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Abstract—This work focuses on the design of SC-LDPC codes
for transmission over non-ergodic, block-fading channels. Our
main contribution is an algorithm, allowing to start from a
(J, K)-regular, uncoupled LDPC ensemble, from which one can
recursively build up a protograph-based SC-LDPC ensemble
having any target diversity order d. The diversity order is
achieved assuming a low-complexity iterative decoding algorithm.
The increase of d comes at the cost of increasing the memory con-
straint (i.e., the coupling parameter) of the SC-LDPC ensemble.

I. MOTIVATION: CODES OF FLEXIBLE DIVERSITY ORDER

The mobile-radio channel can be modelled as a slow, flat
fading together with additive noise. In many cases (e.g., short-
range, high-throughput data communications), the channel co-
herence interval (time where the channel fading is constant) is
much longer than one symbol duration. Thus several symbols
are affected by the same fading coefficient. An example of
such a channel model is the block-fading channel introduced
in [1]. In the block-fading channel, coded information is
transmitted over a finite number of coherence intervals to
provide diversity. The diversity order d of the code is an
important parameter that gives the slope of the word error
rate (WER) of the decoder.

In this paper, we consider transmission of a sequence of LN
coded bits through a block-fading channel with a coherence
interval of N bits. Hence, the large diversity d  L can be
achieved, but at a cost of using a long block code or a long
interleaver (large latency). Another possibility would be to use
N convolutional codes in parallel, with a memory constraint
m

cc

⌧ L. This would provide a relatively good latency but,
unfortunately, would result in the performance degradation or
require an increase of the decoder complexity.

In order to obtain a better trade-off between the decoding
latency, decoding complexity and the diversity order d, we
propose to use spatially coupled low-density parity-check (SC-
LDPC) codes [2], [3]. It was observed in [3] that SC-LDPC
codes, decoded using a latency constrained window decoder,
have very good performance over the block-fading channel.
This work is our investigation on a systematic design of SC-
LDPC codes if some targeted (but arbitrary) diversity order d

This work was supported in part by the DFG in the CRC 912 HAEC and by
the European Commission in the framework of the FP7 NEWCOM# (Grant
agreement no. 318306). Also, the authors are grateful for the use of the high
performance computing facilities of the ZIH at TU Dresden.

is required. In what follows, we a) study which maximum d is
achievable for a given (J, K) SC-LDPC ensemble, and b) pro-
pose a protograph-based construction of SC-LDPC codes that
can achieve an arbitrary d, at the cost of an increasing value of
the coupling width and, thus, of the memory constraint m

cc

for
the underlying convolutional structure. In order to achieve the
points above, an explicit connection between block stopping
sets and diversity is established.

As a comparison reference for our codes, root-LDPC block
codes are considered [4]. This is the most known construction
of block-codes for non-ergodic channels, which motivated a
number of further results in this area [5], [6]. However, all
the existing constructions are designed for a single specified
value of d (in most of cases d = 2), and will not work well
if the number of fading coefficients per codeword changes.
Furthermore, the boundedness of the root structure, on which
they are built on, does not allow to treat an arbitrary d without
blowing up the number of node classes in their multi-edge
graph structure.

II. SYSTEM MODEL AND PERFORMANCE METRIC

A. Channel Model
Assume transmission of a sequence of LN coded bits

through a block-fading channel with a coherence interval of
N bits. For such block-fading, the received symbols yi are

yi = ↵jxi + ni, i = 0, . . . , LN � 1, and j = bi/Nc. (1)

The input symbols xi are chosen from the BPSK alphabet
{±1}, ni are Gaussian random variables with zero mean
and variance �2

n, and the fading coefficients ↵j are Rayleigh
distributed with E[↵2

j ] = 1. Hence the signal-to-noise ratio �
of the received symbols is characterized only by �2

n.

B. SC-LDPC Coding Scheme
Let LN coded bits, sent through the block-fading channel

as described above, be generated using a SC-LDPC code of
overall code length LN (i.e., containing L coupled LDPC
codewords of length N ). Also, without loss of generality, let
the bits, belonging to the same coupled LDPC codeword, be
sent within the same coherence interval. The related SC-LDPC
code ensemble is defined as follows.

