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Abstract

In Wason’s Selection Task, subjects: (i) process information from the instructions and build
a mental representation of the problem, then: (ii) select a course of action to solve the problem,
under the constraints imposed by the instructions. We analyze both aspects as part of a constraint
satisfaction problem without assuming Wason’s ‘logical’ solution to be the correct one. We show
that outcome of step (i) may induce mutually inconsistent constraints, causing subjects to select at
step (ii) solutions that violate some of them. Our analysis explains why inconsistent constraints are
less likely disrupt non-abstract (or “thematic”) versions of the tasks, but unlike Bayesians does not
posit different mechanisms in abstract and thematic variants. We then assess the logicality of the
task, and conclude on cognitive tasks as coordination problems.

1 Introduction
In Wason’s Selection Task (hereafter ST, see e.g. [20]) subjects must test a conditional rule
over a four-card setting. Empirical results do not confirm ‘logical’ predictions, and have
initially been interpreted as evidence of systematic cognitive biases. Although subjects per-
form better when the content of the rule is ‘thematic’ content, i.e bears upon familiar social
contexts, their success is attributed to social skills (like ‘cheater detection’). In the 1990s,
Bayesians proposed that subjects in fact address abstract rules statistically, and ‘thematic’
ones deontically [13]. Average responses in the former matches optimal data selection over
a sample. In the latter, a strong preference for upholding the rule exhaust violators, and
emulates a ‘logical’ selection. This model was challenged in the early 2000s by Relevance
theorists, who manipulated performance independently of the content of the rule, and con-
cluded that little reasoning (deductive or otherwise) actually occurs in ST[5]. Nevertheless,
Bayesians and Relevance theorists alike accept that if deductive reasoning was carried in
ST, Wason’s ‘logical’ solution should be implemented.

K. Stenning and M. van Lambalgen have proposed a more sophisticated semantic analy-
sis of ST, according to which solving ST (in any of its variants) is a two-step process, where
subjects first process information from the instructions, and recover a representation of the
problem, then plan and execute a course of action to solve it [16–18]. Both steps can be car-
ried with varying degrees of awareness, and can e.g. involve ‘precomputations’ of different
origins. While they have extensively studied how ambiguities of instructions affect the first
step [18, ch. 3], their have given less attention to the second, nor attempted to reconstruct

∗This paper is based on a joint work with Justine Jacot.
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the task and assess its ‘logicality.’ This paper fills this gap, and examines the extend to
which ST is a ‘logical’ problem, independently on whether the problem-solving engine is a
reasoner, or an abstract computer. This approach nonetheless illuminates the empirical task
(but we contain its discussion to footnotes and conclusion, for space reasons).

Section 2 reconstructs Wason’s interpretation of ST and his favored solution as resp.
a set of constraints and a claim about their optimal satisfaction, then introduces a formal
model in order to evaluate that claim. Section 3 translates ST in the model, shows its con-
straints to be jointly unsatisfiable, and discusses variants solvable as intended, pending revi-
sion of the interpretation of instructions. Section 4 discusses whether any of these problem
is indeed ‘deductive’ and we conclude on relations between our model, Bayesian models,
and Relevance Theory, and the issue of coordination between subjects and experimenters.

2 Background and Method
A typical formulation for the abstract version of ST (borrowed from [18, p. 44]) is as
follows:

Below is depicted a set of four cards, of which you can see only the exposed face but
not the hidden back. On each card, there is a number on one of its sides and a letter on
the other. Also below there is a rule which applies only to the four cards. Your task is
to decide which if any of these four cards you must turn in order to decide if the rule is
true. Don’t turn unnecessary cards. Tick the cards you want to turn.

Rule If there is a vowel on one side, then there is an even number on the other side.

