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Abstract—The problem of modeling and controlling re-
sources in a system with interaction between hardware and
software is considered. A model encompassing both hardware
and software dynamics is developed together with an on-
line estimation scheme in order reduce dependence on a-
priori information. A control structure is presented in ord er
to control performance under constrained resource situations
and to reduce effects of estimation errors and disturbances.
The approach is applied to a conversational video case and
evaluated through simulations.

I. I NTRODUCTION

The main characteristic of Cyber-Physical Systems (CPS)
is the need to simultaneously consider both the computing
and communication processing and the physical system, and
their interactions. During recent years a number of challeng-
ing applications have emerged within areas such as smart
power grids, intelligent homes, environmental monitoring,
and transportation systems, see [21] [22] [13] [26]. Many of
these applications base their functionality on wireless com-
munication, either in the form of sensor/actuator networks
or based on mobile cellular communication systems.

In addition for mobile communications to being an en-
abling technology for CPS, the components of a mobile
communications, i.e., the cellular phones themselves, also
can be viewed cyber-physical systems, such as illustrated in
Figure 1. For the modern, typically multi-core, processors
employed in smart phones efficient thermal management
is essential in order to not overheat the system. The chip
temperature dynamics is governed by a continuous-time
differential equation model which takes as an input the
power generated by the CPUs, which in term is decided
based on the CPU utilization. An efficient solution for
this requires an integrated or holistic approach, i.e., a CPS
approach, encompassing both the temperature dynamics and
the computations.

Another central characteristic of modern cellular phones
is the focus on multimedia applications. Multiple synchro-
nized audio and video streams are required in order to,
e.g., support conversational video applications. Multimedia
streaming applications are rate-based applications wherethe
execution time each cycle typically changes stochastically

depending, e.g., on the type of video frame being processed
or due to cache effects.. Correct synchronization between
the streams, e.g., between the video and audio stream is
essential from a usability perspective.

The uncertainty in execution times is just one out of
several sources of uncertainty in these types of systems.
The temperature dynamics may vary drastically depending
whether the phone is exposed to the sun or not. The
limited heat tolerance of the processor imposes restrictions
on resource availability in a way that needs to be considered
for mobile devices, which working conditions can be hard
to predict. The classical approach in real-time systems when
subject to dynamic variations in resource consumption is
to do a worst-case design. However, in addition to the
problem of deriving the worst-case numbers, the resulting
over-provisioning of resources is in general not acceptable
in these types of mass-market products.

Feedback and estimation are generally very good ways to
handle uncertainties in physical systems. This also holds for
resource-related uncertainties in embedded real-time com-
puting system. Using feedback the allocation of resources
is based on measurement of actual resource consumption
and resource availability. This results in a resource manage-
ment system that dynamically adapts the behavior of the
system. Dynamic resource management is often combined
with bandwidth server or reservation techniques such as,
e.g., constant bandwidth servers (CBS) [2] that enforce the
abstraction of virtual processors in which an application is
guaranteed a certain share of the total CPU resource.

A challenge for CPS is the development of a unified
modeling formalism that covers both physical phenomena
and computations. Although, a plethora of different hybrid
models have been proposed, they are often overly complex
for the purpose of dynamic resource management. What is
required is a abstract notion of resources and transformations
of resources.

In this paper a feedback-based resource management
method is proposed that unifies thermal management and
control of media tasks. A unified model is used that is based
on the dynamics of flows, both physical and virtual. Unlike
previous approaches the feedback is based on metrics that



relate to the application performance, in this case the syn-
chronization error between the video and the audio and the
encoding latency, rather than just the CPU utilization. It is
shown how the use of such metrics enables the attenuation of
transient phenomena, despite being in a resource constrained
situation.

A. Related Work

Resource management for embedded systems has its roots
in scheduling theory. Many traditional works use Constant
Bandwidth Servers [2] or Proportional Share (PS) scheduling
[23] to enforce resource reservations. Such mechanisms are
today widely available for commodity operating systems,
such as Linux [19] [5], but assigning shares still requires
knowledge about resource consumption. The approach taken
in this paper is that resources are allocated based on run-time
metrics. Such schemes have been proposed by e.g. [4], [1],
and [17]. Unlike these works however, this paper considers
systems where the components have dependencies, both in
physical and virtual resources.

