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Abstract— Recently two new classes of low-rate codes
have been presented. The first class is the super-
orthogonal turbo codes (SOTCs) and the second is the
maximum free distance (MFD) convolutional codes.

In this paper we present an evaluation of the per-
formance vs. arithmetic decoding complexity for these
codes and compare them with the previously reported
super-orthogonal convolutional codes (SOCCs). For
all classes of codes, the arithmetic decoding complex-
ity is estimated, and the error performance on the ad-
ditive white Gaussian noise channel is simulated. The
SOCCs offer performance comparable to that of the
MFD codes. However, the existence of good SOCCs
is restricted to a small number of rates while the
MFD codes give high performance for a multitude of
rates. For the parameters used in this investigation the
SOTCs yield higher performance at lower arithmetic
decoding complexity than the MFD codes.

[. INTRODUCTION

The high spreading factor in a direct-sequence
code-division multiple-access (DS-CDMA) system en-
courage the employment of low-rate channel codes to
improve the performance. However, this has not been
a widespread technique due to the lack of good low-
rate codes.

Recently, two new classes of low-rate codes with
improved performance have been proposed. In (1] a
coding scheme that combines turbo codes [2] with
super-orthogonal convolutional codes (SOCC) (3],
into super-orthogonal turbo codes (SOTC) was pro-
posed. A different approach was taken in [4], where
a class of nested rate-compatible convolutional codes,
with maximum free distance (MFD), was derived.

An important consideration when applying coding
in a communication system is the performance vs.
implementation complexity. For the two classes of
codes mentioned above, we investigate this relation-
ship and compare them to the previously reported
SOCCs. This is done by combining estimates of arith-
metic decoding complexity with results from error-
performance simulations. As well as arithmetic com-
plexity, memory requirement is an important imple-
mentation issue, However, due to space limitations
we here focus on the arithmetic complexity part of
the different decoding schemes. Three different algo-
rithms providing soft information used for iterative
decoding of turbo codes are investigated: log-MAP
5], max-log-MAP and SOVA [6][7].

The paper 1s organized as follows: First we give
a short introduction to low-rate codes in Section II.
Section IIl contains both derivations of estimates of
arithmetic decoding complexity and a brief descrip-
tion of the soft decision algorithms used for iterative
decoding. In Section IV, the error-performance simu-
lations are described and performance vs. complexity
1s compared for a number of codes from the investi-
gated classes.
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II. Low RATE CODES
A. Super-orthogonal Conuvolutional Codes (SOCCs)

Orthogonal block codes are known to perform well
on very noisy channels. In [8] a method to find or-
thogonal convolutional codes having similar proper-
ties was presented. However, orthogonal convolu-
tional codes imply a large bandwidth expansion. Sev-
eral related coding schemes with good distance spec-
trum, but less bandwidth requirements, have been
proposed in [9][3][10]. These include the SOCCs
which are used in the SOTCs.

An SOCC with memory m and degree d has 2™
distinct transition sequences in the trellis and a code
rate r equal to 2~(m=d4-1)  The mapping rule guar-
antees that transition sequences emerging from, and
reemerging to, each state are antipodal. The transi-
tion sequences are obtained from a Hadamard matrix
Hys (M = 2m—9-1) defined according to

H; H;
H1=[ﬂ]andH¢+1=[Ht_ E}']'
Both the Hadamard sequences Hjs and their com-
plements Hjs are mapped on the 2! transitions of
the trellis. The trellis of an SOCC of degree (0 and
memory equal to 2 is shown in Figure 1.

The transition sequences of another low-rate cod-
ing scheme, the bi-orthogonal convolutional code
(BOCC) desceribed in [9] are also obtained from the
Hadamard matrix, cf. Figure 1

B. Mazimum Free Distance Convolutional Codes
(MFDs)

The MFD codes studied belong to a family of rate-
compatible convolutional codes [4] with maximum
free distance. The structure of these codes is similar
to ordinary convolutional codes, cf. Figure 2. Given
a specific memory length and code rate, the genera-
tor polynomials yielding maximum free distance are
derived from a rate 1/4 mother code by nested code
search.



