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Initialization of the Kalman Filter
without Assumptions on the Initial State

Magnus Linderoth, Kristian Soltesz, Anders Robertsson, and Rolf Johansson

Abstract— In absence of covariance data, Kalman filters are
usually initialized by guessing the initial state. Making the
variance of the initial state estimate large makes sure that
the estimate converges quickly and that the influence of the
initial guess soon will be negligible. If, however, only very few
measurements are available during the estimation process and
an estimate is wanted as soon as possible, this might not be
enough.

This paper presents a method to initialize the Kalman filter
without any knowledge about the distribution of the initial state
and without making any guesses.

I. I NTRODUCTION

When performing state estimation on dynamical systems,
the Kalman filter [1] is a very commonly used tool. Just as
for other recursive algorithms, initialization is a necessary
computational step and such initialization may be accom-
plished in a variety of different approaches,e.g., probabilistic
(Gaussian, Bayesian), geometric and information-theoretical
approaches. In the original formulation of the Kalman filter
it is assumed that the initial value of the state has a known
mean value and variance. If no such data is available, the
estimate will have a transient in the initial phase of the
filtering. If it is possible to start the estimation well before
the estimate is to be used, this causes no problem, since the
estimate will have time to converge. The transient can also
be reduced by letting the initial covariance matrix of the
estimate have very large eigenvalues.

However, if the estimate is needed as soon as possible after
the start of the estimation, it is desirable that not even the
first estimates are affected by the guess of the initial state.
One such example is a ball-catching robot, which has been
treated in,e.g., [2], [3] and [4]. A photo of such a setup is
shown in Fig. 1. When a ball is thrown toward the robot,
the box is moved to make the ball hit the hole. High-speed
cameras provide information about the position of the ball,
and a Kalman filter is used to estimate the position of the
ball and predict its future trajectory. Only a limited number
of measurements are available during the flight of the ball
and due to the limited acceleration of the robot, it has to start
moving as soon as it is possible to estimate where the ball
will hit. Thus, it is essential to have a good estimate from
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Fig. 1. Picture of a ball-catching robot.

the very start of the measurement series so the robot can get
to its target in time.

Widely used algorithms are based on the extended Kalman
filter (EKF), whose application to SLAM problems was
developed in a series of seminal papers [5], [6], [7]. The
EKF calculates a Gaussian posterior over the locations of
environmental features and the robot itself. Information-
oriented Kalman-type filters were proposed for feature-based
SLAM [8], [9] and for maneuvering target tracking [10] with
attention to approximation and computational speed.

Vision is commonly used for tracking in robotic appli-
cations. An introduction to available algorithms is given in
[11].

Many specialized approaches for making an informed
initialization of the Kalman filter have been proposed for
specific problems and can be found in,e.g., [12], [13] and
[14]. A more general way of initializing a system on the
linear state-space form (1) can be done by using information
filter theory, but then with additional requirements,e.g., that
Φ is non-singular or that (1) is controllable [15].

This paper presents a method to initialize the Kalman filter
without making any assumptions on the initial value, only
assuming that the system is on the linear state-space form (1).
This is done by transforming the state estimatex̂ into a space
with a basis separating directions of infinite variance from
those with finite variance. A different approach for solving
the same problem is presented in [16].

II. PRELIMINARIES

A. State Space Description

The problem considered relates to discrete-time time-
varying linear systems on the form

x(k + 1) = Φ(k)x(k) + Γ(k)u(k) + v(k)

y(k) = C(k)x(k) + e(k)
(1)



wherex is the state,u is the input andy is the measurement.
The disturbancesv ande are assumed to be white noise pro-
cesses with zero mean values,E[v(k)vT (k)] = Rv(k) � 0,
E[e(k)eT (k)] = Re(k) ≻ 0, andE[v(k)eT (k)] = 0.

B. The Kalman Filter

The Kalman filter can be used to estimate the state of (1)
recursively as described by (2),x̂(l|k) denoting the estimate
of x(l) based on measurements up to samplek and P (l|k)
being the covariance matrix of̂x(l|k).

x̂(k|k) = x̂(k|k − 1)+

+ K(k) (y(k) − C(k)x̂(k|k − 1))

K(k) = P (k|k − 1)CT (k)·

·
(
C(k)P (k|k − 1)CT (k) + Re(k)

)−1

P (k|k) = P (k|k − 1) − K(k)C(k)P (k|k − 1)

x̂(k + 1|k) = Φ(k)x̂(k|k) + Γ(k)u(k)

P (k + 1|k) = Φ(k)P (k|k)ΦT (k) + Rv(k)

(2)

C. Singular Value Decomposition

Consider a matrixA ∈ R
m×n with rank(A) = r. Using

singular value decomposition (SVD) it can be factorized as

A = UΣV T (3)

whereU ∈ R
m×r satisfiesUT U = I, V ∈ R

n×r satisfies
V T V = I and Σ = diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥
. . . ≥ σr > 0

III. O PTIMAL SOLUTION OF A L INEAR SYSTEM OF

EQUATIONS WITH NOISE

This section describes methods for solving linear systems
of equations, which will be used later.

