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Preface
All of our present information technology culture with computers, internet, smart-
phones, Bluetooth links, 3D-Tv, iPad tablets, programmable washing/cooking ma-
chines, car engines, navigation computers, etc. (the list goes on and on) is based
on small electrical circuits. The smaller these circuits can be made, the faster and
the better microelectronics can perform.

There is much more round the corner: nano-chip technology could soon dim the
boundary between living and non-living entities, and perhaps even between us and
what is just outside our body: the external world. Some of our capabilities could
be improved or fully regained from deficit situations (think of people recovering
neural abilities, improving their eyesight, using cyber-prostethics, having real-time
monitoring of non-perfect vital functions, etc.)

It is fair to say that some of these developments could impel us to deal with
novel bio-ethical conflicts (voices of concern exist already), but science has forced
us before to face dilemmas of this sort. Past experience over the last few millen-
nia shows that each time humanity has made a great discovery (e.g. the fire, the
wheel, the printing press, the steam engine, the electricity, penicillin, the transis-
tor, internet) the subsequent technological evolution has always proceeded in one
direction: forward.

Regaining a more down-to-earth perspective, present-day electrical circuits
have reached such small dimensions that the laws of physics which govern the
microscopic world, called quantum mechanics, are becoming center-stage. Even
within the status-quo of technological development (we refer to it as "nanoelec-
tronics"), it is becoming increasingly important to have a basic understanding
of how small systems with a finite number of atoms and electrons behave when
subjected to perturbing agents, for example by electric current passing through
them.

The knowledge we have of such systems relies, first and foremost, on elaborate
and careful experiments. However, experimental data can be difficult to interpret,
because even such small systems are in-fact many-particle systems. The analysis
can be (and usually is) further complicated by the fact that samples are "disor-
dered", i.e. we have incomplete knowledge and control of the kind of atoms and
their positions in the sample.

In principle, theoretical research can contribute significantly to this endeavor,
by answering a number of important questions. In practice, often a major obstacle
is the lack of accurate theoretical information on how interactions among particles
and disorder affect the results.

This thesis is about research work in this direction, namely theoretical investi-
gations of the electric current in different nano-structures. We have analyzed quan-
tum wells (layered slices of semiconductors), and quantum wires (one-dimensional
conducting aggregates of atoms). Both are man-made artificial structures where,
as their name suggests, quantum effect play an important role in the current trans-
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mission. These systems have great potential for technological breakthroughs. We
have employed rather different theoretical techniques, aimed to look directly into
the behavior of the current in the steady-state (where the current does not change
in time), or to follow how the current changes in time to reach such steady state.
We have used the Boltzmann’s equation, a method with a long and eminent ser-
vice record in physics, but also a rather new approach (called "density functional
theory"), which uses the total electron density as a basic but only variable and
therefore requires significantly less computing power than traditional methods.

In the end, the actual common denominator to the different parts of our thesis
work is the presence of disorder in our systems. Disorder is ubiquitous in nature:
in fact, in many instances, the notion of order corresponds more to our need for
simple conceptualizations of reality, than to reality itself (that is, in most cases,
in nature, order exists only in an approximate way). Nanoscale systems are no
exception and, in fact, the effects of disorder are expected to be strong in these
small systems.

From the outside, and especially to the eye of the professional physicist, these
considerations can seem a rather tenuous link to thread together somewhat differ-
ent subjects, systems and methodologies in the same thesis. For us, who worked
on these topics for several years, this thesis is a confirmation that, as life itself,
scientific research is often made of pieces whose mutual connection is not imme-
diately apparent, and that, in the end, there is beauty in all different parts of
Physics.
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Chapter 1

Non-equilibrium processes in
hetero-structures: possibility
of THz emission

1.1 Introduction

The generation of far-infrared or terahertz (1 − 10 THz; 1 THz= 1012 Hz) stim-
ulated emission is of great interest for basic and applied research. From an ap-
plication point of view, the development of fundamental coherent and tunable
THz sources is of great importance in solid state spectroscopy, radio astronomy,
medical imaging as well as environmental monitoring. But progress in this area
has been hampered by the lack of compact, low-consumption, solid-state tera-
hertz sources. Until recently, available sources of the THz radiation included CO2

-pumped molecular or Raman gas lasers [1], free electron lasers, backward-wave
oscillators. Conventional semiconductor band-gap lasers require sophisticated per-
formance for THz light generation [2]. Another approach for solid state lasers
has been realized for intersubband semiconductor lasers. In intra-valenceband p-
Ge bulk lasers an upper laser sub-band is populated by electric field heating of
heavy holes (lower laser state sub-band) followed by a recombination via an optical
phonon. The p-Ge lasers of different modifications cover a broad frequency range
(1-4 THz) [3]. However, big energy consumption as well as the low gain of the
p-Ge laser restricts their practical use.

The prospect of a semiconductor laser in the infrared and THz region has been
one of the key reasons for the development and study of semiconductor hetero-
structures. There are a number of physical processes dealing with the THz fre-
quency range specific only for low dimensional semiconductor hetero-structure.
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Carrier transitions between sub-bands formed by spatial quantization, interaction
with impurity levels, or Bloch oscillations in semiconductor superlattices may give
radiation in the THz region. The shift towards hetero-structure lasers were done
after realization of quantum cascade laser which is based on a resonant tunneling
of the electrons through a system of the specially designed quantum wells. This
laser operate on optical transitions between the electron sub-bands. High quantum
output have been demonstrated in the broad near- and middle-infrared emission
range and continuous wave operation up to the room temperature [4].

Carrier dynamics has been extensively studied in semiconductor hetero-struc-
tures with different approaches. One approach relies on self-consistent solution of
rate equations of different levels of sophistication [5]. Another uses microscopic,
and computationally more demanding, methods based on the Boltzmann equation
[6], which employ the Monte Carlo (MC) technique [4, 7]. Rate equation methods
rely on the assumption of equilibrium-like carrier distributions over the structure.
In contrast, the MC method does not involve any such assumption, and gives a
deeper insight into the carrier dynamics.

In the present work we consider two effects that are promising for THz lasering.
The first is dealing with creation and repopulation of resonant states induced by
impurities. The second is the effect of Bloch oscillations on the conductivity of
semiconductor superlattices. These oscillations lead to negative differential con-
ductivity in such systems and consequently to possible gain in the THz region.
All simulations of electron transport in quantum wells and superlattices were per-
formed with the Monte Carlo method.

1.2 Hetero-structures

The hetero-layer semiconductor materials with alternating layers of different semi-
conductors tens of hundreds angstrom thick can be grown by the molecular beam
epitaxy or metalorganic chemical vapor decomposition [8]. The change in the for-
bidden energy gap at the interface leads to the discontinuities in the conduction
and valence band edges. These discontinuities form the potential barriers for the
electrons and holes so that one degree of freedom is lost (see Fig. 1.1). The carriers
can move freely inside the plane of the quantum well but the potential barriers
restrict their motion in the transverse direction. A two-dimensional electron gas
is formed in the narrow-gap material.

A thin narrow-gap semiconductor together with two layers of wide-gap semi-
conductors forms a double hetero-junction structure. In the case of low carrier
densities the potential profile of such hetero-structure can be approximated by the
simple rectangular potential (Fig. 2.2b).

For the electron wave functions and energy spectra the Schrödinger equation
is usually solved within the effective mass and the envelope wave function approx-
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Figure 1.1: Semiconductor hetero-structure (a) and schematic diagram of a double-
hetero-junction structure potential profile (b).

imations [9, 10]: [
− !2

2m∗∇
2 + V (z)

]
Ψ(z) = EΨ(z). (1.1)

where ! is the Planck constant, m∗ is the electron effective mass and V (z) is the
confinement potential. Since the confinement potential acts only in the z direction
and electron motion in the (x, y) plane remains free, the one electron wave function
can be presented as a product of the partial functions

Ψλ(x, y, z) = eik·rϕλ(z), (1.2)

where k and r are two dimensional wave- and space-vectors, respectively. The
total energy of the electron is:

Eλk = Eλ +
!2k2

2m||
. (1.3)

Inserting Eq. (1.2) into Eq. (1.1) one obtains the equation for the electron envelope
function and the energy spectra of the transverse motion:

[
−!2

2
∂

∂z

1
m⊥(z)

∂

∂z
+ V (z)

]
ϕλ(z) = Eλϕλ(z). (1.4)

The eigenvalue Eλ is the bottom of a continuum of levels called a sub-band
(see Fig. 1.2). There is a remarkable difference between two-dimensional (2D) and
three-dimensional (3D) systems: in a 2D system the density of states is finite even
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Figure 1.2: Three lowest sub-bands in a quantum well: (a) dependence of electron
energy on the in-plane electron wave-vector, and (b) dependence of density of
states on electron energy

at the bottom of each sub-band (Fig. 1.2 b) whereas it tends to zero in the 3D
case. This has fundamental consequences on the properties of 2D systems as it
means that all dynamic phenomena remain finite at low kinetic energies and low
temperatures, such as scattering and optical absorption [11].

1.3 Semiconductor superlattices (SSL)

In 1970, Esaki and Tsu suggested that semiconductor superlattice structures can
be realized by the periodically repeated deposition of layers from different materials
[12]. Since semiconductor superlattices are designed as periodic structures with
period d in the growth direction their eigenstates can be chosen as Bloch states
ϕq

λ(z) (where q ∈ [−π/d, π/d] denotes the Bloch vector and λ is the band index).
The states extend over the whole structure. The corresponding eigenvalues E(q)
of the Hamiltonian form the band. This provides the exact solution for a perfect
superlattice without applied electric field. Both the energy width ∆ of these
bands, as well as the extension 2π/d of the Brillouin zone, are much smaller than
the corresponding values for conventional conduction bands. Thus, the energy
bands originating from the superlattice structure are called minibands.
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Figure 1.3: Sketch of conduction band of semiconductor superlattice with mini-
band in equilibrium

An alternative set of basis functions can be constructed by employing localized
wave functions which resemble eigenstates of single quantum wells labeled by the
index n. The Wannier-states Φλ(z − nd) can be constructed separately for each
miniband index:

Φλ(z − nd) =
√

d

2π

∫ π/d

−π/d
dqe−inqdφλ

q (z) (1.5)

Both of these approaches are equivalent, but the second approach is more appro-
priate for investigations of carrier dynamics in SSL in case of high electric field
applied along superlattice structure.

In the 2D systems one degree of freedom of the carriers is restricted by the
confinement potential associated with an interfaces leading to quantization of the
momentum in that direction, while motion in the remaining two directions is un-
constrained. Hence the question of great importance is direction of applied external
electric field. In case of transport parallel to confining potential we can discuss
the transport properties of such system in terms of macroscopic parameters such
as conductivity, drift velocity and so on within semiclassical approach. Transport
perpendicular to confining barriers we will consider in case of SSLs where semi-
classical approach valid only within small range of applied external electric fields
while one can justify existence of miniband. In order to investigate transport in
SSL with such a direction of applied field we will employ Wannier approach to
superlattices.

If an electric field F is applied, the Bloch states are no longer eigenstates of
the Hamiltonian. In the conventional semiclassical approach the Bloch vector k
becomes time dependent. In 1928 Bloch [13] showed that a wave packet given by
a superposition of single band states peaked about some quasi-momentum, !k,
moves with a group velocity given by the gradient of the energy-band function
with respect to the quasi-momentum and that the rate of change of the quasi-
momentum is proportional to the applied field F what is known as acceleration
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theorem:
!k̇ = eF. (1.6)

In case of static electric field that is applied along quantum well (QW) layer
electron dynamics can be represented by a uniform drift of the carriers in k-space
along the field direction since wave function corresponds to free electron motion
in that direction [11].