A protograph P of an (uncoupled) LDPC ensemble is a
bipartite graph consisting of nc check sets’ (CS) and nv



t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Fig. 1. Convolutional protograph Pc of Example 1. Circles (boxes) represent
variables (check) set nodes. t’s represent LDPC block instances.

variable sets’ (VS) nodes. Each node in a protograph therefore
represents a subset of variable or check nodes of the bipartite
graph for any LDPC code from the ensemble. Edges in P
establish a structure of connections which are allowed in a
bipartite graph of the LDPC code (i.e., a variable node from
subset Vi can be connected to a check node from subset Cj iff
there is an edge between corresponding VS and CS nodes in
P ). P is usually given by its base matrix B of size nc ⇥ nv .
E.g., the protograph of a (3, 6)-regular LDPC ensemble is
B = [3, 3]. Thus, nv = 2, nc = 1, and each check node
from the unique set C

1

is connected three times to variable
nodes from V

1

and three times – to V
2

.
Basing on P , let us define a convolutional protograph Pc,

having a memory constraint m
cc

, m
cc

� 1, and describing the
structure of the SC-LDPC ensemble with L coupled LDPC
blocks. Let B

0

, . . . ,Bmcc be nc ⇥ nv matrices with elements
from N, s.t.

Pmcc

i=0

Bi = B. Then, Pc is described by means of
the following base matrix B

[1,L]

of size (L + m
cc

)nc ⇥ Lnv:

B
[1,L]

=

2

6666664

B
0

...
. . .

Bmcc B
0

. . .
...

Bmcc

3

7777775

(L+mcc)nc⇥Lnv

(2)

Note that the submatrix Bi, 0  i  m
cc

at time t, 1  t  L,
defines the connection from LDPC block t to LDPC block t+i.
Also, Pc can be given by a bipartite graph, whose connections
are drawn accordingly to B

[1,L]

:
Example 1: Let B = [3, 3], and B

0

= B
3

= [1, 1], B
1

=

[1, 0], B
2

= [0, 1], i.e., m
cc

= 3. Then the respective
bipartite graph of Pc with L = 6 coupled blocks is presented
in Fig. 1.

C. Definition of the Code Diversity
One of the main performance measures of a code family F

over the block-fading channel is the diversity order d ( [7]):

d = sup

C2F
lim

�!1

� log Pe(�, C)

log �
. (3)

Here C is a code belonging to F , Pe(�, C) is the error
probability of code C, under optimal (ML) decoding1. Then
d is related to the blockwise minimum Hamming distance

1In order to simplify the analysis, this paper assumes that Pe is computed
over the whole codeword, and not over the information part of it, as it was
previously assumed in [4]–[6]. So, the values of d, obtained in the present
paper, are in fact lower bounds (one might still increase the diversity for
information bits by placing them carefully within the codeword).

d
min

(N) of the code family F as follows. If a codeword c
from C, C 2 F , is affected by F fading gains in such a
way that (a) the coherence interval is of size N bits, and (b)
!i(c) is the Hamming weight of coded bits affected by the
i-th fading values, then [4]

d
min

(N) = min

c2C\0, C2F
|{!i(c) 6= 0}|. (4)

Therefore, for a code of diversity/blockwise minimum distance
d
min

, d
min

�1 fades can be perfectly recovered, i.e., d = d
min

.
Note that the same definitions can be applied to

convolutional-like codes (e.g., SC-LDPC codes), as they can
be seen as block codes of code length LN . In this case, the
diversity order d, 1  d  L will be a function of the memory
of the convolutional encoder m

cc

rather than a function of L.
As the main focus of our work is on LDPC codes, decoded

iteratively, let us also define a diversity order dIT under
iterative decoding, which is given by dIT

= D, with D being
the smallest number of deep fades (i.e., the number of ↵j = 0)
that cannot be recovered under iterative decoding, in the limit
of high SNRs (i.e., assuming �2

n = 0). Clearly, for any code
family F , dIT  d.