Fig. 2. Maximum free distance convolutional code.
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Fig. 3. Structure of super-orthogonal turbo encoder.

An important characteristic of the nested convo-
lutional codes is the reuse of generator polynomials
to achieve low rates. An MFD convolutional code of
rate 1 /n can thus be generated by a < n different gen-
erator polynomials. This repeating structure can be
used to decrease the encoding-, as well as the decod-
ing complexity of the code. Complexity is discussed
further in Section IV.

The MFD convolutional codes, as well as the
SOCCs described above, are antipodal, i.e. they have
the property that the branches emerging from the
same state, or remerging to the same state, are an-
tipodal.

C. Super-orthogonal Turbo Codes (SOTCs)

The SOTC coding schemes studied in this paper
consist of two component encoders with one interme-
diate interleaver, as shown in Figure 3. Two SOCCs
are used as component codes. The parity sequences
of the component codes are generated by modulo-two
adding the first and the last bits of the register to an
orthogonal Walsh-Hadamard (WH) sequence. Simi-
lar to the turbo codes studied in [1], the component
codes here are non-systematic.

Low-rate turbo codes can be achieved by different
strategies; through 1) the use of low-rate component
encoders, or 2) extending the structure in Figure 3
with additional component encoders. The first strat-
egy is chosen in this investigation where the SOCCs,
discussed in Section II-A, are taken as an ad-hoc ap-
proach to the design of low-rate component encoders
for turbo codes. The reason for not addressing the
second strategy is the expected increase in decoding
complexity when using many component encoders.

I11. DECODING
A. Decoding of Convelutional Codes

The structure of both the SOCCs and the MFD
convolutional codes enables the metric calculations
to be done at reduced complexity. In the SOCCs, the
transition sequences are equal, antipodal or orthogo-
nal. This fact enables the use of the Walsh-Hadamard
(WH) transform [11] for metric calculation.

Considering Figure 1, the trellis of a SOCC of rate
-}; is seen to have only 2 x n different transition se-
quences. As these are derived from the Hadamard
matrix and its complement, the metric can be cal-
culated in n x log, n additions and n multiplications
with —1. Since the rate of a SOCC of degree zero is di-
rectly related to the memory of the code (m = log, n
+1) the metric calculation-complexity can be done
in 2™~ 1 (m — 1) additions and 2™~! multiplications
with —1 per trellis stage. |

For the MFD codes, the number of generator poly-
nomials a, defined as the number of unique generator
polynomials used in the code, and the memory de-
termine the decoding complexity. If there is reuse
of generator polynomials, the spreading factor n be-
comes larger than a. For every transition sequence in
the trellis, the last n — a bits are repetitions of earlier
parity bits.

Summing the signal samples corresponding to the
same generator polynomial (de-spreading), the corre-
lation operation only have to be performed once per
unique generator polynomial. The metric increment
to be calculated by the Viterbi algorithm is given in
Equation 1. The transmitted parity symbols of path
m and the received signal samples at trellis step k are

denoted b{™ (i) and r (i) respectively.

rL
A = 3T B (i)rk(d)
i=1
= S5MG) Y G @)
i=1 F€[1,n]

8™ (=0l (4)

This summation requires n —a additions per trellis
stage for each repeated generator polynomial. An-
other a additions are in general required per trellis
transition to complete the metric calculation. How-
ever, since the MFD codes are antipodal, each transi-
tion sequence and its complement occur twice in the
trellis. This implies a/4 additions and 1/4 multiplica-
tions with —1 per transition, rather than a additions.

The metric-calculation-complexity per trellis stage
thus becomes 2™+ (a + 1) /4 + n — a additions.

For both the SOCCs and the MFD codes at least
another 2™+ additions and 2™ max operations per
trellis step are needed to complete the Add Compare
Select (ACS) operations. Selection-, normalization-
and traceback complexities are neglected in the com-
plexity analysis here.

