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ABSTRACT

We investigate faster-than-Nyquist modulation based
on short finite pulses over the AWGN channel. We
consider several pulse shapes and compare their in-
formation rates for several system setups. We com-
pare the effect of increasing the alphabet size ver-
sus of increasing the signaling rate. The outcome
is that for these pulses the FTN symbol rate is of
greater importance than the alphabet size. Finally we
test some concatenated coding schemes where faster-
than-Nyquist modulation constitutes the innermost
encoder; the outcome is very good.
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1. INTRODUCTION

Consider the modulation problem: Constructing a real
valued continuous time signal that carries a discrete-
time symbol sequence. Many techniques, both linear
and nonlinear, are available in the literature. Exam-
ples of nonlinear techniques are frequency shift keying
and continuous phase modulation. In this paper we
consider the most common, single carrier linear mod-
ulation. If the symbol sequence to be transmitted is
denoted a the transmitted signal equals

s(t) =

∞
∑

i=−∞

aih(t− iT ). (1)

In (1) T denotes the symbol interval and h(t) can
be any real-valued continuous pulse. To greatly sim-
plify the decoding it is common to take h(t) as a T -
orthogonal pulse; that is

∫

h(t)h(t−nT )dt = δn where
δn is Dirac’s delta function and integration limits are
(−∞,∞).

Mazo [1] pointed out that if the symbol interval
is decreased from T to τT , τ < 1, the signal mini-
mum Euclidean distance can still be preserved. Thus,
the asymptotic error performance is unaffected. With
h(t) taken as the sinc pulse, the minimum distance is
preserved for τ > .802. The transmitted signal now
equals

s(t) =

∞
∑

i=−∞

aih(t− iτT ). (2)

Since the signaling rate is faster-than-Nyquist (FTN),
intersymbol interference (ISI) in the receiver cannot
be avoided. The earliest papers on FTN signaling [1]
– [3] considered only its minimum Euclidean distance.
More recently other pulse shapes than the sinc were
investigated in [4], as well as some efficient receivers.
The possible information rates of FTN were investi-
gated in [5]. The outcome is that FTN has significant
potential to improve transmission, both in theory and
in practice.

The target of this paper is to investigate nonbinary
alphabet sizes for FTN and to investigate the perfor-
mance of short pulses. We will, however, conclude
that the best alphabet is often the smallest possible, a
binary one. One’s criterion for “best” can change the
outcome; if decoding complexity is considered, binary
alphabets are not suitable.

Some words on wireless applications are needed. A
wireless channel is not constant over time. But if the
channel is slowly time-varying, it can be modelled as
being constant over a short time duration ≈ tcoh sec-
onds. In order to avoid inter block interference it is
then necessary to transmit signals that are limited to
time duration tcoh seconds. Another example is mul-
tiuser systems based on timesharing of the channel;
each user must only transmit a signal of at most tcoh
seconds, otherwise the signals from different users will
interfere at the receiver.

To achieve Shannon’s capacity formula, W log(1 +
P/N0W ) it is necessary, for single carrier systems, to
use a sinc pulse. This pulse is however in theory of infi-
nite duration. In practice truncated smoother pulses,
such as spectral root raised cosine pulses are used.
These still require significant duration, and in order
to avoid inter block interference, a large efficiency loss
appears. In order to get a reasonable efficiency, the
underlying pulse shape must be short, as is the case
in this paper.

The rest of the paper is organized as follows. In
Section 2 the system model is defined and in Section
3 information rates are defined and computed. In Sec-
tion 4 we test a coding system based on FTN. Finally
we draw some conclusions in Section 5.
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Fig. 1. System model for the transmitter. The en-
coder has rate R < 1.

2. SYSTEM MODEL

The system model for the transmitter is illustrated in
Figure 1. The transmitter consists of three parts, an
encoder, a mapper function and a modulator. The
input to the encoder is a sequence of independent,
identically distributed (i.i.d.) bits u. The encoder
encodes u into a codeword v. The rate of the en-
coder is R < 1 bits in/bit out. For the moment we
assume an arbitrary encoder, but in Section 4 a con-
volutional code and an interleaver synthesize the en-
coder. The codeword is passed to the mapper which
takes a binary k-tuple as input and outputs a symbol
a from an alphabet AM . This alphabet has cardinal-
ity M and we assume an MPAM alphabet, that is,
AM = {±(M − 1),±(M − 3), . . . ,±1}. The transmit-
ted signal is now formed by (2) and launched over the
AWGN channel. The bitrate Rb of the system equals

Rb =
Rk

τT
bits/s. (3)

The consumed energy per bit is equal to

Eb =
Es

kR
=
M2 − 1

3kR

∫

h2(t)dt, (4)

where Es is the average energy per symbol.
A crucial parameter of the system is its bandwidth.