Cards A K 4 7

Wason’s viewed ST as a laboratory model of scientific hypothesis testing, and initially
adopted Popper’s fallibilism as a normative model [14]. Assuming that Rule is as a (ma-
terial) conditional if P then Q,1 falsification applies Modus Tollens, which warrants from
Rule and not-Q an inference to not-P. Wason took detection of potential P-and-not-Q cases
to be methodologically sound and deductively competent, yielding as normative selection
both and only the P-card (A, ·) and the Q-card (7, ·) (where in (X,Y), X is the initially vis-
ible face first, and ‘·’ an unknown value). In the above variant, however, less than 10% of
subjects conform to expectations, with as typical results: (A, ·) alone 35%; (A, ·) and (4, ·),
45%; (A, ·) and (7, ·), 5%; (A, ·), (4, ·) and (7, ·), 7%; and other selections, 8% [18]. 2

Wason’s intended reading of the instructions can be rephrased as a set of constraints over
the representation of ST and its admissible solutions. Subjects must limit their attention to
the four-cards setting, with 4 or 7 (resp.: A or K) as only possible back values for cards (A, ·)
and (K, ·) (resp.: (4, ·) and (7, ·)) (C1). They must consider no other action than turning a
subset of these cards (C2), interpret Rule as a material conditional (C3), pick a strategy
that decides Rule holds and report its selection (C4), and must not turn unnecessary cards
(C5).

None of (C1)–(C5) is guaranteed by the instructions. Bayesians exploit the hypothesis
that (C1) is never (or almost never) retrieved with ‘abstract’ rules, but substituted with
sample reading. Correlations between variation in formulations and in responses have been
extensively studied, and space reasons prevent us to cover them (for a survey, see in [18,

1The rule quantifies (implicitly) over sides, numbers and letters, and propositional simplification is causes
difficulties of interpretation that may e.g. elicit a ‘sample’ reading [18, ch. 3].

2Bayesians do not view hypothesis testing as a deductive task, and contend that subjects address the task with
(implicit) knowledge that there are less vowels than consonant, less letters than even numbers, and less even
numbers than non-even ones, inducing preference ordering statistically testing the rule as follows: (A, ·) > (4, ·) >
(7, ·) > (K, ·), and matching experimental data [13, p. 625].
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§ 3.7], esp. tables pp. 88–89). Yet, there is a large consensus that Wason’s selection is
normative under the above constraints, which translates as follows:

Postulate A. Under conditions (C1)–(C5), the selection including exactly the (A, ·) and
(7, )̇ dominates in ST.

Other reconstructions of Wason’s normativity hypothesis are possible (cf. § 3), but eval-
uating any candidate requires a model of the problem characterized by (C1)–(C5). This
problem can be studied within the interrogative model of inquiry (imi) propose by J. Hin-
tikka and his associates [6, 7]. The imi builds upon an abstract model where (given some
background theory T ) Inquirer investigates a principal question Q, by means of instru-
mental questions supplementing her information about the underlying state of Nature. In
the simplest case, Q partitions the possible states of Nature compatible with T , denoted
hereafter SoN(T ). The imi is a special case of (algorithmic) learning models, in which
solvability of 〈T,Q〉 depends on the existence of specific learning strategies [10, 12].

A learning strategy σ is a function taking as argument finite segments of possibly infi-
nite sequences of observations (where an infinite sequence can in the limit fully characterize
the underlying state of Nature), and returns either an answer in Q, or ‘?’ (suspension). In
the imi, σ additionally affects how the data sequence is collected. Whenever some state
S ∈ SoN(T ) satisfies some qi ∈ Q (in symbol: S |= qi), σ solves 〈T,Q〉 in S iff for every
sequence of observations characterizing S , there is a finite segment after which σ outputs
qi ∈ Q and never changes its assessment. Accordingly, σ solves 〈T,Q〉 simpliciter iff σ

solves 〈T,Q〉 in every S ∈ SoN(T ).
Implementing a learning strategy “does not amount to ‘waiting for deduction to work”’

[12, p. 1354], even for strategies ‘tracking’ deductibility, aka patient’ strategies, where σ is
patient whenever it outputs some qi ∈ Q in S only if qi is deductible from T and the infor-
mation gathered about S . Indeed, σ can be the functional description of some underlying
mechanisms that is not ‘logical’ in any particular sense. The model remains noncommit-
tal about mechanisms, and need not postulate e.g. that some ‘logical competence’ backs
humans’ implementation of patient strategies.

