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LIKELIHOOD-BASED ESTIMATION OF PERIODICITIES IN SYMBOLIC SEQUENCES

Stefan Ingi Adalbj¨ornsson, Johan Sw¨ard, and Andreas Jakobsson

Dept. of Mathematical Statistics, Lund University, Sweden

ABSTRACT

In this work, we propose a method of estimating periodici-
ties in symbolic sequences, allowing for arbitrary, finite, sym-
bol sets. Different from other common approaches, that of-
ten map the symbolic sequence to a numerical representation,
we here exploit a likelihood-based formulation to represent
the periodic behavior of the sequence. The performance of
the proposed method is illustrated on both simulated and real
DNA data, showing a notable performance gain as compared
to other common estimators.

Index Terms— Periodicity, Symbolic sequences, Spec-
tral estimation, Data analysis, DNA

1. INTRODUCTION

Symbolic data sequences consisting of elements from a fi-
nite set or alphabet, often not exhibiting any natural order-
ing, is a common occurrence in a wide range of fields, in-
cluding text indicators, genomic data, and different forms of
categorical time series analysis (see, e.g., [1]). Commonly,
one has an interest in determining periodicities in such se-
quences, for instance in order to determine the latent peri-
odicities in DNA sequences, which have been shown to be
correlated with various forms of functional roles being of im-
portance in DNA analysis (see, e.g., [2–8]). Due to the lack of
algebraic structure in symbolic sequences, traditional spectral
estimation algorithms are not well suited to determine such
periodicities, as these generally exploits the natural ordering
among the symbols. To alleviate this problem, several forms
of mappings from symbols to numerical representations have
been considered in the literature, for instance using PAM- or
QPSK-based mappings, minimum entropy mapping, mapping
equivalences, transformations, or maximum likelihood for-
mulations of the cyclostationary properties of the periodicities
(again, see, e.g., [2–8]). Generally, these methods have rela-
tively high computational complexity and/or suffers from dif-
ficulties of expanding the methods to larger alphabets. After
such a mapping, the periodicities are commonly determined
using a periodogram estimate, although such an approach will
suffer from the well-known high variability and/or poor reso-
lution of the method [9]. Recently, we proposed a symbolic
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periodicity estimator taking the naturally occurring harmonic
structure into account, using a MUSIC-like formulation to es-
timate these [10]. Exploiting this additional structure was
there shown to offer preferable performance, especially for
the detection of longer periodicities. In this work, we instead
examine the problem using a probabilistic model for the sym-
bolic sequence, thereby allowing for a likelihood-based hy-
pothesis testing formulation. As the resulting estimates can
be calculated using analytical expressions, the computational
complexity is linear in the length of the symbolic sequence
and the number of symbols. The performance of the proposed
periodicity estimator is illustrated using both simulated se-
quences and real DNA measurements, showing a remarkable
performance gain as compared to earlier methods, in partic-
ular for sequences containing more than one periodicity per
symbol.

2. LIKELIHOOD-BASED SYMBOLIC ESTIMATION

Consider a symbolic sequence, s
k

, for k = 1, . . . , N , formed
from a set, or alphabet, A, having a finite cardinality |A| = B.
Assuming that the symbols in the sequence are independent
and identically distributed, such that

p
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, Prob(s
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j

) (1)

for k = 1, . . . , N and j = 1, . . . , B, with non-negative prob-
abilities, p

k

, summing to unity over the B symbols, and with
A

j

denoting the jth symbol in A, implying that the probabil-
ity mass function (PMF) is given as
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where [·] denotes the Iversons bracket, which equals one if the
statement inside the brackets is true and zero otherwise, and
with p

B

and s

N

denoting the vector of probabilities and the
symbolic sequence, respectively, i.e.,

p
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with (·)T denoting the transpose, and where x
N

is a symbolic
sequence with elements x

`

, for ` = 1, . . . , N , with each of
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Fig. 1. Rate of success in estimating perfect periods.

