
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Natural language programming of industrial robots

Stenmark, Maj; Nugues, Pierre

Published in:
44th International Symposium on Robotics (ISR), 2013

DOI:
10.1109/ISR.2013.6695630

2013

Link to publication

Citation for published version (APA):
Stenmark, M., & Nugues, P. (2013). Natural language programming of industrial robots. In 44th International
Symposium on Robotics (ISR), 2013 (pp. 1-5). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ISR.2013.6695630

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISR.2013.6695630
https://portal.research.lu.se/en/publications/44fafcc0-4695-42f5-b929-7c9c579871be
https://doi.org/10.1109/ISR.2013.6695630

Natural Language Programming of Industrial Robots

Maj Stenmark, Pierre Nugues
Department of Computer Science, Lund University, Lund, Sweden

maj.stenmark@cs.lth.se, pierre.nugues@cs.lth.se

Abstract—In this paper, we introduce a method to use

written natural language instructions to program assembly
tasks for industrial robots. In our application, we used a
state-of-the-art semantic and syntactic parser together with
semantically rich world and skill descriptions to create high-
level symbolic task sequences. From these sequences, we
generated executable code for both virtual and physical
robot systems. Our focus lays on the applicability of these
methods in an industrial setting with real-time constraints.

Index Terms—High-level programming, industrial
robots, natural language.

I. INTRODUCTION
Robot programming is time consuming, complex,

error-prone, and requires expertise both of the task and
the platform. Within industrial robotics, there are
numerous vendor-specific programming languages and
tools, which require certain proficiency. However, to
increase the level of automation in industry, as well as to
extend the use of robots in other domains, such as service
robotics and disaster management, it has to be possible
for non-experts to instruct the robots.

Since humans communicate with natural language
(NL), it is appealing to use speech or text as instruction
means for robots as well. This is complicated for two
main reasons: First, NL can be ambiguous and its
expressivity is richer than that of a typical programming
language. Secondly, tasks can be expressed as goals as
well as imperative statements, hence, even if the
instructions are correctly parsed, the description itself is
often not enough to create a successful execution. There
has to be a substantial amount of knowledge in the
system to translate the high-level language instructions to
executable robot programs.

In this paper, we introduce a method for using natural
language to program robotized assembly tasks and we
describe a prototype of it. The core idea of the method is
to use a generic semantic parser to produce a set of
predicate-argument structures from the input sentences.
Such predicate-argument structures reflect common
semantic situations described through language and at the
same time use a logical representation. Using the
predicate-argument structures, we can extract the orders
embedded in a user’s sentences and map them more
easily onto robot instructions.

II. RELATED WORK
Natural language programming for robots has been

investigated for both service and navigational robots from

the early 1970’s. SHRLDU [1] is an oft-cited example of
the first attempts to give robots conversational
competences. To interpret and convert a user’s sentences
into instructions, robotic system often make use of an
intermediate representation. Examples include [2][3][4],
where the authors have developed their own domain
specific sematic representation for navigational robots.

Tenorth et al. [5] parse pancake recipes in English
from the World Wide Web and generate programs for
their household robots. They use the WordNet lexical
graph [6] with a constituent parser and they map
WordNet’s synsets to concepts in the Cyc [7] ontology.
Finally, they add mappings to common household
objects.

In order to bridge the sentence to the robot actions, all
the examples mentioned above seem to use ad-hoc
intermediate formalisms that are difficult to adapt to other
domains, languages, or environments. Frame semantics
[8] is an attempt to provide generic models of logical
representations of sentences. Frame semantics starts from
prototypical situations shared by a language community,
English for instance, and abstracts them into frames.
While frame semantics is only a theory, FrameNet [9][10]
is a comprehensive dictionary that provides a list of
lexical models of the conceptual structures. Commercial
situations like selling are represented with the
Commerce_sell predicate-argument structure, where the
arguments include a buyer, a seller, and goods. Given a
sentence and a verb belonging to this frame, like vend,
sell, or retail, a semantic parser will identify the predicate
and its arguments.

As of today, FrameNet has not a complete coverage of
English verbs and nouns. Propbank [11] and Nombank
[12] are subsequent projects related to FrameNet that
both developed comprehensive databases of predicate-
argument structures for respectively verbs and nouns and
annotated large volumes of text with it. As training data
is essential to the development of statistical semantic
parsers, most of the current parsers use the Propbank
nomenclature, as they are easier to train.