Background information and answers generates an information bipartition over SoN(T ),
with a cell comprising scenarios compatible with the answers, and the other, those which
are not. Prior to any answer being received, the first cell is identical with SoN(T ), i.e. all
possible states are indiscernible,3 and this partition is refined when incoming answers ‘hack
off’ scenarios compatible with them. A strategy is credulous whenever it accepts an answer
as soon as obtained, and is cautious otherwise. A credulous σ never requires confirmation,
but may have to retract acceptance (aka ‘bracket’ answers or parts of T , cf. [3, 7]). When
all answers are true, σ never has to do so, and refines indiscernibility no slower, and some-
times faster, than any cautious σ′ identical to σ save possibly w.r.t. confirmation requests;
since σ then identifies S 0 ‘up to’ inclusion in some qi ∈ Q, no later than σ′, and possibly
earlier, a credulous σ (weakly) dominates (ceteris paribus) a cautious σ′ in a problem with
true answers.

When finitely many parameters suffice to identify S 0 up to inclusion in some q ∈ Q is
finite, and all the values for those parameters are available in S , 〈T,Q〉 is decidable in S ,
and any method solving it can (in principle) halt on success. Decidability is a special case
of solvability: undecidable problems are unsolvable by either halting or patient strategies,

3“Indiscernible” is often paraphrased as: “indiscernible for all X knows” where X is an an agent with ‘inten-
tional’ states (beliefs, expectations, preferences, etc.). However, it can be relativized to any test that identifies some
property of a state but not others: e.g. for a thermometer, states are indiscernible w.r.t. humidity. Accordingly, a
‘solving engine’ can be an abstract or mechanical device (devoid of awareness), or an agent with intentional states
(awareness remains optional).
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but are sometimes solvable in the limit by ‘impatient’ ones [11].4 For a decidable problem,
a patient σ that exhausts all and only the relevant parameters always solves (and decides,
if halting) a problem no later than an impatient σ′ identical with σ save possibly for the
initial assessment, an sometimes earlier if σ′ must revise it, i.e. ceteris paribus a patient σ
(weakly) dominates an impatient σ′ in a decidable problem.

By the above arguments, patient-credulous (p-c) strategies dominate (ceteris paribus)
in decidable problems with true answers. A p-c σ can still halt later than success. In partic-
ular, if in some P the overall set of parameters for S is finite, if σ exhaustively enumerates
them, σ solves P no later (ceteris paribus) than an impatient or cautious σ′, but may de-
cide P later than σ′ if σ′ collects only sufficiently many parameters to solve P and halts
on success, while σ is still collecting. Some constraints on strategies can sometimes opti-
mize solution (or decision), and a constrained learning problem P is a triple P = 〈T,Q,C〉,
where C is a set of constraints. Notice that, when the constraints are too strong, P may not
be solvable even it P minus C (noted P \C) is .

3 Results
The intended interpretation of ST given by (C1)–(C5) characterizes a constrained learning
problem PST = 〈TST,QST,CST〉, whose properties are independent on whether the problem
solver is, human, mechanical or abstract, has awareness or not, etc.5 (C1) is equivalent to
the part of TST that specifies (four) relevant parameters of every S ∈ SoN(TST) as follows:

SoN(TST) = {{(A, x1), (K, x2), (4, x3), (7, x4)} : x1, x2 ∈ {4, 7}, x3, x4 ∈ {A,K}}

We let S 0 ∈ SoN(TST) denote the underlying state of Nature (which can be any of sixteen
states compatible with TST). (C1) does not constrain relative probabilities, but rules out
that S 0 depends on learning strategies (selections only complete the initially incomplete
information). Abusing notation, we represent initial information about S 0 as:

∀σ, Infσ0 (S 0) = {(A,
∣∣∣47∣∣∣), (K, ∣∣∣47∣∣∣), (4, ∣∣∣A

K

∣∣∣), (7, ∣∣∣A
K

∣∣∣)}σ
where in (X,

∣∣∣y1
y2

∣∣∣), X is known, and there is uncertainty between y1 and y2. Infσ0 (SoN) can be
expanded to a truth-table-like 16-rows matrix representing the equivalence class of states
indiscernible from S 0, identical with SoN(T ) prior to any answers.