In case of the field applied along the z axis parallel to the growth direction,
in the effective mass approximation the wave functions in the xy plane are still
simply plane waves with the corresponding eigenenergies εk|| = !2(k2

x + k2
y)/(2m).

As we pointed out earlier the total wave function Ψλk||(r) can be expressed as

Ψλk||(r) =
1√
S

exp(i(kxx + kyy))ψλ(z), (1.7)

where S is the normalization area. The wave function ψ(z) and the corresponding
eigenenergy Ez , which describe the energy spectrum in this case, must be derived
from the Schrödinger equation

[
−!2

2
∂

∂z

1
m⊥(z)

∂

∂z
+ V (z) + eFz

]
ψ(z) = Ezψ(z). (1.8)

Wannier [14] pointed out that due to the translational symmetry of the crystal
if function ψ(r) is an eigenfunction of the scalar potential Hamiltonian (corre-
sponding to the perfect crystal plus external field) with eigenvalues ε than any
ψ(r + nd) is also eigenfunction with eigenvalue ε + n∆ε, where n∆ε = eFd is so
called Wannier-Stark splitting (d being the primitive lattice vector along the field
direction). He concluded that the translation symmetry of the crystal gives rise
to discrete energy spectrum - Wannier Stark Ladder (WSL). Since the samples
used in experiments are of finite length, the potential function V (z) in the above
equation should be a multiple-period square-well potential, bounded at each end
by a higher potential barrier simulating the work function. We will solve Eq. (1.8)
by expanding ψ(z) in terms of a complete set of basis functions. The Bloch states
of each miniband in this SSL can be derived easily. Since the Zener tunneling
(between two energy minibands) will not appear in the system to be studied here,
we will treat individual sub-bands separately and for the convenience we will skip
the band index since we will work within one lowest miniband. From the Bloch
states of a given miniband, we can construct the complete set of Wannier func-
tions Φ(z − nd) , where n runs over all integers. To avoid any ambiguity in our
future description, we will enumerate our eigensolutions according to their spatial
location, and use the terminology that the eigenstate ψi(z) is localized in the ith
unit cell of the SSL sample. Then, we expresses the wave function ψi(z) as

ψi(z) =
∑

n

f i
na(z − nd), (1.9)
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Figure 1.4: Example of the wave function corresponding to a Wannier-Stark level
under an electric field. The thin line indicates the conduction band edge profile
(Paper III)

were a is a Wannier basis function and where f i
n is an expansion coefficient. The

coefficients {f i
n} and corresponding energy eigenvalues {Ei

z} for a SSL sample
of finite size can be obtained by diagonalizing the field-dependent Hamiltonian
matrix

Hi,n(F ) =
∫

SL
dz a∗(z − id)H(F, z)a(z − nd). (1.10)

For further details the reader is referred to Ref. [15]. Eigenfunctions ψi(z) in
the WSL are spatially equally separated by the lattice constant d , in agreement
with the theoretical predication of Wannier [16]. The total energy of the electron
in the SSL is then

Ei
k||

(z) = Ei
z + εk|| (1.11)

The states corresponding to these equidistantly spaced levels are localized states,
as schematically shown in Fig. 1.4 for the case of semiconductor superlattice. The
degree of this WS localization depends on the strength of applied field.

1.4 Boltzmann transport equation
Conventionally, kinetics in semiconductor hetero-structures is treated semi-classically
via the Boltzmann transport equation [18]. The Boltzmann equation may be de-
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rived by writing continuity equation in the 2n-dimensional phase space in terms
of the particle flux through a small volume of this space around r and k [19]

∂

∂t
fi = −1

!∇kE(k) ·∇rfi −
e

!F ·∇kfi +
∣∣∣∣
δfi

δt

∣∣∣∣
collision

, (1.12)

where E(k) is the energy associated with state k, and F is electric field. The last
term in Eq. (1.12) represents the rate of change due to scattering and may be
written as balance of in- scattering and out scattering events as collision integral,

∣∣∣∣
δfi

δt

∣∣∣∣
collision

=
∑

j,k′

Sj,i(k,k′)[fj(k′)(1− fi(k))]− Si,j(k,k′)[fi(k′)(1− fj(k))].

(1.13)
Here, Sj,i(k,k′) represents the scattering rate from a state in sub-band j of wave-
vector k to a state in sub-band i with wave-vector k′. The collision integrals of
the Boltzmann equation are the functions of the scattering rates, and the electron
wave functions are required for the scattering rate calculation. Once the distri-
bution function is known, all quantities of interest, such as carrier drift velocity
and mean energy can be obtained as functions of the applied field and tempera-
ture. It is quite hard to obtain solutions to the Boltzmann equation by analytic
means. Even in the linear response case, with simple scattering mechanisms, ap-
proximations are needed. In most cases one has to introduce crude approximations
and simplifications in order to obtain closed-form analytic solutions for systems
of interest. One might say that simplified analytic solutions to the Boltzmann
equation provide general insight into linear and non-linear transport phenomena
but that they lack predictive power. An important step forward in the solution of
the Boltzmann equation has been achieved by introducing numerical techniques.
The Monte Carlo method is by far the most popular numerical technique [7, 20].
The application of Monte Carlo techniques to high-field transport in semiconduc-
tors was introduced by Kurosawa at Semiconductor Conference held in Kyoto in
1966 [21]. Since then the method has been greatly improved and widely used to
obtain results for various situations in practically all materials of interest. Among
the most significant developments of the Monte Carlo technique are the work of
Price [22], of the Malvern group [23, 24, 25, 26, 27] with the introduction of the
self-scattering scheme and the extension of the method to many-particle simula-
tions [28], to harmonic fields [22] and to degenerate statistics [29, 30]. The Monte
Carlo solution of the Boltzmann transport equation not only gives the distribution
function that verifies the equation, but also yields information on its fluctuations
that is lost in the Boltzmann equation itself [31].
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1.5 Mechanisms of THz emission in 2D semicon-
ductor hetero-structures

Semiconductor hetero-structures have been the subject of intensive studies due to
their great flexibility as model systems for research as well as for industrial im-
plementations. For example by varying composition of semiconductor during the
growth procedure one can construct hetero-structure with desirable band gap pro-
file (including energy distance between sub-bands) or by varying external electric
field change the corresponding position of energy levels (energy distance between
Wannier-Stark levels). Understanding and prediction of the the carrier dynamics
in systems with such complicated structure is an important issue for the design of
structures where conditions for THz lazering are fulfilled.

In this work we will consider two mechanisms that lead to THz radiation in
hetero-structures with 2D electron gas under external applied electric field. With
electric field applied along hetero-structure layers we are going to investigate reso-
nance scattering channel and effect of it to distribution function. In case of super-
lattices we are interested in dynamics in direction of spatial quantization (along
miniband) and resulting region with negative differential conductivity caused by
Bloch oscillation (BO) of carriers under applied dc electric field.

1.5.1 Resonant states induced by impurities

Resonant states of so-called Fano type, i.e., a discrete, and hence localized state,
degenerate with a continuum, are well known from atomic physics [32], bulk semi-
conductors [33, 34, 35, 36, 37] and quantum wells [38, 39, 40, 41]. We will con-
sider resonant states induced by impurities and placed in semiconductor hetero-
structures.

Impurity states in hetero-structures have been the subject of detailed investi-
gations during the last three decades. Traditionally, impurities are considered as a
purely negative factor for carrier dynamics, since their presence are increasing the
scattering rates. On the other hand, doping is essential to supply enough free car-
riers into the system. The general trend has therefore been to remove the doping
region from the active region by using modulation doping. Recently, however, im-
purities have been placed in the active region of Si/SiGe quantum well structures
with idea to apply their properties for novel optical devices in the far-infrared or
terahertz region [42, 43, 44]. Si and Ge are non-polar materials with low intrinsic
absorption at THz frequencies. Taking into account also the possibilities for inte-
gration with existing device technology [45], these systems appear very attractive
for optical applications in the THz region, which recently has received a lot of
attention in a variety of fields [46]. A detailed knowledge of the properties of im-
purity states in Si/SiGe hetero-structures and their effect on carrier distribution
is therefore essential.
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The system of interest here is lattice mismatched Si/Si1−xGex/Si quantum
wells with delta doping. The combined effect of confinement and internal strain
results in the splitting of the acceptor levels and formation of acceptor resonant
states, similar to those in strained p-Ge. These points, together with the possi-
bility of monolithic integration of silicon-based electronic and optoelectronic com-
ponents, are strong incentives for the development of a SiGe quantum cascade
laser.

In narrow quantum wells, the lowest antisymmetric impurity state, which is
bound to the second QW sub-band, may become resonant with the continuum of
the first sub-band [47, 48], - i.e. if symmetry allows it, the localized state can couple
or hybridize with the continuous states. The resonant state is then characterized
by an energy width, which is immediately related to its lifetime [32]. When the
impurity is placed outside the well, in the barrier, similar but entirely different
resonant states may also be formed from the usual shallow donor levels, and their
widths can be evaluated by the resonant coupling method [49]. Attempts have
been made to apply an essentially equivalent method for the case of donors inside
the well [50, 51, 52]. It has however been shown that the approximations made in
this approach are rather severe [53].

It is possible to populate a coupled resonant state by heating carriers with
parallel to QW dc electric field from the bottom of the sub-band, until they reach
the resonance energy [37, 54]. They may then be captured into the resonant
state, and possibly make an optical transition to the ground state. If an inverted
population could be arranged between the resonant state and the ground state, one
could realize a laser based on this process. A particularly appealing point of such a
device is that since the impurity states are attached to the QW levels, it is possible
to control the intra-impurity transition energy by varying the QW parameters.
Experimental evidence of optical transitions involving coupled resonant states in
quantum wells exists from both Raman scattering [55] and absorption spectroscopy
[56] measurements.

1.5.2 Bloch oscillations
In an ideal SSL or crystalline material (without scattering) subject to an electric
field F, the quasi-momentum !k of an electron will move with constant speed in
k space when viewed in an extended zone scheme, !k̇ = eF. Because the energy
εkλ and thereby the group velocity is a smooth periodic function of k, the elec-
trons would execute a periodic motion in real space with a Bloch-oscillation (BO)
frequency !ωB = edF . When reduced to the first Brillouin zone, k would undergo
a Bragg reflection when it hits a zone boundary, which leads to a discontinuous
periodic motion in k space and the same continuous periodic motion in real space.
As is well known scattering completely change this behavior in normal crystalline
materials. An electron can then only complete a small fraction of a BO period
before it is scattered into another state, and the scattering mechanisms then lead
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to normal ohmic conduction.
In a man-made SSL, the Bloch period is much smaller owing to the smaller

Brillouin zone, and following the proposal of Esaki and Tsu [12], the possibility
of Bloch oscillations in SSL has attracted great interest. In particular, Bloch
oscillation in semiconductor superlattices is attractive as a source of coherent ter-
ahertz electromagnetic waves, because the frequency of the radiation can be tuned
in the THz range by dc bias fields. Since the first proposal of high-frequency
Bloch oscillators by Esaki and Tsu, considerable effort from both experiments
[57, 58, 59, 60, 61, 62, 63, 64] and theories [65, 66, 67, 68, 69] has been made to
search for Bloch oscillations and obtain THz emission. Ultra-fast time-domain ex-
periments demonstrate that electrons in SL minibands perform at least a few cycle
BOs [58, 61, 62, 70, 71]. However, the idea of the Bloch oscillator was challenged by
asking whether BO is useful in generating (amplifying) electromagnetic waves [72].
In the Wannier approach to miniband transport, the emission and absorption of
EM waves take place between the adjacent two WS levels; hence they occur at the
same frequency and cancel each other. Consequently, an ideal SL has no net gain
or loss for electro-magnetic waves. However, when scattering exists in the system,
new transition channels, i.e., scattering-assisted transitions, become available [73].
Scattering processes cause transitions between Wannier-Stark states which are the
eigenstates of the superlattice in an electric field yielding a THz emission with
Bloch frequency and a net current in the direction of the electric field [74]. Esaki
and Tsu [12] pointed out that in such a system the electrons can demonstrate a
negative differential drift velocity with increasing field what gives rise to a gain in
the frequencies of the order of the Bloch frequency. It was suggested that Bloch
oscillations responsible for it. Only now the availability of high-quality semicon-
ductor superlattices with controllable lattice periodicity has stimulated extensive
investigation on phenomena relevant to the possibility of THz gain. Therefore, it
is very crucial to clarify the nature of the scattering mechanisms in superlattices.
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Chapter 2

The Monte Carlo Technique
with application to Boltzmann
transport

The most commonly used approach for the theoretical analysis of energy relaxation
as well as transport experiments is the Monte Carlo (MC) method [7], both in
bulk and in low-dimensional structures. One can describe Monte Carlo method as
simulated experiment which possesses a great flexibility. This has proved to be a
very powerful technique allowing the inclusion at a kinetic level of a large variety
of scattering processes. Indeed, the extremely predictive character of the MC
simulation strategy in the design and optimization of current optoelectronic devices
has been recently confirmed by fully three-dimensional simulations of transport as
well as lasing properties of light sources both in the mid- and far-infrared spectral
regions [4].