To the best of our knowledge, few robotics systems
use existing predicate-argument nomenclatures. An
exception is RoboFrameNet [13], a language-enabled
robotic system that adopts frame semantics. However, the
authors wrote their own frames inspired from FrameNet.
Their model includes a decomposition of the frames into
a sequence of primitives. They built a semantic parser
that consists of a dependency parser and rules to map the
grammatical functions to the arguments. Such techniques

have been used from the early Absity system [14] and are
known to have a limited coverage.

In the project, we describe below, we used a
multilingual high-performance statistical semantic parser
[15][16] trained on the Penn Treebank and using the
Propbank and Nombank lexicons. In contrast to
RoboFrameNet, the parser we adopted can accept any
kind of sentence.

III. SYSTEM OVERVIEW

A. Architecture
The central part of the system architecture [17] is the

knowledge integration framework (KIF). KIF consists of
a client-server architecture where the server hosts
ontologies, provides services, and object and skill
libraries. The ontologies represent the world objects, such
as robots, sensors, work-pieces and their properties, as
well as robot skills. The skills are semantically annotated,
platform-independent state machines, which are
parameterized for reuse and executed using JGrafchart
[18].

KIF interacts with the engineering system (ES), which
is the high-level programming interface, and the robot
controller. The ES is implemented as an extension to the
programming and simulation environment ABB
RobotStudio [19]. When creating the robot cell, the
objects, such as sensors, work-pieces, and trays, can be
generated or downloaded from KIF together with the
ontology. Every physical object has an object frame, and
a number of feature frames related to its object frame.
These frames are used to express geometrical constraints;
see Fig. 1.

A program consists of a sequence of steps, which in
turn consists of actions, motions, skills, or nested steps.
The sequence is created using the graphical interface of
the ES. The steps for picking a printed circuit board
(PCB) and placing it on a fixture are shown in Fig. 2. To
execute the sequence, platform specific code (robot code
or the XML file used by the state machine executor) is
generated for the motions, actions and skills, and
deployed on the target platform.

Fig. 1. In the object browser, the robots are listed under robots; all
physical objects are listed under world and each object lists its own
frames and relations.

Fig. 2. The visual rendering of a program for picking and placing a
PCB.

To help the user quickly setup a skeleton sequence of a

task, we provide a natural-language parsing service on

Fig. 3. The data flow between the user, the KIF service and the semantic parser.

KIF; see Fig. 3. The service reads the text input, parses
the text in search of predicate-arguments structures, and
returns those containing predicates that match the task
vocabulary.

On the client side, the predicates are mapped to
programs; the arguments representing station objects and
the other parameters are filled with default values or
geometrical relations taken from the station. The
programmer can then check the sequence, possibly alter it,
and finally execute it.

B. Predicate-Argument Structures
An assembly task can be defined as e.g.: Pick the PCB

from the input tray and place it on the fixture. Then take
a shield can and insert it on the PCB. These sentences are
parsed to extract the predicates-argument structures
pick(PCB, input tray) and place(it, fixture), while the
agent parameter, robot, is implicit.

The parser is trained on the Penn Treebank that uses
the Propbank lexicon [20]. Propbank labels each English
verb with a sense and defines a set of arguments that is
specific to each verb. In the sentence: Pick the PCB from
the input tray and place it on the fixture, both pick and
place have sense 1 (pick.01 and place.01):
• Pick.01 has three possible arguments; arg0: agent,

entity acquiring something, arg1: thing acquired and
arg2: seller.

• Place.01 has arg0: putter, arg1: thing put, and arg2:
where put.

The parsing output is shown in Fig. 4. As shown in
this figure, the arg1 and arg2 arguments to pick.01 are
matched to the PCB and the input tray respectively, while
the robot (arg0) is implicit.

Fig. 4. Parsing result from the first sentence. The parser identified two
predicates, pick and place, and two arguments for each predicate.

Before mapping the identified arguments to the station

objects, the arguments corresponding to the same entity
have to be gathered into coreference chains; see Fig. 5.
The last step links the coreference chains to the entities in
the station using the object name or type.

Task Vocabulary
The vocabulary is currently rather limited. We only

considered predicates matching programs that the robot
could generate. Each program has arbitrary language tags
such as take, insert, put, calibrate, either predefined or
edited by the user. Possible arguments to the programs
are the objects in the station, which is a well-defined,
finite world.