B. Decoding of Super-orthogonal Turbo codes (SOTCs)

The parallel concatenated structure of the turbo
code permits it to be decoded in parts, by two or
more decoders. Several different types of a posteriori



probability estimators, with different degree of com-
plexity, such as the maximum a posteriori probability-
(MAP), the suboptimal max-log-MAP- and the soft
output Viterbi algorithm (SOVA) can be used to pro-
vide soft information in the turbo decoder.

The Log-MAP algorithm considers all codewords
in order to determine the a posteriori probability of a
transmitted symbol. In the turbo decoder the extrin-
sic information from one soft output decoder is fed to
the other decoder as a priori information about the
transmitted symbols. The introduction of a priori
information in the Log-MAP algorithm requires ad-
dition of the extrinsic information to all correlation
metrics that correspond to transmitted information
symbols equal to one. The increase of complexity is
thus 2™ additions per decoding operation.

Further, the correlation metric of the received sam-
ples is only calculated once per transition sequence
during the first iteration. Following the discussion in
section III-A the WH transform can be used to effi-
ciently calculate the correlation metrics also for the
SOTC. We conclude that the correlation complexity
may be neglected in the analysis.

By transferring the MAP algorithm to the loga-
rithm domain, multiplications can be replaced by ad-
ditions. However, this instead causes the need to cal-
culate sums of exponentials representing probabili-
ties of states or transitions. The summation of these
makes up a substantial part of the complexity of the
Log-MAP algorithm. A significant decrease of decod-
ing complexity can be achieved using the approxima-
tion

In(e” + ... + ) ~ max(py,...,pn),  (2)

where p; represents the logarithm of the probability
of a state or a transition in the trellis.

The resulting decoding algorithm is the Max-Log-
MAP. It modifies the Log-MAP to only take into ac-
count the most likely path having a particular symbol
at position k and the most likely path having the op-
posite symbol at the same position when estimating
the a posteriori probability of a transmitted symbol.
The SOVA is a modified Viterbi algorithm. It is sim-
ilar to the Max-Log-MAP algorithm in that it always
finds the maximum likelihood (ML) path having a
particular symbol at position k. The difference is that
the SOVA not always uses the most likely path having
the opposite symbol at the same position to evaluate
the estimated a posteriori probability.

When the SOVA is used in a turbo decoder, the ex-
trinsic information L, j from the preceding decoder is
treated as a priori information. The a priori probabil-
ities are introduced in the metric of path m according
to

m m T 2‘0’ = e . .
M{™ = M 40 Lep+ =5 3 0 (i)ra(i), (3)

i=]1

where the sign of the information symbol transmitted

is denoted ul™.

The SOVA investigated here uses the updating rule
proposed in [6] to achieve the reliability measures.
Depending on the size of the decoding window, 6,
and the number of trellis steps where the information

:Dac‘ add x(-1) | max IunEuﬂ
m 7T % 2m+l -_2m+1 2m+1 2m+3
M-L-M 2m+3 1 2m+‘£
[SOVA [3x2™+6/2] 2™ [ 2™ +%
TABLE 1

ELEMENTARY OPERATIONS REQUIRED BY THE LoG-Map,
MAx-LoG-MAP AND SOVA SOFT DECODING ALGCORITHMS

symbols of the most likely path differs from the in-
formation symbols of the path it is merging with, a
different number of additions is required. For simplic-
ity we have assumed here that the paths differ in 6/2
positions on the average. The used decoding window
1s equal to six times the constraint length of the con-
stituent codes, i.e. § = 6(m + 1). Without going into
further detail, the estimated number of elementary
operations required in the Log-MAP, Max-Log-MAP
and SOVA decoders are given in Table L

IV. COMPLEXITY AND PERFORMANCE
A. Arithmetic Decoding Complexity

A comparison of the arithmetic complexity of dif-
ferent choices of codes and decoding algorithms re-
quire an estimate of the implementation complexity
of elementary operations. However, there are sev-
eral different measures of complexity as well as many
different implementation architectures. We chose to
compare the different low-rate schemes as if the de-
coders were implemented on a standard DSP. We
estimate the arithmetic decoding complexity of the
addition-, multiplication with —1, max- and lookup
operations to be approximately equal, represented
here as one complexity unit. Furthermore, on-chip
data- and program storage is assumed. Thus addi-
tional complexity from external access is neglected.