Monte Carlo methods are the numerical methods based on the random quanti-
ties. As applied to the electron transport in the semiconductor systems, the Monte
Carlo method consists of a simulation of one or several electron motion inside the
crystal. The electrons move in the external electric and magnetic fields. The
motion of the electrons is interrupted by the scattering events. The duration of
electron free flight between two successive collisions and the scattering mechanism
responsible for the end of the free flight are selected stochastically in accordance
with scattering probabilities describing the microscopic process [31]. Monte Carlo
model relies on generation of sequences of random numbers with given distribution
probabilities. Monte Carlo technique became popular with the advent of comput-
ers, as computers can generate sequences of random numbers evenly distributed
between 0 and 1 at sufficiently fast rate. Random numbers x with a given proba-
bility distribution f(x) in an interval (a, b) can be generated starting from random
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Figure 2.1: Rejection technique for the random number x with distribution f(x)
generation starting from evenly distributed random numbers.

number r evenly distributed in the interval (0, 1). The simplest way is to solve
integral equation:

r

b∫

a

f(x)dx =
x∫

a

f(u)du (2.1)

Sometimes, the above simple technique cannot be applied, because it is not possible
to evaluate analytically the integrals or to solve the equation with respect to x. In
these cases rejection technique can be used.

With the rejection technique, the pairs (x, y) of random numbers are generated,
where x is the random number with flat distribution in (a, b) and y in (0, C), C is
positive number such that C ≥ f(x) in the whole interval (a, b) (Fig. 2.1). If

y ≤ f(x1) (2.2)

then x1 is retained as choice of x, otherwise x1 is rejected, and a new pair is
generated until equation 2.2 is satisfied. The probability of accepting xi is propor-
tional to f(xi), as desired. When steady state homogeneous phenomenon is under
investigation, it is sufficient to simulate the transport of one electron. From the
ergodicity we can assume that the electron motion simulation for the sufficiently
long time will give information about behavior of the entire electron gas. However,
if the transport process is not homogeneous or is not stationary (time dependent
electric or magnetic fields, inhomogeneous systems), we cannot rely on the ergod-
icity of the system, and it is necessary to simulate the ensemble of electrons. In
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our calculations we will use the Ensemble Monte Carlo, as it is more general. Fig-
ure 2.2 shows the structure of the typical Monte Carlo program for the electron
transport simulation in a semiconductor. The simulation starts from the defini-
tion of the physical system: the hetero-structure, the parameters of the materials,
the energy dispersion relations, and the values of physical quantities, such as elec-
tric field strength and lattice temperature. Some parameters, such as coupling
strengths for alloy disorder and acoustic scattering, hot phonon relaxation times
when they are not well known, can be used as fitting parameters. At this step the
parameters that control the simulation should be defined. Such parameters are
duration of electron transport, number of electrons simulated, precision of electron
distribution function and so on. When the physical system is defined, the next
step is generation of the initial conditions for each electron under simulation. In
the case of electron transport in a homogeneous material, only wave vector for
each electron should be defined. If the steady-state situation is simulated, the
simulation time should be long enough to avoid the influence of initial conditions.

When a highly inappropriate initial conditions are generated, the initial part of
the simulation can be influenced by this inadequate choice. The time of simulation
must be long enough to exclude influence of the initial conditions on the electron
transport. In order to avoid the undesirable effect of an inappropriate initial con-
ditions on average results and to obtain better convergence, we eliminate the first
part of the simulation from the statistics. When we are dealing with low electric
field electron transport, we use equilibrium Fermi-Dirac or Boltzmann distribution
functions to generate initial electron velocities. However, if a very high electric
field is applied, the electron energy generated by the equilibrium distribution is
much lower than the average energy in the steady state conditions, and a big part
of initial transient should be excluded from the statistics. As electron is moving
in the applied electric field F, its wave vector k changes continuously according
to the acceleration theorem 1.6. In order to find electron wave vector just before
scattering event, one should know electron free flight time. The probability P (t),
that electron will suffer its next collision during dt around t is given by:

P (t)dt = W [k(t)]exp

[
−

∫ t

0
W [k(t′)]dt′

]
dt (2.3)

The integral at the exponent usually is complicated and rejection technique should
be used to generate electron free flight according to 2.3. As electron free flight
time should be generated after each scattering event, the use of the rejection tech-
nique would dramatically increase simulation time. Rees [23] has devised a simple
method to overcome this difficulty. A new fictitious ’self-scattering’ is introduced,
such that the total scattering probability (the sum of all real scattering probabili-
ties plus self-scattering) is constant and equal to Γ ≡ t−1

0 . If the carrier undergoes
a self-scattering, its state after scattering event k′ is taken to be equal to its state
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Figure 2.2: Flowchart of a typical Monte Carlo program [7].

before scattering event, so that in practice the electron path continues unperturbed
as if no scattering at all have occurred. The value of G is the maximum value of
P (k) in the region of k space in interest. Now, with a constant P (k) = t−1

0 ,
equation 2.3 reduces to:

P (t) =
1
τ0

exp(−t/τ0) (2.4)
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and random evenly distributed numbers r can be used to generate stochastic elec-
tron free flights ttr using Eq.(2.1):

ttr = −τ0ln(1− r) (2.5)

Using the technique proposed by Rees, simulation time is increased, as one has
to take care of self-scattering events. However this increase is in general, more
than compensated for by the simplification in calculating the free-flight duration.
During the free flight, electrons are moving according to acceleration theorem. At
its end the electron wave vector k is known, and all scattering rates Wj(k) can
be evaluated, where j indicates the number of the scattering mechanism. The
probability of self-scattering will be a complement to Γ of the sum of the all real
scattering mechanisms. The scattering mechanism responsible for the end of the
free flight must now be chosen among all those possible, according to the relative
strength of all scattering mechanisms. The evenly distributed random number r
is generated and the product y = rΓ is compared with the successive sums of the
Wj(k). The jth scattering mechanism is chosen if j is such that the first of the
partial sums W1, W1 + W2, W1 + W2 + W3, ... is larger than y:

y < W1 + W2 + · · · + Wj (2.6)

The Monte Carlo approach for solving the Boltzmann transport equation is nat-
urally valid under the same conditions as Boltzmann equation itself. This means
that all scattering events are assumed to occur instantaneously.

Once the scattering mechanism responsible for the end of the electron free flight
has been determined, the new electron state after scattering must be chosen as the
initial state for the next electron free flight. When a true scattering has occurred,
the electron state after scattering must be generated stochastically, according to
the differential cross-section of the scattering mechanism Wif (k, k′) responsible
for the end of the free flight. Since electron scattering differential cross-sections
for the 2DEG are complicated, we employ rejection technique to find electron
state after scattering. In the Ensemble Monte Carlo, the motion of all electrons
is performed as described earlier. The history of each electron is subdivided into
equal time intervals and all required data is collected at the end of each interval.
The average value of quantity 〈A(t)〉 is defined as the ensemble average at time t
over N electrons of the system:

〈A(t)〉 =
1
N

∑

i

Ai(t) (2.7)

The electron mean energy and drift velocity can be calculated, after Eq. (2.8). For
calculation of the electron distribution function, two-dimensional electron wave
vector k-plane is subdivided into cells of fixed area ∆k, and the number of sim-
ulated electrons in each cell is calculated. The steady-state electron distribution



18 The Monte Carlo Technique with application to Boltzmann transport

function is proportional to the number of electrons n(k)∆k that at time t are
found to be in a cell ∆k around k. Energy relaxation time may be computed from
the Monte Carlo simulation in following way. Electron energy relaxation time is
estimated from the power gain-loss balance:

τξ(E) =
ξ(E)− ξ(0)
Vdr(E)E

(2.8)

where ξ(E) is the electron mean energy, Vdr(E) is the electron drift velocity and E
is the strength of the applied electric field. Electron mean energy and drift velocity
can be evaluated from the Monte Carlo simulation. Supposing that the electron
energy relaxation usually is non-exponential, only effective energy relaxation time
can be calculated from the energy balance equation.

Two types of hetero-structures were involved in our investigation. First is sin-
gle QW structure, where we consider effect of resonant scattering on drift velocity
and populating of resonant state. Second is multiple QW structure - superlattice
with idea of investigating effect of Bloch oscillations on drift velocity in a regime
with negative deferential conductivity. In both cases 2D distribution function (in
a layer of QW) were simulated. In case of single QW external electric field were
applied along QW layer what causes electron heating and repopulating of different
valleys and sub-bands – within MC approach we treated distribution function in
two sub-bands – general MC. In case of superlattice, fields were applied perpen-
dicular to QW layers. Field were too high to consider system within semiclassical
approximation. As mentioned earlier the energy spectrum of a Bloch electron un-
der an external dc field F consists of an infinite series of eigenvalues which are
equally separated by an energy difference eFd but with usual quadratic dispersion
in quantum well layer. Current in a field direction then was caused by a carrier
hopping between Wannier-Stark states due to different scattering mechanisms.
Within MC simulation both 2D distribution function within quantum well layer
and transitions between Wannier-Stark states were taken into account. Informa-
tion about number of transitions along the field direction and against gave the
value of the current trough the system. For details of Monte Carlo calculations
specific to each case, see Chapter[3] and Chapter[4].



Chapter 3

Electron transport in the
presence of resonant scattering
in Si/SiGe hetero-structures

The formation of resonant states is accompanied by the coherent capture and
emission of carriers by localized impurity orbitals. Since a carrier can be trapped
in a localized impurity orbital for a certain time interval , such process has profound
influence on the non-equilibrium distribution function. It was proved [75] that such
process provides a new mechanism of carrier population inversion, which explains
the origin of far-infrared lasing from strained p -Ge [76].

In connection to the possible THz radiation from Si/SiGe quantum wells, such
resonant states were studied in [77]. It was found that the width of the resonant
level is very sensitive to the position of the impurity when the impurity is moved
from the center of the well into the barrier. Therefore, in a δ-doped quantum
well sample, the electron transport parallel to the interfaces will depend on the
position of the δ-doping. This effect should also depend on the strength of an
applied electric field which can inject hot carriers into the resonant states. The
study of the hot carrier mobility or drift velocity in a δ-doped quantum well can
give us valuable information on the characteristic features of resonant states.

