
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Software product line testing - a systematic mapping study

Engström, Emelie; Runeson, Per

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2010.05.011

2011

Link to publication

Citation for published version (APA):
Engström, E., & Runeson, P. (2011). Software product line testing - a systematic mapping study. Information
and Software Technology, 53(1), 2-13. https://doi.org/10.1016/j.infsof.2010.05.011

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.infsof.2010.05.011
https://portal.research.lu.se/en/publications/5335b0d3-7faf-4ad2-9cf3-fd2765289e05
https://doi.org/10.1016/j.infsof.2010.05.011

 1

Software Product Line Testing - A Systematic
Mapping Study

Emelie Engström
Department of Computer Science

Lund University
SE-221 00 LUND
+46 46 222 88 99

emelie.engstrom@cs.lth.se

Per Runeson
Department of Computer Science

Lund University
SE-221 00 LUND
+46 46 222 93 25

per.runeson@cs.lth.se

ABSTRACT
Context: Software product lines (SPL) are used in industry to achieve more efficient software

development. However, the testing side of SPL is underdeveloped. Objective: This study

aims at surveying existing research on SPL testing in order to identify useful approaches and

needs for future research. Method: A systematic mapping study is launched to find as much

literature as possible, and the 64 papers found are classified with respect to focus, research

type and contribution type. Results: A majority of the papers are of proposal research types

(64 %). System testing is the largest group with respect to research focus (40%), followed by

management (23%). Method contributions are in majority. Conclusions: More validation and

evaluation research is needed to provide a better foundation for SPL testing.

1 INTRODUCTION
Efficient testing strategies are important for any organization with a large share of their costs

in software development. In an organization using software product lines (SPL) it is even

more crucial since the share of testing costs increases as the development costs for each

product decreases. Testing of a software product line is a complex and costly task since the

variety of products derived from the product platform is huge. In addition to the complexity

of stand-alone product testing, product line testing also includes the dimension of what should

be tested in the platform and what should be tested in separate products.

Early literature on product lines did not spend much attention to testing [7] (p278-279), but

the issue is brought up after that, and much research effort is spent on a variety of topics

related to product line testing. In order to get a picture of existing research we launched a

systematic mapping study of product line testing. The aim is to get an overview of existing

research in order to find useful results for practical use and to identify needs for future

research. We provide a map over the existing research on software product line testing.

Overviews of challenges and techniques are included in several earlier papers, as well as a

couple of brief reviews. However no extensive mapping study has been reported on earlier.

 2

Systematic mapping is a relatively new research method in software engineering, adapted

from other disciplines by Kitchenham [31]. It is an alternative to systematic reviews and

could be used if the amount of empirical evidence is too little, or if the topic is too broad, for

a systematic review to be feasible. A mapping study is performed at a higher granularity level

with the aim to identify research gaps and clusters of evidence in order to direct future

research. Some reports on systematic mapping studies are published e.g. on object-oriented

software design [3] and on non-functional search-based software testing [1]. Petersen et al.

[58] describe how to conduct a systematic mapping study in software engineering. Our study

is conducted in accordance with these guidelines. Where applicable, we have used the

proposed classification schemes and in addition, we have introduced a scheme specific to our

topic.

This paper is organized as follows: Section 2 describes how the systematic mapping

methodology has been applied. Section 3 summarizes challenges discussed in literature in

response to our first research question. In section 4 we compile statistics on the primary

studies to investigate the second research question. Section 5 presents the classification

schemes used and in section 6 the actual mapping of the studies, according to research

questions three and four, is presented together with a brief summary of the research. Finally,

discussion and conclusions are provided in sections 7 and 8, respectively.

2 RESEARCH METHOD

2.1 Research Questions
The goal of this study is to get an overview of existing research on product line testing. The

overall goal is defined in four research questions:

RQ1 Which challenges for testing software product lines have been identified?

Challenges for SPL testing may be identified in specific surveys, or as a bi-product of

other studies. We want to get an overview of the challenges identified to validate the

relevance of past and future research.

RQ2 In which fora is research on software product line testing published? There are a

few conferences and workshops specifically devoted to SPL. However, experience from

earlier reviews indicates that research may be published in very different for a [15].

RQ3 Which topics for testing product lines have been investigated and to what extent? As

SPL is related to many different aspects, e.g. technical, engineering, managerial, we want

 3

to see which ones are addressed in previous research, to help identifying needs for

complementary research.

RQ4 What types of research are represented and to what extent? Investigations on types

of research in software indicate that the use of empirical studies is scarce in software

engineering [21]. Better founded approaches are advised to increase the credibility of the

research [69] and we want to investigate the status for the specific subfield of SPL testing.

2.2 Systematic mapping
In order to get an overview of the research on SPL testing, a systematic mapping study is

carried through. A detailed description on how to conduct systematic mapping studies, and a

discussion of differences between systematic mapping and systematic reviews, is presented

by Petersen et al.[58]. The mapping process consists of three activities; i) search for relevant

publications, ii) definition of a classification scheme, and iii) mapping of publications.

In this study, search for publications is done in five steps of which the two last steps validate

the search, see Figure 1, using a combination of data base searches and reference based

searches [67]. In the first step an initial set of papers was identified through exploratory

searches, mainly by following references and links to citing publications, with some previous

known publications as the starting point [42][72][47][60][52][59]. The result of this activity

was 24 publications, which were screened in order to retrieve an overview of the area;

frequently discussed challenges, commonly used classifications and important keywords.

The second step consisted in reading introduction sections and related works sections in the

initial set of publications and extending the set with referenced publications relevant to this

study. Only papers with a clear focus on the testing of a software product line published up to

2008 were included. This resulted in additional 33 publications. In order to avoid redundancy

in research contributions and to establish a quality level of included publications we decided

however to narrow down the categories of publications after this stage. Non peer reviewed

publications; such as technical reports, books and workshop descriptions, in total 23

publications, were excluded from the set of primary studies. Among those is an early

technical report by McGregor [42] (cited in 70% of the publications) which is used to find

relevant primary studies, but not included among the primary studies as such. Another result

of this step was a summary of challenges in SPL testing identified by the community and a

preliminary classification scheme for research contributions.

 4

In the third step we screened titles in proceedings from the most frequent publication forum

from the previous steps; the workshop on Software Product Line Testing (SPLiT), and from

the corresponding main conference; the Software Product Line Conference (SPLC). The

number of primary studies is 53 after this step.

The fourth and fifth steps are validating the first three. The fourth step includes automatic

searches with Google Scholar and ISI Web of science. The search string was “product” and

“line/lines/family/families” and “test/testing” and it was applied only to titles, which has

shown to be sufficient in systematic reviews [12]. This search resulted in 177 hits in Google

Scholar and 38 hits in ISI Web of science. The search in web of science did not result in any

new unique contribution.

Excluded publications were, except for the above mentioned, tool demonstrations, talks, non-

english publications, patent applications, editorials, posters, panel summaries, keynotes and

papers from industrial conferences. In total 49 publications were relevant for this study

according to our selection criteria. This set was compared to our set of 53 papers from step

three and 38 papers were common. The differing 11 publications were added to the study. In

the fifth step the set of papers was compared to a set of paper included in a systematic review

on product line testing by Lamancha et al. [38]. Their study included 23 papers of which 12

passed our criteria on focus and publication type. All of these were already included in our

study. Thus we believe that the search for publications is sufficiently extensive and that the

set of publications gives a good picture of the state of art in SPL testing research.