III. BOUNDS ON THE DIVERSITY ORDER FOR SC-LDPC
CODES

A. Estimation of d

Let us evaluate the blockwise minimum distance d
min

of
a SC-LDPC ensemble and find the maximum possible value
of d. Under the channel model discussed in Section II, d

min

of interest is in fact d
min

(N). Given that one LDPC block of
length N in the SC-LDPC code contains bits related to exactly
nv VS nodes, then, instead of searching d

min

(N) based on
the parity matrix of the SC-LDPC code, one can equivalently
search for dB

min

(nv) based on B
[1,L]

. In other words, the
calculation of the diversity order can be equivalently done over
the protograph Pc of the SC-LDPC ensemble.

The procedure to calculate d comes from the theory of
convolutional codes. Here we apply it to SC-LDPC codes:

• Consider the trellis representation of B
[1,L]

, for which
each trellis section is labeled with nv bits. This trellis
representation is obtained based on B

[1,L]

using the
approach from [8].

• According to the structure of one trellis section, define
an adjacency matrix A to be a 2

nc(mcc+1) ⇥ 2

nc(mcc+1)

matrix constructed as follows. If there exists a transition
between the state i and the state j in the trellis, then the
ij-th element of A is x!(eij), where eij is the transition
label, and !(e) is the vector Hamming weight of eij . So,
as !(e) can only take values 0 or 1, x!(eij) can only be
either 1 or x. Finally, if there is no transition between the
state i and the state j, Aij = 0.

• Given both-side termination for the SC-LDPC ensemble,
its Hamming weight distribution is W (x) = [AL

]

0,0.
• The minimum Hamming distance is the smallest non-zero

power in W (x). So,

d = min

i>0

{i 2 N : coeff(W (x), xi
) 6= 0}.



Note that, as we are interested not to find the whole W (x),
but only d, we might simplify the calculation of AL by
keeping track only of a few polynomial terms with the smallest
power and by neglecting all others.

Example 2: Assume the (3, 6)-regular SC-LDPC ensemble,
defined in Example 1. As a first step, a section of a syndrome
trellis corresponding to B

[1,L]

is drawn in Fig. 2 (left).

either 1 or x. Finally, if there is no transition between the
state i and the state j, Aij = 0.

• Given both-side termination for the SC-LDPC ensemble,
its Hamming weight distribution is W (x) = [AL

]

0,0.
• The minimum Hamming distance is the smallest non-zero

power in W (x). So,

d = min

i>0

{i 2 N : coeff(W (x), xi
) 6= 0}.

Note that, as we are interested not to find the whole W (x),
but only d, we might simplify the calculation of AL by keeping
track only of a few polynomial terms with the smallest power
and by neglecting all others.

Example 2: Assume the (3, 6)-regular SC-LDPC ensemble,
defined in Example 1. As a first step, a section of a syndrome
trellis corresponding to B

[1,L]

is drawn below. Here the solid

s0

s1

s2

s3

s4

s5

s6

s7

and dashed lines represent an input of 0 and 1 respectively.
Further, the corresponding matrix A is

A =

�

�������

1 0 0 0 0 0 x 0
0 0 1 0 x 0 0 0
0 0 x 0 1 0 0 0
x 0 0 0 0 0 1 0
0 0 0 x 0 x 0 0
0 x 0 0 0 0 0 x
0 x 0 0 0 0 0 x
0 0 0 x 0 x 0 0

�

�������

The minimum Hamming distance can then be calculated by
computing the L’th power of A,

W (x) = 1 + 24x4

+ 22x5

+ 77x6

+ 128x7

+ O(x8

).

Hence in this case, d = d
min

= 4.

B. Estimation of dIT

As SC-LDPC codes are decoded using a low-complexity
iterative decoding, we are mainly interested in dIT (while d
serves as an upper bound on dIT). dIT is related to the blockwise
minimum stopping distance s

min

(N) of the SC-LDPC ensem-
ble. Similarly as for dmin(N), the diversity is completely
determined by the protograph, i.e., smin(N) = sB

min(nv),
where sB

min(nv) is related to Pc and is defined below.
Definition 1 (Blockwise stopping set): A blockwise stopping

set in a protograph Pc is a subset S of VS nodes in Pc such
that: 1) if a VS node at time t belongs to S , then any other VS
node at t also belongs to S; 2) VS nodes from S are connected
to a set C of CS nodes, and each node from C is connected at
least twice. sB

(nv) =

|S|
nv

denotes the size of the blockwise
stopping set S (in blocks of nv VS sets).

