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Initialization of the Kalman Filter
without Assumptions on the Initial State

Magnus Linderoth, Kristian Soltesz, Anders Robertsson, apifl ®hansson

Box with
hole for ball

Abstract— In absence of covariance data, Kalman filters are
usually initialized by guessing the initial state. Making the
variance of the initial state estimate large makes sure that s ’
the estimate converges quickly and that the influence of the .
initial guess soon will be negligible. If, however, only very few '
measurements are available during the estimation process and
an estimate is wanted as soon as possible, this might not be
enough. &

This paper presents a method to initialize the Kalman filter
without any knowledge about the distribution of the initial state
and without making any guesses.

Industrial robot

Cameras

Fig. 1. Picture of a ball-catching robot.

I. INTRODUCTION

When performing state estimation on dynamical systems,
the Kalman filter [1] is a very commonly used tool. Just aghe very start of the measurement series so the robot can get
for other recursive algorithms, initialization is a neaeys to its target in time.
computational step and such initialization may be accom- Widely used algorithms are based on the extended Kalman
plished in a variety of different approachesy, probabilistic  filter (EKF), whose application to SLAM problems was
(Gaussian, Bayesian), geometric and information-thaadet developed in a series of seminal papers [5], [6], [7]. The
approaches. In the original formulation of the Kalman filteEKF calculates a Gaussian posterior over the locations of
it is assumed that the initial value of the state has a knowenvironmental features and the robot itself. Information-
mean value and variance. If no such data is available, tlagiented Kalman-type filters were proposed for featureetias
estimate will have a transient in the initial phase of thésLAM [8], [9] and for maneuvering target tracking [10] with
filtering. If it is possible to start the estimation well bedo attention to approximation and computational speed.
the estimate is to be used, this causes no problem, since thé/ision is commonly used for tracking in robotic appli-
estimate will have time to converge. The transient can alsmations. An introduction to available algorithms is given i
be reduced by letting the initial covariance matrix of thg11].
estimate have very large eigenvalues. Many specialized approaches for making an informed

However, if the estimate is needed as soon as possible afteitialization of the Kalman filter have been proposed for
the start of the estimation, it is desirable that not even thepecific problems and can be found &g, [12], [13] and
first estimates are affected by the guess of the initial statfl4]. A more general way of initializing a system on the
One such example is a ball-catching robot, which has bedinear state-space form (1) can be done by using information
treated in,e.g, [2], [3] and [4]. A photo of such a setup is filter theory, but then with additional requiremengsg, that
shown in Fig. 1. When a ball is thrown toward the robot® is non-singular or that (1) is controllable [15].
the box is moved to make the ball hit the hole. High-speed This paper presents a method to initialize the Kalman filter
cameras provide information about the position of the ballyithout making any assumptions on the initial value, only
and a Kalman filter is used to estimate the position of thassuming that the system is on the linear state-space form (1
ball and predict its future trajectory. Only a limited numbe This is done by transforming the state estimafato a space
of measurements are available during the flight of the ballith a basis separating directions of infinite variance from
and due to the limited acceleration of the robot, it has td stathose with finite variance. A different approach for solving
moving as soon as it is possible to estimate where the balle same problem is presented in [16].
will hit. Thus, it is essential to have a good estimate from
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wherez is the statey is the input and; is the measurement. such thatS; = V and S”S = I. Definez; € R" and
The disturbances ande are assumed to be white noise pro«; € R"~" as the unique solution to

cesses with zero mean valudgp(k)vT (k)] = R, (k) = 0, .

Ele(k)eT (k)] = Re(k) = 0, andE[v(k)e” (k)] = 0. r=29 [ :Ef } = Sz + Six; 9)

B. The Kalman Filter Note thatz; is a parametrization of the part ofthat can be
The Kalman filter can be used to estimate the state of (Estimated by (4), and; is a parametrization of the null space

recursively as described by (2)(I|k) denoting the estimate of G. Inserting (9) into (4) and noting th&t” [S; S;] = [ 0]

of z(l) based on measurements up to samipkend P(I/|k) one obtains

being the covariance matrix df(l|k).

z=Gzr+w
E(k[k) = 2(k|k — 1)+ = USVT (Spxs + Sizs) +w (10)
+ K(k) (y(k) — C(k)&(k[k — 1)) = USz; +w

K(k) = P(k|k —1)C" (k)- SinceUY: has full rank, one can solve (10) far, using the
(Ck)P(k|k — 1)CT (k) + Re(k))_l (2) method described in Section IlI-A.