[7] studies the coupling between thermal dynamics and
software performance, but does this based on the utilization
bound, not application performance.

For resource constrained situations, feedforward alloca-
tion is often proposed, with Q-RAM [20] being one of
the more complete formulations. However, this is mainly
an off-line method and relies on a-priori knowledge about
execution times. This paper uses a nominal feedforward
allocation, but based on on-line estimated dynamics and
also applies feedback to reduce effects of estimation errors
and disturbances. Thiele proposes the use of Real-Time
Calculus for resource management in embedded systems
[24], but focuses on analysis instead of control. Other works
of interest are [8], [12], [25] and [18].
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Figure 1. A common CPS, consisting of a CPU and a set of software
components. The CPU can be utilized to a degreeU that depends on the
temperatureT . The utilization should then be allocated to the software
component so that the output of the system is optimized in some sense.

Recently event based methods have gathered attention in
the control society, with some examples in [11], [10], [16],
because of the way it can improve on the trade-off between
control performance and cost of control action. Event based
dynamics is used in this paper, not to reduce the cost of
control, but to introduce information that is not possible to
describe in flow dynamics. It should be noted that there
are similarities between the problem solved in [9] and the
synchronization problem discussed below due to the use of
event dynamics.

B. Outline of the paper

First the problem of modeling both physical and software
dynamics is discussed in Section II, where the cyclic task
model is introduced together with a model of the CPU
thermal dynamics. This section also introduces the example
system, a conversational video pipeline, and the relevant
performance metrics. The control structure used is discussed
in Section III and the simulation environment and simulation
results are then presented in Section IV. A discussion
on future directions follows in Section V and then some
concluding remarks in Section VI.

II. SYSTEM MODEL

One important objective of this paper is to model a
system where there is noticeable interaction between the
software components and the hardware components. The
approach taken is to see it as a system which performance
is governed by the flow of resources.Resourceis here taken
to mean a quantity, bounded and non-negative, that through
a system component is converted into another resource.
The system performance is then expressed in terms of this
transformation.

A resource flowis the exchange of a resource between two
components of the system. In a CPS, a flow can be physical
(e.g. heat or power) or virtual (computations or data). In
this work physical flows are consideredL2 functions while
virtual flows are eitherL2 or a sequence of Dirac-spikes,
with finite density. This is similar to the notion of discrete
event signals described in [14]. Formally, letU denote the
set of generalized functions onR such that ifu(t) ∈ U and,
t1, t2 ∈ R then

∫ t2

t1

u(t)dt (1)

exists and has the sign oft2 − t1. The rationale behind
resource flows as Dirac-spikes is that many important virtual
resources are generated in an event-like manner. As an
example, letnCPU (t) denote the number of completed
instructions in a CPU andntask(t) the number of times a
sporadic task running on that CPU has executed. Obviously,
ntask(t) depends onnCPU (t). In order to analyze the
performance of the task, e.g. to check if it completes cyclen

before a certain time, it is necessary to study howntask(t)
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Figure 2. A diagram showing how the domains of physical and software
systems have their own unique dynamics, but share the discrete flow
dynamics.

and nCPU (t) evolve over time but due to their stair case
nature, ift0 denotes some specific time,

lim
h→0

ntask(t0)− ntask(t0 − h)

h
(2)

is either 0 or undefined. Therefore the dynamics of a system
involving virtual flows must be expressed in discrete time,
here called adiscrete flow dynamic.

Forming such a description for physical systems can
be done through sampling. Note however that while the
sampled system description says nothing about the system
behavior between sample points, signals likenCPU (t) and
ntask(t) are defined for allt. Because of this, it is possible
to talk about exactly when the changes inn occur. These
instantaneous changes, referred to as events (see e.g. [10]),
contain important information about the system that can be
exploited in control.

To summarize, the dynamics of a physical system is often
modeled through differential equations. These can be dis-
cretized or sampled to give a discrete time model. Software
system are usually modeled through event based dynamics,
but these can be re-formulated as discrete flow dynamics,
comparable with the discretized continuous model. This
gives a common model domain with which to express the
entire system dynamics. Figure 2 show how the two domains
and the dynamic descriptions relate.