(C2) tells that values of those parameters can always be obtained, if it does not rule any
of the possible selections (we note a selection turn[X] with X ⊆ {(A, ·), (K, ·), (4, ·), (7, ·)}).
Both one-shot strategies (making a unique selection before they stop) and sequential ones
(making several successive selections, possibly with contingency plans) are allowed.6 (C2)
also implies that the information about the back of cards is reliable (at least as much as
a visual check is).(C3) bipartitions SoN(T ), through the truth-functional meaning of if. . .
then as follows:

Rule = {{(A, x1), (K, x2), (4, x3), (7, x4)} : x1 = 4 and x4 = K} (Rule)

Rule = {{(A, x1), (K, x2), (4, x3), (7, x4)} : x1 = 7 or x4 = A} (Rule)

4A paradigmatic undecidable problem is the halting problem for a program that runs either finitely or infinitely
many steps, and asks for a σwhich, after witnessing only finitely many steps, decides whether the program will run
finitely or infinitely. No patient or halting strategy can solve the problem when the program does not. However, the
‘impatient’ σ that initially conjectures that it does not, and repeats this conjecture indefinitely unless the program
stops (in which case it states it, and halt) solves the problem on every run of the program.

5Human reasoners must first solve information processing problem, i.e. recover a mental representation of PST
from proximate linguistic interaction, coordinated with the experimenter’s interpretation (see § 5)

6Instructions expressing (C4) typically do not govern reports of contingency plans, and heuristically favor one-
shot strategies, but nothing in principle prevents subjects to contemplate sequential ones, and tutorial experiments
where subjects explain their selections show that at least some do [18, § 3.5].

4



and yields a test to assess QST = {Rule,Rule}, because characteristic properties of Rule
and Rule mention observable values.

In what follows, ‘test for QST’ or simply ‘perform a test’ abbreviates: “test for the
(observable) characteristic property of Rule or Rule and output an answer if possible, oth-
erwise return ‘?”’, because (C1)–(C3) and the reliability of (outputs of) selections entail
that patient-credulous strategies (weakly) dominate (ceteris paribus) in PST. No strategy
can then satisfy Post. A and strictly dominate a p-c σ that also satisfies it, and therefore we
restrict our attention to only those.

The first explicit constraint is (C4) imposing decision. Since PST \CST is already decid-
able in principle,the crux is (C5), which excludes strategies using unnecessary questions,
i.e. questions that do not contribute to apply the test for QST. Finally, (C3) and (C4) to-
gether imply that in order to perform a test, Infσ0 (S 0) must shrink down to at least:

Infσi (S 0) =

{(A, 4), (K,
∣∣∣∣47∣∣∣∣), (4, ∣∣∣∣A

K

∣∣∣∣), (7,K)} if S 0 ∈ Rule;

{(A, 7), (K,
∣∣∣∣47∣∣∣∣), (4, ∣∣∣∣A

K

∣∣∣∣), (7, ∣∣∣∣A
K

∣∣∣∣)} or {(A,
∣∣∣∣47∣∣∣∣), (K, ∣∣∣∣47∣∣∣∣), (4, ∣∣∣∣A

K

∣∣∣∣), (7, A)} if S 0 ∈ Rule

(C5) prevents selections to include (K, ·) or (4, ·), which are always unnecessary. How ‘ne-
cessity’ is to be appreciated in other cases is left unspecified. However, a natural suggestion
is to start with some σ, check whether it solves PST \CST, and then ‘shave off’ unnecessary
moves.7 To operationalize this, it suffices to define comparative parsimony over the set
ΣST of possible strategies for PST \ CST, where σ is (comparatively) no less (strictly more)
parsimonious than σ′, noted σ -p σ

