheavith respect
to their effectiveness and suitability for intended apgiiens, is an important
topic worth paying attention to and undoubtedly requiringHer studies. An
interesting preliminary discussion may be found in [HH®] and [LeeQ0],
although conclusive results are yet to be obtained.

Please observe that the main notion our agent reasons abdstawn
knowledge about the world, as opposed to plainly thinkinguakihe world
around it. There is a large research aremetareasonindocusing on provid-
ing formal tools for letting agents do just that. Howevendh formal systems
almost universally focus on idealised reasoners and aseitizapable of cap-
turing the limitations of real agents.

11
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One of the main reasons for problems with describing ressbozinded
reasoning is that the formal systems used for this purposdoar powerful.
Quite often such a system is based on some propositional strofer lan-
guage extended with a modality denoting belief. This imratadly leads to the
omniscience problenuse of anynormal modal logic equipped with the ax-
iom = O(a — B) — (Oa — 0Op) and the necessitation ruje- will force the
agent using it to be explicitly aware of all logical consee®s of its current
beliefs (see, e.g.. [FHVM®5]). This means that its set ofdfelwill necessar-
ily be infinite and it must always be consistent: apparentigy non-realistic
assumption in the case of bounded reasoners.

There exist a number of approaches that try to deal with tbelpm of
omniscience. Speaking generally, any such solution muitead the need to
model bounded resources of agents and, independentlgcdsplete reason-
ing mechanisms. The solutions might be roughly classifi¢dl fiour groups:
weakening the system by using a non-standard semanticsallgrdistinguish-
ing explicit and implicit knowledge; removing closure pespes; and syntac-
tification. The first two still suffer from partial logical omiscience Aao041],
although they constitute a step in the right direction.

A good example of the second line of thought islibgic of implicit and ex-
plicit belief proposed by Levesquz [Lev84]. His idea consists of distsiung
explicit beliefs, i.e., those currently available explicitly in age knowledge
base; andmplicit beliefs, i.e., those entailed by explicit beliefs, but ngt]
derived. In order to be able to handle that distinction, theantics of the
classical epistemic logic must be modified. According todssue, the usual
possible worlds semantics is too coarse-grained, whilglsirsets of formu-
lae are too fine-grained of a choice. His semantics is basedituationsthat
are subsets of possible worlds. Unfortunately, partial issi@ance makes this
system inappropriate for describing truly limited agents.

The approach of Fagin, Halpern, Moses and Verdi [FHVM®&terpreted
multi-agent systemesaptures the evolution of an agent’s knowledge in a nice
way. The system consists of the usual knowledge/belief titmda (K., in-
dexed by multiple agents involved), mixed with the claddiemporal operators
(Eventually(, Always[J, Next(), Until If). The resulting system is interpreted
on so calleduns The system is still too powerful for our needs, although it
may be modified in the direction of non-omniscient agents $dme remarks
apply to the recent proposal of van der Hoek and Wooldridgesrnating-
time Temporal Epistemic Logic (ATEUHWOZ], in which the usual knowl-
edge/belief modalities/{.) and the classical temporal operators are extended

12
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with a dynamic-logic-like concept afooperative actionsThe interpretations

are based owoncurrent game structuresAlthough the authors mention the
possibility of describing non-omniscient agents, the ngistem is developed
for at least partially omniscient entities. A similar syatebased on active logic
(see below), has been proposed by Grant, Kraus and PerliBOGK

The last system we would like to mention in this context is tlogic of
Finite Syntactic Epistemic Stat@soposed recently b)f\gotnes Rao04]. His
system is based on ATEL, but does not assume any structune umiderlying
language — the epistemic states of an agent are purely $igaiastructures.
Knowledge evolution mechanisms are modelled usirigs they do not nec-
essarily need to be sound or complete. Although appealiom the formal
point of view, this system does not provide any hints aboatidg with the
computational complexity of the problem.

An approach resembling anytime algorithrns [ZR93] but agabtd the area
of deduction has been proposed by Fisher and Ghidini [-=GObgy provide
a logical system capable of adapting its deductive powehéorésource con-
straints. However, no useful bounds (at least for us) candieeadl from this
approach — the only guarantee is that the number of theordliseasmaller
in some cases, but the proofs can still be very long and no firgtlin terms
of the number of steps may be given.

The attempts to, in a principled way, constrain the infeeepmcess per-
formed in a logical system have been done as long as one hddagge for
knowledge representation and reasoning. One possilslity limit the expres-
sive power of first-order logical calculus (as, €.g., in diggion logics) in order
to guarantee polynomial-time computability. There is a bamof theoreti-
cal results in this area (see e.a [EEb99]) but we are moreeistied in inves-
tigations aimed at practical computational complexity. eQri the more pop-
ular approaches is to use a restricted language (againddigeription logics),
see [GINR99, Pat3}. Pa:86] for examples of this approachactice.

Another possibility is to use polynomial approximationstioé reasoning
process. This approach is tightly coupled with the issudebtty compilation.
The most important contributions in this area are [SK96. T|T9592, GPS98].
However, this approach, although it substantially redubescomputational
complexity of the problem, still does not provide tight bdsron the reasoning
process.

Yet another possibility is to constrain the inference pssca order to re-
tain control over it. An early attempt has been reportec ievBd4]. The next
step in this direction was the step-logic [El388] that eedlinto a family of
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active logics|EKM*99]. Such a restriction is actually a reasonable first step
towards developing a formal system with provable compomati properties.
Active logics have been used so far to describe a variety wiaiios, like plan-
ning |PPT"99)], epistemic reasoning [Elg91], reasoning in the contdxte-
source limitations [INKP93] or modelling discourse and aliglin this work we

are using active logic for deduction involving the tempasapect of metarea-
soning.

A similar idea was introduced in [PB04], where authors itigeged how
various actions and observations of their effects modifagent’s belief state.
They describe how such modifications can be propagated lzadkvand for-
wards through the state history: as the agent gains new kdgw| it can infer
that various statementid hold in past states of the world, even if it did not
know itthen Authors also show how such propagation can be used fomdeali
with temporally extended and restoration goals.

There is a growing insight that logic, if it is to be considie useful tool
for building autonomous intelligent agents, has to be used substantially
different way than before. Active logics are one examplehef insight, while
other important contributions might be found, e.g., in [GI}/6r [WLO01].

The second major area of Al touched upon in this work is plagunirhere
exist comprehensive recent monographs on this topic (ged@&NTO0:]). The
field evolves very dynamically, with state of the art plargnsystems solving
problems of large complexity; c.f. the yearly conferenceaatomatic planning
and scheduling (ILSBMO6. BFT J7] are the two most recent paerd the asso-
ciated contests of planning systems. A lot of effort is deddb incorporating
(possibly by compiling) domain knowledge into planningteyss in order to
improve search efficiency.

Another track of research focuses on (deductive) plannaigng into ac-
count the incompleteness of the agent’s knowledge and d@srtainty about the
world. Conditional plans, generalised policies, confantyaans and universal
plans are the terms used by various researchers [CRB04, PB0A:., BCT04]
to denote the, in principle, identical idea: generatingampthich is “prepared”
for all possible reactions of the environment. This apphoaas much in com-
mon with control theory, as observed in [B(;01] or earlier o{DW91].

Research that would attempt to integrate learning intoapjgroach is still
in its infancy, with just a few published results to date. @h¢he first com-
pleted systems waspRMLEARN by Beetz [Bee(2], building on XRM system
of McDermott [McD9:2]. However, even there the stress is puthe reactive
behaviour of the agent (in this case the autonomous robatdRmore than
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on the symbolic plans necessary to achieve intelligence.evem more reac-
tive attempt is reported in [LK02], where the planning addes is just shortest
path search, although the conceptifefiong planningis very similar to the idea
explored in this thesis.

For a well-developed discussion of conditional partiahgland interleaving
planning and execution see for example [BCT04], where thieoas introduce
the notion of grogressive plar— intuitively, one that provably moves the agent
closer to the goal. They also present an algorithm for findinch plans in a
nondeterministic but fully known domain and prove that isaranteed to find
a solution if one exists. Another example of research orrledeging planning
with execution is based on early work on real-time searcbrjjmrating learning
(LRTA*, [K0e01]) although, as many other works in this spiit focuses on
path-planning: a very limited kind of reasoning.

In a sense, our treatment of plans in this work is related ¢onibtion of
hierarchical planning, since the conditional partial glave consider are very
similar to macro-operators [GNTO04]. Our goal is to let the@riglearn which
conditional partial plans aigoodto later use them as building blocks for finding
complete solutions.

A somewhat similar, very interesting idea was pursued inblM}, where
the author uses a classical planner to plan for the “opticiisase, where an
agent can choose the most favourable outcome of each nerdeistic action.
From such an optimistic plan it is then possible, using kmadlgke of probabili-
ties of each action outcome, to generate more realistisiginipdating relative
costs of optimistic actions.

There have been significant amounts of work done in the madbarning
area about what actions to take in a particular situatiore Milethods may be
divided into model-free ones and those based on modelgr @itlailable or dis-
covered on-line. The first group leads to reinforcementiiegr where an agent
learns policy, i.e. appropriate action for every possiltégesof the world. Sut-
ton [Sut90] did one of the early examples of work in this dii@t, explicitly
naming architecture for learning, planning and reactingawelver, compared
to ours, this architecture neglects the declarative kndgdeand symbolic rea-
soning completely. For an overview of reinforcement leagnef. Barto and
Suttman’s textbook [SB98].

In the case of methods based on explicit, symbolic modelfitedo men-
tion is probably [DF95], who presented results establigltionceptual similari-
ties between explanation-based learning and reinforcel@@ming. In particu-
lar, they discussed how Explanation-Based Learning carséeé to learn action
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strategies and provided important theoretical resultseaning its applicability
to this aim.

One notable example of this track of research is [K1a99],revttee author
showed important theoretical results about PAC-learitgliif action strate-
gies in various models. In [Moy)2] the author discussed aenpoactical ap-
proach to learning Event Calculus programs using Theory@etion. He used
extraction-case abduction and the ALECTO system to simedtasly learn two
mutually related predicated {itiates and Terminates) from positive-only
observations. Recently, [KLJ6] developed a system whialmie low-level ac-
tions and plans from goal hierarchies and action examptasded by experts,
within the SOAR architecture. Yet another fresh piece ofknaose to this ap-
proach is documented i1 [LCO06], whetiedeoreactive logic programgossibly
even recursive ones, are used for representing the actidiofpan agent. On
top of that a learning mechanism, quite similar to ILP, is &yed to improve
the existing action programs.

In the general field of Inductive Logic Programming, thera iarge number
of systems being developed, such as CLAUDII=N [DF:L96], MOBSEKW],
Charade [RMM 9], Rulex [AG022] and others. We have based our work on
PROGOL mainly because it is the most popular one and variessarchers
have been working on improving multiple aspects of it, amotigers [Yam96]
and [BS93]. To the best of our knowledge, however, nobodyykasised it to
classify conditional partial plans.

Combining planning and learning is an area of active reseancaddition
to the extensive amount of work being done separately iretrespective areas.
However, most of the related work we are aware of is devoteslther using
state-of-the-art learning in a rather limited planningrieavork, or to using lim-
ited learning in a more complex planning setup. Comparisdiige two areas
are also relatively common, while the true, nontrivial camalion will appar-
ently require much more investigation. Since we believe lite very promising,
this thesis is aiming to attract attention to this line oeash.

One attempt to escape the trap of a large search space hagrbsented in
[DRDO01], where relational abstractions are used to subathnreduce cardi-
nality of search space. Still, this new space is subjecteditdorcement learn-
ing, not to a symbolic planning system. A conceptually samitlea, but where
relational representation is being learned via behavitaming techniques, is
presented in [Mor(4].

Outside the domain of planning, there is a lot of importarseegch be-
ing done in the learning paradigm. Recen'ly [CIM03] presérseveral ideas
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on how to learn interesting facts about the world, as opptséehrning a de-
scription of a predefined concept. A somewhat similar resuitre specifically
related to planning, has been presentec in [FYG04], wheresyistem learns
domain-dependent control knowledge beneficial in plantasis. From an-
other point of view, [KR95. KR¢7] put forward a framework fl@arning done
“specifically for the purpose of reasoning with the learnedwledge,” an in-

teresting early attempt to move away from tbarning to classifyparadigm,

which dominates the field of machine learning.

In a sense this is similar to the ideas discussed in [FYGOXAgrer authors
use the Markov Decision Process to represent planning cenzaid approx-
imate policy iteration as means of learning agent’'s behavidhey use long
random walks to create progressively harder goals, thutstsapping the agent
in its learning of domain-dependent control knowledge.

An interesting line of research, which possibly could befuisa our case,
was presented in [GTJ4], where authors attempt to dedlgtiyenerate a
domain-specific hypothetical language that is as simpleaasiple, and yet
expressive enough to represent all the necessary conceptgarticular do-
main. This language is then used by an inductive learningritfgn to create
generalised policies from solutions of small problem ins&ss.

Many of the ideas investigated in this thesis have been sedlgreviously,
in numerous disguises. There have been many, to a larget ettecessful,
attempts to attack the specific scientific and practical lerab related to au-
tonomous, situated, rational agency. However, attemptseime them into a
single, consistent framework have been very rare and sadaniplete.

1.8 List of Publications

This section contains the list of the author’s publicait>psesenting partial
results described in this thesis. All of them are availabbenfmy home page:
http://ww. cS.1th.se/ home/ Sl awom r Nowaczyk/
by following the “publications” link. Similarly, the softare, input data sets
and settings used in experiments reported in this thesigfyma Chapter 3)
are available from that page by following the “experimenisk.

In case of the papers co-authored by my supervisor, | affiahltam the
principal author of the work described there.

This section, as opposed to all other text in this thesisej k the first person to stress the
statement | make about the authorship of the papers listed/be
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e AAAI'06: Stawomir Nowaczyk, Learning of Agents with LimiteRe-

sources, AAAI-06 Student Abstract and Poster Program, 260 in-
troduction to the concepts, somewhat obsolete but probatdyesting
both from a historical perspective and as a general overjiew064].

LRBA06: Stawomir Nowaczyk, Partial Planning for Situatédjents
based on Active Logic, Workshop on Logics for Resource Bednd
Agents, ESSLLI 2006 — it predates the implementation of #meerni-
ing part somewhat, but contains a relatively good desoriptif agent’s
reasoning mechanismrs [INow(6b].

ICMLAQ7: Stawomir Nowaczyk, Jacek Malec, Learning to Evate
Conditional Partial Plans, The Sixth International Coefme on Ma-
chine Learning and Applications (ICMLAQ7), Cincinnatih@®, 2007 —
it describes the results of learning experiments, in twarg®e domains:
Wumpus and Chess [NMC7c].

ABC’07: Stawomir Nowaczyk, Jacek Malec, An Architecturer fo
Resource Bounded Agents, Workshop on Agent Based Computing
(ABC’07), Wista, Poland, 2007 — quite complete descriptadragent’s
architecture [INMO073a].

LRBAOQ7: Stawomir Nowaczyk, Jacek Malec, Relative Relev@arof
Subsets of Agent's Knowledge, Workshop on Logics for Resaur
Bounded Agents in Durham, United Kingdom, 2007 — discussibn
the idea of “knowledge relevance” concept and how it afféetsning
results INMO74].

MICAI'07: Stawomir Nowaczyk, Jacek Malec, Inductive Logkro-
gramming Algorithm for Estimating Quality of Partial Plaréth Mex-
ican International Conference on Atrtificial Intelligen@807 — adapta-
tion of PROGOL algorithm which better fits the learning taskwm my
architecture INMO7b].



Chapter 2

The Agent

2.1 Introduction

The architecture of our agent (see Fia. 2.1) consists of feain functional

modules. Each is responsible for a different part of the Egyeationality, but

the overall intelligence is only achievable by the inteiatt between all of
them. At the same time, each of these modules correspondsai@a of active
research within the field of Artificial Intelligence. This kes our architecture
an interesting exercise in combining different ways of ingkat Al.

. Planner

expected plan results

external observations

Learner

0 5
Prioriges

Figure 2.1: Architecture of an agent.
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2.2 Agent Architecture

The first of the modules mentioned aboveDieductor which corresponds to
a typical “core” of a symbolic, logic-based reasoning age@he interesting
twist is that in our framework the logic in question is not tiassical one, but
a formalism calledActive Logicinstead. This provides Deductor with various
means to better interact with other modules, as will be énxpthlater in this
text.

The purpose of this module is to perform symbolic reasoninguathe
world, actions the agent can perform, and the consequeri¢bern. It is de-
signed to analyse facts the agent observes and to deducecasampossible
about the hidden state of the world, especially about thetageurrent sit-
uation. Furthermore, it predicts — as far as the agent’s eggerience, an
imperfect domain knowledge and limited resources allow —awéifects each
of the plans under consideration might have, including wieat knowledge
may be acquired.