In earlier works on carrier mobilities, one usually took only the conventional
Coulomb scattering channel (CCS) channel by impurity ions into account. The
presence of resonant states opens another impurity scattering channel which we
call resonant state scattering (RSS) channel. How the RSS channel will affect the
carrier mobility is still an open question. Experiments on bulk doped semicon-
ductors can hardly provide the answer. Resonant states can also be formed in a
doped quantum well in which the impurity levels attached to a higher sub-band



20
Electron transport in the presence of resonant scattering in Si/SiGe

hetero-structures

will be degenerate with the 2D continuum of the lower sub-band. A resonant state
is then formed through hybridization of these two degenerate states, and the re-
sulting energy level has a certain width. It is important to determine this width
in order to consider the effects of the coupled impurity states on the optical and
electrical properties of modulation-doped quantum wells.

In this thesis, we have performed Monte Carlo simulations on the hot carrier
drift velocity in a δ-doped Si/SiGe quantum well, taking into account all important
scattering mechanisms including both the CCS channel and the RSS channel of
the impurity scattering. We used a non-variational method outlined in Ref. [77]
to obtain energy levels and wave functions of shallow donors. In this approach, the
total Hamiltonian is expanded in a complete basis of quantum well eigenstates,

H =
[
−!2

2
∂

∂z

1
m⊥(z)

∂

∂z
+

1
m||(z)

∇2
2D

]
+ V (z) + Vc(r) (3.1)

Here V (z) is the quantum well potential profile and Vc(r) the impurity potential
which is taken as the Coulomb potential. This turns the Schrödinger equation
into a matrix eigenvalue problem, which is diagonalized to yield all localized,
hybridized, and continuum states. The approach has several benefits over the
variational method. First of all, no assumptions are made regarding the form of
the impurity wave functions, but instead the correct envelope function obtained,
which then can be employed for calculating optical matrix elements. In addition,
the difference in the effective mass in the well and barriers is easily included, as
well as an electric field, and we are able to consider anisotropic materials such
as Si and Ge. It is furthermore possible to place the impurities in the barrier
instead of in the well, and we thus have a unified approach for treating impu-
rities in modulation-doped hetero-structures. The diagonalization of the matrix
problem provides the energies of all eigenstates of the Hamiltonian in Eq. (3.5),
and the corresponding eigenvectors allow us to evaluate the wave functions and
hence matrix elements such as optical dipole-interaction strengths. In our work,
we have particularly focused on the lowest antisymmetric impurity state. This
state has been shown to be attached to the second QW sub-band, and for narrow
well widths it becomes resonant with the continuum of the first (lowest) sub-band
[47, 48]. Any state appearing in the energy region below the lowest QW level must
be localized. The lowest one will be the impurity ground state. There are several
states attached to the lowest sub-band, and they form what resembles a Rydberg
series, with decreasing binding energies converging towards the lowest sub-band
edge. Actually, such series of localized states appear below each sub-band, i.e.,
each QW level has a set of impurity states attached to it . The binding energy of
a localized state is therefore to be understood as the smallest energy required to
place an initially localized electron into the corresponding QW sub-band.

As long as the impurity is placed in the center of the well, no hybridization or
coupling can take place between impurity states that are resonant with sub-bands
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of opposite parity. Coupling will however be present as soon as any asymmetry that
breaks the parity conservation is introduced such as shifting the impurity position
or applying an electric field. The localized state is then ’diluted’ throughout a band
of actual stationary states, whose profile is represented by a Lorentzian resonance
curve [32].

The system for which we will perform the Monte Carlo simulation is a simplified
quantum well MODFET structure. The experimentally often-used continuously
doped supply region is replaced by a δ-doping layer, separated by an undoped
spacer from the active layer, which consists of a Si quantum well (QW), grown
between infinitely wide Si1−xGex barriers.

The quantum well is strained due to the lattice mismatch between the Si and
the SiGe layers. In result, the degeneracy of the six ∆ valleys (the conduction
band minima) is lifted. For (001)-grown layers, the two ∆⊥ valleys, perpendicular
to the QW interfaces, will be the lowest conduction-band valleys, strain-split from
the four ∆|| valleys by an amount large enough (about 0.7 eV) that the latter
valleys can be disregarded altogether [78]. This valley splitting has important
consequences for the transport properties of Si/SiGe structures, as will be discussed
in Section 3.1. Apart from that, the strain effect is incorporated into the band
offset U , which makes up the dominating part of the potential profile V (z) for the
conduction band edge.

We will work entirely within the effective-mass approximation. The effective
mass m|| for the electron motion in the xy-plane is considered to be constant,
while the effective mass m⊥ along the growth direction is spatially dependent.
Since there is no confining potential in the QW plane, the electrons will propagate
as plane waves, accelerated by the applied electric field. The electron states in the
conduction band can thus be written as

ψλk(r, z) =
1
L

eik·r ϕλ(z), (3.2)

with energies
Eλk = Eλ + Ek. (3.3)

The index λ enumerates the quantum well levels, r is the radial vector in the
xy-plane, and k the 2D wave vector for the in-plane motion. We apply periodic
boundary conditions in the xy-plane, the area of which is A = L2.

Although the non-parabolicity of the QW sub-bands may be rather strong
in Si/SiGe systems, [79] we shall for simplicity assume a parabolic and isotropic
conduction-band dispersion relation

Ek =
!2k2

2m||
. (3.4)

The energies Eλ and the wave functions ϕλ(z) are the solutions of the one-
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dimensional QW Schrödinger equation

H =
[
−!2

2
∂

∂z

1
m⊥(z)

∂

∂z
+ V (z)

]
ϕλ = Eλϕλ. (3.5)

When the doping concentration is large enough to produce band bending, this
effect is incorporated in V (z), and Eq. ((3.5)) is then solved self-consistently to-
gether with the Poisson equation, using standard methods.

In the following section we shall use these solutions to calculate all scattering
matrix elements. In this way, we can perform a Monte Carlo simulation which
takes proper account of the two-dimensional nature of the electronic states in the
quantum well.

3.1 Scattering mechanisms
The relevant phonon branches for energy relaxation in the conduction band of
Si are inter-valley phonons, since scattering by intra-valley optical phonons is
forbidden by symmetry [80, 19].

The inter-valley scattering in Si can be characterized as zero-order optical and
first-order acoustic processes, respectively [80, 81]. These labels are derived from
the assumed form of the respective interaction Hamiltonians (see below), rather
than any physical interpretation of the corresponding vibrational modes. In order
to account for the experimentally observed temperature-dependence of the mo-
bility in bulk Si, one generally includes three g (scattering between opposite ∆
valleys) and three f (non-opposite valleys) processes [82, 83]. However, as men-
tioned in the previous section, the electron transport in a strained Si quantum well
can be considered to take place only in the two ∆⊥ valleys, and hence only g pro-
cesses are possible. The resulting reduction of inter-valley scattering, together with
the low in-plane effective mass in the ∆⊥ valleys, are considered to be the reasons
for the very high calculated and observed electron mobility in modulation-doped
Si MODFETs [84, 85].

In addition to the inter-valley phonons, we will also include a number of elastic
– or approximately elastic – scattering mechanisms, which thus only contribute
to the momentum randomization. Besides intra-valley acoustic phonons, we also
consider impurity scattering through two separate channels (ionized impurity scat-
tering and resonant scattering), and interface roughness scattering. The results
obtained considering all these scattering mechanisms are presented in Papers I and
II.

The Monte Carlo approach for solving the Boltzmann transport equation is
naturally valid under the same conditions as the Boltzmann equation itself. This
means that all scattering events are assumed to occur instantaneously. The internal
processes of the collision events themselves are of no importance, and we are
therefore able to calculate the transition rate (probability per unit time) Wkk′

λλ′
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between well-defined initial ψλk and final ψλ′k′ states using the Fermi Golden
Rule

Wkk′

λλ′ =
2π

!

∣∣∣Mkk′

λλ′

∣∣∣
2

δ(E′ − E − δE), (3.6)

where δE is the amount of energy gained or lost in an inelastic process, and E and
E′ are simplified notations for the energies of the initial and final (primed) states,

respectively. The scattering matrix element
∣∣∣Mkk′

λλ′

∣∣∣
2

for each particular scattering
mechanism will be derived in the following sections.

The δ-function in Eq. ((3.6)) ensures energy conservation; momentum conser-
vation is however less strict in 2D than in 3D, since the momentum component
parallel to the QW growth direction is not conserved. In result, phonons (both for
elastic and inelastic mechanisms) may be emitted and absorbed with any momen-
tum, as long as the in-plane component is conserved. The various phonon modes
are however independent of each other, and it therefore suffices to sum the final
transition probabilities corresponding to each particular value of the momentum
of the emitted/absorbed phonon.

The total scattering rate Wk
λ , i.e. the probability per unit time to be scattered

out of a state ψλk by a particular mechanism, is obtained by summing over all
possible final states:

Wk
λ =

∑

λ′k′

Wkk′

λλ′ (3.7)

Using the periodic boundary conditions, the summation over k′ = (k′, θk′) can be
converted into a double integral. The parabolic dispersion relation (3.4) gives the
familiar constant density of states in a 2DEG

ρλ(E) =
m||

2π!2
Θ(E − Eλ), (3.8)

where the step-function Θ(x) indicates the absence of states below the sub-band
edge Eλ. Eq. ((3.8)) gives the density of states per spin (and valley); none of the
scattering processes we will consider have the ability to flip the spin polarization.

We can now use Eq. ((3.8)) to turn the integration over k′ into integration over
E′, and thereby obtain

Wk
λ =

2π

!
m||

!2

L2

(2π)2
∑

λ′

∫ ∞

Eλ′

dE′
∫ 2π

0
dθk′

∣∣∣Mkk′

λλ′

∣∣∣
2

δ(E′ − E − δE). (3.9)

The integration over energy is more or less trivial, due to the δ-function, and the
angular integral can, depending on the particular scattering mechanism, often be
evaluated analytically. Note how the lower limit of integration over the energy
E′ takes into account the vanishing density of states below the corresponding
sub-band bottom Eλ′ .
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3.2 Monte Carlo model details
The two commonly used approaches for Monte Carlo simulations in semiconduc-
tors are single-particle and ensemble simulations. If the system to be investigated
exhibits strong carrier-carrier correlation, or involves a time dependent response
to an external stimulation, it is necessary to use the ensemble Monte Carlo ap-
proach. However, we will study the transport properties of independent carriers
in semiconductors under an applied homogeneous electric field. Although several
different scattering mechanisms are taken into account, we do not include carrier-
carrier correlation nor impact ionization. Hence, it is proper to use the standard
single-particle Monte Carlo technique which was developed for carrier transport
in semiconductors [7]. There are two methods to calculate the drift velocity of
the carriers. One can first simulate the carrier distribution function in momen-
tum space, and then average the momentum with this distribution to obtain the
velocity. One can also simulate the drift velocity directly without using the distri-
bution function; that is the approach we have adopted, and thus we simulate the
distribution function and the drift velocity simultaneously. In this way it is pos-
sible to use the distribution function to check the convergence of the simulation.
Furthermore, without any applied electric field the distribution function is spheri-
cally symmetric due to thermalization, but will become asymmetric when the field
is turned on. Such information of the distribution function stretching along the
field direction will be very useful for the understanding of the calculated drift ve-
locity. Because our Monte Carlo simulation includes inter-valley scattering, it is
necessary to specify the electron eigenstate ψλkj in a Si/SiGe quantum well by the
sub-band index λ , the 2D wave vector k, and the valley index j. Because the bulk
symmetry is broken in layer structures, in a Si/SiGe quantum well there are only
two low-lying valleys to take into account [78]. Under an applied dc electric field
F parallel to interfaces, an electron will perform free-flight motion between two
collisions. During the free flight motion only the wave vector k changes with time;
specifically, it evolves linearly as the carrier is accelerated by the field. Conversely,
when an electron is scattered by one of the various scattering mechanisms, its state
changes instantaneously from ψλkj to ψλ′k′j′ . We will label the free-flight time
intervals by l, and specify the lth time interval as from tl,i to tl,f . Let vl(k(t)) be
the velocity during the free flight in the time interval l. Then the drift velocity
vdr(ε) is calculated as [7]

vdr(ε) =
1
T

∑

l

vl[k(t)]dt (3.10)

where T =
∑

l(tl,f − tl.i) is the total duration of the Monte Carlo simulation.
To perform the Monte Carlo simulation, we keep track of the momentum

changes during each free flight, and then take a proper average. In practice it
is more convenient to average over the energy. We will simplify the notation by
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defining kl,i = k(tl,i) and kl,i = k(tl,i) as the initial and final wave vectors of the
free-flight interval l, and we also introduce K = eεT/!. Using the relation