We assume only a power spectral density (PSD). It is
proportional to the Fourier transform of h(t), i.e.,

PSD =
Es

τT
|H(f)|2 =

kREb

τT
|H(f)|2. (5)

It is assumed in (5) that the symbols in the vector
v are i.i.d. What is normally meant by bandwidth
is a single scalar number. A standard way to mea-
sure it is by the socalled power bandwidth, which is
the frequency in which the PSD holds, say, 99.9 %
of the total power. But from our experience, such a
measurement is risky; when Rb increases, the power
bandwidth makes less sense and eventually does not
reflect the actual signal performance very well. In this
paper the aim is to maximize the bit rate Rb for a fixed
PSD and to investigate the influence of other system
parameters, such as τ and AM .

The optimal sequence estimation decoder filters the
received signal r(t) = s(t)+n(t) with a filter matched
to h(t); n(t) is white Gaussian noise. Since h(t) is real
valued this matched filter equals h(−t). The output
of the matched filter is sampled at the signaling rate,
i.e., 1/τT . The sequence values at the output of the
sampling unit are sufficient statistics for estimating u.

This sequence can be written as r = a ⋆ g + η, where
g is the sampled autocorrelation function of h(t); i.e.,

gj =

∫

h(t)h(t+ jτT )dt (6)

and η is colored Gaussian with correlation sequence
g. Since the pulse h(t) is assumed to be finite the ISI
g is of course finite as well. It is possible to whiten the
noise η by a whitening filter. This filter is constructed
from g by spectral factorization; for details see [6],
[7]. The socalled whitened matched filter (Forney)
model is obtained and can be expressed as r̃ = a⋆h+
w, where h represents causal ISI with the property
h[n] ⋆ h[−n] = g and w is white Gaussian noise with
variance N0/2.

We investigate four different pulse shapes:

• A time raised cosine pulse

hA(t) = 1 − cos(2πt/T ), 0 ≤ t ≤ T (7)

• A half cycle sinusiodal pulse

hB(t) = sin(πt/T ), 0 ≤ t ≤ T (8)

• A triangular pulse

hC(t) =

{

t/T, 0 ≤ t ≤ T/2
1 − t/T, T/2 < t ≤ T

(9)

• An optimal finite Nyquist pulse from [9],

hD(t) =
K

∑

i=1

ciψi(t), 0 ≤ t ≤ 3T (10)

The pulse hD(t) is much more complicated than the
other three. It is constructed by a linear combination
of truncated prolate spheroidial wave functions [8] de-
noted ψi(t). The coefficients c are tabulated in [9].
The pulse is optimal in the sense that it is the Nyquist
pulse of length 3T that maximizes the spectral power
concentration in the frequency band [−1/T, 1/T ] Hz.

3. INFORMATION RATES

In this section we find the possible information rates of
the system for the different pulses under constrained
input alphabets. We also investigate optimal alphabet
sizes to use for different throughputs.

3.1. Information Rates

Here we assume that the symbols ak are drawn from a
finite alphabet. We still assume that the symbols are
i.i.d. This corresponds to Shannon’s random coding
approach. For practical encoders the assumption im-
plies a restriction; but this is not very serious because
most of the standard encoders generate uncorrelated



and equally likely output symbols, especially if there
is an interleaver involved in the encoder.

The difference between capacity and information
rate is that capacity involves a maximization proce-
dure over the input symbol distribution. When this
distribution is fixed, there is no maximization and the
result is denoted as information rate. This informa-
tion rate, in bits per channel use, is defined as

Icu = lim
N→∞

1

N
I(r; v) = lim

N→∞

1

N
I(r̃; v), (11)

where I(·, ·) is the mutual information operator and
N is the blocklength. It is assumed that the encoder
block in Figure 1 has a rate R that satisfies kR ≤ Icu.
Then there exists a code such that the error rate tends
to zero as the blocklength grows. Here we are actually
more interested in the information rate in bits per T
seconds; that is

I =
Icu

τ
bits/T s (12)

Equation (11) equals

lim
N→∞

1

N
I(r̃; v) = lim

N→∞

1

N
[H(r̃) −H(w)], (13)

where H(x) is the differential entropy function. The
last term of (13) can be directly evaluated and equals

lim
N→∞

1

N
H(w) =

1

2
log2(πeN0). (14)

The remaining term to compute is H(r̃); this is, how-
ever, a major difficulty in the case of ISI. Upper and
lower bounds are given by Shamai and others in a
long series of papers; see [10] and the extensive refer-
ence list therein. That paper also conjectures a lower
bound to the information rate which is remarkably
tight and easy to compute, but no proof is given. Re-
cently, there have been simulation based methods pro-
posed to compute H(r̃) [11]. A brief review of one is
given next.