1-Exploratory
search

2-Extension by
related work

3-Screening main
conference
proceedings

4-Validation against
databases

5-Validation against
systematic review

#24

#34

#53

#64

#64

Step 1 Step 2 Step 3 Step 4 Step 5

 5

Figure 1 Search for publications on software product line testing

A summary of the inclusion and exclusion criteria is:

• Inclusion: Peer reviewed publications with a clear focus on some aspect of software

product line testing.

• Exclusion: Publications where either testing focus or software product line focus is

lacking. Non-peer reviewed publications.

The answer to RQ1 was retrieved through synthesising the discussions in the initial 24

publications until saturation was reached. Several publications are philosophical with a main

purpose to discuss challenges in SPL testing and almost all papers discuss the challenges to

some extent in the introductory sections. All challenges mentioned were named and grouped.

A summary of the challenges is provided in section 3. Answers to questions RQ2, RQ3 and

RQ4 are retrieved through analysing the 64 primary studies. A preliminary classification

scheme was established through keywording [58] abstracts and positioning sections.

Classifications of the primary studies were conducted by the first author and validated by the

second. Disagreements were resolved through discussions or led to refinement of the

classification scheme, which in turn led to reclassification and revalidation of previously

classified publications. This procedure was repeated until no disagreements remained.

2.3 Threats to validity
Threats to the validity of the mapping study are analyzed according to the following

taxonomy: construct validity, reliability, internal validity and external validity.

Construct validity reflects to what extent the phenomenon under study really represents what

the researchers have in mind and what is investigated according to the research questions.

The terms product lines, software product lines and family/families are rather well

established, and hence the terms are sufficiently stable to use as search strings. Similarly for

testing, we consider this being well established. Another aspect of the construct validity is

assurance that we actually find all papers on the selected topic. We have searched broadly in

general publication databases which index most well reputed publication fora. The long list of

different publication fora indicates the width of the searching is enough. The snowball

sampling procedure has been shown to work well in searching with a specific technical focus

[67]. We also validated our searches against another review, and found this review covering

all papers in that review.

 6

Reliability focuses on whether the data are collected and the analysis is conducted in a way

that it can be repeated by other researchers with the same results. We defined search terms

and applied procedures, which may be replicated by others. The non-determinism of one of

the databases (Google scholar) is compensated by also using a more transparent database (ISI

Web of Science). Since this is a mapping study, and no systematic review, the

inclusion/exclusion criteria are only related to whether the topic of SPL testing is present in

the paper or not. The classification is another source of threats to the reliability. Other

researchers may possibly come up with different classification schemes, finer or more course

grained. However, the consistency of the classification is ensured by having the

classifications conducted by the first author and validated by the second.

Internal validity is concerned with the analysis of the data. Since the analysis only uses

descriptive statistics, the threats are minimal. Finally, external validity is about generalization

from this study. Since we do not draw any conclusions about mapping studies in general, but

only on this specific one, the external validity threats are not applicable.

3 Challenges in testing a software product line
Software product line engineering is a development paradigm based on common software

platforms, which are customized in order to form specific products [59]. A software platform

is a set of generic components that form a common structure, from which a set of derivative

products can be developed [46]. The process of developing the platform is named domain

engineering, and the process of deriving specific products from the platform is named

application engineering [59]. We refer to domain testing and application testing, accordingly.

The variable characteristics of the platform, are referred to as variability; the specific

representations of the variability in software artifacts are called variation points, while the

representation of a particular instance of a variable characteristic is called a variant [59].

A number of challenges regarding testing of software product lines have been identified and

discussed in the literature, which are identified in this mapping study (RQ1). They can be

summarized in three main challenges concerning i) how to handle the large number of tests,

ii) how to balance effort for reusable components and concrete products, and iii) how to

handle variability.

3.1 Large number of tests
A major challenge with testing a software product line regards the large number of required

tests. In order to fully test a product line, all possible uses of each generic component, and

 7

preferably even all possible product variants, need to be tested. The fact that the number of

possible product variants grows exponentially with the number of variation points, makes

such thorough testing infeasible. Since the number of products actually developed also

increases, there is an increased need for system tests as well.

The main issue here is how to reduce redundant testing and to minimize the testing effort

through reuse of test artefacts. The close relationship between the developed products and the

fact that they are derived from the same specifications indicates an option to reduce the

number of tests, due to redundancy. A well defined product line also includes a possibility to

define and reuse test artefacts.

3.2 Reusable components and concrete products
The second major challenge, which of course is closely related to the previous, is how to

balance effort spent on reusable components and product variants. Which components should

be tested in domain (platform) engineering, and which should be tested in application

(product) engineering? [59] A high level of quality is required for the reusable components

but still it is not obvious how much the testing of reusable components may help reducing

testing obligations for each product. There is also a question of how to test generic

components, in which order and in how many possible variants. The planning of the testing

activities is also further complicated by the fact that software process is split and testing may

be distributed across different parts of the organizations.

3.3 Variability
Variability is an important concept in software product line engineering, and it introduces a

number of new challenges to testing. Variability is expressed as variation points on different

levels with different types of interdependencies. This raises a question of how different types

of variation points should be tested. A new goal for testing is also introduced in the context of

variability: the verification of the absence of incorrect bindings of variation points. We have

to be sure that features not supposed to be there are not included in the end product. The

binding of variation points is also important. Complete integration and system test are not

feasible until the variation points are bound. It is also possible to realize the same

functionality in different ways and thus a common function in different products may require

different tests.

 8

4 Primary studies
Following the method defined in Section 2.2, we ended up in 64 peer reviewed papers,

published in workshops, conferences, journals and in edited books (RQ2). The papers are

published between 2001 and 2008, and summarized by publication fora in Table 1.

Table 1 Distribution of publication fora
Publication Fora Type #
International Workshop on Software Product Line Testing (SPLiT) Workshop 23
International Workshop on Software Product-family Engineering
(PFE)

Workshop 3

Software Product Lines – Research Issues in Engineering and
Management

Book
chapter

3

Software Product Line Conference (SPLC) Conference 2
ACM SIGSOFT Software Engineering Notes Journal 1
Communications of the ACM Journal 1

Concurrency: Specification and Programming Workshop Workshop 1
Conference on Composition-Based Software Systems Conference 1

Conference on Quality Engineering in Software Technology
(CONQUEST)

Industry
Conference

1

Development of Component-based Information Systems Book
chapter

1

European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy, (ECIS)

Conference 1

European Workshop on Model Driven Architecture with Emphasis
on Industrial Application

Workshop 1

Fujaba days Workshop 1
Fundamental Approaches to Software Engineering (FASE) Conference 1
Hauptkonferenz Net.ObjectDays Industry

Conference
1

International Computer Software and Applications Conference Conference 1
International Conference on Advanced Information Systems
(CAiSE)

Conference 1

International Conference on Automated Software Engineering
(ASE)

Conference 1

International Conference on Computer and Information Technology
(ICCIT)

Conference 1

International Conference on Engineering of Complex Computer
Systems (ICECCS)

Conference 1

International Conference on Software Engineering and Formal
Methods (SEFM)

Conference 1

International Conference on Software Reuse (ICSR) Conference 1
International Symposium on Computer Science and Computational
Technology (ISCSCT)

Conference 1

International Symposium on Empirical Software Engineering
(ISESE)

Conference 1

 9

International Symposium on Software Reliability Engineering
(ISSRE)

Conference 1

International Symposium on Software Testing and Analysis (ISSTA) Conference 1
International Workshop on Requirements Engineering for Product
Lines (REPL)

Workshop 1

International Workshop on Software Product Family Engineering
(PFE)

Workshop 1

International Workshop on Product Line Engineering The Early
Steps: Planning, Modeling, and Managing (PLEES)

Workshop 1

International Workshop on Software Product Lines Workshop 1
International Workshop on Test and Analysis of Component Based
Systems (TaCOS)

Workshop 1

Journal of Software Journal 1
Nordic Workshop on Programming and Software Development
Tools and Techniques (NWPER)

Workshop 1

The European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE)

Conference 1

The Role of Software Architecture for Testing and Analysis
(ROSATEA)

Workshop 1

Workshop on Advances in Model Based Testing (A-MOST) Workshop 1

Workshop on Model-based Testing in Practice Workshop 1
Total 64

Table 2 and Table 3, the distribution over time is reported for the 64 primary studies. Note

that one paper spans two research foci according to our classification scheme. Hence the total

number of classification items in Table 2 is 65.