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
Fig. 2. Induced graph resulting from blocks in deep fade at time t = 1, 2 of
Pc in Fig. 1. The highlighted nodes and edges form a stopping set.

Note that, by condition 1) above, if bits of the t-th LDPC
codeword in the SC-LDPC code are related to a class Vi, i =

1, . . . nv , and they are in deep fade, then all the other bits
in this codeword are also in deep fade, because they belong
to the same coherence interval. Moreover, if the related VS
nodes of S satisfy the condition 2) above, then they cannot be
corrected by iterative decoding.

Definition 2 (Blockwise minimum stopping distance): The
blockwise minimum stopping distance sB

min

is the smallest size
of the stopping set in Pc.
Note that, with a blockwise minimum stopping distance sB

min

,

dIT
= sB

min

.

Example 3: Consider Pc from Fig. 1. Then sB
min

= 2. To
check it, Fig. 2 shows the induced graph when the blocks at
time t = 1 and 2 are in deep fade: all the CS nodes in the
graph are connected at least twice to the set of VS nodes.

In order to find sB
min

for a given protograph-based SC-LDPC
ensemble, one might use the exhaustive search of stopping
sets, by using peeling decoder, applied over Pc. Some bounds
on sB

min

are also available in [10].
Notice that, for any n, s

min

(n)  d
min

(n) and also
sB
min

(n)  dB
min

(n). In this work we aim to design the
protographs such that sB

min

(nv) can be increased to dB
min

(nv),
hence approaching the ML decoding performance by using the
sub-optimal BP decoding.

IV. PROTOGRAPH DESIGN FOR A TARGETED dIT

At our knowledge, there does not exist a method to design
a code with a fixed (but arbitrary) diversity order. Even for
convolutional codes, supposed to be well-studied, the search
of a code with given d

min

is performed by computer search
(or using available results of the computer search). But for
block codes, the situation is even worse, and only few, very
particular code designs, are proposed in the literature.

In this section, we propose a recursive algorithm for gen-
erating a class of codes with increasing diversity order dIT.
The algorithm generates the protograph for a SC-LDPC code.
The advantage of working with dIT instead of d is in fact that
one can use a low-complexity iterative decoder, instead of the
optimum ML decoder, in order to get the desired diversity
order. From another side, as dIT  d, it might be a challenging
task to obtain dIT.

For simplicity, we describe the construction through an
example of a (3, 6) SC-LDPC code with B = [3, 3].

either 1 or x. Finally, if there is no transition between the
state i and the state j, Aij = 0.

• Given both-side termination for the SC-LDPC ensemble,
its Hamming weight distribution is W (x) = [AL

]

0,0.
• The minimum Hamming distance is the smallest non-zero

power in W (x). So,

d = min

i>0

{i 2 N : coeff(W (x), xi
) 6= 0}.

Note that, as we are interested not to find the whole W (x),
but only d, we might simplify the calculation of AL by keeping
track only of a few polynomial terms with the smallest power
and by neglecting all others.

Example 2: Assume the (3, 6)-regular SC-LDPC ensemble,
defined in Example 1. As a first step, a section of a syndrome
trellis corresponding to B

[1,L]

is drawn below. Here the solid
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Further, the corresponding matrix A is
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1 0 0 0 0 0 x 0
0 0 1 0 x 0 0 0
0 0 x 0 1 0 0 0
x 0 0 0 0 0 1 0
0 0 0 x 0 x 0 0
0 x 0 0 0 0 0 x
0 x 0 0 0 0 0 x
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The minimum Hamming distance can then be calculated by
computing the L’th power of A,

W (x) = 1 + 24x4

+ 22x5

+ 77x6

+ 128x7

+ O(x8

).

Hence in this case, d = d
min

= 4.