A. Cyclic Task model

To derive both discrete flow and event dynamics of a soft-
ware task, this paper introduces a variant of the periodic task
model. In order to accurately express the event dynamics, the
exact completion time of each job is important and therefore
explicitly part of what will be referred to as thecyclic task
model.

A task τi is cyclic if it repeatedly performs a set of
computations that output the same form of results, with the
next cycle beginning immediately when the previous ends.
The output is a data resource, e.g. encoded video frames,
sensor readings or computed control signal. A cyclic task
will block if and only if it is starved of CPU-time. The
cycle execution time for cyclen is denotedCi(n) and is
stochastic. For estimation purposes, it will be assumed that
Ci(n)

• has a strictly positive lower bound and
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Figure 3. ni(t) and yi(t) for one of the tasks in the simulations. Note
that these are not sampled curves, despite their jaggedness. Both signals
are defined for eacht

• constitutes a weakly stationary stochastic process with
E{Ci} < h

From this it follows that if a task is started att0 and executes
until t1, the expected number of completed cycles becomes

E{
t1 − t0

Ci

} ≈
t1 − t0

E{Ci}
(3)

Let ui(t) denote the fraction of CPU-time allocated toτi
through some resource reservation scheme, such as CBS or
PS, over the intervalh = t1−t0. Letni(t) denote the number
of completed cycles forτi at timet. (3) can then be used to
approximate the dynamics ofni(t) as

ni(t+ h)− ni(t) ≈
1

E{Ci}
hui(t) = hkiui(t) (4)

or in words,ni evolves approximately like a discrete time
integrator with the unknown gainki and is driven by the
virtual resource flowui(t).

ni(t)−ni(t−h)
h

is denotedyi(t)
and is referred to as theexecution rateof τi. yi(t) constitutes
a discrete flow. Figure 3 shows an example ofni(t) and
the correspondingyi(t) for one of the tasks used in the
simulations.

The other aspect of the cyclic task model is the event
dynamics, i.e. exactly when the contributions to the flow
occur. This has no counterpart in physical flows as contri-
butions are spread out continuously over time. For software
tasks on the other hand, the completion time is often an
important performance metric. In the cyclic task model, the
completion time for cyclen is denotedxi(n) and modeled
as

xi(n+ 1) = xi(n) +
Ci(n)

ui(xi(n))
(5)

if ui(xi(n)) is assumed to be constant over the interval
[xi(n), xi(n+ 1)).



While this could be used for traditional deadline driven
scheduling (e.g. keepingxi(n+1) < xi(n)+Di)) it is also
possible to control other and sometimes more interesting
metrics, such as the synchronization between two non-
uniform sequences.

B. Multi-resource dependencies

It is desirable to model tasks that require multiple re-
sources to execute. In this paper this is done by assuming
that if a task lacks a supply of any one required resource,
it will block until it has enough. This is a generalization of
the behavior for the dependency on CPU-time introduced
previously. It is assumed that a task has the capability of
accumulating incoming flows, e.g. in FIFO queues for data
or execution time deficit accounting in the scheduler for cpu-
time. It follows that the task execution rate is limited by the
rate at which resources are made available to it. Formally,
if τi is dependent on the flowsu0, ..., uN

yi = min(ki,0u0, ..., ki,NuN ) (6)

would describe its execution rate, whereki,j denotes the
dependency fromuj to yi. From (6) it follows that an alloca-
tion strategy should try to keep the incoming flows equal to
minimize over-provisioning. Furthermore, it points towards
two important objectives for maximizing performance of
these systems

1) calculating a steady state flow that maximizes the
relevant performance metric

2) control transient effects that cause blocking

C. CPU dynamics

In order to study how the availability of the CPU influ-
ences the software and how the software load affects the
availability of the CPU, this paper uses a model for the
thermal dynamics based on [6]. The CPU must not become
too hot and if there is no active cooling, the temperature
must be controlled through the power. It is assumed that the
system studied in this work consists of a computing platform
with one CPU equipped with a thermal sensor. The model
of the dynamics from CPU powerP to CPU temperatureT
is