Table 2 Distribution over research focus

Research Focus 2001 2002 2003 2004 2005 2006 2007 2008 Total
Test Organization and Process 1 1 1 2 1 1 1 2 10
Test Management 2 3 1 3 2 4 15
Testability 1 1 2
System and Acceptance Testing 1 4 4 3 7 2 5 26
Integration Testing 1 1 2 4
Unit Testing 2 1 3
Automation 4 1 5
Total 1 2 9 15 6 13 8 11 65

Table 3 Distribution over publication types
Type of Publication 2001 2002 2003 2004 2005 2006 2007 2008 Total

 10

Book Chapter 4 4 6%
Conference Paper 4 1 2 3 4 5 19 30%
Journal Paper 1 1 1 3 5%
Workshop Paper 1 2 5 13 4 4 4 5 38 59%
Total 1 2 9 15 6 12 8 11 64 100%

5 Classification Schemes
Publications are classified into categories in three different dimensions: research focus, type

of contribution and research type. This structure is presented by Petersen et al. [58]. However

the different categories are adapted to this particular study. Establishing the scheme and

mapping publications was done iteratively as new primary studies were added. When the

scheme was finally set, all classifications were reviewed again.

Six categories of research focus (RQ3) were identified through the keyword method

described by Petersen et al.[58]: i) test organization and process, ii) test management, iii)

testability, iv) system and acceptance testing (ST and AT), v) integration testing (IT), vi) unit

testing (UT), and vii) automation. Test organization and process includes publications with a

focus on the testing framework, seeking answers to how the testing activities and test assets

should be mapped to the overall product line development and also how product line testing

should be organized overall. Papers on product line testing in general are also mapped into

this category. Test management includes test planning and assessment, fault prediction,

selection of test strategies, estimates of the extent of testing and test coverage. Papers on how

to distribute resources (between domain engineering process and application engineering

process, between different test activities, and between different products) are included as

well. Testability includes papers with a focus on other aspects of product line engineering

rather than the testing, but still with the goal of improved testing. The test levels used in the

classification are system and acceptance testing, integration testing, and unit testing. Paper

topics cover both design of new test cases and selection of already existing test cases. Test

cases could be designed from requirements or from generic test assets. Some papers focus on

the automation of testing.

Contribution type is classified into five categories: Tool, Method, Model, Metric, and Open

Items. Tools refer to any kind of tool support for SPL testing, mostly in the form of research

prototypes. Methods include descriptions of how to perform SPL testing, both as general

concepts and more specific and detailed working procedures. Models are representations of

 11

information to be used in SPL testing. Metrics focus on what to measure to characterize

certain properties of SPL testing. Finally, open items are identified issues that need to be

addressed.

The classification of research types (RQ4) is based on a scheme proposed by Wieringa et al.

[78]. Research is classified into six categories: i) validation research, ii) evaluation research,

iii) solution proposals, iv) conceptual proposals, v) opinion papers, and vi) experience

papers. Validation research focuses on investigating a proposed solution which has not yet

been implemented in practice. Investigations are carried out systematically and include:

experiments, simulation, prototyping, mathematical systematically analysis, mathematical

proof of properties etc. Evaluation research evaluates a problem or an implemented solution

in practice and includes case studies, field studies, field experiments etc. A Solution proposal

is a novel or significant extension to an existing technique. Its benefits are exemplified and/or

argued for. A Conceptual proposal sketches a new way of looking at things, but without the

preciseness of a solution proposal. Opinion papers report on the authors´ opinions on what is

good or bad. Experience papers report on personal experiences from one or more real life

projects. Lessons learned are included but there is no systematic reporting of research

methodology.

6 Mapping

Figure 2 shows a map over existing research foci related to software product line testing,

distributed over type of research and type of contribution. The number of publications on

each side differs, since some publications provide multiple contributions e.g. both a model

and a method. Most research effort is spent on system testing with contributions such as

proposed methods for test case design, sketched out in detail but not yet evaluated, i.e.

solution proposals. An overview of research presented by focus is given in sections 6.1.1 -

6.1.7.

 12

Figure 2 Map of research focus on software product line testing. Research focus on the Y axis;
contribution type on the left side of the X axis, and research type on the right side of the X axis.

6.1 Research focus
Figure 3 shows the distribution of research foci. A paper is assigned to several foci if it has a

clear contribution to more than one area. Each of the focus areas is discussed below.

 13

Research focus

Organization
and Process

15%

Management
23%

Testability
3%

System and
acceptance

test
40%

Integration test
6%

Unit test
5%

Automation
8%

Figure 3 Distribution of research foci

6.1.1 Test Organization and Process

Table 4 Papers on Test Organization and Process

Author Title Paper type Contributi
on type

Shaulis (2004) [68] Salion's Confident Approach to Testing
Software Product Lines

Experience
report Tool

Knauber, Hetrick
(2005) [32]

Product Line Testing and Product Line
Development - variations on a Common
Theme

Solution
proposal Method

McGregor (2001)[41] Structuring Test Assets in a Product Line Effort Conceptual
proposal Model

Weingärtner (2002)
[76]

Product family engineering and testing in the
medical domain-validation aspects Opinion Model

Ganesan, Knodel,
Kolb, Haury, Meier
(2007)[17]

Comparing Costs and Benefits of Different
Test Strategies for a Software product Line: A
study from Testo AG

Validation
research Model

Jin-hua, Qiong, Jing,
(2008) [24]

The W-Model for Testing Software Product
Lines

Solution
Proposal Model

Kolb, Muthig (2003)
[35] Challenges in Testing Software Product Lines Opinion

paper Open Items

Tevanlinna, Taina,
Kauppinen (2004)
[73]

Product Family Testing - a Survey Opinion
paper Open Items

Kolb, Muthig (2006)
[37]

Techniques and Strategies for Testing
component-Based Software and Product Lines

Experience
Report Open Items

Ghanam, Park,
Maurer (2008) [19]

A Test-Driven Approach to Establishing &
Managing Agile Product Lines

Conceptual
proposal Open Items

 14

Table 4 lists all papers on test organisation and process. McGregor points out the need for a

well designed test process, and discusses the complex relationships between platforms,

products and different versions of both platforms and products in his technical report [42]. He

argues there and elsewhere [41] for a structure of test assets and documentation in alignment

with the structure of the constructed products. This is further concretized by Knauber and

Hetrick [32]. Kolb and Muthig [35][37] discuss the importance and complexity of testing a

software product line and component-based systems. They pinpoint the need for guidelines

and comprehensive and efficient techniques for systematically testing product lines. They

also promote the idea of creating generic test cases.