′ (σ ≺p σ
′) if σ flips at most as many cards as (strictly

less cards than) σ′ in at least one possible S 0.
(C5) is an all-or-nothing constraint, asking ‘absolute’ maximization of parsimony, and

makes -p-order almost irrelevant save if there is some -p-maximal σ that flips no unnec-
essary cards. But -p yields a heuristic for finding strategies satisfying (C5), and eliminate
dominated ones. Some strategies may be -p-incomparable, but the heuristics only oper-
ates on -p-chains, e.g. starts from some σ and, varying selections, to induces a sequence
σ′ -p . . . -p σ where σ′ satisfies (C5). We use this heuristics in the rest of this section.

We will first examine how strategies fare w.r.t. PST \ CST, before adding (C5). We
begin with the Wason learning function σw, i.e. the one-shot p-c strategy that outputs
turn[(A, ·), (7, ·)], performs a test, and stops. Depending on S 0, σw updates Infσw

0 (S 0) into
one of the following:

Infσw
1 (S 0) = {(A, 4), (K,

∣∣∣47∣∣∣), (4, ∣∣∣A
K

∣∣∣), (7,K)} Infσw
2 (S 0) = {(A, 7), (K,

∣∣∣47∣∣∣), (4, ∣∣∣A
K

∣∣∣), (7,K)}

Infσw
3 (S 0) = {(A, 4), (K,

∣∣∣47∣∣∣), (4, ∣∣∣A
K

∣∣∣), (7, A)} Infσw
4 (S 0) = {(A, 7), (K,

∣∣∣47∣∣∣), (4, ∣∣∣A
K

∣∣∣), (7, A)}

Since σw recommends the same selection in all sixteen possible states S 0, σw is a uniform
p-c strategy w.r.t. to selections, even if it is not w.r.t. to its assessment.8 This sense of
uniformity being the only one we need, we can drop the qualification without ambiguity.
Notice also that ‘one-shot’-ness implies uniformity, but not the converse.

While σw decides PST \CST simpliciter, it sometimes obtains unnecessary information.
However, there is no uniform p-c σ deciding PST s.t. σ -p σw: if σ drops either (A, ·) or

7This mimics elimination of dominated strategy, one of the standard of strategic inference for solving games.
Classical game theory assumes that players perform it ‘top-down’ from complete representations including every
position the game may reach,. Heuristics or intensional tests perform it ‘bottom-up,’ and although not critical in
ST (whose representation is finite) they are generality constraint for algorithmic models, since complete represen-
tations of problems algorithmic problem-solves can address are not always computable [1, 4, 11].

8Uniformity is borrowed from the theory of extensive games of imperfect information, in which players move
in turn, and where player X do not always know Y’s past moves before choosing her own. A uniform strategy
for player X is one that does not include ‘contingency plans’ conditional on Y’s past moves. Because learning
problems are typically interpreted as extensive games vs. Nature, where ‘Nature’s strategy’ includes the selection
of S 0 (unknown to Inquirer), uniform strategies are those that do not depend on the state of Nature [7, 10, 12].
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(7, ·), it cannot apply decisively the test when resp. (A, 4) ∈ S 0 or (7,K) ∈ S 0. Moreover,
any uniform p-c σ that asks more than σw select either (4, )̇ or (K, )̇, which are unnecessary.
Therefore, it also holds that σw -p σ for any σ, and we have:

Observation 1. σw is the most parsimonious uniform p-c strategy that decides PST \CST.

Obs. 1 does not generalize to nonuniform p-c strategies. The nonuniform p-c σ1 that
plays turn[(A, ·)], tests for QST and halts if successful, otherwise plays turn[(7, ·)], per-
forms a test, and halts, decides PST \ QST more parsimoniously than σw on S 0 when
(A, 7) ∈ S 0, and thus σ1 ≺p σw. Likewise, σ2, which is just like σ1, but plays turn[(7, ·)]
first, then turn[(A, ·)] if necessary, beats σw on S 0 when (7, A) ∈ S 0, and thus σ1 ≺p σw.
Moreover, ‘shaving off’ σ1 or σ2 leaves only strategies asking one card or none, which
by are uniform and more parsimonious than σw, and by Obs. 1 cannot solve PST \ CST.
Therefore, we have:

Observation 2. σ1 and σ2 are the most parsimonious p-c strategies that decides PST \CST.