Ṫ = a(Ta − T ) + bP + d (7)

where a and b are constants depending on the thermal
resistance and heat capacity of the processor andTa the
ambient temperature.d is a disturbance term which will
be assumed have slow dynamics, such as heat generated
by direct sunlight or by being placed on a heated surface.
For of-the-shelves CPUs,a and b are in the order of10−4

and 10−3 respectively (see e.g. [7]), making the dynamics
relatively slow. It is therefore assumed that it possible to
filter out measurement noise, which is therefore omitted
from the model.
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Figure 4. An overview of the conversational video pipeline

The relationship between CPU loadU and P is then
modeled as

P = Pidle + U(Pmax − Pidle) (8)

Sampling the combination of 7 and 8 can then be done under
zero-order-hold assumptions.

D. Example system

The prototypical system to be considered is a conversa-
tional video pipeline as displayed in Figure 4. The software
part consists of three tasks, an audio encoder, a video
decoder and a network stack. The encoders are assumed
to have private access to capture hardware and it is also
assumed that they are capable of variable rate execution.
The encoders are connected to the network through FIFO-
queues, Q1 and Q2. In order to send a network packet, the
stack requires one frame of audio and video.

In order to evaluate the performance of this system, the
following metrics are defined

1) Sync error: It is disturbing to the human eye when
video and audio is out of sync and therefore it is natural
to consider the difference in encoding timestamp between
the corresponding audio and video frames. If both tasks are
assumed to be cyclic andxa(n) andxv(n) denotes the en-
coding timestamps for audio and video frames respectively,
then

xa(n+ 1) = xa(n) +
Ca(n)

ua(xa(n))

xv(n+ 1) = xv(n) +
Cv(n)

uv(xv(n))

(9)

would be the corresponding dynamics. The sync errores(n)
is then defined as

es(n) = xa(n)− xv(n) (10)

2) Latency: Delay in the conversation is also an impor-
tant quality metric and for this set up it will be the end to
end latency. Ifq1(t) and q2(t) are the number of elements
at time t in Q1 and Q2 respectively, then let theel(t) be
defined as

el(t) =

Ca(n)
ua(xa(n))

+ Cv(n)
uv(xv(n))

2
+(

q1(t) + q2(t)

2
+1)

Cn(n)

un(xn(n))
(11)

or in words, the computational delay combined with the
network backlog in the queues.



3) Queue dynamics:Using the cycle dynamics expressed
in (4), the dynamics ofq1 andq2 is modeled as

q1(t+ h) = q1(t) + h(ya − yn)

q2(t+ h) = q2(t) + h(yv − yn)
(12)

III. C ONTROL DESIGN

The challenges in designing a control scheme for the
described system lies in the uncertainty inCi and the
thermal dynamics of the CPU. Normally a CPU can only
operate properly if the temperature is kept below a certain
level but if there no active cooling, as is the case in many
embedded platforms, this must be respected through control
of CPU power. The options to do this include voltage- and
frequency scaling and idling, the last of which will be used
in this paper. The main reason for this is that the speed
of the CPU directly affectsCi and any on-line estimates
of these parameters will then change due to control action.
Controlling the power throughU and then imposing the limit

ua + uv + un ≤ U (13)

simplifies the estimation strategy.
The control will be done through assigning a share of the

available CPU-time through a resource reservation frame-
work. In the calculations, fluid resource model is assumed
and the actual deviations from the ideal share are modeled
as part of the stochastic cycle times. This means that the
parameters of the reservation framework will influence the
noise levels.

If a CBS framework is used, the server periods should be
kept well belowh or the assumption that

∫ t+h

t

ui(t)dt ≈ hui(t) (14)

which is used in (4), will not hold. The server period will
also influence the sync dynamics and therefore should be
kept below the shortest cycle time in the system in order to
minimize disturbances caused by the scheduler.

A. Thermal control

Given that the temperature is modeled with first order dy-
namics with slow disturbances, a PI-controller [3] is a simple
and effective choice, though anti-windup measures must be
added to handle effects from control signal saturation.