Tevalinna et al. address the problem of dividing product line testing into two distinct

instantiations of the v-model; testing is product oriented and no efficient techniques for

domain testing exist [73]. Two problems are pointed out: First, complete integration and

system testing in domain engineering is not feasible, and second, it is hard to decide how

much we can depend on domain testing in the application testing. They also discuss four

different strategies to model product line testing: testing product by product, incremental

testing of product lines, reusable asset instantiation and division of responsibilities [73].

Weingärtner discusses the application of product family engineering in an environment where

development was previously done according to the V-model [76]. Jin-hua et al. proposes a

new test model for software product line testing, the W-model [24]. Ganesan et al. [17]

compare cost benefits of a product focused test strategy contra an infrastructure focused test

strategy and introduces a cost model to be able to quantify the influences on test costs from a

given product variant. Ghanam et al. [19] discuss testing in the context of agile PL and

highlights challenges in applying test driven development (TDD) in SPL. Shalius reports on

positive experiences of agile testing in the context of XP and RUP [68]

6.1.2 Test Management

Table 5 Papers on Test Management

Author Title Paper
type

Contribution
type

Tevanlinna (2004)
[72] Product family testing with RITA Solution

Proposal Tool

Kolb (2003)[34] A Risk-Driven Approach for Efficiently Testing
Software Product Lines

Solution
Proposal Method

Scheidemann
(2006)[70]

Optimizing the selection of representative
Configurations in Verification of Evolving Product

Solution
Proposal Method

 15

Lines of Distributed Embedded Systems

Gustafsson
(2007)[22]

An Approach for Selecting Software Product Line
Instances for Testing

Validation
Research Method

McGregor, Im
(2007)[43]

The Implications of Variation for Testing in a
Software Product Line

Conceptual
Proposal Method

Oster, Schürr,
Weisemöller (2008)
[57]

Towards Software Product Line Testing using
Story Driven Modeling

Conceptual
Proposal Method

Cohen, Dwyer, Shi
(2006)[9]

Coverage and Adequacy in Software Product Line
Testing

Solution
Proposal

Model,
Method

Al Dallal, Sorenson
(2008) [2]

Testing software assets of framework-based
product families during application engineering
stage

Validation
Research

Model,
method, tool

Zeng, Zhang, Rine
(2004) [80]

Analysis of Testing Effort by Using Core Assets in
Software Product Line Testing

Solution
Proposal Model

Dowie, Gellner,
Hanssen, Helferich,
Herzwurm,
Schockert (2005)
[14]

Quality Assurance of Integrated Business
Software: An Approach to Testing Software
Product Lines

Solution
Proposal Model

Jaring, Krikhaar,
Bosch (2008) [25]

Modeling Variability and Testability Interaction in
Software Product Line Engineering

Evaluation
Research Model

McGregor (2008)
[44] Toward a Fault Model for Software Product Lines Conceptual

Proposal Model

Kauppinen, Taina,
Tevalinna (2004)
[29]

Hook and Template Coverage Criteria for Testing
Framework-based Software Product Families

Conceptual
Proposal Metric

Denger, Kolb
(2006) [11]

Testing and Inspecting Reusable Product Line
Components: First Empirical Results

Validation
Research Open Items

Muccini, van der
Hoek (2003) [48] Towards Testing Product Line Architectures Opinion

Paper Open Items

The research on test management contains several proposals and a few evaluated research

statements, see Table 5. Tevanlinna proposes a tool, called RITA (fRamework Integration

and Testing Application) to support testing of product lines [72]. Kolb presents a conceptual

proposal that sets focus on test planning and test case design, based on risks [34]. Mc Gregor

and Im make a remark that product lines vary both in space and in time, and outline a

conceptual proposal to address this fact [43]. Oster et al. proposes a story driven approach to

select which features to be tested in different product instances [57].

McGregor discusses, in his technical report, the possibility of product line organizations to

retrieve a high level of structural coverage by aggregating the test executions of each product

variant in the product line [42]. Schneidemann optimized product line testing by minimizing

the number of configurations needed to verify the variation of the platform [70]. Gustafsson

 16

worked on algorithms to ensure that all features of a product line are covered in at least one

product instance [22]. Cohen et al. [9] define a family of cumulative coverage criteria based

on a relational model capturing variability in the feasible product variants, e.g. the orthogonal

variability model. Kauppinenen et al. propose special coverage criteria for product line

frameworks [29].

In order to reduce the test effort, McGregor proposes a combinatorial test design where

pairwise combinations of variants are systematically selected to be tested instead of all

possible combinations [42]. Muccini and van der Hoek [48] propose a variant of this

approach for integration testing, “core first then big bang”, and emphasize the need for a

combination of heuristic approaches to combine in order to effectively perform integration

testing. Cohen et al. [9] propose application of interaction testing and connect this to the

combinatorial coverage criteria.

Al Dallal and Sorenson present a model that focuses on framework testing in application

engineering [2]. They identify uncovered framework use cases and select product test cases to

cover those. The model is empirically evaluated on software, some 100 LOC in size.

Zeng et al. identify factors that influence SPL testing effort, and propose cost models

accordingly [80]. Dowie et al. evaluate different approaches to SPL testing, based on a

theoretical evaluation framework [14]. They conclude that the customer’s perspective is

missing in SPL testing, and must be included to make the approach successful.

Jaring et al. propose a process model, called VTIM (Variability and Testability Interaction

Model) to support management of trade-offs on the binding point for a product line instance

[25]. They illustrate the model on a large-scale industrial system. Denger and Kolb report on

a formal experiment, investigating inspection and testing as means for defect detection in

product line components [11]. Inspections were shown to be more effective and efficient for

that purpose. Mc Gregor [44] discusses the need for more knowledge on faults likely to

appear in a product line instance, and outlines a fault model. Fault models may be used as a

basis for test case design and as help in estimating required test effort to detect a certain class

of faults.

6.1.3 Testability
Table 6 Papers on Testability

Author Title Paper type Contribution
type

Kolb,
Muthig

Making Testing Product Lines More Efficient by
Improving the Testability of Product Line Conceptual Model,

 17

(2006)[36] Architectures Proposal Method

Trew (2004)
[74]

What Design Policies Must Testers Demand from
Product Line Architects?

Conceptual
Proposal Open Items

McGregor discusses testability of software product lines in his technical report [42]. This

refers to technical characteristics of the software product that helps testing. We identified two

papers on testability, see Table 6. Trew [74] identifies classes of faults that cannot be detected

by testing and claim the need for design policies to ensure testability of an SPL. Kolb and

Muthig [36] discuss the relationships between testability and SPL architecture and propose an

approach to improve and evaluate testability.