A. Over-determined System

Consider a system of linear equations with disturbances:

z = Gx + w (4)

wherez ∈ R
m andG ∈ R

m×n are known andw ∈ R
m is a

disturbance withE[w] = 0 andE[wwT ] = Rw ≻ 0.
Assume thatrank(G) = n < m, i.e., the system is over-

determined. Let̂x denote the minimum variance unbiased
estimate ofx. The problem of findinĝx was solved in [17]
with the solution

x̂ = (GT R−1

w G)−1GT R−1

w z (5)

Rx = E
[
(x̂ − x)(x̂ − x)T

]
= (GT R−1

w G)−1 (6)

B. Under-determined System

Again consider the system (4), but now assume that
rank(G) = r < n, i.e., the system of equations is under-
determined. Stillx can be partly determined. By singular
value decompositionG can be factorized as

G = UΣV T (7)

It is possible, as a part of the SVD algorithm, to construct

S =
[

Sf Si

]
∈ R

n×n (8)

such thatSf = V and ST S = I. Define xf ∈ R
r and

xi ∈ R
n−r as the unique solution to

x = S

[
xf

xi

]

= Sfxf + Sixi (9)

Note thatxf is a parametrization of the part ofx that can be
estimated by (4), andxi is a parametrization of the null space
of G. Inserting (9) into (4) and noting thatV T [Sf Si] = [I 0]
one obtains

z = Gx + w

= UΣV T (Sfxf + Sixi) + w

= UΣxf + w

(10)

SinceUΣ has full rank, one can solve (10) forx̂f , using the
method described in Section III-A.

IV. F ILTER INITIALIZATION

A. State Partitioning

During the initialization of the Kalman filter there may be
times when the variance of the state estimate is finite in some
directions of the state space and infinite in other directions.
To handle this case the state can by a linear transformation
be reoriented to a space where the directions with infinite
variance are orthogonal to as many base vectors as possible.
Let the statēx in this alternative space be defined by

T x̄ = x (11)

whereT ∈ R
n×n andTT T = I. Let ˆ̄x denote the estimate

of x̄, and denote the estimation error by

˜̄x = x̄ − ˆ̄x (12)

Throughout the paper it is assumed that the estimates are
designed to be unbiased,i.e., so thatE [˜̄x] = 0. The state
can be partitioned as

x̄ =

[
x̄f

x̄i

]

(13)

such that the covariance-matrix of̄̂xf is finite and the
variance of ˆ̄xi is infinite in all directions. Definenf and
ni such thatnf + ni = n, and x̄f ∈ R

nf , x̄i ∈ R
ni . The

transformation matrixT can similarly be partitioned as

T =
[

Tf Ti

]
, Tf ∈ R

n×nf , Ti ∈ R
n×ni (14)

SinceT is orthonormal we have

T−1 =
[

Tf Ti

]
−1

=
[

Tf Ti

]T
=

[

TT
f

TT
i

]

(15)

Note for future reference that
[

x̄f

x̄i

]

=

[

TT
f

TT
i

]

x (16)

and
x = Tf x̄f + Tix̄i (17)

which shows thatTf spans the directions in whicĥx has
finite variance andTi spans the directions in whicĥx has
infinite variance.



Let P̄f denote the covariance matrix ofˆ̄xf :

P̄f = E
[
(ˆ̄xf − x̄f )(ˆ̄xf − x̄f )T

]
(18)

In the remainder of the paper all quantities defined in this
section may be appended with time indices so that,e.g.,
ˆ̄xf (l|k) is the estimate of̄xf (l) based on measurements up
to samplek, and x̂(l|k) = T (l|k)ˆ̄x(l|k). Note, however, the
slightly different casex(l) = T (l|k)x̄(l|k). The actual state
x has only a single time index, since the second time index
is meaningful only for estimates. Still̄x has two time indices
to indicate whichT was used for the transformation.

To conclude, all the knowledge aboutx̂(l|k) can be fully
specified byT (l|k), ˆ̄xf (l|k) and P̄f (l|k).