The pure PI-controller is defined as

u(t) = K(e(t) +
1

Ti

∫ t

0

e(τ)dτ) (15)

By discretization of the dynamics using a forward Euler
approximation, constraining the control signalU to the
interval [0, 1] and adding an anti-windup tracking term to
the integral part, the resulting control algorithm, described
as pseudo-code, is

e := r - T;

V := K*e + I;
U := sat(V, 0, 1);
if (Ti != 0) then

I := I + h*e/Ti + h/Tr*(U - V);
endif

whereh is the sample interval.

B. Estimation

When faced with model uncertainties such as the parame-
terski, there is a choice between either estimating them on-
line or applying robust feedback. In constrained situations,
knowledge of model parameters is often necessary for trade-
off decisions. This paper is therefore based on using an
estimation scheme and the resulting estimates are then used
for both feedforward and feedback design.

Periodic sampling and recursive estimation methods could
be applied on a physical plant (see e.g. [15]), but this would
be impractical for use with the event dynamics, which deal
with non-discretized time. The approach taken instead is
simply counting the number of cycles completed in a time
window of lengthtw and then estimatêki as

k̂i(t) =
ni(t)− ni(t− tw)

hui

(16)

This estimate however relies onui being constant overtw,
which might not be the case. Though a reservation based
scheduling policy is used, if the estimation window applied
is not fitted to the reservation period, the actual amount of
resource can deviate noticeably. However, as most operating
system expose the accumulated CPU-time per process, i.e.

∫ t

0

ui(t)dt (17)

through system calls it is therefore possible to reformulate
the estimator as

k̂i(t) =
ni(t)− ni(t− tw)

∫ t

t−tw
ui(t)dt

(18)

tw has been set toh in during simulations but is important to
note that the parameter estimates are expressed in continuous
time.

C. Latency

It follows from (11) and (6) that latency can be controlled
through minimizing the queue lengths and then keeping
a uniform steady state cycle time across all components.
The approach taken in this work is to combine a feed
forward control based on the total amount of resource with
a feedbackre-allocation to reduce queue length. In essence
this is a form of midrange control.

The nominal feed forward controls are computed by
combining (13) with

ya = yv = yn (19)
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To control the queue lengths, the feed forward controls
are then modified with a feedback termuq. As the control
system cannot violate (13),uq will be applied as





ua

uv

un



 =





unom
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unom
v
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
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
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−1



uq (21)

subject to the constraints that the resulting controlsui ≥
0.

To calculateuq(t), the closed loop dynamics of the queues
are evaluated. It is assumed that the queues will be of equal
length in steady state (see the section on sync error) so the
feedback can be designed with any one in mind. Recall

q1(t+ h) = q1(t) + h(ya − yn) (22)

Assume the objective is to drive the queue length to some
predetermined lengthr (e.g. zero). Let

h(ya − yn) = Kq(r − q1(t)) (23)

This converges tor for all 0 < Kq < −2. Substituteya =
ka(u

nom
a + uq

kv

ka+kv

) and yn = kn(u
nom
n − uq) and solve

for uq to obtain the actual controls.

D. Sync error

If Ca

ua

is approximated by(kaua)
−1, it follows from the

definition (10) that

es(n+ 1) = es(n) + (kaua)
−1 − (kvuv)

−1 (24)

As there is a finite combined flow of CPU resource to the
audio and video encoder, the approach taken here is to
introduceus as a feedback term, modifying the feedforward
allocation so that

es(n+1) = es(n)+(ka(ua+us))
−1−(kv(uv−us))

−1 (25)

is driven towards zero. While this seems to interfere with
the queue control, the difference in time scale between the
event-to-event dynamics make its effects on the slower queue
controller negligible. In fact, it is seen in Section IV-E
that controlling the sync error actually greatly simplifiesthe
queue control. Let

(ka(ua + us))
−1 − (kv(uv − us))

−1 = Kses(n) (26)

Under deterministic circumstances the sequencees(n) will
converge to zero for anyKs ∈ (0,−2). Given the variations
in the cycle execution times, some care should be taken when
selectingKs as the noise can drive the system unstable. As
this work is done without a detailed noise model,Ks is
chosen conservatively as -0.5. Then solve forus under the
constraint thatua + us ≥ 0 anduv − us ≥ 0.