In this sense, the Deductor module is the one responsiblel&ssical
“thinking”. It uses a logical formalism based on a combioatof Active Logic
and Situation Calculus in order to reason about conseqeaithe agent’s be-
liefs and consequences of the actions it is consideringedas domain knowl-
edge and previous observations, it first deduces as muchsagbf@about the
current state of the world. Afterwards, it analyses a nunabgrossible plans,
predicting what will be the effect of executing each one eith In particular,
it accounts for the fact that some actions may be informgpi@mviding ones —
it does this by anticipating how agent’s knowledge will chanDeductor will
be explained in more detail in Chapter 3.

The second module Blanner, which generates partial, conditional plans
applicable in the agent’s current situation. After Dedudinishes analysing
results of observations gathered in previous steps, Plgmoduces a number
of plans which are potentially interesting candidates f@ceaition.

The architecture is designed so that it is relatively easysim any of the
state of the art, efficient planning algorithms (such as FCKIBP, POND or
any other — for an overview of possibilities, see [GNTO04]jillSdoing so is
not necessarily trivial, since the domain knowledge useduryagent — and
especially the results of its reasoning process — is, tjlgjcexpressed in a
language significantly richer than what classical (or evemymon-classical)
planners accept. Therefore, the intended mode of opertiavur agent is to
simplify the domain using a process knownrakaxation in order to enable the
use of efficient planning algorithms — at the expense of aaguof obtained
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plans. By relaxing domain description in a number of differeays, the agent
will generate several different plans, and each of themhélanalysed by De-
ductor. We describe this mechanism, together with othexildetf Planner, in
Chapter 4.

The third main moduleActor, supervises Deductor’s reasoning process and
evaluates plans that Planner has come up with. Taking imtouat the possible
consequences of each course of action, as reasoned aboetibgtbr, it tries to
find out which plan is most worth executing. Also, this modallews an agent
to take into account the limitations of its own resources] arfulfils the re-
quirement of actively and consciously balancing reasoaimgjacting. Finally,
Actor is an overseer of interactions between an agent amshvisonment.

From another point of view, Actor can be seen asrteetivepart of the
agent. The architecture is designed in such a way that walkctor to monitor
Deductor and to estimate its reasoning progress. Thus) ek the delibera-
tion when a particularly interesting plan has been diseer when it decides
that nothing worthwhile is likely to be deduced anymore. g same time, it
observes the external world, analysing and interpretiegatient's sensor data
in order to react whenever something interesting happetieianvironment. It
is responsible for observing the world and for introduciffgets of the agent’s
actions — and, potentially, also other changes of the worlthte-the agent’s
knowledge base.

On the one side, Actor watches over agent’s reasoning B@ues makes
decisions about when its results are sufficiently well dgpetl to begin being
acted upon. On the other, it observes the external worlddardo detect events
which require the agent’s immediate response — a respoasedh either be
a purely reflexive action such as collision avoidance, a Emipdate of De-
ductor’s knowledge base with new information, or a compteterhaul of the
reasoning process.

These three modules form the core of the agent. By createasoning
about and executing a sequence of conditional partial plamsagent moves
progressively closer to its goal. Finally, it reaches a peimere a complete plan
can be directly created by Planner, its correctness candsepiby Deductor,
and its execution by Actor fulfils the ultimate objectivesooir agent.

However, the success of such a scenario depends entirelfhether each
partial plan in this sequence is indeed moving an agkrgerto achieving its
ultimate goal. Since the agent might not have enough ressuccfully utilise
whatever knowledge it possesses and, moreover, this kdge/imay be incom-
plete, there is no guarantee that executed plans will do thatarticular, it is
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possible that Actor makes a mistake, or even a series of theading to the
agent losing the game or reaching a position in which winirighpossible.

It is important to understand that, given two arbitrary @énplans, there
is no general way of determining whether one of them is bdttn the other.
There is a number of special cases, but the only fool-prodhatkof deciding
that a partial plan is indeed beneficial is to extend it allvilzg to the ultimate
goal, thus turning it into @onformant plan As we explained in the Introduc-
tion, this is not a viable approach in the setting we are ifngasng.

This is the reason for including the fourth module in our &etture, called
Learner. After the game episode is over, regardless of whether thatdtps
won or lost, it inductively generalises the experience gt — in an attempt
to improve Deductor's and Actor’s performance. The architee is designed
to use the learned information to fill gaps in the domain krealgk, to figure
out generally interesting reasoning directions, to discoglevant subgoals and,
finally, to more efficiently choose the best partial plan tekecuted.

To this end, thé.earnermodule analyses the agent’s knowledge, the chosen

course of action, its results and subsequent observatioos this experience

it induces rules for improving the performance of each ofafent’s modules.

In this work we primarily focus on using learning to bettetirmate quality of
conditional partial plans. In this sense, results of leagriire used both by
Deductor and by Actor. In particular, as explained abovis, very difficult to
predict whether a particular plan is a step in the right diogcor not. Using ma-
chine learning techniques is one possible way of achieviigy a&s investigated

in more detail in Chapters 6 and 8.

In principle, learning could take place at any time, but wendbcurrently
see much benefit of learning in the middle of the game. Ouawradf the Wum-
pus game is so simple that a single episode does not lastaegy &nd there
is plenty of useful information that is only available to thgent once the game
is finished — once all the hidden information is revealed.sTihformation is
the most valuable during learning. In other settings, h@rea mid-episode
learning could very well be justified, yet it would also poke tuestion of how
the agent is to decide when it should be done. In the same masiitenow bal-
ances reasoning and acting, the agent would need to baleasening, acting
and learning.

Generally, the ultimate goal of this architecture is towljoutting together
state-of-the-art solutions from several different arefaArdficial Intelligence.
Despite multiple efforts, those done in the past and thaBensprogress, the
vast majority of Al research is being done in specialisedields. While such
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Planner
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Plan
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Figure 2.2: Information flow within the agent.
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research is very important and often successful, it is aongtbelief that nei-
ther of these subfieldalonecan give us truly intelligent, rational agents. Our
architecture, which, to the best of our knowledge, is navely be one way to
integrate them.

2.3 Knowledge Representation

Our agent’s design combines a number of solutions coming iaumber of
subareas of Artificial Intelligence. There is a history of@arch being done
on integration of the different approaches, and doing this tever been easy.
While our architecture is by no means the ultimate answehitihtegration
problem, we believe that our setting is a rather promising on

One of the main reasons for it being successful is our use tipteucondi-
tional partial plans as the core knowledge representatamdlism within the
agent. They serve as a middle ground, a universal languagd \gharantees
that each of the modules — even if they are built accordinguitecdifferent
principles — has the same understanding of basic concegtfiraitations of
the agent. Deductor reasons about different possible agafigns of the en-
vironment, yet each of those situations corresponds tottite sf the world
after the agent executes a particular plan. Planner gesepairtial plans, but
it is not forced to make perfect predictions of their resoltgo fully evaluate
them, instead it is allowed to suggest a sepofentially interesting plans to
the other modules. Actor performs the plan evaluation atecsen, taking
into account the plans themselves (as generated by Plaanmtheir expected
consequences as deduced by Deductor. Finally, Learnezésdhe interesting
facts about those plans, classifying them into variousdypach as “useless”,
“interesting”, “dangerous”, etc.

The conditional plans we consider consist of a concatemaifoclassical
and conditional actions, where each conditional action begescribed (in a
C-like notation) as:

(predicate ? plan, : plan,),

meaning thaplan, will be executed ifpredicate holds, andplan, will be ex-
ecuted otherwise (bothlan, and plan, may be conditional themselves). We
consider the possibility of introducing a more complex stee of conditions
(like whileloops), but within the applications we investigate in thisrkvsimple
conditionals do just fine.
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This type of conditional actions introduces a high brangHictor in the
case of longer plans. This effect, however, is unavoidablsome level of
consideration and will not be further discussed here. Irc#fse of our research,
this is largely mitigated by keeping the plans partial, amefréfore short. This
issue has received some attention in the works of other esifsee [GNTC4]
for extended bibliography).

For example, in the Wumpus domain, with an agent on squbfsee Fig-
ure 2.3), one simple plan ig2”, meaning “go tas2”. Another planis 42, a3”,
meaning “go taz2 and then go t@3”. Both those plans are sequential. If the
ultimate goal of an agent would be to reach squedethan the first of those
plans would be partial, while the second would be complete.

A conditional plan could be:

a2, (Smells(a2) ? al : b2)

meaning “go taz2 and if it smells there go back tal, otherwise go forward to
b2". Since we will be discussing conditional plans in the Wumpomain often
throughout this thesis, from now on, we will introduce thédeing simplifi-
cation. We will omit the “Smells” predicate, since it is thelyone meaningful
in this domain. Moreover, the argument of this predicatd alivays be the
most recently visited square. Therefore, the above planbeisimply written
as ‘a2 7al : b2".

a3 b3 c3 Clear | Clear | Smells
a2 b2 c2 Clear | Smells|Wumpus
al bl cl Player | Clear | Smells

Figure 2.3: Simple Wumpus board.

In the Wumpus domain it is difficult to find a good sequentiarpivhich
would be longer than one step. At the same time, finding a gooditonal
plan of length two or more is quite easy. In the experimentonted in this
thesis, we consider plans of length one and two only.
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Chapter 3

Deductor Module

3.1 Introduction

In a sense, Deductor forms the core of our agent, since ibpes the logical
inference and directly reasons about the knowledge thatdgbat possesses. In
particular, it is the module that analyses not only the curstate of the world,
but also how it will change as a result of performing an action

To this end, the agent uses a variant of Active Logic [EK®¢)], augmented
with some ideas from Situation CalculLs [Rei01]. This allous to model
the agent’s reasoning as an ongoing process, thus explzitting resource
limitations into the picture. This formalism is also wellitedl to talkaboutthe
agent’'s knowledge and to provide a wide range of introspectiapabilities.
Finally, the mechanisms for handling inconsistencies m khowledge base
allows us not to distinguish between knowledge and beliefteiad assuming
thateverythingour agent has deduced (or induced) can be challenged.

3.2 Situation Calculus Formalism

At the foundation of the language used by Deductor lies Eirster Logic, aug-
mented with Situation Calculus mechanisms for describirtgpa and change.
Within a given situation, knowledge is expressed usingdsesh FOL syntax.
We do not put any additional limitations on the expressigsna the language
as some mechanisms we later employ would invalidate thefibenérestrict-
ing ourselves to languages such as Horn clauses or desuaripgics. A special
predicate Knows, describes the knowledge of the agent, e.g.,
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CHAPTER 3. DEDUCTOR MODULE

Knows[ Smells(a) < 3,( Wumpus(x) A Neighbour(a,x)) |

means:the agent knows that it smells on exactly those squares #ighbour
Wumpus's positionThe predicateknows may be nested, and while it is very
useful, we employ it only in a fixed number of contexts (as ak@d below),
S0 as to maintain reasoning at a sufficiently efficient eV use a standard
reification mechanism to put formulae as parameters ofithews predicate,
as introduced in [FHVMS5].

Reasoning within a given situation is not very interestiranf our point of
view, however. The whole point of Deductor is to be able taeepnt actions
and changes within the environment. We base our approacheo8ituation
Calculus formalism described by Reiter in [Rei01]. SitaatiCalculus intro-
duces two special predicategiolds(S, «) to denote that formula: holds in
situationS, and Informs(A, «) to denote that actiod provides information
on whether the ground formula holds. It also introduces a special function,
Result(S, A), which returns the set of situations that may result fromyapg
actionA in situations.

In our approach we slightly modify the above, focusing on dgent's
knowledge rather than representing the true state of thielw®dhis allows us
to use only one special predicatEnows. A major concept in our formalism is
a plan, which at this point can be thought of as a sequencdiohadalthough,
as we have explained earlier, it can be more complex thah tinathis context,
the validity of a FOL formula depends not only on the actutiation, but also
on the plan an agent is currently considering. In partic@aragent can reason
about formulae of the kind:

Knows[S,P, ],

wherea is a FOL formulas is a situation andP is a plan. Intuitively, it means:
the agent knows that after executing pl&im situationsS, formulaa will hold.

It is important to observe that formutaitself may contain a nested predicate
Knows, thus allowing the agent to reason about knowledge-produactions.
Such a method of double indexing allows us to expiés&ls (S, o) as

Knows[S, 0, o,

thus stating that formula holds in situatiorS and that the agent knows this
Note that we are not at all interested in expressing factadgleat does not know
in this way. Similarly,Informs(A, «) can be expressed as:

28



3.3. ACTIVE LOGIC FORMALISM

Knows[S, A, Knows(S*,0, «) V Knows(S*, ), )]

at which point it is important to note that the equivalenceds complete. In
our setting, the agent by default assumes that results atitsns depend on
the current situation, while in the classical SituationdDals, action results are
by default situation-independent.

In the next section we show in more detail how the use of Adtiggic
allows our agent to perform introspection and take resolinsgations into
account.

3.3 Active Logic Formalism

Active Logic [EKM*9¢] is a reasoning formalism which, unlike classical logic,
concerns itself with therocessof performing inferences, not just the final out-
come (i.e. fixed-point) of the entailment (consequencedtiaa. In particular,
instead of the classical notion of theoremhood, AL has dedé&ltheoremsi.e.
formulae which can be proven i steps This allows our agent to reason about
the difficulty of proving something, to retract knowledge it found inagpio
ate and to resolve contradictions in a meaningful way. kb akskes the agent
aware of the passage of time and of its own non-omnisciencenAlepth de-
scription of Active Logic, and especially its way of handjitime, can be found
in [PPT+99].

In particular, each formula in AL is annotated with a timegstabel (usu-
ally an integer) of when it was first derived. Moreover, Dedu&eeps a record
of the reasoning process and every application of an inferenle by incre-
menting this label. For example, tmeodus ponengference rule looks like
this:

i:oa,a=> 0
i+1:0
and means “if at step formulae« anda = [ are present in the belief set,

then at step + 1 formula § will also be present.” Moreover, there is a special
inference rule:

i: Now(i)
i+1:Now(i+1)
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which allows an agent to refer to the current moment and tbcitty follow the
passage of time, for example to conclude whether a deaddiadbben passed
or not.

An additional feature available in Active Logic and impator this work
is theobservation functionThis function delivers axioms that are valid from a
specific point in time and is used to model the agent acquirawg knowledge
from the environment. It is especially nice since it canlga@scribe changes
that are not the result of performing any action, this way eflothy external
events. These two features allow us to overcome two impbliaitations
present in the classical Situation Calculus.

Another important advantage of AL is its ability to handleansistency,
which allows us not to distinguish betweknowledgeandbeliefs We assume
that any part of agent’s knowledge can be incorrect, and sitenay even be
contradictory. We found this possibility to be extremelyuable in accommo-
dating the results of inductive learning into the agent's\iledge base.

3.4 Agent’s Introspection

As explained in Section 3.2, we have decided to augment Adtagic with
basic concepts from Situation Calculus. In particularcsithe agent needs to
reason about a changing world and the effects of executiagspih various
situations, we index formulae both with the current sitatand with the plan
being considered. Therefore, a typical formula our ageasars about looks
like this:

Knows[ S,P,V,Smells(a) < 3, (Wumpus(x) A Neighbour(a,x)) |,

and means “an agent knows that after executing fflam situations, it will
smell on exactly those squares which neighbour Wumpusiiguos This par-
ticular formula is only mildly interesting, since it is truegardless of the chosen
S andP (it is a universal law). If we denote the set of all situatidnysS*, the
set of all plans byP* and an empty plan b§, we can equivalently s2ythat:

Knows[ S*,P*,V,Smells(a) < I, ( Wumpus(x) A Neighbour(a,x)) ]

although, obviously, our agent itself is rarely expliciiyvare of this forall
infinitely many possible situations.

!slightly abusing the notation
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On the other hand, many — if not most — of the truly interestognulae
are trueonly for specificS andP. This is especially true for those which are
directly tied to the goals of the agent. For example:

Knows[S, P, = Wumpus(b2)]

which means “an agent knows that after executing ffam situationS, Wum-
pus will definitely not be on squat2” does clearly, depend oB.

Initially the agent is not able to state such a fact, but siteé&nowledge
changes as it acts in the world it may, at some point, be jedtifit is not nec-
essarily immediately obvious that this particular formstil does not depend
on P, however. Nevertheless, it is clear that no realgwknowledge can be
obtained by simplyconsideringsome plan (without actually executing it).

If an agentKnows[S, P, - Wumpus(b2)], then it must also be able to de-
duce Knows|[S, 0, -~ Wumpus(b2)], where() stands for an empty plan. How-
ever, it does not necessarily need toadveareof the this fact right away, due to
its lack of omniscience and limited reasoning resourcefadp there are cases
where the agent acts based on:

Knows[S, P, = Wumpus(b2)]
—Knows[S, 0, ~ Wumpus (b2)]

since it does not have the capacity to discover thBfumpus(b2) is also true.
This is why the ability of Active Logic to handle inconsistaes is so important.