Since neither σ1 -p σ2 nor σ1 -p σ2 hold, none of σ1 or σ2 can takes precedence
over the other without e.g. assumption about probabilities of (A, 7)- and (7, A)-states. But
they both of strictly -p-dominate σw, and as consequence Post. A does not hold in general
in PST , because PST imposes additional constraints that restrict the range of admissible
strategies, and cannot ‘reinstate’ σw. For the same reason, Obs. 2 does not suffice yet to
determine whether PST is decidable, but since we already know that σ1 and σ2 are the most
parsimonious strategies for PST \CST, all we need is to try them against (C5).

(C5) is compatible with two methods to appreciate whether some (X, ·) is necessary,
both of which assume that the problem is planned before a strategy is actually selected.
Hence, the following heuristics correspond to ‘subroutines’ that run simulation, before they
actually select a strategy. Method 1 evaluates the contribution of (X, ·) w.r.t. all Infσj (S 0) to
which the test can performed. Method 2 is more liberal, and evaluates the contribution of
(X, ·) w.r.t. the contribution other cards in some Infσi (S 0) over which a test is performed.
Applied to either σ1 or σ2, Method 1 evaluates the contribution of resp. (A, ·) or (7, ·) as
unnecessary when S 0 ∈ Rule and resp. (A, 4) ∈ S 0 or (7,K) ∈ S 0. As above, using the
-p-based heuristics ‘shaves off’ the first move of both, so that the only admissible strategy
is turn[∅], which leaves PST unsolvable under constraints. Method 2 returns the same
verdict, although eliminates both strategies in one fell swoop.9

One could insist that (C5) is obviously too strong, and that instructions are (implicitly)
ordered lexicographically, and merely impose to select some -p-preferred σ that still de-
cides PST \ CST. Let us refer to this ‘weakened’ (C5) as (C5*), and accordingly let P∗ST
denote the problem identical with PST save that C∗ST imposes minimization, rather than
elimination, of unnecessary cards. With (C5*), σ1 and σ2 are reinstated as admissible
solutions, but -p remains the main heuristic tool in P∗ST, and since both σ1 ≺p σw and
σ2 ≺p σw, Post. A does not hold for with it either.

9Method 2 does not require a complete representation of PST (cf. n. 7), and Stenning & Van Lambalgen report
experimental evidence that subjects sometimes implement it [18, pp. 59 sq.]. Details are provided below for the
technically minded reader, but are unnecessary for the rest of our argument. Assume that evaluation with Method
1 begins with σ1. As soon as the information structure Infσ1

i (S 0) = {(A, 4), (K,
∣∣∣∣47∣∣∣∣), (4, ∣∣∣∣AK∣∣∣∣), (7,K)} is computed,

turn[(A, ·)] appears unnecessary in retrospect, because the test is successful even without (A, ·). (A, ·) must be
‘shaved off’ resulting in turn[∅], and a switch to turn[(7, ·)] i.e. a switch to σ2. Then, as soon as an informa-
tion structure: Infσ2

j (S 0) = {(A, 7), (K,
∣∣∣∣47∣∣∣∣), (4, ∣∣∣∣AK∣∣∣∣), (7, A)} is computed, a elimination of (A, ·) ensues by the above

argument (left to the reader), but now, σ1 has already been eliminated and PST appears finally unsolvable under
constraints. An symmetric argument (left to the reader) beginnings with σ2, leads to the same conclusion.
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Given Obs. 1, an additional constraint (C6a), imposing uniform strategies, restores
Post. A. One can formally define Pu

ST as being just like P∗ST save that Cu
ST adds uniformity

to C∗ST. Uniformity is an all-or-nothing matter: it partitions ΣST, and eliminates σ1 and
σ2, and since σw is acceptable under (C5*), and no other constraint applies, Obs. 1 can
be strengthened to Pu