The resulting control structure is presented in Figure 5.
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Figure 5. The resulting control structure including estimation, feed forward
flow control based on the estimated model parameters and the available
CPU resource and feedback based on queue state and sync error
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IV. SIMULATION RESULTS

A. Simulation environment

In order to evaluate controls, a simulation environment
has been developed in Python. The system dynamics are
approximated by discretization with a time step of 1 ms,
which incurs quantization on the cycle completion time
stamps. This is however assumed to be of little effect as
the variation due to noise is orders of magnitude greater for
these simulations.

Cycle execution times have been generated asDi+Xi(n)
where Di is an a-priori unknown constant andXi(n) ∈
exp(0.1Di). The realizations used for the presented sim-
ulation results are shown in Figure 6. The randomness is
meant to model both software execution time uncertainty
and the stochastic properties of a modern CPU, including
the effects of caches, the memory bandwidth gap and deep
pipelines. TheDi values were chosen randomly so that the
resultingk-parameters would lie between 10 and 100. A real
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sequence of cycle times for a video decoder is provided for
comparison in Figure 7.h is globally defined as 1.

B. Thermal control

The thermal model of the CPU are based on [7], but
to make the effects of the thermal dynamics more visible
in the simulations, the parameters have been scaled so the
dynamics are faster. This makes the effects of control and
disturbances more prominent. In the simulationsa = 2 and
b = 1.5. The main purposes of the thermal model are

• to provide a scenario for the varying availability of CPU
resource and

• to show how physical models can be combined with
the software models.

so switching for a more realistic parameters would not
change the design decisions significantly though the thermal
controller must then be re-tuned. However, as the focus of
this paper is on the application performance as affected by
both hardware and software, more advanced temperature
control strategies are left for future research.

A scenario where a disturbance enters occurs at 5 seconds
is shown in figure 8. This could be a situation where the unit
is left in direct sunlight that causes an insolation effect of
15 degrees C / s. The controller keeps the temperature by
throttling the available CPU-time.

C. Parameter estimation

Figure 9 shows the estimated execution rates and corre-
spondingki-parameter estimates over the simulation. The
discontinuous nature of the virtual flows is evident in these
plots. Note that it takes some time before the Network Stack
starts to execute and this is because of the queue-controller.
It throttles the Network Stack while the queues are filled
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Figure 8. PI control of temperature with a constant disturbance of 15
degrees C / s entering at 5s. The uncontrolled dynamics are shown for
comparison.
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Figure 9. Rate and parameter estimation for all three tasks.Rates are
estimated by counting events with a sliding time window withlength 1
second. The network stack (red) lags behind in the beginningdue to queue
control.

and because of this, thek-parameter estimator needs more
time to formk̂n. This causes the big overshoot in the queue
length before it settles on the desired level.

Even though the actual execution rate changes over
time, the estimate mean remains stable while the variance
increases at lower rates. This is because a single event
being outside or inside the estimation window will affect
the estimate more. The window based estimation scheme
will break down when the rate drops below 1 cycle per
second. Section V-B discusses some alternatives that could
be explored in future research.
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Figure 10. End-to-end latency and average queue length compared with
and without control. The uncontrolled case (green) is about2-3 times worse
than what it obtained through control (blue).

D. Latency performance

As there is no information about future demands for the
CPU resource, a reasonable strategy is to minimize latency
at all times. This is done by utilizing all available CPU-
time while respecting the temperature set-point, thereby
reducing the execution time for all tasks and by controlling
the queues. The reason why the queue controller is not trying
to drive the queue lengths to zero is that this could cause
blocking in the network stack, which in turn would reduce
the accuracy of̂kn. This could be treated by designing a
better estimator.

The latency control performance is displayed in Figure 10.
A scenario without queue control is provided for comparison
and the problem with this is evident. Even though the system
reaches steady state, an initial transient is left to cause
significantly higher latency.