Vλj(k) =
1
!∇kEλ,j(k) (3.11)

where Eλ,j(k) is the 2D sub-band energy with explicit reference to the jth valley,
we can rewrite Eq. (3.10) as

vdr(ε) =
1
K

∑

l

∫
kl,ikl,f

1
!∇kEλ(l),j(l)(k)dk

=
1

!K

∑

l

[Eλ(l),j(l)(kl,f )− Eλ(l),j(l)(kl,i), (3.12)

where we have explicitly indicated that both the sub-band and valley index are
functions of the interval label l. When using this equation to simulate the drift
velocity for different temperatures under various applied electric fields, the conver-
gence of the Monte Carlo results presented below has been checked carefully. To
produce the Monte Carlo numerical results, we first derive the eigensolutions from
the Schrödinger equation (3.5) in a Si/SixGe1−x quantum well using well-known
values of the electron effective mass, band offsets, and deformation potentials [78].
The details of the calculation can be found in Ref [77]. With these eigensolutions
one can calculate all the relevant scattering rates given in the preceding section,
and the Monte Carlo calculation can then be performed.
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Chapter 4

Electronic transport in SSL in
the Wannier-Stark regime

Let us consider a semiconductor superlattice subject to an electric field F along the
growth direction z. We will assume that a semiclassical description is sufficient. If
an electron does not suffer any scattering it will execute a periodic motion in real
space, and if k is restricted to the first Brillouin zone the motion will be periodic in
k space as well, and the period is ωB = edF/!. If now scattering events are taken
into account, the behavior will be altered, and evidently the cross-over is expected
to take place when the scattering relaxation time τ is of the same order as the
reciprocal BO frequency 1/ωB . It is thus convenient to introduce a threshold field
F0 such that F0 = !/edτ .

For a weak field F + F0 the electron cannot complete even one cycle of BO
before being scattered, and hence its transport properties can be described in terms
of a drift velocity. This drift velocity increases with the electric field strength. In
the high-field limit ωBτ , 1, an electron can perform many cycles of BO without
suffering a scattering. In this case the Bloch electrons can hardly contribute to
the net charge transport, and consequently the drift velocity of electrons in a SSL
approaches zero. As a result, the negative differential drift velocity appears in
the high-field regime F , F0. In a bulk crystal the lattice constant is so small
that the corresponding threshold field F0 is too high to be achieved in reality.
The large value of the periodicity d in SSL samples provides the possibility to
observe the BO and related physical properties. Many experiments [58, 61, 62,
71, 86] have indeed confirmed the existence of BO in SSL at low temperatures
as well as at room temperatures. Shortly after the proposal of Esaki and Tsu
[12], there appeared a theoretical study [66] on the interaction between a weak
field of terahertz frequency and the electrons in a SSL miniband performing BO
with allowed energy relaxation. It was suggested that such an interaction can
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lead to an amplification of the THz field in the region of frequency less than the
BO frequency ωB , and the amplification curve exhibits a resonance like structure
around ω - ωB . An extension of the weak-field theory [66] of amplification to the
case of a strong THz field [87, 88, 68] indicated the possible resonant amplification
of THz fields at ω = nωB with integer n.

With increasing strength of F, the quasi-classical method becomes less reliable
and one needs a full quantum mechanical approach. The analytical solution of
Wannier [16] proves that the energy spectrum of a Bloch electron under an external
dc field F consists of an infinite series of eigenvalues which are equally separated
by an energy difference eFd = !ωB . This series of eigenenergies is called the
Wannier-Stark ladder (WSL). The corresponding eigenfunctions are also equally
displaced by a distance d in real space along the field direction. In a realistic
SSL sample, the levels in a WSL are broadened by scatterings. Under a weak
field F, the small energy separation eEd is smeared out by scatterings, and so the
quasi-classical energy band description is a good approximation.

In this chapter, the electron transport in SSL under an applied dc electric field,
driven by the scattering-assisted electron transitions between neighboring WSL
levels, is studied with a Monte Carlo approach. To provide a complete picture
of the physical phenomenon, we investigate the combined effect of optical phonon
scattering, acoustic phonon scattering, and elastic alloy disorder scattering. We
analyze the contribution of each scattering mechanism to the total current, as well
as effect of each scattering mechanism on the carrier distribution function. Our
calculated field dependence of the drift velocity will be compared with the data
obtained recently from the experiments on time-domain THz spectroscopy of an
AlGaAs/GaAs SL [17]. These experiments provide a method to determine the
electric field dependence of the drift velocity of carriers in undoped SSL.

We will investigate the carrier transport along the SSL growth direction for the
electric field strength F where system exhibit negative deferential conductivity. In
this case the semiclassical theory is no longer valid and carrier transport occurs
via scattering assisted hops between the WSL states ψi(z) localized in different
SSL unit cells. In a GaAs/AlGaAs SSL the essential scattering mechanisms are
the alloy disorder scattering, the polar optical phonon scattering, and the acoustic
scattering due to both the deformation potential and the piezoelectric interac-
tion. To study the scattering-assisted electron transport between WSL levels in
a semiconductor superlattices under an external dc field, in order to reach high
quantitative accuracy, we must use the electron eigensolutions to calculate the
matrix elements of all scattering processes. If the electric field F is not extremely
strong so as to cause Zener tunneling, the eigensolutions of the WSL levels can be
derive with a well-established computation scheme [15].
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Figure 4.1: A schematic illustration of the scattering-induced hopping transport
in a biased SSL in the WSL regime (Paper III)

4.1 Transport in SSL as scattering-assisted carrier
hopping

The scattering-assisted carrier hopping is illustrated schematically in Fig. 4.1,
where the positions of the unit cells in the SSL are marked as i−1, i, i+1, i+2, · · ·
The WSL levels Ei

z are attached to these unit cells as indicated by horizontal
lines, together with a series of two-dimensional energy dispersions εk|| . We notice
that the WSL levels Ei

z are equally separated by the BO energy !ωB . A car-
rier that occupies its initial state Ψik||(r) marked by the solid dot in Fig. 4.1 can
either be scattered into the states at the same WSL energy level Ei

z this intra-
level scattering is indicated in Fig. 4.1 as process I , or it can hop to the state
Ψjk||(r) associated with another WSL energy level Ej

z with i .= j (this inter-level
scattering is indicated in Fig. 4.1 as process I). The intra-level scattering cannot
produce a finite current, but can significantly affect the distribution function over
the two-dimensional momentum k||. In the presence of a strong electric field, the
electron system in a SSL can be viewed as a number of quasi-two-dimensional elec-
tron ensembles, each of which is localized in one SSL unit cell. These ensembles
are coupled by the inter-level scattering mechanisms to be introduced below. The
hopping of electrons can occur via the emission or absorption of phonons as well
as by elastic alloy disorder scattering. The rates of various scattering processes
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between Ψik||(r) and Ψik′
||
(r) depend on the applied field strength and the tem-

perature. As an example to clarify this point, let us assume a small momentum
component k|| of the electron in its initial state Ψik||(r) such that the associated
kinetic energy εk|| is less than the BO energy !ωB . This is usually the situation
if the applied electric field is strong and the temperature is not too high. Via
the emission of phonons or by elastic scattering the electron can hop to the state
Ψik||(r) only if j > i . Such inter-level scattering processes are marked in Fig. 4.1
as process I. Inter-level scattering via the absorption of phonons can be signifi-
cant only at high temperatures. Inter-level scattering will produce a drift electric
current flowing through the SSL. In our numerical calculations of this current, all
inter-level scattering-assisted transport processes are included.

We would like to point out that a similar mechanism of scattering-assisted
hops between unit cells in a disordered SSL in the absence of an external electric
field has been studied [89]. However, since there is no electric driving force, the
electron transport has the character of diffusion rather than drift, and there is
no net current flow. It is important to emphasize here that in our study the
electric field strength is not extremely high so as to cause Zener tunneling. Hence,
the scattering-assisted hops are restricted within the WSL associated with one
miniband.



Chapter 5

Lattice (TD)DFT applied to
disordered and correlated
systems and quantum
transport

5.1 Introduction

5.1.1 Time Dependent Quantum Transport (TDQT)

Recently emerged molecular electronics [90] requires thorough research on trans-
port phenomena of the systems containing molecular device attached to two metal-
lic leads. Quantum transport theory should be able to take into account all
the details of the molecular subsystem (which contains either single or very few
molecules) and of the junction between molecular device and bulk leads. The rea-
sonable choice will be to start with DFT which provides the knowledge of atomistic
details with very good accuracy.

Since the pioneering work by Lang and collaborators [91, 92], density-func-
tional theory in the adiabatic local density approximation (ALDA) has become a
standard method for describing steady transport of nanoscopic devices or molecules
attached to macroscopic leads [93, 94, 95, 96]. The ALDA is strictly an effective
one-body scheme and does not per se require any many-body techniques, but it
has proved convenient to use the machinery of non-equilibrium Green function
theory (NEGF) [97, 98] to treat the effects of the leads on the central device.

A problem of great interest is also how a steady state is established after an
external bias has been applied. It is then necessary to follow the temporal evolution
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when a system initially in equilibrium is exposed to external fields.
The conceptually simplest method is to consider large but finite external elec-

trodes with an initial charge unbalance [99, 100, 101, 102, 103, 104]. With finite but
large leads, a true steady state will not exists but rather a long-lived plateau when
initial transients has decayed but when the electrodes are not yet discharged. The
method with finite but large electrodes has also been applied to ultra-cold atoms
in 1D optical lattices [105].

Alternatively, one may consider a finite central region connected to semi-infinite
macroscopic leads [106, 107, 108, 109, 110]. The entire system is initially in equi-
librium, and at a certain time a possibly time-dependent bias is applied. The time
evolution is usually obtained via NEGF via the Kadanoff-Baym (KBE) equations
[97], also in one-particle schemes like ALDA where it is strictly speaking not nec-
essary. Within NEGF one can also go beyond effective one-particle schemes and
consider a variety of many-body approximations [110, 111, 112]. This method has
also been used to describe the nuclear motion in nanodevices [113].

In the works on transport in this thesis, density-functional theory in its static
and dynamic form has been the key method. In the following pages I present
brief summaries of the key ideas in density-functional theory and in the model
Hamiltonians used.

5.1.2 General aspects of Density Functional theory (DFT)
Density functional theory (DFT) is one of the most widely used and successful
quantum mechanical tool for determining the electronic structure of solids. The
most important properties (e.g., binding energy in molecules, band structures of
solids, etc.) can be obtained with very good agreement with experiments.