P(klk) = P(k|k — 1) — K(k)C(k)P(k|lk — 1) IV. FILTER INITIALIZATION
Tk + 1|k) = ¢(k)z(klk) + T'(k)u(k) A. State Partitioning
P(k +1|k) = ®(k)P(k|k)®T (k) + R, (k) During the initialization of the Kalman filter there may be

C. Singular Value Decomposition tlmes_when the variance of the stat.e (.as.nm.ate is f|n|t_e in some
s _ - ) directions of the state space and infinite in other direstion
_Consider a matrix4 € R™" with rank(A) = . USINg 1 handle this case the state can by a linear transformation
singular value decomposition (SVD) it can be factorized age reoriented to a space where the directions with infinite
— T variance are orthogonal to as many base vectors as possible.
A=UXV 3)

o o Let the statez in this alternative space be defined by
whereU € R™*" satisfiesU”TU = I, V € R"*" satisfies

VTV = I and ¥ = diag(oy,09,...,0,) With oy > 09 > Tt=u (11)
-2 0p >0 whereT € R™*" andTTT = I. Let # denote the estimate
lll. OPTIMAL SOLUTION OF A LINEAR SYSTEM OF of z, and denote the estimation error by

EQUATIONS WITH NOISE

This section describes methods for solving linear syste
of equations, which will be used later.

K

= —

KN

12)

mﬁ'nroughout the paper it is assumed that the estimates are
designed to be unbiasede., so thatE[Z] = 0. The state

A. Over-determined System can be partitioned as
Consider a system of linear equations with disturbances: ~ { Ty } (13)
xr = _
z=Gx+w 4) Li
wherez € R™ and (@ € R™*™ are known andy € R™ is a Such that the covariance-matrix afy is finite and the
disturbance WithE[w] = 0 and E[ww?] = Ry, > 0 variance ofz; is infinite in all directions. Definer; and

Assume thatank(G) = n < m, i.e. the system is over- " Such thatny +mn; =n, andz, € R"/, 7; € R™. The
determined. Leti denote the minimum variance unbiased'@nsformation matrix” can similarly be partitioned as

estimate ofz. The problem of findingt was solved in [17] T = [ Ty T: ] , Tp e R™"™ T, e RM™ (14)
with the solution ) )
SinceT is orthonormal we have
&= (GTR,'G)"'\GTR, '~ (5) T
-1 _ ] —1 _ . T o f
R,=E[G -2 -2 =@ Re)" ¢ [ =T T] =[T T] = rr | @9
B. Under-determined System Note for future reference that
Again consider the system (4), but now assume that 7 7T
rank(G) = r < n, i.e, the system of equations is under- { j:f } = TfT x (16)
determined. Stillz can be partly determined. By singular ! i
value decompositioriz can be factorized as and
G=UxvT ©) z=Tyzs + Ti%: a7

which shows thatl’y spans the directions in which has
finite variance andl; spans the directions in which has
S=[5 S |]eR™" (8) infinite variance.

It is possible, as a part of the SVD algorithm, to construct



Let P; denote the covariance matrix of: guantities with finite variance. Condition (21) guarantdes
T¢(k + 1) has the highest possible rank.