For the turbo decoding process we need to consider
that I decoding iterations are required. Further, each
iteration consists of two consecutive decoding opera-
tions with intermediate interleaving. According to
Section III-B, the transfer of extrinsic information to
one decoder requires 2™ additions. In total this in-
creases the complexity with 2™*! additions per iter-
ation.

As the interleaver used here is small we assume
that it could be stored on the chip. Thus interleav-
ing of one bit would require one lookup operation.
During each iteration two interleaving operations are
performed that yield additional complexity equal to
two times the block length N for each iteration. An
overview of the estimated arithmetic decoding com-
plexity for the evaluated schemes, derived from the
results in Table I is given in Table II.

The number of unique generator polynomials, a,
used in each of the investigated MFD codes is shown
in Table IIL

B. Error-performance Simulations

Error-performance simulations on the AWGN
channel are done for a block length of 100 bits. The
m last bits are devoted to trellis termination. The
MFD codes with memory m needs m tailing zeros to
bring the encoder back to the zero state. We have
chosen to only terminate the first component encoder
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[SOCC, Viterbi | 2™ T(m +8)
MFD, Viterbi 2" a+9)+n-a
SOTC, L-M (23 x 2" T+ 2 x N) x 1
SOTC, M-L-M (13 x 2™ +2x N) x |
SOTC,SOVA | (6x 2™ T +3x8+2x N) x 1

TABLE I1
ESTIMATED ARITHMETIC DECODING COMPLEXITY FOR DSP
IMPLEMENTATION OF LOW-RATE DECODING SCHEMES

m|6|6 |6 [7T]7 [7 [8]8 1979

n 8163281632816 8]16 |

a (7|11 (12719 [10(8]9 [8]15]
TABLE 111

NUMBER OF UNIQUE GENERATOR POLYNOMIALS FOR MAXIMUM
FREE DISTANCE CODES OF DIFFERENT MEMORY m AND
SPREADING m.

in the SOTCs. The trellis termination implies a small
rate loss, by a factor (100 — m) /100. The rate loss
which appear as a loss of power in the simulations
causes the comparison of codes of some what differ-
ent data rates. In this analysis the differences are
small and are considered as negligible. For shorter
block lengths however, the differences in rate need to
be reconsidered.

The interleaver used for the SOTCs is the
correlation-designed interleaver introduced in [12].
The feedback polynomials for the SOTCs of memory
3 and 4 were 13 and 31 (octal form).

C. Evaluation

In this evaluation we focus on code rates of 1/8 and
1/16. For MFD codes we have the freedom to chose

between different memory lengths, and have chosen
m = 6,7, 8, and 9. On the other hand, for the SOCCs
as well as the SOTCs the memory is restricted to cer-
tain values determined by the code rate. By choosing
SOCCs with long memory and puncturing them to
different degrees according to Section II-A it is possi-
ble to achieve SOCCs of higher rate while maintaining
the long memory. However, as seen in Figure 4, this
strategy gives a significant performance degradation
compared to the non-punctured SOCC and the corre-
sponding MFD code. The performance of the MFD
codes of memory 6 and rate 1/16 and 1/8 are not
shown in Figure 4 but only a slight degradation in
performance of the MFD code with memory 6 and
rate 1/32 is suffered when increasing the rate to 1/16
and 1/8. This indicates that the SOCCs should be re-
stricted to have degree zero to be competitive to the
MFD codes. The non-punctured SOCCs appear to
be a good alternative to the MFD codes if decoding
complexity is of higher concern than rate flexibility.
Using the complexity estimates in Section IV we
have calculated the arithmetic decoding complexity
for a number of different low-rate codes with differ-
ent error performance. MFD codes of memory 6, 7, 8
and 9 are compared to SOTCs with 2, 4, 8 and 16 de-
coding iterations. The performance vs. complexity of
the different coding schemes is summarized in Figure
5 and 6 showing the required SNR and complexity at
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SOCC: m=4, r=1/8
SOCC: m=b, r=1/16
SOCC: m=5, r=1/16
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MFD: m=6, r=1/32
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Fig. 4. Frame-error rate of MFD code of memory 6 and rate