the symbols appearing G
k

times, for k = 1, . . . , B. As a re-
sult, the PMF is a function depending only on the number of
times each symbol appears, and on the probability given to
each symbol, and not on any vector or numerical value rep-
resenting the symbols as such. In general, the probabilities,
p
k

, are unknown and need to be estimated from the observed
sequence. This can be done using the maximum likelihood
(ML) estimate formed as

p⇤
j

=

G
j

N
(6)

for j = 1, . . . , B, which is an unbiased and asymptotically ef-
ficient estimate [11, p. 475]. Furthermore, note that a symbol
↵ 2 A, occurring with periodicity m, i.e., with the symbol
appearing at every mth index in the sequence, implies that all
elements of the sequence should be equal to the symbol ↵ in
one of the m possible (disjoint) index sets

I
m,`

=

⇢
`, `+m, . . . , `+

�
N � `

m

⌫
m

�
(7)

for all offsets ` 2 {1, . . . ,m}, where b·c denotes the round-
ing down operation. This means that if a periodicity m is
present in a sequence, the sequence is clearly also periodic
for every mr, for all natural numbers r; to avoid ambiguity,
we here refer to the period as the lowest possible such peri-
odicity. Considering a sequence, s

N

, with a periodicity m in
the symbol ↵, with offset n, this implies that all the symbols
in the sequence at index p, for p 2 I

m,n

, will equal ↵. Thus,
it is a deterministic and not a statistical problem to determine
if such a (perfect) periodicity is present; to do so, it is suffi-
cient to determine if any of the m symbolic subsets, {s

k

}, for
k 2 I

m,n

, is such that it is formed from only a single symbol,
↵. Such a test may be formed in N + m operations. How-

ever, many forms of symbolic sequences, such as, for exam-
ple, DNA sequences, contain also non-perfect periodicities,
such that the sequence may contain the periodicity over only
a limited interval, and/or with some of the periodically occur-
ring symbols being replaced by some other symbols, which
may occur, for example, due to the presence of measurement
noise, coding errors, or some, perhaps unknown, functional
equivalence between symbols. In such cases, the PMF for a
symbolic sequence with a given periodicity m and offset n
will instead be formed from one categorical distribution for
indexes I

m,n

as well as from another categorical distribution
for all index in the complementary set, Ic

m,n

, i.e., for all those
indices not in I

m,n

. Thus, in this case, the PMF is given as
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where ˜

p

B

is a parameter vector containing the probabilities
p̃
k

, for k = 1, . . . , B, denoting the probability of a symbol,
A

k

, occurring in the index set Ic
m,n

, and with G
k

and ˜G
k

denoting the number of times the symbol A
k

occurs in the set
I
m,n

and its complement, respectively. The corresponding
ML estimates are found as
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for j = 1, . . . , B. As a result, one may form a test to deter-
mine the hypothesis that a given sequence has a different dis-
tribution for the indexes corresponding I

m,`

, i.e., the PMF is
formed using (9), against the null hypothesis, i.e., that the en-
tire sequence has the same categorical distribution, such that
the PMF follows (3), i.e.,
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(12)
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B
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Such a test may be formed as the likelihood ratio test [12]
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where the probabilities are determined using (6) under H0,
and using (10) and (11) under H1. Then, if H0 is true, one
can show that [12, p. 489], as N ! 1

�2 log(�
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N

))
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where d! denotes convergence in distribution and �2
k

de-
notes the chi-squared distribution with k degrees of freedom.
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Fig. 2. The error rate of finding the periodicity as a function
of 1� p̃, and the periodicity for the proposed method.