E. Sync performance

The simulations reveals the importance of the sync con-
troller. Figure 11 shows that the sync error while left
uncontrolled will actually drive the system to a stall. The
reason for this is that the queue controller uses the average
queue length to do the re-allocation. Figure 12 shows that
even before thek-parameter estimates converge, the sync
controller keeps the audio and video stream tightly together.
This means that the queue lengths are actually the same,
an assumption which can then be safely used by the queue
controller.

Figure 13 shows how the queue lengths diverge quickly
and the resulting re-allocation by the queue controller actu-
ally starves both audio end video encoder. It would theoreti-
cally be possible to form a MIMO-controller to handle both
sync and queues in the same control law, but recall that the
queue controller is a discrete time system that uses resource
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Figure 11. Sync error compared with (blue) and without (red)control.
In the uncontrolled case, the encoding pipeline stalls which is why the
encoding error seems to remain constant after 2.5 seconds.
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Figure 12. Execution rates compared with and without sync control.
The curves have been averaged over a window of0.1 s to provide better
visibility.

flow semantics and therefore cannot in a simple way utilize
information about individual events. The sync controller on
the other hand operates on the event sequence and thereby
have access to the cycle completion time stamps.

V. D ISCUSSION AND FUTURE DIRECTIONS

The simulations show that the approach with resource
flow semantics, coupled with specific use of cycle com-
pletion timestamps can address situations where there is
direct interaction between physical and virtual resources.
The approach also shows promise as a way to model multi-
resource dependencies for dynamic resource allocation. Ob-
viously the limits on performance will come from the
quantity of noise in the systems, which limits the accuracy
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Figure 13. Queue lengths for a scenario with no sync control.The resulting
allocation is based on the average queue length(Q1 +Q2)/2.

on parameter estimates. The example above shows that even
though this system has no slack in resource use at all, it
is possible to control performance metrics with relatively
simple strategies. Below follow conclusions on some specific
topics.

A. Relation between physical and software models

The presented approach lends itself to a way of modeling
where there is no significant difference between how we
control the physical and software components. Both can be
seen as transforming a set of flows into other flows and
even though some precision is lost in order to handle the
virtual flows, it seems attractive for modeling larger systems.
One observation is that the sync problem is very similar
to synchronizing servos in robotics or formation control
for autonomous vehicles. These are generally resource con-
strained environments as well, making them attractive future
application areas.

B. Parameter estimation

In the simulations, a window based estimation method is
used. This is difficult to combine with knowledge about the
correlation between execution times, such as displayed in
Figure 7. An interesting alternative would be to formulate
an estimator working directly on the timestamp series, like
the sync controller does. This would require more detailed
models of the algorithms and some care when thinking about
to express the estimates so that they make sense in the flow
semantics.

C. Controller design

The controllers used for this work are all very simple and
as there are several constraints in the dynamics, on both state
and control, it would be interesting to see how an MPC-style
controller could be designed. This is also a direction where

load models could be used to reserve resources a head of
time, e.g. by reducing CPU temperature in advance so that
it could effectively be over-clocked during a time with high
demand.

D. Non-constant data resource dependencies

In this work, the data resources are produced and con-
sumed in deterministic quantities. An extension of interest
would be where for instance the cycle time is kept constant
and the consumption quantities varied.

E. Reconfiguration and startup transients

The start up of the system is handled ad-hoc in this
scenario, withk−parameters kept at an initial guess until
enough information is gathered. A problem can arise if an
initial guess would result in a degenerate allocation causing
a system stall. A similar situation could arise if the system
is reconfigured at run-time, switching which components
are active or redirecting resource flows. It is necessary
that formal strategies for preventing such situations from
occurring are developed before these types of solutions can
be deployed in safety critical environments.

F. Distributed control control

Though the semantics of both physical and software
components are similar, a controller that must exists in both
worlds can be difficult to build. A distributed formulation
where minimal communication between hardware and soft-
ware could prove necessary.

VI. CONCLUSIONS

This paper has presented a way to model dynamics that
can be used to express the properties of both software and
hardware, which is important to the domain of CPS. It is
shown through simulations how such models can be used
to do resource allocation in situations with both uncertain
dynamics and task to task dependancies. Furthermore the
simulations shown that the approach works even in resource
constrained environments, as it does not rely on over-
provisioning.
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