First generate a long sequence r̃ and run a forward
pass of the BCJR algorithm. The output of this algor-
tihm is p(r̃). Due to the Shannon-Breiman-McMillan
Theorem − 1

N log2 p(r̃) converges with probability one
to the entropy rate 1

N H(r̃). When actually perform-
ing this, one computes − 1

N log2 p(r̃) as 1
N

∑

log2 λk,
where λk are the scale factors that bring the sum of
state metrics to 1 at each trellis depth. In our simu-
lations the blocklength is N = 3 × 107.

We now turn to the numerical results. Three dif-
ferent alphabet sizes, M ∈ {2, 4, 8}, are considered.
We start with results for the pulses hA(t), hB(t) and
hC(t). The information rates turn out to be monoton-
ically increasing with decreasing τ . That is, increas-
ing the symbol rate is always beneficial, for all three
pulses. Moreover, we found that the best pulse out of
the three is always the time raised cosine pulse, hA(t).
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Fig. 2. Information rates for several system setups.
The pulse shape used is hA(t). The legend gives
(Imax, τ,M).

3.2. Alphabet Size Investigation

In order to compare different system setups fairly, we
demand that they offer the same maximal throughput.
By this we mean that the information rates should
tend to the same value for both setups as SNR → ∞.
The maximal throughput has the asymptote

Imax = lim
N0→0

I =
log2(|AM |)

τ
=

log2(M)

τ
bits/T s.

(15)
This implies that if a binary system has symbol time
τT then a quaternary and an octal system must have
symbol times 2τT and 3τT respectively.

In Figure 2 we show the resulting information rates
for hA(t) with all three alphabets. The solid set of
curves corresponds to Imax = 4, that is, τ is taken
as 1/4, 2/4 and 3/4 for 2-,4- and 8PAM respectively.
The dashed set corresponds to Imax = 8, that is, τ is
taken as 1/8, 2/8 and 3/8 for 2-,4- and 8PAM. From
the figure it is clear that for Imax = 4 the highest
information rate occurs for 2PAM. But for Imax = 8
we see that roughly the same information rates are
obtained for 2PAM and 4PAM; the curve for 8PAM
is far below. The outcome is virtually identical for
hB(t) and hC(t). From this we draw the conclusion
that it is more important to increase the signaling rate
than it is to increase the signaling alphabet. However,
there seems to be some kind of threshold: for τ below
the threshold it is not important whether the signaling
alphabet is increased or the signaling rate is increased.
In Figure 2 the threshold appears to occur at about
τ = 1/4.

So far we have only considered a few specific pulses.
We next investigate a more general case. Assume any
pulse with duration T and τ = 1/2. For input alpha-
bet 2PAM, these signal systems have Imax = 2. We
compare against orthogonal systems with τ = 1 and a
4PAM alphabet. For a given transmitter power the in-



formation rate of the FTN system is denoted I = 2Icu.
The information rate of the orthogonal pulse system
is denoted I4. We will show that I > I4. This im-
plies that FTN is always superior to Nyquist for these
setups.

Since τ = 1/2 and h(t) has duration T , the ISI h

consists of two taps, h0 and h1. When normalized to
unit energy, these can be written as h0 = (1 + s2)−1/2

and h1 = s(1 + s2)−1/2, where 0 ≤ |s| ≤ 1 deter-
mines the amount of ISI present. The conjectured
lower bound [10] on Icu reads

Icu ≥ Cb(χ), (16)

where Cb is the capacity of the binary input memo-
ryless scalar Gaussian channel and χ is a function of
s and N0. It is easy to see that Cb(χ) is minimized
for any N0 if s = 1, that is, when h0 = h1 = 1/

√
2.

This is the system with the least lower bound on the
information rate, and if we can show that this worst
system is still better than I4, we have the proof. We
have not shown this analytically; instead we have eval-
uated 2Cb(χ) and I4 by numerical computation and
observed that 2Cb(χ) > I4 for all reasonable N0. Fu-
ture research will seek a formal proof.