ST, and Post. A does hold for it. Since niformity is not explicit in the
instructions of ST, and the maneuver does not vindicate Post. A, but treats it as an implicit
definition of ‘optimality’ in ST. An arguably better approach cashes in on how (C4) favors
heuristically one-shot strategies (cf. n. 6), rephrasing Post. A as:

Postulate B. Under (C1)–(C5*), dominant options report exactly (A, ·) and (7, )̇

Post. B hits closer to the mark, because σ1 and σ2 sometimes report both (A, ·) and (7, )̇ as
final selections, but does not hold for either PST or P∗ST. Interestingly, it holds for Pu

ST, and
also if one enforces a restriction (C6b) to one-shot strategies instead of (C6a), i.e. defining
P1

ST just as Pu
ST, save that C1

ST substitutes a restriction to one-shot strategies instead of
uniform ones. Summing up the discussion of this section, we have:

Claim 3. ST can be modeled as either PST, P∗ST, Pu
ST or P1

ST.

1. If ST is PST, then ST is unsolvable under constraints, and Post. A does not hold;

2. If ST is P∗ST, ST is decidable under constraints, but Post. A does not hold;

3. If ST is Pu
ST or P1

ST, ST is decidable under constraints, and Post. A holds. �

4 Discussion: How deductive is ST?
PST \ CST is decidable by p-c strategies, which also suffice to decide mechanically propo-
sitional and syllogistic problems. These problems are solvable with finite (mechanizable)
proofs, and any p-c strategy waiting for the completion of a mechanized proof (and for its fi-
nal verdict) decides any such problem. However, being decidable by p-c strategies is neither
a necessary nor a sufficient condition of for being a deductive problem. It is not necessary,
because propositional logic and syllogistics are decidable fragments of first-order logic,
which is not decidable by p-c strategies (proofs are mechanizable but not always finite).10

It is not sufficient either, because uniformity and parsimony are preferential criteria, and
optimizing their satisfaction makes ST (and any of its decidable variants) decision-making
problems, which are not typically though of as ‘purely’ deductive.

One can propose to revise this last identifications, and reduce logicality to the possibil-
ity of logical treatment. Indeed, although PST is unsolvable, its solvability is a mechani-
cally decidable problem, because it requires only a finite procedure (that we have partially
implemented in this paper). Solvability of any of P∗ST, Pu

ST and P1
ST is also decidable me-

chanically, because it requires no more tests than the solvability problem for PST. All
these problems can be addressed by first-order theorem-provers (or model-checkers) in fi-
nite time, and amenability to such logical treatment is sufficient to call ST, ST∗, STu or
ST1 ‘logical.’ But we cannot stop there unless we beg the question of logicality: we could
as well call them ‘algebraic’ or ‘electrical’(computer code ultimately reduces to Boolean
algebra, realized by electrical circuits). We should resist this conclusion, which confuses
the phenomenon modeled with the formal (and mechanical) tools used to model it.

Theorists who downplay the role of classical deduction in reasoning, still accept the
content of Post. A (or Post. B), have no such sophisticated reasons. Some Bayesians still
profess a blind faith in the normative status of logic— “[l]ogically, subjects should select

10A mechanical solution is possible, but is not finite, requires an impatient method (structurally equivalent to the
one that solves the halting problem n. ) and is inductive, rather than deductive [11].
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only the P and not-Q cards” [13, p. 608] (our emphasis) —only mitigated by the contention
ST is “ a ‘loose’ probabilistic task, rather than a ‘tight’ deductive task” [13, p. 626]. Rel-
evance theorists offer a better than this ‘loose’ talk, i.e. insights on causes for the logical
(mis)conception of ST as a ‘deductive’ task:

Since the rule is true [. . . ] unless there are items combining the P and the
not-Q properties, the logically correct selection is that of the P and the not-Q
cards, each of which could turn out to provide a counter-example. [5, B71]
(Emphasis added.)