6.1.4 System and Acceptance Testing

Table 7 Papers on System and Acceptance Testing

Author Title Paper
type

Contribution
type

Hartmann, Vieira, Ruder
(2004)[23]

UML-based approach for validating product
lines

Solution
Proposal Tool

Bertolino, Gnesi (2003)[6] Use Case-based Testing of Product Lines Solution
Proposal Method

Bertolino, Gnesi (2003)[4] PLUTO: A test Methodology for product
Families

Validation
Research Method

Kamsties, Pohl, Reis,
Reuys (2003)[27] Testing Variabilities in Use case Models Solution

Proposal Method

Nebut, Pickin, Traon,
Jéséquel (2003)[50]

Automated Requirements-based Generation
of Test Cases for Product Families

Validation
Research Method

Stephenson, Zhan, Clark,
McDermid (2004)[71]

Test Data Generation for Product Lines - A
Mutation Testing Approach

Solution
Proposal Method

Geppert, Li, Rössler,
Weiss (2004) [20]

Towards Generating Acceptance Tests for
Product Lines

Validation
Research Method

Olimpiew, Gomaa (2005)
[55]

Model-based Testing for Applications
Derived from Software Product Lines

Solution
Proposal Method

Reuys, Kamsties, Pohl,
Reis (2005) [64]

Model-Based System Testing of Software
Product Families

Evaluation
Research Method

Mishra (2006) [47] Specification Based Software Product Line
Testing: A case study

Solution
Proposal Method

Olimpiew, Gomaa (2006)
[53]

Customizable Requirements-based Test
Models for Software Product Lines

Evaluation
Research Method

Pohl, Metzger (2006)[60] Software Product Line Testing Conceptual
Proposal Method

Reis, Metzger, Pohl
(2006)[62]

A Reuse Technique for Performance Testing
of Software Product Lines

Evaluation
Research Method

Reuys, Reis, Kamsties,
Pohl, (2006) [66]

The ScenTED Method for TestingSoftware
Product Lines

Evaluation
Research Method

Li, Geppert, Roessler and
Weiss (2007) [39]

Reuse Execution Traces to Reduce Testing
of Product Lines

Evaluation
Research Method

 18

Bashardoust-Tajali,
Corriveau (2008)[8]

On extracting Tests from a Testable Model
in the Context of Domain Engineering

Solution
Proposal Method

Kahsai, Roggenbach,
Schlingloff (2008)[26]

Specification-based Testing for Software
ProductLines

Solution
Proposal Method

Olimpiew, Gomaa
(2008)[54]

Model-Based Test Design for Software
Product Lines

Solution
Proposal Method

Uzuncaova, Garcia,
Khurshid, Batory (2008)
[75]

Testing Software Product Lines Using
Incremental Test Generation

Validation
Research Method

S Weißleder, D Sokenou,
BH Schlingloff (2008) [77]

Reusing State Machines for Automatic Test
Generation in Product Lines

Solution
Proposal Method

Dueñas, Mellado, Cerón,
Arciniegas, Ruiz, Capilla
(2004) [13]

Model driven testing in product family
context

Solution
Proposal Model

Nebut, Traon, Jezequel
(2006)[52]

System Testing of Product Lines: From
Requirements to Test Cases

Validation
Research Model

Olimpiew, Gomaa (2005)
[56]

Reusable System Tests for Applications
Derived from Software Product Lines

Conceptual
Proposal Model

Kang, Lee, Kim, Lee
(2007)[28]

Towards a Formal Framework for Product
line Test Development

Solution
Proposal

Model,
Method

Nebut, Pickin, Traon,
Jezequel (2002) [51]

Reusable Test Requirements for UML-Model
Product Lines

Solution
Proposal

Model,
Method

Bertolino, Fantechi,
Gnesi, Lami (2006)[5]

Product Line Use Cases: Scenario-Based
Specification and Testing of Requirements

Solution
Proposal

Model,
Method

Table 7 lists paper on system and acceptance testing. Most research effort is spent on system

and acceptance testing, 40 %. The most frequent goal is automatic generation of test cases

from requirements. Requirements may be model based, mostly on use cases [62], formal

specifications [47] or written in natural language [8].

Hartman et al. present an approach based on existing UML based tools and methods [23].

Bertolino and Gnesi introduce PLUTO, product line use case test optimization [4][6], which

is further elaborated by Bertolini et al. [5]. Kamsties et al. propose test case derivation for

domain engineering from use cases, preserving the variability in the test cases [27].

Nebut et al. propose an algorithm to automatically generate product-specific test cases from

product family requirements, expressed in UML [51][50], more comprehensively presented in

[52]. They evaluate their approach on a small case study. Reuys et al. defined the ScenTED

approach to generate test cases from UML models [64], which is further presented by Pohl

and Metzger [60]. Olimpiew and Gomaa defined another approach using diagrams,

stereotypes and tagged values from UML notations [55][54] which was illustrated in a

student project [53]. Dueñas et al. propose another approach, based on the UML testing

profile [13] and Kang et al. yet another process, based on UML use cases and a variability

 19

model [28]. Weißleder et al. specifically reuse state machines and generate sets suites, using

OCL expressions [77].

Mishra [47] and Kahsai et al. [26] present test case generation models, based on process

algebra formal specifications. Uzuncanova et al. introduce an incremental approach to test

generation, using Alloy [75]. Bashardoust-Tajali and Corriveau extract tests for product

testing, based on a domain model, expressed as generative contracts [8].

Stephensen et al. propose a test strategy to reduce the search space for test data, although

without providing any reviewable details [71]. Geppert et al. present a decision model for

acceptance testing, based on decision trees [20]. The approach was evaluated on a part of an

industrial SPL. Li et al. utilize the information in execution traces to reduce test execution of

each product of the SPL [39].

6.1.5 Integration Testing

Table 8 Papers on Integration Testing

Author Title Paper
type

Contribution
type

Reuys, Reis, Kamsties,
Pohl, (2006) [66]

The ScenTED Method for Testing Software
Product Lines

Evaluation
Research Method

Kishi, Noda (2004)[30] Design Testing for Product Line
Development based on Test Scenarios

Solution
Proposal Method

Li, Weiss, Slye (2007)
[40]

Automatic Integration Test Generation from
Unit Tests of eXVantage Product Family

Evaluation
Research Method

Reis, Metzer, Pohl
(2007)[63]

Integration testing in software product line
engineering; A model-Based Technique

Validation
Research Method

Table 8 lists papers on integration testing. The ScenTED method is proposed also for

integration testing in addition to system and acceptance testing, and hence mentioned here

[66]. Reis et al. specifically validated its use for integration testing in an experimental

evaluation [63]. Kishi and Noda propose an integration testing technique based on test

scenarios, utilizing model checking techniques [30]. Li et al. generate integration test from

unit tests, illustrated in an industrial case study [40].

6.1.6 Unit Testing
Table 9 Papers on Unit Testing

Author Title Paper
type

Contribut
ion type

Feng, Liu, Kerridge
(2007) [16]

A product line based aspect-oriented
generative unit testing approach to building

Validation
Research Method

 20

quality components

Reuys, Reis, Kamsties,
Pohl, (2003)[65]

Derivation of Domain Test Scenarios from
Activity Diagrams

Solution
Proposal Model

Nebut, Fleurey, Traon,
Jezequel (2003) [49]

A Requirement-Based Approach to test
Product Families

Validation
Research

Model,
Method,
Tool

Table 9 lists papers on unit testing. Different approaches to create test cases based on

requirements including variabilities, are proposed with a focus on how to cover possible

scenarios. In ScenTED, [65], UML-activity diagrams are used to represent all possible

scenarios. Nebut et al. [49] use parameterized use cases as contracts on which testing

coverage criteria may be applied. Feng et al. use an aspect-oriented approach to generate unit

tests [16].