Historically, the first theory replacing the wave function by the electronic den-
sity was developed in the 1920’s by Thomas and Fermi (TF). The TF theory has
not become popular since it was shown, short after its formulation and application
to atoms, that it could not describe molecular bonding. For a long time, density-
functional theory was not used much and was more considered as a model or crude
approximation. Density-functional theory became really important when it was
put on a firm basis by Hohenberg and Kohn [114], and when the equivalent one-
particle scheme which handles the kinetic energy functional exactly was invented
by Kohn and Sham (KS) [115]. In the KS scheme, the large terms representing the
kinetic energy, interaction with the lattice potential, and the classical Coulomb en-
ergy are all treated exactly, and one has to introduce approximations only for the
much smaller contributions from exchange and correlation. Already the simplest
local-density approximation (LDA) is quite successful for obtaining, say, cohesive
energies, lattice constants and vibronic frequencies from first principles with e2

and ! as the only input parameters.
The aim of DFT is to reformulate quantum mechanics so that the quantity of

interest is not the many-body wave function Ψ(r1, r2, ..., rN ) depending on 3N co-
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ordinates but the single particle density n(r) depending on only three coordinates.
This is of course an enormous simplification.

Hohenberg and Kohn considered systems with N particles interacting via a
given fixed interaction vc(r) but subject to different external one-body potentials
v(r),

H =
N∑

i

−1
2
∇2

i +
1
2

N∑

i &=j

vc(ri − rj) +
N∑

i

v(ri) = T̂ + Û + V̂ext (5.1)

The second line of the equation above defines three energy operators, which in
turn define three contributions to the total energy,

E = T + U + Vext (5.2)

Keeping the interaction fixed, the ground-state energy can be considered a func-
tional of the external potential,

E = E[v] (5.3)

In the same way, the ground-state density depends functionally on v, n(r) ≡ n[v; r].
Hohenberg and Kohn were then able to show that the mapping from v to n is
invertible, or more precisely, that if two ground-state densities n(r) and n′(r) are
equal, then the corresponding potentials v(r) and v′(r) agree up to a constant,
v′(r) = v(r) + C. (The constant C may be fixed by e.g. requiring that the
potential tend to zero at far distances.) This means that we may use n in place of
v as the fundamental variable. From first-order perturbation theory follows that

δE[v]
δv(r)

= n(r), (5.4)

and if we just solve for v and insert v[n; r] in Eq. (5.3) we would loose information
since n is the functional derivative with respect to v. Instead, HK defined the
basic density-functional F [n] as a Legendre transform,

F [n] = E[v]−
∫

d3r
δE[v]
δv(r)

v(r) = E[v]−
∫

d3r v(r)n(r). (5.5)

In 1979, Levy [116] gave a very nice alternative definition of the density func-
tional F [n] based on restricted search. He considered the expectation values
E[Ψ] = 〈Ψ|T̂ + Û |Ψ〉 for a subclass of wave functions which correspond to a
given density profile n(r). Such expectation values can clearly be considered as a
functional of Ψ, and it is certainly bounded from below. Such functionals may not
always have a minimum, but the infimum always exists. Levy defined the density
functional as

F [n] = inf〈Ψ|T̂ + Û |Ψ〉, (5.6)
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and showed that it is equivalent with the original HK definition whenever the
latter exists.

To be useful, density-functional theory should provide means for obtaining all
ground-state properties without referring the underlying many-body wave func-
tion. To this end, HK introduced a functional Ev[n] depending on two variables,
n and v,

Ev[n] = F [n] +
∫

d3r n(r)v(r). (5.7)

They showed that the ground-state density corresponding to a given external po-
tential v can be obtained by minimizing Ev[n] with respect to n while keeping v
fixed, and that the corresponding ground-state energy is

E[v] = min
n

Ev[n] (5.8)

at constant particle number N .
If we go back to the total ground-state energy in Eq. (5.2), the terms T , U ,

and Vext are all quite large. The interaction energy with the external potential is
trivial, Vext =

∫
nv. In the interaction energy we may split of the large classical

Coulomb energy

EH [n] =
1
2

∫
d3r d3r′ vc(r− r′)n(r)n(r′), (5.9)

which leaves the much smaller exchange-correlation part Uxc = U − EH to be
approximated. However, the kinetic energy is not known as an explicit density
functional even for non-interacting fermion. The difficulty to treat the kinetic
energy accurately was a major limitation of the early Thomas-Fermi theories.
Kohn and Sham invented an algorithm whereby the largest contribution to T ,
namely the corresponding kinetic energy for non-interacting particles, T0[n], may
be constructed in a numerically exact way. In this way, only Exc = Uxc + Txc

needs to be approximated (Txc is the exchange-correlation contribution to the
kinetic energy).

Kohn and Sham decompose the density-functional in three terms,

F [n] = T0[n] + EH [n] + Exc[n] (5.10)

The minimization in Eq. (5.8) leads to

δT0[n]
δn(r)

+ vH(r) + v(r) + vxc(r) = µ, (5.11)

where vH(r) = δEH/δn(r) is the electrostatic potential from the ground-state
electron distribution n(r), and where

vxc(r) =
δExc[n]
δn(r)

(5.12)
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describes the corrections from exchange and correlation. The parameter µ is a
Lagrange parameter corresponding to the constraint N =

∫
n = const. Now,

independent-particle theory can also be density-functionalized, which leads to the
minimization of

E(0)
v [n] = T0[n] +

∫
d3r n(r)veff (r) (5.13)

when the independent-electron system is put in an external potential veff . The
corresponding Euler equation reads

δT0[n]
δn(r)

+ veff (r) = µ0, (5.14)

The unknown T0[n] enters in both Euler equations, Eqs. (5.14, 5.14). However, for
independent particles we may evaluate the kinetic energy via the corresponding
one-electron orbitals, i.e.,

T0[n] =
occ∑

0

〈φν |−
∇2

2
|φν〉 (5.15)

Comparing Eqs.(5.11) and (5.14) we see that we may solve the original problem
of interacting electrons in Eq. (5.8) by solving orbital equations

[
−1

2
∇2 + veff (r)

]
φν = eνφν (5.16)

n(r) =
occ∑

1

|φν(r)|2 (5.17)

self-consistently (veff = vH + v + vxc). When self-consistency has been achieved,
T0[n] has been obtained exactly for the density profile n.

The orbital eigenvalues eν have no simple physical meaning except the upper-
most occupied one which equals the ionization energy or chemical potential [117].
However, they are useful auxiliary quantities for constructing T0 and thereby the
total energy. For independent particles, we have

E(0)
v [n] = T0[n] +

∫
d3r n(r)veff (r) =

occ∑

1

eν (5.18)

which gives

T0[n] =
occ∑

1

eν −
∫

d3r n(r)veff (r). (5.19)

Thus, the ground-state energy of the interacting system may be written

E[n] =
occ∑

1

eν + EH [n] + Exc[n] + Vext −
∫

d3r n(r)veff (r) (5.20)
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at self-consistency. Here veff = vH + v + vxc as before.
The exact functional Exc is in general highly unknown and approximations

must be introduced. The simplest and most popular of these approximations
is the so-called local density approximation (LDA). It consists in approximating
the functional by basing it on a simpler reference system where it is a known
quantity. The reference model to be considered can be different depending on the
actual system under consideration. In ab initio DFT, the interacting homogenous
electron gas is used as such a model system. In this case, to proceed in the LDA,
one calculates the total energy E, the single-particle kinetic energy T0, and then
finds Exc by

Exc = E − T0 − EH . (5.21)

In this way, one can formulate the exchange-correlation energy as functional of the
electron density, and this can be used to calculate the vxc[n](r) assuming that it
is a local functional of the density:

vxc[n](r) ≈ vLDA
xc (n(r)), (5.22)

where, as said above, the function vLDA
xc (n) is found from the reference system

(the homogenous electron gas). With this vxc, on can then solve the Kohn-Sham
equations, and calculate the total energy and other observables of interest. Al-
though the LDA is a first hand approximation for inhomogeneous system (for
example, molecules, crystalline solid alloys, etc.) it has been incredibly successful
for predicting the ground-state properties of these systems [118].

5.1.3 General aspects of Time Dependent DFT
The knowledge of the ground state density provides a lot of information about the
system under investigation, but is not sufficient if one wants to obtain quantities
like electron addition or electron removal energies, excitation energies in general,
etc. Dynamical effects, e.g. the transport properties of a given system, are out of
the scope of such ground state approaches.

The dynamical effects can be studied by exposing the system to a time depen-
dent external potential and calculating the evolution of the density in time, the
method we use in Paper IV.

Obtaining such time-dependent quantities has become possible thanks to the
time-dependent formulation of DFT, Time-Dependent Density-Functional Theory
(TDDFT), which was put on rigorous grounds with a theorem by Runge and Gross
(RG) [119]. In essence, the RG theorem deals with the time-evolution of a system
as induced by a time-dependent scalar potential. The initial state of the system
has not necessarily to be the ground state. In the original formulation, the external
potential v(r, t) was assumed to be expandable into a Taylor series with respect
to the time coordinate around the time origin t0. In principle, the assumption
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of an analytic v is rather restrictive, and more recent formulations release such a
hypothesis.

The RG theorem states that if two systems start to evolve in time from the
same initial state, and at all later times have the same time-dependent density
n(r, t), then the corresponding external potentials are equal up to a time-dependent
constant C(t). That is,

n1(r, t) = n2(r, t) ⇔ v1(r, t) = v2(r, t) + C(t) (5.23)

The original RG proof was based on performing time derivatives of progressively in-
creasing order, and showing that the power series expansion of n1(r, t) and n2(r, t)
differ when v1(r, t) .= v2(r, t) + C(t).

In the treatment by Runge and Gross, a stationary action principle is consid-
ered for TDDFT, based on the quantum mechanical action

A[n] =
∫ tf

t0

dt

〈
Ψ(t) i

∂

∂t
− Ĥ Ψ(t)

〉
. (5.24)

A[n] plays a role similar to the energy functional of ground state DFT (A is a
functional of the density n by virtue of the RG theorem). However, the RG varia-
tional formulation was later shown to be inconsistent with causality requirements.
The issue was then solved moving the formulation to time-domains defined on
the Keldysh contour (a more straightforward treatment, which avoids the Keldysh
contour, has been provided quite recently).

Finally, in their work, Runge and Gross presented an extension of the Kohn-
Sham formalism to time-dependent situations. Similarly to the ground state case,
the TDKS equations are single-particle Schrödinger equations with an effective
potential which accounts for the effect of the electron-electron interaction. Thus,

[−1
2
∇2 + v(r, t) +

∫
dr′

n(r′, t)
|r− r′| + vxc(r, t)]φν(r, t) = i

∂

∂t
φν(r, t), (5.25)

and vxc(r, t) is obtained as the functional derivative of the exchange-correlation
part of A with respect to the density. To emphasize the similarity with the previous
section, we rewrite Equation (5.25) as a time-dependent Kohn-Sham problem

(
t̂ + v̂KS(t)

)
φν(t) = i

∂φν(t)
∂t

(5.26)

where t̂ = −∇2/2. Similarly to the previous section, one defines

n(r, t) =
occ∑

ν

|φν(r, t)|2 (5.27)
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where the now time-dependent density is equal to the original density from the
fully interacting system.

Thus, in order to obtain the time dependent density n(r, t) one evolves the
Kohn-Sham orbitals. Since the exchange-correlation potential vxc[n](r, t) depends
on both time and space coordinates, it is now a considerably more complicated
object than in the ground state case. The extra complication is because the exact
potential is not just non-local in space, it is also non-local in time. This non-locality
in time is at origin of what is usually referred to as memory-effects. Just like the
LDA simplifies the ground-state vxc by assuming that it is a local function of the
density, the simplest approximation in TDDFT is the Adiabatic Local Density
Approximation (ALDA), which also neglects the memory effects. The ALDA can
then be expressed as

vxc[n](r, t) ≈ vxc(n(r, t)). (5.28)

Clearly, in this approximation the vxc at a time t and position r is expressed as a
function of the density at the very same point in space and time. The specific form
of this function will be the same as the one used for ground state calculations.