IV. HIGH-LEVEL PROGRAMMING PROTOTYPE
On the highest level, the task is represented by an

assembly graph [21], which is a partially ordered tree of

Fig. 5. Coreference solving of entities in the first sentence. Mentions
corresponding to the same entity are gathered into coreference chains.

Fig. 6. The assembly graph is created by dragging and dropping icons of
the objects. Here, the first assembly operation involves the base of the
emergency button (left) and the switch (right). In the second operation
the lid is added to the subassembly.

assembly operations; see Fig. 6. The graph describes the
assembly of an emergency stop button box.

Each operation specifies the desired geometrical
relations of the involved objects and the skill type for the
assembly. Examples of skill types in the ontology are
screw, glue and peg-in-hole, where each type can have
several different implementations. The assembly
operations are subgoals, and the root node represents the
final goal of the task. The motivation for the assembly
graph is to have a platform independent task description,
so that different implementations can be compared and
reasoned about.

The assembly graph is realized by sequences of actions
and motions for each robot. The sequence can be: 1)
created manually by adding actions and motions one by
one and editing their properties, 2) generated from the
assembly graph or 3) created by using a natural language
interface. An example of the latter is shown in Fig. 7: two
assembly steps of a stop button box assembly are
described by natural language.

Fig. 8 shows the parsed result from Fig. 7. Each
predicate is mapped to a type of skill. For example, a pick
or take consist of a sequence of primitive actions:
approaching the object to be picked, opening the gripper,
moving slowly to a grasp position, closing the gripper,
and then retracting. The mapping of the objects are
rudimentary: by name (ignoring space and case) or, if this
is unsuccessful, by the ontology type (e.g. fixture, tray or
pin). When generating the motions for picking and
placing the objects, the application uses the existing grasp
positions and relations between the work-pieces as
default values. If no relations exist, a new one is created
with zero offset. The actions for opening and closing the
gripper are taken from the selected tool, since each tool
describes its own procedures. The resulting sequence is
shown in Fig. 9.

Fig. 7. The commands are written into a simple text field, the narrative
is then sent to the KIF service that facilitates semantic parsing.

Using reasoning services available from KIF, the
generated sequence can then be checked for
inconsistencies and additional skills are suggested to
solve missing constraints (e.g. an object has to be placed
in a fixture before an assembly or a tool needs to be
exchanged between drilling and picking).

The code generated from the sequence is executable on
both virtual and physical robots; see Fig. 10. To expand
the vocabulary, the user can add natural language tags to
existing steps and upload them to KIF.

Fig. 8. The result the parsed predicates along with their arguments.

Fig. 9. The generated sequence for inserting a switch on the base of a
stop bottom and putting the top of the box on the base.

Fig. 10. The sequence from Fig. 8 executed on a physical robot.

V. CONCLUSIONS
In this paper, we have presented a system to describe

robot assembly tasks in the RobotStudio environment
using natural language. From an input sentence, the
processing pipeline applies a sequence of operations that
parses the sentence and produces a set of predicate-
argument structures. The semantic module uses statistical
techniques to extract automatically these structures from
the grammatical functions.

The NLP pipeline is designed so that it reaches high
accuracies and has short response times required for user
interaction. Parsing a sentence takes from 10 to 100
milliseconds. Drawing from the frame semantics theory,
the semantic parser uses a standardized inventory of
structures and can be applied to unrestricted text. This
makes the pipeline more easily adaptable to new tasks
and new environments.

As second step, the system maps the predicate and the
arguments extracted from the sentence to robot actions
and objects of the simulated world. These objects and
actions are stored in a unified architecture, the knowledge
integration framework that represents and manages the
entities, services, and skill libraries accessible to the
robot.

Making the application part of a tool already used by
industry is a conscious choice: high-level natural
language programming is convenient to get an application
up and running quickly. However, when tuning the
parameters of a task, the programmer can still use the
traditional tools, e.g. to edit the generated code directly.
Also, because of the industrial focus, we have real-time
performance on the underlying sensor and control
systems, which is necessary for many manipulation tasks
in assembly operations.

Unlike previously reported results, our approach
supports both a command-like interface and parsing of
longer texts, yielding multistep programs.