B. Estimation of dIT

As SC-LDPC codes are decoded using a low-complexity
iterative decoding, we are mainly interested in dIT (while d
serves as an upper bound on dIT). dIT is related to the blockwise
minimum stopping distance s

min

(N) of the SC-LDPC ensem-
ble. Similarly as for dmin(N), the diversity is completely
determined by the protograph, i.e., smin(N) = sB

min(nv),
where sB

min(nv) is related to Pc and is defined below.
Definition 1 (Blockwise stopping set): A blockwise stopping

set in a protograph Pc is a subset S of VS nodes in Pc such
that: 1) if a VS node at time t belongs to S , then any other VS
node at t also belongs to S; 2) VS nodes from S are connected
to a set C of CS nodes, and each node from C is connected at
least twice. sB

(nv) =

|S|
nv

denotes the size of the blockwise
stopping set S (in blocks of nv VS sets).
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Fig. 2. Induced graph resulting from blocks in deep fade at time t = 1, 2 of
Pc in Fig. 1. The highlighted nodes and edges form a stopping set.

Note that, by condition 1) above, if bits of the t-th LDPC
codeword in the SC-LDPC code are related to a class Vi, i =

1, . . . nv , and they are in deep fade, then all the other bits
in this codeword are also in deep fade, because they belong
to the same coherence interval. Moreover, if the related VS
nodes of S satisfy the condition 2) above, then they cannot be
corrected by iterative decoding.

Definition 2 (Blockwise minimum stopping distance): The
blockwise minimum stopping distance sB

min

is the smallest size
of the stopping set in Pc.
Note that, with a blockwise minimum stopping distance sB

min

,

dIT
= sB

min

.

Example 3: Consider Pc from Fig. 1. Then sB
min

= 2. To
check it, Fig. 2 shows the induced graph when the blocks at
time t = 1 and 2 are in deep fade: all the CS nodes in the
graph are connected at least twice to the set of VS nodes.

In order to find sB
min

for a given protograph-based SC-LDPC
ensemble, one might use the exhaustive search of stopping
sets, by using peeling decoder, applied over Pc. Some bounds
on sB

min

are also available in [10].
Notice that, for any n, s

min

(n)  d
min

(n) and also
sB
min

(n)  dB
min

(n). In this work we aim to design the
protographs such that sB

min

(nv) can be increased to dB
min

(nv),
hence approaching the ML decoding performance by using the
sub-optimal BP decoding.

IV. PROTOGRAPH DESIGN FOR A TARGETED dIT

At our knowledge, there does not exist a method to design
a code with a fixed (but arbitrary) diversity order. Even for
convolutional codes, supposed to be well-studied, the search
of a code with given d

min

is performed by computer search
(or using available results of the computer search). But for
block codes, the situation is even worse, and only few, very
particular code designs, are proposed in the literature.

In this section, we propose a recursive algorithm for gen-
erating a class of codes with increasing diversity order dIT.
The algorithm generates the protograph for a SC-LDPC code.
The advantage of working with dIT instead of d is in fact that
one can use a low-complexity iterative decoder, instead of the
optimum ML decoder, in order to get the desired diversity
order. From another side, as dIT  d, it might be a challenging
task to obtain dIT.

For simplicity, we describe the construction through an
example of a (3, 6) SC-LDPC code with B = [3, 3].

Fig. 2. Trellis section (left) and corresponding matrix A (right). Solid (resp.
dashed) transitions for the trellis section represent transitions for which the
related information bit = 0 (resp. = 1).

Further, the corresponding matrix A is given in Fig. 2
(right). The minimum Hamming distance can then be calcu-
lated by computing the L’th power of A, W (x) = 1+24x4

+

O(x5

). Hence in this case, d = d
min

= 4.

B. Estimation of dIT

As SC-LDPC codes are decoded using a low-complexity
iterative decoding, we are mainly interested in dIT (while d
serves as an upper bound on dIT). dIT is related to the blockwise
minimum stopping distance s

min

(N) of the SC-LDPC en-
semble. Similarly as for d

min

(N), the diversity is completely
determined by the protograph, i.e., s

min

(N) = sB
min

(nv),
where sB

min

(nv) is related to Pc and is defined below.
Definition 1 (Blockwise stopping set): A blockwise stop-

ping set in a protograph Pc is a subset S of VS nodes in
Pc such that: 1) if a VS node at time t belongs to S , then any
other VS node at t also belongs to S; 2) VS nodes from S
are connected to a set C of CS nodes, and each node from C
is connected at least twice. sB

(nv) = |S|/nv denotes the size
of the blockwise stopping set S (in blocks of nv VS nodes).
Note that, by condition 1) above, if bits of the t-th LDPC
block in the SC-LDPC code are related to a class Vi, i =

1, . . . , nv , and they are in deep fade, then all the other bits
in this codeword are also in deep fade, because they belong
to the same coherence interval. Moreover, if the related VS
nodes of S satisfy the condition 2) above, then they cannot be
corrected by iterative decoding.