We use TDDFT to perform real-time propagation of the KS orbitals. In this
way, we are able to address and investigate phenomena such as transient effects in
quantum transport, and beyond the linear regime.

Because of the versatility of the (static or time-dependent) density-functional
approach, many different kind of systems can be treated. This even permits to
explore the properties of lattice models with strong correlation and/or disorder
effects. This is done in this thesis, for the specific case of the so-called Hubbard-
Anderson model.

5.2 Correlations and disorder effects in condensed
matter systems

5.2.1 Anderson localization
Disorder is ubiquitous in nature and often, even if it is only a weak perturbation,
it tends to strongly affect the properties of many physical systems. The most cele-
brated effect of disorder is probably the Anderson localization, i.e. the localization
of individual particles or waves in a disordered energetic landscape. This funda-
mental effect of disorder was already been explored in depth more than 50 years
ago, because of the wide interest at that time in the transport of electrons in crys-
tals. These imperfections lead to a dramatic change in the conduction properties
of real materials.

It is well known that for crystals, reflections at the potential barriers are very
strong even in the absence of disorder. However, extended Bloch states can still
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exist, provided that the energies of the individual lattice sites are equal or arranged
in a periodic way.

In 1958, Anderson [120] showed that if the on-site energies are instead shuffled
in a random way, the reflections interfere destructively and the eigenfunctions
of the system become exponentially localized. When the energy or the disorder
strength is varied, the system can thus undergo a transition from the metallic phase
with delocalized eigenstates to the insulating phase, where the eigenfunctions are
exponentially localized:

|ψ2(r)|exp(−|r− r0|/ξ), (5.29)

and with ξ is the localization length. The character of this transition remained,
however, unclear for about 20 years, until Wegner conjectured, developing earlier
ideas of Thouless (1974), a close connection between the Anderson transition and
the scaling theory of critical phenomena ( [121]). Three years later, Abrahams,
Anderson, Licciardello, and Ramakrishnan formulated a scaling theory of local-
ization [122], which describes how the dimensionless conductance g changes with
the system size L,

d ln g/d lnL = β(g). (5.30)

In lattice systems, the Anderson localization can be investigated in terms of a
tight-binding model of disorder originally proposed by Anderson,

Ĥ = −t
∑

〈ij〉

c†i cj +
∑

i

εic
†
i cj , (5.31)

where 〈ij〉 denotes that the sum is restricted to nearest neighbor sites and
the random site energies εi are chosen from some distribution P (u); the standard
choice is the uniform distribution over an interval [−W/2;W/2] (box distribution).

To quantify the degree of localization due to disorder and interactions, we
use the inverse participation ratio (IPR) ζ0. For single-particle states the IPR
associated with a given orbital is defined as:

ζ0 =
M∑

i

n2
i /(

M∑

i

ni)2, (5.32)

where ni = |ψi|2 is the density at site i and the sums extend to all the sites M in
the system. For completely localized states (when ψ .= 0 at only one site) we get
ζ0 = 1, while ζ0 is smallest for localized states.

The consequences of electron localization are most pronounced in the transport
properties of a disordered system. Localized electrons cannot contribute to trans-
port if the sample is larger than the localization length of the electronic states.
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Anderson had predicted that disorder is most effective in systems with a small
number of nearest neighbors leading to a small connectivity. Thus it was obvious
that localization effects would be most pronounced in low dimensions where the
number of nearest neighbors is reduced. It was first argued by Mott and Twose in
1961 [123] that in a one-dimensional system all electron states are localized. To
summarize, the first stone was laid down in 1958, and in the following two decades
the theory was completed without including interaction effects, culminating in the
success of the scaling theory.

In the late eighties and early nineties, the tenets of the scaling theory of disor-
dered systems were challenged by experimental studies [124, 125, 126, 127, 128] of
2D Si MOSFET-samples with low-disorder and in the strongly interacting regime.
These experiments showed quite clearly that, in many instances, to describe dis-
ordered condensed-matter systems, one needs to fully understand the interplay
of disorder and interactions, something which is lacking in the standard scaling
theory of Anderson localization. Afterwards, several experiments also made ev-
ident that often, when present together, neither disorder or interactions can be
considered as a weak perturbation. Instead, they have to be described on equal
footing. An important theoretical model providing such a description is the so-
called Anderson-Hubbard model, which is investigated in Paper IV and is the
subject of the next three sections.

5.2.2 A popular approach to interacting systems: the Hub-
bard model

The Hubbard model [129] is one of the most studied models in condensed matter
theory. Since its inception, it has constantly gained popularity and has been ap-
plied in several contexts, thus becoming a truly paradigmatic model to study the
effect of strong correlations among the electrons. The Hubbard model was intro-
duced to capture the physics of the competition between delocalization, driven by
hybridization, and localization of electrons induced by the electronic interaction.
Generally speaking, it is too a simple model to describe accurately any real ma-
terial. However, it is believed to retain at least the important features of strongly
correlated systems and their complex physical properties. Not surprisingly, a vast
literature about its physics exists. In the following, we will only briefly summarise
the most important aspects of the Hubbard model. Since this thesis focuses on
the non-equilibrium behavior of strongly correlated systems, we consider a time
dependent-version of the Hubbard Hamiltonian. The latter, in standard notation,
reads:

Ĥ(τ) = −t
∑

〈ij〉,σ

c†iσcjσ +
∑

i

Uin̂i↑n̂i↓ +
∑

i

vin̂i + Vext(τ), (5.33)

where t is the hopping parameter, which is the tunneling amplitude between near-
est neighbors sites in the system (these are denoted by 〈ij〉). The hopping param-
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eter is taken to be the same for all the sites in the system, and its value is set to be
t = 1. Moreover, n̂iσ = c†iσciσ, with σ =↑, ↓, is the local density operator expressed
in terms of electron creation and destruction operators, whilst n̂i = n̂↑ + n̂↓ is the
total density operator. The electron-electron (repulsive) interaction is taken to
be local (on-site) and is denoted by Ui. The term

∑
i vin̂i is the on-site energy.

Finally, Vext(τ) is the external potential applied to the system in time dependent
calculations ( τ is the time-label).

The Hubbard model is the minimal lattice model containing the physics of
electron- electron correlations. Nevertheless, its theoretical understanding is still
far from being complete. The exact solution has been found for the ground state
of the one-dimensional homogeneous system. Here, the model is integrable [130]
and the exact ground state could be constructed by using the Bethe Ansatz [131].
The ground state solution for the 1D homogeneous system will be our reference
system in the same way as the ground state solution for homogeneous electron
gas is used as a reference to build LDA exchange-correlation potentials for 3D
continuous systems.

From the exact Bethe-Ansatz solution, it could be proven that in 1D, for any
U > 0, the Hubbard model has an insulating ground state at half-filling. The insu-
lating state is a Mott insulator with a Mott-Hubbard gap in the density of states.
Away from half-filling, the DOS of the one-dimensional system remains gapless for
all values of U and the system is in a metallic state. In finite dimensions D > 1,
no exact solution exists at the moment and only numerical results are available.
However, already numerically, the exact treatment of the Hubbard model is com-
plicated and still a non-trivial challenge. Due to limitations of computer time and
memory, exact methods like numerical diagonalization and quantum Monte Carlo
are restricted to rather small system sizes. However, some important features can
already be understood using qualitative arguments, for example the formation of
an insulating, anti-ferromagnetic ground state at half filling. For large values of U ,
at half-filling, charge fluctuations will be energetically unfavorable and, on aver-
age, each site will be occupied by exactly one electron. Virtual hopping processes
will be allowed for electrons with opposite spins at neighboring sites. Thus, an
anti-ferromagnetic ground state will be favorable. Formally, this means that the
Hubbard model becomes equivalent to the Heisenberg model, i.e. the so-called
t− J model [132] at half-filling.

5.2.3 Combining correlation and disorder: the Anderson-
Hubbard model in general

In the previous section, the Hubbard model was introduced as the minimal lattice
model of strongly correlated systems. If one is interested in the interplay of disorder
and interactions, one needs to treat both potentials on the same level. Therefore, it
is a natural and convenient choice to combine the Hubbard model with disordered
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single-particle Anderson model to obtain an interacting, disordered many-body
system [133]. The applicability of the Anderson-Hubbard model to real materials
is not very clear. The Hubbard model was originally motivated by the assumption
of a strong screening of the bare Coulomb interaction. Therefore the effective
interaction was reduced to a purely local one. However, the effective range of
the Coulomb interaction in disordered materials might be significantly larger since
localized electrons are much less mobile than the conduction electrons.

However, the Anderson-Hubbard model, as the simplest non-trivial lattice
model for interacting particles in a disordered environment, is a good starting point
in understanding of strongly interacting, disordered systems. And it is already the
source of rather rich and complex physics. It should also be mentioned that, in
the recent years, the field of cold atomic gases in optical potentials has established
itself as a new area of research with close connections to condensed matter theory
[134]. While results from the Anderson-Hubbard model can only give a qualita-
tive description of the physical processes of real materials, the Anderson-Hubbard
model can provide a very good description of many experiments in cold atomic
gases.

In summary, no rigorous statements, and almost no generally accepted, conclu-
sive analytic results on the problem of Anderson localization in interacting systems
have been presented yet. Much effort has been made via numerical studies to get
a deeper insight into the problem. But also for numerical studies, many contra-
dictory results have been obtained, and many issues remain open.

5.2.4 Combining correlation and disorder: the Anderson-
Hubbard model in quantum transport

In this thesis, we investigate short interacting and disordered chains attached to
homogeneous contacts. The chains are described by a finite-size realization of the
Anderson-Hubbard model. In standard notation, taking into account a possible
time dependence (τ is the time variable), the lattice system we consider in a
quantum transport setup is described by the following Hamiltonian:

H =
∑

σ

∞∑

l=−∞
Vl,l+1(a†

lσal+1,σ + H.c.) +
∑

σ

L∑

l=1

[
εl +

U

2
n̂l−σ

]
n̂lσ

+bS(τ)
∑

l<1,σ

n̂l.σ + bD(τ)
∑

l>L,σ

n̂l.σ. (5.34)

Eq.(5.34) describes a central chain of length L (the lattice sites with 1 ≤ l ≤ L)
connected to a left and a right 1D, homogeneous and noninteracting lead [sites with
l < 1 and l > L, respectively]. The third and fourth terms of Eq. (5.34) represent
the time-dependent bias in the leads which is applied at time τ ≥ 0. This term is
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necessary to induce currents in the system. The hopping term Vl,l+1 = −1 always,
i.e. we employ transparent boundary conditions.

We consider diagonal uniform disorder, i.e. εl ∈ [−W/2, W/2], but in Paper
IV we will sometimes introduce binary disorder, where εl = ±W/2. In both cases,
W fixes the strength of the disorder. We limit ourselves to the case of a repulsive
interaction, i.e. U > 0 always.

To characterize the degree of localization, we use the inverse participation ratio
(IPR). The IPR of Eq.(5.32) can be modified in the following two possible ways
to deal with interacting systems:

ζ1 =
M∑

i

∆n2
i /(

M∑

i

∆ni)2, (5.35)

ζ2(ω) =
M∑

i

n2
i (ω)/[

M∑

i

ni(ω)]2. (5.36)

The use of ζ1 is convenient when dealing with small systems with discrete many-
body levels [135]. In this case, for N particles, ∆ni is the difference between the
ground-state densities with N +1 and N particles, a clear operational prescription
for finite systems. Using ζ2 [136] amounts to consider the density of states as
obtained from the one-particle propagator, since ni(ω) = −3Gii(ω)/π. It should
be noted that most investigations of IPR are done numerically, for finite systems.
Using ζ2 requires introducing a finite artificial broadening, and employing a finite-
size scaling analysis, to assess the role of γ [137, 138, 139]. To deal with infinite
systems, as those of Eq. (5.34), a further modification to the IPR is required. This
is discussed in Paper IV.