6.1.7 Test Automation

Table 10 Papers on Test Automation

Author Title Paper type Contribution
type

Knauber, Schneider
(2004) [33]

Tracing Variability from Implementation to
Test Using Aspect-Oriented Programming

Conceptual
Proposal Tool

Williams (2004)[79] Test Case Management of Controls
Product Line Points of Variability

Solution
Proposal Tool

Condron (2004)[10] A Domain Approach to Test Automation of
Product Lines

Solution
Proposal Tool

Ganesan, Maurer, Ochs,
Snoek, Verlage
(2005)[18]

Towards Testing Response time of
Instances of a web-based Product Line

Evaluation
Research Tool

McGregor, Sodhani,
Madhavapeddi
(2004)[45]

Testing Variability in a Software Product
Line

Evaluation
Research Method

Table 10 lists papers on test automation. McGregor et al. [45] propose and evaluate an

approach to design test automation software which is based on correspondence between

variability in product software and in test software. Condron [10] proposes a domain

approach to automate PL testing, combining test automation frameworks from various

locations in the entire product line where test is needed. Knauber and Schneider [33] explore

how to combine aspect oriented programming and unit testing and thus reach traceability

between implementation of variability and its test. Ganesan et al. [18] focus on performance

testing, reporting on a realization of an environment for testing response time and load of an

 21

SPL. Williams presents an approach to integrating test automation in an existing development

environment for control systems [79].

6.2 Research Type
Figure 4, shows the distribution of research types in the area of software product line testing.

The most frequent research type is solution proposals 41%. Adding solution, conceptual

proposals and opinion papers sum up to 64% of the papers. 14% of the papers report on

evaluation of the proposals and 3% are experience reports. 19% present other types of

validation, primarily off-line approaches.

Research type

Conceptual
Proposal

17%

Evaluation
Research

14%

Experience
Report

3%

Opinion Paper
6%

Solution
Proposal

41%

Validation
Research

19%

Figure 4 Distribution of Research Type

7 Discussion
The surveyed research indicates software product line testing being a rather immature area.

The seminal paper is presented in 2001 [42], and most papers are published in workshops and

conferences; only one has reached the maturity of a journal publication.

Software product line testing seems to be a “discussion” topic. There is a well established

understanding about challenges, as summarized in Section 6. However, when looking for

solutions to these challenges, we mostly find proposals. The mapping shows that 64% of the

papers found include proposals, which contain ideas for solutions of the identified challenges,

but only 17% of the research report actual use and evaluation of proposals.

 22

This is not unique for the SPL testing. Ramesh et al. reviewed publications in 13 computer

science journals, and found less than 3% being case studies, field studies or experiments [61].

Close to 90% were of research type “conceptual analysis”, which is close to our “proposals”

categories. In software engineering, the case is somewhat better. Glass et al. reported 2002

that “conceptual analysis” also dominates in software engineering (54%), while case study,

field study and experiment sum up to less than 10% [21].

Product line testing is a large scale effort and evaluations are costly [73], which is one of the

explanations behind the limited share of empirical studies. However, extensive experience in

PL engineering exist within companies (Philips, Nokia, Siemens etc. [59]) but no studies on

testing can be found [73].

The distribution across the research foci, with its major share on system testing is natural.

This is where product line testing may gain a lot from utilizing the fact that it is a software

product line. Testability issues, especially related to the product line architecture have an

underdeveloped potential to be researched. Approaches that help isolate effects of variability

to limited areas of the software would help improve the efficiency of product line testing.

Test management issues have a reasonable proportion of the studies, although issues of

balancing e.g. domain vs. product testing are not treated. Some sketched out proposals and

many high-level opinions on how this should be done are reported on but none of them has

been evaluated empirically.

Almost all of the proposed strategies for product line testing are idealistic in the sense that

they put specific requirements on other parts of the development process than the testing.

Hence, it is hard to find “useful approaches”, since they require major changes to the whole

software engineering process, e.g. formal models for requirements and variability. In a

majority of the publications the handling of variability is in focus. Different approaches for

test case derivation are based on specific ways of documenting and handling variation points.

This is natural since variability is the core concept in product line development. However

from the perspective of system testing the main challenge is how to deal with the large

number of required tests of a range of product variants which are more or less similar. How

variability is handled may not always be possible to affect or even visible at that stage. There

is a need for strategies for test case design and selection, which are feasible for incremental

introduction and applicable in a testing context regardless of the maturity of the product line

organization.

 23

The contribution type is mostly of “method” type. Product line engineering in general, and

testing in particular, need new methodological approaches. However, methods need to be

supported by underlying models for their theoretical foundation, tools for their practical use

and metrics for their management and evaluation.

8 Conclusions
We launched a systematic mapping study to get an overview of existing research on software

product line testing. We identified 64 papers published between 2001 and 2008.

The picture of research needs and challenges is quite clear and unanimous, enabling a focused

research endeavor. In response to RQ 1, the main challenges are i) the large number of tests,

ii) balance between effort for reusable components and concrete products, and iii) handling

variability. Still, there is a need to address different focus: process and organization,

management, testability, test case design as well as test automation. To respond to RQ2, we

conclude that the research is mostly published in workshops (59%) and conferences (30%),

with only four book chapters and three journal publications issued so far. The research topics

identified are (RQ3) i) test organization and process, ii) test management, iii) testability, iv)

system and acceptance testing, v) integration testing, vi) unit testing, and vii) automation,

with high-level test case derivation as the most frequent topic followed by test management.

Research methods (RQ4) are mostly of proposal type (64%) with empirical evaluations and

experience as a minor group (17%).

With a clear picture of needs and challenges, we encourage the research community to launch

empirical studies that use and evaluate the proposals, in order to give a solid foundation for

software product line testing in industry. Further, trade-off management issues seem to be in

need of deeper understanding and evaluation.

9 REFERENCES
[1] W. Afzal, R.Torkar, R. Feldt, A Systematic Mapping Study on Non-Functional Search-Based Software testing, in

20th International Conference on Software Engineering and Knowledge Engineering (SEKE), (2008).
[2] J. Al Dallal and P. Sorenson, Testing software assets of framework-based product families during application

engineering stage, in Journal of Software, Vol 3, No 5 (2008), 11-25, May 2008
[3] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton, S. Linkman, Evidence relating to Object-Oriented

Software Design: A survey. First International Symposium on Empirical Software Engineering and Measurement
(2007).

[4] A. Bertolino and S. Gnesi, PLUTO: A Test Methodology for Product-Families, 5th International Workshop
Software Product-Family Engineering:,Siena, Italy (2003).

[5] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, Product Line Use Cases: Scenario-Based Specification and Testing
of Requirements, Chapter 11 in Software Product Lines Research Issues in Engineering and Management, (Eds.)
T. Käkölä and J. C. Duenas, Springer (2006).

[6] A. Bertolino, S. Gnesi, Use Case-based Testing of Product Lines, Proc. ESEC/FSE, pp. 355-358, ACM
Press.(2003).

 24

[7] J. Bosch, Design and Use of Software Architectures. Adopting and evolving a product-line approach. Addison-
Wesley (2000)

[8] S. Bashardoust-Tajali, J-P. Corriveau, On Extracting Tests from a Testable Model in the Context of Domain
Engineering, 13th IEEE International Conference on Engineering of Complex Computer Systems, pp.98-107
(2008).