Definition 2 (Blockwise minimum stopping distance): The
blockwise minimum stopping distance sB

min

is the smallest
size of the stopping set in Pc.
Note that, with a blockwise minimum stopping distance sB

min

,

dIT
= sB

min

.

Example 3: Consider Pc from Fig. 1. Then sB
min

= 2. To
check it, Fig. 3 shows the induced graph when the blocks at

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
Fig. 3. Induced graph resulting from blocks in deep fade at time t = 1, 2
of Pc in Fig. 1. The highlighted nodes and edges form a stopping set.

time t = 1 and 2 are in deep fade: all the CS nodes in the
graph are connected at least twice to the set of VS nodes.

In order to find sB
min

for a given protograph-based SC-LDPC
ensemble, one might use the exhaustive search of stopping
sets, by using peeling decoder, applied over Pc. Some bounds
on sB

min

are also available in [9].
Notice that, for any n, s

min

(n)  d
min

(n) and also
sB
min

(n)  dB
min

(n). In this work we aim to design the
protographs such that sB

min

(nv) can be increased to dB
min

(nv),
hence approaching the ML decoding performance by using the
sub-optimal BP decoding.

IV. PROTOGRAPH DESIGN FOR A TARGETED dIT

At our knowledge, there does not exist a method to design
a code with a fixed (but arbitrary) diversity order. Even for
convolutional codes, supposed to be well-studied, the search
of a code with given d

min

is performed by computer search
(or using available results of the computer search). But for
block codes, the situation is even worse, and only few, very
particular code designs, are proposed in the literature.

In this section, we propose a recursive algorithm for gen-
erating a class of codes with increasing diversity order dIT.
The algorithm generates the protograph for a SC-LDPC code.
The advantage of working with dIT instead of d is in fact that
one can use a low-complexity iterative decoder, instead of the
optimum ML decoder. From another side, as dIT  d, it might
be a challenging task to obtain a high enough value for dIT.

For simplicity, we describe the construction through an
example of a (3, 6) SC-LDPC code with B = [3, 3].

A. Initialization
In the initialization step, we first define Bi, with i varying

from 0 up to some l > 0, that fulfill the constraint on m
cc

:
Definition 3 (Block locality): Assume that a block vt at

time t with nv VS nodes is in deep fade. Locality is defined
as the minimum number of component matrices l, required to
recover nv VS nodes.

In order to guarantee some diversity dIT � 2, one should
choose a protograph Pc with mcc � l. This implies a minimum
number of component matrices Bis which should be chosen.

Proposition 1: Given a SC-LDPC code with a base matrix
B

[1,L]

, constructed using a matrix B of size nc ⇥ nv , and
considering the channel model as in (1), at least l =

l
nv
nc

m

components Bis are required in order to achieve dIT
= 2.

Proof: Let I
0

= G(C, V) represent an induced graph consist-
ing of a set of check and variable nodes C and V , respectively.
Then, choose Bis such that there exists at least one degree 1

check node cr 2 C, such that I
0

= G(C\cr, V\{vr 2 N (cr)})



recursively contains at least one degree 1 check node. Here
N (cr) denotes the set of variable nodes connected to check
node cr. Now, note that each check node in a component Bi

can be a root to only one variable node, i.e., at least nv check
nodes are required to be of degree 1. Now, since each Bi

consists of nc check nodes, therefore l �
l

nv
nc

m
.

Continuing the example of the (3, 6) SC-LDPC ensemble,
there are two distinct possibilities to select the component
matrices fulfilling the above constraint on m

cc

Option 1: B
0

= [1, 1],B
1

= [0, 1],Bmcc = [2, 1],

Option 2: B
0

= [1, 0],B
1

= [0, 1],Bmcc = [2, 2].

For the purpose of this example, let us choose the first option.