Finally, it is worth noting that since in our game the positiof Wumpus's
can never be changed, the actual validity oW umpus(b2)” remains constant
throughout the whole game episode. The only thing that aisigthe agent’s
awareness of this fact. Therefore, if considerations edléd some plat® ever
lead an agent to (unconditionally}hows[S, P, Wumpus(b2)]”, it can deduce
that thelP andS themselves are irrelevant and that this fact must hold for al
possible plans and situations.

In contrast, an example of some really interesting formtita can be de-
duced by the agent is:

Knows[S, 0, Knows[S, P, Wumpus(b3)] V Knows[S, P, Wumpus(c2)]]

which means “an agent knows that after executing f#am situations, it will
eitherknow that Wumpus is ob3 or that Wumpus is on2”.
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Which one of the “or” clauses will actually be true obviouslgpends on
observations that the agent makes while acting. As an exanfpleasoning
by cases and predicting action results, this is exactly e & knowledge we
want the agent to infer — tloestell important things about the quality of the
plan being considered. If all the agent knew before was:

Knows[S, 0, Wumpus(b3) V Wumpus(c2)]

then clearly executingf is useful — it will lead to the agent finally discovering
the true position of the Wumpus. For a human expert, §uldoks like a good
plan.

The goal of our research is to enaldle agentto reason about plans in ex-
actly this way. It is our intuition, supported by experimeptesented in Chap-
ter &, that it is possible to createdmmain independerictor module which
would efficiently select good plans by learning from expecie using formulae
like the one above.

3.5 Reasoning

Finally, the representation language needs to be augmeiitiedeasoning ca-
pabilities. This is done using a set of rather natural, yétquite trivial, infer-
ence rules. For general purpose deduction, however, asimgudus ponens
quite sufficient. Using domain knowledge representing tihesrof the Wumpus
game, Deductor may conclude that

Ve Knows[S,P, ~Smells(a) A Neigh(a,z)] <
Knows[Result(S,P), D, ~-Wumpus(z) |

i.e., thatif it does not smell at position then the agent will know that there
Wumpus is not on any of its neighbour squaiéshe agent currently is, or has
been before, on squatgit may know that it does not smell there. This, in turn,
may be used to create a useful plan of actions for the futurtg determine
whether a particular action is a safe one.

The reasoning is also used to analyse plans generated hyelPkamd to de-
termine their possible outcomes. Agent is mainly intexksteknowing Wum-
pus’s position, and, as explained in the previous sectidferent plans will
have different effects on the agent’'s knowledge about it.
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Another thing is to discover whether a plan is safe or not. é&@ample, if
the agent is able to deduce that

Knows[S, P, ~dead (agent)]

then planP appears to be an interesting one.—l{ead (agent) cannot be de-
duced, than it is a sign that a better plan may be needed.

One of the reasons for which we have chosen a symbolic repegsm of
plans, as opposed to a policy (an assignment of a value to statd-action
pair) is that we intend to deal with other types of goals thast jeachability
ones. For a discussion of possibilities and rationalisatibwhy such goals
are interesting, see for example [BCPTO03], where authasgnmt a solution to
planning using goals described in Computational Tree Logius formalism
allows to express goals of the kind “valaewill never be changed”, & will be
restored to its original value” or “value afafter timet will always beb” etc.

Furthermore, one of our ideas is to extend the solution ptedén this the-
sis to the case of multi-agent cooperative planning, wherefits of symbolic
plan representation are even more apparent.

In order to make plan evaluation more meaningful, we allaanplnot only
to be simple (sequential) but alsonditional i.e. to contain branches where
actions depend on observations made during acting. Wevbdlat such con-
ditional plans will, in many domains, be much easier to éfasss either good
or bad ones, since they contain maenericknowledge and have a greatly
expanded applicability. A potential problem lies in makisgre that, during
execution, the agent has enough information to choose ao@jgte branch of
the conditional plan. In our current implementation thiskgem is solved by
Planner, however, it is conceivable that Deductor mightidzde” each plan in
this sense as well.
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Chapter 4

Planner Module

4.1 Introduction

As we stated earlier, our agent’s reasoning is based ontommali partial plans,
and it is the Planner module that is responsible for theiegaion. Taking into
account Deductor’s knowledge about the current situat®lanner comes up
with a number of plans that are potential ways to achieve tla¢sgpf our agent.
The working assumption in our framework and throughout Wimle thesis
is that the domain is too complex for an agent to be able toldpwan opti-
mal, complete plan for solving the problem at hand. As we ley@ained in
the Introduction, this quality is very common among typigahctically useful
domains.

4.2 Plan Generation

One of the biggest problems in generating plans for ratisialated agents is
the combinatorial explosion of the possible action outcanfes all interesting
problems in Atrtificial Intelligence, creating an optimalplis NP-complete.
Even in a so called “classical setting”, the complexity @ filanning problem
is exponential in the number of possible states of the wiiklertheless, there
exist a number of very efficient algorithms for solving claasplanning prob-
lems. They are, however, based on a number of quite resgiaisumptions:
the agent needs to have perfect knowledge about the envérdnmall actions
need to have deterministic outcomes and only agent’s actiay influence the
world (no external events).

On the other hand, if the agent’s knowledge about the woridigomplete,
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most actions have more than one possible outcome. This ntlaggdanning
process even more computationally expensive. For nondetistic and par-
tially unknown domains, its complexity is exponential ire thumber of agent’s
belief states. As of now, there are no sufficiently efficielttnain independent
planning algorithms which are able to handle such compltings.

For this reason, all domain-independent efficient planailggrithms make
simplifying assumptions about the external world and allbeitagent’s capa-
bilities, in order to achieve a satisfactory performant¢hdse assumptions are
not satisfied, however, the results of the planning processmat be applicable
to real environments. This is a tradeoff that researcherd tebe aware of, and
for which no truly satisfactory solution has been found updu.

There is also an active field of research concerning ways dorfiorate
domain-specific knowledge into planning (see for exanm pIETI&’]). A num-
ber of successful applications has been developed basedchrapproaches,
and they are certainly one of the possibilities of dealinthwbmplex environ-
ments. Within our setting, however, we use a different apgipassuming that
the agent’s experience can be seen as a kind of “automugtatatthined domain
specific knowledge”.

A crucial feature of our architecture is the fact that othexdoies are ex-
pected to analyse conditional partial plans coming frorm®éa& and to improve
them. In this way we are able to use the necessary simplditain order to
make plan generation sufficiently efficient, while at the saime we have ways
to deal with the unavoidable discrepancies between thewardd and Planner’s
simplified view of it. In particular, since the generatedndare analysed fur-
ther by other parts of the agent, the results of the planninggss are allowed
to be approximate.

Within our architecture, we allow for two distinctive ways \which plans
can be analysed further: using deduction (as we have erglamSection 3.5)
and using induction (as we will explain in Section 6.2). Tédwdso approaches
complement each other very well and combining them ofterdywes good
results, and we show one example in Chapter 8.

In our setting, Planner is allowed to generate a number antiatly inter-
esting conditional partial plans, without having to comtoifa single one. The
most difficult issue, in practice, is often how to determingich of the several
possibilities ighe besbne. As in the case of many difficult problems, there is a
law of diminishing returns complicating matters: it is t@laly easy to improve
initially and to find a number of “quite good” solutions, b @ane approaches
the ideal, improvements become more and more difficult.
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4.3 Relaxation

In the design of our agent we focus on one common setting whisrgeneficial
to be able to generate a number of plans without decidingahatof them is
better than the others. This is the case of an efficient (afl@ssical) planner
being used via application of the so callethxationtechnigue. In such setting,
it is very useful to be able to evaluate a number of plans affigr they are
generated.

Classical planners are often very efficient reasoners,Hayt achieve this
efficiency by strongly enforcing a number of limitations awhdomain is mod-
elled — often very constraining ones. As mentioned abovgpEal assump-
tion is that the agent has complete knowledge about the stdte environ-
ment. In the domains we are interested in, for example in dmeegof Wumpus,
as well as in many realistic situations, such an assumpsiaompletely un-
founded. Therefore, it is impossible to directly take adage of those efficient
algorithms.

They can be used indirectly, however. Relaxation consistbasically,
making the problem simpler by removing some of its compjegee [GNTO04]
for extended bibliography). For example, a Wumpus problemidc:be relaxed
by allowing the agent to directly sense the position of thexster. A game in
which the agent is allowed to perform such “super-sensitgjoa is obviously
much easier than “real” Wumpus, but they still share a nunabsimilarities.
And while a plan developed in this easier domain is not diyegplicable in a
normal game, some insight may be extracted from it.

In particular, it is easy to devise a large number of diffén@ays to relax
any given problem. At the same time, if those relaxationsdaree in the right,
systematic way, a number of them will result in differentdaThis way a large
number of potentially interesting solutions can be obtaimg using a relatively
low amount of resources. If they can be combined in some wdf/tloe agent
is able to make smart decisions about which of these plahgibdst one, that
approach can offer very good performance.

For example, we can imagine an agent playing a simplified Wisngame
where it is able to decide what observation it “wants” to abtaNormally,
when the agent enters some new square, it has no way of knawiather it
will smell there or not, and no way of influencing it either. tBune possible
relaxation algorithm is to allow an agent to treat all obaéions as actions and
to “choose” how it wants the world to look like. In this setirthe agent starting
atal may decide to move ta2 and may alsalecidethat it wants it to smell
there.
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An important observation is that plans resulting from swgvielaxed prob-
lems tend to be relatively accurate at the beginning, bugrtifrom reality
rapidly as their length increases. This is directly causethb fact that the in-
accuracies in modelling the world are kept as small as plesdibt they show a
tendency to accumulate as more and more “unreal” actionssae: In general,
this is a serious problem for agents trying to utilise vasi@inds of relaxation
approaches.

Our architecture, however, is designed in such a way thadgkat can cap-
italise on the initial high quality of plans and avoid theptraf uselessness of
long plans. This is due to thgartial nature of plans it employs — it simply
takes into accountnly the beginning of a relaxed plan and disregards the end-
ing. For example, in our current implementation, we onlysider plans of
length one and two.

Similarly, many relaxation techniques naturally allow agemat to create
conditional plans. By their very design, most relaxationssist of the agent
making “extra” choices during planning, by influencing feas that are nor-
mally out of its control. Each such “unnatural” choice sugigeitself like a
good place for a conditional branch in an un-relaxed plaa.riélaxed plan can
be seen as a plan which “works” if a number of events over wtiieragent has
no control fall in a particular way, it is only natural to askat happens if they
do not.

For example, using the relaxation we introduced above, e/gmetending”
that the agent is allowed to determine the result of a pdatimbservation. In
such setting, a good plan might consist of five actions: “ga2§ “observe
Smells(a2)”, “go to al”, “go to bl”, “observe Smelis(b1)”. This suffices to
win the game, since after such a sequence of events the Wumysise orb2.
It is also clear that the relaxed problem is, indeed, eakin the original one:
in real Wumpus, it is not quite as easy to win.

However, this is obviously not the only plan which allows ggent to win
the game. Another one would be: “god@”, “observe—Smells(a2)”, “go to
b2”, “observe—Smells(b2)”, “go to b3", “observe—Smells(b3)”. It is obvious
that Wumpus must be afl, then.

It can easily be seen that those two plans share the initimra@nd then
have different outcomes of the first observation. Theret exgerfectly natural
way to combine them into a single, conditional plan — whicHi mianch on
exactly this first observation. The result would be: “ga, IF “ Smells(a2)”
THEN “go to al”, “go to b1” and “observeSmelis(b1)” ELSE “go to 62",
“observe—Smells(b2)”, “go to b3” and “observe—Smells(b3)”. This plan is
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still not necessarily valid for the “real” game of Wumpust kius sufficiently
close to a good one (at least near its beginning) that it shilustrate our idea
well.

Basing on that, it is equally easy to make the plan partiallirg it on the
first relaxed action. In our case, it would result in “gaatif it smells there go
to al and tobl, otherwise go t@2” being generated. And while this plan is not
yet complete (there is a chance it will not smellidnor onb2), it is definitely
areasonable plan. And it is perfectly valid for the “real” MvMous domain, with
no trace of its relaxation heritage left.

Obviously, there is no guarantee that this plan is actuailygood, since it
could lead the agent to a dead end — in a relaxed domain, thes@\solution,
but it is at best a weak indication that in real domain thispteay be usable.

4.4 Plan Evaluation

As we explained in the previous section, our agent createditbonal, partial
plans. These plans are partial because limited resourcestddlow our agent
to consider all the possibilities and come up with a good @onént plan. In
fact, we would prefer to be able to generate conformant pland the only
reason for plans being partial is that they are the best wersate.

On the other hand, the reason we have decided to use comdiptans,
instead of limiting ourselves to sequential plans, is plealiation. We have
shown how conditional plans can be created, and that it i&di often easier
than generation of sequential plans, but this is a secorisisug.

The primary reason for plans being conditional is that weridtthe agent
to learn that some of them are generally good and some of themenerally
bad. By the virtue of being conditional, the plans remaincissmbut also have
significantly broader applicability. The language of caiwthal plans is strictly
more expressive, and this allows Planner to generate plaichware not con-
fined to a single situation.

In particular, one of the major contributions of this workilie idea to in-
ductively generate rules for deciding when a plan is a go@dfonexecuting in
a particular situation and when it is a bad one. The agentlngestive Logic
Programming in order to achieve that.

From this point if view, sequential plans can rarely be ursa#ty good,
unless they are very short. For example, if we consider a‘{garto a2 then
go toad”, it is obvious that it is only good under some rather strichstraints:
if the agent knows that Wumpus is neither @hnor ona3. In particular, the
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agent does not have this knowledge at the beginning of any ggisode.

On the other hand, if we consider the, only slightly more claxpcondi-
tional plan “go toa2 and if it does not smell there go t@”, it is obvious that it
is much more general. In fact, itis quite a good plan to exeatithe beginning
of a game episode.

We have based our experiments, reported in Chanter 8, oddheof learn-
ing to distinguish “good” and “bad” conditional partial p& This is only pos-
sible in a setting where Planner generates conditionabpatans and the agent
is allowed to make use of past experience in order to deteraimypothesis as
to what kind of plans are successful and which are not. Thdtsesf those
experiments are very encouraging and they show that theefvank we have
designed is well-founded and promises to work well.

In our current implementation used in those experimentshave decided
to focus on the interactions between learning and deduahoth Planner and
Actor have been significantly simplified. Our planner is ag#one, it does
not use any heuristics and simply creates a fixed set of plalygall possible
plans for the Wumpus domain, and an arbitrary set of “interg@s plans for
Chess).

This is, however, only a simplification made in order to make experi-
mental setting more accessible. The agent’s architectudesigned in such a
way that it is very easy to hook up an existing planner in otdeefficiently
create the “reasonable” plans.
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Actor Module

5.1 Introduction

Actor is the least homogeneous module in the whole architecsince it can
be seen as a controller of the agent as a whole. Basicaltgsponsibilities can
be divided into three broad classes.

Firstly, Actor supervises the deliberation process in oitdeensure that
the agent stays responsive in a dynamic environment andhihaight balance
between reasoning and acting is reached. Secondly, itsdecbest plan to be
executed. And thirdly, it continuously observes the envinent and allows the
agent to react to interesting events taking place there.

5.2 Reasoning

Actor oversees the deduction process to guarantee thagém'alimited re-
sources are utilised to the highest degree possible. Teettust analyses the
progress of reasoning and makes decisions as to when shaadnterrupted.
There are three major types of situations when a decisioiveoup on further
thinking is justified.

First situation occurs when Actor notices a particularkeiasting plan and
decides there is no point in deliberating further. Defigitile most common
and obvious condition for that is discovery of a completenpl&ven though
Planner aims at generating partial ones, at some point thet agll be suffi-
ciently close to achieving its goals that a complete satutian be found. Once
it is, and Deductor confirms that ultimate goal of the agentlva reached di-
rectly, there is no point in continuing deliberation andragahould immediately
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begin to execute this plan.

Second situation is probably more common, even if lessfgiis Namely,
when the agent has spent enough time reasoning and will come further
interestingconclusions, Actor needs to break the deliberation and dting
instead. It is crucial to note that this requires some measfievaluating the
progress of reasoning not based on purely syntactical messuch as number
of formulae known, but on determining whether newly obtdikeowledge is
useful and relevant. For example, if an agent knows(hata number and any
successor of a number is the number itself, then it can eamiliinue to deduce
infinitely many “new” formulae. However, most of them are,tiemselves,
completely useless and they will not be important for deteimy the correct
course of action.

Finally, it may happen that the agent is pleased with thebdedition pro-
cess, it has not yet found any particularly exquisite plan,ibstill needs to
start acting due to a deadline approaching. It is commonekigrnal events
happen at predictable intervals and if the agent needs tblka@respond to
such event, it may have to interrupt its own reasoning in &dquéar moment,
regardless of how close it is to a breakthrough.