[9] M.B. Cohen, M. B. Dwyer, J. Shi. Coverage and Adequacy in Software Product Line Testing. In: Proceedings of
the ISSTA 2006 Workshop on Role of Software Architecture for Testing and Analysis. 53-63, ACM. New York
(2006)

[10] C. Condron. A Domain Approach to Test Automation of Product Lines. International Workshop on Software
Product Line Testing. (2004)

[11] C. Denger, R. Kolb. Testing and Inspecting Reusable Product Line Components: First Empirical Results.
Proceedings 5th International Software Metrics Symposium. (2006)

[12] Dieste O., Grimán A. and Juristo N. (2008) Developing search strategies for detecting relevant experiments.
Empirical Software Engineering. DOI: 10.1007/s10664-008-9091-7

[13] J. C. Dueñas, J. Mellado, R. Cerón, J. L. Arciniegas, J. L. Ruiz, R. Capilla. Model driven testing in product family
context. First European Workshop on Model Driven Architecture with Emphasis on Industrial Application. (2004)

[14] U. Dowie, N. Gellner, S. Hanssen, A. Helferich, G. Herzwurm, S. Schockert. Quality Assurance of Integrated
Business Software: An Approach to Testing Software Product Lines. Proceedings of the 13th European
Conference on Information Systems, Information Systems in a Rapidly Changing Economy, (ECIS). (2005)

[15] E. Engstrom, P. Runeson, M. Skoglund. A systematic review on regression test selection techniques. Information
and Software Technology, Volume 52, Issue 1, January 2010, Pages 14-30,

[16] Y. Feng, X. Liu, and J. Kerridge. A product line based aspect-oriented generative unit testing approach to building
quality components. In Proceedings of the 31st Annual international Computer Software and Applications
Conference (COMPSAC). (2007).

[17] D. Ganesan, J. Knodel, R. Kolb, U. Haury, G. Meier. Comparing costs and benefits of different test strategies for a
software product line: a study from Testo AG, in: Proceedings of Software Product Line Conference (SPLC),
2007.

[18] D. Ganesan, U. Maurer, M. Ochs, B. Snoek, M. Verlage. Towards Testing Response Time of Instances of a Web-
based Product Line. In Proceedings of International Workshop on Software Product Line Testing (SPLiT 2005),
Rennes, France, September 2005, 23–34.

[19] Y. Ghanam, S. Park, and F. A. Maurer. A Test-Driven Approach to Establishing & Managing Agile Product Lines.
The 5th SPLiT Workshop –SPLC 2008, Ireland.

[20] B. J. Geppert, J. Li, F. Rossler and D. M. Weiss.Towards Generating Acceptance Tests for Product Lines. 8th
International Conference on Software Reuse. Madrid, Spain (2004)

[21] R. L. Glass, I. Vessey, V. Ramesh. Research in Software Engineering: an analysis of the literature, Information
and Software Technology 44:491-506 (2002).

[22] T. Gustafsson. 2007. An Approach for Selecting Software Product Line Instances for Testing. International
Workshop on Software Product Line Testing. (2007)

[23] J. Hartmann, M. Vieira, A. Ruder. UML-based Approach for Validating Product Lines. Intl. Workshop on Software
Product Line Testing (SPLiT), Avaya Labs Technical Report, pp. 58-64, Boston, USA, August (2004).

[24] L. Jin-hua, L. Qiong and L. Jing. The W-Model for Testing Software Product Lines. International Symposium on.
Computer Science and Computational Technology (ISCSCT). (2008)

[25] M. Jaring, R.L Krikhaar, J. Bosch. Modeling Variability and Testability Interaction in Software Product Line
Engineering. Seventh International Conference on Composition - Based Software Systems. ICCBSS. pp.120-129.
(2008)

[26] T. Kahsai, M. Roggenbach, B.-H. Schlinglof: Specification-based testing for software product lines.
In Sixth IEEE International Conference on Software Engineering and Formal Methods, SEFM 2008, Cape Town,
South Africa, 10-14 November 2008 (2008)

[27] E. Kamsties, K. Pohl, S. Reis and A. Reuys. Testing variabilities in use case models. In F. van der Linden, Ed.,
Proceedings of the 5th International Workshop on Software Product-Family Engineering, PFE-5 (Siena, Italy,
Nov. 2003), Springer, Heidelberg, 6--18. (2003)

[28] S. Kang, J. Lee, M. Kim, and W Lee. Towards a Formal Framework for Product Line Test Development. In
Proceedings of the 7th IEEE international Conference on Computer and information Technology (October 16 - 19,
2007). CIT. IEEE Computer Society, Washington, DC, 921-926. (2007)

[29] R. Kauppinen, J. Taina, and A. Tevanlinna. Hook and template coverage criteria for testing framework-based
software product families. In Proceedings of the International Workshop on Software Product Line Testing, pages
7--12, August (2004).

 25

[30] T. Kishi, and N. Noda. Design Testing for Product Line Development based on Test Scenarios. presented at
Software Product Line Testing Workshop (SPLiT), Boston, MA, (2004).

[31] B. A. Kitchenham. Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3.
Technical Report S.o.C.S.a.M. Software Engineering Group, Keele University and Department of Computer
Science University of Durham.(2007)

[32] P. Knauber and W. Hetrick. Product Line Testing and Product Line Development - Variations on a Common
Theme, Proceedings of International Workshop on Software Product Line Testing (SPLiT 2005).(2005)

[33] P. Knauber and J. Schneider. Tracing Variability from Implementation to Test Using Aspect-Oriented
Programming. International Workshop on Software Product Line Testing SPLiT. (2004).

[34] R. Kolb. A Risk Driven Approach for Efficiently Testing Software Product Lines. 5th GPCE Young. Researches
Workshop, Erfurt, Germany Sep. (2003)

[35] R. Kolb. and D. Muthig, Challenges in Testing Software Product Lines. In Proceedings of CONQUEST'03,
Nuremberg, Germany, pp. 81--95, September (2003).

[36] R. Kolb and D. Muthig. Making testing product lines more efficient by improving the testability of product line
architectures. In Proceedings of the ISSTA 2006 Workshop on Role of Software Architecture For Testing and
Analysis (Portland, Maine, July 17 - 20, 2006). ROSATEA '06. ACM, New York, NY, 22-27. DOI=
http://doi.acm.org/10.1145/1147249.1147252 (2006)

[37] R. Kolb and D. Muthig. Techniques and Strategies for Testing Component-Based Software and Product Lines.
Chapter 7 in Development of Component-Based Information Systems. Advances in Management Information
Systems Volume 2 / 2006 , pages 123 - 139 (2006)

[38] B.P Lamancha,. M.P Usaola and M.P Velthius. Software Product Line Testing - A Systematic Review. 4th
International Conference on Software and Data Technologies (ICSOFT) p. 23-30. (2009)

[39] J. J. Li, B. Geppert, F.Roessler and D. M. Weiss. Reuse Execution Traces to Reduce Testing of Product Lines.
Proceedings of the International Workshop on Software Product Line Testing (2007)

[40] J. J. Li, D. M. Weiss and J. H. Slye. Automatic Integration Test Generation from Unit Tests of EXVantage Product
Family. Proceedings of the International Workshop on Software Product Line Testing (2007).

[41] J. D. McGregor. Structuring Test Assets in a Product Line Effort. In Proceedings of the Second International
Workshop on Software Product Lines: Economics, Architectures, and Implications, pages 89--92, May 2001.

[42] J. D. McGregor, Testing a Software Product Line. Technical Report, CMU/SEI-2001-TR-022, ESC-TR-2001-022.
[43] J. D. McGregor, K. Im. The Implications of Variation for Testing in a Software Product Line. International

Workshop on Software Product Line Testing (SPLiT 2007).(2007)
[44] J. D. McGregor, Toward a Fault Model for Software Product Lines. In proceedings Fifth International Workshop

on Software Product Line Testing. (SPLiT 2008) - informatik.fh-mannheim.de. Page 27. (2008)
[45] J. D McGregor, P. Sodhani., S. Madhavapeddi. Testing Variability in a Software Product Line. In: Proceedings of

the International Workshop on Software Product Line Testing, Avaya Labs, ALR-2004-031, 45–50 (2004)
[46] M. Meyer and A. Lehnerd. The Power of Product Platforms. Free PRess, New York, (1997)
[47] S. Mishra. Specification Based Software Product Line Testing: A case study. Proceedings of the Concurrency:

Specification and Programming Workshop. Pages 243-254. (2006)
[48] H. Muccini and A. van der Hoek. Towards Testing Product Line Architectures, Electronic Notes in Theoretical

Computer Science 82 No. 6, (2003).
[49] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel. A Requirement-based Approach to Test Product Families.