D Y — 2~ — T
Py =E[(zs —zp)(zf — 25)" ] (18) Motivated by (24), let the update of the state estimate be
In the remainder of the paper all quantities defined in thidefined by
section may be appended with time indices so tlead, :?:f(k+ 1|k) = TfT(k:—&— 1|k)(I>(k)Tf(k|k)3?f(k|k)

z(I|k) is the estimate of (1) based on measurements up " (25)
to samplek, andz(I|k) = T(I|k)Z(I|k). Note, however, the + Ty (k + k)T (k)u(k)
slightly different caser(l) = T(I|k)z(I|k). The actual state The estimation error is then given by

x has only a single time _index, sin(_:e the secc_)nd t_imt_a index Zr(k+10k) = zp(k + 1k) — 75 (k + 1|k)
is meaningful only for estimates. Still has two time indices _ Tk DV (V5 » (Kl

to indicate whichT was used for the transformation. =T (k+ 1E)®(k)Ty (k|k)xs(k[k)  (26)

To conclude, all the knowledge aboiiti|k) can be fully + T (k+ 1|k)v(k)
specified byI'(I[k), z¢(I[k) and Py (I[k). It is easily verified thak [z (k + 1|k)] = 0 as required. The
B. Time Step vari:::mce of the estimate becomes
Assume thal'(k|k), 7 (k|k) and P; (k|k) are known. The ~ Dr(k +1k) =E [Z(k + 1k)ZF (k + 1[k)]
state model (1) gives the time update = QP (k|k)Q"
27
z(k+1) = ®(k)x(k) + T(k)u(k) + v(k).  (19) +Tf (k+ 1[k) Ry (k)T (k + 1[k), 27)
The purpose of the time step is to calculdték + 1|k), Q = T (k+1|k)®(k) Ty (k|k)
zy(k+1|k) and Py(k + 1[k). C. Correction Step

ChooseT'(k + 1|k) such that Assume thaf'(k|k — 1), Z7(k|k —1) and P;(k|k — 1) are

TfT(k + 1|k)®(k)T;(k|k) =0 (20) known. The state model (1) gives the measurement

ny(k + 1|k) = n — rank (®(k)T; (k| k)) (21) y(k) = C(k)z(k) + e(k) (28)

22) The purpose of the correction step is to calcul@tg|k),
z¢(k|k) and Py (k|k).

This can be interpreted as findingldk + 1|k) such that it Combining (12) and (16) gives

is orthonormal and itsis(k + 1|k) Ie_ftmost columns span G (klk — 1) = 2, (k) — Z7(k|k — 1)

the left null space ofp(k)T;(k|k), which can be dones.qg,

by means of SVD. Note that

TT(k+1|k)T(k +1|k) =T

=T} (k|k — Da(k) — Zp(k|k — 1) (29)

Equations (28) and (29) can be formulated as a single linear

ny(k +1|k) = ny (kIk) (23)  system of equations:
where strict inequality holds if and only (k) is singular y(k)
and N (@ (k) N R(T: (klk)) # 0. | [ 5 (klk — 1) }
Premultiplying (19) WlthTfT(k + 1|k) gives 5;—/
zp(k+1k) :[ o) }m(k)—i—[ k) ] (30)
= T (k + 1[k)® (k) (k) 7 (klk —1) —Zy(klk —1)
+TF (k + 1k)T (k)u(k) G w
+Tf (k + 1k)v(k) which can be solved by the method described in Section
[1I-B with
= T (k- 1Jk)R(R) (T (R)E (k[E) + T3 (KR (k1K) R [ B0 0] an
+ TF (k + 1E)T (k)u(k) v 0  Pp(klk—1)
+T7 (k + 1]k)v(k) The solution is given by
= TF (k + 1K) (k)T (kl )z (K |R) T(hlk) =S (32)
+ Tk + 1k)T(k)u(k) zp(klk) = (SUTR'US)'SUT R, » (33)
+TF (k + 1]k)o(k) Py(klk) = (SUTR,'UD) ™ (34)
(24) ny(k|k) = rank(X) = rank(G) (35)

where the second and third equalities result from (17) and ' .
(20) respectively. Here the advantage of chooditig+ 1|k) wherel, X and_S_ are defnjed In (_7) and (8).