VI. FUTURE WORK
The obvious drawback of this implementation is the

lack of speech as an input modality. However, since
many smartphones have sufficient speech recognition for
our purposes, this was not our main scientific concern.
Rather, we wanted to extend the skill library with
relevant and generic assembly skills. We plan to extend
our application with tools that make it simple to extract
the natural language predicate-argument structures given
a skill, its parameters (objects, velocities, forces), and a
textual description of the skill. Another extension is to
automatically search after suitable implementations that
are tagged with synonyms to the used words.

ACKNOWLEDGMENT
The research leading to these results has received funding
from the European Union's seventh framework program
(FP7/2007-2013) under grant agreements N° 230902
(ROSETTA) and N° 285380 (PRACE) and from the
Swedish Research Council grant N° 2010-4800
(SEMANTICA).

REFERENCES

[1] T. Winograd. Procedures as a representation for data in a
computer program for understanding natural language.
Technical report, MIT, 1971.

[2] S. Tellex, T. Kollar, S. Dickerson et al. “Understanding
Natural Language Commands for Robotics Navigation and
Mobile Manipulation”. In Proceedings of AAAI 2011.

[3] M. MacMahon, B. Stankiewicz and B. Kuipers. “Walk the
Talk: Connecting Language, Knowledge, Action in Route
Instructions”. In Proceedings of AAAI 2006.

[4] N. Shimizu and A. Haas. “Learning to Follow Navigational
Route Instructions”. In IJCAI 2009.

[5] M Tenorth, D. Nyga and M. Beetz. “Understanding and
Executing Instructions for Everyday Manipulation Tasks
from the World Wide Web.” In ICRA 2010.

[6] WordNet http://wordnet.princeton.edu/.
[7] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira,

“An introduction to the syntax and content of Cyc,”
Proceedings of the 2006 AAAI Spring Symposium on
Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and
Question Answering, pp. 44–49, 2006.

[8] C. Fillmore, Frame semantics and the nature of language.
Annals of the New York Academy of Sciences:
Conference on the Origin and Development of Language
and Speech, 280:20–32, 1976.

[9] FrameNet https://framenet.icsi.berkeley.edu/fndrupal/.
[10] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R.

Johnson, and J. Scheffczyk. FrameNet II: Extended Theory
and Practice. Technical report, 2010.

[11] M. Palmer, D. Gildea and P. Kingsbury. “The Proposition
Bank: an annotated corpus of semantic roles.” In
Computational Linguistics, 31(1): 71-105.

[12] Meyers, A., Reeves, R., Macleod, C., Szekely, R.,
Zielinska, V., Young, B., and Grishman, R. (2004). The
NomBank project: An interim report. In Meyers, A., editor,
HLT-NAACL 2004 Workshop: Frontiers in Corpus
Annotation, pages 24– 31, Boston.

[13] B. J. Thomas and O. C. Jenkins. “RoboFrameNet: Verb-
centric Semantics for Actions in Robot Middleware.” In
ICRA 2012.

[14] G. Hirst, Semantic interpretation and the resolution of
ambiguity. Cambridge University Press. 1987.

[15] A. Björkelund, L. Hafdell, and P. Nugues. “Multilingual
semantic role labeling.” In Proceedings of CoNLL-2009,
pp 43-48, Boulder.

[16] A. Björkelund, B. Bohnet, L. Hafdell, and P. Nugues. “A
high-performance syntactic and semantic dependency
parser.” In COLING 2010: Demonstration Volume, pp 33-
36, Beijing.

[17] A. Björkelund, L. Edström, M. Haage, J. Malec, K.
Nilsson, P. Nugues, S. G. Robertz, D. Storkle, A.
Blomdell, R. Johansson, and et al. “On the integration of
skilled robot motions for productivity in manufacturing,”
In Proc. IEEE ISAM 2011, pp 1–9, 2011.

[18] Grafchart. http://www.control.lth.se/Research/tools/
grafchart.html, 2012.

[19] ABB RobotStudio. http://www.abb.com/product/
seitp327/78fb236cae7e605dc1256f1e002a892c.aspx, 2013.

[20] R. Johansson and P. Nugues. “Dependency-based
syntactic-semantic analysis with ProbBank and
NomBank.” In Proceedings of CoNLL-2008, pp 183-187.

[21] J. Malec, K. Nilsson, and H. Bruyninckx. “Describing
assembly tasks in a declarative way.” In ICRA 2013 WS
Semantics, Identification and Control of Robot-Human-
Environment Interaction, 2013.

[22]