In general, however, it is impossible to determine whetherdeliberation
process is “progressing” within reasonable resource ditioihs (this problem
is sufficiently difficult in the case of omniscient agents)oviver, within our
architecture, we can take advantage of the learning mesinarto help in this
regard. More testing is needed, but based on the experihreatats presented
in Section 8.3, learning about conditional partial plansnse to be promising
direction of research.

Another interesting idea is to allow Actor to “pause” reasgrand perform
any observations Deductor requires to continue. In a nurobsituations it
happens that some decision cannot be made without somelcpigie of in-
formation. In those cases it is counterproductive to camtideliberation, and it
is much better to perform whatever actions are necessafytéinahis informa-
tion. We have not implemented this functionality yet, but@kdas the means
to detect such situations and to react to them.

For example, if an agent in RoboCup domain intends to kickbtile but
does not know the distance to the goal, it may attempt to plaatwhe exact
actuator gain should be used. Such agent might begin oggatins of the form
“detect distance, if distance is 0.1 then set gain 1, elsist&dce is 0.2 then set
gain 2 else if distance is 0.3 then set gain 3, ...” It is clearbre beneficial to
perform the observation immediately rather than to waste treating such a
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huge conditional plan.

In addition to interrupting deliberation completely, Actalso guides the
reasoning process by making it focus on the plans most liteelge useful.
Based on plan evaluation capabilities as discussed in tktesaetion, it is able
to prioritise deduction by making it focus more effort onmdadooking more
promising. It utilises Learner and mechanisms discussegkation 6.2 to do
that.

In our current implementation and in experiments repome@hapte - 3, we
have decided to focus on the interactions between learmdgdaduction, so
both Planner and Actor have been significantly simplifiedtoAcelies on the
incompleteness of the Deductor and on the fact that theanéer is guaranteed
to always terminate. It simply lets Deductor infer evergithit can about each
of the available plans and only afterwards does it choosbektone to execute.

5.3 Plan Selection

Once a decision to begin acting is made, Actor evaluatetirxiglans and exe-
cutes the best one of them. Tleigaluation process one of the most important
aspects of the whole agent architecture. On the one handpksred earlier,
it is not possible, in general, to determine with full confide which of the
available conditional partial plans is the optimal one. #& same time, Actor’s
choice of which plan to execute is the crucial element whichatly influences
the agent’s ability to reach its goals.

For example, in the Wumpus domain, if the agent keeps exertite wrong
plans, it can continue walking around the board in circles aever find the
monster. Without domain-specific knowledge regarding tiresct strategy for
playing the game, partial plans are not guaranteed to mavagdhnt closer to
winning. Moreover, there is a number of domains that are netdverable”,
i.e. an agent may end up in a situation which is not fatal bsffitbut from
which winning is no longer possible. Many interesting, il domains are
sufficiently complex to have that property. For example never simple Chess
domain is one.

The decision made by Actor is partially based on deductigaltg obtained
by Deductor about each candidate plan (see Section 3.5patidlly based on
past experience and generalisations of it developed byeeésee Secticn €.7).
In our approach, it is the learning process that makes thieia@i@n of plans
feasible.

In the beginning, the choice of plan to execute is made ataman¢but
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heuristics may be used if any are available in the domaicip&nowledge).

After executing this random plan, a new situation is entémemland new obser-
vations are obtained. Planner creates another set of ghsg into account
the newly acquired knowledge about the world, Deductoryeeasl them, and
Actor selects and executes one.

After this is done for a number of game episodes, howeveragiemt has
enough experience to use the Learner module to generalipast results and
to induce some hypothesis as to which plans are good and \ahéchad. This
part has been our major focus in this thesis, and the detaildiscussed further
in Chapter 3.

Winning the game also provides a possibility to (re)corttteuconformant
(or, at least, more general) plan out of the partial ones irsd¢lde past, both
in this episode and in previous ones. If such a plan can bedfotimay be
subsequently used to immediately solve any problem instémrcwhich it is
applicable.

Summarising, the interactions between Actor and Learreethee most im-
portant issue we report on in our experimental results inp@r$.

5.4 Execution

Finally, the Actor module is responsible for interactiorigh®e agent with the
external world, performing the role of the reactive partiué system. In the
most typical scenario, Actor continuously monitors thessgnnput, analyses
it and transforms it into symbolic representation whenewezded. In Active
Logic, there exists a special provision for that, caldabervation function It
is important that such newly observed formulae have ex#olysame status as
domain axioms, but different temporal extent.

In general, the task of turning complex sensor input into ksytic repre-
sentation suitable for deductive reasoning is far fromdtivA number of re-
searchers work actively on this topic (see, for example. 0035 Still, this is
not a focus of this thesis and for our work we simply assumedhaexisting
solution can be used.

Newly observed facts can then be used by the Deductor, altpan agent to
respond to the changes in the world. In particular, Dedustasell equipped to
handle the common case of new information contradictinggiixdy obsoleting)
previously available one. Active Logic allows it to resolveonsistencies in
the agent’s knowledge base and to make informed decisig@diag which
source of information is more trustworthy (including conmmgense notions
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like “believe the most recently acquired observations”).

Nevertheless, it is also possible for Actor to react morelarntly” if the
need arises. In some situations, it is not enough to rely duictve process
to be sufficient. The most typical case is when some physitares need to
be performed immediately. A classical example would be @tec of obsta-
cle avoidance behaviour if the agent is about to hit an olestaypically, the
deductive process is not going to react sufficiently quicktg, in dynamic en-
vironments, an agent needs to have a repertoire of “readgebresponses to
external events. It is also important that both Learner aadutor cooperate
in creating this repertoire.

In other words, the intention for Actor is to acquire geniesd knowledge
of the domain, which can be used to guide the agent in moreipiogndirec-
tions.

5.5 Environment Interaction

One of the main contributions of our research lies in the Soiwusness” of
interactions between an agent and its environment, coeduotsuch a way
as to maximise the knowledge that can be obtained. In phatjcihe agent is
facing, at all times, the exploration versus exploitatiolerdma, i.e., it both
needs to gather new knowledgadto win the current game episode.

In order to facilitate that, our agent requires an abilitybtmth act in the
world and to observe it. Finally, it needs to reason aboubvta knowledge
and how it will (orcan) change in response to various events taking place in the
environment. In different domains and applications vasiowodels of interac-
tions with the world are possible. In this section we will ciése how they can
influence the agent.

The most unrestrictive case is a simulator, where an agencomplete
control over the (training) environment. It can setup ariteaty situation, ex-
ecute some actions and observe the results. Such a scenegmimon in, for
example, physical modelling, where it is often much easiesimulate things
than to predict their behaviour and interactions.

If an agent’s freedom is slightly more restricted, it is pbkesthat it is not
allowed to freely change the environment, but can “try o@vesal plans in a
given situation. For example, the agent may provide a selapispand receive
an outcome for each of them. This model is also suitable fentegthat do not
have perfect knowledge of the world, as the “replay” cajigtiloes not assume
thatthe agenis able to fully reconstruct the situation or that it knows #tate
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of the world completely.

In most applications, however, an agent is only able to infteeits own
actions and has no control whatsoever over the rest of thelwdhis is also
the most suitable model for aautonomousgphysical agent. In such a case, the
environment will irreversibly move into the subsequentestgpon each agent’s
action (or any other event), leaving it no option but to ad#fphay still be inter-
esting, in some situations, to substitute acting for reimgpitout the agent needs
to be aware that once acted upon, the current situation witjdne, possibly
forever.

Finally, we can imagine a physical agent situated olaagerousenviron-
ment, where it is not even plausible for it to freely chooseaittions — it first
needs to assert that an action is reasonably safe. In tléswalgke in the previ-
ous ones, a significant amount of reasoniegdso be performed before every
experiment.

As an orthogonal issue, sometimes it is feasible for an agegkecute an
action, observe the results, reason about them and figurtheutext action
to perform. But in many applications the “value” of time \exisignificantly.
There are situations where an agent may freely spend itsrtigutating, and
there are situations where decisions must be made quickhyexample, in the
RoboCup robotic soccer domain, when the ball is in possessi@ friendly
player, the agent just needs to position itself in a good wafpossible pass
— atask which is not too demanding and leaves the agent freertider more
“philosophical” issues. On the other hand, when the babliing in the agent’s
direction, time is of essence and an agent should have pandy for several of
the most plausible action outcomes.
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Chapter 6

| earner Module

6.1 Introduction

The goal of the learning module is to take advantage of theréxpce the agent
gathers throughout its lifetime. After all, one of the defupitraits of intelli-
gence is the ability to improve its own performance and tacavepeating old
mistakes.

The Learner module is intended to improve our agent’'s peréoice as a
whole. Firstly, it provides Actor with knowledge necessarychoose the best
plan among those suggested by Planner. Moreover, it indutesfor deciding
when it is time to stop deliberation since no new interesiirgghts are likely
to be obtained. Learner also provides Deductor with guigsliabout plans that
are most likely to lead to good results (and thus should vecgiiority when
reasoning) and about plans that are likely to be useless gaodld thus be
ignored by Deductor).

6.2 Plan Selection

In this thesis we mainly investigate Learner from Actor'sgpective, since
using the Inductive Logic Programming framework to evadutite quality of
partial plans is — to the best of our knowledge — a novel ideavextheless,
the design of the Learner module as well as the agent artiniéearound it
is well suited for more than just that. For example, it can beduto improve
domain knowledge and to identify interesting reasoningations.

As we mentioned earlier, our agent is expected to live thmautarge num-
ber of problem-solving episodes in a single domain. Thiotsam assumption
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particularly difficult to fulfil in practice, as it is very apycal for an agent to
solve some problem only once and to face a completely diffdesk the next
day. For example, if the agent is an autonomous museum alitienatic taxi

driver, office helper robot designed to bring coffee to haatking researchers
or any similar kind of device, the tasks it faces are quiteeaggble, even if
never completely identical.

At the same time, the ability to exploit its past experieng@me of the
greatest assets of our agent. For example, upon finishirtg\Wampus game
episode, all the interesting events (actions, obsenatimmd finally the ultimate
result: whether the game was won or lost) are fed into thenilegrmodule.
Learner attempts to generalise this information and to igeoguidelines for
Actor and Deductor on how to achieve a better performancetimas.

The first task for our learning module is to help Actor to chet® best one
among the plans being considered by Deductor for execufisrexplained in
previous chapters, Planner develops a number of conditmaréial plans and
then Deductor analyses each one of them (see Section 3.6thils)l Some of
those plans are better than others, but it cannot be detedneixactly and with
full confidence unless those plans extend all the way to tmate goal of the
agent (for example, to the terminal state of the game). Fokithds of domains
we are interested in (such as those mentioned in the Inttiodcoing that is
infeasible — the agent’s computational resources are raigintocompletely
solve these problems.

Therefore, the agent needs some heuristic method, préfeadbpted to

a particular domain, for evaluating the quality of partidns and comparing
them. After all, Actor must, at some point, choose exactlg plan for imme-

diate execution. There is an active research in planningfdlsases on exactly
this problem, namely how to automatically generate sutdiguristics. Still,

the most important, if not the only, generic result achieigethat all solutions
are domain-dependent and what works very well in one siinatiay be quite
detrimental in another. Using Machine Learning technidMif7] is one way

of dealing with this issue.

To this end, Learner inductively discovers rules for evihgaplans and
for deciding, based on the agent’s successes and faillwstfre past, which
ones are most likely to lead to the goal. Doing so using dédrceasoning
is often computationally very expensive, and it is a wisaiftar an agent to
avoid it whenever possible. Based on experience and on tieglueasoning
performed by the Deductor module, the agent can analyse ®warld (and
the agent’s knowledge about it) will change after executingarticular plan.
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It is then possible to learn rules for determining the classlans which have
been successful in the past, and to use that to choose the dmeedxecuted
next.

6.3 Inductive Logic Programming

There exists a large number of different approaches bastittadea of exploit-
ing past experience, under the common name of “Machine iregtnSome
of them attempt to build models of the process in questiomgugarious for-
malisms, and later exploit it (for example, approachesdasahe Markov De-
cision Processes). Others focus more on a procedural kdgejeattempting
to directly determine the correct course of action, oftethaform of apolicy
(for example, Reinforcement Learning). Others concerm#@ves only with
classification of entities in the world, without directlysagiating such decision
classes with the agent’s actions (various kinds of Data mjhi

In our research we have decided to use the approach calladtivel Logic
Programming, since it has a number of very attractive a@weges important in
our setting.

The major requirement is that training knowledge needs texpeessed in a
very rich language — in particular, simple attribute-vahaérs are not sufficient
to describe training examples. It is crucial for a learnipgtem to have access
to the complete knowledge base of our agent. And while thdst & number of
other formal languages, the full expressiveness of FOLilisiseded to capture
the complex dependencies between different elements ofidhie. Inductive
Logic Programming is one of the few Machine Learning techegthat can
support such complex descriptions of training examples.

Moreover, very often there is quite a bit of knowledge thando experts
can provide. While our aim is to have a solution that doesreqtire such
experts, we believe that taking advantage of whatevernmtion they can pro-
vide is very important. At the same time, we intend to put asriequirements
on this knowledge as possible — it is all too common for Arigidntelligence
approaches to put constraints on domain knowledge, whisitdlly amounts
to “perfect knowledge or no knowledge”. In contrast, Indetlogic Pro-
gramming fits our needs quite well — it uses background kndgdevhen it is
available, but it can also solve problems when it is not. Atglame time, the
full expressiveness of FOL is available, and the only forpmistraint is that
provided knowledge cannot be inconsistent.

The main problem is that most of the work on ILP (and to a lesséznt
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on symbolic Machine Learning in general), has been dealmgst exclusively
with the problem ofclassification In contrast, our setting requirevaluation
or rankinginstead. There is no predefined set of classes into whicls glaould
be assigned — what our agent needs is a way to choodeegtene of them. It
must do so regardless of how many are available or how good an@fsolute
scale — they are.

Still, in order to be able to take advantage of the vast amotinésearch
done in the Inductive Logic Programming framework, we ttyleast initially,
to recast our problem as one of classification. To this erslead of trying to
determine which plan is the “best” one, we simply attemptitiade the set of
all plans into two classes: plans that are “obviously ustland plans that are
“sensible”.

Even such a simplified setting can be useful, since if Actor sgot those
“obviously bad” plans early, it can instruct Deductor notraste time deliber-
ating about them. Clearly, these plans should never be tedcand since the
fact that they’re bad is so obvious, it is quite likely that tigent will determine
that anyway. Nevertheless, it is very typical that a lot dbsfis wasted be-
fore that happens. Generalising agent’s past experiencéea great way to
minimise this wasteful effort.

In our example game of Wumpus, we have decided to considebas’ “
those plans that are “dangerous”, i.e. those that can ledicetagent being
eaten by the monster. Clearly some plans — namely thoserttagent's ex-
periencedid lead to death — are bad ones. It is not common, however,
the complete and operational definition of bad plan to diydollow from the
available domain knowledge. It is even less likely that asragyill be able to
explicitly deduce it and to use it effortlessly.

It is important to understand that this setting is only a beijig. After
all, in many situations a more “proactive” approach thanpdymmot-losingis
required. For example, an agent that moves in circles, witkaploring the
world, clearly does not get eaten by the Wumpus — but it newes the game,
either. Hardly is it worth being called “intelligent”. Whegoing further, one
very promising idea is to explore the epistemic qualitieglains: an agent
should pursue those plans which provide it with the most it@m knowledge
about the world. Inductive Logic Programming appears todeful for such a
setting as well, but initially we focus on a simpler issue.

Another way of expressing the distinction between good el frartial
plans, and one we feel can give satisfactory results, i®desag relevant sub-
goals and landmarks, s [HP!504]. The ability to divide caxplroblems into
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easier components and to solve them separately is a veryrfubwexhnique.
Again, Machine Learning can be quite successful in this.

6.4 Training Knowledge

There is a large number of features that can be used to digtlbetween good
and bad plans. And with a sufficiently rich history of past gaepisodes, it is
possible to learn this distinction. In fact, there are int@ot theoretical results
which prove that, given a sufficiently large and sufficiemdpdom training data
set, the probability that a properly designed learning @doice will generate a
bad hypothesis (i.e. one making a large error) is arbiyrarihall.

How such approaches work in practice, however, is far fromous. There
is a number of reasons why such theoretical results are ruasearily fully
applicable in reality. In particular, a number of consttaifaced by situated
agents make most theoretical analyses rough simplificadbbest. Therefore,
it is important to investigate in more detail the actual gyailf learning within
our framework.

In the simplest case the agent can start with Actor randohtypsing plans
for execution. After a couple of games — some of which will bervbut, most
likely, many will be lost — it should have enough experienoddarn some
useful rules. How complex those rules would be, how intaitand whether a
particular learning algorithm will discover them (as alwawithin the agent’s
limited resources) is something that needs to be experattgnerified, and we
have done that in Chapter 8.