1/32 compared to punctured and non-punctured SOCCs
of memory 6, 5 and 4 and rate 1/32, 1/16 and 1/8.
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Fig. 5. Required Ej /Ny vs. decoding complexity at FER 103
and rate 1/8 for MFD codes of memory 6, 7, 8 and 9 and
SOTCs of memory 3 with 2, 4, 8 and 16 decoding itera-
tions.

frame-error rate (FER) of 1072 for codes of rate 1/8
and 1/16 respectively.

The difference in error performance between the
Max-Log-MAP and the Log-MAP algorithms is seen
to be small. However the Max-Log-MAP is much less
complex to implement. For the investigated codes,
the SOTCs yield better frame-error performance at
lower complexity than the MFD codes regardless of
the soft decision algorithm used in the iterative de-
coding. The relative improvement in performance re-
sulting from lowering the rate of the MFD codes de-
pends on the number of new generator polynomials
introduced. The number of unique generator poly-
nomials is also closely related to the complexity as
follows from Table II. For the codes where a changes
little the decrease in rate is mainly achieved through
spreading. Thus the increase in complexity is small,
as well as the improvement in performance.

An example of the relative bit- and frame error
performance of the MFD codes and the SOTCs iter-
atively decoded using the Max-Log-MAP algorithm
is shown in Figure 7 and Figure 8. As previously
has been observed the SOTCs have better frame-error
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Fig. 7. Bit-error performance of rate-1/8 MFD codes of mem-

ory 6,7 and 8 and SOTCs of memory 3 decoded with 4, 8

and 16 iterations I, using the Max-Log-Map algorithm.

performance the the MFD codes. This is true also
for the bit-error performmance. For very low SNRs
however, the MFD codes show better bit-error per-
formance than the SOTCs.

V. CONCLUSIONS

We have presented a performance vs. arith-
metic complexity evaluation of three low-rate coding
schemes. An equally important source of complexity
1s their respective memory requirements. However,
due to space limitations this issue is not considered
in this investigation.

The SOCCs offer performance comparable to that
of the MFD codes, requiring lower decoding complex-
ity. On the other hand, the existence of good SOCCs
is restricted to a small number of rates while the MFD
codes give high performance for a multitude of rates.

For the investigated codes the SOTCs yield higher
performance to lower complexity at FER equal to
10~ than the MFD codes. However, as well as the
SOCCs the SOTCs are limited to few rates deter-
mined by the memory of the component codes. Due
to the limited number of codes evaluated here as well

]D 1 L L) ]_

—o— MFD: m=h
—t—  MFD: m=7
—o— MFD: m=8
—+—  S0OTC: m=3, I=4
—+—  S0TC: m=3, |=8
SOTC: m=3, I=16] ]

NBA

0 0.5 1 1.5 2 23 3 3.5 4
E/N, [dB]
Fig. 8. Frame-error performance of rate-1/8 MFD codes of

memory 6,7 and 8 and SOTCs of memory 3 decoded with
4, 8 and 16 iterations I, using the Max-Log-Map algorithm.

as the close relation between arithmetic complexity
requirements and memory consumption, the conclu-
sions should not be taken too far., but the results are
interesting enough to prompt an extended investiga-
tion.
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