B. Splitting
In the following, the goal is to increase the diversity. This is

accomplished in two steps which will be recursively applied.
The first step is to split the Bmcc into two parts, such that
we use the minimum number of edges. Let us denote the first
part as Bs and the second part is Bmcc . The Bs must be
chosen such that together with B

0

, it also satisfies the block
locality. One choice for the Bs in this case is Bs = [1, 0].
The resulting edge spreading is then given as:

B
0

= [1, 1],B
1

= [0, 1],Bs = [1, 0],Bmcc = [1, 1].

C. Add All-Zero Matrix
The splitting step here is not intended to change the diversity

order, or at least must not decrease dIT. Therefore, a second
step is required to increase dIT. This is accomplished by
inserting an all zero matrix2 (e.g., here [0, 0]). This makes
sure that all combinations of 2 block erasures are covered
either by {B

0

, B
1

} or {B
0

, Bs}. Note that {B
0

, B
1

} is
responsible to protect against all single block erasures (block
locality), and {B

0

, Bs} must reduce the problem from two
erasures to a single erasure by correcting one deep fade or
vice versa. In our example the diversity at this step can be
increased to dIT

= 3 by inserting a single all zero matrix and
is given below,

B
0

= [1 1],B
1

= [0 1],B
2

= [0 0],B
3

= [1 0],Bmcc = [1 1].

The recursive process continues until the targeted dIT is
obtained. The steps to obtain a family of codes with in-
creasing diversity dIT for (3, 6)-regular code with base matrix
B = [3, 3] is listed in the Table I. The matrix Bs is shown
in red at each splitting step. Note that, the addition step can
add more than one all-zero matrix.

D. Discussion
As mentioned above, dIT is bounded by the blockwise

minimum Hamming distance d
min

of the code, which can
be calculated by means of W (x). The weight enumerator
corresponding to the final protograph with dIT

= 5 is W (x) =

2In general, the all zero matrix can be inserted at any position except the
first and the last one, as these two options do not change the protograph
structure and, thus, do not increase dIT.

TABLE I
DECOMPOSITION OF A (3, 6)-REGULAR CODE.

Step mcc dIT Component Matrices d

0 Init. 2 2 [1, 1][0, 1][2, 1]

1 Split 3 - [1, 1][0, 1][1, 0][1, 1] -
Add 4 3 [1, 1][0, 1][0, 0][1, 0][1, 1] 4

2 Split 5 - [1, 1][0, 1][0, 0][1, 0] -
[0, 1][1, 0]

Add 6 4 [1, 1][0, 1][0, 0][1, 0] 5
[0, 0][0, 1][1, 0]

3 Split - - not possible to split -
Add 7 5 [1, 1][0, 1][0, 0][1, 0] 5

[0, 0][0, 0][0, 1][1, 0]

1+9x5

+O(x8

). Thus, d
min

= 5 and, hence, up to d� 1 = 4

deep fades can be perfectly recovered under ML decoding.
Hence, the best possible iterative diversity, i.e., dIT

= d, is
achieved at the final step of the construction.

It is also noteworthy that the code construction does not
achieve the upper bound on dIT at each step of the recursive
algorithm. This can be easily explained by the fact that
at all the steps before the final one, component matrices
Bi, i = 0, . . . , m

cc

� 1 are designed such that these provide
the corresponding iterative diversity dIT. Hence, the maximum
in terms of diversity is achieved only when all the component
matrices (Bi, i = 0, . . . , m

cc

) are involved in providing the
diversity order. Since this algorithm recursively approaches
the upper bound on the diversity, the component matrices in
the intermediate steps are not necessarily achieving the upper
bound on iterative diversity (see column 4 and 6 of Table I).

Consider as an example the edge spreading as a result
of step 1 in Table I. For this, dIT

= 3, while the ML
decoding diversity is d = 4. If we ignore the component matrix
Bmcc , the resultant code becomes a (2, 4)-regular code with
iterative diversity of 3. The weight enumerator function of the
resultant (2, 4) protograph is W (x) = 1 + 27x3

+ O(x4

), i.e.,
ML diversity of 3. This shows that the component matrices
excluding Bmcc at each step achieves the upper bound on the
iterative diversity i.e., dIT

= d.