We start with the idea that Learner only attempts to dististytdangerous”
plans, i.e. ones that can lead the agent to failure at its taséking at our ex-
ample domains, the most natural definition of a dangerousiplthe Wumpus
domain would be “a plan which can lead to the agent’'s immediatth”. Sim-
ilarly, in a Chess domain, a dangerous plan would the be omehvdan lead to
losing the rook. This is obviously not enough to achieve tpendls true intel-
ligence nor to ensure that it will be successful in achieviagoals in general.
Nevertheless, there is a large class of domains which aoeVesable” in the
sense that (as long as agent is not dead) it can still winydegss of current
position. In fact, Wumpus domain belongs to this class, ev@@ihess does not.

However, it is worth noting that if the Wumpus is allowed tovapthere
exist plans which do not lead to agent’s death, but which mlegkess can make
the game unwinnable — for example, if an agent gets stuck ioraec with
Wumpus blocking its way out. It may be difficult for an agentriatice and
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learn that the mistake has been made in the previous step tiet one when
the agent was Kkilled. This issue is most extensively dismiss the area of
Reinforcement Learning, and it is closely related to thebfmm of delayed
rewards and credit assignments. An extensive bibliogrdpgvailable, for
example, in [SBE8].

Nevertheless, in the rest of this section we restrict oueseto dividing
plans into two classes: those that can lead to agent’s dedtthase that can-
not. Each partial plan executed at some previous game cagelpess a single
training example. The first issue we need to deal with is whidmple belongs
to which class.

It is easy to notice that some plans — namely those that intagexperi-
encedo lead to losing the game — are definitely examples of bad pldos:-
ever, not every plan which does not cause the agent to diadeged, agood
plan. What more, not every plan that leadsvioninga game is a good one. An
agent executing a dangerous plan might have just gottew,lifék a particular
episode Wumpus was in favourable position. From this it e clear that
the notion ofpositiveandnegativeexamples, as used in ILP algorithms, is not
quite appropriate for what we would like to express withim fsramework.

In the experiments reported on in Chaptar 8, we assume thatghnt has
perfect knowledge about which plans (training examples)patentially bad.
This is a fully justified assumption for the Chess domain, rehtbe opponent
does not make trivial mistakes and whenever it is possibiéifo to capture
the rook, he will do so — therefore if a plan is badwilll cause the agent to
lose the game.

In Wumpus, however, the distinction is not so clear — it isgilole for
the agent to get lucky and not die even though it executes gedans plan,
simply because the beast is in a favourable position. Btithe simplest case,
within our current experimental setting, this problem caralioided. Namely,
we assume that Deductor, even if incomplete, has perfeatleage about the
rules of the game and it is powerful enough to eventuallyaliscwhether there
is any possibility of the agent dying due to executing a paldir plan in a given
situation or not.

By knowing all possible consequences of the execution off gdan, the
agent can deduce (for some pldPsa fact “Knows|[S, P, —die(agent)]”, and
for others a factnows|S, P, die(agent)]. Since we intend to learn a predicate
“badPlan ()", we can define as positive examples those plans which lead —
or can be proven tpossiblylead — to defeat. Those are exactly the plans
for which Knows[S, P, die(agent)] can be deduced for at least one conditional
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branch. On the other hand, plans which can be proveievercause defeat are
negative examples. In Chap:er 8 we show that, under reasooahditions, it
is possible for Learner to inductively learn the correctrigén of the badPlan
predicate.

This is not the ideal setup, however. Requiring Deductoe&son so deeply
about every potential example for Learner is very demandorgputationally,
and for the results of those inferences to necessarilgdoect is very limit-
ing. We would prefer to be able to label training examplengigxperience
alone: in game episodes which ended up with the agent getsitegn, (some of)
the executed plans were definitely bad. Equivalently, in gapisodes which
ended up with the agent winning, (some of) the executed plaene definitely
good. In such a setting, however, there is no way to ensutenthanistakes
happen when labelling training examples. And even thoug®®8L caters
for the possibility of noisy data, we have found its featurethis area rather
insufficient for this particular application.

There is also a third class of examples, i.e. plans for whietabove cannot
be proven: neitherKnows[S, P, —die(agent)]”, nor Knows[S, P, die(agent)],
at least within the limited resources of our agent. We arekimgron how to
most effectively use such examples in learning, but thisseandary issue for
now, since with our current implementation of Deductor tass is empty.

6.5 Learning Algorithm

In this work we use the Inductive Logic Programming algaritballed PRO-
GOL [Mug9%], since it is one of the best known ones and its @uttas pro-
vided a fully-functional, publicly available implementai. At this stage of
our research we are not aiming for top performance, but rasheonvincingly
present our ideas, and to this end such a popular and wedrstiodd algorithm
is perfect.

PROGOL is based on the ideainferse entailmeraind it employs a cover-
ing approach similar to the one used by FOIL, in order to gateest hypothesis
consisting of a set of clauses which cover all positive examand do not cover
any negative ones. An important feature of PROGOLracgle declarations
where the user specifies which predicates can be used in gothegis being
learned, as well as their arity and argument types.

The standard version is presented in IMug95] and can beideddnere, in
a somewhat simplified manner, by the following steps:

1. Select an example to be generalised. If no more exampigts gop.
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2. Construct the most specific clause, within provided laggurestrictions,
which entails the selected example. This is called the toottlause”.

3. Find, by searching for a subset of the literals in the motttause, more
general clauses. Choose one with the best “score”.

4. Add the clause found in the previous step to the currerdrthend re-
move all clauses that have been made redundant (it is wotihgnihat
the best clause may make other induced clauses, not ontydasinples,
redundant). Move back to Step 1.

An important part of this thesis is our investigation of hawrépresent De-
ductor's knowledge base in a way accessible to the PROGGdkridigr. In
particular, our goal is to analyse the relationship betwibenquality of learn-
ing and the amount of domain specific knowledge put into darasformation
between Active Logic and PROGOL.

In Chapter 3 we describe our experiments which illustrater ddferent
representations of Deductor's knowledge base influenamitearesults. In
particular, we show that a small amount of additional donsqiacific knowl-
edge needs to be provided in order for learning to be suades®he of the
problems is the closed world semantics used by most ILPighgas, including
PROGOL. Deductor, in order to deal with incomplete knowketitat the agent
has about the world, employs open-world semantics — frommtlie fact that
the agent is unable to prove something it does not followithafalse.

For example, our agent reasons using predidétenpus. In particular,
Wumpus(b2) means that Wumpus is located on squareThe agent starts the
game with knowledge that:

Wumpus(a3) V Wumpus(b2) V Wumpus(b3) V
V Wumpus(cl) V. Wumpus(c2) V Wumpus(c3)

Intuitively, squaresul, a2 andbl are excluded since the agent immediately
observes that it does not smell an. At the same time, the agent initially
knows neither Wumpus(b2)” nor “—=Wumpus(b2)” — it suspects Wumpus
may be on this square, but it may also be somewhere else.

Under the closed world assumption employed by PROGOL, suapa
resentation is impossible. Any time the agent does not kibwmpus(b2),
it is assumed that Wumpus(b2) holds. Therefore, for each such “uncer-
tain” predicate, we introduce three alternatives in ordescdibe all interest-
ing possibilities. We do not, actuallpeedall three — theoretically, any pair
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would be sufficient — but it would make learning much more diffi since

good formulae would become more complex. In particular, Meduce three
predicates describing the smelling phenomenanybeSmelis, noSmells and

knowsSmells), as well as three predicates that describe the potentsiiquus

of Wumpus (naybe Wumpus, no Wumpus andknows Wumpus).

6.6 Conditional Partial Plans

One gquestion is how to represent situations and plans in #yemost suitable
for learning. We have decided to use ideas from Situatioonuhas and describe
every conditional branch of a plan separately, while we fismeously allow
guantification over them.

In both our experimental domains, tfiest step of a plan is an unconditional
one — the agent simply decides how to move in a given situakon\Wumpus,
the rest of the plan can have at most two branches (cdfadellsandifClear,
with ifSmellsbeing taken if and only if it smells on the newly-visited stp)a
For Chess, there are three explicit branches (each spegifiye expected move
of the opponent and the agent’s response, without any ngassigned to their
order) and, additionally, defaultbranch, which will be executed whenever the
opponent makes any move other than those three. It is owf tiedit such a rep-
resentation is sufficiently general to be usable across miidfeyent domains.

Taking a very simple example from the Wumpus domain, the ipagel
Position (P, start,a2) means that in the starting position of pl&nthe agent
occupies squara2. We utilise the predicat®osition to describe the details of
the plan being discussed, in particular to describe whaptssibilities of the
agent moving around are. We introduce five different brarahes, in order to
provide the necessary flexibility of this description:

e Position(PP, start,al) — agent starts atl.

e Position(PP, visit,al) — agent is guaranteed to visit, but it can hap-
pen at any time during execution Bf

e Position(PP, intermediate, al) — agent is guaranteed to visit, but it
is an intermediate position, it will not end up there.

e Position(P, ifClear,al) — agent will end up orul, but only if it did
not smell on the first square it visited (i.e. if thf€lear plan branch gets
executed).
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o Position(PP, ifSmells,al) — agent will end up o1, but only if it did
smell on the first square it visited (i.e. if tliE&Smellsplan branch gets
executed).

In addition, as mentioned earlier, we have introduced thpeedi-
cates describing the smelling phenomenonagbeSmells, noSmells and
knowsSmells), as well as three predicates which describe the potentisit p
tions of Wumpus fraybe Wumpus, no Wumpus andknows Wumpus), all with
board squares as arguments.

It is also important to note that it is not necessary to achii80% accuracy
in our application. One interesting feature of our learndegfing is that false
negatives are not overly problematic: the point is to sameescomputations by
discarding useless plans early, so if some bad planeairgetected, the worst
that can happen is that some computations will still be wiadtalse positives,
on the other hand, are much more dangerous, since if Actoowesna useful
plan from considerations, the overall quality of the saatican deteriorate.
However, there is no way to express this distinction in PRQ@ms, so in
this work we have decided not to separate accuracy intoig®sihd negative
parts.

6.7 Modes of Learning

When analysing the learning module, it is important to keemind that our
agent has a dual aim, very akin to the exploration and exioit dilemma,
well-studied in Reinforcement Learning and related redeareas. On one
hand, it wants to win the current game episode, but at the sianeeit needs
to learn as much generic knowledge as possible, in orderpoowve its perfor-
mance at solving subsequent episodes.

Also, an important question is one of credit assignment;esithe agent
typically executes several partial plans before it reatheserminal state of the
game. Only the complete sequence of actions is then rewardaghished. It
can very well happen that one of the plans in a bad sequenceniast, good.
There are numerous techniques being developed for dealthghis problem,
each with its own advantages and disadvantages, and it @e@otat this point
which one would best be suited for our particular case.

Finally, we have made some preliminary tests in a nmsneulation-like
environment, where an agent executes a plan and observastit effects
only. Therefore, it is prone to making mistakes when deteimgi which plans
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are potentially bad. Even though the learning algorithm sexuallows for the
possibility of noisy data, we have found that rather insigfic for our needs.
Thus, the experiments we report here do not contain any reig® demanded

of Deductor tgqprovewhether a plan is safe or not before it was used as a training
example.

Finally, our agent faces an important tradeoff. Clearlg, lttnger the agent
allows for the planning phase to proceed, the better plangliget to choose
from, and the more information about consequences of eachagll be known.
On the other hand, more of the deduction effort will be wastgdonsidering
potential situations which will not take place in this pautar game episode,
since they will be incompatible with actual observations.
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Chapter 7

Module Interactions

In Chapte - 2 we have introduced the architecture of our aggeatwvhole, mainly
presenting a general overview of the system. We have alsamitegdiscuss the
intended dependencies between various modules thereugltlit was by ne-
cessity done on a rather abstract level. Afterwards, we Haveted four chap-
ters to describing, in detail, each of the modules congtubur architecture:
Deductor, Planner, Actor and Learner.

In each of those chapters we have described the moduleseéh@&snsbut we
also kept analysing how each component interacts with gidws of the agent’s
architecture. What remains to be done here is to summartseantiude those
descriptions, clarifying once again the interdependenaimong the modules,
both in terms of information and control flow.

The main idea of our architecture is to ensure fruitful iatdions between
the modules introduced in previous chapters. Each of thesiules roughly
corresponds to one of the major subfields of Artificial Ingglhce and is de-
signed to accommodate the state of the art solutions thatemeloped there.
Each module can provide a very good performance in specffiat@ins and
within appropriate limitations, especially if chosen wétlparticular application
area in mind. Nevertheless, none of them is sufficient — alent achieve
real intelligent behaviour of a generic situated agent.

The major contribution of this work is the idea of using niki conditional
partial plans as a way to exchange information (or knowletgéwveen mod-
ules. In this way, Planner comes up with plans that are patgninteresting,
but it does not need to commit to a single one. Deductor resaabaut each of
those plans separately, but is also able to explore interacbr dependencies
between them, as well as to make use of any similarities ifficahnin order to
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extrapolate results concerning one plan to the others.neeanduces generic
knowledge about what types of plans have been successtu ipast, in what
situations and under what conditions. Actor chooses, bas@formation pro-

vided by other modules, which plan should be executed inthed, as well as
oversees the agent’s operation and chooses the best coad®n as soon as
enough knowledge becomes available.

Using the architecture introduced in this work, our agerahike to reason
about theactualstate of the world, both about the details of the currentsibn
and about the generic laws governing the application donmfaimthermore, it
can also reason about the variquessible futurestates of the world — namely,
how it expects the world to change as a result of executingtacpkr plan.

Moreover, the agent reasons about fiens themselves, how successful
they were in the past, both in general and in situations amtd the current
one. Most importantly, it attempts to predict which plans kiely to be good
right now, in order to focus its own limited computationasoerces on them.

Finally, the agent also reasons about its own knowledge badtats own
available resources. This includes, among other thingdyation of the knowl-
edge needed for a particular plan to succeed, as well as #uiks that are to
be met by the system.

The Figure 7.1 illustrates in some detail the flow of inforimatamong the
modules of the system. In particular, it makes explicit thewledge base (oc-
cupying the central part of the picture) which stores all blediefs the agent
possesses at the moment. The contents of this knowledgechaseughly
be divided into two major parts: beliefs about the world aetids related to
the agent’s internal state. The former part includes typieda often associ-
ated with situated agents, such as previous and currentvalises, generic
knowledge, domain-specific definitions, description ofent situation and hy-
pothetical results of plan executions. The latter partss lerdinary, containing
information like reasoning priorities influencing the detion process, the his-
torical data providing experience input to the learner, anes governing plan
selection by Actor.

Not unexpectedly, the most connected module is Actor, whigintains
the control over the whole system. As mentioned earlies, tddule also en-
compasses the reactive part of our architecture. In thisesene can see the
correspondence between it and lower parts of a typical éaysystem. Both the
reactive part handling interaction with the external world, ang@nceptuali-
sation part providing observation beliefs in symbolic format and ntaiiming
their coupling to incoming percepts, are handled by Actdris&llowed us to
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focus, in this thesis at least, on discussing higher levetha architecture in
more detail.

We have not devoted much discussion to the issue of our agemg & the
real world, concentrating on experimentations using a kitad environment
instead. Our architecture allows both possibilities anid ibnly the reactive
part that changes it®odus operandgifrom accessing the real world using sen-
sors and actuators to accessing a simulation environmargome appropriate
software interfaces.

Given our simple experimental domains this is not an issug,irbcase
of implementing the architecture on an autonomous robabttctbe crucial.
We fully expect to refine Actor in such case, possibly by dafirsome “mini-
architecture” within this module, or by splitting it furthdn particular, one can
imagine that the robot could gather experience both by gdtitthe real world
and in a simulated onat the same timeThis way, provided that simulation
holds sufficient level of accuracy, the learning processccbe decoupled — to
a degree — from physical actions.

In general, the major contribution of this work lies in thepensibilities
of Learner and in the techniques used by it. Therefore, tlevant Chapters
(namely 6 and 8) make up more than half of the entire thesigrandetails re-
garding the functionality of other modules have been preserather scarcely.
It has been a deliberate choice made in order to avoid ovémvitg the reader
with details that would blur the actual focus of this work.

Although those details have been considered secondanhifoptesenta-
tion, they are of course very interesting from the point awiof actual im-
plementation of rational, situated agent. Therefore westmevided, in Sec-
tion 1.7, a reference to places where an interested readdinchthis informa-
tion.
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Chapter 8

Experimental Results

8.1 Introduction

In this chapter we present experimental evaluation of sdigeas we have in-
troduced in this thesis. We have not yet implemented Dedutanner, Actor
and Learner in full detail and with all the features neededfeating truly in-
telligent agents, since this is a task that will take a lifetito accomplish. What
we have, however, is enough to perform an evaluation of therngé concepts
we introduced in this work. In particular, we have a comphathitecture and
are therefore able to comment on performance and on somestitey interac-
tions among various modules.