This quotes shows a drift from the truth- functional interpretation of if. . . then. . . , to valid
propositional inference schemas that conditional warrant, possibly under the impression
that the latter should be applied no matter what, because logic is ‘abstract.’ But even so
conceived, logic is a medium of computation, and what is to be computed is a decision
problem. Relying on heuristics based on the meaning of the conditional is useless ST, does
not solve ST∗, and only solve STu and ST1 through ‘inferential luck,’ ignoring the relevant
constraints (parsimony and uniformity). Arguing that these inference patterns coordinates
subjects with experimenters amounts to asking subjects to coordinate on the same miscon-
ception as theorists. Empirical implementation of ST shows that human reasoners are at
least proficient enough not to do so systematically.

5 Conclusion
Bayesians and Relevance Theorists deserve credit for having renewed the study of ST, and
this paper contribute to the line of investigation they opened. The Bayesian theory boils
down to the hypothesis that, in abstract and thematic, variants of ST, subjects systemati-
cally fall back to sampling and a ‘cheater-detection’ (and perform optimally). In the latter
performance matches expectations, but amounts to adopt uniform strategies, possibly as
result of ‘worst case’ reasoning in social contexts.11 Pace Bayesians, other factors than
social values can favor parsimonious uniform p-c strategies. Quite ironically, the feature of
our model supporting this conclusion generalizes the Bayesian account of ‘deontic’ cases:
Bayesian add to the conditional a utility function, and utilities are cardinal expressions of
preference orderings (or the aggregation of several such orderings), that we have shown
relevant to ‘abstract’ cases.

Our model can already accommodate Bayesian ‘rational analysis’ of the ‘sampling’
interpretation, and nothing in principle prevents it to accommodate other interpretations
favoring P-and-Q selections. An interesting question is whether it can account for the
data produced by Relevance theorists. Contrary to Bayesians, who merely analyzed old
data, Relevance theorists have produced manipulation in which “ the same rule, regardless
of whether it is tested descriptively or deontically, can be made to yield more P-andQ
selections or more P-and-not-Q selections” [5, B70].

Relevance Theorists take subjects’ lack of awareness of manipulations as evidence that
pragmatic effects trump semantic treatment, yet qualify pragmatic factors in very general
terms: assessment of relevance to the task at hand, and cost of inference to reveal rele-
vance. Our model allows for a finer-grained characterization of relevance as semantic and
communicational salience, for which awareness is not necessary, when semantic treatment
can rest on ‘precomputations’ inherited from past linguistic interaction [18, pp. 112-113].
Coordination on relevant-qua-salient features of instructions is a precondition for subjects’
performance to match expectations of theorists.

11Such reasoning selects strategies either equivalent to σw, or strategies equivalent to σ∗1 and σ∗2 which are just
like σ1 and σ2, save that they always play the second second move. Although σi ≺p σ∗j for all i, j ∈ {1, 2},
uniformity overrules parsimony, because in the worst case all those who can violate the rule actually do so.
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Lack of coordination due to flawed disign is not unique to ST, and J. Jacot has recently
argued that it is predictable [8]. She analyses the double disjunction task (from [9]) where
e.g. subjects are presented presents with premises like: ‘Alice is in India, or Charles is in
Afghanistan, but not both’ and: ‘Barbara is in Pakistan, and Charles is in Afghanistan, but
not both,’ then asked to draw propositional conclusions. Jacot argues that this amounts to
identify as salient syntactic features (connectives), but that subjects are more likely to select
as other semantic features (alternative locations of individuals), in an attempt to convey
useful information.12

Ironically, the disrupting storyline was inserted to offset consequences of ‘abstract’ in-
structions, under the misconception (inherited from ST) that thematic tasks are ‘deduc-
tively’ easier. Results in the original disjunctive tasks have been used to formulate far-
reaching conclusions about human reasoning abilities [15, 19], that stand and fall with their
‘logical’ underpinnings. Unsophisticated conceptions of logic, semantics, and pragmatics,
has not merely ‘rigged the ST game’ against coordination, but have for too long inspired
sub-par experimental designs and ill-grounded interpretations of data. We hope to have
contributed to counteract that influence.
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