B. Time Step

Assume thatT (k|k), ˆ̄xf (k|k) andP̄f (k|k) are known. The
state model (1) gives the time update

x(k + 1) = Φ(k)x(k) + Γ(k)u(k) + v(k). (19)

The purpose of the time step is to calculateT (k + 1|k),
ˆ̄xf (k + 1|k) and P̄f (k + 1|k).

ChooseT (k + 1|k) such that

TT
f (k + 1|k)Φ(k)Ti(k|k) = 0 (20)

nf (k + 1|k) = n − rank (Φ(k)Ti(k|k)) (21)

TT (k + 1|k)T (k + 1|k) = I (22)

This can be interpreted as finding aT (k + 1|k) such that it
is orthonormal and itsnf (k + 1|k) leftmost columns span
the left null space ofΦ(k)Ti(k|k), which can be done,e.g.,
by means of SVD. Note that

nf (k + 1|k) ≥ nf (k|k) (23)

where strict inequality holds if and only ifΦ(k) is singular
andN (Φ(k)) ∩R(Ti(k|k)) 6= ∅.

Premultiplying (19) withTT
f (k + 1|k) gives

x̄f (k + 1|k)

= TT
f (k + 1|k)Φ(k)x(k)

+ TT
f (k + 1|k)Γ(k)u(k)

+ TT
f (k + 1|k)v(k)

= TT
f (k + 1|k)Φ(k) (Tf (k|k)x̄f (k|k) + Ti(k|k)x̄i(k|k))

+ TT
f (k + 1|k)Γ(k)u(k)

+ TT
f (k + 1|k)v(k)

= TT
f (k + 1|k)Φ(k)Tf (k|k)x̄f (k|k)

+ TT
f (k + 1|k)Γ(k)u(k)

+ TT
f (k + 1|k)v(k)

(24)
where the second and third equalities result from (17) and
(20) respectively. Here the advantage of choosingT (k+1|k)
according to (20) becomes clear. Because of this choice
x̄f (k + 1) is independent of̄xi(k) and only depends on

quantities with finite variance. Condition (21) guaranteesthat
Tf (k + 1) has the highest possible rank.

Motivated by (24), let the update of the state estimate be
defined by

ˆ̄xf (k + 1|k) = TT
f (k + 1|k)Φ(k)Tf (k|k)ˆ̄xf (k|k)

+ TT
f (k + 1|k)Γ(k)u(k)

(25)

The estimation error is then given by

˜̄xf (k + 1|k) = x̄f (k + 1|k) − ˆ̄xf (k + 1|k)

= TT
f (k + 1|k)Φ(k)Tf (k|k)˜̄xf (k|k)

+ TT
f (k + 1|k)v(k)

(26)

It is easily verified thatE [˜̄xf (k + 1|k)] = 0 as required. The
variance of the estimate becomes

P̄f (k + 1|k) = E
[
˜̄xf (k + 1|k)˜̄xT

f (k + 1|k)
]

= QP̄f (k|k)QT

+ TT
f (k + 1|k)Rv(k)Tf (k + 1|k),

Q = TT
f (k + 1|k)Φ(k)Tf (k|k)

(27)

C. Correction Step

Assume thatT (k|k−1), ˆ̄xf (k|k−1) andP̄f (k|k−1) are
known. The state model (1) gives the measurement

y(k) = C(k)x(k) + e(k) (28)

The purpose of the correction step is to calculateT (k|k),
ˆ̄xf (k|k) and P̄f (k|k).

Combining (12) and (16) gives

ˆ̄xf (k|k − 1) = x̄f (k) − ˜̄xf (k|k − 1)

= TT
f (k|k − 1)x(k) − ˜̄xf (k|k − 1)

(29)

Equations (28) and (29) can be formulated as a single linear
system of equations:

[
y(k)

ˆ̄xf (k|k − 1)

]

︸ ︷︷ ︸

z

=

[
C(k)

TT
f (k|k − 1)

]

︸ ︷︷ ︸

G

x(k) +

[
e(k)

−˜̄xf (k|k − 1)

]

︸ ︷︷ ︸

w

(30)

which can be solved by the method described in Section
III-B with

Rw =

[
Re(k) 0

0 P̄f (k|k − 1)

]

(31)

The solution is given by

T (k|k) = S (32)

ˆ̄xf (k|k) = (ΣUT R−1

w UΣ)−1ΣUT R−1

w z (33)