The major focus of these experiments have been on the ussfubf Ma-
chine Learning within the framework of our agent. Throughtbis chapter we
have used an ILP algorithm called PROGOL [Mug95] for all eipents (see
Section 6.5 for details). This chapter is divided into foect®ons, correspond-
ing to four different experiments we have performed.

In the first section (which is based on our paper [NNMO7c]) wespnt the
results of learning to distinguish “dangerous” plans ea¥ffe show that PRO-
GOL is able to find the correct hypothesis from as few as 30gaglchosen
examples. Such a hypothesis allows the agent to save up to¥@8aeason-
ing time, since it does not need to waste resources analpsamg which turn
out to be useless. Those results, however, require theapentide additional
domain knowledge specifically for the purpose of learning.

In the second section (which is based on our paper [NIMO7d]present
a heuristic approach which allows the agent to extract sdditianal domain
knowledge automatically. It turns out that the major prabheith learning is
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the overwhelmingof PROGOL with all the knowledge possessed by the agent.
Most of it is redundant, since it is a by-product of Dedudaéasoning pro-
cedure. A simple set of rules based on fuzzy sets allows thetdg filter out
irrelevant knowledge, thus greatly improving the qualifyearning.

In the third section (which is based on our paper INMO7b]) waspnt some
modifications to the PROGOL learning algorithm which makbdtter fit the
class of problems we are solving. This consists of three gdsinthe ability to
directly take estimation of knowledge relevance as an inputandle plan and
branch parameters in formulae in a more efficient way, andrexttly access
agent’s knowledge base expressed in Active Logic.

Finally, in the last section of this chapter, we combine ¢hesults together
and show that our agent is able to learn throughout itsitifetand analyse how
its performance improves as it gathers more experience.

8.2 Detecting Dangerous Plans

The first experiment we conducted concerns learning to tébad” plans
early, as explained in Chapter 6. We have performed theBal iakperiments
in order to evaluate the feasibility of our ideas and in otdectheck how well
those ideas work in practice. Our focus was on interacti@ta/den modules
and on showing that different approaches we combine do thdemplement
each other.

In this section we describe our experiments by taking a apéaterest in
how Deductor’s knowledge base can be represented in differays, in order
to make it most accessible to the PROGOL algorithm (and, bgnsion, to
other similar learning approaches). In particular, ourl geas to analyse the
relationship between the quality of learning and the amofidbmain specific
knowledge that the user needs to specify in order to have @edand Learner
communicate effectively.

Obviously, the ultimate goal is to be able to solve this peablfully auto-
matically, in a way which guarantees that whatever knowdeDgductor dis-
covers, Learner is able to use it. As it turns out, it is notessarily all that
easy. If the user does not take learning into account at @lijiging only the
minimum of domain knowledge as required by the deductive, pae results
obtained by PROGOL will be quite poor. In this section we Btigate what is
needed to make the learning process successful.

As a data set we have used three example runs of the Wumpusogetine
3x3 board. The agent had considered 134 plans in each of ¢épisades. This
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is the total number of length-2 plans (both simple and cimli ones) in each
case. Every episode consisted of four situations: the plstggted on square
al, first moved to square2, then to squaré2, and finally to squaré3s.

Each episode differed from the others by the position of theridus. In
the first run, the agent noticed that it smellsi@ and after moving t@3 and
not dying, it figured out that Wumpus must be @h In the second episode,
Wumpus was on squake3 and the agent discovered this fact after observing
that is smells o2 but not onb2. Finally, in the third episode, Wumpus was
located on squarel.

For the Chess domain, we have used three board positionsidh White
have a winning strategy. We have hand-crafted 69 plans icqyvdifferent types
of situations, since it is obviously not feasible to analgfiepossible plans in
this domain (there are approximatelg'® of them). In the description below
we will almost exclusively refer to the Wumpus domain, bug ttesign of the
Chess experiments followed the same principles.

In all experiments discussed in this section we have asstinatthe agent
has a perfect knowledge of which plans are bad and which aeeagad. This
means that it knows whictraining examplesre positive and which are neg-
ative — there is no noise in the data. We have explained tienedé for this
decision in Chapter 6.

In the first experiment, our goal was to use as little domaiecHic knowl-
edge as possible. In particular, we have not providednaogie declarationfor
PROGOL — the declarations for each background predicate w@mpletely
generic. The goal of the mode declarations is to reduce thethgsis search
space by limiting types of predicate arguments and by sgagifwhich ones
are input and which are output arguments and whether vasali constants
should be used. There are heuristics that allow this infGonao be auto-
matically extracted from the data, but they are not fooleprand not always
domain-independent. We have also decided not to filter teatagknowledge
in any way, except for removing Active Logic-specific extens. In other
words, the complete knowledge base of the Deductor has ssehas an input
to PROGOL.

Each training example corresponded to one of the plans #m agas con-
sidering, and each was labelled as being either good or badh glan was
described by the complete knowledge the agent had abatittie moment the
plan was suggested by Plannét is crucial to understand that this knowledge
did not include the effect of deductive reasoning performmgdeductor — the
point of learning is, in this case, to distinguish plans tranot worthyof being
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Figure 8.1: Results of learning in Wumpus domain.

reasoned about. Clearly, such classification is only usifus donebeforethe
reasoning is actually performed.

The following setting was used for this experiment, as welfa all the
subsequent ones reported in this section. We have run PRGEBOLImMes in
total, varying the number of training examples used as antinjVe started
with one positive and one negative example only, and coetinio increase
their number until we reached 20 positive and 20 negative @msing a differ-
ent number of positives than negatives did not lead to amyeasting results).
For each size of the training set, we have made 50 runs, isgjastamples at
random, inductively generating a new hypothesis and catitig its accuracy.
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Figure 8.2: Results of learning in Chess domain.

We have plotted the accurégf the learned hypothesis as the lowest curve

(marked “Without mode declarations”) for Wumpus in Figurg &nd for Chess
in Figure 8.22. It can be easily seen that the learning qualityo low to be use-
ful in practice. This result is not really surprising as itasvell known fact
that specifying appropriate mode declarations is very irgm for PROGOL.
Without them, the heuristics that guide the search algoritite next to use-
less. Nevertheless, this gives us a baseline with which wecempare further
results.

!Defined in the usual sense, as the probability that a randehgen example (from the
complete universe, not only from training set) will be cléied correctly.
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The second curve (marked “With mode declarations”) cleaHgws that
providing even a very small amount of domain knowledge (mdeldarations
are very easy for a domain expert to specify) is enough totlgré@aprove
the quality of learning. For example, for the three predisadlescribing the
smelling phenomenomtaybeSmells, noSmells andknowsSmells), as well as
for the three predicates describing the potential postimhere Wumpus can
be (maybe Wumpus, no Wumpus and knows Wumpus), we have specified the
following mode definitions:

modeb (9, maybeSmells(+plan, —square))?

It means, basically, that theaybeSmells predicate takes two arguments, the

first being of typeplan and the second being of typeuare. It also means that

the first argument is an input one (th#g while the second one is an output

argument (thus-). This predicate also hascall equal9, which means that the

learning procedure should explore at most nine differeriataée bindings.
Similarly, for the predicatéosition, we have used the following:

modeb(18, Position(+plan, #branch, —square))?

which means that thé&osition predicate takes three arguments, and that the
second one is of typ&ranch and it must be a constant, not a variable (th)s
The first argument is a plan and the third is a square.

It can also easily be seen that the accuracy of the Wumpusidasrsgnif-
icantly higher than that of the Chess domain. Neverthetesslearning is still
not fully successful — even though all the knowledge thecadly needed for
expressing the correct hypothesis is available. The mgsoitant reason for
that is that there is too much data and the search space &rgmfor PROGOL
to handle it sufficiently well.

Because of that, we have looked into ways of limiting the antad knowl-
edge used for learning — apparently, presenting all of trentg knowledge
to the ILP algorithm is not the best idea. We have decided tfopa two
more experiments. Within the background knowledge that awee hdentified
as relevant for the concept of bad plans, there were two aepaomponents:
information about squares where it smells and informatiboué squares on
which Wumpus might hide. In principle each one of them, bglifscontains
enough information to express the target concept.

Therefore, in the third experiment, we have decided to usetbe initial
domain definition and the observations that the agent mageewious situa-
tions. In particular, we have only used the predicategbeSmells, noSmells
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badPlan(A) <« position(A,intermediate,B), maybeWumpus(A,B).
badPlan(A) < position(A,ifSmell,B), maybeWumpus(A,B).

Table 8.1: Correct definition of bad plans for Wumpus.

badPlan(A) < notProtected(A,default,rook),
distanceTwo(A,default,black-king,rook).

badPlan(A) < isStep(B), position(A,B,rook,C),

canMove(A,B,black-knight,C).

Table 8.2: Correct definition of bad plans for Chess.

andknowsSmells for the Wumpus domain and mostBosition, canMove and
some geometrical relations for the Chess domain. The sestilearning can
be seen on the curve marked “Excluding Deductor” in Figur@sadd 8.2, so
named since this setting roughly corresponds to an agentdehs not have
a specialised deduction module and attempts to learn fremolaservations
only. As it turns out, expressing the notion of bad plansaisinly those three
predicates still proved to be too difficult for PROGOL.

As can be seen, the results in the Wumpus domain are pretiyuteging,
while in the Chess domain the accuracy is actubb§terthan when we have
provided the full knowledge. This is caused by the fact that€hess domain
is much larger and much more complex, and removing alraogthingfrom
the knowledge base improves the quality of the hypothesB@®BL is able to
find.

In Wumpus, however, the learning algorithm is actually ablmake some
use of the extra knowledge provided by Deductor, while ndtegoeing able
to duplicate its work. This result reinforces our belieftthi@e multi-module
architecture we are developing is a useful one.

Therefore, for our fourth experiment, we have selected dhéy most
relevant parts of knowledge generated by Deductor and mesehem to
PROGOL. In the Wumpus case this included both the smellifigrimation
(maybeSmells, noSmells and knowsSmells) and the Wumpus position infor-
mation (naybe Wumpus, no Wumpus and knows Wumpus), while in Chess it
included thenotProtected, distanceOne, anddistance Two predicates. As il-
lustrated by the curve marked “Including Deductor” in FiggiB..L and 8 2, the
agent managed to identify perfectly the bad plans from asafe®0 examples

69



CHAPTER 8. EXPERIMENTAL RESULTS

Wumpus| Full time | Improved time| Time decrease
position | (hours) (hours) (percent)

c2 16.07 h 441 h 72.58

a3 14.72 h 5.52h 62.49

cl 15.23 h 7.18 h 52.84

Table 8.3: Usefulness of learning.

chosen at random, in both domains.

The exact hypotheses that PROGOL learned are presentethla &Z. for
Wumpus and in Table &.2 for Chess.

It is interesting to note that as few as flvend-chosemxample plans suffice
for PROGOL to learn the correct definition for the Wumpus diomavhich
opens up interesting possibilities for an agensatecttraining examples in
an intelligent way. This is an emerging area of researchd®lfjtoften called
Meta-Learning (see for example [GVE04]).

Having established that successful learning is possilple naore thing that
needs to be shown is whether it is actualeful In our implementation (which
is designed for flexibility of reasoning rather than speedjlysing a complete
game of Wumpus (depending on the monster’s real posititestan the order
of 15 hours. If Actor knows how to identify bad plans and faréeductor to
ignore them, the total time drops dramatically — to absiMthours as can be
seen in Table 8 3. This is a clear confirmation of our clain tha knowledge
gained due to learning from experience can be very usefuhpraving the
efficiency of reasoning.

These results show that Deductor provides knowledge thaifisiantly im-
proves the quality of learning. At the same time, as menta®ve, learning
the right hypothesis allows the agent to save a lot of itsoieiag effort. Ad-
ditional experiments reported in subsequent sectionalewen more synergy
between modules in the architecture.

Finally, we would like to point out that the PROGOL algorithwhile a very
efficient one, is not perfectly suited for the class of profdave are facing. Itis
sufficient for a proof of concept and to show the general use$s of learning
as such, but there is a number of reasons why an approach pexilsed
towards plan evaluation would be significantly more effitien
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8.3 Estimating Relevance of Knowledge

8.3.1 Introduction

The outcome of our experiments, reported in the previousasgowas very
promising. We have shown that learning can be both sucdessfuuseful for
our agent. The major problem we have encountered beforehgasverabun-
dance of irrelevant and redundant knowledge. This requirediser to provide
additional domain-specific information, which could filfermulae believed by
the agent and only use the most relevant of them for learning.

In this section we investigate ways for the agent to autaratyi perform
this task. The goal is to design mechanisms for limiting tmeant of knowl-
edge presented as an input to the learning algorithm and tluiglim a way that
is roughly based on the intuitive concept of “relevance aiwledge” — but is
formalised in a way accessible to the agent.

An important obstacle is the lack of a satisfactorily okijgctmeasure of the
relevance of knowledge. This field of study has seen a lottef@st in the past
years, but the major problem has often been the lack of a famodel of what
suchrelevancereally means.

Typically the most interesting insights from the logicalrgective are
based on thequivalenceelation, where one can say that two sets of formu-
lae denote exactly the same models. This level of abstradtiowever, is not
quite appropriate for us, since it does not capture the tipglive are interested
in: two theories equivalent in the semantic sense can diffeatly in how easy
it is to generalise from them and to learn new concepts.

Similarly, from the philosophical point of view, there argually few re-
sults we can use, since most of them are neither formal entmugle usable
by computational agents, nor sufficiently self-contain&alying on common
sense knowledge is not going to work in our setting, sincéical agents are
notoriously bad at employing it.

Our primary goal in this experiment is to explore how Deducian auto-
matically choose some parts of its knowledge in such a wag askimise the
quality of learning. Within the bounded computational i@ses that the agent
possesses, it is not feasible to blindly generalise fronttmeplete knowledge
base of the agent. The generalisation process is inhemifftgult, with a very
high branching factor and therefore limiting input datafismicial importance
for realistic applications.

The major perspective in this section is on allowing the adgehearn ef-
ficiently. We have, however, noticed that there is a corredpoce (whether
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direct or indirect) between knowledge whichgeod for learning and knowl-
edge which appears to be “naturally relevant” to human agper

The exact limits of applicability of the solutions we propdsere are still
to be evaluated, but we do show that they are useful in ouingettAt the
same time, we are convinced that theoretical discussiasepted here touch
a number of important and difficult topics — we therefore dadi they will be
interesting for other researchers.

8.3.2 Intuitions

Estimating the relevance of a particular formula to the #igaask at hand is
a very difficult problem and one that is, in general, unsdiwahin practice,
however, there are certain regularities and conventioaishthman experts use
when encoding domain knowledge for the agent, and it is oliefttbat some
of those conventions can be exploited by the agent.

In a similar manner, there is a wealth of interesting infaiiorato be found
in the deduction tree (trace) of the agent’'s knowledge b8seanalysing the
way in which the agent came to believe two particular forrauagood guess
can be made as to whether one of them is inherently more rel¢van the
other, whether one of them renders the other one obsoletehather they are
more interesting together than separately.

The basic assumption is that human experts who create tmt'sagstial
knowledge base, do it in such a way as to maximise its usefsitiethe agent
(modulomistakes and ignorance, of course). Humans can often reblgyoeas-
ily determine which parts of the knowledge base are mostaalefor solving
particular problems, and this is often reflected in the eadokhowledge in
many ways. The ability to extract such hints would be veryahle to any
rational agent.

It is important to notice at this point that we are not aiming & precise,
fool-proof and formal way of dividing an agent’s knowledgea “relevant”
and “irrelevant” portions. We merely need to reduce the ingitthe learning
algorithmsufficiently muctio ensure a successful operation.

We have considered several qualities which can be used &sthat a par-
ticular piece of knowledge is “good”. We discuss and ratiizeathem here
below on a rather abstract level, while in the next subseatie will show, in a
more concrete form, an example of an implementation usiogetintuitions.

Derived from observations For logic-based rational agents, there are typ-
ically few observations (because the cost of acquiring taethreasoning about
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them is high), so it is unlikely that they are irrelevant. dta wise idea, there-
fore, to try to keep them in the training knowledge whenewssible. Also, it

is almost universally the case that the right decisions ficeigentdo depend on

the acquired observations.

It is also important to notice that quite often it is not thevrabserva-
tions themselves, but rather aggregations of them, togeitttle the rest of the
agent’s knowledge, that form the most desirable learnipgtirffor example,
WumpusPosition predicate should be used rather tifanells, and CanMove
rather thenPosition).