. . . ___From the definition ofG in (30) it can be seen that
according to (20) becomes clear. Because of this choice
zs(k + 1) is independent ofz;(k) and only depends on rank(G) > rank (Ty(klk — 1)) (36)



Further, the orthonormality of'(k|k — 1) in combination
with (14) gives

rank (T (k|k — 1)) = ng(klk — 1) 37)
Combining (35) - (37) results in
nyp(kIk) > np(klk - 1) (38)

where equality holds if and only ifR(CT(k)) C
R (Ty(k|k —1)). Equations (23) and (38) together show
that n; never decreases and give conditions for whgn
increases.

If G has full rank the variance af(k|k) will be finite in
all directions andns(k|k) = n.

Remark: Forng(klk — 1) = n andTy(klk — 1) = I it
can be shown that the solution of (30) is equivalent to th
correction step of the ordinary Kalman filter (2).

D. How to start and when to stop

Assuming that nothing is known aboutwhen the estima-
tion starts out+{¢ = 0), the first thing to do is to apply the
correction step to the first measurement. The lower blocl
of the matricesz and GG, and all blocks excepR, in R,,
will then be empty.

If the initial variance of z is infinite only in some Fig
directions () < ny < n), the available information can be
represented by a triple of matriceg, z; and Py, and then
plugged into the algorithm without any modification.

If the measurements provide enough information, the varff
ance of the estimate will be finite in all directions; (= 0)
after a number of iterations of the filter. Then it is no longef?@
necessary to use the algorithm described in this section ahf
one can just as well use the standard Kalman filter (2), siné®

the methods are equivalent fer = 0.
co
V. SIMULATION

To illustrate the use of the filter, consider a ball flyingan

-6 —
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_10 —
4

. 2. Simulated ball trajectory and measurements marked ag dadls.

where the state vectar= [z, vy, 2, @ U» )7 consists

three positions followed by three velocities. To make the

example easy to follow, use the time step= 1 and the

rth gravitationg = 10. Let the initial state of the system
z(0)=1[1 2 3 0 1 4]T. The trajectory of the ball is
own as a black curve in Fig. 2. The positions of the ball at

the measuring instants are marked with green circles and the

rresponding lines that are extracted from the images are

marked in red. One camera observes the ball at time steps 0

d 2, and a second camera observes the ball at time step 1.

in a gravity field and with negligible air drag. The ball isThe simulated measurements are given by

tracked by a vision system, where each camera can provide

an estimate of the line that intersects both the ball and () — { 1 } ,C(0) = [ 100000 } (43)
the focal point of the camera, but no depth information is 3 001000
available. The process model is given on state space form
(1) with _ 3 _ 01 0 0 0O
) vW=151CD=10 01 0 0 0 (44)
1 0 0 A 0 O
01 00 A O
1 1 0 0 0 0 O
00100 h y@)-{ ]70(2)=[
= _1. .4 .
d(k) 000100l (39) 9 0 04 03 0 0 045)
0 00 01 O0 _
(0000 01 Re(0) = Re(1) = Re(2) = 10" Ty (46)
[0 Performing the state estimation on the given data gives the
0 following results:
T(k) = 2 (40)
- 0 ’ 1 0
0 0 0
L h T 00) = | o (47)
u(k) = ~g, Vk (41) 0 0
Ry (k) =10 %Iy, Vk (42) 0 0



0 00 0
-1 00 0
0 0 0 0
0 01 0
0 0 0 1
. 1
500 = | 5 | 49)
_ .10
Pro) =10 | (50
0.707 0
0 0
0 0.707
0 0
0 —0.707
0 0.707 0 0
~0.707 0 0 0.707
0.5 0 0 05
T(1j0) = 0 0.707 0 0 (52)
0 0 1 0
0.5 0 0 05
. 0.707
350110 = | gt | (53)
_ o051 0
P =10 00t 0 | (54
0707 0 0 0
0 10 0
0 0 1 0
TrA =1 o707 0 0 o0 (55)
0 00 0
0 00 1
0 —0.707
0 0
0 0
1 0
0 0
0.707
. 3
rp(11) = 5 (57)
6
051 0 0 0
_ _ 0 10 0
Pi(1]1) =10"* 0o 0 1 1 (58)
0 0 1 202