P̄f (k|k) = (ΣUT R−1

w UΣ)−1 (34)

nf (k|k) = rank(Σ) = rank(G) (35)

whereU , Σ andS are defined in (7) and (8).
From the definition ofG in (30) it can be seen that

rank(G) ≥ rank (Tf (k|k − 1)) (36)



Further, the orthonormality ofT (k|k − 1) in combination
with (14) gives

rank (Tf (k|k − 1)) = nf (k|k − 1) (37)

Combining (35) - (37) results in

nf (k|k) ≥ nf (k|k − 1) (38)

where equality holds if and only ifR(CT (k)) ⊆
R (Tf (k|k − 1)). Equations (23) and (38) together show
that nf never decreases and give conditions for whennf

increases.
If G has full rank the variance of̂x(k|k) will be finite in

all directions andnf (k|k) = n.
Remark: Fornf (k|k − 1) = n and Tf (k|k − 1) = I it

can be shown that the solution of (30) is equivalent to the
correction step of the ordinary Kalman filter (2).

D. How to start and when to stop

Assuming that nothing is known aboutx when the estima-
tion starts out (nf = 0), the first thing to do is to apply the
correction step to the first measurement. The lower blocks
of the matricesz and G, and all blocks exceptRe in Rw,
will then be empty.

If the initial variance of x is infinite only in some
directions (0 < nf < n), the available information can be
represented by a triple of matrices,T , ˆ̄xf and P̄f , and then
plugged into the algorithm without any modification.

If the measurements provide enough information, the vari-
ance of the estimate will be finite in all directions (ni = 0)
after a number of iterations of the filter. Then it is no longer
necessary to use the algorithm described in this section and
one can just as well use the standard Kalman filter (2), since
the methods are equivalent forni = 0.

V. SIMULATION

To illustrate the use of the filter, consider a ball flying
in a gravity field and with negligible air drag. The ball is
tracked by a vision system, where each camera can provide
an estimate of the line that intersects both the ball and
the focal point of the camera, but no depth information is
available. The process model is given on state space form
(1) with

Φ(k) =











1 0 0 h 0 0
0 1 0 0 h 0
0 0 1 0 0 h
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











,∀k (39)

Γ(k) =











0
0

h2/2
0
0
h











,∀k (40)

u(k) = −g, ∀k (41)

Rv(k) = 10−6I6×6, ∀k (42)
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Fig. 2. Simulated ball trajectory and measurements marked as green balls.

where the state vectorx = [xb yb zb ẋb ẏb żb]
T consists

of three positions followed by three velocities. To make the
example easy to follow, use the time steph = 1 and the
earth gravitationg = 10. Let the initial state of the system
be x(0) = [1 2 3 0 1 4]T . The trajectory of the ball is
shown as a black curve in Fig. 2. The positions of the ball at
the measuring instants are marked with green circles and the
corresponding lines that are extracted from the images are
marked in red. One camera observes the ball at time steps 0
and 2, and a second camera observes the ball at time step 1.
The simulated measurements are given by

y(0) =

[
1
3

]

, C(0) =

[
1 0 0 0 0 0
0 0 1 0 0 0

]

(43)

y(1) =

[
3
2

]

, C(1) =

[
0 1 0 0 0 0
0 0 1 0 0 0

]

(44)

y(2) =

[
1

−1.9

]

, C(2) =

[
1 0 0 0 0 0
0 0.4 0.3 0 0 0

]

(45)

Re(0) = Re(1) = Re(2) = 10−4I2×2 (46)

Performing the state estimation on the given data gives the
following results:

Tf (0|0) =











1 0
0 0
0 1
0 0
0 0
0 0











(47)



Ti(0|0) =











0 0 0 0
−1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(48)

ˆ̄xf (0|0) =

[
1
3

]

(49)

P̄f (0|0) = 10−4

[
1 0
0 1

]

(50)

Tf (1|0) =











0.707 0
0 0
0 0.707

−0.707 0
0 0
0 −0.707











(51)

Ti(1|0) =











0 0.707 0 0
−0.707 0 0 0.707

0.5 0 0 0.5
0 0.707 0 0
0 0 1 0

0.5 0 0 0.5











(52)

ˆ̄xf (1|0) =

[
0.707
5.657

]

(53)

P̄f (1|0) = 10−4

[
0.51 0
0 0.51

]

(54)

Tf (1|1) =











0.707 0 0 0
0 1 0 0
0 0 1 0

−0.707 0 0 0
0 0 0 0
0 0 0 1











(55)

Ti(1|1) =











0 −0.707
0 0
0 0
0 −0.707
1 0
0 0











(56)