In International Workshop on Product Family Engineering (PFE), (2003).
[50] C. Nebut, S. Pickin, Y. Le Traon, and J. M. Jezequel. Automated requirements-based generation of test cases for

product families. In Proceedings 18th IEEE International Conference on Automated Software Engineering (2003).
[51] C. Nebut, S. Pickin, Y. Le Traon, and J. M. Jezequel. Reusable Test Requirements for UML-Model Product Lines.

International Workshop on Requirements Engineering for Product Lines (REPL) (2002)
[52] C. Nebut, Y. Le Traon and J. M. Jézéquel. System Testing of Product Lines: From Requirements to Test Cases

Software Product Lines, Research Issues in Engineering and Management, chapter, pages 447–477. Springer,
(2006).

[53] E. M. Olimpiew and Gomaa. Customizable requirements based test models for software product lines.
International. Workshop on Software Product Line Testing, Baltimore, MD , August (2006)

[54] E. M. Olimpiew and H. Gomaa. Model-Based Test Design for Software Product Lines. International Workshop on
Software Product Line Testing (SPLiT 2008). (2008)

[55] E. M. Olimpiew and H. Gomaa, Model-based testing for applications derived from software product lines, 1st
Workshop on Advances in Model-Based Software Testing, A-MOST’05, ACM Press (2005)

[56] E. M. Olimpiew and H Gomaa. Reusable System Tests for Applications Derived from Software Product Lines,
International Workshop on Software Product Line Testing (SPLiT 2005), pp. 8-15. (2005).

 26

[57] S Oster, A Schürr, I Weisemöller. Towards Software Product Line Testing using Story Driven Modeling. In
Proceedings of 6th International Fujaba Days. Pages 48-55 (2008)

[58] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson. Systematic Mapping Studies in Software Engineering. 12th
International Conference on Evaluation and Assessment in Software Engineering (EASE). University of Bari,
Italy, 26 - 27 June (2008)

[59] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering: Foundations, Principles,and
Techniques, Springer, Heidelberg, August (2005).

[60] K. Pohl and A. Metzger (2006). Software product line testing. Communications of ACM 49(12): 78-81.
[61] V. Ramesh, R. L. Glass, I. Vessey. Research in Computer Science: an empirical study, The Journal of Systems and

Science, 70(1-2):165-176 (2004).
[62] S. Reis, A. Metzger and K.Pohl A Reuse technique for Performance Testing of Software Product Lines. In: Proc.

of the Intl. Workshop on Software Product Line Testing, Mannheim University of Applied Sciences, Report No.
003.06, 5-10 (2006)

[63] S. Reis, A. Metzger and K.Pohl. Integration Testing in Software Product Line Engineering: A Model-Based
Technique. In: Dwyer, M.B.; Lopes, A. (Eds.) Proceedings Fundamental Approaches to Software Engineering,
10th Intl Conference, FASE 2007, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2007, Braga Portugal, March 24 - April 1, LNCS 4422. (2007) .

[64] A. Reuys, E. Kamsties, K. Pohl, and S. Reis. Model-based system testing of software product families. In O.
Pastor, and J. Falcao e Cunha, Eds., Proceedings of the 17th Conference on Advanced Information Systems
Engineering, CAiSE (Porto, Portugal, June 2005), Springer, Heidelberg, 519--534.(2005)

[65] A. Reuys, S.Reis, E.Kamsties and K. Pohl. Derivation of domain test scenarios from activity diagrams. In
Proceedings of the International Workshop on Product Line Engineering The Early Steps: Planning, Modeling,
and Managing (PLEES'03), (2003).

[66] A. Reuys, S. Reis, E. Kamsties and K. Pohl. The ScenTED Method for Testing Software Product Lines. In:
Software Product Lines, pp. 479–520. Springer, Heidelberg (2006).

[67] P. Runeson and M. Skoglund, Reference-based search strategies in systematic reviews, 13th International
Conference on Empirical Assessment & Evaluation in Software Engineering, Durham University, UK (2009).

[68] C. Shaulis. Salion's Confident Approach to Testing Software Product Lines.In: Proc. of International conference
on Product Line Testing, Boston, Massachusetts, USA (SPLiT 04). (2004)

[69] M. Shaw, What makes good research in software engineering? International Journal on Software Tools for
Technology Transfer (STTT), Springer, 4(1):1433-2779 (2002)

[70] K.D Scheidemann. Optimizing the Selection of Representative Configurations in Verification of Evolving Product
Lines of Distributed Embedded Systems. Proceedings of the 10th International Software Product Line Conference
(SPLC’06), pp. 75-84. (2006)

[71] Z. Stephenson, Y. Zhan, J. Clark, and J. McDermid. Test Data Generation for Product Lines - A Mutation Testing
Approach. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, Springer, Heidelberg (2004)

[72] A. Tevanlinna. Product family testing with RITA. Proceedings of the Eleventh Nordic Workshop on Programming
and Software Development Tools and Techniques (NWPER). Pages 251-265. (2004)

[73] A. Tevanlinna, J. Taina, R. Kauppinen, Product family testing: a survey. ACM SIGSOFT Softw. Eng. Notes 29(2):
12-17.. DOI: 10.1145/979743.979766 (2004)

[74] T. Trew. What Design Policies must Testers Demand from Product Line Architects?, Proc. Int. Workshop on
Software Product Line Testing, 2004.

[75] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing Software Product Lines Using Incremental Test
Generation. In: ISSRE (2008)

[76] J. Weingärtner. Product Family Engineering and Testing in the Medical Domain — Validation Aspects.
In Software Product-Family Engineering, 4th International Workshop (PFE) (Bilbao, Spain, October 3–5 2001),
Revised Papers, LNCS 2290/2002. Pages 56-77. (2002)

[77] S Weißleder, D Sokenou, BH Schlingloff. Reusing State Machines for Automatic Test Generation in Product
Lines. 1st Workshop on Model-based Testing in Practice (2008)

[78] R. Wieringa, N. Maiden, N. Mead and C. Rolland et al. Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion. Requirements Engineering 11(1): 102-107. (2006).

[79] J. J. Williams. Test Case Management of Controls Product Line Points of Variability. International Workshop on
Software Product Line Testing, SPLiT, (2004)

[80] H Zeng, W Zhang, D Rine. Analysis of Testing Effort by Using Core Assets in Software Product Line Testing.
International Workshop on Software Product Line Testing, SPLiT, (2004)

http://doi.acm.org/10.1145/979743.979766�

	ABSTRACT
	1 INTRODUCTION
	2 RESEARCH METHOD
	2.1 Research Questions
	2.2 Systematic mapping
	2.3 Threats to validity

	3 Challenges in testing a software product line
	3.1 Large number of tests
	3.2 Reusable components and concrete products
	3.3 Variability

	4 Primary studies
	5 Classification Schemes
	6 Mapping
	6.1 Research focus
	6.1.1 Test Organization and Process
	6.1.2 Test Management
	6.1.3 Testability
	6.1.4 System and Acceptance Testing
	6.1.5 Integration Testing
	6.1.6 Unit Testing
	6.1.7 Test Automation

	6.2 Research Type

	7 Discussion
	8 Conclusions
	9 REFERENCES