Consistency between plansWhen looking at plans that are applicable in
a given situation and analysing their expected outcomemany cases sim-
ilar formulae occur. These sometimes encode exactly the darawledge,
and sometimes a different (even opposite) one. For exartjdepossible that
Wumpus(a2) would be known from executing some branch of pkan and
- Wumpus(a2) would be known from executing some branch of pfan

For the logical sentences most relevant for the currentipnopone can find
multiple situations where the same knowledge holds acregdespectrum of
plans being considered. Having such consistency oftengénisuone hint that
the given class of formulae is actually correlated with therd’s actions.

Of course, interesting formulae are not always like thisnfiany situations
the values of any given predicateed tovary, which corresponds to the case
where the real value is not known and the agent is activelJoexyy different
possibilities. It is important that both ends of the speattrare represented
sufficiently.

Inheritance chains We assume that the initial domain knowledge is cho-
sen in such a way as to maximise the agent’s performanceftinerone would
expect that thdinal result of the reasoning process is likely to be the most im-
portant one. One way to capture this would be to assume thanhdne difficult
a sentence is to infer (measured, e.g., as the number ofreteped to deduce
it), the more relevant it is. This corresponds to the idea #heh formulae
“contain” more knowledge than easier ones.

This, however, would be overly susceptible to even smadl ditirrelevant
knowledge being present in the expert’s description of thraa@n. On the other
hand, in the reasoning traces of our agent, we have noticelht@d and quite
interesting pattern. It is often the case that the dedudtEmof some formulae
is rather degenerate: it contains a single branch whichrg leag, while all
the others are very short. We have decided to call such a tobaia The
middle sentences in such chains are often very boring indeiguthe end ones
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containing everything of interest.

Similarities between plan branches When looking at conditional plans,
there is usually a number of branches that correspond toiffieeetht possible
observations that can be made during execution. Lookingefgularities be-
tween such branches can provide an interesting insightwhioh parts of the
agent’'s knowledge base are the most relevant for choosiigest plan.

However, since this is too closely related both to how thenagreats ob-
servations and to the consistency between plans, we hawtuti¢d it further
at this point.

Axioms are boring. Rather obviously, learning directly from the domain
axioms is not the best idea. It is important to take advantéigiee results of the
reasoning the agent has performed, and often there aregatigres available
that express the desired properties in ways much cleanebdrabone axioms
alone.

One exception here, however, is a case when some axioms\areused
in the deduction. If a human expert provides a number of fémmwhich are
useless for reasoning, then the agent can reasonably dékpetto play a role
in learning.

Explore time differences Given that our agent reasons using Active
Logic, we have one more important clue regarding the infgeddences be-
tween pieces of knowledge: the differences in step numtfeshen particular
formulae have been deduced.

One common pattern of reasoning is confined to a short tineeval, with
sentences inferred in the previous time step being usee icLtient one, and so
on. On the other hand, an older formula is sometimes usedijui@etion with
the newest one and we believe that this pattern hints at $amgeinteresting.
When an old piece of knowledge is relevant to the currenasin, it is more
likely that the same knowledge will be useful again in theifat

Another interesting idea would be to assume that things cetiearlier
are more likely to begenericknowledge, therefore if they are applicable now,
they will be applicable again. At the same time, a large pesgge of the most
recently inferred formulae will be specific ones, fitting therent situation but
being useless anywhere else.

Smarter rules of inference A big appeal of Active Logic is its powerful
mechanism of adding domain-specific extensions to the vesdiblished sets
of inference rules. Typical examples make use of timestaamgsobservation
functions, but it is also possible to, among other thingec#p that some rules
of inference are more likely to lead to relevant sentenoasdgfample modus
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ponenss interesting whileegation introductioris boring).

Limited in number . On a more technical note, having too many formulae
presented to an ILP algorithm, even if most of them are “gpogans that it
will fail to learn anything useful anyway (or, at the very $éahat the generali-
sation process will be very fragile).

When the heuristic search employed by PROGOL is not able #ning-
fully analyse the majority of the hypothesis space, theltieguknowledge will
pretty much be a random set of clauses that fit the learninmpbes to some
minimal degree. With the number of degrees of freedom thBtdlgorithms
have, such results are typically completely useless — adépends greatly
on many details of the training set, meaning that even véghtsthanges can
result in completely different hypotheses.

Covering of the domain The above qualities mostly analyse sentences in
separation, but it is important to also look at the biggetyse An important
issue is that a large portion of both the initial and curremdiledge base “con-
tributes” to the learning process. The assumption througbar work is that
the domain knowledge is basically expected to be useful,lsoh&ver knowl-
edge we decide to present to PROGOL, it should have at least shance of
being influenced by all parts of it.

There are many possible definitions of what such an “influermight en-
tail, but the most obvious thing is to track which formulaerevased to deduce
the set we are interested in (akin to a very basic truth-rapance system). Of
course the fact that sentengés deduced fronar does not necessarily mean that
the rationale for including « in the domain description has also been captured
by 3, but it at least indicates a possibility.

In general, it is often the case that many possible sets téees are in fact
equivalent (in the classical logic sense), and therefagg thover” the domain
equally well. It is not necessarily obvious that the rightywta choose among
them is to analyse the actual reasoning process of the dmarit,is one of the
approaches that seem intuitively viable.

Finally, an important decision is whether to consider eamimfila sepa-
rately, or rather to cluster them in some way. We have dedidedlister sen-
tences according to the predicates they contain. It candmdpr example,
that the Neighbourhood relation between two specific squares is interesting
and important for learning, while the same relation betwiem others is ir-
relevant. There is a serious risk, however, of significadi$yorting the domain
knowledge, to the degree where the resulting hypothesisgeileralise very
badly. We have decided to forfeit some of this expressivenad we only make
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decisions as to which predicates are to be included in tlirigaknowledge
(i.e. if we decide thatVeighbourhood is relevant, themll formulae containing
Neighbourhood will be used for learning).

We feel the need to stress that our work here is of a heuriatigre (in the
colloquial sense of the word) and that the rules we presenbeaasily fooled.
It is not our aim, however, to present a bulletproof system rather to explore
the natural clues left by human experts. We are aware thatlkdge bases
can be created so as to defeat our efforts, but we also betiav¢his does not
happen naturally.

8.3.3 Implementation

In order to check those assumptions, we have implementestensyfor evalu-
ating subsets of knowledge according to those guidelinegedtate, it turned
out that PROGOL was unable to perform a meaningful genatadis because

it was giventoo muchknowledge. Therefore, in order to obtain good learning
results, we needed to specify which parts of the knowledge bae the most
relevantones.

The results of learning we have achieved can be seen in Big@u:eand 8.2,
for WumpusaindChesgdlomains, respectively. It can be easily seen that selecting
the right subset of the whole knowledge base can be very loaiefiowever,
in the experiment reported in Section 8.2 such selectiortdnbd done by hand.
Our goal right now is to automate this process.

We start with qualities that can be evaluated on a per-faamblasis, i.e.,
those where we can estimate — for each formula — to what degoea be
considered a “good” one. One of the most successful formali®r dealing
with this kind of problem, in particular one allowing for tegstematic aggrega-
tion of several independent criteria, is thizzy setapproach (for introduction
see for example: [YZ92]).

We analyse each of the points from Secion 8.3.2 in turn gmtésg a formal
way of calculating it.

Derived from observations For every formula, we count the number of
observationgn its complete deduction tree and calculate the membexsti
according to the function presented in Figure 8.3 (1).

Consistency between plans For every atomic formula (i.e. in the form
Predicate(args)) we look at all the other plans in the same situation, andrdete
mine the ratio of those which contairedicate(args) to those which contain
—Predicate(args). We then calculate the membership value according to the
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function presented in Figu-e 8.3 (2).

Inheritance chains For every formula we analyse its deduction tree and
check whether it is ahain(i.e. a very unbalanced tree). If yes, we calculate the
ratio of the formula’s position in it to the total length oftlchain. We calculate
the membership value according to the function presenté&tgure 8.3 (3).

Similarities between plan branches Since we have not found a way to
formalise this which would be simple and yet sufficientlytitist from other
criteria, we have decided to skip it.

Axioms are boring. For every axiom, we count the number of other for-
mulae which are inferred from it, both directly and inditgciVe calculate the
membership value according to the function presented inrgi8.3 (4).

Exploring time differences. For every formula, we check the timestamp
of the oldest of the sentences it was inferred from, exclydititial domain
axioms, and subtract it from the timestamp of the formulelfitsWe calculate
the membership value according to the function present&igure 8.3 (5).

Smarter rules of inference Since we have not found a way to formalise
this which would be simple and yet sufficiently distinct frarther criteria, we
have decided to skip it.

To restate, we are interested in figuring out which predgcateuld be pre-
sented to the learning algorithm. To this end we evaluatsuddsets of predi-
cates and choose the best one (in Wumpus, there are only i8aiesdto con-
sider, so analysing all subsets of them is not a problem).aRprset of pred-
icatesP, we start the evaluation by creating a set of all formulae in the
knowledge base which contain only the predicates from #tis s

We begin by calculating, for each subsEt, the average value of mem-
bership function among all formulae in this subset, oveffiedl of the above
criteria. This tells us to what degree the current set ofipegds fulfils each of
the qualities we have identified. In order to aggregate al difvthem into one
number we have used thpgoduct t-norm Even though the properties of this
t-norm do not match the problem perfectly, using anythingexammplex is not
justified given how approximate the parameters we use are.

The seventh qualitylimited in number, did not really fit the fuzzy set
approach. Besides, we have decided to use it as a normafasitgy, since
different sets of predicates can result in vastly diffeneminbers of formulae
being evaluated. Again, we have decided upon the simplestilje scheme:
we divide the aggregate fuzzy membership value by the numibfrmulae.
We call this value theisefulnessf a predicate set.

At this point we are able to evaluate any predicate set, athdhis cannot
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yet be used as the final measure, since the optimum valueaysaklchieved by
a set of cardinality exactly ofe This measure works quite well for separately
estimating how good each predicate is on its own. It is verglyathe case,
however, that a single predicate would be good for learninthere is almost
always a need to have several different predicates.

The final step is to use theovering of the domainidea to arrive at a set
of predicates that ar@gethermost likely to provide good learning results. In-
tuitively, we aim at adding predicates with high individugdefulnesss long
as they are reasonably independent of each other (i.e. g@akthey originate
from different “parts” of the agent’s knowledge).

Therefore, we calculate thmverageof a set of formulaed as the ratio of
all formulae in the knowledge base that appear in the demtuttee of at least
one formula fromA. We arrive at our finatelevancescore by multiplying the
usefulnessf a predicate set by itsoverage

We have implemented the above scoring method in a domaeperdient
way in our agent. We have run it on both tA&umpusdomain and th&hess
domain. As we hoped, the sets of predicates with the higledstilatedrele-
vance in both domains, turned out to be exactly the ones we havierear by
hand — identified as most relevant parts of the agent’s kriyde As reported
in previous section, those sets of predicates lead to gaoditey results (see
Figures 8.1 ani 8.2).

It is not obvious how general our results are, since two exampmains is
too few to come to a definitive conclusion. It is enough, hasveto suggest
that our ideas have merit.

The exact scoring methods, as well as criteria used, areamniyitial idea,
and more work is needed. Nevertheless, the results appéar poetty stable
and small modifications to the above parameters do not irduthre final result
in any significant way.

8.4 Adapting Learning Algorithm

In this section we investigate some ways to adapt the PROGgokitdm to the
specific needs of the Learner module within our architecture

PROGOL is based on the ideaiafierse entailmenand it employs a cov-
ering approach similar to the one used by FCIL [Mit97] in artte generate
hypothesis consisting of a set of clauses that cover altipestxamples and

2For any two predicateg; andp-, theusefulnessf the set{p:, p»} always lies somewhere
in between the usefulness fpr and forp..
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do not cover any negative ones. It starts with a positive gtamand knowl-
edge basd3 and creates a sdt which is the set of all ground literals true in
all models of B A &. Due to the properties of inverse entailment, the complete
set of hypothese®! consists of all the clauses whiéhsubsumesub-saturants

of L. PROGOL uses mode declarations to limit the sizel. adind refinement
operatorp to efficiently search only a subset Bf. More details can be found

in [Mua95].

We have made two modifications to the PROGOL algorithm in otde
make it better suited for use in rational agents. Both of thesre inspired by
the difficulties PROGOL encountered when solving our prabldifficulties
that apparently were the result of mismatches betweenstgmgstions and the
properties of the problem at hand.

We have also added the ability to directly access agent'svietiyge, ex-
pressed in Active Logic, without an additional step of datasformation. We
do not focus on this here, since it does not affect the restéilisarning in any
way. It does, however, help to integrate learning closeh e rest of the agent
architecture. Such direct access includes the transfamé&bm open world
semantics used by the Deductorctosed worldsemantics used by PROGOL.

8.4.1 Branch Awareness

First of all, it is well known that PROGOL is sensitive to thety & of pred-
icates in its background knowledge, since the cardinalftya sub-saturant
set is bounded by:*. Often this is not an issue, since the arity of pred-
icates is typically kept low. In our setting, however, mamgdicates con-
tain two additional arguments, namely the plan and its brantnstead of
simply saying Wumpus(al) to state the monster’s position, we need to say
Wumpus(P1,By,al), i.e. in branchB; of planP;, Wumpus is orul.

This has lead to a problem where PROGOL, in the Chess domaisun
able to learn the correct hypothesis in the form we originadanted. We have
initially specified a predicatehoose Branch with mode declaration:

modeb(4, chooseBranch (#step, —step))?

which is useful for “naming” a particular branch, i.e. bindiit to a variable
which subsequent predicates can later use. Moreover, Wwarddmther predi-
cates with the following:

modeb (8, notProtected (+plan, +branch, #piece)
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Figure 8.4: Branch awareness in Wumpus Domain.

This way we can guarantee thtae samebranch is used throughout the whole
clause. In particular, we intended one of the clauses in tia fiypothesis to
be:

badPlan(A) : —chooseBranch(default, B), notProtected (A, B, rook),
distance Two (A, B, rook, black—king).

meaning “whenever in the default branch the opposing kiwtpise to our rook,
the plan is dangerous.”Such a hypothesis, however, proved to be too difficult

30Observe that in the default branch we do not know the exacerttor opponent has made,
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Figure 8.5: Branch awareness in Chess Domain.

for PROGOL and despite numerous attempts, we have not manadeon-
vince” it to learn it. We had to give up on th&hooseBranch predicate and
settle for a similar, yet somewhat less natural, mode dztider:

modeb (8, notProtected (+plan, #branch, # piece)

This resulted in the hypothesis:

thereforePosition (black—king) is the “old” position and we need to be extra careful about our
rook’s safety.
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badPlan(A) : —notProtected (A, default, rook),
distance Two (A, default, rook, black—king).

Notice that this one uses separate, unrelated constantsyaments of
notProtected and distance Two predicates. In our experiments PROGOL re-
quired some additional examples before it learned not totwsedifferent
branches there. For example, one of the clauses it induceah given only
eight training examples was:

badPlan(A) : —notProtected (A, by, rook),
distanceTwo (A, by, rook, black—king).

It is, obviously, not good — whether the rook is protectedams branctb,
has no meaningful relation to the distance between rook kwd ling inb,.

To fix this issue, we have modified the PROGOL learning alporitto
transparentlyhide branches, i.e. to automatically restrict knowledgseb®
only contain facts from a single branch when reasoning. haslowered the
arity of most predicates by one and allowed for better hygsithto be found
from fewer examples.

As a special case we have also introduced a branch cdlféd, which
combines the knowledge froail the branches of a given plan. This is useful
for expressing knowledge of the kind “if there exists anynloiab such that
a(b), then ..".

It is questionable, however, whether this is not too drastigeasure, since
one can imagine domains where different plan branches ameonapletely in-
dependent and it would be beneficial to reference two or mbthem from
a single hypothesis clause. If such a need arises, the tevegcto handle it
would be to enrich the mode declaration language. The abmuéian, how-
ever, is good enough for our current needs.

Figures 8.4 an1 8.5 compare the results of learning usindfjar&ROGOL
against one which contains built-in knowledge about plamskaanches. It can
be easily seen that our modification leads to better lean@sglts.

Itis also important to note that the hypothesis learned byrbdified algo-
rithm is of better quality, since — as explained above — ittaors a variable
bound to the default branch, instead of having duplicatestzons.
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Figure 8.6: Correctness of Relevance.

8.4.2 Knowledge Relevance

As can be seen in the results mentioned in Secticn 8.2, tob knmwvledge can
significantly decrease the performance of the learningrdifgo. In a typical
ILP setting it is not crucial to quantify which parts of knaslige are more and
which are less releveht— since an expert provides the complete knowledge in
the first place, if she knows that some parts are irrelevaetysll simply omit

4Although in the general field of machine learning there isteofointeresting work being
done on this topic, especially with regard to data miningoGsurveys are, for example. [BL.97]
and [VDO0:].
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them.