ˆ̄xf (1|1) =







0.707
3
2
−6







(57)

P̄f (1|1) = 10−4







0.51 0 0 0
0 1 0 0
0 0 1 1
0 0 1 2.02







(58)

Tf (2|1) =











0.447 0 0 0
0 0.707 0 0
0 0 1 0

−0.894 0 0 0
0 −0.707 0 0
0 0 0 1











(59)

Ti(2|1) =











0 −0.894
0.707 0

0 0
0 −0.447

0.707 0
0 0











(60)

ˆ̄xf (2|1) =







0.447
2.121
−9
−16







(61)

P̄f (2|1) = 10−4







0.214 0 0 0
0 0.51 0 0
0 0 5.03 3.02
0 0 3.02 2.03







(62)

Tf (2|2) = I6×6 (63)

Ti(2|2) ∈ R
6×0 (64)

ˆ̄xf (2|2) =











1
2
−9
0
−1
−16











(65)

P̄f (2|2)

=10−4











1 0 0 0.5 0 0
0 9.08 −3.77 0 9.08 −2.27
0 −3.77 5.03 0 −3.77 3.02

0.5 0 0 0.518 0 0
0 9.08 −3.77 0 10.1 −2.27
0 −2.27 3.02 0 −2.27 2.03











(66)
Most insight on the estimation progress is given by

studying Tf . The first measurement locates the ball on a
line in the yb-direction, which gives information about the
position in thexb- andzb-directions. This is reflected in the
columns ofTf (0|0). After the time step the position is no
longer known. Only linear combinations of the positions and
velocities can be determined, as seen inTf (1|0). With the
second measurementyb and zb are given. Since it is the
second measurement in thez-direction,żb can be determined.
Still, no information abouṫyb is available and henceyb is no
longer known after the time step, as indicated byTf (2|1).
The last measurement gives information in the remaining
directions with infinite variance, and thusTf (2|2) spans the
entireR

n and an estimatêx(2|2) = Tf (2|2)ˆ̄x(2|2) can finally
be calculated.



VI. D ISCUSSION

Alternative frameworks to the one used in this paper would
be Bayesian networks or conditional expectations [18].

The reason for doing the partitioning suggested in this
paper, is the difficulty of representing matrices with infinite
singular values. An alternative approach to this is used in
information filters [15]. Instead of the covariance matrixP
and the state estimatêx, the information matrixY = P−1

and the information vector̂y = P−1x̂ are used to represent
the information about the system. If no information about
the state is available this is conveniently represented by
Y = 0. Measurement updates get a very simple form with
information filters. However, the time update is complicated
and does not work for a general system on the form (1), as
stated in the introduction.

The equations (20) - (22) and (30) do not in general have
a unique solution forT . In this paper SVD based methods
for solving the equations are suggested, but other methods
can be used. The transformationT can be replaced by any
T ′ fulfilling (11) - (18) such thatR(Tf ) = R(T ′

f ). Of course
ˆ̄xf and P̄f have to be modified accordingly. In the example
in Section V theT matrices were chosen to align the base
vectors ofx̄f with the base vectors of the original state space
as far as possible to improve human readability.

The presented initialization procedure is useful when very
little is known about the initial state. If a priori knowledge
is available, this should of course be used to improve the
estimate.

The statex, and hence alsōxf and x̄i, are assumed to
have exact and finite values, however not known exactly.
More specifically it is assumed that no information at all is
available about̄xi, which is modeled aŝ̄xi having infinite
variance.

It is in general not meaningful to give any numerical values
of x̂ if nf < n. To see this recall (17). If a row inTi has
any non-zero element, the corresponding element ofx̂ is
completely unknown. The knowledge aboutx can, however
be described byT , ˆ̄xf and P̄f .

Even though it may not be possible to calculate any value
of x̂ in the original state space, the information inˆ̄xf can
still be useful. For instance it may be of interest to know the
altitude of an aerial vehicle before its longitude and latitude
can be estimated.

As an example of state partitioning consider the scenario
where an objecto is known to be near a given linel in
3D-space, but nothing is known about its position along the
line. Choose a coordinate system such that its first two base
vectors are orthogonal tol and the third base vector is parallel
to l. The position ofo can then be partly described by the
first two components with a finite covariance matrix, even
though the variance in the direction of the third component
(parallel tol) is infinite.

VII. C ONCLUSIONS

A new way of initializing the Kalman filter has been
presented, making it possible to calculate a state estimate
that is not influenced by any guess of the initial value of

the state. Instead the estimate can be determined completely
based on the first measurements.
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