5.2.5 Lattice (TD)DFT and its use in quantum transport
The lattice version of DFT relies on the fact that there is a one-to-one correspon-
dence between local potentials vi and the ground-state expectation values of the
site occupations ni [140]. Therefore it is in principle possible to express all quan-
tities that can be obtained from the ground-state wave function as a function of
the densities. The site occupations as a function of the potentials can be found
from derivatives of the ground-state energy with respect to the local potential.

A DFT formulation based on the local lattice occupation numbers ni was in-
troduced more than two decades ago, to describe some ground state properties
of the Hubbard model [141, 142, 143]. Further significant progress came with
a local-density approximation (LDA) for the inhomogeneous 1D Hubbard model
[140] (based on the Bethe-Ansatz solution of the 1D Hubbard model and hence-
forth denoted BALDA). The BALDA was then used to obtain a simple analytical
parameterization of the XC energy Exc and potential vxc [144]. In subsequent
work, the BALDA was scrutinized against exact results [144, 145, 146, 147, 148],
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providing energies, particle densities and entropies with an accuracy within a few
percents.

The extension of lattice DFT to the time dependent case, i.e. to describe
the real-time dynamics of lattice models out of equilibrium, was first proposed in
Ref. [149]. We wish however to emphasize that while lattice DFT is a rigorous
framework, there is at present no Runge-Gross (RG) theorem directly for lattice
TDDFT, as discussed in Ref. [150]. On the other hand, with the bond-current
as the basic variable, a rigorous formulation of time-dependent current-density-
functional theory on the lattice becomes possible [151, 152, 150]. Finally, it should
also be noted that in 1D systems, there is a one-to-one correspondence between
densities and currents, and thus TDDFT as proposed in [149] already rests on
solid grounds.

In this work, we confine ourselves to the non magnetic 1D case and we describe
here the actual formulation for spin-independent (TD)DFT. In standard DFT
notation, we can write for the ground-state total energy [143, 140]:

E[n, vext] ≡ T0[n] + EH [n] + Exc[n] +
∑

i

vext(i)ni, (5.37)

where vext(i) ≡ εi is the static external field, T0[n] the non-interacting kinetic
energy and EH the Hartree energy, with ni =

∑
σ niσ. To perform a local density

approximation, Exc is obtained from a homogeneous reference system, i.e. the 1D
Hubbard model:

Exc = E − T0 − EH . (5.38)

To obtain vxc, one takes the derivative of the XC energy per site exc ≡ Exc/L with
respect to the density (in the general case, this should be a functional derivative):

vxc =
∂exc(n, U)

∂n
. (5.39)

For bipartite lattices, exc(n, U) = exc(2 − n, U) in the entire density range [0, 2]
and thus vxc(n) = −vxc(2− n). The Hartree potential is written as

vH(i) =
δEH

δni
=

δ

δni

1
4

∑

j

Ujn
2
j =

1
2
Uini (5.40)

The ground state energy can be calculated once the ground state is known, using
(see [145])

E =
N∑

i

ei − VH [n] + Exc[n]−
∫

n(r)
δExc[n]

δn
dr (5.41)
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where the first term is the sum of the Kohn-Sham eigenvalues, the second term
is the contribution from the Hartree term, the third term is the exchange energy
term, and finally the last term is from the exchange-correlation potential. Finally,
a local-density approximation (LDA) is defined:

vxc(i) = vBALDA
xc (ni). (5.42)

In ground-state DFT-LDA calculations, the XC potential obtained in this way is
used to solve self-consistently the Kohn-Sham (KS) equations

(t̂ + v̂KS)ϕκ = eκϕκ , (5.43)

where t̂ denotes the matrix for the single-particle hoppings between nearest - neigh-
boring sites, and ϕκ is the κ−th single-particle KS orbital, with ni =

∑occ
κ |ϕκ(i)|2.

The effective potential matrix is diagonal:

(v̂KS)ii = vKS(i) = vH(i) + vxc(i) + vext(i) (5.44)

with vH(i) = 1
2Uini being the Hartree potential. In analogy with the continuum

case, the lattice Kohn-Sham (KS) equations can be propagated in time, to get a
TDDFT description of the dynamics of lattice systems [149]. For this, one needs
to solve the time-dependent KS equations on the lattice,

i∂τϕκ(τ) =
(
t̂ + v̂KS(τ)

)
ϕκ(τ) (5.45)

vKS(i, τ) = vH(i, τ) + vxc(i, τ) + vext(i, τ). (5.46)

In general vxc(i, τ), depends non-locally in space and time on the density. In the
adiabatic local density approximation (ALDA) [153] to the XC potential,

vALDA
xc (i, τ) ≡ vBALDA

xc (ni(τ)) (5.47)

ni(τ) =
occ∑

κ

|ϕκ(i, τ)|2. (5.48)

An ALDA for the Hubbard model, denoted in the literature as ABALDA, was
first introduced In Ref. [149], with the treatment was limited to spin-compensated
systems, while the spin-dependent case was presented in Ref. [154], where TDDFT
results and time-dependent DMRG results were compared.

For finite systems, a comparative study more focused on the role of non-local
and memory effects beyond the ALDA was performed in Ref. [155], comparing the
ALDA, exact, and Kadanoff-Baym time-evolution in small cubic Hubbard clusters.
The KBE, with a many-body perturbation-theory approach to the self-energy,
permit to take into account non-locality and memory effects on equal footing.
Such comparisons showed that an ALDA coming from the appropriate (strongly
correlated) reference system can perform well in many instances, (especially for



46
Lattice (TD)DFT applied to disordered and correlated systems and quantum

transport

slow perturbations) but, quite generally, it will fail for fast perturbations, or very
strong interactions.

In a TDDFT approach to time-dependent quantum transport [107, 108], a
central ingredient is the XC potential. According to Eq.(5.38), to construct an
LDA in 1D we need the exact ground-state energy of the infinite homogeneous 1D
Hubbard model, where the hopping Vl,l+1 ≡ V and the interaction is present at all
sites. In the most general case, e.g. in the presence of magnetic effects, this requires
[144, 147, 156] to solve the coupled Bethe-Ansatz equations for the charge and
spin distribution functions [ρ(x) and σ(x), respectively] [131]. An ALDA is then
easily obtained [149, 154], making vxc to become a function of the instantaneous
local density. In this thesis we confine ourselves to the non-magnetic case (where
the spin-up and spin-down densities are equal, i.e. n↑ = n↓ = n/2). The XC
potential is discontinuous at half-filling; however, for a finite interacting system
contacted to non-interacting leads, the discontinuity of the exact vxc becomes
slightly smoothed (this was already pointed out in Ref. [157], using support from
small Anderson clusters, and fully discussed in Refs. [158, 159, 160]). According
to these considerations, and also for numerical convenience, the XC potential was
slightly smoothed in our actual calculations.

The open-boundary scheme for quantum transport used in this work is the one
developed in Ref. [109], while similarly to Ref. [157], interactions in the central
region are treated via the adiabatic local density approximation from the Bethe
Ansatz [149]. However, for disordered systems, where large central regions and
configuration averages may be needed, such algorithm may result computationally
expensive. A way to enhance the numerical efficiency of such algorithm using
the Lanczos recursion technique was preliminarily discussed in Ref. [161] and is
presented in detail in Paper IV.
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Chapter 6

Brief summaries of the papers

Paper I

We present Monte Carlo simulations of the kinetic properties of various two-
dimensional semiconductor hetero-structures. The main idea is to investigate the
influence of different scattering mechanisms on the kinetic properties, for those par-
ticular systems which require accurately calculated scattering probabilities. The
model we developed was applied to two distinct hetero-structures.

Paper II

We performed Monte Carlo simulations of the electron drift velocity in a δ-doped
Si/SiGe quantum well, for high and low temperatures as well as strong and weak
electric fields, which were applied parallel to the quantum well layer. We gave
the analytical expressions of all relevant scattering probabilities and used them to
calculate the distribution function. All scattering matrix elements of inter-valley
phonons, acoustic phonons, interface roughness, and impurity ions were calculated
from the electron wave functions. In terms of the numerical results obtained
with such approach, we discussed the importance of each scattering mechanism
in various ranges of temperature and the strength of electric field applied parallel
to interfaces. Special attention was paid to the resonant state scattering which,
at the time of our work, was far from being understood, both theoretically and
experimentally. Our results show for the first time the dramatic effect of the
resonant-state scattering on the electron drift velocity. The relative relaxation
times of various scattering mechanisms are also derived from the Monte Carlo
simulations.
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Paper III
We have modified the Monte Carlo technique developed in Paper I and II in order
to take into account the electron transport between quantum well layers induced
by electric fields applied along the growth direction. This has made possible to
investigate the mechanism of scattering-assisted charge transport in semiconduc-
tor superlattices under a strong applied electric field in the Wannier-Stark (WS)
regime. The distribution function of quasi-two-dimensional carriers localized in
each WS level has been calculated, and the contributions of different scattering
mechanisms to the total scattering probability have been analyzed. Based on these
results, the drift velocity was derived as a function of the applied electric field. Our
simulated I-V characteristics oscillate with clear negative differential velocity be-
haviour. We show that such a dependence is determined by LO-phonon-induced
resonant transfer of electrons between different spatially localized Wannier-Stark
states. Our theoretical results agree with the experimental data which were ob-
tained from analyzing the terahertz response of superlattices to picosecond optical
pulse excitations.

• For the projects presented in Papers I-III, I developed the code necessary
to perform all the simulations in Paper I and II. The code is based on the
Monte Carlo method and gives distribution functions and other kinetic pa-
rameters within a quantum well geometry. In Paper III, the main object
of interest was transport in superlattices, i.e. transitions between different
quantum structures. Thus, my code had to be generalized to take this into
account. This development was done by me and Yuriy Tarakanov, and our
contributions are in my judgement about equal. I performed most of the
calculations used in the three papers and actively participated in theoretical
development and other scientific discussions. In quality of first author in
Papers I and II, I wrote the first draft of these papers.

Paper IV
The static and dynamical behaviour of 1D systems are investigated. The focus is
on how the interplay of interactions and disorder affects the localization of fermions
in Hubbard chains, contacted to semi-infinite leads. The main tool was (TD)DFT
in its lattice formulation. The localization of the electrons is characterized via
the inverse participation ratio, for both the static and time-dependent cases. The
transport properties of our quantum system were obtained via real-time propaga-
tion of wave functions within TDDFT. A well known embedding technique was
used to properly take into account the presence of semi-infinite leads. To increase
its efficiency we modified it via the recursive Lanczos method. We find a dynam-
ical enhancement of delocalization in presence of a finite bias, and an increase of
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the steady-state value of the current, induced by inter-particle interactions. For
contacted chains, we analyzed the spectral properties as obtained by the coherent-
potential approximation with interactions included via lattice DFT. Using short
isolated chains with interaction and disorder, a brief comparative analysis between
lattice (TD)DFT and exact results was also made.

• In this project, most results were produced with a previously developed
(TD)DFT code which I modified to deal with the case of disordered systems.
I also introduced modifications in an exact-diagonalization code, to use it in
the case of disordered clusters. I performed all the actual calculations, and
a preliminary analysis of all data. I was actively involved in all the scientific
discussions, and in the writing of the paper.
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