0.447 0 0 0
0 0.707 0 0
0 0 1 0
Ty (2l = —0.894 0 0 0 (59)
0 —0.707 0 0
0 0 0 1
0 —0.894
0.707 0
0 0
0.707 0
0 0
0.447
. 2.121
) = | " (61)
~16
0214 0 0 0
_ B 0 051 0 0
P;(2[1) = 107 0 0 5.03 3.02 (62)
0 0 3.02 2.03
Ty(2]2) = Isxe (63)
T;(2|2) € R*O (64)
1
2
. -9
zp(212) =1 (65)
—1
—16
Py(2]2)
1 0 0 0.5 0 0
0 9.08 -377 0 9.08 —2.27
_jg-4| 0 =377 503 0 —3.77 3.02
- 05 0 0 0518 0 0
0 9.08 -377 0 10.1  —2.27
0 —227 3.02 0 —227 203
(66)

Most insight on the estimation progress is given by
studying Ty. The first measurement locates the ball on a
line in the y,-direction, which gives information about the
position in thex,- and z;-directions. This is reflected in the
columns ofT;(0]0). After the time step the position is no
longer known. Only linear combinations of the positions and
velocities can be determined, as seerij{1]0). With the
second measurement, and z, are given. Since it is the
second measurement in thalirection,z; can be determined.
Still, no information abouy, is available and hencg, is no
longer known after the time step, as indicated 1y(2|1).
The last measurement gives information in the remaining
directions with infinite variance, and thd% (2|2) spans the
entireR" and an estimate(2|2) = 7(2|2)z(2/2) can finally
be calculated.



VI. DISCUSSION

the state. Instead the estimate can be determined conypletel

Alternative frameworks to the one used in this paper woul@ased on the first measurements.

be Bayesian networks or conditional expectations [18].

The reason for doing the partitioning suggested in this
paper, is the difficulty of representing matrices with irténi
singular values. An alternative approach to this is used in

information filters [15]. Instead of the covariance matfx
and the state estimatg the information matrixy” = P~}

and the information vectoj = P~'# are used to represent
the information about the system. If no information about
the state is available this is conveniently represented b
Y = 0. Measurement updates get a very simple form with
information filters. However, the time update is complicate
and does not work for a general system on the form (1), af"

stated in the introduction.

The equations (20) - (22) and (30) do not in general haved]
a unique solution foff". In this paper SVD based methods
for solving the equations are suggested, but other methods;
can be used. The transformati@hcan be replaced by any

1" fulfilling (11) - (18) such thaR(7y) = R(1}). Of course

zs and Py have to be modified accordingly. In the example [7]
in Section V theT matrices were chosen to align the base
vectors ofz ; with the base vectors of the original state spaceyg;

as far as possible to improve human readability.

The presented initialization procedure is useful when very
little is known about the initial state. If a priori knowleelg
is available, this should of course be used to improve the

estimate.

The statexz, and hence als@; and z;, are assumed to
have exact and finite values, however not known exactlyi1]
More specifically it is assumed that no information at all is

available aboutz;, which is modeled ag; having infinite
variance.

Itis in general not meaningful to give any numerical values

of Z if ny < n. To see this recall (17). If a row iff; has
any non-zero element, the corresponding element: a$

completely unknown. The knowledge abattan, however [14]

be described by’, z; and P;.

Even though it may not be possible to calculate any value

of # in the original state space, the informationin can

still be useful. For instance it may be of interest to know tht[aw]

altitude of an aerial vehicle before its longitude and Ulaté
can be estimated.

As an example of state partitioning consider the scenarfd’]

where an objecb is known to be near a given linkin

3D-space, but nothing is known about its position along the
line. Choose a coordinate system such that its first two base
vectors are orthogonal icand the third base vector is parallel

to [. The position ofo can then be partly described by the
first two components with a finite covariance matrix, even
though the variance in the direction of the third component

(parallel tol) is infinite.

VIl. CONCLUSIONS

A new way of initializing the Kalman filter has been
presented, making it possible to calculate a state estimate
that is not influenced by any guess of the initial value of
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