We next investigate the information rates versus
decoding complexity. For modern, turbo like, cod-
ing structures, iterative decoding is usually employed.
This will essentially involve two BCJR decoders, one
for the encoder and one for the FTN modulator. The
decoding complexity is measured by the number of
states in a full complexity BCJR algorithm. If the ob-
ject is to maximize the information rate of the mod-
ulator with respect to the decoding complexity, the
situation is somewhat different from that in Figure 2.
Different combinations of signaling rates and alpha-
bets give rise to different state complexities. Denote
the state complexity S; then

S = MLh−1,

where Lh is the support of the ISI response h. For
pulse shapes of duration T , we have Lh = ⌈1/τ⌉, and
consequently

S = M ⌈1/τ⌉−1

Assume that only S = 8 can be accepted at the
receiver side. This complexity is obtained for 2PAM
with τ = 1/4. For 4PAM, S = 8 cannot be reached;
the largest state complexity smaller than 8 that can be
reached is S = 4, which is obtained for τ = 1/2. For
8PAM, τ = 1/2 gives S = 8. Out of these three com-
binations, it turns out to be optimal to use 8PAM for
essentially all SNRs. In Figure 3 we plot the optimal
alphabet size versus the state complexity; complex-
ities range up to S = 1024. For some complexities
there is hardly any difference between some of the al-
phabets, and in that case the lines are dotted. As can
be seen the optimal alphabet is a somewhat compli-
cated function; it is mostly affected by the fact that
not all complexities can be reached for all alphabets.
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Fig. 3. Optimal alphabet size (y-axis) as a function
of decoding complexity S. The dotted levels indicate
that two alphabets perform equally well.

4. CODING SYSTEMS

In this section practical coding setups are tested. The
system to be investigated is the one in Figure 1, and
the encoder consists of a convolutional code and an
interleaver. A block of K information bits is first en-
coded by a rate 1/2 convolutional code; in total there
are 2K code symbols. The output of the encoder is
fed to an interleaver with blocksize 2K. The sym-
bol vector v is formed by mapping the output of the
interleaver on an MPAM alphabet. Finally, the trans-
mitted signal s(t) is constructed according to (2).

In this paper we only investigate the (7,5) convolu-
tional code and we set the blocksize K = 1024. De-
coding is done with standard turbo equalization [12].
The performance of the system can never be better
than the performance of the underlying convolutional
code [13]. However, for FTN this performance is ob-
tained at a considerably higher bit rate. By studying
the EXIT charts [14] of the system the convergence
threshold can be determined. The system will con-
verge to the outer code performance as soon as there is
an open convergence tunnel between the EXIT curves
for the FTN system and the outer code. However,
such an EXIT chart analysis has not been performed;
instead we test the performance of the system by ac-
tual receiver tests.

If a full complexity decoder is used as component
decoder for the inner code (the ISI), we are limited
to rather small values for Imax for complexity reasons.
We have therefore also tested a reduced complexity
MAP equalizer called the M∗-BCJR algorithm.1 This
recently proposed [15] algorithm has shown very good
performance on ISI channels; it is an extended version
of the M -BCJR from [16]. The algorithm only retains
M out of the S states at each trellis depth, but rather

1Note that the alphabet size M and the M
∗ in the algorithm

are unrelated.
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than eliminating the other states they are merged into
the M survivor states. This keeps the number of +1s
and −1s on the remaining trellis branches in balance.

In Figure 4 we show the performance of several sig-
nal systems. The performance of binary systems with
τ = 1/3 and hA(t), hB(t) and hD(t) are shown. It is
seen that hA(t) is slightly better than hB(t) which in
turn is better than hD(t), but all of them operate very
close to the underlying (7,5) code. Also shown is the
performance of hA(t) with τ = 1/6 and 1/7. Decod-
ing was performed with the M∗-BCJR algorithm; the
number of kept states at every depth was 8. It is seen
that the system with τ = 1/7 performs poorly. Finally
two quaternary systems are tested; system parameters
are hA(t) and τ = 1/3. The difference between the
two is in the binary to quaternary mapping. It is seen
that the mapping is of great importance. The actual
mappings are shown in Figure 5; the “Bad mapping”
is a Gray mapping.

The conclusion of Figure 4 and of this section is that
the underlying convolutional code performance can be
maintained for many of the above mentioned systems
even though their bit rates are significantly higher.

5. CONCLUSIONS

In this paper we have considered faster-than-Nyquist
modulation based on short pulses. We investigated the
optimal alphabet size, with the outcome that if a low
decoding complexity is the aim, then the alphabet size

should vary with the allowed complexity. But when
transmission power is limited, the optimal alphabet is
often binary. Moreover, we have demonstrated that
the effect on the information rate of increasing the
signaling rate is much stronger than increasing the
signaling alphabet. We also tested some concatenated
coding schemes and showed that bit rates at least six
times as high as conventional can be supported by
the (7,5) convolutional code. Comparisons with Shan-
non limits and orthogonal modulation were performed
as well. Overall, the FTN method with short, finite
pulses is just as promising as earlier papers have shown
it to be with infinite-support pulses.
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