Should the main interest be in detecting periodicities for a
particular symbol, say A

j

, then the test should be restricted
to test if p

j

6= p̃
j

, with all other probabilities being treated
as nuisance parameters; for this case, the likelihood ratio test
is reformulated such that it only depends on the probability
p
j

, for the symbol of interest, and on 1� p
j

, for all the other
symbols. Then, the ratio test in (14) equals the ratio of PMFs
associated with the corresponding two symbols, i.e., the
Bernoulli distribution. As a result, the framework allows for
flexibility in what is deemed a periodicity, e.g., one might test
for a high probability of a certain symbol appearing, or even
if the symbols appears with low probability. Both of these
ideas will be explored further in the following, where we out-
line some possible algorithms for estimating periodicities for
some commonly occurring situations, namely, estimation of
an unknown periodicity, detection of an unknown periodicity,
and, finally, estimation of multiple periodicities. In the first
case, one may choose the largest likelihood ratio for every
symbol, and for every combination of m 2 {1, . . . ,m

max

}
and ` 2 {1, . . . ,m}, i.e., select the desired periodicity as the
period corresponding to

arg max

m,`,i

�
m,`

(f
i

(x

N

)) (16)

where f
i

(·) maps the sequence to the appropriate Bernoulli
sequence, as described above, and with m

max

denoting the
maximally considered periodicity. The computational cost for
such a test is NBm

max

. To also allow for cases when no pe-
riodicity is present, one needs to formulate some lower limit
for the likelihood ratio, below which no periodicity is deemed
present. A simple way to do so is to exploit, as shown in (15),
that, asymptotically, the likelihood ratio for each of the tests
will be �2 distributed with one degree of freedom, thus since
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Fig. 3. The error rate of finding the periodicity as a function
of the negative probability, 1 � p̃, and the periodicity for the
SPE algorithm.

m2
max

/2 tests are formed in order to compute (16), and if
assuming that these are independent, the lower limit may be
approximated forming it as some quantile of the random vari-
able

 = max
�
z1, . . . , z

m

2
max

/2

�
(17)

where each z
k

is �2 distributed. The resulting bound may
thus easily be formed using Monte Carlo simulations. In the
case when multiple periodicities may be present for each sym-
bol, one can extend the proposed estimation procedure using
a step-wise approach. Without loss of generality, to simplify
the presentation, we here only consider the case of binary
symbols, but note that the derivation for B > 2 follows sim-
ilarly. For binary symbols, the initial step of the above de-
tailed algorithm will yield an index set I(1)

m1,`1
, where m1 and

`1 denote the periodicity and phase, respectively, found in the
maximization of (16). Then, in order to determine the next
periodicity, the H0 distribution is formed from (9), using the
found index set I(2)

m,n

= I
m1,`1 , whereafter the second phase,

m2, and periodicity, `2 may be determined using (16). This
procedure can then be repeated, in the kth step forming the
H0 distribution from (9), using the index set

I(k)
m,n

= I(k�1)
m,n

[ I
m

k

,`

k

(18)

To ensure that at each step one adds to the H0 hypothesis
only sets which are likely to have the symbol appearing, we
restrict the H1 hypothesis such that, the likelihood is maxi-
mized over p̃ 2 [0.5, 1]. The resulting algorithm, here termed
the Periodic Estimation of Categorical Sequences (PECS) es-
timator, is outlined in Algorithm 1 below, with each step in
the iteration requiring about m

max

N operations.
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3. NUMERICAL RESULTS