The situation is somewhat different in the agent settingenatihe knowl-
edge from which we are learning does not codiectly from an expert, but
rather from Deductor. It is a product of an initial domain clgstion, the ob-
servations the agent has made, and its own deductive preeesd all those
elements interact in complex ways.

The amount of irrelevant knowledge in such a conglomeratéyjscally,
rather high. In Section 8.2 we have shown that choosing trdydlevant parts
can lead to much better learning results. In the previoussewe have anal-
ysed how an automatic heuristic procedure can be constrticteelect which
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knowledge is most useful.

It is important, however, to stress that any kind of automptocedure to
estimate the relevance of data is very approximate in natndeeven though
it works very well on our domains, we do not wantdeer-committo its re-
sults. In particular, the idea of completely removing thedicates that were
deemed irrelevant from theholelearning process is very dangerous. The price
of making a mistake seems to be too high in this case.

What we develop, instead, is a way for the learning algoritiseilf to take
into account the relative relevance of knowledge when itiikling the hypoth-
esis. In the case of PROGOL, the perfect place to take kngeledlevance
into account is in the operator, where the current candidate hypothesis is be-
ing generalised by new literals.

In Figures 8.5 and 8.7 we report our analysis of usefulnessiitifing rele-
vance considerations into the algorithm itself, in the Wusgomain only.

On Figure 8.5, the curve “Correct Relevance” depicts ungodaisly cor-
rect information about relevant predicates and corresperdctly to “Branches
(Relevant KB)” from Figure 8.4; the curve “No Relevance imfi@tion” depicts
complete lack of relevance information and correspondsBi@riches (Full
KB)”. The most interesting one, curve marked “Slightly In@xt Relevance”,
illustrates that even providing relevance information abhis not entirely cor-
rect can be beneficial.

Figure 8.7 presents how the uncertainty of relevance irdtion influences
the results. Low uncertainty is the case when relevant page have the es-
timate of1 and irrelevant ones have the estimaté.oHigh uncertainty is the
case where relevant predicates are estimated slightlyeadb&wand irrelevant
ones slightly below0.5. An interesting fact is that increasing uncertainty of
correct relevance information lowers quality of learnibgf not significantly.
On the other hand, as can be expected, providing incorrémtniiation with
high certainty significantly disrupts the learning process

8.5 The Agent Life Cycle

In this section we use the results of earlier experimentsderao build a com-
plete situated, rational agent and to show how it can usaitggain order to
continue to improve its performance throughout its whdietiine. Here we
only use the Wumpus domain, since it is much more illusteativthe ideas we
want to focus on.

Our main goal in this experiment is to take a look at the agsra whole,
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Figure 8.8: Average “badPlan” hypothesis accuracy.

and to analyse how it operates when solving problems camtisly and how its
performance improves as it gathers additional experiedsalways, our agent
starts with some domain knowledge and no actual “memory”.

Because of that, when Planner initially generates a setafsplit has no
way of knowing which of them are good and which are bad. Dexturteds to
devote an equal share of time to each of those plans. Thisskanthe agent
is reacting slowly, since it wastes a lot of time on some plamly to discover
that they may lead to losing the game and need to be discarded.

After each game, however, the agent gathers some expergicatilises
Learner to create a hypothesis for predicting which planseediscarded early.
This means Deductor will now waste less resources and thelbvesponse
time of our agent will be much shorter. In order to illustrate ideas better,
we allow Actor to store only two plans per episode in its Idagn memory.
One of them is a (safe) plan from among those it executed, lnadther is a
(dangerous) plan it reasoned about and was forced to discard
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Figure 8.9: Average time per action.

In this setting, Actor actually chooses plans for executamdomly, from
among all those considered to be safe. The main focus of xipierienent is
to evaluate actual usefulness of the learning algorithrh iha been partially
tested (in separation from other modules) in previous sesti Right now we
analyse the architecture as a whole, showing that learsirigdeed, helpful to
the agent.

The framework established here can be also used later teaigstis mod-
ifications and upgrades of the modules within the architectWWe are able to
analyse whether it is more beneficial, for example, to usexperesive plan-
ning algorithm together with a dumb plan selection procedar rather to use
a simplified planner and spend more time on plan analysif&¥an and com-
parison.

In Figure 8.3 we show the hypothesis accuracy achieved bagleeat as
a function of its “age”, i.e. the number of episodes it hasdithrough. The
age is directly related to the number of training examplegrher has at its dis-
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posal, and therefore this figure corresponds very closellggaesults reported
in Section 8.2. Observe, however, that in the current erpant the training

examples are no longer uniformly chosen from the whole spos§ibilities —

though this difference does not seem to influence the out@omey noticeable
way.

A more interesting result is presented in Figire 8.9. Thaphrdepicts
the average time (in seconds) it takes for the agent to andtlysituation and
decide what to do. In other words, it represents how long gen&“thinks”
before it concludes it is ready to act. As can be seen, it takesh longer for a
“young”, inexperienced agent to decide what to do, than ésdior an “older”,
smarter one — because the latter has less plans that itlgcteads to analyse.

Itis interesting to see that while the reasoning time drapgrddramatically
at the very beginning, it remains relatively constant aftevhile. It might be
tempting to say that there is no point in learning after step 8, but assuming
that would be wrong. Figute €.9 should be analysed togetitartiie previous
one, i.e. in the context of the accuracy of the learned hygsish While further
learning does not speed up deliberation significantly, finidely refines the
hypothesis and makes it more accurate.

In other words, early hypotheses make the agent ignore alsoudnyplans
as the late ones, but definitely nibie sameones. In fact, a number of plans
they discard are actually good, and some that are kept anallgcbad. This
definitely influences how effectively the agent behaves éwtorld.

Finally, we have performed an experiment where the ageatnatis to
learn which plans are better than others. We model it by uaiqgedicate
betterThan(P1,P9). In order to generate training data for PROGOL we have
used a Monte Carlo simulation technique — the agent usgswatorof Wum-
pus environment to stochastically evaluate quality of plan

Given plandP; andP, and situatior, the goal is to determine whether one
of those plans is better than the other — observe that playsverg well be
equally good or even incomparable. To this end, our agemrateply (in our
experiments, 2000 times) execui@sfollowed by arandomsequence of (safe)
plans, until it wins the game episode. The agent then caksuldoe average
number of stepd (S, P;) it takes to win the game from situatidResult (S, Py).
After calculating7 (S, P2) in a similar manner, the agent has a measure of plan
quality: if 7(S,Py) is significantly smaller thaf (S, Ps), thenP; is — most
likely — better thariPs.

Such technique, however, has a number of drawbacks, bdahieledvious
fact that it is computationally expensive. First of all,stfar from being reli-
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able, since in many good situations there is only a small rsrabactions that
quickly lead to the goal, while the majority of possibilgi@are misleading. By
performing random actions, simulator is likely to never@mnater the optimal
path. Also, the measure itself is quite sparse, since if #hgeg of (S, P) are
close, they telhothingabout true quality of plans. Nevertheless, this technique
turned out to be sufficient for our need, since we do not intendse it for
controlling the agent, but only to generate input data ferlgarning process.
It is important to point out that this experiment is for ilttegtory purposes
only. A major problem is that the knowledge representatienuse is not suf-
ficiently rich to express the correct type of differences étedmine which of
two plans is better. Intuitively, it would require notionsch as “better discrim-
inate Wumpus'’s position” or “more knowledge is gained”. Hmer, neither
Wumpus domain knowledge, nor hypothesis language used BYGR., con-
tain the arithmetical axioms necessary to compare caitiggalin fact, the best
hypothesis our agent learned contained a number of clafises form:

betterThan(P1,Pe): — maybe Wumpus (P2, noSmells, a3),
not Wumpus(Py, noSmells, a3).

wherenot Wumpus(PP1, noSmells, a3) means that if the “noSmells” branch of
planP; is executed, the agent will know that Wumpus is not8n

Obviously, such clause is far from perfect, but it turns dnatt tit (mostly)
suffices to distinguish between plans which do prowédenenew knowledge
and plans which provideo such knowledge.

In other words, given two useful plans, the agent is stillatmé to determine
which one of them is better. However, given a useful and gsebme (i.e. a
plan that visitssomenew square(s) and gathessmenew knowledge versus
a plan which only traverses the already-explored part ofbiberd), Actor is
able to select the former one. And as shown in Figure 8.16,ishénough to
significantly improve agent’s performance.

Given a set of plans and somelter Than relations that hold among them,
our agent is finally equipped to select some plan and claim ‘ittee best one”.
Typically, betterThan relations we obtain do not form a well-defined order,
since cycles and disconnected components are common. folleerthe agent
simply rates each plan according to how many other plansifter than: the
one “dominating” the highest number is chosen for execution

In particular, in this experimental evaluation, the agenpys the follow-
ing algorithm:

90



8.5. THE AGENT LIFE CYCLE

Nr of steps

35 T T T T 1

T T T T T T T T
01 2 3 45 6 7 8 9 101112131415
Agent age

Figure 8.10: Average number of actions per game episode.

. Generate all applicable plans — Planner.

. Determine which plans are necessarily “bad” and disdatht based on
Learner’s experience-generated knowledge — Actor.

. Analyse all the remaining plans and determine which omesafe —
Deductor.

. Choose “the best” among all safe plans, according to meatascribed
above — Deductor.

. Execute it, observing new smelling facts — Actor.

. Analyse the new situation, determining if Wumpus’s gogitis already
known — Deductor.

. If not, go to point 1.
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8. Choose one of the plans executed in this game episode,rendfdhe
plans determined to be unsafe — Actor.

9. Add them to the agent’s experience — Learner.
10. Run PROGOL, trying to improve thdPlan hypothesis — Learner.

11. Compare all safe plans using the Monte Carlo simulattnigue —
Actor.

12. Add the best and the worst plan to the agent’s experientearner.

13. Run PROGOL, trying to improvketter Than hypothesis — Learner.

The results clearly indicate that our architecture workg: knowledge ac-
quired via learning serves its purpose since it makes thatdmgghave more
efficiently.

Exploiting previous experience is one of the most promiswags of coping
with uncertainty and lack of knowledge about the agent'sandrsituation. One
of our main goals, and of the biggest challenges we face gsgare smooth co-
operation between deduction and induction within the dgér@mework. The
results presented in this section show that this goal has, édeast partially,
achieved.
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Chapter 9

Conclusions

9.1 Thesis Summary

In this thesis we have presented a framework for develogingtsed, rational,
resource-aware agents that are able to improve their peafuze from expe-
rience. Our architecture allows the agent to combine ptaprdeductive rea-
soning, inductive learning and time-awareness in ordeutoessfully operate
in dynamic environments. Agents create conditional pigotens, reason about
their consequences (using an extension of Active Logic @ithation Calculus
features), execute them and employ Inductive Logic Prograng to generalise
past experiences.

We have also reported on our experiments using the PROG @hitggal-
gorithm to identify bad plans early in order to save the agkat(pointless)
effort of deliberating about them. We have analysed how tlaity of learning
depends on the amount of additional, domain-specific kragdegorovided by
the user. Moreover, we have shown that it is possible to aagpheral purpose
learning tool such as PROGOL to better fit the specific requarts of situated
agents. Finally, we have presented that the Inductive LBgigramming ap-
proach works well within the architecture we are developimgparticular, we
have demonstrated that successful learning can resultrianaatic decrease of
the agent’s reasoning time and in a significant increases giatformance.

In order to summarise our work, we would like to point out ttet results
described in this thesis come in two flavours. One is the quoeéwork on
developing an architecture for situated rational agenit, tve major focus on
using conditional partial plans. Many ideas are relatedai@ responsibilities
should be divided between the modules and how Planner, Dadéctor and
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Learner should interact and cooperate in order to achiegrtaggoals. Neces-
sarily, this work has been discussed without going into taeindetail orhow
this should actually be realised, partially in order to kédepfocus of the thesis
clear and partially because many of those issues still retodie solved, being
in themselves interesting research areas.

The other kind of results concerns the current implementatif the ar-
chitecture. It has been tested on a toy domain and it emplaysnaber of
simplifications with regard to the ultimate concept of thsteyn. Neverthe-
less, this implementation can be used to test and validatartthitecture. Most
importantly, though, the results of experiments performsidg this implemen-
tation do — even if it requires some degree of optimism — segteat our
approach is viable. Obviously, it will still take a lot of wobefore our ideas
become practically useful and our agent can outperforne sththe art solu-
tions in complex, practically useful domains. Neverthelege have shown that
this line of research should lead to further interestingltss

In particular, we have high hopes with regards to the kindzrablems that
our framework will be able to handle. Itis our belief that@yrintelligent agent
can someday emerge from it. Our architecture has — at leastiearonceptual
level — all the means necessary to deal with the most chatigrmroblems sit-
uated agents face: limited resources, imperfect domaiwlatye, incomplete
and noisy observations. Rational, autonomous agents ardttmate dream of
Artificial Intelligence research since its beginning. Wéidage that our work is
a small step towards achieving this dream.

9.2 Future Work

The research presented here can be continued in many difirections. The
most obvious one is to improve the learning algorithm by mgkt aware of
the actual meaning and origins of its input data. By expbptime difference
betweenfluentsand non-fluents for example, a hypothesis can be found that
will match different situations better.

The most important thing, however, is to focus our attenttonhow to
handle the unavoidable uncertainty within training datgaiy, there is a lot of
work being done in this area, but there are some rather uiggues in the case
of rational agents and we feel that it is important to desigolation that will
be able to exploit whatever advantages can be found. Therdigetup assumes
complete domain knowledge, while in many situations thisiergotion might be
violated — for example, the agent might not know that, atyuéhe Wumpus
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can move.

The second step is to devise an algorithm to efficiently Higarcompare”,
instead of creating a classifier. After all, the real goalhef agent is to choose
the bestplan available. Discarding bad plans is a step in this dactbut
the classification approach is not necessarily the rightvamen the “least bad
among dangerous” or the “most rewarding among marvelous’lie selected.
Our surrogate approach based on udiager Than predicate has many draw-
backs and, if possible, a better solution should be devdlope

Moreover, the exact way of representing plans and theirgatigs, for the
sake of efficient learning, requires more work. Our curretg, which simply
uses slightly modified Situation Calculus mechanisms, istriikely subopti-
mal — but anything better suited would need to have more stifqudlt into
the learning algorithm itself.

One very promising idea seems to be the exploration of tretexpic quality
of actions. An agent should pursue those plans which pravidéh the most
important knowledge. This would require assessing impogaor a particu-
lar domain by observing effects specific pieces of knowleligee on agent’s
overall performance.

Moreover, in the case of rational agents we have the veryastieag notion
of “experiment generation”, since they often do not leaomfra predefined set
of training examples, but rather face the compsploration vs exploitation
dilemma. How an agent should act in a way which both providestderm
rewards (or, at the very least, keeps it safe) and at the samaeffers a chance
to learn something new is often far from obvious.

As mentioned earlier, we are also looking into discoveringgoals and
subplans. It seems that one of the most useful capacitiesimafhs is their
ability to divide a complex problem and to solve each sublermbseparately
before combining their solutions into a global one. We wdike to force our
agent to discover this possibility.

Another direction we would like to investigate in the futisemaking the
learning module discover general rules which extend dorkiagwledge. The
ability to invent domain-specific reasoning heuristics lddoe very useful for
rational agents. Finally, the current setup assumes a eengbmain knowl-
edge, while in many situations this may not be the case atTdlle system
should, if possible, allow the agent to learn domain knogéedo that it can
complete its understanding of the environment. An examplsuch a rule
might be, in the RoboCup domain, “do not perfornkiek action unless you
know that the ball is in front of you”. It seems that availdgilof such rules
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can save a substantial amount of work for Deductor, if it otohely discovers
“reasoning shortcuts”.

Another clear advantage would be to reuse a valid plan irferdift context.
As long as the context does not differ substantially, thisrapon should lead
to a fast solution of a problem similar to one solved in the.pas

Last but not least, we would like to investigate ways to ipooate interac-
tions with a user. Domain experts can be an invaluable saitcgowledge and
the agent should be able to exploit this. For example, tebetijust tradeoff
between spending time on deduction and induction, the agerid be guided
by an external observer (the user) providing a feedbacktatsoperformance.

Besides the possibilities listed above, which mostly famugearner and its
interactions with the rest of the agent, there is a numbepehdssues regarding
deductive reasoning, planning and acting. An obvious siepdrd would be to
replace our simple versions of Planner and Actor with stateeart systems,
in order to ensure that the interfaces between modules wgndeswill work
with existing software. It would also be interesting to find ehat performance
improvements can be achieved this way. Another work worthglis to apply
our concepts in different environment dynamics. An experitrof using our
architecture to control a physical artifact (such as a neotmbot) would be the
next step in showing advantages of this framework.

The list above does not cover all the possible further ingagbons and ex-
tensions of the proposed system. It is rather a reflectiomefauthor’'s own
interests which focus on the border between Machine Legraimd other sub-
fields of Artificial Intelligence.
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