V. RESULTS AND COMPARISONS

This section presents the results of the designed codes using
the proposed algorithm.

A. Some Designed Codes over the Block Erasure Channel
(BLEC)

The proposed recursive algorithm above can be used to
design the protographs for a wide variety of rates and values
of d. It is applied with multiple initial steps to find the codes
with maximum diversity for rate R = 1/2, 2/3 and 3/4 with
variable node degree 3 and 4. The results are given in Table II.
Let us take an example of a variable node degree 3. It can
be seen that the designed protographs achieve the maximum
diversity of dIT

= 6

3 for all considered rates. However, as the

3Note that the maximum diversity of dIT in Table II for (3, 6) code is
obtained by starting with Option 2 as described in Section IV-A. Since the
Option 2 consumes less edges to fulfill the constraint on mcc, a higher
diversity order is possible in this case compared to the Option 1 in Table I.
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Fig. 4. Density evolution outage over block-fading channel for the (3, 6)-
regular code with increasing mcc. Diversity orders in Table III have been
estimated numerically from the slopes of WER curves.

rate increases from 1/2 to 3/4, the required m
cc

to achieve
diversity order of dIT

= 6 also increases from 9 to 23. One
of the main reasons for this is the increase in the number of
variable node sets (nv) moving from rate 1/2 to 3/4.

TABLE II
CODES AND THE MAXIMUM ITERATIVE DIVERSITY UNDER BLEC.

Code mcc dIT Code mcc dIT

(3, 6) 9 6 (4, 8) 15 8
(3, 9) 14 6 (4, 12) 27 8
(3, 12) 23 6 (4, 16) 27 6

Comparing the rate 1/2 code with variable node degree 3

and 4, it can be seen that dIT depends on the node degree. A
maximum of dIT

= 6 is achieved with a (3, 6) code whereas,
for a (4, 8) code dIT

= 8 is achievable. Hence we can conclude
that the proposed construction provides a way to achieve
arbitrary values of diversity given that the node degrees and
the memory are allowed to increase. This observation is very
similar to the increase of the average minimum distance [10]
of the SC-LDPC ensemble, when m

cc

grows.

B. WER over the Block-Fading Channel
The performance analysis over the block-fading channel is

the exactly same as over the BLEC. In order to characterize
the codes numerically, a density evolution outage probability is
calculated as detailed in [4] [3]. It provides an upper bound on
the WER. Fig. 4 shows the density evolution outage (DEO) of
the designed protograph for a (3, 6)-regular code. The results
are compared with the DEO for a (3, 6) root-LDPC code and
a (3, 6) uncoupled LDPC block code4 of the same codelength.
Thus, the uncoupled LDPC code, the root-LDPC code and the
SC-LDPC code with m

cc

= 1 are the codes, having the same
decoding latency, and can be compared to each other (as for the
decoding complexity, see Section VI for comments). Table III
shows estimated dIT vs. latency for the codes presented in
Fig. 4. Note that the estimated diversity in Table III is larger
than the computed one from Table II. This comes from the fact
that the fading coefficients take soft values between 0 and 1.

4For latency constrained comparison using window decoding, see [3], [11].

The increase of dIT for SC-LDPC codes come at increase of
m

cc

and, thus, of the decoding latency.

TABLE III
ESTIMATED dIT VS. LATENCY FOR VARIOUS (3, 6) LDPC CODES

Code Estimated dIT Latency(in bits)

Uncoupled LDPC 1.3 2N
Root-LDPC 2 2N
SC-LDPC, mcc = 1 3 2N
SC-LDPC, mcc = 5 6.7 6N
SC-LDPC, mcc = 9 10 10N

VI. CONCLUSION

SC-LDPC codes are suitable for transmission over a non-
ergodic channel [3]. In this work we propose a systematic
way of constructing protographs for SC-LDPC codes with
any target diversity order d. At the best of our knowledge,
this is the first systematic code design, addressing an arbitrary
diversity order. Using our code design, any value of d can be
obtained, for a moderate value of the memory constraint m

cc

,
so the proposed SC-LDPC codes have a good latency-diversity
tradeoff. As for their decoding complexity, we believe that it
can be kept (almost) constant, irrespectively of m

cc

, if one
uses the decoding schedules proposed in [12].
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