We proceed to examine the performance of the proposed
likelihood-based estimator using simulated DNA sequences,
binary sequences, and measured DNA data. For DNA se-
quences, only B = 4 different symbols are present, namely
A, C, G, and T. Initially, we examine a simulated DNA se-
quence containing one perfect periodicity. Figure 1 illustrates
the rate of successfully determining this periodicity as a func-
tion of the length of the periodicity, comparing the proposed
PECS estimator with the MEM [8], PAM [5], QSPK [3],
and SPE [10] estimators, as well as with a Fourier-based
estimator detailed in [10]. Here, and in the following, the
success rate has been determined using 250 Monte-Carlo
simulations using N = 1000 equiprobable symbols, with the
sought periodicity being inserted appropriately. As is clear
from from the figure, the proposed PECS estimator succeeds
in successfully determining all the considered periodicities,
whereas all the other methods will lose performance notably
as the length of the periodicity grows. Proceeding to examine
also non-perfect periodicities, we vary p̃ for the index set
corresponding to the generated periodicity, with p = 1/4
on the complement set. Figures 2 and 3 show the resulting
success rate for the PECS and SPE estimators as a function of
the periodicity and the probability p̃, again clearly illustrat-
ing how PECS outperform SPE (and, similarly, all the other
mentioned estimators) for all periodicities and p̃. Next, we
investigate how well PECS is able to resolves two periodic-
ities in a binary sequence. In this case, some care needs to
be taken when setting up the simulations, as when generating
two periodicities, these may overlap or combine to create a
new periodicity, e.g., if generating two periodicities of period

Algorithm 1 Periodic Estimation of Categorical Sequences
1: Given a binary sequence, x of length N
2: I

m0,n0 = {;}
3: for k = 1 to max

iteration

do
4: {m

k

, `
k

} = arg max

m,`

�
m,`

(x

N

)

5: I
m

k

,n

k

= I
m

k�1,nk�1 [ ˜I
m

k

,`

k

6: H0 distribution is replaced with (9) and I
m

k

,n

k

7: end for

six, these may be placed such that they instead form just a
single periodicity with period three. Similarly, two period-
icities with period four and twelve may cause the resulting
sequence to have only a single periodicity of four. In order
to avoid ambiguities in the resulting performance measure,
the test data has been generated such that it avoids such prob-
lems. Figure 4 illustrates the success rate of determining both
periodicities correctly, as a function of the length of the two
periodicities, with N = 500 and again using p̃ = 3/4 and
p = 1/4. As is clear from the figure, even when the sequence
contains two periodicities of lengths up to 20, when most of
the other discussed estimators completely fail to find even a
single perfect periodicities, PECS has only 0.06 as its maxi-
mum error rate. Finally, we examine the performance of the
PECS estimator on measured genomic data, in the form of
the gene C. elegans F56F11.4 [13]. Since genomic data is
generally not stationary, the estimate has been formed using
a sliding window with length N = 360. The results yielded
by PECS are shown in Figure 5, where the periodicities with
a likelihood ratio greater than the 95% quantile of the maxi-
mum of m2

max

/2 = 450 �2 distributed random variables, are
shown for each symbol. Figure 6 shows the corresponding
p̃. In earlier work, such as [8] and [10], a period of three
was found at around index 7000. Such a period of three was
also found when using PECS, but when looking at the cor-
responding p̃, one may note that this periodicity is actually
constituted by the lack of the symbol C, i.e., this period is
detected since the symbols A, G, and T are alternating in a
non-periodic fashion, and since C is always absent at these
indexes, this apparently causes the Fourier based methods
to indicate a periodicity of three. If one is not interested in
finding these sorts of periodicities, one may restrict p̃ to be in
[1/2, 1], in the same manner as mentioned above. This will
ensure that PECS only finds periodicities that are made up by
an increased probability in the presence of a symbol.
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Fig. 5. The periodicities of each symbol in the gene C.elegans
F56F11.4 computed using a sliding window.

5. CONCLUSION

In this work, we have presented a likelihood-based symbolic
periodicity estimation technique which has been shown to of-
fer high quality estimates of symbolic periodicities as well
as being able to locate periodic changes in the distribution
function. The estimates also offers additional insight for sym-
bolic sequences, as might be observed when there is a higher
or lower probability of a certain symbol at some periodic in-
dices, as compared to the rest of the sequence. For the case of
DNA data, we have shown that previously proposed methods,
mapping the symbolic vector to a numerical representation,
have a lower success rate of finding periodicities, as well as
show artifacts in their frequency estimates, likely as a result
of the heuristic symbolic mappings.
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